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Abstract

Melissa Glass

We investigate the topological, similarity and Hausdorff dimensions of self-similar
fractals that are the invariant sets of iterated function systems. We start with the
Contraction Mapping Theorem, which will give us a constructive method in which to
find fractals using iterated function systems. We then define the Hausdorff metric in
order to use the Contraction Mapping Theorem to prove that each iterated function
system has a unique invariant set.

Next, we discuss three different types of dimensions: topological, similarity, and Haus-
dorff dimension. The main theorem of this thesis tells us that the similarity dimension
equals the Hausdorff dimension if the iterated function system satisfies the Open Set
Condition. This is important since the similarity dimension is much easier to compute
than the Hausdorff dimension.

Finally, we apply the theory that we have developed to some famous examples. For
each example we give its construction, discuss the three dimensions, and explain the
strange properties each fractal possesses. We begin with the Cantor set. Then move
on to the Sierpiński gasket and Koch snowflake. Next, we discuss the Menger sponge.
Last, we present an example, Barnsley’s wreath, whose associated iterated function
system does not satisfy the Open Set Condition.

vi



Chapter 1: Introduction

There are several different ways to define a fractal. Conceptually, one can define a

fractal as being self-similar. This means that no matter how much the set is magnified,

you get a copy of the original set. There are different types of self-similarity and you

may not get an exact copy when the set is magnified. So one may choose to think of

a fractal as an object that is more “irregular” than classic geometric objects such as

lines, squares, cubes and so on. That is, no matter how much the set is magnified, the

set does not become any simpler. Thus, one can think of a fractal as being infinitely

complex.

On the other hand, Mandelbrot defines a fractal mathematically as an object

whose topological dimension is strictly less than its Hausdorff dimension [18]. But

this definition is not perfect. Even Mandelbrot admits that this definition leaves out

some objects that may be considered fractals according to the conceptual definition

and includes objects of “true geometric chaos” (as quoted in [11]). There is a way

to resolve the second problem that involves another fractal dimension, the packing

dimension. S. James Taylor defines a fractal to be a set such that the Hausdorff

dimension is the same as the packing dimension. But Taylor admits this isn’t a good

definition of a fractal either [10]. Thus, there still is not a perfect mathematical

definition of a fractal.

In this thesis we first develop the necessary theory in order to compute the dimen-

sions of self-similar fractals that are the invariant sets of iterated function systems.

We start by proving the Contraction Mapping Theorem, which results in a construc-

tive method to find the fixed point of a contraction mapping. But in order to apply

the Contraction Mapping Theorem and the resulting constructive method to iterated
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function systems, we need to create a metric in which we can work. Thus we de-

fine the Hausdorff metric. We then define iterated function systems and apply the

Contraction Mapping Theorem to ensure that we get a unique invariant set.

In the next chapter, we discuss three different dimensions: topological, similarity,

and Hausdorff dimension. We begin with topological dimension, which is not a fractal

dimension. We then define a fractal dimension, the similarity dimension. Similarity

dimension is based on the iterated function system and is fairly easy to compute.

Finally, we want to define Hausdorff dimension. But before we can define the Haus-

dorff dimension, we need to define the Hausdorff measure and related concepts. We

also prove that the similarity dimension is the same as the Hausdorff dimension of a

fractal if the iterated function system associated to the fractal satisfies the Open Set

Condition.

Last, we apply the theory we have developed to four examples: the Cantor set,

Sierpiński gasket, Koch snowflake, and Menger sponge. We compute the topological,

similarity and Hausdorff dimension for each. We include a fifth example, Barnsley’s

wreath, which does not satisfy the Open Set Condition. We see that the similarity

dimension is strictly greater than the Hausdorff dimension of Barnsley’s wreath.

1.1 Motivation

Fractals produce beautiful pictures, but why do we care about them other than that?

In fact, at first mathematicians were not impressed by the Mandelbrot set. At the

time, fractals such as Julia sets and the Mandelbrot set were considered mathematical

monsters [1]. Mandelbrot’s unique ideas the reaction to the Mandelbrot set inspired

him to write his famous book The Geometry of Nature [18]. Mandelbrot took note of

the fact that objects in nature are often not smooth or regular [18]. On page one of his

book he writes, “Clouds are not spheres, mountains are not cones, coastlines are not
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circles, and bark is not smooth, nor does lightening travel in a straight line” (as quoted

in [11]). Mandelbrot suggests that nature can be better modeled by fractals than by

classic geometric figures [18]. Ferns, broccoli, and snowflakes are more examples of

natural objects that display fractal-like properties. So, as we can see, fractals are all

around us.

Currently, fractals are being used in a variety of applications including ecology,

physics, meteorology, and medicine. For example, engineers use fractals to simulate

turbulence. Fractals have also been used to create special fonts, such as Chinese

calligraphy, that can be resized yet retain the appearance of being written with a

brush [25]. But one of the most widely used applications of fractals can be found

inside your cell phone. In the 1990s, Nathaniel Cohen needed to create a smaller

antenna for his ham radios. He tried bending a wire into the shape of a Koch curve.

As a result, Cohen created a smaller antenna, but to his surprise it was also more

powerful. Using a fractal shape to create an antenna allows the antenna to receive a

wider range of frequencies. As technology has progressed, more features have become

available requiring a wider range of frequencies. For example, Bluetooth is made

possible through the use of fractal antennas [1].

Fractals also have uses in the entertainment industry. Surprisingly, fractals have

been used to create music through the use of iterated function systems [25]. Another

surprising application is creating special affects in movies. Fractals can be used to

create landscapes such as mountains and lunar surfaces. They can also be used to

create scenes such as the one in Star Wars Episode III, where Darth Vader and Obi-

Wan Kenobi are fighting on a large mechanical arm and the lava is shooting up around

them. The lava was created using an iterated function system on different amounts

and colors of lava and then layered to get the desired result [1].

Applications of fractals also include early detection of cancer. Blood networks
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within our bodies are actually fractals. Blood networks that are created by cancer

have a different fractal dimension than healthy blood networks [1]. So fractals are

not only all around us, they are also inside us!

1.2 History

Unknown to mathematicians at the time, the study of fractals started to emerge

around 1872 when a paper by Karl Weierstrass was read at the Royal Academy of

Sciences. In this paper, Weierstrass produced an example of a function that is con-

tinuous everywhere but differentiable nowhere [24]. This example, however, was not

published until 1875 by P. du Bois-Reymond. Since then, several famous mathemati-

cians have analyzed continuous, non-differentiable functions. One such mathemati-

cian’s analysis in 1904 resulted in a fractal. That mathematician was Helge Von Koch

and the resulting fractal is famously known as the Koch curve [15]. But before the

discovery of the Koch curve, Georg Cantor produced the first known fractal in 1884,

the Cantor set [7].

The next set of developments in the study of fractals was in the area of mea-

sure theory. Constantin Carathéodory gave us a new and very useful definition of a

measurable set in 1914. He also introduced a measure that was more general than

Lebesgue measure. This new measure defined the p-dimensional measure of a set in

q-dimensional space [8]. In 1918 Felix Hausdorff took Carathéodory’s measure and

generalized it even further so that p does not have to be an integer. This lead to

an essential part of the study of fractals, namely the Hausdorff Dimension [13]. In

1934 A. S. Besicovitch was one of the first to actually compute fractional dimensions

of subsets of R using Hausdorff dimension [4] [3]. Besicovitch teamed up with H. D.

Ursell in 1937 to explore the Hausdorff dimensions of some continuous curves. They

discovered that if a function is differentiable, then the graph has dimension 1 [6]. In
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1946 P. A. P. Moran discovered a very useful connection between the similarity ratios

of certain self-similar sets and their Hausdorff dimensions. Moran’s result gives us

an easy way to compute the Hausdorff dimensions of self-similar sets, which we will

discuss in detail later in this thesis [20].

Many of the first fractals discovered were exactly self-similar, meaning that when

you “zoom in” on the set you see an exact copy of the original. For example, in 1926

Karl Menger created another self-similar fractal now known as the Menger sponge

[19]. In 1938 ,thirty-four years after the discovery of the Koch curve in 1904, Paul

Lévy showed that there are several other curves and surfaces which possess the same

type of self-similarity. We refer to these self-similar connected curves as dragon curves.

One such curve is now known as Lévy’s dragon [16].

Perhaps the most recognizable name in the history of fractals is Benoit Mandel-

brot. In fact he was the first to use the term “fractal” in 1975 [11]. Mandelbrot

was also the first to introduce the idea that fractals were not just interesting math-

ematical objects, but that they existed in the natural world. His first contribution

to this way of thinking was in 1967 when he published “How Long is the Coast of

Britain? Statistical Self-Similarity and Fractional Dimension” [17]. It wasn’t until

1982, when he published his famous book The Fractal Geometry of Nature [18], that

fractals exploded as a major area of study.

1.3 Basic Definitions and Notation

In order to understand the main concepts of this thesis, one must first be familiar with

the basics of topology and measure theory. We provide here a list of basic definitions

and results that will be used thought the thesis.
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1.3.1 Topology

Definition 1. A topology on a set X is a collection τ of subsets of X such that

1. Both X and ∅ are in τ ,

2. The union of arbitrarily many elements of τ is again in τ , and

3. The finite intersection of elements of τ is again in τ .

Definition 2. A topological space, (X, τ), is a set X with a topology τ on X.

Definition 3. Let X be a topological space with topology τ . Then O ⊆ X is an open

set if O ∈ τ .

Definition 4. Let X be a topological space. Then C ⊆ X is a closed set if X − C

is an open set.

Definition 5. If X is a set, then a basis for a topology on X is a collection, B, of

subsets of X such that

1. For each x ∈ X, there exists a B ∈ B such that x ∈ B

2. If x ∈ B1 ∩ B2 for B1, B2 ∈ B, then there exists B3 ∈ B such that x ∈ B3 and

B3 ⊆ B1 ∩B2.

The elements of the basis B are called basis elements.

Definition 6. The topology τ generated by B is the collection of sets {O} such that

for each x ∈ O there exists a basis element B ∈ B such that x ∈ B and B ⊆ O.

Definition 7. The standard topology on Rn is the topology generated by the col-

lection {Bε(x) : x ∈ Rn and ε > 0} where Bε represents the n-dimensional open ball

of radius ε centered at x.
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Definition 8. Let X be a topological space with topology τ . Let Y ⊆ X. Then the

subspace topology is the topology τY = {Y ∩O : O ∈ τ}.

Definition 9. Let X be a topological space and A ⊆ X. A collection A of subsets of

X is a cover of A if A is contained in the union of the elements of A. The collection

A is an open cover if all elements of A are open subsets of X.

Definition 10. Let X be a topological space and A ⊆ X. The subset A is compact

if every open cover A of A contains a finite subcollection that also covers A.

Theorem 1.1 (Extreme Value Theorem). The image of a compact set under a con-

tinuous map is compact.

Proof. See Theorem 26.5 on page 166 of [21].

Theorem 1.2 (Heine-Borel Theorem). Let E be a closed and bounded subset of R.

Then every open cover of E has a finite subcover.

Proof. See [22] page 18.

1.3.2 Metric Spaces

Definition 11. A set X together with a function d : X ×X → R is a metric space

if for all x, y, z ∈ X:

1. d(x, y) ≥ 0 with equality if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z).

