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DiNNO: Distributed Neural Network Optimization
for Multi-Robot Collaborative Learning
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Abstract—We present DiNNO, a distributed algorithm that en-
ables a group of robots to collaboratively optimize a deep neural
network model while communicating over a mesh network. Each
robot only has access to its own data and maintains its own
version of the neural network, but eventually learns a model
that is as good as if it had been trained on all the data centrally.
No robot sends raw data over the wireless network, preserving
data privacy and ensuring efficient use of wireless bandwidth. At
each iteration, each robot approximately optimizes an augmented
Lagrangian function, then communicates the resulting weights
to its neighbors, updates dual variables, and repeats. Eventually,
all robots’ local model weights reach a consensus. For convex
objective functions, this consensus is a global optimum. Unlike
many existing methods we test our algorithm on robotics-related,
deep learning tasks with nontrivial model architectures. We
compare DiNNO to two benchmark distributed deep learning
algorithms in (i) an MNIST image classification task, (ii) a multi-
robot implicit mapping task, and (iii) a multi-robot reinforcement
learning task. In these experiments we show that DiNNO per-
forms well when faced with nonconvex deep learning objectives,
time-varying communication graphs, and streaming data. In all
experiments our method outperforms baselines, and was able to
achieve validation loss equivalent to centrally trained models. See
msl.stanford.edu/projects/dist nn train for videos and code.

Index Terms—Multi-Robot Systems; Deep Learning Methods;
Distributed Robot Systems

I. INTRODUCTION

A group of collaborating robots has the ability to explore,
interact with, and experience their environment as a

collective much faster than a single robot acting alone. This
ability to rapidly gather a large volume and variety of data
makes multi-robot systems especially well suited for tasks
that involve training deep neural networks using data gathered
by the robots. In a cloud robotics scenario, one can imagine
thousands of robots networked over a cloud server, able
to collectively gather and process vast volumes of data for
a common task (e.g. manipulation, autonomous driving, or
human behavior prediction). In a mesh network scenario, one
can similarly imagine a team of robots collaborating to map
an environment, learn a control policy, or learn to visually
recognize threats in the environment. A central unsolved prob-
lem in collaborative robotics, therefore, is how to train neural
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Fig. 1: DiNNO allows robots to cooperatively optimize local copies of a neural
network model without explicitly sharing data. In this figure (representative
of Section V-B), three robots use DiNNO to cooperatively optimize a building
occupancy map represented as a neural network. Each robot only sees part of
the building, collecting a local lidar data set (colored cylinders). The robots
communicate over a wireless network (dashed lines) to cooperatively optimize
their local neural network copies. The resulting model is as good as if it were
trained centrally with all data at once.

network models on the robots through local communication
such that each robot benefits from the data collected by the
entire multi-robot system.

To solve this problem, we propose Distributed Neural
Network Optimization (DiNNO), an algorithm built on the
alternating direction method of multipliers (ADMM) [1]. We
demonstrate the effectiveness of DiNNO on experiments which
require optimizing nonconvex deep learning loss functions
which may be subject to time-varying communication graphs
and streaming data. In addition, unlike similar approaches,
DiNNO is shown to match centralized performance on dif-
ficult, multi-robot deep learning tasks while integrating easily
with standard tools and optimizers such as PyTorch [2] and
Adam [3]. Using DiNNO, robots alternate between local
optimization of an objective function, and communication of
intermediate model weights over the wireless network. The
robots eventually reach a consensus on their model weights,
with each robot learning a neural network that is as good
as if it had been trained centrally with the data from all
robots, as illustrated graphically in Figure 1. DiNNO inherits
the strong convergence properties of ADMM—for convex
objective functions we prove that all robots obtain globally
optimal parameters. However, neural network training is rarely
convex. Using standard deep learning tools within DiNNO
we retrieve state-of-the-art deep learning performance, but
in a distributed, multi-robot implementation. Finally, DiNNO
operates by sharing model weights over the communication
network, not raw data. Therefore, robots using DiNNO pre-
serve the privacy and integrity of their own local data set.
This is crucial in scenarios where user data or observations
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of humans are involved, or when robot manufacturers must
preserve the privacy of their own data sets.

