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Recently, several papers [I-4,6,lZj ijave addressed the problem of encoding 

digital data from a free source into a constrained set of available sequences. 
many transmission or storage devices, physical limitations place some constraints 
on the sequences of symbols that can be transmitted or stored and it may cessary 
to code the information sequence to make it acceptable to the system, e main 
problems concern the existence and the construction of such codes. 

In [ 1,2,12], by recovering some ideas and methods of [9-l I], codi 
posed which use the formalism of symbolic dynamics. 
d in this paper is very close to those of [3,4,6] which make use of 
esults of automata theory. 
phabet associated with the storage or transmission d 

of constraints is described by the set T of available words over 
codes X such that the set * of coded messages is contained in 

codes, such as maximality and completeness, are introduced with 
respect tn T and their relationships are investigated. These extremal co 
a role in the optimization of the encoding process. We then approach 
of existence and construction, for a given T, of finite codes verif-ing such extremal 
properties and other desiderable conditions, such as to be refix or to be circular. 
The existen :e of such codes strongly depends on the combinatorial structure of T. 

In this po-iper we consider local constraints, i.e. con ints such that the set T 
available words is defined by specifying a finite set of forbidden words whi 
do not occur anywhere as factors in the words of T. Local constraints occur in many 
engineering applications. oreover, this paper shows their t 

The paper is organized as 
languages, automata and codes w 

codes satisfying sue 
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56 A. Rcwivo 

the notion of T-indecompocable set. Let us remark that our constructions provide 
an alternative approach to the coding methods of [1,2,12]. 

we briefly introduce the basic definitions concerning languages, 
and report some of their properties which will be use 

r more details the reader is referred to [5, sj. 
Let A be a finite alphabet and A* the free monoid generated by A. The elements 

of A are called letters, the elements of A* words and the length of a word u is 
word w is factor of a word x if there exist words U, v such that 

is a left factor (or a prefix) of a word x if there exists a word u 
such that x = wu. For any subset X of A*, denote by X* the submonoid generated 

bY and denote by F(X) the set of factors of words in X. 
call language any subset of A *. A language L is factorial if F( 

transitive if for all u, v E L there exists a word w E A* such that uwv E L. If L is a 
nguage, then it is the complement of an ideal of A*, i.e. L = A* - A*HA*. 

ite then L is called a local language. A local language L is then defined 
by specifying a finite set H of forbidden words which do not occur anywhere as 
factors in words of L. A language LC A* is strictly locally testable if there exist 
three finite subsets P, S, H of A* such that Z = (PA* n A*S) - A*HA*. The maximal 
length of words in P u S u .H is the order of L. A local language is a strictly locally 
testable language without the restrictive conditions on the prefixes and suffixes of 
the words in the language, i.e. such that P = S = {l}, where 1 is the empty word. In 
particular, if L is strictly locally testable, F(L) is local. 

A language is regular if it is recognized by a finite automaton” Strictly locally 
testable languages are in particular regular languages. A factorial regular language 
can be recognized by a finite automaton such that all co-accessible states are final 
states. A finite (deterministic) automaton Se is local if there exists a positive integer 
n such that, for all words w of length ]w] 2 n, Card( Q.w) s 1 (Q is the set of states 
of Zap). The least integer n sat sfying this condition is called the order of ;8. Following 
Schiitzenberger [ 161, a word w E A* is a constant for L c_ A* if, for all v, , v2, v3, 
EJ~E A*, v,wv2, v3wv4 E L implies v1 WV~E L. The following theorem synthesizes 
I%oposition 2.2 of [7] and Proposition 2.1 of [16]. 

bar language and let & be the minimal deterministic 
following three conditions are equivalent: 

(i) E is strictly locally testable of order k; 

re constants for 
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factorization in wor e following characterization of free submonoids, due 
rger, will be useful in the sequel. 

* is free if and only iA for all u E 

* is maximal i o proper subset of any 
. A set of words * is complete if F(X*) = 

X is complete if any word of /I* is factor of some wo 
e whole capacity of t e channel. The fo 

erger states the equi lence, in pa.rticul 
of these two notions. 

Let X be Q regular code. X is maximal if and only if it is complete. 

A subset X of A* is prefix if no word of X is prefix of another word of X. It is 
easy to verify that any prefix set is a code, which is called pre$x code. A su 
M 6f A* is very pure if, for all u, v E A*, uv E and vu E M imply u E 
v E M. As a consequence of Theorem 2.2, a very pure submonoid is free. 
is a circular code if it is the minimal generating set of a very pure submonoid of 
A*. We are interested in circular codes since they have some remarkable synchroniz- 
ation properties [5,14] and then limited error propagation in decoding. The following 
result [ 131 relates the notions of circular code and locally testable language. 