Definition 12. A sequence {xn} in a metric space is called a Cauchy sequence if

for every ε > 0 there exists N ∈ N such that if m,n ≥ N then d(xn, xm) < ε.
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Definition 13. A metric space X is complete if every Cauchy sequence in X con-

verges in X.

Definition 14. Let x, y ∈ Rn = {(x1, . . . , xn) : xi ∈ R}. The Euclidean metric dE

on Rn is defined by

dE(x, y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2.

Theorem 1.3. The set Rn is a complete metric space with respect to the Euclidean

metric dE.

Proof. See [22] page 193 for further explanation.

Definition 15. The diameter of a subset A of a metric space X is

diam(A) = sup{d(x, y) : x, y ∈ A}.

Definition 16. Let r > 0. A subset B of a metric space X is an r-net for X if every

point of X is within distance at most r of some element of B.

Definition 17. A set A is totally bounded if for all r > 0 there exists a finite r-net

for A.

1.3.3 Measure Theory

Definition 18. An outer measure on X is a set-function M that assigns to every

subset A ⊆ X a value M(A) ∈ [0,∞] and satisfies

1. M(∅) = 0

2. Countable subadditivity: If {An} is a countable sequence of subsets of X then

M

(
∞⋃
n=1

An

)
≤

∞∑
n=1

M(An).
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Definition 19. A set E ⊆ X is called M-measurable if every set A ⊆ X satisfies

M(A) = M(A ∩ E) +M(A ∩ Ec).

Definition 20. Let

M(A) = inf

{
∞∑
k=1

l(Ik) : A ⊆
∞⋃
k=1

Ik

}

where {Ik}∞k=1 is a collection of nonempty open, bounded intervals that cover A and

l(Ik) is the length of the interval, that is, the difference of its endpoints. The restric-

tion of the outer measure, M , to the class of M-measurable sets is called Lebesgue

measure and is denoted by |A| where A is an M-measurable set.

Definition 21. A collection of subsets of R is called a σ-algebra provided it contains

R and is closed with respect to the formation of complements and countable unions.

Definition 22. The intersection of all the σ-algebras of subsets of R that contain the

open sets of R in the standard topology is a σ-algebra called the Borel σ-algebra. Sets

in this collection are called Borel sets.
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Chapter 2: Iterated Function Systems

Iterated function systems were introduced in 1981 by John E. Hutchinson in [14].

But they did not become popular in the study of fractals until Michael Barnsley’s

book Fractals Everywhere [2] was published in 1988. Even though the construction of

a self-similar fractal is quite intuitive, iterated function systems allow us to analyze

the fractal in a more mathematical way.

2.1 Contraction Mapping Theorem

The Contraction Mapping Theorem, also referred to as the Banach Contraction Prin-

ciple or the Banach Fixed Point Theorem, states that any contraction mapping has a

unique fixed point. As we will see, the Contraction Mapping Theorem gives us more

than just proof of existence and uniqueness, it also gives us constructive method for

finding the fixed point of the contraction mapping starting with any initial set in

the associated metric space. This is especially important since we are using iterated

function systems consisting of contraction mappings to produce fractals.

Definition 23. A point x ∈ X is a fixed point of a function f : X → X if and only

if f(x) = x.

Definition 24. A function f : X → X is a contraction mapping if there exists a

constant r < 1 such that for all x, y ∈ X

d(f(x), f(y)) ≤ r d(x, y).

Theorem 2.1 (Contraction Mapping Theorem). (Thm 2.1.36 in [11]) Let f be a

contraction mapping on a complete nonempty metric space, X. Then f has a unique

fixed point.
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Proof. Let X be a complete nonempty metric space and f : X → X be a contraction

mapping.

[Uniqueness] Assume x, y ∈ X are fixed points. This implies d(x, y) = d(f(x), f(y)).

But since f is a contraction we have d(x, y) = d(f(x), f(y)) ≤ r d(x, y) for 0 ≤ r < 1.

This is impossible if d(x, y) > 0. Thus d(x, y) = 0. Therefore x = y.

[Existence] Let x0 ∈ X. Define the sequence {xn} recursively by

xn+1 = f(xn)

for n ≥ 0. We claim {xn} is a Cauchy sequence:

Let a = d(x0, x1). Now consider d(xn+1, xn). Since f is a contraction mapping,

we have

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ rd(xn, xn−1).

By repeating this n times, we see that d(xn+1, xn) ≤ rnd(x0, x1) = arn. Now if m < n,

then

d(xm, xn) ≤
n−1∑
j=m

d(xj+1, xj)

≤
n−1∑
j=m

arj

=
arm − arn

1− r

=
arm(1− rn−m)

1− r

≤ arm

1− r
.

We used the triangle inequality to obtain the first inequality. For the second in-

equality, we used the previous calculation that d(xn+1, xn) ≤ arn. The two subsequent
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equalities are from the geometric series summation formula. The last inequality holds

since m < n and r < 1, so we have 1− rn−m < 1.

Let ε > 0. Choose N large enough such that
arN

1− r
< ε. Now for n ≥ m > N we

have d(xm, xn) ≤ arm

1− r
<

arN

1− r
< ε. Thus {xn} is a Cauchy sequence.

Now since X is complete and {xn} is Cauchy we know that {xn} converges in X.

Let x = lim
n→∞

xn. Since f is continuous, we have that f(x) = lim
n→∞

f(xn). But since

f(xn) = xn+1 we have f(x) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x. Thus f(x) = x. Therefore

x is a fixed point.

This proof actually gives a constructive method for finding the fixed point, via

iteration.

Corollary 1. (Cor 2.1.37 in [11]) Let f be a contraction mapping on a complete

nonempty metric space X. If x0 is any point of X, and xn+1 = f(xn) for n ≥ 0 then

the sequence {xn} converges to the fixed point of f .

Using Corollary 1 we can start with any initial set in the metric space X and

apply the contraction mapping repeatedly in order to obtain the fixed point. We will

use this method to find the invariant sets of iterated function systems.

2.2 Hausdorff Metric

In order to use the Contraction Mapping Theorem to find the invariant sets of iterated

function systems, we need to define a metric on subsets of Rn. We will use the

Hausdorff metric, which will be defined on the set of nonempty compact subsets of

Rn.

12



Definition 25. Let A be a subset of a metric space X and let r > 0. Then the open

r-neighborhood of A is

Nr(A) = {y ∈ X : ∃ x ∈ A s.t. d(x, y) < r}.

Let X be a metric space. We will consider the collection, K(X), of all nonempty

compact subsets of X.

Definition 26. The Hausdorff metric, D, is defined on K(X) by

D(A,B) = inf{r > 0 : A ⊆ Nr(B) and B ⊆ Nr(A)}.

If we did not restrict D to K(X), then D would not be a metric. For example let

X = R, and consider {0} and [0,∞). We see that D({0}, [0,∞)) = ∞ and hence D

is not a metric on R. We also exclude ∅, because D({0}, ∅) = ∞ and thus if ∅ were

included D would not be a metric on R.

Theorem 2.2. (Thm 2.4.1 in [11]) Let X be a metric space. Then the Hausdorff

metric D is a metric on K(X).

Proof. Let X be a metric space and let A,B,C ∈ K(X).

Since A and B are compact we know that they are also bounded. This means that

A andB have finite diameter. That is sup{d(x, y)|x, y ∈ A} <∞ and sup{d(x, y)|x, y ∈

B} < ∞. This means for all x ∈ A and y ∈ B we have d(x, y) < ∞. Let ε > 0. Let

r = sup{d(x, y) : x ∈ A and y ∈ B} + ε. Hence there exists an r with 0 < r < ∞

such that A ⊆ Nr(B) and B ⊆ Nr(A). Thus D(A,B) <∞ and is well defined. It is

easy to see from the definition that D(A,B) ≥ 0 and D(A,B) = D(B,A).

Now suppose A = B. This means for any ε > 0 we have Nε(A) = Nε(B). So for

every ε > 0 we have that A ⊆ Nε(B) and B ⊆ Nε(A). Thus D(A,B) = 0.

Now suppose D(A,B) = 0. If x ∈ A, then for every ε > 0 we have that x ∈ Nε(B).

Consider any open set U containing x. Since U is open we know there exists ε > 0
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such that Bε(x) ⊆ U . But since x ∈ Nε(B) we know there exists y ∈ B such that

d(x, y) < ε. Thus y ∈ Bε(x) ⊆ U . So we have y ∈ U and either y = x or y 6= x. If

x = y then x ∈ B. Otherwise we know x is a limit point of B since U was an arbitrary

open set. But since B is compact, we know that it is also closed. Thus x ∈ B. Hence

A ⊆ B. Similarly, B ⊆ A. Therefore A = B.

Last, we need to prove the triangle inequality. Let ε > 0. Let r = D(A,B) + ε.

We see that A ⊆ Nr(B). If x ∈ A, then x ∈ Nr(B). So there exists y ∈ B such that

d(x, y) < D(A,B) + ε. Similarly, there exists z ∈ C such that d(y, z) < D(B,C) + ε.

Now let a = D(A,B) +D(B,C) + 2ε. Then by the triangle inequality for the metric

d, we have that there exists a z ∈ C such that d(x, z) ≤ d(x, y) + d(y, z) < a. Since

x ∈ A was arbitrary we can concluded that A ⊆ Na(C). Similarly, C ⊆ Na(A).

Thus, we have that D(A,C) ≤ a = D(A,B) +D(B,C) + 2ε. Since this is true for

all ε > 0 we know D(A,C) ≤ D(A,B) +D(B,C).

Therefore, we have shown that D is a metric on K(X).

So we have that K(X) is a metric space. But in order to use the Contraction

Mapping Theorem, we need that K(X) is complete.

Lemma 1. (In proof of Thm 2.4.4 in [11]) Let X be a metric space. If A ⊆ X is

totally bounded and closed then it is compact.

Proof. We need to show that A is limit point compact, which will imply that A is

compact [21]. Let F be an infinite subset of A. Since A is totally bounded we know

there exists a finite 1/2-net, B1, for A. This means that each element of F is within

distance at most 1/2 of some element of B1.

Since F is infinite and B1 is finite, by the Pigeonhole Principle we know there

exists b1 ∈ B1 that is within distance 1/2 of infinitely many points of F . Let F1 ⊆ F
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be the infinite subset of all points of F that are distance at most 1/2 of b1 ∈ B1.

Clearly, diam F1 ≤ 1.

We will apply the same reasoning to the infinite set F1. Note that there also exists

a finite 1/4-net, B2, for A. Again, since F1 ⊆ A is infinite and B2 is finite there exists

a b2 ∈ B2 that is within at most distance 1/4 of infinitely many points of F1. Let

F2 be the infinite subset of all points of F1 that are at most distance 1/4 of b2 ∈ B2.

Note that diam F2 ≤ 1/2. We can keep repeating this process to obtain infinitely

many Fj, each of which are infinite, such that diam Fj ≤ 2−j and Fj+1 ⊆ Fj for all j.

Now choose any element xj ∈ Fj, creating a sequence {xj}. Since for each j we

know that diam (Fj) ≤ 2−j and Fj+1 ⊆ Fj we have d(xj, xk) ≤ 2−j for j < k, and

thus {xj} is a Cauchy sequence. Since X is complete, we know {xk} converges. Let

x = lim
k→∞

xk. Then since A is closed, we know x ∈ A. But x is also a limit point of F

since x is a limit of elements of F . Thus A is limit point compact, which implies A is

compact by Theorem 28.2 in [21] since X is a metric space.

