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Abstract: We study Diophantine equations of type f(x) = g(y), where f and g are
lacunary polynomials. According to a well known finiteness criterion, for a number
field K and nonconstant f, g ∈ K[x], the equation f(x) = g(y) has infinitely many so-
lutions in S-integers x, y only if f and g are representable as a functional composition
of lower degree polynomials in a certain prescribed way. The behaviour of lacunary
polynomials with respect to functional composition is a topic of independent interest,
and has been studied by several authors. In this paper, we utilize known results on
the latter topic, and develop new ones, in relation to Diophantine applications.
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1 Introduction

The possible ways of writing a polynomial as a composition of lower degree polynomials
were studied by several authors, starting with Ritt in the 1920’s in his classical paper [15].
Ritt’s and later results have applications to number theory, complex analysis, arithmetic
dynamics, finite geometries, etc. See e.g. [16] and [21] for an overview of the theory and
applications.

The behaviour of lacunary polynomials with respect to functional composition has
been studied by several authors, at least since the 1940’s when Erdős and Rényi indepen-
dently investigated this topic. By a lacunary polynomial we mean a polynomial with a
fixed number of nonconstant terms whose degrees of the terms and the coefficients may
vary. We write a1x

n1 +a2x
n2 + · · ·+a`x

n` +a`+1 with a1a2 · · · a` 6= 0 for a lacunary poly-
nomial with ` nonconstant terms. Lacunary polynomials have been studied from various
viewpoints (reducibility, distribution of roots, applications to cryptography, etc.) and
have played an important role in various algebraic and arithmetical investigations (see
[16, chap. 5 & chap. 6]). In the last decade, various results are shown about the behaviour
of lacunary polynomials (and rational functions) with respect to functional composition,
see e.g. [8, 9, 19, 20]. The methods in these papers rely mainly on modified Puiseux
expansions and on lower bounds for approximations by sums of S-units in function fields,
and are developed by Zannier [19, 20].

On the other hand, Diophantine equations of type f(x) = g(y) have been of long-
standing interest to number theorists. By Siegel’s classical theorem, it follows that an
irreducible algebraic curve defined over a number field has only finitely many S-integral
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points, unless it has genus zero and no more than two points at infinity. Ever since Siegel’s
theorem, one of the driving questions was to classify the polynomials f, g for which the
equation f(x) = g(y) has infinitely many solutions in S-integers x, y. The classification
was completed by Bilu and Tichy [1] in 2000, by building on the work of Ritt, Fried and
Schinzel. It turns out that such f and g must be representable as a composition of lower
degree polynomials in a certain prescribed way.

Here, in the light of the above results, we are interested in Diophantine equations of
type f(x) = g(y), where f and g are lacunary. Some results in this direction can be found
in [10, 11, 14, 17]. Note that some classical Diophantine equations are of this type (Pell’s
equation, the defining equation of an elliptic curve, etc.).

For a field K, it is said that f ∈ K[x] is indecomposable (over K) if deg f > 1 and f
can not be represented as a composition of lower degree polynomials in K[x]. Otherwise,
f is decomposable (over K). Here is our first result.

Theorem 1.1. Let K be a number field, S a finite set of places of K that contains all
Archimedean places and OS the ring of S-integers of K. The equation

a1x
n1 + a2x

n2 + · · ·+ a`x
n` + a`+1 = b1y

m1 + b2y
m2 + · · ·+ bky

mk , (1.2)

where `, k ≥ 3, ni,mj ∈ N, ai, bj ∈ K, and

i) ni > nj if i > j, gcd(n1, . . . , n`) = 1, mi > mj if i > j, gcd(m1, . . . ,mk) = 1,

ii) a1a2 · · · a`b1b2 · · · bk 6= 0,

iii) b1y
m1 + b2y

m2 + · · ·+ bky
mk is indecomposable,

iv) m1 ≥ 2`(`− 1), m1 6= k and n1 6= `, and either m1 ≥ 2k + 1 or n1 ≥ 2`+ 1,

has infinitely many solutions x, y ∈ K with a bounded OS-denominator if and only if

a1x
n1 + · · ·+ a`x

n` + a`+1 = (b1x
m1 + · · ·+ bkx

mk) ◦ µ(x) (1.3)

for some linear µ ∈ K[x].

Note that if in (1.3) we have µ(0) = 0, then k = `, ni = mi, a`+1 = 0 and ai = biζ for
some ζ ∈ K \ {0} such that ζd = 1, where d = gcd(m1,m2, . . . ,mk), for all i = 1, 2, . . . , k.
If µ(0) 6= 0, then it can be shown that n1 = m1 ≤ k + `, see Proposition 4.3. In
Section 5, we discuss how the assumptions in Theorem 1.1 arise, and in which way they
can be relaxed at the cost of a more complicated formulation of the theorem. We also
show a version of Theorem 1.1 when m1 is a composite number and iv) is relaxed to
m1 ≥ 2`(`− 1).

Note that iii) in Theorem 1.1 holds when m1 is a prime (since if f(y) = g(h(y)),
then deg f = deg g · deg h). Furthermore, iii) in Theorem 1.1 holds when b1m1y

m1−1 +
b2m2y

m2−1 + · · ·+ bkmky
mk−1 is irreducible over K (since if f(y) = g(h(y)), then f ′(y) =

g′(h(y))h′(y)). Reducibility of lacunary polynomials has been studied by Schinzel in a
series of twelve papers, which were then incorporated into his book [16]. Zannier [20]
showed that if K = C and iii) does not hold, then (m1,m2, . . . ,mk) ∈ M , where M =
M(b1, b2, . . . , bk) is a finite union of subgroups of Zk. In [3, 4], it is shown that iii) holds
when b1, b2, . . . , bk are nonzero integers, and either m2 = m1 − 1 and gcd(m1, b2) = 1, or
f is an odd polynomial, m2 = m1 − 2 and gcd(m1, b2) = 1. (In the appendix we discuss
an extension of the latter result to the case when the polynomial in iii) has coefficients
in any unique factorization domain). Furthermore, Fried and Schinzel [7] showed that if
k = 2 and gcd(m1,m2) = 1, then iii) holds. When k = 2, we have the following result.
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Theorem 1.4. Let K be a number field, S a finite set of places of K that contains all
Archimedean places and OS the ring of S-integers of K. The equation

a1x
n1 + · · ·+ a`x

n` + a`+1 = b1y
m1 + b2y

m2 , (1.5)

where ` ≥ 3, ni,mj ∈ N, ai, bj ∈ K, and

i) ni > nj if i > j, gcd(n1, . . . , n`) = 1, m1 > m2, gcd(m1,m2) = 1,

ii) a1a2 · · · a`b1b2 6= 0,

iii) m1 ≥
(
`+2
2

)
+ `− 1, n1 ≥ 3,

has infinitely many solutions x, y ∈ K with a bounded OS-denominator if and only if

b1x
m1 + b2x

m2 = e1c(d1x+ d0)x
m1−1

a1x
n1 + · · ·+ a`x

n` + a`+1 = e1(c1x+ c0)
n1 ,

(1.6)

for some e1, c, c1, c0, d1, d0 ∈ K \ {0}.

