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1. Introduction

Recently, several papers {1-4,6, 12] have addressed the problem of encoding
digital data from a free source into a constrained set of available sequences. In
many transmission or storage devices, physical limitations place some constraints
on the sequences of symbols that can be transmitted or stored and it may be necessary
to code the information sequence to make it acceptable to the system. The main
problems concern the existence and the construction of such codes.

In [1, 2, 12], by recovering some ideas and methods of [9-11], coding algorithms
have been proposed which use the formalism of symbolic dynamics. The point of
view developed in this paper is very close to those of [3, 4, 6] which make use of
methods and results of automata theory.

If A is the alphabet associated with the storage or transmission device, the system
of constraints is described by the set T of available words over A. We consider
codes X such that the set X* of coded messages is contained in 7. Extremal
properties of codes, such as maximality and completeness, are introduced with
respect to T and their relationships are investigated. These extremal conditions play
a role in the optimization of the encoding process. We then approa-h the problems
of existence and construction, for a given T, of finite codes verifying such extremal
properties and other desiderable conditions, such as to be prefix or to be circular.
The existen e of such codes strongly depends on the combinatorial structure of T.

In this paper we consider local constraints, i.e. constraints such that the set T of
available words is defined by specifying a finite set H of forbidden words which
do not occur anywhere as factors in the words of T. Local constraints occur in many
engineering applications. Moreover, this paper shows their theoretical interest: the
locality of T plays indeed an essential role in most of our results.

The paper is organized as follows. Section 2 contains some basic results concerning
languages, automata and codes which will be useful in the sequel. Section 3
introduces properties of codes with respect to a system of constraints T. The main
result of this section states the equivalence of the notions of maximality c<nd
compi.eteness (relative to T). Section 4 censiders the problem of existence of finite
codes satisfying such extremal properties. Some answers to these problems and
algorithms for generating such codes are given in the last section, by introducing

0304-3975/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Hollang)


https://core.ac.uk/display/82150213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

56 A. Restivo

i ion of T-indecompo<able set. Let us remark

alternative approach to the coding methods of [1, 2, 12].

In this section we briefly introduce the basic definitions concerning languages,
automata, codes and report some of their properties which will be useful in the
sequel. For more details the reader is referred to [5, 8.

Let A be a finite alphabet and A* the free monoid generated by A. The elements
of A are called letters, the elements of A* words and the length of a word u is
denoted by |u]. A word w is factor of a word x if there exist words u, v such that
x=uwv. A word w is a left factor (or a prefix) of a word x if there exists a word u
such that x = wu. For any subset X of A*, denote by X™* the submonoid generated
by X and denote by F(X) the set of factors of words in X.

We call language any subset of A*. A language L is factorial if F(L)=L. L is
transitive if for all u, v € L there exists a word we A* such that uwve L. If L is a
factorial language, then it is the complement of an ideal of A*,i.e. L= A*—~ A*HA™.
If H is finite then L is called a local language. A local language L is then defined
by specifying a finite set H of ferbidden words which do not occur anywhere as
factors in words of L. A language L< A* is strictly locally testable if there exist
three finite subsets P, S, H of A* such that L = (PA* n A*S) — A*HA*. The maximal
length of words in PuU Sy H is the order of L. A local language is a strictly locally
testable language without the restrictive conditions on the prefixes and suffixes of
the words in the language, i.e. such that P =S = {1}, where 1 is the empty word. In
particular, if L is strictly locally testable, F(L) is local.

A language is regular if it is recognized by a finite automaton. Strictly locally
testable languages are in particular regular languages. A factorial regular language
can be recognized by a finite automaton such that all co-accessible states are final
states. A finite (deterministic) automaton & is local if there exists a positive integer
n such that, for all words w of length |w|=n, Card(Q.w)<1 (Q is tize set of states
of &£). The least integer n satisfying this condition is called the order of 4. Following
Schiitzenberger [16], 2 word we A* is a constant for L < A* if, for all v,, v, v;,
v,€ A*, v,wv,, vswo,e L implies v,wv,e L. The following theorem synthesizes
Proposition 2.2 of [7] and Proposition 2.1 of [16].

Theorem 2.1. Let L be a regular language and let s{ be the minimal deterministic
automaton recognizing L. The following three conditions are equivalent:
(i) L is strictly locally testable of order k;
(ii) o is local of order k;
(iii) all words of A* of length =k are constants for L.

A set of words X < A™ is a code if it is the minimal generating cet of a free
submonoid of A*. In otner words X is a code if every word of X* admits a unique
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factorization in words of X. The following characterization of free submonoids, due
to Schiitzenberger, will be useful in the sequel.