Let X be a jinite code. X is a circular code if and only cf X* is a strictly 
locally tzsG-&le language. 

As a consequence of this theorem, if X is a finite circular code, then F( 
is a local language. 

In the squel of the paper, by the word “language” we mean a factorial an 

transitive language, and by the word “automaton” we mean a finite determinist 
(non-complete) automaton such that all states are initial and fin 
obtained from the complete automaton by deleting the “sin 
state graph of this automaton is strongly connected. 

device) satisfying a given syste 
system of cons 



channel in the sense that e 

exists at least a w 

e, 

of the theorem9 let us 

as a co 
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e consider now the prob em of existence and construction of 
(any ot n be obtained, by definition, as a subset of a 
In the case of local constraints, by t%e previous theorem, this ~rob~~rn leads to the 

complete codes. ‘?e following theorem, which synthesizes 

1.3 of [4] and Corollary H-2 of [6], gives a preliminary answer to our 

The proof of this theorem also gives a construction of such 
owever, this construction 

codes that cannot be obtain 
any criterium to deci 
of the codes is i eed the interesting fea 



. There exist local languages T which do not admit finite T-co 

sets, i.e. such that * F( X “) for any finite set X. 

admit finite T-c 
(piGate comm 

hley (private communica- 
ry version of this paper, has found an 

te set, but does not 

(Ashley). Let T be the local language over the alphabet A = {a, b, c} 
e se! of forbidden factors H = { bba, bbb, cba, ebb}. A finite T-complete 

set (which is not a code) is X = {a, by, oh, c}. Ashley proves, using tee ues from 
symbolic dynamics, that no finite T-complete code exists. We then have the following 
proposition. 

ere exist local languages T which admit finite T-complete sets, but 
ite T-complete codes. 

. Let T be the local language over the alphabet A = (a, b} defined by 
the set of forbidden factors, H = {aba, bab}. A finite T-complete set (which is not 

is X = {a’, a3, b2, b3}. A finite T-complete 
‘, a3b3, a2b3, a3b”}. Y is not a circular code: indeed (a)(a) E 

e that no finite T-complete circular code exists. In fa 
e the maximal length of words in Z. Since an, b” E T for n > k, there 

q > 1 such that aP, b4 E Z and th’ s the hypothesis that 
e have then proved the following proposition. 

There exist local languages T which admit $ 
but do not admit jinite T-complete circular codes. 
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ere exist local languages which admit ginite complete codes, 
complete prefix codes. 

iven by the followi example. Let T be local language over 
= (a, 6, c) defined by the set of forbidden factors 

T-complete (non-prefix) de is X = (a, b, bc). ne can verify that no finite T- 
complete prefix code exis 

evious example also shows that 
ich are maximal as prefix 

T-codes. The set Y = {a, b} verifies these conditions in the previous example. 

In order to give an answer to the questions of the previous section and to construct, 
for a given T, T-complete sets and T-complete codes, we introduce the notion of 
a T-indecomposable set. Let MC_ T be a submonoid of A*. is a T-maximal 
submonoid if it is no proper subset of any other submonoid of A* contained in T 
A set X c T is T-indecomposable if it is the minimal generating set of a T-m 
submonoid. T-indecomposable set works like “alphabet for T”. Inde 
T-set is, by definition, included in some X*, wher is T-indecomposable: 
In this sense the words of Y are “written” over the “‘alphabet” X. 

xain Let T be the local language over the alphabet A = {a, b, c} defined by 
the set of forbidden factors _H = ! aa, ab). The set X = (ac, 6, C} is the unique finite 

T-indecomposable set. In fact, let Y be a finite T-complete set. We have to prove 
that Y*” G liB’*. Since X* = T n A”(6, c}, it suffices to prove that no word of Y ends 
with the letter “a”. Indeed, since Y is T-complete and finit there exists an inte 
k such that b“ E Y. If ua E Y, for some EC E A*, then uabk E against the defmit 

of T. 

The prcblem to produce T-complete sets for a given T leads to the pr 
constructing T-indecomposable sets. For this we introduce the notion of a 
of a set of states of an automaton. Let T be a regular language and 
be the minimal deterministic automaton recognizing % For any s 
of states IQ, the stabilizer of S is defined as follows: 

Stab(S)={vEA*lSvrS}. 

The folIowing pro 
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Given & = (A, Q9 90) and S E Q, a finite automaton d(S) recognizing Stab(S) 
can be constructed as follows. The set of states of d(S) is the set Qs of subsets of 
Q accessible starting from the state S E Qs. If VE Qs and a E A, the transition 

function Va is defined as follows: VA = {q.a 19 E V} if q.a is defined for all 
Va is not defined otherwise. The initial s ate of d(S) is S and 
state if W c_ S. We prove the following theorem. 