We remark that the Equation 1.5 was studied in [11], where a version of Theorem 1.4
is shown under additional assumptions. In this paper, we utilize several new results, and
in this way we improve the main result of [11], and moreover shorten and simplify the
proof.

To the proof of Theorem 1.1 of importance is a result of Zannier [19], which states
that for a field K with char(K) = 0 and for f ∈ K[x] with ` ≥ 2 nonconstant terms,
which satisfies f = g ◦ h for some g, h ∈ K[x], where h is not of type axk + b, we have
deg g < 2`(`− 1). To the proof of Theorem 1.4, we show the following.

Proposition 1.7. Let K be a field with char(K) = 0. Assume that

a1x
n1 + · · ·+ a`x

n` + a`+1 = (b1x
m1 + b2x

m2) ◦ h(x), (1.8)

where ` ≥ 3, ni,mj ∈ N, ai, bj ∈ K, h ∈ K[x] and

i) ni > nj when i > j, gcd(n1, . . . , n`) = 1, m1 > m2,

ii) a1a2 · · · a`b1b2 6= 0.

Then

m1 <

(
`+ 2

2

)
+ `− 1. (1.9)

If a`+1 6= 0, then moreover

m1 <

(
`+ 2

2

)
+ 2. (1.10)

Our proof of Proposition 1.7, like Zannier’s proof, involves applying Brownawell and
Masser’s inequality [2], which can be seen as a version of Schmidt’s subspace theorem for
function fields. We remark that the above Zannier’s result was one of the main ingredients
of Zannier’s proof [20] of a conjecture of Schinzel, by which for f ∈ C[x] with ` nonconstant
terms, which satisfies f = g ◦h for some g, h ∈ C[x], the number of terms of h is bounded
above by B(`), where B is an explicitly computable function.

For a field K with char(K) = 0 and f ∈ K[x] with deg f > 1, the Galois group of
f(x) − t over K(t), where t is transcendental over K, seen as a permutation group of
the roots of this polynomial, is called the monodromy group of f (over K). The absolute
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monodromy group Mon(f) is the monodromy group of f over an algebraic closure K of K.
Several properties of a polynomial depend only on its monodromy group. For example,
f is indecomposable if and only if Mon(f) is a primitive permutation group. For details,
see Section 3. From the main result of [1], we deduce that if K is a number field and
f, g ∈ K[x] with deg f ≥ 3 and deg g ≥ 3 have doubly transitive absolute monodromy
groups, then the equation f(x) = g(y) has infinitely many solutions with a bounded OS-
denominator if and only if f(x) = g(µ(x)) for some linear µ ∈ K[x]. Here, as usual, S
is a finite set of places of K that contains all Archimedean places and OS the ring of
S-integers of K. Turnwald [18] showed that the monodromy group of a1x

n1 + a2x
n2 + a3

with a1a2 6= 0, and gcd(n1, n2) = 1, is symmetric, and symmetric groups of degree ≥ 2
are doubly transitive. Turnwald’s result is one of our main ingredients to the proof of
Theorem 1.4. The latter two results further allow us to show the following.

Theorem 1.11. Let K be a number field, S a finite set of places of K that contains all
Archimedean places and OS the ring of S-integers of K. The equation

a1x
n1 + a2x

n2 + a3 = b1y
m1 + b2y

m2 , (1.12)

where ni,mj ∈ N, ai, bj ∈ K, and

i) n1 > n2, gcd(n1, n2) = 1, m1 > m2, gcd(m1,m2) = 1,

ii) a1a2b1b2 6= 0,

iii) m1 ≥ 3, n1 ≥ 3,

has infinitely many solutions with a bounded OS-denominator if and only if

a1x
n1 + a2x

n2 + a3 = (b1x
m1 + b2x

m2) ◦ µ(x) (1.13)

for some linear µ ∈ K[x]. Furthermore, (1.13) with µ(0) 6= 0 holds exactly when n1 =
m1 = 3, and either

n2 = m2 = 2, a21b
3
2 + a32b

2
1 = 0, 27a21a3 + 4a32 = 0,

or
n2 = 2, m2 = 1, 27a41b

3
2 + a62b1 = 0, 3a32a3b1 + 3a21b

3
2 + a32b

2
2 = 0,

and (1.13) with µ(0) = 0 holds holds exactly when

n1 = m1, n2 = m2, a3 = 0, a1 = b1ζ
m1 , a2 = b2ζ

m2 for some ζ ∈ K \ {0}.

We give a short proof of Theorem 1.11 as an outcome of our methods. This result
generalizes the main result of Péter, Pintér and Schinzel [14], who proved it in the case
when K = Q and OS = Z. In so doing, they generalized several results in the literature.
Schinzel [17] further extended the main result of Péter, Pintér and Schinzel [14], by
removing the assumption on the coprimality of the degrees of the terms. This resulted in
several more exceptional cases when the Equation 1.12 has infinitely many solutions with
a bounded OS-denominator. To avoid tedious work, in our results we restrict to the case
when the degrees of the terms are coprime.

Our results rely on the main result of Bilu and Tichy [1], which in turn relies on
Siegel’s classical theorem on integral points on curves, and are consequently ineffective.

The paper is organized as follows. In Section 2 we recall the finiteness criterion from [1].
In Section 3 we recall the monodromy method. Furthermore, from the finiteness criterion
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we deduce a result about the finiteness of S-integer solutions of the equation f(x) = g(y),
where f and g have doubly transitive absolute monodromy groups. We recall results
from the literature giving sufficent conditions for the monodromy group to be doubly
transitive. In Section 4 we recall and prove several new results about decompositions of
lacunary polynomials, and in particular we prove Proposition 1.7. In Section 5 we prove
our main results using the results from Section 3 and Section 4.

2 Finiteness criterion

In this section we present the finiteness criterion of Bilu and Tichy [1].
Let K be a field of characteristic zero, a, b ∈ K \ {0}, m,n ∈ N, r ∈ N∪ {0}, p ∈ K[x]

be a nonzero polynomial (which may be constant) and Dn(x, a) be the n-th Dickson
polynomial with parameter a given by

Dn(x, a) =

bn/2c∑
j=0

n

n− j

(
n− j
j

)
(−a)jxn−2j . (2.1)

We remark that Dn(x, a) = 2anTn(x/(2
√
a)) where Tk(x) = cos(k arccosx) is the k-th

Chebyshev polynomial of the first kind. For various properties of Dickson polynomials,
see [1, Sec. 3]. Some of these properties will be recalled in Section 3.

Standard pairs of polynomials over K are listed in the following table.

kind standard pair (or switched) parameter restrictions

first (xm, axrp(x)m) r < m, gcd(r,m) = 1, r + deg p > 0
second (x2,

(
ax2 + b)p(x)2

)
-

third (Dm(x, an), Dn(x, am)) gcd(m,n) = 1

fourth (a
−m
2 Dm(x, a),−b

−n
2 Dn(x, b)) gcd(m,n) = 2

fifth
(
(ax2 − 1)3, 3x4 − 4x3

)
-

We further call the pair(
Dm

(
x, an/d

)
,−Dn

(
x cos(π/d), am/d

))
(or switched),

with d = gcd(m,n) ≥ 3 and cos(2π/d) ∈ K, a specific pair over K. One easily sees that
if b, cos(2α) ∈ K, then Dn(x cosα, b) ∈ K[x].