Theorem 2.3. (Thm 2.4.4 in [11]) Let X be a complete metric space. Then the space

K(X) is complete.

Proof. Let X be a complete metric space. Let {An} be a Cauchy sequence in K(X).

We need to show {An} converges in K(X).

Let A = {x ∈ X : ∃ {xk} s.t. xk → x and for each k, xk ∈ Ak}.

We want to show that A ∈ K(X) and that A is the limit of the Cauchy sequence

{An} in the Hausdorff metric topology.

First, we must show {An} → A. To do this, we will show D(An, A)→ 0.

Let ε > 0. Since {An} is a Cauchy sequence there exists N ∈ N such that if

n,m ≥ N then D(An, Am) < ε/2. Let n ≥ N .

We claim that D(An, A) ≤ ε:
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If x ∈ A, then there exists a sequence {xk} such that xk ∈ Ak and xk → x. Thus,

for k sufficiently large, we have d(xk, x) < ε/2.

Now if k ≥ N then D(Ak, An) < ε/2. This means there exists y ∈ An such that

d(xk, y) < ε/2.

So we have d(y, x) ≤ d(y, xk) + d(xk, x) < ε/2 + ε/2 = ε. Thus A ⊆ Nε(An).

Now let y ∈ An. Since {An} is a Cauchy sequence, we can choose integers k1 <

k2 < . . . such that k1 = n and D(Akj , Am) < 2−jε for all m ≥ kj. We will define a

sequence {yk} such that yk ∈ Ak by the following recursive process:

Pick yk ∈ Ak arbitrarily for k < n. Let yn = y. Now if ykj has been chosen and

kj < k ≤ kj+1, then choose yk ∈ Ak such that d(ykj , yk) < 2−jε, which is possible by

the construction of the kjs.

We will show that {yk} is a Cauchy sequence in X. Let δ > 0. We want to show

that there exists N ∈ N such that for all k,m ≥ N we have d(yk, ym) < δ. Suppose

that k,m have been chosen and choose j such that kj < k ≤ kj+1 and choose i such

that ki < m ≤ ki+1. Using the construction of the sequence {yk} and the construction

of the subsequence {ykj}, we know there exists l such that if k > m ≥ l, then

d(yk, ym) ≤ d(yk, ykj) + d(ykj , yki) + d(yki , ym)

≤ d(yk, ykj) + d(ykj , ykj+1
) + d(ykj+1

, ykj+2
) + . . .+ d(yki−1

, yki) + d(yki , ym)

< 2−jε+ 2−jε+ 2−(j+1)ε+ . . .+ 2−(i−1)ε+ 2−iε

= ε

[
2−j +

i∑
l=j

2−l

]

= ε

[
2−j +

2−j − 2−(i+1)

1− 1/2

]
= ε[2−j + 2−j+1 − 2i]

< 3(2−j)ε.
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So we have d(yk, ym) < 3(2−j)ε for m > k ≥ kj. Choose j sufficiently large such that

3(2−j)ε < δ. Now for that j, choose N > kj. Thus, by the calculation above, we have

d(yk, ym) < δ.

Thus, since X is complete, {yk} converges. Let x = lim
k→∞

yk. But this means x ∈ A.

By an argument similar to the argument above that {yk} is a Cauchy sequence, using

j = 1, we have

d(y, x) = lim
k→∞

d(y, yk) < (3/2)ε,

using the continuity of the metric. Thus y ∈ Nε(A). Hence, An ⊆ Nε(A).

Since we already checked that A ⊆ Nε(An), we have shown that D(A,An) ≤ ε.

Since for all ε > 0 there exists N ∈ N such that for n > N , D(A,An) ≤ ε, we know

D(A,An)→ 0. Therefore {An} → A, because D is a metric by Theorem 2.2.

Note that if we choose any specific ε > 0 in the argument used above to prove

that An ⊆ Nε(A), we can construct a Cauchy sequence as above that converges to

some point x ∈ X, which must then be an element of A. Thus A is nonempty.

Lastly we need to show that A is compact. In order to do this we will show that

A is totally bounded and closed. We will then apply Lemma 1.

We claim A is totally bounded:

Choose n such that D(An, A) < ε/3. We know An is a nonempty compact subset

of X. Hence, An is sequentially compact. According to [11], Proposition 2.2.5, there

exists a finite (ε/3)-net for An. Call it {y1, y2, . . . , ym}. Since yi ∈ A and D(An, A) <

ε/3 we have that for each yi, there exists an xi ∈ A such that d(xi, yi) < ε/3.

Since D(A,An) < ε/3 we know that for any a ∈ A there exists z ∈ An such that

d(a, z) < ε/3. Also since the collection {yi} is an ε/3-net for An we know there exists

an i such that d(z, yi) < ε/3. So for this i we have for any a ∈ A,

d(a, xi) ≤ d(a, z) + d(z, yi) + d(yi, xi) < ε/3 + ε/3 + ε/3 = ε.
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Since a ∈ A was arbitrary, the set {x1, x2, . . . , xm} is a finite ε-net for A. Thus A is

totally bounded.

Next, we claim that A is closed:

Let x ∈ A. If x /∈ A, then this means x is a limit point of A. So we have that

for every ε > 0 the ball Bε(x) contains a point of A other than x. Now consider the

points yn ∈ A such that yn 6= x and yn ∈ B2−n(x) for all n ∈ N. This gives us a

sequence {yn} in A such that d(x, yn) < 2−n. For each n, there exists a point zn ∈ An

such that d(zn, yn) < D(An, A) + 2−n. So we have

d(zn, x) ≤ d(zn, yn) + d(yn, x) < D(An, A) + 2−n + 2−n

which converges to 0 as n→∞. Thus zn → x. This means that x ∈ A by construction

of A. Therefore A is closed.

We have that A is totally bounded and closed. Thus, by Lemma 1, we know A is

compact.

Therefore we have shown that if X is a complete metric space then K(X) is also

complete.

First note that K(X) is nonempty since any finite set of points is nonempty, closed,

and compact. We have also shown that K(X) is a complete metric space. Therefore

we can apply the Contraction Mapping Theorem and Corollary 1 to K(X).

2.3 Iterated Function Systems

We have mentioned the usefulness of iterated function systems in producing fractals.

But what is an iterated function system? An iterated function system is a finite

collection of similarities.

Definition 27. A function f : X → Y is a similarity if there exists r > 0 such that

for all x, y ∈ X we have d(f(x), f(y)) = r d(x, y).
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Proposition 1. A similarity f : X → X with ratio r > 0 is continuous.

Proof. Let f : X → X be a similarity with ratio r > 0. This means for all x, y ∈ X

we have d(f(x), f(y)) = r d(x, y). Let ε > 0. Consider δ = ε/r. We see that if

d(x, y) < ε/r then

d(f(x), f(y)) = r d(x, y) < r(ε/r) = ε.

Therefore f is continuous.

Definition 28. A ratio list is a finite list of positive numbers, (r1, r2, . . . , rn).

Definition 29. A ratio list is called contracting if ri < 1 for all i.

Definition 30. An iterated function system realizing a ratio list (r1, r2, . . . , rn)

in a metric space X is a list of functions (f1, f2, . . . , fn) where fi : X → X is a

similarity with ratio ri.

Definition 31. A nonempty compact set K ⊆ X is an invariant set for the iterated

function system (f1, f2, . . . , fn) if K = f1[K] ∪ f2[K] ∪ . . . ∪ fn[K].

In order to use the Contraction Mapping Theorem, we require that each function

be a contraction mapping. This means that each similarity fi must have a ratio

ri < 1.

Theorem 2.4. (Thm 4.1.3 in in [11]) Let X be a complete metric space. Let

(r1, r2, . . . , rn) be a contracting ratio list and let (f1, f2, . . . , fn) be an iterated function

system of similarities on X that realizes this ratio list. Then there exists a unique

nonempty compact invariant set for the iterated function system.

Proof. Consider the metric space K(X) with the Hausdorff metric, D. We have al-

ready shown that if X is complete then so is K(X). Now define a function
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F : K(X)→ K(X) by

F (A) =
n⋃
i=1

fi[A].

We have already showed that each fi is continuous in Proposition 1. We know that

the continuous image of a compact set is also compact. Also the union of finitely

many compact sets is also compact. Thus if A is compact then so is F (A). Also, if A

is nonempty, then clearly F (A) is nonempty. Thus f maps K(X) to itself.

We claim that F is a contraction mapping on K(X):

Let r =max{r1, r2, . . . , rn}. Clearly r < 1. We will show that D(F (A), F (B)) ≤

r D(A,B).

Let q > D(A,B) be given. If x ∈ F (A), then x = fi(x
′) for some i and some

x′ ∈ A. Since q > D(A,B) we know there exists y′ ∈ B such that d(x′, y′) < q. But

then the point y = fi(y
′) ∈ F (B) satisfies

d(x, y) = ri d(x′, y′) < rq.

This is true for all x ∈ F (A). Thus F (A) ⊆ Nrq(F (B)).

Similarly, F (B) ⊆ Nrq(F (A)).

ThereforeD(F (A), F (B)) ≤ rq. This is true for all q > D(A,B). ThusD(F (A), F (B)) ≤

r D(A,B).

So F is a contraction mapping on a complete metric space K(X). Now by the

Contraction Mapping Theorem, we know that F has a unique fixed point in K(X),

which is therefore compact and nonempty. Call this fixed point K. So F (K) =

f1[K]∪ f2[K]∪ . . .∪ fn[K] = K. Thus a fixed point of F is equivalent to an invariant

set of (f1, f2, . . . , fn).

Now we can use Corollary 1 to find the unique invariant set of the iterated function

system F . Recall that using Corollary 1 starting with K0 ∈ K(X) we can create a
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sequence {Km} defined by Kn+1 = F (Kn) that converges to the invariant set K. Note

that if K ⊆ K0 then the sequence of sets {Km} is a nested sequence of nonempty

compact sets. For an iterated function system, (f1, f2, . . . , fn), being applied to an

initial set K0, we call the mth iteration of the function system Km.
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Chapter 3: Dimensions

Our concept of dimension stems from objects in classical geometry. For example, a

point is 0-dimensional, a line is 1-dimensional, a square is 2-dimensional and so on. We

can think of dimension in several different ways. In fact, there are also several ways to

measure dimension. Here we discuss three different types of dimension: topological,

similarity, and Hausdorff dimension.

3.1 Topological Dimension

Topological dimension actually refers to a category of dimensions. The type of topo-

logical dimension we discuss here is called small inductive dimension. Topological

dimension always refers to a nonnegative integer. In fact, topological dimension is

how we normally think of dimension. For example, the dimension of a rectangle is 2.

Other topological dimensions include large inductive dimension, covering dimension

and equation dimension. These four topological dimensions are usually not all equal.

Definition 32. A subset of a metric space is clopen if it is both open and closed.

Definition 33. A metric space is zero-dimensional if there exists a basis for its

topology consisting of clopen sets.

