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In inhomogeneous bulk ferromagnets, the dominating sources of spin disorder are related to spatial variations of
(1) the magnitude of the local saturation magnetization and of (ii) the magnitude and/or direction of the magnetic
anisotropy field. For the particular example of a porous ferromagnet, where the magnetization inhomogeneity is
at maximum, we demonstrate, by means of experimental neutron scattering data and micromagnetic simulations,
the anisotropic character of magnetization fluctuations induced by the dipolar interaction.
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I. INTRODUCTION

In polycrystalline bulk ferromagnets [1], the sources of spin
disorder are related to lattice imperfections, e.g., point defects,
dislocations, grain and phase boundaries, or pores. These
microstructural defects are accompanied by spatial variations
of the materials parameters, for instance, the magnitude of
the local saturation magnetization, exchange constant, or
variations in the magnitude and/or direction of the magnetic
anisotropy field. As a result, at a given value of the applied
magnetic field, these features give rise to a deviation of
the magnetization from the perfectly aligned state, in other
words, they result in spin misalignment. On the other hand,
inhomogeneous spin states in the bulk of a material (with
V - M # 0) go along with a magnetodipolar interaction field,
which has an important impact on magnetic properties.

The dipole-dipole interaction—one of the most funda-
mental interactions in condensed-matter physics—is still the
subject of current research. For instance, it gives rise to
anomalous features in the ground-state correlations and in the
spin-wave excitation spectrum of two-dimensional (2D) spin
systems consisting of cold polar molecules [2], and it is vital
for the understanding of spin-ice physics, where frustration,
dipolar ferromagnetic coupling, exotic field-induced phase
transitions, and unusual glassiness are of relevance (see,
e.g., Refs. [3,4] for recent reviews). Recent experiments on
PdFe islands on square lattice using photoemission electron
microscopy [5] even indicate that pole interactions of higher
order than the dipolar one are required in order to understand
the ground-state ordering features of such a system.

While classical “standard” magnetometry provides only
integral information about the magnetic state of the sample,
scattering techniques, in particular, magnetic neutron scat-
tering yield spatially and time-resolved information about
magnetic media. A further important difference between
magnetometry and magnetic neutron scattering relates to the
impact of the magnetodipolar interaction: the quantity of
interest in an elastic magnetic neutron scattering experiment,
the differential scattering cross section d ¥ ,,/d<2, depends in
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a twofold manner on the magnetodipolar interaction. First, and
different from magnetization measurements, the interaction
of the magnetic moment of the neutron with the sample’s
magnetization results in dipolar selection rules which are
embodied, e.g., by the appearance of trigonometric functions
in d Xy, /d <2 (via the Halpern-Johnson vector) [6]. Second, the
dipole-dipole interaction between the magnetic moments in
the sample has a direct impact on its magnetization structure
and therefore on the Fourier components of the magnetization.
The former determine the magnetization (as measured by
magnetometry) and the latter the properties of d ¥, /d 2.

Traditionally, the influence of lattice defects on the magne-
tization of bulk magnetic materials is studied by analyzing
magnetization curves in the approach-to-saturation regime.
Early investigations by Brown [7], using the continuum theory
of micromagnetics, provide analytic expressions describing
different types of defects. From the neutron-scattering point of
view, it is well known that the spin perturbations that are related
to imperfections give rise to a strong magnetic scattering
signal—the so-called spin-misalignment scattering—along the
forward direction (at small scattering angles) [8]. The size of
perturbed regions is characterized by a field-dependent corre-
lation length, which varies between about a few nanometers
up to ~100 nm.

It is the purpose of this paper to study the role of the mag-
netodipolar interaction on real-space magnetic correlations.
In previous experimental neutron work [9], the correlation
function of dX,;/d<2 averaged over all spatial directions in
the scattering plane has been obtained; hence, this approach
only provides a single correlation length. By contrast, in this
study we explicitly demonstrate the anisotropic character of
the dX);/d<2 correlations by computing the corresponding
functions along different directions. Moreover, we compare
the correlation function of d ¥,,/d2 with the autocorrelation
function of the spin misalignment (which is independent from
the neutron-magnetic dipolar interaction). In this way we aim
to disentangle the above mentioned twofold impact of the
anisotropic dipole-dipole interaction on magnetic correlation
functions obtained from neutron-scattering data.

In our analysis we employ our previously developed
micromagnetic simulation methodology, which has provided
fundamental insights into the magnetic small-angle neutron
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scattering (SANS) of various materials [10]. The particular
strength of this micromagnetic approach is that it takes into
account site-dependent magnetic interactions (for exchange,
magnetic anisotropy, and saturation magnetization). This
feature implies that the magnetic microstructure of a wide
range of polycrystalline magnetic materials such as single-
phase nanocrystalline magnets, magnetic nanocomposites, or
magnetic particles in anonmagnetic matrix can be studied. Asa
prime candidate for a system with strong internal dipolar fields
and nontrivial magnetization correlations, we have chosen for
the present study porous ferromagnets (iron and cobalt), since
here local variations in the saturation magnetization are at
maximum.