Theorem 2.2. Let K be a number field, S a finite set of places of K that contains all
Archimedean places, OS the ring of S-integers of K, and f, g ∈ K[x] nonconstant. Then
the following assertions are equivalent.

- The equation f(x) = g(y) has infinitely many solutions with a bounded OS-denominator;

- We have
f(x) = φ (f1 (λ(x))) & g(x) = φ (g1 (µ(x))) , (2.3)

where φ ∈ K[x], λ, µ ∈ K[x] are linear polynomials, and (f1, g1) is a standard
or specific pair over K such that the equation f1(x) = g1(y) has infinitely many
solutions with a bounded OS-denominator.

Theorem 2.2 relies on Siegel’s classical theorem on integral points on curves, and it is
consequently ineffective.
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3 POLYNOMIAL DECOMPOSITION VIA GALOIS THEORY

3 Polynomial decomposition via Galois theory

Throughout this section, K is an arbitrary field with char(K) = 0.
Recall that a polynomial f ∈ K[x] with deg f > 1 is called indecomposable (over K)

if it cannot be written as the composition f(x) = g(h(x)) with g, h ∈ K[x], deg g > 1
and deg h > 1. Otherwise, f is said to be decomposable. Any representation of f as a
functional composition of polynomials of degree > 1 is said to be a decomposition of f .

Note that for decomposable f ∈ K[x] we have that

f(x) = g(h(x)) for some g, h ∈ K[x] such that deg g ≥ 2,deg h ≥ 2, h is monic and h(0) = 0.
(3.1)

Namely, if f = g ◦ h for some g, h ∈ K[x] with deg g ≥ 2 and deg h ≥ 2, then there
exists a linear µ ∈ K[x] such that µ◦h is monic and µ(h(0)) = 0. Furthermore, there exists
µ〈−1〉 ∈ K[x] such that µ(x) ◦ µ〈−1〉(x) = µ(x)〈−1〉 ◦ µ(x) = x. (By comparison of degrees
one sees that no such polynomial exists when degµ > 1). Clearly f =

(
g ◦ µ〈−1〉

)
◦(µ ◦ h).

Proposition 3.2. Let K be a field with char(K) = 0 and f ∈ K[x]. Then f is indecom-
posable over K if and only if f is indecomposable over K.

Proposition 3.2 is due to Fried and McRae [6]. It is easy to prove it. Namely, let
f ∈ K[x] and assume that it is decomposable over K. Then write f = g ◦ h, where
g, h ∈ K[x] are such that deg ≥ 2, deg h ≥ 2, h is monic and h(0) = 0, as in (3.1).
Comparison of coefficients, starting from the highest-degree coefficient and proceeding
inductively, yields g, h ∈ K[x].

Recall the definition of the monodromy group of a polynomial from the introduction.
By Gauss’s lemma it follows that f(X)− t ∈ K(t)[X] is irreducible over K(t), so Mon(f)
is a transitive permutation group. Since char(K) = 0, f(X) − t is also separable. Let x
be a root of f(X) − t in its splitting field L over K(t). Then t = f(x) and Mon(f) =
Gal(L/K(f(x))), where Mon(f) is viewed as a permutation group on the conjugates of x
over K(f(x)).

A lot of information about a polynomial is encoded into its monodromy group. In
particular, the following is well-known.

Lemma 3.3. Let K be a field with char(K) = 0 and f ∈ K[x]. Then f is indecomposable
if and only if Mon(f) is primitive. Furthermore, (f(x) − f(y))/(x − y) ∈ K[x, y] is
irreducible over K if and only if Mon(f) is doubly transitive.

Recall that a transitive permutation group G acting on a set X is called primitive if
it preserves no nontrivial partition of X (trivial partitions are those consisting either of
one set of size #X or of #X singletons). A permutation group G acting on a set X with
#X ≥ 2 is called doubly transitive when, for any two ordered pairs of distinct elements
(x1, y1) and (x2, y2) in X2, there is g ∈ G such that y1 = gx1 and y2 = gx2. Every doubly
transitive permutation group is primitive. A symmetric group is doubly transitive if it
is of degree at least two, and an alternating group is doubly transitive if it is of degree
at least four. Find more about the Galois theoretic setup for addressing decomposition
questions, developed by Ritt [15], in [18] and [21]. The first part of the Lemma 3.3 was
observed already by Ritt, and the second by Fried [5].

Fried [5] showed that if K is a field with char(K) = 0 and f ∈ K[x] with deg f ≥ 3,
then the following assertions are equivalent.

i) (f(x)− f(y))/(x− y) is reducible over K,
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ii) either f(x) is decomposable, or f(x) = e1Dn(c1x + c0, a) + e0, where n > 3 is a
prime and ei, ci, a ∈ K, or f(x) = e1D3(c1x + c0, 0) + e0 = e1(c1x + c0)

3 + e0 and
ei, ci ∈ K, where Dn(x, a) is the Dickson polynomial of degree n with parameter a.

It can be shown that for n ≥ 2, an n-th primitive root of unity ζn ∈ K, αk = ζkn + ζ−kn

and βk = ζkn − ζ−kn we have:

Dn(x, a)−Dn(y, a) = (x− y)

(n−1)/2∏
k=1

(x2 − αkxy + y2 + β2ka) when n is odd,

Dn(x, a)−Dn(y, a) = (x− y)(x+ y)

(n−2)/2∏
k=1

(x2 − αkxy + y2 + β2ka) when n is even.

(3.4)

If a 6= 0, then each quadratic factor in (3.4) is irreducible over K[x, y], while if a = 0,
it is clearly reducible. Thus, (D3(x, a) − D3(y, a))/(x − y) is reducible over K[x, y] if
and only if a = 0. Note that if f is decomposable, then (f(x) − f(y))/(x − y) is clearly
reducible over K. If f is of composite degree and f(x) = e1Dn(c1x + c0, a) + e0 with
ei, ci, a ∈ K, i.e. f is linearly related to a Dickson polynomial, then f is decomposable
since Dmn(x, a) = Dm(Dn(x, a), an) for m,n ∈ N. These facts can be verified directly. For
details, see Turnwald’s paper [18]. So, if f is indecomposable, to eliminate the possibility
that f with deg f ≥ 4 is linearly related to a Dickson polynomial, it is necessary and
sufficient to assume that the absolute monodromy group of f is doubly transitive. Of
relevance to us is the following corollary.

Corollary 3.5. Let K be a field with char(K) = 0 and let f ∈ K[x] be such that the
absolute monodromy group of f is doubly transitive. If deg f ≥ 4, then there do not exist
ei, ci, a ∈ K such that e1c1a 6= 0 and f(x) = e1Dn(c1x + c0, a) + e0. Furthermore, if
deg f ≥ 3, there do not exist ei, ci ∈ K such that e1c1 6= 0 and f(x) = e1(c1x+ c0)

k + e0.

Proof. The statements follow from Lemma 3.3 and Equation 3.4.

From Theorem 2.2 and Corollary 3.5 we deduce the following.

Proposition 3.6. Let K be a number field, S a finite set of places of K that contains
all Archimedean places and OS the ring of S-integers of K. If f, g ∈ K[x] are such that
deg f ≥ 3, deg g ≥ 3 and the absolute monodromy groups of f and g are doubly transitive,
the equation f(x) = g(y) has infinitely many solutions with a bounded OS-denominator if
and only if f(x) = g(µ(x)) for some linear µ ∈ K[x].