Theorein 2.2. A submonoid M of A* is free if and only if, for all u € A*, uM ~ M #§
and Mun M # () imply ue M.

A code X c A* is maximal if it is no proper subset of any other code over the
same alphabet. A set of words X < A* is complete if F(X*)= A*. In other words
X is complete if any word of A* is factor of some word of X*. In this sense a
complete code uses the whole capacity of the channel. The following fundamental
theorem of Schiitzenberger states the equivalence, in particular for regular codes,
of these two notivns.

Theorem 2.3. Let X be a regular code. X is maximal if and only if it is complete.

A subset X of A* is prefix if no word of X is prefix of another word of X. It is
easy to verify that any prefix set is a code, which is called prefix code. A submonoid
M of A* is very pure if, for all u, ve A*, uwe M and vue M imply ue M and
ve M. As a consequence of Theorem 2.2, a very pure submenoid is free. A set X
is a circular code if it is the minimal generating set of a very pure submonoid of
A*. We are interested in circular codes since they have some remarkable synchroniz-
ation properties [5, 14] and then limited error propagation in decoding. The following
result [13] relates the notions of circular code and locally testable language.

Theorem 2.4. Let X be a finite code. X is a circular code if and only if X* is a strictly
locally tcstable language.

As a consequence of this theorem, if X is a finite circular code, then F(X*)
is a local language.

In the s--quel of the paper, by the word “language” we mean a factorial and
transitive language, and by the word “automaton” we mean a finite deterministic
(non-complete) automaton such that all states are initial and final states. It is
obtained from the complete automaton by deleting the “sink” state. Moreover, the
state graph cf this automaton is strongly connected.

3. Codes with constraints

Let us consider an encoding process into a ‘‘channel” (a storage or transmission
device) satisfying a given system of constraints. If A is the channel alphabet, the
system of constraints can be described by the set T< A* of available words over
A. Time invariance and ergodicity of the encoding process imposes that T is a
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simply a language. In most appllcatlons, Tisa regular Ianguage i.e. the system of
constraints is described by a finite automaton: this corresponds to sofic systems of
symbolic dynamics. In particular we are interested here in the case of local con-
straints, i.e. a system of constraints described by a local language T this corresponds
to a system of finite type of symbolic dynamics.

Any subset X< T is a T-set if X*< T. A T-code is a T-set which is a code.
T-codes may be used for coding messages from a source to a channel satisfying a
system of constrainis described by T. We now introduce the notions of maximality
and completeness with respect to T. A T-code is T-maximal if it is no proper subset
of any other T-code. A T-set X is T-complete if F(X*)=T. Best encoding usually
requires T-complete codes: in fact they use the whole capacity of the transmission
channel in the sense that every available word of T occurs as a factor in coded
messages. Let us now investigate the relations between the notions of 7-maximality
and T-completeness. We first give the following definition. A T-set X is thin if there
exists at least a word we T such that TwT n X =0. A regular T-set is in particular
thin.

Theorem 3.1. Let T be a local language and let X be a thin T-code. X is T-maximat
if and only if it is T-complete.

Proof. The proof of the “if” part of the theorem follows that of the analogous
Theorem 2.3 of Schiitzenberger. It uses Theorem 4.5 in [5]. Let u be the morphism
of A™ in the syntactic monoid of X*. Let x € X* such that e = p(x) is an idempotent
of the 0-minimal ideal J of u(A*) (such an idempotent exists by Theorem 4.5 of
[5], Claim 3). If X is T-complete, then t€ T if and only if u(1) #0. Let ye T-X.
If eu(y)e=0, then xyx e T and so X u{y} is not a T-code. If ex(y)e # 0 then it is
in the #-class of e, which is a group. There exists then an integer n=1 such that
(2(xyx))" = e. Consequently (xyx)" = x € X*. This shows that X _ {v} is not a code.