A naive approach to solving the multi-robot deep learning
problem is to use a mesh network routing protocol to aggregate
the data gathered by all of the robots in the system to a
single “leader” robot which then optimizes a deep neural
network model, and sends a copy of that trained model back
to all of the other robots in the system. We refer to this
approach as a “centralized” solution, and it has a number
of distinct drawbacks. First, depending on the size of the
gathered data, algebraic connectivity of the communication
graph, bandwidth of the communication links, and efficiency
of the routing protocol, it can take a significant amount of
time to aggregate the gathered data at the leader node. A
centralized approach is not robust to failure of the leader node,
and in some applications it may not be possible to transmit
data due to privacy considerations, for instance, due to the
European Union General Data Protection Regulation article
46 [4]. DiNNO overcomes all of these limitations by enabling
leaderless distributed neural network training through local
communication among the robots.

The paper is organized as follows. We give related work in
Section II and introduce the distributed collaborative learning
problem in Section III. In Section IV we derive DiNNO start-
ing from a well-known variant of ADMM called Consensus
ADMM. In Section V we present three example robotic deep
learning tasks that showcase our method.

II. RELATED WORK

Learning has been used to address a variety of problems
for multi-robot systems and is only increasing in popularity.
A deep learned controller is used to model multi-quadrotor
interactions in [5], and is shown to considerably outperform
traditional non-linear controllers. Reinforcement learning can
also be a useful tool in multi-robot contexts for real-time and
uncertainty aware collision avoidance [6] and communication
resilient collaborative learning [7]. The collective training
methods in [8] and [9] demonstrate how experience aggrega-
tion from multiple robots can speed up policy optimization.
While not deep learning, Gaussian processes are another
popular learning tool that has been used for various regression
tasks with data collected online by multi-robot systems [10]–
[12]. These works all showcase applicability of collaborative
learning models for multi-robot systems, but in general, aside
from [11], [12], do not provide a distributed framework from
which to perform this learning.

Research on distributed deep learning for robotics tasks
includes [13], [14]. The authors of [13] apply distributed gra-
dient descent to multi-agent reinforcement learning (MARL)
problems, and largely focus on the theoretical implications
of these distributed training algorithms when the learned
functions are linear. However, their experiments with nonlinear
function approximation are limited to small neural networks.
In [14], a novel federated learning framework is introduced
which allows for distributed learning. In this framework, a
global model is stored in shared-memory between all robots
and updated based on averaging locally learned models after
training epochs through a network flooding procedure.

The problem of training neural networks in a distributed way
using data aggregated from individual robots can be viewed as
a specific instantiation of a distributed optimization problem.
Distributed optimization is the study of algorithms for solving
optimization problems where a sum of individual objective
functions, which correspond in this case to the individual
robots, is optimized using local computation and message
passing. This formulation was first proposed in [15], and
has been of renewed interest since the seminal work [16]
which presented distributed subgradient descent for convex
distributed optimization problems. Subsequent research has fo-
cused on improving convergence rates [17] and extending the
analysis to a broader range of problems including time-varying
communication graphs [18] and streaming convex objectives
[19]. An overview of the broader distributed optimization
literature is given in the surveys of [20]–[22].

Some works in the distributed optimization literature ad-
dress general nonconvex distributed optimization objectives
and even consider simple distributed neural network training
problems as examples. In [23], the distributed subgradient
descent algorithm is extended to distributed stochastic gradient
descent (DSGD), and uses training of a CIFAR-10 classifica-
tion model as a benchmark problem. The Choco-SGD algo-
rithm for distributed deep learning [24] is another algorithm
similar to DSGD with the variations that it uses a gossip
mechanism for consensus, and incorporates a quantization
step for reducing communication bandwidth. One approach
to improving convergence rates is to introduce an auxiliary
variable that estimates the global gradient. Several works
make use of this mechanism, and extend it to the domain of
nonconvex optimization with stochastic gradients [25]–[27].
We refer to these methods as distributed stochastic gradient
tracking (DSGT) methods.

Compared to DSGD and DiNNO, the gradient tracking
methods of [25]–[27] communicate twice as many parameters
at each round (primal variable and gradient estimate). We
believe a distinct advantage of DiNNO over [14], [23]–[27] is
that DiNNO uses a primal-dual method to achieve consensus.
The other approaches utilize parameter averaging to ensure
consensus which, as noted in [28], can lead slow convergence
when robots have different data distributions. Our primal-dual
consensus approach is more robust to differences in local data.
In our experiments (V) we compare against DSGD and DSGT
and show that DiNNO outperforms both methods.