Proof. If the equation f(x) = g(y) has infinitely many solutions with a bounded OS-
denominator, then by Theorem 2.2 we have that

f(x) = φ(f1(λ(x))), g(x) = φ(g1(µ(x))), (3.7)

for some φ, f1, g1, λ, µ ∈ K[x] such that (f1, g1) is a standard pair over K and deg λ =
degµ = 1.

Assume that the absolute monodromy groups of f and g are doubly transitive. It
follows, in particular, that f and g are indecomposable.

Assume that deg φ > 1. Then from (3.7) it follows that deg f1 = 1 and deg g1 = 1,
and f(x) = g(µ(x)) for some linear µ ∈ K[x]. If this holds, then the equation f(x) =
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g(y) clearly has infinitely many solutions with a bounded OS-denominator, e.g. set x =
µ(t), y = t, where t ∈ OS .

If deg φ = 1, then from (3.7) it follows that

f(x) = e1f1(c1x+ c0) + e0, g(x) = e1g1(d1x+ d0) + e0, (3.8)

for some c1, c0, d1, d0, e1, e0 ∈ K such that c1d1e1 6= 0. Let deg f = deg f1 =: k and
deg g = deg g1 =: l. By assumption k, l ≥ 3.

Note that (f1, g1) is not a standard pair of the second kind since k, l > 2.
Furthermore, (f1, g1) is not a standard pair of the fifth kind, since otherwise either

f1(x) = (ax2 − 1)3 or g1(x) = (ax2 − 1)3, so by (3.8) either f or g are decomposable, a
contradiction with the assumption.

Also, (f1, g1) is not a standard pair of the first kind, since by Corollary 3.5 and (3.8)
neither f1(x) = xk nor g1(x) = xl is possible (since k, l ≥ 3).

It also follows that (f1, g1) is not a standard pair of the third or of the fourth kind.
Namely, otherwise gcd(k, l) ≤ 2, and since k, l ≥ 3, it follows that either k ≥ 4 or l ≥ 4,
which together with (3.8) contradicts Corollary 3.5.

In the same way, Corollary 3.5 implies that if (f1, g1) is a specific pair, then (k, l) =
(3, 3). In this case, gcd(k, l) = 3, so f1(x) = D3(x, a) = x3−3xa and g1(x) = −D3(1/2x, a) =
−1/8x3 + 3/2xa, so g1(−2x) = f1(x). Then from (3.8) it follows that g(µ(x)) = f(x) for
some linear µ ∈ K[x].

We can prove a version of Proposition 3.6 in the case when only of the polynomials f
and g has a doubly transitive absolute monodromy group, but the proof would be more
technical, and there would be several exceptional cases when the equation f(x) = g(y)
has infinitely many solutions in S-integers x, y. Our proof of Theorem 1.4 illustrates how
to handle this case.

The following result, exhibiting sufficient conditions for a polynomial to have sym-
metric, and thus doubly transitive monodromy group, was shown by Turnwald [18]. For
a polynomial f , the roots of the derivative f ′ are called critical points, and the values
of f at critical points are called critical values. If for critical points βi’s of f , one has
f(βi) 6= f(βj) when βi 6= βj , then f is said to have all distinct critical values.

Proposition 3.9. Let K be a field with char(K) = 0. If f ∈ K[x] has at least one simple
critical point and all distinct critical values, then Mon(f) is a symmetric permutation
group.

One may find a proof and an extension of Proposition 3.9 in [12].

4 Lacunary polynomials

Throughout this section, K is a field with char(K) = 0. By f (k) we denote the k-th
derivative of f .

Lemma 4.1 (Hajós’s lemma). Let K be a field with char(K) = 0. If f ∈ K[x] with
deg f ≥ 1 has a root β 6= 0 of mutiplicity m, then f has at least m+ 1 terms.

A proof of Lemma 4.1 can be found in e.g. [16, p. 187]. This is the main idea: Assume
that f has ` ≤ m nonzero terms. Since the first m derivatives of f (i.e. f (0), . . . , f (m−1))
vanish at β, we get a system of ` equations with ` unknowns (coefficients of f), for which
one easily finds that its determinant is nonzero (as it reduces to Vandermonde type of
determinant), so the system has a unique solution (trivial one), but the coefficients of f
are nonzero, a contradiction.

8



4 LACUNARY POLYNOMIALS

Lemma 4.2. Let K be a field with char(K) = 0, Assume that

a1x
n1 + · · ·+ a`x

n` + a`+1 = (b1x
m1 + · · ·+ bkx

mk + bk+1) ◦ µ(x),

where `, k ≥ 1, ni,mj ∈ N, ai, bj ∈ K, µ ∈ K[x] and

i) ni > nj when i > j and mi > mj when i > j

ii) a1a2 · · · a`b1b2 · · · bk 6= 0

iii) degµ = 1, µ(0) 6= 0.

Then for i = 2, 3, . . . , `+ 1, the ni-th derivative of b1x
m1 + · · ·+ bkx

mk + bk+1 has at
least ni−1 − ni terms and the (ni + 1)-st derivative of b1x

m1 + · · · + bkx
mk + bk+1 has a

nonzero root of multiplicity ni−1 − ni − 1. Finally, if ni ≥ mi for i = 1, 2, . . . , k, then

n1 = m1 ≤ k(k + 1)/2.

Proof. Let f(x) = a1x
n1 + · · ·+ a`x

n` + a`+1 and g(x) = b1x
m1 + · · ·+ bkx

mk + bk+1. Let
n`+1 := 0 and mk+1 := 0. Let further µ(x) = αx+β. By assumption f(x) = g(µ(x)) and
α, β 6= 0.

Note that f (ni)(x)−f (ni)(0) = xni−1−nihi(x) for some hi ∈ K[x] for all i = 2, . . . , `, `+
1. Since f (ni)(x) = αnig(ni)(αx+ β), the last expression can be rewritten as

αnig(ni)(x)− f (ni)(0) = (x− β)ni−1−ni ĥi(x)

for some ĥi ∈ K[x]. So, β 6= 0 is a root of multiplicity ni−1 − ni of αnig(ni)(x)− f (ni)(0).
Thus, β 6= 0 is a root of multiplicity ni−1 − ni − 1 of g(ni+1)(x) for all i = 2, . . . , `, `+ 1.

By Lemma 4.1 it follows that αnig(ni)(x)− f (ni)(0) has at least ni−1 − ni + 1 terms,
so g(ni)(x) has at least ni−1 − ni terms.

If ni ≥ mi for i = 1, 2, . . . , k, then αnig(ni)(x)− f (ni)(0) has at most i terms. Then by
Lemma 4.1 it follows that ni−1−ni + 1 ≤ i for all i = 2, . . . , k+ 1. By taking sum, we get

n1 =
k+1∑
i=2

(ni−1 − ni) ≤ 1 + 2 + · · ·+ k =

(
k + 1

2

)
.