In order to prove the “only if” part of the theorem, let us first consider the case
in which T is of the form T = F(w¥) for some primitive word we A*. If X is a
(non-empty) T-code, ren, as a consequence of elementary facts concerning free
monoids (see [5]), Card(X) =1 and X ={g}, where g is a conjugate of w. In this
case X is a T-maximal and T-complete code. Consider now the case T # F(w*).
The proof is by contradiction. We prove that if X is not T-complete, then there
exists z€ T — X such that X u {z}isa T-code. Since T islocal, then T = A* - A* HA*,
with H a finite set. Let k be the maximal length of words in H. Since X is not
T-complete, there exists a word t € T — F(X*) such that |f]> k. Co:usider two words
u, ve X* such that |u|, |v|> k. Since T is transitive, there exist x, y€ T such that
z=uxtyv < T. We show that it is always possible to chose u, v, x, y, such that 7 is a
simple facior of z i.e. t appears once as a factor of z Indeed, if ¢ is not a simple
factor of z, cunsider the first and the lasi occurrence of ¢ in z given by the
factorizations z = z 1z, = z,1z,. Since [t|> k and T is local, by Theorem 2.1, t is a
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constant for T. It follows that z,tz,€ T and ¢ is, by construction, a simple factor of
this word. The fact that ¢ is a simple factor of z implies that z is wnbordered, i.e.
no proper prefix of z is a suffix of z itself. We prove that

() (Xu{zh*eT.
It suffices to consider the factors of length k of the woids zz, wz and zw for we X*.
Since, by constructicn, the prefix and the suffix of length k of z belong to X*, the
factors of length k of previous words do not beiong to H.

(ii) X u{:z}is a code.
This is a consequence of tne fact that z¢ F(X ™) and z is unbordered (see [5]). This
concludes the proof of the thecorcm. [

Remark 3.2. The “only if” part of previous theorem does not hold if T is not local,
even in the case of finite codes, as shown by the following example. Let T be the
set of aii words over the alphabet A ={a, b} such that consecutive ““a”’s appear in
blocks of even length between two “b”s. T is a (nen-local) regular language.
Consider the T-code X ={a}. X is a T-maximal code. Suppose indeed, by contradic-
tion, that {a} U {x} is a T-code for some x e T. x 2 a®, otherwise {a, x} is not a code.
x is then of the form x = a'ua’, with i, j=0 and u e bA*bu {b}. It follows that
{a, x}*z T. However, X is not T-complete: in fact F(A*)=a*< T

We consider now the problem of existence and construction of 7-maximal codes
(any other T-code can be obtained, by definition, as a subset of a T-maximal code).
In the case of local constraints, by the previous theorem, this problem leads to the
study of T-complete codes. The following theorem, which synthesizes Proposition
1.3 of [4] and Corollary 11-2 of [6], gives a preliminary answer to our problem.

Theorem 3.3. For any regular language T, there exists a regular T.coinplete prefix
code. For any local language T, there exists a reguiar T-complete prefix circular code.

The proof of this theorem also gives a construction of such T-complete codes.
However, this construction generates only prefix codes and there exist T-complete
codes that cannot be obtained in this way. In particular the theorem does not give
any criterium to decide whether there exist finite T-complete codes. The finiteness
of the codes is indeed the interesting feature in many applications.

4. Finite T-complete codes

In this section we consider the following problems: given a local language T,
does there exist a finite T-complete set (resp. code, prefix code, circular code)? The
answer to these questions depends on the structure of T.
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Proposition 4.1. There exist local languages T which do not admit finite T-complete
sets, i.e. such that T = F(X™) for any finite set X.

Proof. Let T be a l.cal language defined by a set of forbidden factors H such that,
forsomea, be A, a*b"nH#90,a" nH=>b"n H=. Let us suppose, by contradic-
tion, that there exists a finite set X such that T= F(X™*) and ki k be the maximal
length of words in X. By the hypothesis on H, a", " € T for n> k, and then there
exist integers p, g>1 such that a”, b€ X. One derives a*b* = T against the
hypothesis. The simplest example of language T satisfying the conditions of the
proposition is the local language over the alphabet {a, b, c} defined by the set of
forbidden factors H ={ab}. O

Concerning the existence of finite 7-complete codes, Ashley (private communica-
tion), answering a conjecture in a preliminary version of this paper, has found an
example of a local language T which admits a finite T-complete set, but does not
admit finite T-complete codes. Further examples have also been found by Blanchard
(private communication).

Example 4.2 (Ashlev). Let T be the local language over the alphabet A ={a, b, c}
defined by the set of forbidden factors H = {bba, bbb, cba, cbb}. A finite T-complete
set (which is not a code) is X ={a, bc, ab, c}. Ashley proves, using techniques from
symbolic dynamics, that no finite 7-complete code exists. We then have the following
proposition.

Proposition 4.3. There exist local languages T which admit finite T-complete sets, but
do not admit finite T-complete codes.