The edge consensus learning algorithm proposed in [28] is
similar to our approach in that it is derived from ADMM, but
instead of addressing the nonconvex primal update directly
it uses a linearization similar to that proposed in [29], which
results in a gradient descent like update. While still technically
a primal-dual method, the update equations do not include a
local optimization procedure, and are more similar to primal
domain methods like DSGD and DSGT (see [29], Remark 1).
A number of other nonconvex distributed optimization meth-
ods are discussed in the survey [30]. Compared to DiNNO,
[28] allows for asynchronous updates, but does not consider
multi-robot deep learning tasks and we believe DiNNO is
simpler to implement. Our proposed algorithm for distributed
deep learning, DiNNO, demonstrates superior performance
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compared to DSGD and DSGT benchmarks on multi-robot
deep learning tasks such as neural implicit mapping and deep
multi-agent reinforcement learning.

III. PROBLEM FORMULATION

We consider deep learning problems where portions of a
data set, D, are collected by N robots that operate in a
connected communication graph G = (V, E). Let Di be the
portion of local data that belongs to robot i ∈ V where the
union of all the local data sets, Di, is the joint data set, D. In
some cases Di can represent access to a time-varying data set
gathered from a private data-stream (as in Section V-B).

The model we would like to optimize has the form y =
f(x; θ). Specifically we consider f to be a deep neural network
that implements a continuous function f(x) : Rn → Rm to
give a map from inputs x ∈ Rn to outputs y ∈ Rm. The neural
network is parameterized by model weights θ ∈ Rd where d
is the number of parameters. We make no special assump-
tions about the architecture (e.g. feed-forward, convolutional,
residual, etc.). We can then formalize our distributed learning
optimization problem as

minimize
θ∈Rd

∑
i∈V

ℓ(θ;Di) (1)

where ℓ(·) is the objective function (loss function) which
is generally nonconvex and often nonsmooth (due to ReLU
activation). Common deep learning tasks such as classification,
regression, and unsupervised learning have different objective
functions and a distributed deep learning optimizer should be
general enough to achieve good performance across all of these
problems.

Suppose that the decision variable, θ, is separated such that
each robot maintains their own instance of it, θi ∈ Rd. This
yields the equivalent optimization problem

minimize
θ∈Rd

∑
i∈V

ℓ(θi;Di) (2a)

subject to θi = θj ∀(i, j) ∈ E . (2b)

This optimization problem is amenable to a distributed
solution in which robots minimize local objective functions,
and take additional steps to come to agreement (consensus) on
the value of the decision variable. Replacing the data defined
loss functions in (2) with arbitrary objective functions yields
the general formulation of a distributed optimization problem.

IV. DISTRIBUTED TRAINING

A standard method for solving convex distributed optimiza-
tion problems is the consensus alternating direction method
of multipliers (CADMM) [31]. CADMM is an ADMM-
based optimization method where compute nodes (robots)
alternate between updating their primal and dual variables
and communicating with neighboring nodes. To achieve a
distributed primal-dual update, CADMM introduces auxiliary
primal variables (i.e. θi = zij and θj = zij instead of
θi = θj). CADMM works by first optimizing the auxiliary pri-
mal variables, followed by the original primal variables, then
the dual variables, as in the original formulation of ADMM

[1]. Implementations of CADMM then perform minimization
with respect to the primal variables and gradient ascent with
respect to the dual on an augmented Lagrangian that is fully
distributed among the robots:

La =
∑
i∈V

ℓ(θi) + p⊤i θi +
ρ

2

∑
j∈Ni

||θi − zij ||22 (3)

where pi represents the dual variable that enforces agreement
between node i and its communication neighbors, and Ni is
the set of indices for neighboring nodes of i. The parameter
ρ that weights the quadratic terms in La is also the step size
in the gradient ascent of the dual variable. Furthermore, the
algorithm can be simplified by noting that the auxiliary primal
variable update can be performed implicitly (zij = 1

2 (θi+θj)).
Initializing the dual variables at zero then yields the following
distributed update equations for CADMM:

pk+1
i = pki + ρ

∑
j∈Ni

(θki − θkj ) (4a)

θk+1
i = argmin

θ
ℓ(θ;Di) + θ⊤pk+1

i + ρ
∑
j∈Ni

∥∥∥∥∥θ −
θki + θkj

2

∥∥∥∥∥
2

2

. (4b)

Typically, the primal variables are initialized uniformly to
an initial guess θ0i = θinitial. This derivation of CADMM is
addressed in much finer detail in [32].