We remark that by Lemma 4.2, using the same notation, it follows that n1 = m1 ≤
`(k + 1). Namely, n1 = (n1 − n2) + (n2 − n3) · · ·+ (n` − n`+1), and if n1 ≥ `(k + 1) + 1,
then there exists i ∈ {2, . . . , `+ 1} such that ni−1 − ni ≥ k + 2. However, g(ni)(x) clearly
has at most k + 1 terms for any i ∈ {2, . . . , `+ 1}, a contradiction.

Lemma 4.2 is based on Zannier’s Lemma 2 in [19]. Zannier studied the case when
f = g. We remark that there is a small technical mistake in his proof, but that this
mistake has no impact on the main results of the paper. By our Lemma 4.2 it follows
that, in particular, if f ∈ K[x] has ` ≥ 1 nonconstant terms and f = f ◦µ for some linear
µ ∈ K[x] with µ(0) 6= 0, then deg f ≤

(
`+1
2

)
, while Zannier concluded that deg f ≤

(
`
2

)
.

In fact, much more holds, as the following lemma shows.

Lemma 4.3. Let K be a field with char(K) = 0 and let f ∈ K[x] have ` ≥ 1 nonconstant
terms and g ∈ K[x] have k ≥ 1 nonconstant terms. Assume that f(x) = g(µ(x)) for some
linear µ ∈ K[x] such that µ(0) 6= 0. Then deg f = deg g ≤ k + `. In particular, if f = g,
then deg f ≤ 2`.

9



4 LACUNARY POLYNOMIALS

Lemma 4.3 is shown by Gawron [10]. His proof is based on a classical result of Gessel
and Viennot about matrices with binomial coefficients. Gawron studied the Equation 1.2
when k = 3 and ` ≥ 4, and when k = ` = 3.

The following result is due to Zannier [19].

Theorem 4.4. Let K be a field with char(K) = 0 and let f ∈ K[x] have ` ≥ 1 nonconstant
terms. Assume that f = g ◦ h, where g, h ∈ K[x] and where h is not of type axk + b for
a, b ∈ K. If ` ≥ 2, then deg g < 2`(`− 1). If ` = 1, then deg g = 1.

The main ingredients of Zannier’s proof of Theorem 4.4 are Lemma 4.1 and the fol-
lowing result of Brownawell and Masser [2], which can be seen as a version of Schmidt’s
subspace theorem for function fields.

Theorem 4.5. Let K/k(x, y) be a function field of one variable of genus g, and let
z1, . . . , zs ∈ K be not all constant and such that 1 + z1 + · · ·+ zs = 0. Suppose also that
no proper subsum of the left side vanishes. Then

max(deg(zi)) ≤
(
s

2

)
(#S + 2g − 2) ,

where S is a set of points of K containing all zeros and poles of the zi’s.

We will use this result later to prove Proposition 1.7.
Let f ∈ K[x] with ` ≥ 1 nonconstant terms be decomposable. Write f(x) = g(h(x))

with g, h ∈ K[x], deg ≥ 2, deg h ≥ 2, h monic and h(0) = 0, as in (3.1). Theorem 4.4
implies that if ` = 1, then h(x) = xk, and if ` ≥ 2, then either deg g < 2`(` − 1) or
h(x) = xk. Note that

a1x
n1 + a2x

n2 + · · ·+ a`x
n` + a`+1 = f(x) = g(x) ◦ xk,

with distinct ni’s and a1 · · · a` 6= 0, exactly when k | ni for all i = 1, 2, . . . , `.
If ` = 2 in Theorem 4.4, then if f = g◦h, where g, h ∈ K[x] and where h is not of type

axk + b, then deg g ≤ 3. Fried and Schinzel [7] have shown that in this case deg g = 1.
In particular, if gcd(n1, n2) = 1, then a1x

n1 + a2x
n2 + a3 ∈ K[x] is indecomposable.

Moreover, the following holds.

Corollary 4.6. Let K be a field with char(K) = 0 and f(x) = a1x
n1 +a2x

n2 +a3 ∈ K[x],
with a1a2 6= 0, n1 > n2 ≥ 1, gcd(n1, n2) = 1. Then Mon(f) is symmetric.

Proof. Note that f ′(x) = xn2−1 (a1n1x
n1−n2 + a2n2), so f ′ has at least one simple root.

Note that xf ′(x) = n1(f(x) − a3) + a2(n1 − n2)xn2 . If f(α) = f(β) for distinct critical
points α and β of f , then αn2 = βn2 , and then from f ′(α) = f ′(β) = 0 it follows that
αn1 = βn1 . Since gcd(n1, n2) = 1, we have α = β. The statement then follows from
Proposition 3.9.

We now prove Proposition 1.7.

Proof of Proposition 1.7. Assume first that deg h ≥ 2. Let z = h(x). Then

a1x
n1 + · · ·+ a`x

n` + a`+1 = b1z
m1 + b2z

m2 . (4.7)

We will make use of Theorem 4.5. Assume that there exists a proper vanishing subsum
of (4.7). Choose a vanishing subsum which involves a1x

n1 and has no proper vanishing
subsum, and further write this vanishing sum as p(x) = q(z). Clearly, deg p = n1, the

10



4 LACUNARY POLYNOMIALS

number of terms of p is ≤ `, and by comparison of the degrees we have q(z) = b1z
m1 .

Thus, p(x) = b1x
m1 ◦ h(x). By Lemma 4.1, it follows that either h has no nonzero root,

i.e. h(x) = cxk for some k ∈ N and c ∈ K \ {0}, or m1 ≤ `− 1. In the latter case, we get
what we sought and more. In the former case, since gcd(n1, . . . , n`) = 1, it must be that
k = 1, which contradicts the assumption deg h ≥ 2.

Assume henceforth that there exists no proper vanishing subsum of (4.7). Note that
x, z ∈ K(x). From (4.7) it follows that

a1x
n1

a`xn`
+ · · ·+ 1 +

a`+1

a`xn`
− b1h(x)m1

a`xn`
− b2h(x)m2

a`xn`
= 0.

Note that the total number of zeros and poles of the terms in the above vanishing sum is
at most deg h+ 1. By Theorem 4.5, it follows that

n1 − n` ≤
(
`+ 2

2

)
(deg h+ 1 + 2 · 0− 2) =

(
`+ 2

2

)
(deg h− 1).

Write b1x
m1 + b2x

m2 − a`+1 = b1
∏r

i=1(x − βi)ei , with distinct βi’s and positive integers
ei. Then

a1x
n1 + · · ·+ a`x

n` = b1

r∏
i=1

(h(x)− βi)ei . (4.8)

Since the factors in the product are coprime, it follows that xn` divides (h(x)− βi)ei
for some i, say i0. Since by assumption h(x) − βi0 has at least one nonzero root (since
deg h ≥ 2 and gcd(n1, . . . , n`) = 1), it follows that n` ≤ (deg h− 1) · ei0 .

By Lemma 4.1, from b1x
m1 + b2x

m2 − a`+1 = b1
∏r

i=1(x − βi)ei we have that ei ≤ 2
for all i if a`+1 6= 0. If a`+1 = 0, then βi0 = 0, ei0 = m2 and ei = 1 for all i except
for i0. However, since h(x) − βi0 must have a nonzero root (again, since deg h ≥ 2 and
gcd(n1, . . . , n`) = 1), it follows from (4.8) that ei0 ≤ `− 1. Thus, n` ≤ (`− 1)(deg h− 1).