Example 4.4. Let T be the local language over the alphabet A ={aq, b} defined by
the set of forbidden factors, H ={aba, bab}. A finite T-complete set (which is not
a code) is X={a’,a’ b’ b’t. A finite T-complete code is Y=
{a’, b’, a’b®, a’b®, a®b’}. Y is not a circular code: indeed (a)(a)e Y* but ag Y.
We can prove that no finite T-complete circular code exists. In fact, if Z is such a
code, let k be the maximal length of words in Z. Since a", b" € T for n> k, there
exist integers p, 4> 1 such that a”, b? € Z and this contradicts the hypothesis that
Z is circular. We have then proved the following proposition.

Proposition 4.5. There exist local languages T which admit finite T-complete codes,
but do not admit finite T-complete circular codes.

Remark 4.6. The problem of existence of finite T-complete circular codes can be
posed only in the case where T is a local language. In fact, as 2 consequence of
Theorem 2.4, if T is not local, no finite T-complete circular code exists.
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Tieposition 4.7. There exist local languages T which admit finite T-complete codes,
but do not admit finite T-complete prefix codes.

Proof. The proof is given by the following example. Let T be local language over
the alphabet A={a, b, c} defined by the set of forbidden factors H ={ac, cc}. A
T-complete (non-prefix) code is X ={a, b, bc}. One can verify that no finite 7-
complete prefix code exists. [

Remark 4.8. The previous example also shows that, for some local language T, there
exist prefix T-codes which are maximal as prefix T-codes, but are not maximal as
T-codes. The set Y ={a, b} verifies these conditions in the previous example.

5. T-Indecomposable sets

In order to give an answer to the questions of the previous section and to construct,
tor a given T, T-complete sets and T-complete codes, we introduce the notion of
a T-indecomposable set. Let M <= T be a submonoid of A*. M is a T-maximal
submonoid if it is 1i0 proper subset of any other submonoid of A* contained in T.
A set X < T is T-indecomposable if it is the minimal generating set of a T-maximal
submonoid. A T-indecomposable set works like an ‘“‘alphabet for T”. Indeed any
T-set is, by definition, included in some X * where X is T-indecomposable: Y < X*.
In this sensc the words of Y are “written” over the “alphabet” X.

Example 5.1. Let T be the local language over the alphabet A ={aq, b, c} defined by
the set of forbidden factors H =/aa, ab}. The set X ={ac, b, ¢} is the unigue finite
T-indecomposable set. In fact, let Y be a finite T-complete set. We have to prove
that Y~ < 27*. Since X*= T n A*{b, c}, it suffices to prove that no word of Y ends
with the letier “"a”. Indeed, since Y is T-complete and finite, there exists an integer
k such that b* e Y. If uac Y, for some u € A*, then uab* € T, against the definition
of T.

The problem to produce T-complete sets for a given T leads to the problem of
constructing T-indecomposable sets. For this we introduce the notion of a stabilizer
of a set of states of an automaton. Let T be a regular language and let & = (A, Q, ;)
be the minimal deterministic automaton recognizing 7. For any subset S of the set
of states Q, the stabilizer of S is defined as follows:

Stab(S) ={ve A*|S.vc S}.

The following properties of Stab(S) can be easily derived:
(i) Stab(S) is a submonoid of A¥;
(i1) if Card(S) =1, then Stab(S)=X* where X is a prefix code (see [5]); if
Card(S) > 1, then Stab(S) is not in general a free submonoid of A*;
(iii) if g,€ S, then Stab(S)< T.
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Given & = (A, Q, g,) and S< Q, a finite automaton &/(S) recognizing Stab(S)
can be consiructed as follows. The set of states of «(S) is the set Qs of subsets of
Q accessible starting from the state S€ Qs. If Ve Qs and a € A, the transition
function V.a is defined as follows: V.a ={q.a|qe V} if g.a is defined for all ge V,
V.a is not defined otherwise. The initial state of &/(S) is S and We Qs is a final
state if W < S. We prove the following theorem.

Theorem 5.2. Let T be a regular language recognized by the automaton o = (A, Q, qo).
For any T-indecomposable set X, there exists a set S < Q such that X* = Stab(S).

Proof. It suiiices to prove that, if M < T is a submonoid of A*, there exists then a
set S< Q such that M < Stab(S). Set S={q=q,.v|ve M}. Let ue M. We have to
prove that, for any g€ S, q.u € S. Indeed, q € S implies that there exists ve M such
that g = qo.v. Then q.u = qo.vu € S, since vue M. [J

Coroliary 5.3. For any regular language T, there exist a finite number of T-indecom-
posable sets which can be effectively constructed.

We use this result to give an answer to a question from a previous section.