In CADMM, the objective function for the primal update
(4b) is composed of three terms: a neural network loss on the
robot’s local data, a linear term from the dual variable, and
a regularization term. It is obvious that applying CADMM
directly to the neural network training problem results in
intractable primal updates due to the neural network loss
component. The key insight, which we use in our algorithm
DiNNO, is that this primal optimization can be performed
approximately, stopping well before convergence to a local
optimum. Formally, we propose replacing the exact minimiza-
tion of the primal update, (4b), with an approximate solution
found by taking a small number of steps, B (typically between
2 and 10), of a stochastic first order method (SFO) on the entire
primal objective function.

Our proposed algorithm is shown in Algorithm 1 with
the approximate primal update performed in lines 12 - 16.
Furthermore, in Algorithm 1 we let k represent the current
communication round and τ represent the current step taken
by a SFO in this communication round. We replace the current
primal iterate with ψ in order to avoid including two iteration
count super scripts, and let G(ψτ ; ρ, pk+1

i , θki , {θkj }j∈Ni
,Di)

represent the step taken by a SFO on the objective in the
primal update. To be clear, G computes a stochastic gradient
over Di not a gradient on the full local data set.

In some of our experiments we found it beneficial to also
add a “scheduled” increase (Algorithm 1, line 9) for the
penalty parameter ρ in similar fashion to the learning rate
schedules used in deep learning. For notational simplicity, we
overload the variable ρ to also mean this schedule of parameter
values, and make explicit note of all cases where one is used.
Although generally we leave this term constant, it can be
useful to gradually increase it when faster consensus is desired.
This schedule can be provided to robots prior to optimization,
and does not compromise the distributed nature of DiNNO.
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An added benefit of DiNNO is that it pairs well with
existing deep learning libraries because the approximate pri-
mal minimization can be performed with minimal changes to
the typical training loops used to optimize individual neural
networks. We find that this is beneficial because automatic
differentiation and state-of-the-art neural network optimizers,
like Adam, can be used to perform the approximate primal
update, and practitioner knowledge from experience training
individual neural networks is transferable.

Algorithm 1 Distributed Neural Network Optimization (DiNNO)

1: Require: ℓ(·), θinitial, G, D, ρ
2: for i ∈ V do ▷ Initialize the iterates
3: p0i = 0 ▷ Dual variable
4: θ0i = θinitial ▷ Primal variable
5: end for
6:
7: for k ← 0 to K do ▷ Main optimization loop
8: Communicate: send θki to neighbors G
9: for i ∈ V do ▷ In parallel

10: pk+1
i = pki + ρ

∑
j∈Ni

(θki − θkj )
11: ψ0 = θki
12: for τ ← 0 to B do ▷ Approximate primal
13: ψτ+1 = ψτ +G(ψτ ; ρ, pk+1

i , θki , {θkj }j∈Ni
,Di)

14: end for
15: θk+1

i = ψB ▷ Update primal
16: end for
17: end for
18: return {θKi }i∈V

A. Convergence Properties

Corollary 1 (Convex Optimality of Algorithm 1). Let each
local objective function l(θ,Di) be strongly convex and L-
smooth. Furthermore, let

G = − 1

L
∇θ

(
l(θ,Di) + θ⊤pk+1

i + ρ
∑
j∈Ni

∥∥∥∥∥θ − θki + θkj
2

∥∥∥∥∥
2

2

)
and suppose the number of gradient steps B → ∞. Then
Algorithm 1 converges to the unique global solution with
linear convergence rate.

Proof. Given strongly convex and L-smooth local objectives,
the primal update (Algorithm 1 line 13) converges to the global
solution with a linear convergence rate as shown in [33]. Given
globally optimal primal updates and the stated assumptions,
Algorithm 1 is a special case of the decentralized ADMM
algorithm studied in [34] where it was shown to have linear
convergence to the global solution.