Therefore,

n1 ≤
(
`+ 2

2

)
(deg h− 1) + n` ≤

(
`+ 2

2

)
(deg h− 1) + (`− 1)(deg h− 1)

= (deg h− 1)

((
`+ 2

2

)
+ `− 1

)
,

so in particular (1.9) holds. Clearly, if a`+1 6= 0, then by what we showed above, the
summand `− 1 in the sum above can be replaced by 2, so (1.10) holds.

Let now deg h = 1. Clearly, if h(0) = 0, then ` = 2, a contradiction with the
assumption. Thus, h(0) 6= 0. Then the polynomial on the right hand side of (1.8) has a
nonzero root of multiplicity m2, and the one on the left hand side has no nonzero root
of multiplicity greater than ` by Lemma 4.1. Thus, m2 ≤ `. Assume that n1 = m1 ≥(
`+2
2

)
+ `− 1, so

m1 −m2 ≥
(
`+ 2

2

)
− 1 ≥ `+ 2

since ` ≥ 3. Note that the coefficients of the polynomial on the right hand side in (1.8)
next to xm1 , xm1−1, . . . , xm2+1 are all nonzero, since deg b2h(x)m2 = m2, and h(0) 6= 0.
However, since m1 −m2 ≥ ` + 2, this contradicts the assumption that on the left hand
side in (1.8) we have at most `+ 1 nonzero terms.
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5 DIOPHANTINE EQUATIONS AND LACUNARY POLYNOMIALS

In relation to Proposition 1.7, we remark that proving a version of this proposition with
the polynomial b1x

m1 + b2x
m2 replaced by a lacunary polynomial with k ≥ 3 nonconstant

terms, would require a different approach, as it would be harder to analyse when there
exists a proper zero subsum of an analogue of (4.7).

Remark 4.9. Let K be a field and f(x) ∈ K[x]. By Aut(f) we denote the group of
linear polynomials µ(x) ∈ K[x] for which f ◦µ = f , and call this group the automorphism
group of f . The elements of Aut(f) play a prominent role in the study of the image set
f(K), where K is a finite field. This classical topic has a rich tradition. In [13], jointly
with Zieve I studied various properties of the automorphism group of a cover of curves
over an arbitrary field. In the sequel, in relation to the above results, I will briefly state
some corollaries in the case when f is a lacunary polynomial with coefficients in a field
K with char(K) = 0 . We will rely on the results from [21] and [13]. The results in these
papers are obtained using the monodromy method.

Let K be an algebraically field with char(K) = 0 and let f(x) = a1x
n1 + · · ·+ a`x

n` +
a`+1 ∈ K[x] where ` ≥ 1 and a1 · · · a` 6= 0. (The assumption that K is algebraically
closed will not reflect on the results). Let further d = gcd(n1, . . . , n`). Clearly, f(x) =
(a1x

n1/d + · · ·+ a`x
n`/d + a`+1) ◦xd, and f(x) = f(µ(x)) for any µ(x) = ζx where ζd = 1.

Thus, |Aut(f)| ≥ d.
By [13, Lem. 6.3], we may write f(x) = g(h(x)) where K(x)/K(h(x)) is Galois with

Galois group Aut(f). Since char(K) = 0 and K(x)/K(h(x)) is Galois, it follows by [13,
Lem. 2.8, Lem. 3.1] that Mon(h) is cyclic. This corresponds to saying that h is cyclic, that
is h(x) = `1(x) ◦xk ◦ `2(x) for some linear `1, `2 ∈ K[x] and k ∈ N, and |Mon(h)| = deg h,
by [21, Lem. 3.6]. Then |Aut(f)| = |Mon(h)| = deg h by [13, Lem. 3.4].

Assume that `2(0) = 0. Then h(x) = axk + b for some a ∈ K \ {0} and b ∈ K, and
thus k | d, so |Aut(f)| = k ≤ d. Since also |Aut(f)| ≥ d, it follows that |Aut(f)| = d. So,
in this case there does not exist a linear µ ∈ K[x] with µ(0) 6= 0, such that f ◦ µ = f .

Assume henceforth `2(0) 6= 0. Since f(x) = g(x) ◦ `1(x) ◦ xk ◦ `2(x), it follows that
f(x)− g(`1(0)) has a nonzero root of multiplicity k. By Lemma 4.1 it follows that k ≤ `.
Thus, |Aut(f)| ≤ `. If ` ≤ d, then in the same way as above we conclude that there does
not exist a linear µ ∈ K[x] with µ(0) 6= 0, such that f ◦ µ = f .

If f is indecomposable (and recall that by Lemma 3.2, f is indecomposable over K if
and only if f is indecomposable over K), then in particular d = 1. Furthermore, by [13,
Cor. 6.6] we have that either Aut(f) is trivial or f is cyclic and |Aut(f)| = deg f . So, if
f is indecomposable and |Aut(f)| > 1, then deg f = |Aut(f)| ≤ ` by the same argument
as above.

5 Diophantine equations and lacunary polynomials

We now give a short proof of Theorem 1.11.

Proof of Theorem 1.11. The main statement follows from Proposition 3.6 and Corol-
lary 4.6. Assume that (1.13) holds. Then the equation clearly has infinitely many
solutions x, y ∈ K with a bounded OS-denominator. Further assume without loss of
generality that n2 ≤ m2. By Lemma 4.2 it follows that if µ(0) 6= 0, then n1 = m1 ≤ 3.
Thus, n1 = m1 = 3. By comparing coefficients one easily works out that only the listed
cases are possible. If µ(0) = 0, then the last statement clearly holds.

We now prove Theorem 1.4.
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5 DIOPHANTINE EQUATIONS AND LACUNARY POLYNOMIALS

Proof of Theorem 1.4. If the equation has infinitely many solutions with a bounded OS-
denominator, then

a1x
n1 + · · ·+ a`x

n` + a`+1 = φ(f1(λ(x))), (5.1)

b1x
m1 + b2x

m2 = φ(g1(µ(x))), (5.2)

for some f1, g1, φ, λ, µ ∈ K[x] such that (f1, g1) is a standard pair over K and deg λ =
degµ = 1.

Assume that deg φ > 1. Since gcd(m1,m2) = 1, by Corollary 4.6 it follows that
b1x

m1 +b2x
m2 is indecomposable. Thus, deg g1 = 1 and hence φ(x) = b1σ(x)m1 +b2σ(x)m2

for some linear σ ∈ K[x]. Then

a1x
n1 + · · ·+ a`x

n` + a`+1 = (b1x
m1 + b2x

m2) ◦ σ(f1(λ(x))).

By Proposition 1.7 it follows that m1 <
(
`+2
2

)
+ `− 1, which contradicts the assumption.

Thus deg φ = 1. Then

a1x
n1 + · · ·+ a`x

n` + a`+1 = e1f1(c1x+ c0) + e0, (5.3)

b1x
m1 + b2x

m2 = e1g1(d1x+ d0) + e0, (5.4)

for some c1, c0, d1, d0, e1, e0 ∈ K such that c1d1e1 6= 0. In particular, deg f1 = n1 and
deg g1 = m1. By assumption, m1 ≥ 12 and n1 ≥ 3. Note that by Corollary 4.6 and (5.4),
the absolute monodromy group of g1 is doubly transitive.