Topological dimension works the way we expect it should. A finite set of points

is 0-dimensional, a curve is 1-dimensional and plane is 2-dimensional and so on. So

as we would expect, the real line, R, is not zero-dimensional.

Theorem 3.1. (Thm 3.1.1 in [11]) The only clopen sets in R are R and ∅. Therefore

R is not zero-dimensional.
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Proof. Let A ⊆ R such that A 6= ∅ and A 6= R. We need to show that A is not clopen.

In other words, A has a boundary point.

Recursively define two sequences {xn} and {yn}. First, since A 6= ∅, choose

x0 ∈ A. Next, since A 6= R, choose y0 /∈ A. Now, after defining xn and yn we need to

define xn+1 and yn+1.

Consider zn = xn+yn
2

. If zn ∈ A, then define xn+1 = zn and yn+1 = yn. If zn /∈ A,

then define xn+1 = xn and yn+1 = zn.

In either case we have xn+1 ∈ A and yn+1 /∈ A. We also have, if zn ∈ A,

|xn+1 − yn+1| =
xn + yn

2
− yn =

|xn − yn|
2

.

Also if zn /∈ A, then

|xn+1 − yn+1| = xn −
xn + yn

2
=
|yn − xn|

2
=
|xn − yn|

2
.

Thus |xn+1 − yn+1| =
|xn − yn|

2
.

Therefore, by induction, |xn−yn| =
|x0 − y0|

2n
. So as n→∞ we have |xn−yn| → 0.

If xn+1 = xn then

|xn+1 − xn| = |xn − xn| = 0 ≤ |xn − yn| =
|x0 − y0|

2n
.

Also if xn+1 =
xn + yn

2
then we have

|xn+1 − xn| =
xn + yn

2
− xn

=
xn
2

+
yn
2
− 2xn

2
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≤ |xn + yn − 2xn|
2

=
|xn − yn|

2

≤ |x0 − y0|
2n

.

This means, by a similar argument as in the proof of the Contraction Mapping

Theorem, that {xn} is a Cauchy sequence, which converges since R is complete. Let

x = lim
n→∞

xn. Hence x is a limit point of A so x ∈ A. But then since |xn− yn| → 0 we

know yn → x. Hence x ∈ R− A. So we have x ∈ A ∩ R− A = ∂A. Therefore x is a

boundary point of A and A is not clopen.

Corollary 2. (Cor 3.1.2 in [11]) Let a < b. The only clopen subsets of [a, b] are [a, b]

and ∅. Therefore [a, b] is not zero-dimensional.

Proof. This corollary is proved using a similar argument to the previous theorem.

Now that we have defined what it means to be zero-dimensional, we will use it to

define what it means to have topological dimension 1.

Definition 34. A metric space X has small inductive dimension 1 if X is not

zero-dimensional and there exists a basis for the topology consisting of sets with zero-

dimensional boundary.

Definition 35. We denote the small inductive dimension of a metric space X

by ind (X). Each metric space X is assigned a small inductive dimension from the

set {−1, 0, 1, 2, 3, . . . ,∞}. We set ind ∅ = −1. Now if k is a nonnegative integer,

then ind X ≤ k if there exists a basis of the topology of X consisting of sets U such

that ind ∂U ≤ k − 1. We say ind X = k if ind X ≤ k but ind X � k − 1. We say

ind X =∞ if, for all, k ind X � k.
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Theorem 3.2. Let X be a metric space and Y ⊆ X. Then ind Y ≤ ind X.

Proof. See [11] Theorem 3.1.7.

We will need the previous theorem when evaluating the topological dimension of

a given subset of Rn.

3.2 Similarity Dimension

Similarity dimension is a fractal dimension associated with fractals that are produced

from iterated function systems. As we will see, the similarity dimension is the easiest

dimension to compute out of the three we consider here. Later, we will show that if

the iterated function system satisfies certain conditions, then the similarity dimension

is the same as the Hausdorff dimension.

Definition 36. The dimension associated with a ratio list (r1, . . . , rn) is the unique

positive number s such that rs1 + . . .+ rsn = 1.

Definition 37. The number s is called the similarity dimension of a nonempty

compact set K if there exists a finite decomposition of K

K =
n⋃
i=1

fi[K]

where (f1, . . . , fn) is an iterated function system of similarities realizing a ratio list

with dimension s.

3.3 Hausdorff Dimension

Following the work of Constantin Carathéodory in measure theory, Felix Hausdorff

defined a dimension in which non-integer values are possible. At the time Hausdorff
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did not realize what a huge impact his definition of dimension would make in the study

of fractals. Of course, Hausdorff’s definition is now known as Hausdorff dimension.

Although there are other definitions of fractal dimensions, the Hausdorff dimension

is one of the most commonly-used fractal dimensions.

Suppose that the underlying space is Rn with the Euclidean metric. Let s ≥ 0 be

any proposed dimension.

Definition 38. Let δ > 0. Define the Hausdorff s-dimensional δ outer mea-

sure as

Hs
δ (A) = inf

{
∞∑
i=1

(diam (Bi))
s : A ⊆

∞⋃
i=1

Bi, diam (Bi) ≤ δ ∀i

}
.

Definition 39. We define the s-dimensional Hausdorff outer measure of A

to be

Hs(A) = lim
δ→0

Hs
δ (A)

.

As δ → 0, we see that the infimum increases. This means that the limit as δ → 0

of Hs
δ exists, although it may be +∞.

Theorem 3.3. For any s ≥ 0, the s-dimensional Hausdorff measure, Hs, is an outer

measure.

Proof. Let δ > 0. Clearly Hs
δ (∅) = 0 for all s and Hs

δ (A) is defined for all A ⊆ Rn.

Also, if A ⊆ B, we have Hs
δ (A) ≤ Hs

δ (B) since any cover of B also covers A.

Next we need to show that Hs
δ has the countable subadditivity property.

Let {Aj} be a sequence of disjoint subsets of Rn. Let ε > 0. There exists {Ek
j }∞k=1

with diam(Ek
j ) ≤ δ covering Aj such that

Hs
δ (Aj) + 2−jε ≥

∞∑
k=1

(diam (Ek
j ))s.
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We know we can find such a cover of each Aj, since if one didn’t exist we would

have

Hs
δ (Aj) + 2−jε <

∞∑
k=1

(diam (Ej
k))

s

for all covers, {Ej
k}, of Aj such that diam(Ek

j ) ≤ δ, which would imply that

Hs
δ (Aj) <

∞∑
k=1

(diam (Ek
j ))s − 2−jε.

However, by definitionHs
δ (Aj) is the infimum over all covers ofAj of

∑∞
k=1(diam (Ek

j ))s

such that diam(Ek
j ) ≤ δ, and in this case Hs

δ (Aj) + 2−jε becomes a lower bound that

is greater than the infimum. This is a contradiction. Thus there must exist such a

covering of Aj.

Now we have

∞∑
j=1

∞∑
k=1

(diam (Ek
j ))s ≤

∞∑
j=1

(Hs
δ (Aj) + 2−jε)

=
∞∑
j=1

Hs
δ (Aj) + ε.

But A =
∞⋃
j=1

Aj ⊆
∞⋃

j,k=1

Ek
j . This means {Ek

j } is a cover for A. Thus

∞∑
j=1

∞∑
k=1

(diam (Ek
j ))s ∈

{
∞∑
i=1

(diam (Bi))
s : A ⊆

∞⋃
i=1

Bi, diam (Bi) ≤ δ ∀i

}
.
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Hence,

Hs
δ (A) = inf

{
∞∑
i=1

(diam (Bi))
s : A ⊆

∞⋃
i=1

Bi, diam (Bi) ≤ δ ∀i

}

≤
∞∑
j=1

∞∑
k=1

(diam (Ek
j ))s.

So for all ε > 0 we have

Hs
δ (A) ≤

∞∑
j=1

∞∑
k=1

(diam (Ek
j ))s ≤

∞∑
j=1

Hs
δ (Aj) + ε.

Thus, letting ε→ 0, Hs
δ (A) ≤

∑∞
j=1H

s
δ (Aj).

Therefore Hs
δ is an outer measure. By letting δ → 0 we have that Hs is an outer

measure.

Since all the fractals we will consider are closed, we only need to show that all

Borel sets are Hs-measurable. To do this, we will need the following lemma.

Lemma 2. Let A,B ∈ K(X). If D(A,B) > 0 then Hs(A ∪B) = Hs(A) +Hs(B).

Proof. By Theorem 3.3 we know Hs is an outer measure. Thus HS(A∪B) ≤ Hs(A)+

Hs(B).

Choose δ < D(A,B). Let {Ci}∞i=1 be a cover of A∪B with diam(Ci) ≤ δ for all i.

Now let I1 = {i : Ci ∩ A 6= ∅} and I2 = {i : Ci ∩ B 6= ∅}. Let i ∈ I and let

x ∈ A ∩ Ci. Since D(A,B) > δ we have d(x,B) > δ. This means B ∩ Ci = ∅ since

diam(Ci) ≤ δ. Thus, we see that I1 and I2 are disjoint. So we have A ⊆
⋃
i∈I1

Ci and

B ⊆
⋃
i∈I2

Ci. But this means

Hs
δ (A) ≤

∑
i∈I1

(diam(Ci))
s
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and

Hs
δ (B) ≤

∑
i∈I2

(diam(Ci))
s.

This implies that

Hs
δ (A) +Hs

δ (B) ≤
∑

i∈I1∪I2

(diam(Ci))
s ≤

∑
i∈N

(diam(Ci))
s.

Now take the infimum over all such Ci. Then for δ sufficiently small, we have

Hs
δ (A)+Hs

δ (B) ≤ Hs
δ (A∪B). Let δ → 0. Therefore Hs(A)+Hs(B) = Hs(A∪B).

Proposition 2. All Borel sets are Hs-measurable.

Proof. Let F be a closed set in Rn. We want to show that for all A ⊆ Rn, Hs(A) =

Hs(A ∩ F ) +Hs(A ∩ F c). We always have that Hs(A) ≤ Hs(A ∩ F ) +Hs(A ∩ F c).

If Hs(A) = ∞ then Hs(A) ≥ Hs(A ∩ F ) + Hs(A ∩ F c). Thus Hs(A) = Hs(A ∩

F ) +Hs(A ∩ F c).

Therefore, we may assume that Hs(A) < ∞. Let Bn = {x ∈ A ∩ F c : d(x, F ) ≥

1/n}. We see that Bn−1 ⊆ Bn for all n. So we have
∞⋃
n=1

Bn = {x ∈ A∩F c : d(x, F ) >

0} = A ∩ F c since F is closed.

By Lemma 2 we have that Hs(A) ≥ Hs((A ∩ F ) ∪ Bn) = Hs(A ∩ F ) + Hs(Bn)

because D(Bn, F ) ≥ 1/n for all n.

Now we need to show that lim
n→∞

Hs(Bn) = Hs(A ∩ F c). Let Cn = Bn+1 − Bn. If

x ∈ Cn+1 and d(x, y) <
1

n(n+ 1)
for some y then
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d(y, F ) ≤ d(y, x) + d(x, F )

<
1

n(n+ 1)
+

1

n+ 1

=
1

n
.

Below in Figure 3.1 is a general picture of the sets. Keep in mind that the Bi sets

are not necessarily disks, but are pictured here as disks for illustration purposes.