.2. Let Tbe a regular language recognized by the automaton & = ( 
For any T-indecomposable set X, there exists a set S c Q such that X* = Stab(S). 

roof. It suEkes to prove that, if M c T is a submonoid of A*, there exists then a 
set S s Q such that M c Stab(S). Set S = (9 = 90.~ 1 v E M}. Let u E We have to 
prove that, for any 9 E S, 9.u E S. Indeed, 9 E S implies that there exists v E A4 such 
that 9 = 90.v. Then 9.u = 90. vu E S, since vu E M. Cl 

.3. For any reg.ular language T, there exist a finite number of T-indecom- 
posable sets which can be effectively constructed. 

We use this result to give an answer to a question from a previous section. 

heorem 5.4. Given a local r’anguagc T, it is decidable whether there exists a finite 
T-complete set. 

roof. We prove that, if there exists a finite T-complete set, then there exists also 
a finite T-indecomposable set. The decision procedure can then be obtained by the 
constructions of the previous theorem. Let X be a finite T-complete set, i.e, F(X*) = 
T. By definition, X* is contained in some Z*, where Z is a T-indecomposable set. 
Let us suppose, by contradiction, that 2 is infinite. Since X is finite, there exists a 
finite subset YC 2 such that X* c_ Y*. Since X is T-complete, F( Y*) = F(Z*) = T 
T is local and then defined by a finite set H of forbidden factors. Let k be an integer 
greater than the maximal length of words in H u Y, and consider a word z E 2 of 
length ]zl> 3k. Since F( Y*) = F(Z*), there exist words s, t E A* sucEl that 

szt = y1y-J. . . yn, yi E Y. 

By a length argument, t ere exists a factorization z = z, z2 with Izl I, ~z~I:, II- and such 
that z1 has a suffix of length greate r than k in Y* and z2 has a prefix of length 
greater than k in Y? One derives that the factors of length I& of the words z2z1, 
wzl, z1 w, WZ~, z2w, with w E Z*, do not belong to H It follows thr t nc word in the 

2 v {z,} v (z,})* has a factor in H. Thus Z* 5 M G T, against the 
is T-indecomposable. This concludes the proof. Cl 
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conslruclion may be infinite. T be a local language defined by the finite set 
of forbidden factors and let k be the maximal length of words in Let X be a 
T-indecomposa ak and let Y be [he minimal generating set 
of the submonoi 

Y is a T-complete code. 

. 3t is easy to verify that f’ is T-complete. In order to prot -5 that Y* is a free 
monoid, consider a word ~4 E A* s *!:n Y*#@and(ii) 

0. We show that u E Y* and then, by Y* is free. By previo 
(i) and (ii), ]K]= d m f or some integer 4 i.e. M E (A”)*. It remains to prove that 
u E X*. Let & = (A, Q, qO) be the minimal$eterministic automaton recognizing T. 
By Theorem 2.1, & is a local automaton such that, for all w E A* with 1~12 k, 
Card( q.w) s 1. Since X is a T-indecomposable set, by Theorem 5.2, there exists a 
set S c Q such that X* = Stab(S). Condition (i) and the fact that m 2 k imply that 
S.u = t E Q. Condition (ii) implies that t E S. By recalling the constructio 
automaton recognizing Stab(S), it follows that u E Stab(S) = X*. Thus u E Y*. This 

concludes the proof. Cl 

Previous results lead to the following coding scheme. Given a system of local 
constraints described by the (local) automs;on J$ recognizing the set T of available 
words, construct the T-indecomposable sets by computing Stab(S), where S is a 
set of states of .A For each T-indecomposable set X, if it is a code, one obtains a 
T-complete code; if it is not a code, construct the base of the submonoid X* n (A’)” 
fori=l,2,..., until one obtains a code. The previous theorem guarantees that one 
obtains a code for i s k, where k is the maximal length of words in the set H of 
forbide cr! ;,trosds. 

A local constraint frequently encountered in engineering applications 
consider words over the alphabet A = (0, 1) with forbidden factors specified by lower 
and uppe! bounds on the number of consecutive “0”s separating the “I*‘;. It is 
called a [hl, k] run-length constraint, where d is the lower and k is the upper bound. 
We apply our methods for the [2,7] run-length constraint and in particular we 
derive a code obtained by Franaszek by different methods [U]. The set T of avai 
words is described by the set N = { 11,101,00000000} of forbidden factors. An 
automaton recognizing T is shown in Fig. 1. The automaton recognizing Stab({2,3}) 

obtained by our construction and by minimization is shown in Fig. 2. 

Fig. 1. 
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