Now, (f1, g1) is not a standard pair of the second kind since n1 > 2 and m1 > 2.
Furthermore, (f1, g1) is not a standard pair of the fifth kind since m1 > 6.
Also, (f1, g1) cannot be a standard pair of the third or of the fourth kind, nor a specific

pair. Namely, recall that the absolute monodromy group of g1 is doubly transitive, so the
statement follows by Corollary 3.5, since m1 ≥ 12.

If (f1, g1) is a standard pair of the first kind, then either g1(x) = xm1 or f1(x) =
xn1 . Since the absolute monodromy group of g1 is doubly transitive and m1 ≥ 12, by
Corollary 3.5 it follows that it must be that f1(x) = xn1 . Hence,

a1x
n1 + · · ·+ a`x

n` + a`+1 − e0 = e1(c1x+ c0)
n1 ,

so c0 6= 0 and n1 = `. Then g1(x) = c′xrp(x)n1 for some c′ ∈ K\{0}, r < n1, gcd(r, n1) = 1
and r + deg p > 0. Since the absolute monodromy group of g1 is doubly transitive and
m1 ≥ 12, by Corollary 3.5 it follows that deg p > 0. Then

b1x
m1 + b2x

m2 − e0 = e1g1(d1x+ d0) = e1c
′(d1x+ d0)

rp(d1x+ d0)
n1 .

Since n1 ≥ 3, by Lemma 4.1 it follows that p(d1x+ d0) has no nonzero root. Then, since
n1 ≥ 3 and deg p > 0, it follows that e0 = 0 and that (d1x+ d0)

r has exactly two terms,
so r = 1 and d0 6= 0. Thus, (1.6) holds.

When (1.6) holds, there are infinitely many solutions x, y with a boundedOS-denominator
of the equation, since the equation xn1 = cyµ(y)m1−1 with linear µ ∈ K[x] has infinitely
many solutions x, y with a bounded OS-denominator. Namely, if q, s ∈ N are such that
qn1 = s+1, then an infinite family of solutions is given by x = cquµ(csun1)m1−1, y = csun1 ,
for u ∈ OS .

To the proof of Theorem 1.1 we need one more lemma.
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Lemma 5.5. Let K be a number field. Assume that

a1x
n1 + · · ·+ a`x

n` + a`+1 = (e1Dn1(c1x+ c0, α) + e0) ◦ µ(x),

where ` ≥ 2, ni ∈ N, ai, ei, ci, α ∈ K, µ ∈ K[x] and

i) ni > nj if i > j,

ii) a1a2 · · · a` 6= 0, e1c1α 6= 0,

iii) degµ = 1 and µ(0) 6= 0.

Then ni−1 − ni ≤ 2 for all i = 2, 3, . . . , `+ 1, and thus n1 ≤ 2`.

Proof. By Lemma 4.2, for i = 2, . . . , `+1, the (ni+1)-st derivative of e1Dn1(c1x+c0, α)+e0
has a nonzero root of multiplicity ni−1 − ni − 1. Thus, the (ni + 1)-st derivative of
Dn1(c1x+ c0, α) has a nonzero root of multiplicity ni−1 − ni − 1.

We now show that D
(k)
n1 (x, α) has only simple roots for all k = 0, 1, . . . , n1− 1, so that

D
(k)
n1 (c1x+c0, α) has only simple roots for all k = 0, 1, . . . , n1−1. Recall that Dn1(x, α) =

2αn1/2Tn1(x/(2
√
α)) where Tk(x) = cos(k arccosx) is the k-th Chebyshev polynomial

of the first kind. The roots of Tk(x) = cos(k arccosx) are xj := cos(π(2j − 1)/(2k)),

j = 1, 2, . . . , k. These are all simple and real, so the roots of T
(k)
n1 (x) are simple and real

for all k = 0, 1, . . . , n1 − 1, by Rolle’s theorem. Since

D(k)
n1

(x, α) =
2αn1/2

(2
√
α)k

T (k)
n1

(x/(2
√
α)),

it follows that D
(k)
n1 (x, α) has only simple roots for all k = 0, 1, . . . , n1 − 1. Note that the

multiplicity of a nonzero root of D
(n1)
n1 (x, α) is 0. Therefore, ni−1 − ni − 1 ≤ 1 for all

i = 2, . . . , `+ 1, and

n1 = (n1 − n2) + (n2 − n3) + · · ·+ (n` − n`+1) ≤ 2`.

The last statement of Lemma 5.5 is shown in [10], for the case K = Q, by using
Lemma 4.3.

Proof of Theorem 1.1. If the equation has infinitely many solutions with a bounded OS-
denominator, then

a1x
n1 + · · ·+ a`x

n` + a`+1 = φ(f1(λ(x))), (5.6)

b1x
m1 + · · ·+ bkx

mk = φ(g1(µ(x))), (5.7)

for some f1, g1, φ, λ, µ ∈ K[x] such that (f1, g1) is a standard pair over K and deg λ =
degµ = 1.

Assume that deg φ > 1. Since b1x
m1 + · · · + bkx

mk is indecomposable it follows that
deg g1 = 1, so that φ(x) = b1σ(x)m1 + · · ·+ bkσ(x)mk for some linear σ ∈ K[x]. Then

a1x
n1 + · · ·+ a`x

n` + a`+1 = (b1x
m1 + · · ·+ bkx

mk) ◦ σ(f1(λ(x))).

From Theorem 4.4 it follows that either σ(f1(λ(x))) = ζxk + ν for some ζ, ν ∈ K, or
m1 < 2`(`− 1). The latter can not be by assumption. Note that if the former holds, then
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k | ni for all i = 1, 2, . . . , `. This contradicts the assumption on coprimality of ni’s, unless
k = 1. If k = 1, then (1.3) holds, and the equation clearly has infinitely many solutions
x, y ∈ K with a bounded OS-denominator

Assume henceforth deg φ = 1. Then

a1x
n1 + · · ·+ a`x

n` + a`+1 = e1f1(c1x+ c0) + e0, (5.8)

b1x
m1 + · · ·+ bkx

mk = e1g1(d1x+ d0) + e0, (5.9)

for some c1, c0, d1, d0, e1, e0 ∈ K such that c1d1e1 6= 0. In particular, deg f1 = n1 and
deg g1 = m1. By assumption m1 ≥ 12 and n1 ≥ 3.

Note that (f1, g1) is not a standard pair of the second kind, since n1 > 2 and m1 > 2.
Similarly, (f1, g1) is not a standard pair of the fifth kind since m1 > 6.

Also, (f1, g1) is not a standard pair of the third or of the fourth kind, nor a specific
pair. Namely, otherwise, by (5.8) and (5.9), and Lemma 5.5, it follows that n1 ≤ 2` and
m1 ≤ 2k, a contradiction with the assumption.