Clearly, in deep learning problems global solutions and
linear convergence are not ensured due to neural networks
creating nonconvex, and often nonsmooth, objective functions,
making general convergence results extremely challenging
to prove. Moreover, in distributed deep learning problems
it is impractical to take exact gradients and perform many
stochastic gradient steps (B) to solve each subproblem to a

high degree of accuracy. However, it is known that inexact
primal updates converge to the global solution under convexity
assumptions [35]. Though the form of our inexact primal
update is slightly different, we also observe, even when using
stochastic gradients and few descent steps for each subprob-
lem, Algorithm 1 converges to solutions similar in quality to
those from centralized optimization.

B. Baseline Algorithms
In Section V we show that DiNNO is an extremely effective

method for distributed training of neural network models.
We compare DiNNO against two other commonly referenced
stochastic first order distributed optimization methods: DSGD
[23] and DSGT [26]. Like DiNNO, both methods have each
robot maintain a local copy of the optimization variable
(neural network weights), and use message passing and locally
computed stochastic gradients to collaboratively optimize the
neural network. DSGD uses the update

θk+1
i =

∑
j∈V

wijθ
k
j − αkg(θki ) (5)

where wij is an element of a doubly stochastic matrix W that
has a sparsity pattern matching that of the graph Laplacian of
G, αk is a decaying step size, and g(θki ) is a stochastic (or
mini-batch) gradient of ℓ(θki ;Di). While (5) may not at first
appear to be a distributed algorithm, the sparsity pattern of
W means that each node only needs θkj from its immediate
neighbors to compute its update step.

The updates for DSGT are similar to those of DSGD, but an
additional auxiliary variable is added to estimate the gradient
of the joint loss,

θk+1
i =

∑
j∈V

wij(θ
k
j − αykj ) (6)

yk+1
i =

∑
j∈V

wijy
k
j + g(θk+1

i )− g(θki ). (7)

It is important to note that for DSGT the message size sent
at each communication round is double that of both DSGD
and DiNNO which only send θki . For DSGT and DSGD
we use the Metropolis-Hastings weights as W . Alternative
benchmark algorithms include [24], [25], [27], [28], [30] but,
in general, they share many core characteristics with the
proposed baselines DSGT and DSGD.

C. Data Distributions
The way in which local data is partitioned between the

robots strongly influences the convergence rate of distributed
optimization. In classification tasks, for example, problems
where each robot has access to a subset of examples from all
classes are easier to solve with distributed optimization than
problems in which each robot only has access to labelled data
for a single class. We refer to these two data distributions as
homogenous and heterogenous respectively. In homogeneous
classification a robot which optimizes directly on its local data
set without communication may be able to achieve a relatively
high classification accuracy. A robot in the heterogeneous case
is unlikely to achieve a high accuracy on any class other than
what it observed.
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D. Limitations and Future Work

One limitation of DiNNO is that the current formulation
does not allow for asynchronous updates. However, introduc-
ing additional dual variables to the DiNNO formulation, as in
[28], would enable asynchronous updates at the cost of added
communication complexity. Though DiNNO is robust to most
robot failures, like deletion, it can be vulnerable to repeated
package drops and adversarial attacks because asymmetric
communication between robots can result in steady state error
in the solution. There is a substantial literature on resilient
consensus algorithms [36], and extending these strategies to
DiNNO is an interesting direction for further research. In
applications, like computer vision, where data collected by
robots has a large memory footprint DiNNO is more com-
munication efficient than centralized methods. When the local
data is small and the communication graph is highly connected
flooding schemes that transmit all data to a leader node can
sometimes require less communication than DiNNO. However,
flooding schemes have numerous points of failure, and lack
the privacy benefits of DiNNO. One method for reducing the
communication overhead of DiNNO is message quantization,
as in [24], which is another avenue for future research.

V. EXPERIMENTS

In the following three examples we demonstrate that
DiNNO can be applied to a wide range of multi-robot learn-
ing applications, and demonstrates a substantial improvement
against baseline distributed optimization algorithms. In each
example we compare with two other common distributed opti-
mization methods: DSGD and DSGT. We implement DiNNO,
DSGD, and DSGT in a general framework such that for
each experiment the optimization algorithm is unchanged,
but a different objective function and data set are provided.
Hyperparameter values are reported in Section VI.