Figure 3.1: F is represented by the green area and F c is the interior of the first circle.

Since d(y, F ) < 1/n we know y /∈ Bn. Now since x ∈ Cn+1, y /∈ Bn and d(x, y) <

1

n(n+ 1)
= r we know Bn is not contained in Nr(Cn+1). Thus D(Cn+1, Bn) ≥

1

n(n+ 1)
.

We claim that Hs(B2k+1) ≥
k∑
j=1

Hs(C2j):

We will prove this by induction. For k = 1 we have Hs(B3) ≥ Hs(C2) since

C2 = B3 −B2 ⊆ B3.

30



Now assume Hs(B2k+1) ≥
k∑
j=1

Hs(C2j). Since C2k+2 = B2k+3−B2k+2 and B2k+1 ⊆

B2k+2 we know

C2k+2 ∪B2k+1 ⊆ C2k+2 ∪B2k+2 = B2k+3.

This means that Hs(B2k+3) ≥ Hs(C2k+2 ∪B2k+1). We also have that

D(C2k+2, B2k+1) ≥
1

(2k + 1)(2k + 2)
> 0.

Thus by Lemma 2, we know Hs(C2k+2 ∪ B2k+1) = Hs(C2k+2) + Hs(B2k+1). So now

we have

Hs(B2k+3) ≥ Hs(C2k+2 ∪B2k+1)

= Hs(C2k+2) +Hs(B2k+1)

≥ Hs(C2k+2) +
k∑
j=1

Hs(C2j)

=
k+1∑
j=1

Hs(C2j).

Similarly, we have Hs(B2k) ≥
∑k

j=1H
s(C2j−1).

Now we see that Hs(Bn) ≤ Hs(A) <∞ for all n since each Bn ⊆ A for all n. So

we have

k∑
j=1

Hs(C2j) ≤ Hs(B2k+1)

≤ Hs(A)

< ∞
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and

k∑
j=1

Hs(C2j−1) ≤ Hs(B2k)

≤ Hs(A)

< ∞

Thus both
∞∑
j=1

Hs(C2j) and
∞∑
j=1

Hs(C2j−1) are convergent series. This means

∞∑
j=1

Hs(C2j) +
∞∑
j=1

Hs(C2j−1) =
∞∑
j=1

Hs(Cj)

is a convergent series.

Now we see that A ∩ F c =
∞⋃
n=1

Bn = Bn ∪
∞⋃

k=n+1

Ck. So we have

Hs(A ∩ F c) = Hs

(
Bn ∪

∞⋃
k=n+1

Ck

)

≤ Hs(Bn) +
∞∑

k=n+1

Hs(Ck).

by subadditivity since Bn is disjoint from each Ck and the Ck are pairwise disjoint.

But since
k∑
j=1

Hs(Cj) is a convergent series we know lim
n→∞

∞∑
k=n+1

Hs(Ck) = 0.

So now we have

Hs(A ∩ F c) ≤ lim
n→∞

Hs(Bn) + lim
n→∞

∞∑
k=n+1

Hs(Ck).
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Thus

Hs(A ∩ F c) ≤ lim
n→∞

Hs(Bn).

Since Bn ⊆ A ∩ F c we have Hs(A ∩ F c) ≥ Hs(Bn).

Thus

Hs(A ∩ F c) ≥ lim
n→∞

Hs(Bn).

Therefore

lim
n→∞

Hs(Bn) = Hs(A ∩ F c).

So we have Hs(A) ≥ Hs(A ∩ F ) + lim
n→∞

Hs(Bn). Thus Hs(A) ≥ Hs(A ∩ F ) +

Hs(A ∩ F c). We always have that Hs(A) ≤ Hs(A ∩ F ) + Hs(A ∩ F c). Hence

Hs(A) = Hs(A ∩ F ) +Hs(A ∩ F c).

This means F is Hs-measurable. Since F was an arbitrary closed set we know all

closed sets are Hs-measurable. We know that the set of all Hs-measurable sets forms

a σ-algebra. The smallest σ-algebra containing all the closed set is the Borel σ-algebra

which contains all Borel sets. Therefore all Borel sets are Hs-measurable.

Proposition 3. (Thm 6.1.5 in [11]) If p < q and Hp(A) < ∞ then Hq(A) = 0. If

p > q and Hp(A) > 0 then Hq(A) = +∞.

Proof. First note that the second statement is the contrapositive of the first statement.

Thus we only need to prove the first statement.

Suppose Hp(A) < ∞. This means for all δ > 0 there exists {Bj} such that

A ⊆
⋃∞
j=1Bj with diamBj ≤ δ for all j and

∞∑
j=1

(diam(Bj))
p ≤ Hp(A) + 1 = M . Now

if q > p then
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∞∑
j=1

(diam(Bj))
q =

∞∑
j=1

(diam(Bj))
p(diam(Bj))

q−p

≤ δq−p
∞∑
j=1

(diam(Bj))
p

≤ δq−pM.

But this means Hq
δ (A) ≤ δq−pM . Now as δ → 0 we conclude that Hq(A) = 0.

This means that for any Borel set A there is a unique s > 0 such that for all p < s,

Hp(A) = +∞ and for all p > s, Hp(A) = 0.

Definition 40. For a given Borel set A, we call the unique s > 0 such that for all

p < s, Hp(A) = +∞ and for all p > s, Hp(A) = 0 the Hausdorff dimension of

A.

Now that we have established the definition of the Hausdorff dimension, we need

to relate the Hausdorff dimension to the similarity dimension to create more ease in

computation. The similarity dimension will equal the Hausdorff dimension when the

iterated function system satisfies the Open Set Condition defined below. Basically,

the images of each similarity of the iterated function system cannot “overlap” too

much.

Definition 41. An iterated function system, (f1, . . . , fn), satisfies the Open Set

Condition if there exists a nonempty open set O ⊆ Rm such that
n⋃
i=1

fi(O) ⊆ O and

fi(O) ∩ fj(O) = ∅ for i 6= j.
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In order to show that the similarity dimension equals the Hausdorff dimension of

an invariant set, K, of an iterated function system satisfying the Open Set Condition,

we must first prove a lemma about additive functions on half-open figures. Since

Hs is an additive function, this will allow us to show that Hs(K) > 0 by only

considering covers that consist of finitely many half-open q-dimensional intervals and

then bounding Hs(K) below by a positive constant .

Definition 42. A function f is additive if for a finite collection of sets {Aj}nj=1 we

have

f

(
N⋃
j=1

Aj

)
=

N∑
j=1

f(Aj).

Definition 43. A half-open figure in Rq is a finite union of half-open q-dimensional

intervals, that is, open on the right and closed on the left.

Lemma 3. (Thm I in [20]) Let E ⊆ Rq be any closed and bounded set such that

Hs(E) <∞. Then Hs(E) > 0 if there exists an additive function ψ(A) on half-open

figures, A, such that

1. ψ(A) ≥ 0 for all A,

2. If E ⊆ A then 0 < b ≤ ψ(A) for some fixed constant b, and

3. There exists 0 < k <∞ such that if diam(A) = d, then ψ(A) ≤ kds.

In particular, Hs(E) ≥ b/k.

Proof. We want to show that if {Oi} is a countable collection of open sets covering E

with diameters di then
∞∑
i=1

dsi ≥ b/k. Since E is compact, by the Heine-Borel Theorem
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we may assume {Oi}Ni=1 is a finite collection of open sets. If one di = ∞ then the

inequality is trivial. So assume di <∞ for all i. Let ε3 > 0. Cover Oi with half-open

q-dimensional intervals with diameters di(ε3/2). Since the diameter of Oi is finite

we can take a finite subcover of half-open q-dimensional intervals. Let the diameter

of the union of these q-dimensional half-open intervals be d′i. Let h1 and h2 be the

half-open q-dimensional intervals that are the furthest apart in the finite cover. Let

ε1 > 0 and ε2 > 0 be the smallest radii such that h1 ⊆ Nε1(Oi) and h2 ⊆ Nε2(Oi).

We see that ε1 < di(ε3/2) and ε2 < di(ε3/2). By the triangle inequality we have

d′i ≤ di + ε1 + ε2 < di + 2di(ε3/2) = di(1 + ε3).

Thus we can let each Oi be contained in a half-open figure O′i with diameters d′i such

that (d′i)
s < (1 + ε)dsi for an arbitrary ε > 0. By part 3, for each O′i we have

(d′i)
s ≥ 1

k
ψ(O′i).

Thus we have

∞∑
i=1

dsi ≥
1

1 + ε

N∑
i=1

(d′i)
s

≥ 1

k(1 + ε)

N∑
i=1

ψ(O′i)

≥ 1

k(1 + ε)
ψ

(
N⋃
i=1

O′i

)

since ψ is an additive function on half-open figures and the half-open figures O′i may

overlap. We also have E ⊆
N⋃
i=1

Oi ⊆
N⋃
i=1

O′i. Thus by part 2 we have

ψ

(
N⋃
i=1

O′i

)
≥ b.
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Therefore

∞∑
i=1

dsi ≥
1

k(1 + ε)
ψ

(
N⋃
i=1

O′i

)

≥ b

k(1 + ε)
.

Now let ε→ 0. Thus
∞∑
i=1

dsi ≥ b/k.

Let δ > 0. Since {Oi} was an arbitrary open cover of E we have

Hs
δ (E) = inf

{
∞∑
i=1

(diam(Oi))
s : E ⊆

∞⋃
i=1

Oi, diam(Oi) ≤ δ

}
≥ b/k.

Let δ → 0. Therefore Hs(E) ≥ b/k.

Theorem 3.4. (Thm III in [20]) Let (f1, . . . , fn) be an iterated function system re-

alizing the contracting ratio list (r1, . . . , rn) and satisfying the Open Set Condition.

Let K be the invariant set of the iterated function system with similarity dimension

s. Then

0 < Hs(K) <∞.

Proof. First we will show Hs(K) <∞.

Let O1 be an open set with diam (O1) = d such that K ⊆ O1. By Corollary 1

we can start with any initial set and obtain the invariant set of the iterated function

system. Let K0 be the initial set such that Km+1 ⊆ Km where Ki is the ith iteration.

Thus K ⊆ Km for all m. Let Oi
2 = fi(O1) where i = 1, . . . , n be the n open sets with

diameters dri. Let Oij
3 = fj(fi(O1)) where i, j = 1, . . . , n be the n2 open sets with

diameters drirj. Now let Oij...k
m = fk(. . . (fj(fi(O1))) . . .) where i, j, . . . , k = 1, . . . , n,

be the nm open sets with diameters in the form drirj · · · rk. Fix m and let Om =
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⋃
ij...k

Oij...k
m . We have Km ⊆ Om since K ⊆ O1 and both are being reduced by the same

ratios. We see that {Oij...k
m } for a fixed m is a cover of K since K ⊆ Km ⊆ Om and

Om =
⋃
ij...k

Oij...k
m .

Let r = max{r1, . . . , rn} < 1. Let δ > 0 and choose α so that δ ≥ rα.

Now we see that

Hs
δ (K) = inf

{
∞∑
m=1

(diam(Bm))s : K ⊆
∞⋃
m=1

Bm and diam(Bm) ≤ δ

}

≤
∑

(diam(Oij...k
α ))s

=
∑

(drirj · · · rk)s

where the sum is taken over all sets Oij...k
α .