Theorem 5.4. Given a loca! language T, it is decidable whether there exists a finite
T-complete set.

Preoof. We prove that, if there exists a finite T-complete set, then there exists also
a finite T-indecomposable set. The decision procedure can then be obtained by the
constructions of the previous theorem. Let X be a finite T-complete set, i.e. F(X*)=
T. By definition, X * is contained in some Z*, where Z is a T-indecomposable set.
Let us suppose, by contradiction, that Z is infinite. Since X is finite, there exists a
finite subset Y < Z such that X*< Y*. Since X is T-complete, F(Y*)= F(Z*)=T.
T is local and then defined by a finite set H of forbidden factors. Let k be an integer
greater than the maximal length of words in Hu Y, and consider a word ze€ Z of
length |z| > 3k. Since F(Y*)= F(Z*), there exist words s, t € A* such that

SZt=y1y2...Yn, Yi€Y.

By a length argument, there exists a factorization z = z,z, with |z,|, |z,|>> k and such
that z, has a suffix of length greater than k in Y* and z, has a prefix of length
greaier than k in Y*. One derives that the factors of length k of the words z,z,,
wz,, ZW, Wz,, z,w, with we Z*, do not belong to H. it follows thst nc word in the
submonoid M =(Z u{z,} U {z,})* has a factor in H. Thus Z* ¢ M < T, against the
hypothesis that Z is T-indecomposable. This concludes the proof. [

The next theorem gives a method io construct a T-complete code Y from a
T-indecomposable set X. However, if X is finite, the ccde Y obtained by this
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construciion may be infinite. Let T be a local language defined by the finite set H
of forbidden factors and let k be the maximal length of wnrds in H. Let X be a
T-indecomposable set, m an integer =k and let Y be the minimal generating set
of the submonoid X*n (A™)*.

Theorem 5.5. Y is a T-complete code.

Proof. It is easy to verify inai Y is T-complete. In order to prov: that Y* is a free
submoneid, consider a word # € A* such that (i) uY*n Y*#@ and (ii) Y*ur Y*#
(. We show that u € Y* and then, by Theorem 2.2, Y* is free. By previous conditions
(i) and (ii), |u|=dm for some integer d, i.e. ue (A™)*. It remains to prove that
ue X* Let o = (A, Q, go) be the minima', deterministic automaton recognizing T.
By Theorem 2.1, &/ is a local automaton such that, for all we A* with |w|=k,
Card(q.w)=<1. Since X is a T-indecomposable set, by Theorem 5.2, there exists a
set S< Q such that X* = Stab(S). Condition (i) and the fact that m = k implv that
S.u=te Q. Condition (ii) implies that 1€ S. By recalling the construction of the
automaton recognizing Stab(S), it follows that u € Stab(S) = X*. Thus u e Y*. This
concludes the proof. [

Previous results lead to the following coding scheme. Given a system of local
constraints described by the (local) automzion & recognizing the set T of available
words, construct the T-indecomposable sets by computing Stab(S), where S is a
set of states of &. For each T-indecomposable set X, if it is a code, one obtains a
T-complete code; if it is not a code, construct the base of the submonoid X* ~ (A")*
fori=1,2,..., until one obtains a code. The previous theorem guarantees that one
obtains a code for i<k, where k is the maximal length of words in the set H of
forbiddcn words.

Example 5.6. A local constraint frequently encountered in engineering applications
consider words over the alphabet A = {0, 1} with forbidden factors specified by lower
and upper bounds on the number of consecutive “0’’s separating the “17°C. It is
called a [d, k] run-leng:h constraint, where d is the lower and k is the upper bound.
We apply our methods for the [2, 7] run-length consiraint and in particular we
derive a code obtained by Franaszek by different methods [9]. The set T of available
words is described by the set H ={11, 101, 00000000} of forbidden factors. An
automaton recognizing T is shown in Fig. 1. The automaton recognizing Stab({2, 3})
obtained by our construction and by minimization is shown in Fig. 2.

Fig. 1.



Fig. 2.

We derive the following T-indecompnsable set:
X ={1, 01, 001, 0001, 00001}.{00, 000}.

The set X is not a code as one can easily verify. We construct then the base Y of
the submonoid X*(A%)*. Y is a code and the set of its words of length less than
or equal to 8 is exactly the Franaszek code

{0100, 1000, 000100, 001000, 100100, 00100100, 00001000}.

I would like te thank J. Ashley, F. Blanchard, D. Perrin and the anonymous
referee for their helpful suggestions and comments.
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