A. MNIST Classification

To clearly illustrate the potential for Algorithm 1 to train a
shared neural network from disparate data observers, we first
consider the well known MNIST classification problem [37].
Here a neural network learns to classify images of handwritten
digits. We train a model composed of a convolutional layer
with three 5x5 filters followed by 2 linear layers of width
576, 64 with ReLU activation and a log-softmax output layer.
We use the negative log-likelihood loss function. Each robot
only has access to labelled digits from a single class.

In Figure 2 we show the average, worst, and best Top-1
accuracy for each method on the distributed MNIST classifi-
cation problem with 10 robots on two different communication
graphs (complete and cycle). Also included is the centralized
result (98.5% validation accuracy), and the individual results,
which as expected have ∼ 10% validation accuracy. While
DSGT quickly trains to good accuracy in these problems,
DiNNO achieves much better final accuracy as training pro-
gresses with lower variance in later iterations. DSGD has
relatively poor performance with high variance.

Fig. 2: Each plot shows the Top-1 accuracy of the neural network models
on the validation set of the MNIST problem. For each algorithm we evaluate
the local neural networks stored by each robot on the validation set. Solid
lines show the average validation accuracy across all robots at the current
communication round, and filled areas are upper and lower bounded by the
best and worst performing robots for each particular algorithm. The Fiedler
value indicates the connectivity of the graph.

Fig. 3: These plots show the number of communication rounds required by
DiNNO for the average validation accuracy to reach a specific threshold on
the distributed MNIST problem as both number of robots (left) and the Fiedler
value of the communication graph (right) are increased. When the number of
robots is increased (Fiedler value is 1 ± 0.01) DiNNO consistently reaches
90% accuracy in less than 400 communication rounds, but requires more
time to converge to high accuracy (97%) as the network grows. Increasing
the Fiedler value, but holding the number of robots constant at 20, we see that
DiNNO is slower to converge when the Fiedler value is low (low connectivity),
but speeds up when the Fiedler value increases.

To understand how DiNNO scales to larger networks of
robots and its performance under different network connec-
tivity we repeated the distributed MNIST training under a
range of conditions, and show the results in Figure 3. To
vary network size we generate geometric graphs with a
target number of robots and a communication radius that
yields a graph with a Fiedler value (algebraic connectivity)
of 1 ± 0.01. The data is sorted by label and divided evenly
amongst robots so each robot has examples from at most two
classes (heterogeneous data). We then train using DiNNO, and
record the communication rounds required to reach certain
accuracy thresholds. The rounds required to reach 50% and
90% accuracy remain roughly constant across network sizes,
but more rounds are required to reach 97% accuracy when
networks are large. We believe this is because as each robot has
progressively less local data, fine tuning of weights becomes
more difficult. Notably, even with 100 robots and a local data
set of only 600 images DiNNO converges to an accuracy
matching that of centralized training.

We use a similar approach to test how DiNNO performs
with a range of different Fiedler values. For this test we fix the
network size at 20 robots, and again generate geometric graphs
with communication radius chosen to obtain desired Fiedler
values. The data is divided as before, and we train using
DiNNO. Predictably, DiNNO is slower to converge when the
connectivity is low, but speeds up as the connectivity increases.
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(a) (b)
Fig. 4: (a) Ground truth map. Highlighted is a single robot’s trajectory and a
single lidar scan is shown with high (gold) and low (blue) density points. (b)
Average validation loss versus communication iteration for the neural implicit
mapping experiment with maximum and minimum values plotted in a lighter
shade (DSGD and DSGT have high agreement throughout so these bounds are
not visible). Both baseline algorithms DSGT and DSGD appear to consistently
converge to a poor quality minima while DiNNO (ours) converges to a model
with validation loss matching that of the centralized solution. Though DSGT
and DSGD appear to converge to a similar local minimum, Figure 5 shows
that the reconstructions are different.

Fiedler values larger than 1 have little increase in performance
suggesting that consensus no longer is a limiting factor in the
convergence rate.