Now we see that for α = 1 we have∑
(diam(O1))

s = ds.

For α = 2 we have ∑
(diam(Oij

2 ))s = dsrs1 + dsrs2 + . . . dsrsn

= ds(rs1 + . . .+ rsn)

= ds(1)

= ds.
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For α = 3 we have

∑
(diam(Oij

3 ))s = dsrs1r
s
1 + dsrs1r

s
2 + . . .+ dsrs1r

s
n + dsrs2r

s
1 + . . .+ dsrsnr

s
n

= dsrs1(r
s
1 + . . .+ rsn) + dsrs2(r

s
1 + . . .+ rsn) + . . .+ dsrsn(rs1 + . . .+ rsn)

= ds(rs1(1) + . . .+ rsn(1))

= ds(rs1 + . . .+ rsn)

= ds(1)

= ds.

Proceeding inductively,
∑
ij...k

(diam(Oij...k
α ))s = ds for any α.

Thus Hs
δ (K) ≤

∑
(drirj · · · rk)s = ds <∞.

Let δ → 0. Therefore Hs(K) <∞.

Now we need to show that Hs(K) > 0.

Let O1 be the open set from the Open Set Condition such that K ⊆ O1 with

diam(O1) ≤ 1. If not, we can scale K and O1 by a ratio less than one so that

K ⊆ O1 and diam(O1) ≤ 1 and the dimension will be unaffected. We want to define

an additive function ψ(A) on half open figures A such that

ψ(A) ≤ c(diam(A))s

where c is a constant.

Define

ϕ(Oij...k
m ) = (rirj · · · rk)s.

Now define for any half-open figure A,

Φ(A) = lim
m→∞

∑
ϕ(Oij···k

m )
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where the sum is taken over all sets Oij···k
m whose closures lie entirely in A.

Now let Aη = {~x ∈ Rq : ~x+ ~h ∈ A where 0 ≤ hβ ≤ η for all β = 1, . . . , q}.

Lastly, define

ψ(A) = lim
η→0+

Φ(Aη).

We need to show that ψ(A) is an additive function on half-open figures:

Let A and B be non-intersecting half-open figures.

Since all Oij...k
m ⊆ Aη and all Oij...k

m ⊆ Bη are also contained in Aη ∪Bη then by the

principle of inclusion-exclusion we have Φ(Aη) + Φ(Bη) ≤ Φ(Aη ∪Bη)− Φ(Aη ∩Bη).

Hence limη→0+(Φ(Aη) + Φ(Bη)) ≤ limη→0+ Φ(Aη ∪ Bη) since diam(Aη ∩ Bη) → 0 as

η → 0+. Thus ψ(A) + ψ(B) ≤ ψ(A ∪B).

Now, for a fixed η choose m so that η/2 >diam(Oij···k
m ) for all i, j, . . . , k. Pick

Oij...k
m ⊆ (A ∪ B)η/2. Now choose some ~x ∈ (A ∪ B)η/2 = Aη/2 ∪ Bη/2. This means

~x+~h ∈ A∪B where 0 ≤ hβ ≤ η/2 for all β = 1, . . . , q. Without loss of generality we

can assume ~x + ~h ∈ A. Thus ~x ∈ Aη/2. Since diam(Oij...k
m ) < η/2 and ~x ∈ Oij...k

m we

have Oij...k
m ⊆ Bη/2(~x). Thus, since ~x ∈ Aη/2 we have that Oij...k

m ⊆ Aη.

Thus since each Oij...k
m ⊆ Aη/2 ∪ Bη/2 is entirely contained in either Aη or Bη we

have Φ(Aη/2 ∪Bη/2) ≤ Φ(Aη) + Φ(Bη). Let η → 0+. Hence ψ(A∪B) ≤ ψ(A) +ψ(B)

Therefore ψ(A∪B) = ψ(A) +ψ(B) and ψ(A) is an additive function on half-open

figures.

Now we need to show that ψ(A) satisfies the conditions of the Lemma.

Suppose r1 ≥ r2 ≥ . . . ≥ rn. Then Oi
2, O

ij
3 , . . . are similar to O1 but reduced by

the ratios ri, rirj, . . . respectively. Now arrange all possible ratios in decreasing order

and denote them by R1 ≥ R2 ≥ . . . which converge to 0. Let A be any half-open

figure with diam(A) = d. Choose t such that Rt ≥ d ≥ Rt+1.

Now let C be a q-dimensional ball whose center is some point in A and has a
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radius of 2d. Consider all sets Oij...k
m ⊆ C such that the reduction ratios lie between

Rt+1 and Rt+1rn. If some are contained in others, then only count the largest set.

Call this collection {Pi}Ni=1. Note that if the iterated function system did not satisfy

the Open Set Condition, the Oij...k
m may not be contained in one another but just

overlap. Thus we could have infinitely many Pi.

Since the radius of C is twice the diam(A), we have for η sufficiently small and m

sufficiently large that every Oij...k
m whose closure is contained in Aη is also contained

in some Pi. Figure 3.2 gives an illustration of this situation.

Figure 3.2: The yellow sets represent the Pi. The darker yellow set is contained in A
and is also a Pi.

Thus we have ∑
ϕ(Oij...k

m ) ≤
N∑
i=1

ϕ(Pi)

where the first sum is over all sets Oij...k
m such that the closure of Oij...k

m is contained

41



in Aη. Thus

ψ(A) = lim
η→0+

lim
m→∞

∑
ϕ(Oij...k

m )

≤
N∑
i=1

ϕ(Pi).

We have |C| = aπdq for some a > 0. For each Pi we have |Pi| ≥ (Rt+1rn)q|O1|. This

implies that

N ≤ aπdq

(Rt+1rn)q|O1|
.

We see that ϕ(Pi) ≤ Rs
t for all i. Also, we have

Rt

Rt+1

≤ 1

rn
and

dq−s

Rq−s
t

≤ (1)q−s = 1

since d ≤ Rt and s ≤ q.

Thus

ψ(A) ≤
N∑
i=1

ϕ(Pi)

≤
N∑
i=1

Rs
t

= NRs
t

≤ aπdqRs
t

(Rt+1rn)q|O1|

= aπds
dq−s

Rq−s
t

Rq
t

Rq
t+1

1

rqn|O1|

≤ 1

rqn

aπds

rqn|O1|

=
aπ

r2qn |O1|
ds.
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Therefore we have satisfied the conditions of Lemma 3. Hence Hs(K) > 0.

Corollary 3. The Hausdorff dimension of an invariant set, K, of an iterated function

system satisfying the conditions of Theorem 3.4 is equal to the similarity dimension

of K.

Note that the Open Set Condition is only required to show that Hs(K) > 0.

This means that for any invariant set, K, of an iterated function system we have

Hs(K) <∞ where s is the similarity dimension of the iterated function system.
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Chapter 4: Examples

The first fractals discovered were all self-similar fractals. Here we present some of

the most famous self-similar fractals. We provide the iterated function systems, their

constructions and compute their topological, similarity and Hausdorff dimensions.

We will begin with the Cantor set; the first known fractal. We will then proceed to

the Sierpinski gasket, followed by the Koch snowflake, Menger sponge, and end with

Barnsley’s wreath, an example that does not satisfy the Open Set Condition.

4.1 Cantor Set

In 1884 Georg Cantor published a paper on the now-famous Cantor set. Cantor had

no idea at the time that he had actually discovered a fractal or how huge the impact

of the Cantor set would be in the study of fractals. Many think of the Cantor set as

the archetypical fractal. In fact, the Cantor set was explored by Felix Hausdorff in

[13] and Besicovitch and Taylor in [5]. Hausdorff computes the Hausdorff dimension

of the Cantor set in [13] along with a generalized formula for variations of the Cantor

set. Here we will provide an indirect approach to computing the Hausdorff dimension

of the Cantor set.

Cantor created the Cantor set, which is a nowhere dense perfect set, in order

to prove that all perfect sets have the same cardinality; that is all perfect sets are

uncountable. A perfect set is a subset of R that is closed and has no isolated points.

But what is surprising is that even though the Cantor set is uncountable, it is a set of

Lebesgue measure zero. In this case the Lebesgue measure can be thought of as the

total length of the Cantor set. The total length of the Cantor set is zero, so it can

not contain an interval of positive length. But the Cantor set has no isolated points.
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This goes against our intuition. As we will see, the dimension of the Cantor set will

help us to explain these strange properties.

4.1.1 Construction

We define the Cantor set as the invariant set of an iterated function system. Consider

the iterated function system T = {T1, T2} acting on K(R) where

T1(x) = x/3 and T2(x) = x/3 + 2/3.

We define the iterated function system T : K(R)→ K(R) by

T (A) = T1(A) ∪ T2(A)

where T1(A) = {y ∈ R : y = x/3 and x ∈ A} and T2(A) = {y ∈ R : y = x/3 +

2/3 and x ∈ A}. By Theorem 2.4 we know the iterated function system, T , must

have a unique invariant set, since it realizes the ratio list (1/3, 1/3) and 1/3 < 1.

Definition 44. The Cantor set is the unique fixed point of the iterated function

system T .

By Corollary 1, when applying the iterated function system we can start with any

nonempty compact initial set. We choose to start with the closed interval C0 = [0, 1].

We see that C1 = [0, 1/3]∪[2/3, 1]. Notice that this is the same as removing the middle

third of C0. The next iteration gives us C2 = [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1].

Again, notice that this is the same as removing the middle third of each interval in

C1. We repeat this process to obtain the sequence of approximations C0, C1, C2, . . .

One should also notice that C0 ⊇ C1 ⊇ C2 ⊇ . . . We need to show that the Cantor

set C is the same as
∞⋂
k=1

Ck.
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Figure 4.1: C0 and the first three iterations of T

Proposition 4. The Cantor set, C, can be written as C =
∞⋂
k=1

Ck where each Ck

consists of 2k disjoint closed intervals of length 3−k. Call these intervals Ik,j, so that

we have Ck =
2k⋃
j=1

Ik,j.

Proof. We claim that Ck ⊆ Ck−1 for all k ∈ N where Ck is the disjoint union of 2k

closed intervals of length 3−k:

(By induction) Let C0 = [0, 1] and let Ck = T (Ck−1).

Let k = 1. We have C0 = [0, 1]. We see that

C1 = T (C0) = T1(C0) ∪ T2(C0) = [0, 1/3] ∪ [2/3, 1] ⊆ [0, 1] = C0.

Thus C1 ⊆ C0. We also see that C1 is the disjoint union of 2 closed intervals of length

1/3.

Now assume for some k ∈ N that Ck ⊆ Ck−1 where Ck is the disjoint union of 2k

closed intervals of length 3−k. So we have that

Ck+1 = T (Ck) = T1(Ck) ∪ T2(Ck).
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Now since T1 and T2 are linear and one-to-one similarities with ratio 1/3, we have

that T1(Ck) is the union of 2k disjoint closed intervals of length 3−(k+1) and T2(Ck) is

the disjoint union of 2k closed intervals of length 3−(k+1). Also, T1(Ck) ∩ T2(Ck) = ∅.

Thus Ck+1 is the disjoint union of 2k+1 closed intervals of length 3−(k+1).