Finally, if (f1, g1) is a standard pair of the first kind, then either f1(x) = xn1 or
g1(x) = xm1 . Assume first that the former holds. Then

a1x
n1 + · · ·+ a`x

n` + a`+1 − e0 = e1(c1x+ c0)
n1 ,

b1x
m1 + · · ·+ bkx

mk − e0 = e1c
′(d1x+ d0)

rp(d1x+ d0)
n1 ,

(5.10)

where p ∈ K[x], r < n1, gcd(r, n1) = 1, r + deg p > 0 and c′ 6= 0. Clearly, n1 = ` and
c0 6= 0. By Lemma 4.1 it follows that either p(d1x+ d0) has no nonzero root, or n1 ≤ k.
If n1 > k, then we have

b1x
m1 + · · ·+ bkx

mk − e0 = e1c(d1x+ d0)
rxm1−r,

for some c 6= 0. Then r + 1 = k.
Assume now that g1(x) = xm1 . Then

a1x
n1 + · · ·+ a`x

n` + a`+1 − e0 = e1c
′(c1x+ c0)

rp(c1x+ c0)
m1 ,

b1x
m1 + · · ·+ bkx

mk − e0 = e1(d1x+ d0)
m1 ,

(5.11)

where p ∈ K[x], r < m1, gcd(r,m1) = 1, r + deg p > 0 and c′ 6= 0. Clearly, m1 = k and
d0 6= 0. By Lemma 4.1 it follows that either p(c1x+ c0) has no nonzero root, or m1 ≤ `.
The latter cannot be by assumption, so

a1x
n1 + · · ·+ a`x

n` + a`+1 − e0 = e1c(c1x+ c0)
rxn1−r,

for some c 6= 0. Then r + 1 = `.
Since n1 6= ` and m1 6= k by assumption, we have that (f1, g1) is not a standard pair

of the first kind. This completes the proof.

We now discuss how the assumptions of Theorem 1.1 can be relaxed.
Instead of requiring that either m1 ≥ 2k + 1 or n1 ≥ 2` + 1, we could have required

that either there exists i ∈ {2, 3, . . . , ` + 1} such that ni−1 − ni > 2 or that there exists
i ∈ {2, 3, . . . , k + 1} such that mi−1 − mi > 2. This follows by Lemma 5.5, since we
used this assumption only to eliminiate the cases when deg φ = 1 and (f1, g1) is a either
standard pair of the third or fourth kind, or a specific pair.

Instead of requiring that n1 6= ` and m1 6= k, we can list the cases that occur when
n1 = ` or m1 = k, as was done in the last paragraphs of the proof of Theorem 1.1, and in
Theorem 1.4.
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If we assume that m1 is a composite number, because of the assumption iii), we can
immediately eliminate the case when deg φ = 1 and (f1, g1) is either a standard pair
of the third or fourth kind, or a specific pair, since a Dickson polynomial of composite
degree is decomposable. For details, see the paragraph below the Equation 3.4. Thus we
do not need to assume that either m1 ≥ 2k + 1 or n1 ≥ 2` + 1. In the same way, we
do not need to assume that m1 6= k, since this assumption serves to eliminate the case
b1y

m1 + · · ·+ bky
mk − e0 = e1(d1x+d0)

m1 . (This cannot be since on the left hand side we
have an indecomposable polynomial, and on the right a decomposable polynomial, since
m1 is by assumption composite). Thus, if we assume that m1 is composite and relax the
assumption iv) to requiring that m1 ≥ 2`(` − 1), we have that the equation (1.2) has
infinitely many solutions x, y ∈ K with a bounded OS-denominator if and only if either
(1.3) or (5.10) holds.

Appendix

In [3, 4], it is shown that b1x
m1 + b2x

m2 + · · ·+ bkx
mk with mi ∈ N and bi ∈ Z \ {0} is

indecomposable when either m2 = m1−1 and gcd(m1, b2) = 1, or f is an odd polynomial,
m2 = m1 − 2 and gcd(m1, b2) = 1. We now extend these results to the case when bi’s are
in a unique factorization domain of characteristic zero. This is of interest in relation to
Theorem 1.1.

Let R be an integral domain and L be its quotient field. Assume that char(L) = 0.
Let K be any extension of L.

For a nonconstant f ∈ R[x], write f(x) = g(h(x)) with g, h ∈ K[x], deg g ≥ 2,
deg h ≥ 2, h monic and h(0) = 0, as in (3.1), Turnwald [18] showed that the coefficients of
g and h belong to an integral closure of R in L by the following argument. The coefficients
of g and h belong to L by the same argument as in the proof of Proposition 3.2 (see the
text below it). Furthermore, if α is a root of g, then the monic polynomial h(x) − α
divides f(x) = g(h(x)). So, the coefficients of h(x)− α are integral over R. Since α was
an arbitrary root, the same holds for g. Thus, the coefficients of g and h belong to an
integral closure of R in L. If R is a unique factorization domain, then R is integrally
closed in L, so the coefficients of g and h belong to R, and the following holds.

Corollary 5.12. Let R be a unique factorization domain and K any field extension of the
quotient field of R. Assume that char(K) = 0. Let f ∈ R[x] be such that f(x) = g(h(x))
with g, h ∈ K[x], deg g ≥ 2, deg h ≥ 2, h monic and h(0) = 0. Then g, h ∈ R[x].

In particular, if K is a number field of class number 1, R is the ring of algebraic integers
of K and f ∈ R[x] is such that f(x) = g(h(x)), where g, h ∈ K[x], deg g ≥ 2,deg h ≥ 2,
h monic and h(0) = 0, then g, h ∈ R[x].

Turnwald [18] further showed that if number field K is of class number greater than 1
and R is the ring of algebraic integers of K, then for every prime q there exists f ∈ R[x]
of degree q2 which is decomposable over K, but can not be represented as a composition
of polynomials in R[x].

We now prove the sought result. In the sequel, for a unique factorization domain R,
t ∈ Z and a ∈ R, we say that t divides a in R, and write t | a in R, when there exists
a′ ∈ R such that a = ta′.

Proposition 5.13. Let R be a unique factorization domain and K any field extension of
the quotient field of R. Assume that char(K) = 0. Let f(x) = a1x

n1 + · · ·+a`x
n` +a`+1 ∈

R[x], where ni’s are distinct positive integers with ni > nj for i > j, and a1a2 · · · a` 6= 0.
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Assume that f(x) = g(h(x)), where g, h ∈ K[x], deg g ≥ 2 and deg h ≥ 2. Then either
h(x) = ζxm + ν for some ζ, ν ∈ K and m | ni for all i = 1, 2, . . . , `, or deg g | a2 in R.

In particular, if gcd(n1, . . . , n`) = 1 and there does not exist integer t ≥ 2 such that
t | n1 and t | a2 in R, then f is indecomposable over K.

Proof. Let f(x) = g(h(x)) with g, h ∈ K[x], deg g ≥ 2, deg h ≥ 2, h monic and h(0) = 0,
as in (3.1). By Corollary 5.12 it follows that g, h ∈ R[x]. Let deg h = m and deg g = t.
Let further h(x) = b1x

m1 + b2x
m2 + · · · + bkx

mk with mi ∈ N and bi ∈ R \ {0}. By
assumption, b1 = 1 and m1 = m. If h(x) = xm, then clearly m | ni for all i = 1, 2, . . . , `.
Assume that h is not a monomial, so that k ≥ 2. Then by f(x) = g(h(x)), it follows that
f(x) = a1h(x)t+p(x), where p ∈ R[x], deg p ≤ (t−1)m1. Then a2 = a1tb2 by comparison
of coefficients on both sides next to xn2 . Thus t | a2 in R. Clearly, t | n1 as well.
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