B. Neural Implicit Mapping

In robotics there is growing interest in using neural networks
to represent functions which implicitly define the geometry of
an environment [38], [39]. In their basic form, implicit density
field networks take as input an (x, y, z) spatial coordinate and
output a single density value between 0 and 1. Such networks
are able to represent complicated 3D scenes in a single
memory-efficient function. In this example we use DiNNO to
learn the density field of a two dimensional environment where
data collection and computation is distributed across multiple
robots. The robots also have access to a global coordinate
frame which enables cooperative mapping, but a future line
of research would be to implement this same pipeline in
conjunction with a distributed pose optimization algorithm.

The environment we seek to map is a 2D building floorplan
environment from the CubiCasa5K data set [40]. This data
set does not include the scale of the floorplans, thus we treat
each pixel as one unit. Seven robots are deployed, and each
robot gathers data from the environment by collecting lidar
scans as it traverses a closed loop, precomputed trajectory. To
simulate data streaming the robots update their local networks
at regular intervals from data sets of their last 400 collected
lidar scans (one trajectory has 3000-4000 scans). Figure 4a
shows the ground truth environment with seven robot paths
and one lidar scan. There is some overlap in the locations
traversed by each robot, but many locations, especially at the
borders, are only viewed by one robot.

We train a feedforward network with four hidden layers of
size 256, 64, 64, 64 where the first hidden layer has sinusoidal
activation, the remaining hidden layers have ReLU activation,
and the output layer has sigmoid activation to restrict our
density estimates to (0, 1). The sinusoidal activations are
common in implicit mapping [41]. We use binary cross entropy
loss between the sampled and predicted density.

The validation set is composed of novel lidar scans from
uniformly sampled locations across the entire map, and this
ensures that the validation data reflects loss only on areas
where the robots have can gather data (not inside walls). For
the communication graph, we use a geometric graph based
on the positions of the robots, where the radius is set to 1500
units. The motion of the robots results in a time-varying graph
which we observe is always connected.

Figure 4b shows the validation loss for our method as well
as DSGD and DSGT. DiNNO best minimizes the validation
loss, once again approaching the performance of centralized
training whereas DSGD and DSGT train less effectively,
converging to poor quality solutions. Figure 5 shows the map
learned by each method, and maps from individual robots
training on only their local data. As suggested by Figure
4b, when using DiNNO robots are able to provide a faithful
reconstruction of the ground truth environment whereas with
DSGD and DSGT robots converge to incoherent maps.

To verify the performances of DSGT and DSGD we reran
this experiment several times, and both methods always con-
verged to poor performing local minima. Additionally, we
emphasize that the implementation for these two methods is
unchanged between this experiment and Section V-A where
both methods learn acceptable classifiers. We speculate that
this is a challenging problem where only a small amount of
suboptimality is allowable to achieve a useful representation.
DSGT and DSGD may be unable to either fine tune their
weights, escape poor local minima, or handle streaming data.

C. Multi-Agent Reinforcement Learning
For the final example we use DiNNO for distributed learning

of a decentralized policy applied to a standard continuous
state and action, multi-robot, predator-prey problem that was
first introduced in [42]. MARL is known to be an especially
hard learning task due to the inherent nonstationarity of the
environment. That is, the environment changes during learning
because other agents also have evolving policies. For more
background on deep MARL see [43] and [44].

In our learning environment three robots must work
together to pursue a faster evader robot in the presence
of fixed obstacles, as shown in Figure 6a. Implemented in
PettingZoo [45], the environment operates according to the
Actor Environment Cycle Game model in which pursuers
make observations, act, and receive rewards sequentially
before the environment as a whole is updated. The pursuers
have actions a = [none, right, left, up, down]

∈ A ⊂ R5 and observations o =[self_vel, self_pos,

other_pursuers_rel_pos, evader_rel_pos,

evader_rel_vel] ∈ O ⊂ R12. Actions are clipped to
be on the interval [0, 1]. The evader obeys a heuristic policy,
moving opposite the nearest pursuer. To prevent unfair
evasion, the evader cannot propel itself outside a square of
radius 1.2. The reward function penalizes pursuing robots
based on their distance from the evader and pursuers receive
a positive reward for tagging the evader.