Then since Ck ⊆ Ck−1 we have that

T1(Ck) ⊆ T1(Ck−1) ⊆ Ck

and

T2(Ck) ⊆ T2(Ck−1) ⊆ Ck.

Thus

Ck+1 = T1(Ck) ∪ T2(Ck) ⊆ Ck.

Therefore for all k ∈ N we have Ck ⊆ Ck−1 where Ck is the disjoint union of 2k

closed intervals of length 3−k.

This gives us that C =
∞⋂
k=1

Ck.

4.1.2 Topological Dimension

The Cantor set has total length 0 which implies the Cantor set contains no interval

of positive length. So one would expect the topological dimension to be 0. By using

the construction above we can find a basis for the subspace topology that allows us

to compute the topological dimension, which is in fact 0.

Proposition 5. (Prop 3.1.3 in [11]) The sets Mk,j = C ∩ Ik,j where k = 0, 1, . . . and

j = 1, 2, . . . , 2k form a basis for the subspace topology on C. They are clopen. Thus

C is topologically zero-dimensional.
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Proof. We know that the interval Ik,j has length 3−k. Since each interval that is

removed at the kth level also has length 3−k we know the distance from Ik,j to any

other interval, Ik,j′ , is at least 3−k.

Now if Ik,j = [a, b], then Mk,j = C ∩ [a, b], which is closed in C since [a, b] is closed

in R. Also since the distance from one interval, Ik,j, to any other interval, Ik,j′ , is

at least 3−k we see that Mk,j = C ∩ (a − 3−k, b + 3−k), which is open in C since

(a− 3−k, b+ 3−k) is open in R. Thus each Mk,j is clopen.

Let ε > 0. If x ∈ C, then choose k such that 3−k < ε and choose j such that

x ∈ Ik,j. This means x ∈ Mk,j ⊆ C ∩ Bε(x). Thus the collection of all Mkj is a basis

for the topology of C because {Bε(x)} is a basis for the standard topology on R.

4.1.3 Similarity and Hausdorff Dimension

Recall that the Cantor set is the invariant set of an iterated function system with

ratio list (1/3, 1/3). So the similarity dimension is the solution s to

(1/3)s + (1/3)s = 2(1/3)s = 1.

Thus s =
ln 2

ln 3
≈ 0.6309. Now we can show that the Hausdorff dimension of the Cantor

set is equal to s.

Proposition 6. The Cantor set, C, has Hausdorff dimension s =
ln 2

ln 3
.

Proof. We need to satisfy the conditions of Theorem 3.4. The iterated function system

T realizes a contracting ratio list. Thus we only need to show that T satisfies the

Open Set Condition. Consider O = (0, 1). We see that T1(O) = (0, 1/3) and T2(O) =

(2/3, 1). Thus T1(O) ∪ T2(O) = T (O) ⊆ O and T1(O) ∩ T2(O) = ∅.

Therefore, by Corollary 3, we have that the Hausdorff dimension of the Cantor

set is
ln 2

ln 3
.
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We see that the dimension of the Cantor set is between 0 and 1. Recall that the

Cantor set has total length zero, but has no isolated points. The fractional dimension

helps explain why the Cantor set has properties that seem to be somewhere between

the properties of 0-dimensional objects and 1-dimensional objects.

4.2 Sierpiński Gasket

In 1915 Waclaw Sierpiński provided an example of a curve that intersects itself at

every point. This curve turned out to be the Sierpiński gasket. Although Sierpiński

received the credit for this fractal thanks to Mandelbrot, it had been contemplated

decades before by several other mathematicians. For example, in 1890 Edouard Lucas

discovered that the odd binomial coefficients of Pascal’s triangle form a variation of the

Sierpiński gasket. Of course he did not realize that his theorem could be interpreted

in this way. [23]

The Sierpiński gasket is considered a curve, but the total length is infinite. We

could also consider the total area of the Sierpiński gasket. We will see that the total

area is 0. So we have a curve of infinite length that appears to take up space but has

a total area of 0. Again the dimension will helps us explain these strange properties.
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4.2.1 Construction

Consider the iterated function system, A = {A1, A2, A3} where the Ai : R2 → R2 are

defined by

A1(~x) = 1/2~x

A2(~x) = 1/2~x+

(
1/2
0

)

A3(~x) = 1/2~x+

(
1/4√
3/4

)
,

respectively.

By Theorem 2.4 we know the iterated function system, A, has a unique invariant

set, since it realizes the ratio list (1/2, 1/2, 1/2).

Definition 45. The Sierpiński gasket, S, is the unique fixed point of A, i.e. S =

A(S) = A1(S) ∪ A2(S) ∪ A3(S).

Figure 4.2: Sierpiński gasket
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By Corollary 1, we know that by starting with any nonempty compact initial

condition, we can obtain the unique fixed point ofA, which in this case is the Sierpiński

gasket. Define S0 to be the equilateral triangle with side lengths 1 having corner points

(0, 0), (1/2,
√

3/2), and (1, 0). The first iteration of A gives us S1. We can see that

this is the same as dividing S0 into four smaller equilateral triangle and removing the

middle triangle. The second iteration, S2, is the same as dividing each triangle in S1

into four smaller triangles and again removing the middle triangle from each of the

larger triangles.

S0 S1 S2

Figure 4.3: S0 and the first two iterations of A

If we continue with this process we see that the Sierpiński gasket can be written

as S =
⋂
k∈N

Sk where each Sk consists of 3k triangles with side lengths 2−k. We can

think of each Sk =
3k⋃
j=1

Sk,j where each Sk,j is a triangle of side length 2−k. This is

called construction by tremas.

4.2.2 Topological Dimension

As we mentioned previously, the Sierpiński gasket is actually a curve. Thus we would

expect its topological dimension to be 1. Using the construction by tremas, we can
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find a basis to compute the topological dimension.

Proposition 7. The Sierpiński gasket, S, has small inductive dimension 1.

Proof. First we need to show that S is not zero-dimensional. So consider the equi-

lateral triangle, S0, in R2 with side lengths equal to 1 containing the interval I =

[0, 1]× {0}.

We claim I ⊆ A(I):

We see that A1(I) = [0, 1/2]× {0} and A2(I) = [1/2, 1]× {0}. Thus

A1(I) ∪ A2(I) = ([0, 1/2]× {0}) ∪ ([1/2, 1]× {0}) = [0, 1]× {0} = I.

Recall A(I) = A1(I)∪A2(I)∪A3(I). Also by Corollary 1, we know A(I) ⊆ A(S). So

we have I = A1(I) ∪ A2(I) ⊆ A(I) ⊆ A(S) = S.

We have shown that I ⊆ S. Notice that R ∼= R × {0} ⊆ R2. Since [0, 1] × {0} =

I ⊆ R × {0} we know I ∼= [0, 1]. We proved earlier that an interval in R is not

zero-dimensional. Thus I is not zero-dimensional. Now by Theorem 3.2, we know

0 < ind I ≤ ind S. Thus S is not zero-dimensional.

Next we need to show there exists a basis for the topology such that the basis

elements have zero-dimensional boundary. We need to consider two different types

of basis elements. Let Tk,j be Sk,j minus any corner points except the corner points

of S0. We have two possibilities of Tk,j. Examples of each type are shown below in

Figure 4.4.

Let the first type of basis element be Mk,j = Tk,j ∩ S.

Next, let Rk,j1,j2 be the union of two adjacent triangles, Sk,j1 and Sk,j2 minus any

corner points not shared between the two adjacent triangles except the corner points

of S0. Again, we have two different possibilities of Rk,j1,j2 as shown below in Figure

4.5.
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Figure 4.4: Two possible Tk,j

Figure 4.5: Two possible Rk,j1,j2

The second type of basis element is Nk,j1,j2 = Rk,j1,j2 ∩ S.

We claim that the collection of all Mk,j and Nk,j1,j2 forms a basis for the topology

of S:

Let ε > 0. The topology on S is the subspace topology. So the standard basis

is {Bε(x) ∩ S}. If x ∈ S, then either x is a corner point of Sk,j for some k and j or

not. First, if it is not a corner point of some triangle Sk,j, then choose k such that

2−k < ε and j such that x ∈ Mk,j. Since the length of the sides of Sk,j are 2−k we

know Mk,j ⊆ S ∩Bε(x). Now if x is a corner point of some triangle Sk,j, then choose

k such that 2−k+1 < ε and j1 and j2 such that x ∈ Nk,j1,j2 . Since the length of the

sides of the triangle Sk,j1 and Sk,j2 are 2−k we know Nk,j ⊆ S ∩ Bε. Thus we have

shown that the collection of Mk,j and Nk,j forms a basis of the topology of S.

Lastly, we need to show that the boundary of the basis elements are zero-dimensional.

We will show this for both basis element types. First consider some basis element
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Mk,j. We need to find ∂Mk,j. So we have

∂Mk,j = Mj,k ∩ S −Mk,j

= Tk,j ∩ S ∩ S −Mk,j

= (Tk,j ∩ S) ∩ S −Mk,j.

Since S is closed we know Tk,j ∩ S = Tk,j∩S. We also know that S −Mk,j = S−Mk,j

since Mk,j is open and S is closed. Thus we need to find Tk,j.

Recall that Tk,j is a triangle missing either two or three corner points. Choose one

of these missing points. Call it x. Let ε > 0. Consider Bε(x). Since x is an endpoint

of a some open interval in Tk,j, we know there exists a y ∈ Tk,j such that y 6= x and

y ∈ Bε(x). Thus x is a limit point of Tk,j.

Now choose a point other than the missing points and not in Tk,j. Call it z. We

see that there is a positive distance, δ, from z to Tk,j. This means there exists Bδ(z)

such that Bδ(z) ∩ Tk,j = ∅. Thus z is not a limit point of Tk,j.

Therefore Tk,j = Sk,j.

So we have Tk,j ∩ S = Sk,j ∩ S = Mj,k.

We see that

∂Mk,j = Mj,k ∩ S −Mk,j = (Sk,j ∩ S) ∩ (S −Mk,j)

is the two or three missing corner points. Therefore, since a finite set of points is

zero-dimensional, we know ∂Mk,j is zero-dimensional.

Next, we need to consider the other type of basis element, Nk,j1,j2 . Recall that

Nk,j1,j2 is the union of two adjacent triangles missing either 2, 3, or 4 corner points.

So by a similar argument as above, we have that ∂Nk,j1,j2 consists of the 2, 3, or

4 missing corner points. Thus since a finite number of points is zero-dimensional,

∂Nk,j1,j2 is zero-dimensional.
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Therefore we have shown that there exists a basis of S such that the boundary of

the basis elements is zero-dimensional. Hence, S has small inductive dimension 1.

4.2.3 Similarity and Hausdorff dimension

The Sierpiński Gasket is the invariant set of an iterated function system realizing the

ratio list (1/2, 1/2, 1/2). This means the similarity dimension is the solution s to

(1/2)s + (1/2)s + (1/2)s = 3(1/2)s = 1.

Thus s =
log 3

log 2
≈ 1.585.

Proposition 8. The Hausdorff dimension of the Sierpiński Gasket is s =
log 3

log 2
.

Proof. We need to show that the iterated function system, A, satisfies the Open

Set Condition. Consider O to be the open equilateral triangle with corner points

(0, 0), (1/2,
√

3/2), and (1, 0).