To solve this problem we extend the PPO actor-critic
algorithm [46] with DiNNO to train a shared, decentralized
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Fig. 5: The left most plot shows the ground truth density map, and moving right the next three plots are the reconstructions from the neural implicit maps
found by the three tested distributed algorithms. Here DiNNO is the only method that is able to learn a coherent map. The reconstructions were produced by
querying the optimized (and agreed upon) networks on a grid mesh of points on the map. The last three plots show reconstructions produced from three of the
seven robots when communication is not used (training exclusively on local data with Adam for 10 epochs). Since these robots do not have information from
other areas on the map, they are only able to reconstruct regions which those robots have traversed. Though visually the individually learned maps appear
betarned by DSGT and DSGD, they actually have a higher validation loss compared to DSGT and DSGD.

(a) (b)
Fig. 6: (a) A decentralized policy rollout in the predator-prey environment.
Pursuers (red), using policies learned with DiNNO applied to PPO, attempt
to capture a faster evader (green) in the presence of obstacles (black).
(b) Episodic reward (averaged across 10 episodes per network update) vs
environment time steps (summed across all episodes) for DiNNO, DSGD,
DSGT, and centralized. Shown results are averaged across 5 training runs
to show training robustness. DiNNO is the only algorithm to achieve good
performance, matching centralized performance after 10 million time steps.

policy. At consensus the robots all converge to the same policy
in accordance with a parameter sharing approach which has
been shown to be effective for MARL problems [43], [47].
Typically the policies for parameter sharing are trained by
some centralized compute node that aggregates the experiences
of each of the robots. Applying DiNNO to PPO results in a
relatively unexplored paradigm for MARL where both training
and execution are distributed.

In this example the actor and critic networks are feedforward
ReLU networks with 3 hidden layers of 64 neurons each.
The robots communicate through a fully connected graph and
update their policies using individually collected data every 10
episodes. Results from this experiment are shown in Figure
6b. For each algorithm we show the mean (over 5 runs) of the
average episodic reward achieved by the multi-robot predator
team as training progresses.

DiNNO achieves the same average episodic reward as a
policy trained using PPO with aggregated data from all three
robots. DSGD seems unable to learn a policy that results in
positive episodic reward and though DSGT learns a policy
with positive episodic reward, it is far inferior to DiNNO’s.

VI. CONCLUSION

We present the DiNNO algorithm that enables high perfor-
mance distributed training of deep neural networks for multi-
robot teams with streaming data and time-varying commu-
nication graphs. We showcase DiNNO’s versatility on three

diverse multi-robot learning tasks. Compared to existing dis-
tributed learning methods our algorithm consistently achieves
better validation performance and converges to performance
of centrally trained models. Directions for future work in-
clude learning neural implicit density functions from real 3D
depth data and exploring the capabilities of DiNNO for more
complex distributed reinforcement learning tasks. Links to our
code and a video visualizing the experiments can be found
here: msl.stanford.edu/projects/dist nn train.

APPENDIX

A. Hyperparameters

MNIST: Hyperparameters used across all four graphs were
the same. DiNNO uses B = 2, ρ0 = 0.5 increasing 0.3%
per communication round, and Adam as its primal optimizer
with a log learning rate schedule (5e-3 - 5e-4) for the primal
update. DSGT uses α =5e-3. DSGD uses a decaying stepsize
following αk+1 = αk(1−µαk) where α0 =5e-3 and µ =1e-3.
All methods use batch size 64.

Implicit Mapping: DiNNO uses B = 5, ρ0 = 0.1
increasing 0.3% per communication round, batch size of 1e5,
and Adam with a log learning rate schedule of (1e-3 - 1e-4).
DSGT uses α = 1e-3, and a batch size of 2e5. DSGD uses
α0 = 1e-3, µ = 1e-3, and a batch size of 2e5.

Multi-agent Reinforcement Learning: For each algorithm
we use the following hyperparameters: 200 steps per episode,
2e3 steps between actor/critic network updates, reward dis-
count factor γ = 0.99, and PPO clipping parameter 0.2. We
allow each algorithm 5 gradient steps (B = 5) per batch of
data to update actor and critic networks. The actor learning
rates for DiNNO, DSGD, and DSGT are 3e-4, 1e-3, and 1e-2,
respectively. Only DSGT has a separate critic learning rate,
1e-5, due to exploding gradients otherwise. For DiNNO we
set a constant ρ = 1.
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