We see that O1 = A1(O) is the open triangle with corner points (0, 0), (1/4,
√

3/2),

and (1/2, 0). Next we have A2(O) = O2 is the open triangle with corner points

(1/2, 0), and (3/4, (
√

3 + 2)/4), (1, 0). Last we have A3(O) = O3 is the open triangle

with corner points (1/4,
√

3/4), (1/2,
√

3/2), and (3/4, (
√

3 + 2)/4). Thus we see that

Ai(O) ⊆ O for i = 1, 2, 3 and Ai(O) ∩ A2(O) = ∅ for i 6= j and i, j = 1, 2, 3. See

Figure 4.6.

Thus A satisfies the Open Set Condition. Therefore by Corollary 3 we know the

Hausdorff dimension of the Sierpinski gasket is s =
log 3

log 2
.
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Figure 4.6: Open triangles that satisfy the Open Set Condition

We see that the dimension of the Sierpiński gasket is between 1 and 2. Recall that

the Sierpiński gasket is a curve of infinite length but takes up 0 total area. Again,

the fractional dimension helps explain how we can have such an object that possesses

properties that lie between 1-dimensional and 2-dimensional properties.

4.3 Koch Snowflake

Karl Weierstrass introduced a continuous function that is nondifferentiable in 1872.

Weierstrass described this function using only formulas and analysis with no pictures

included. For a visual person, it wasn’t apparent why the function was not differ-

entiable. It wasn’t until 1904 that Helge von Koch described such a curve from a

geometrical view. The curve he describes in [15] is now referred to as the Koch curve.

The Koch snowflake in Figure 4.7 is made up of three copies of the Koch curve.

Like our previous two examples, the Koch snowflake has some interesting properties.

The boundary of the Koch snowflake is a curve of infinite length that encloses a finite

area.
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Figure 4.7: Koch snowflake

4.3.1 Construction

First, let’s look at the Koch curve. Consider the iterated function system, B =

{B1, B2, B3, B4} where the Bi : R2 → R2 are defined by

B1(~x) = 1/3~x,

B2(~x) = 1/3

(
1/2 −

√
3/2√

3/2 1/2

)
~x+

(
1/3
0

)
,

B3(~x) = 1/3

(
1/2

√
3/2

−
√

3/2 1/2

)
~x+

(
1/2√
3/6

)
,

B4(~x) = 1/3~x+

(
2/3
0

)
.

By Theorem 2.4 we know the iterated function system, B, has a unique invariant

set, because it realizes the ratio list (1/3, 1/3, 1/3, 1/3).

Definition 46. The Koch Curve, K, is the unique fixed point of B, i.e. K =

B(K) = B1(K) ∪B2(K) ∪B3(K) ∪B4(K).

Using Corollary 1 we can start with any nonempty compact set. Let K0 = [0, 1].

Now applying the iterated function system we get
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Figure 4.8: K0, K1 and K2

4.3.2 Topological, Similarity and Hausdorff Dimension

The Koch curve is considered a curve since it has topological dimension 1. We do not

include a proof here, but note that we cannot use the same method as the Sierpiński

gasket since the Koch curve does not contain an interval of positive length.

The Koch curve is the invariant set of an iterated function system realizing the

ratio list (1/3, 1/3, 1/3, 1/3). Thus the similarity dimension of the Koch curve is the

solution, s, to

(1/3)s + (1/3)s + (1/3)s + (1/3)s = 1.

Hence s =
log 4

log 3
≈ 1.26186.

Proposition 9. The Hausdorff dimension of the Koch curve, K, is s =
log 4

log 3
.

Proof. Let O be an open equilateral triangle with corner points (0, 0), (1/2,
√

3/2)

and (1, 0). We see that B1(O) = O1 is the interior of the triangle with corner points

(0, 0), (1/6,
√

3/6), and (1/3, 0). Next, B2(O) = O2 is the interior of the triangle with

corner points (1/3, 0), (1/6,
√

3/6), and (1/2,
√

3/6) and B3(O) = O3 is the interior of
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the triangle with corner points (1/2,
√

3/6), (5/6,
√

3/6), and (2/3, 0). Last we have

B4(O) = O4 is the interior of the triangle with corner points (2/3, 0), (5/6,
√

3/6),

and (1, 0). See Figure 4.9.

Figure 4.9: The open triangles O1, O2, O3 and O4.

We see that Bi(O) ⊆ O for i = 1, 2, 3, 4. Also Bi ∩ Bj = ∅ for i, j = 1, 2, 3, 4 and

i 6= j. Thus the iterated function system B = (B1, B2, B3, B4) satisfies the open set

condition.

Therefore by Corollary 3 we know the Hausdorff dimension of the Koch curve is

s =
log 4

log 3
.

We see that l(K0) = 1, l(K1) = 4/3, l(K2) = 16/9 = (4/3)2, l(K3) = 64/27 =

(4/3)3, . . . , l(Kn) = (4/3)n, . . . where l(Ki) is the total length of Ki. So the total

length of the Koch curve is lim
n→∞

(4/3)n = ∞. Thus the Koch curve has infinite

length.

Now, to obtain the Koch Snowflake we apply the iterated function system, B,

separately to the sides of an equilateral triangle with side lengths 1. Each side of the

triangle will create a copy of the Koch curve. The area of the equilateral triangle is
√

3/4 and one can calculate that the area contained inside the Koch snowflake is 8/5
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of the area of the original equilateral triangle. So we see that the area of the Koch

Snowflake is finite. Thus we have that the Koch Snowflake has an infinite perimeter

but a finite area.

4.4 Menger Sponge

Karl Menger discovered the Menger sponge in 1926 in the form of a universal curve.

A universal curve, I, has topological dimension 1 and every compact metric space of

topological dimension 1 is homeomorphic to a subset of I [19]. As with all fractals,

the Menger sponge possesses properties that are not intuitive. The Menger sponge

may have the most bizarre properties out of the fractals we have considered so far.

Even though the Menger sponge has topological dimension 1, it has infinite surface

area but zero volume [12].

4.4.1 Construction

The Menger sponge is the invariant set of an iterated function system, G, consisting

of 20 similarities each having a ratio of 1/3. Since G realizes a contracting ratio list

we know by Theorem 2.4 that G has a unique invariant set.

The Menger sponge is easy to describe using construction by tremas, that is re-

moving certain pieces. By Corollary 1 we know we can start with any nonempty

compact initial set. Let M0 be the unit cube in R3 pictured in Figure 4.10. Now

divide M0 into 27 smaller cubes with side length 1/3 and remove the middle cube out

of every face and the center most cube. Thus M1 in Figure 4.11 consists of the 20

cubes left. Now divide each smaller cube into 27 cubes each with a side length of 1/9

and remove the middle cube of each face and the center most cube. So M2 consists

of the 202 cubes with side lengths 1/9 shown in Figure 4.12. So Mn will be 20n cubes

with side lengths (1/3)n. This creates a sequence of sets M0 ⊇M1 ⊇M2 ⊇ . . .. Thus
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the Menger sponge can be written as
∞⋂
k=1

Mk where Mk consists of 20n cubes with side

lengths (1/3)n.

Figure 4.10: M0

Figure 4.11: M1

Figure 4.12: M2
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4.4.2 Topological, Similarity and Hausdorff Dimension

As mentioned before, the Menger sponge is considered a curve since it has topological

dimension 1. Again, we do not include a proof.

Recall that the Menger sponge is the invariant set of the iterated function system

G consisting of 20 similarities each with a ratio of 1/3. So the similarity dimension

is the solution s to

(1/3)s + . . .+ (1/3)s = 20(1/3)s = 1.

Thus s =
log 20

log 3
≈ 2.72683.

Proposition 10. The Menger sponge, M , has Hausdorff dimension s =
log 20

log 3
.

Proof. Let O be the open unit cube. From the construction above, we can see that

the 20 subcubes are each a subset of O. Thus G(O) ⊆ O. Also each subcube does

not intersect any of the others. So we have Gi ∩Gj = ∅ for i, j = 1, . . . , 20 and i 6= j.

Therefore by Corollary 3 we know the Hausdorff dimension of the Menger sponge

is s =
log 20

log 3
.

Recall that the Menger sponge has infinite surface area but zero volume. Again,

we see that the fractal dimension gives us an explanation for why the Menger sponge

has properties lying between 2 and 3-dimensional properties, even though it is topo-

logically 1-dimensional.

4.5 Barnsley Wreath

The Barnsley wreath in Figure 4.14 was created by Michael Barnsley in [2] as an

example of a fractal that is the invariant set of an iterated function system that does
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not satisfy the open set condition. In a sense, the images of the different maps in the

iterated function system overlap too much. The iterated function system associated

to the Barnsley wreath consists of six similarities, (f1, f2, f3, f4, f5, f6). The first three

similarities, f1, f2, and f3, rotate by 180 degrees and contract by a ratio of 1/2. The

last three similarities, f4, f5, and f6 also rotate 180 degrees but contract by a ratio of

1/4. In Figure 4.13, the dark blue hexagon is the initial set, the bright blue hexagons

have been reduced by a ratio of 1/2 and the green hexagons have been reduced by a

ratio of 1/4. So as we can see in Figure 4.13 the six hexagons in the first iteration

overlap at more than an edge or points. This is why the Open Set Condition is not

satisfied.

Figure 4.13: The first iteration of the iterated function system.

Figure 4.14: Barnsley wreath
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From the iterated function system describe above we have that the ratio list of

the iterated function system is (1/2, 1/2, 1/2, 1/4, 1/4, 1/4). Thus we can compute

the similarity dimension. We have that the similarity dimension is the solution s to

(1/2)s + (1/2)s + (1/2)s + (1/4)s + (1/4)s + (1/4)s = 3(1/2)s + 3(1/4)s = 1.

Thus s =
log(3 +

√
21)

log 2
− 1 ≈ 1.9227. Now since the iterated function system does

not satisfy the open set condition, we cannot use Corollary 3 to conclude that the

similarity dimension is equal to the Hausdorff dimension.

In order to compute the actual Hausdorff dimension of the Barnsley wreath, Ger-

ald Edgar uses a technique called graph self-similarity, which is a generalization of

standard self-similarity. The method can be found in [11] and the specific calculation

for the Barnsley wreath can be found in [9]. We read in [9] that the Hausdorff dimen-

sion of the Barnsley wreath is actually is s1 ≈ 1.8459. We see that this is strictly less

than the similarity dimension.
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Chapter 5: Conclusion

As we discussed earlier, fractals are found all around us, even inside us. Fractals

are more than just interesting mathematical objects; they are very applicable to major

areas of study such as physics, biology, and medicine. Therefore the study of fractals

is not only fun and interesting from a mathematical view, but is also helping in the

advancement of technology and medicine.

5.1 Further Study

One property that sets fractals apart is their dimension. Thus fractal dimension

is a major concept in the study of fractals and their applications. Further study

may include the study of other fractals dimensions. The Hausdorff dimension is the

most common fractal dimension used but other fractal dimensions include packing

dimension, box dimension, and Bouligand dimension [10], [11]. One could also study

the concept of graph self-similarity to compute the Hausdorff dimension of fractals

that do not satisfy the Open Set Condition.

Other directions of study include calculating the fractal dimensions of more com-

plicated sets such as the Mandelbrot set and investigating more deeply into the prac-

tical and mathematical applications of fractals.
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