II. MICROMAGNETIC SIMULATION METHODOLOGY

Our micromagnetic algorithm was originally developed for
the computation of the magnetization distribution of magnetic
nanocomposites and of the related magnetic-field-dependent
SANS cross sections [10]. The four standard contributions to
the total magnetic energy (external field, magnetic anisotropy,
exchange, and dipolar interaction) are taken into account. In the
simulations of porous iron presented here, the sample volume
V =0.2 % 0.75 x 0.75 um> was divided into N ~ 5 x 10°
mesh elements, comprising both pores and nanocrystallites.
For the later comparison to experimental neutron data on
nanocrystalline inert-gas-condensed porous iron [11] the
volume fraction of pores was chosen as P = 32 %, with
randomly placed pore centers. Due to the flexibility of the
mesh-generation algorithm, the shape of the pores can be
controlled and was taken to be polyhedronlike. The pore-size
distribution was assumed to be lognormal [12] with a median
of 15 nm and a variance of 1.16, which yields a maximum of
the distribution at 12 nm. The local saturation magnetization
of each (iron) nanocrystallite was taken uoM,; = 2.2 T, which
in conjunction with the above mentioned porosity value
yields poM; = 1.5 T for the entire sample. For the exchange-
stiffness constant and the first cubic anisotropy constant of
iron, we have, respectively, assumed values of A =25 pJ/m
and K| = 47kJ/m? [13]. The direction of anisotropy axes
varies randomly from crystallite to crystallite. The energy-
minimization procedure provides (at some particular value
of the applied magnetic field) the magnetization vector field
M(r) = [M,(r),M,(r),M (r)] of the sample on an irregular
lattice. This distribution is then mapped onto a regular lattice,
which permits us to calculate the magnetization Fourier
coefficients and the ensuing neutron scattering cross section
using fast Fourier transformation. Further details can be found
in Ref. [10].

III. RESULTS AND DISCUSSION

Figure 1 displays the numerically computed spin mis-
alignment M, (r) = (M,,M,,0) in the vicinity of a nanopore
together with the transversal Fourier coefficients |]\7Ix(q)|2 and
M, (q)|?; these Fourier components will be used later on when
discussing magnetic neutron scattering. The discontinuity
(jump) of the magnetization at the pore-matrix interphase
(wpAM = 2.2T) gives rise to a strong magnetostatic field
and to the characteristic dipole-field-type spin texture. The
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FIG. 1. (Color online) (Left) Computed spin misalignment (at
noHy = 0.6 T) around a pore (D = 12 nm) in a ferromagnetic iron
matrix (2D cut out of a 3D simulation). Shown is the magnetization
component M (r) perpendicular to Hy || e;; thickness of arrows is
proportional to the magnitude of M, . Solid gray lines: magnetodipo-
lar field distribution. (Right) Corresponding magnetization Fourier
components |1\7IX (@))* and |1\n/1y(q)|2 projected into the plane ¢, = 0.
Bright colors correspond to “high” values and dark colors to “low”
values of the Fourier components. Pixels in the corners of the images
have ¢ = 0.4 nm~'. Logarithmic color scale is used.

symmetry of the M (r) distribution corresponds to the field
of a magnetic dipole located at the center of the pore and
aligned opposite to the external field direction, as depicted by
the solid lines in Fig. 1. Both transversal Fourier components
are highly anisotropic, whereas the longitudinal one |M.|>
is isotropic (data not shown). We would like to emphasize
that the angular anisotropy of both |M,|* and |M,|* is a
consequence of the internal magnetodipolar field, which is
the only long-range (nonlocal) anisotropic interaction in our
micromagnetic modeling; neglecting this energy term results
in | M, |* and |M,|? being isotropic [10].

_However, in contrast to our previous results [10], where
| M, |> was found to be isotropic, the present simulations reveal
an anisotropic |M,|* Fourier coefficient (which is enhanced
along the field direction). This finding is due to a corrected
averaging procedure, which takes into account magnetic fluc-
tuations also along the e, direction, which coincides with the
direction of the incident neutron beam in a SANS experiment
(see Fig. 1). Specifically, the computed (mapped on a regular
grid) spin structure of the sample M(x,y,z) is divided into
thin slices i = 1, ..., N, (with a typical thickness of 2.5 nm).
This results in a set of magnetization distributions M (y,z),
and Fourier transformation then yields the M“(g,,q). The
squared Fourier coefficients |1\7I;|2, etc. are summed up and
divided by the number of slices in order to obtain the averaged
quantities.

As mentioned above, the possibility to compute the individ-
ual Fourier components allows one to compare the simulation
results with experimental data for the spin-misalignment
SANS cross section, which reads (for the scattering geometry
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where Hj || e, is applied perpendicular to the incoming
neutron beam) [8]

ds
_M()_Tb [|M,|* + |M,|* cos” 0

—(M, M + M} M,)sinfcos6], (1)
where V is the scattering volume, by = 2.9 x 108 A~ 'm™1,
and 6 denotes the angle between the momentum-transfer
vector q = (0,q,,q;) and e, (a* is the complex conjugate of a).
Note that d X, /d 2 represents the part of the total unpolarized
SANS cross section dX/d2 which is exclusively due to
transversal spin misalignment, with corresponding Fourier
amplitudes M, and M,; in other words, d X, /d <2 is obtained
by subtracting the nuclear and magnetic SANS at complete
saturation, d¥/dQ = Y2 (N2 + b%|M,|? sin>0), from the
measured d X /d<2 at lower fields.

The trigonometric functions and the M M -containing
cross term in Eq. (1) are due to the neutron- magnetlc inter-
action, while the Fourier components M, , . may additionally
depend on the internal magnetodipolar interaction, e.g., the
anisotropy of the dipolar interaction is embodied in the
dependence of the M, , on the angle 6 (see Fig. 1). Due to
the complexity of this expression, the Fourier transform of
dXr/dS2, which one may call the correlation function of the
spin-misalignment SANS cross section, does not represent, of
course, the autocorrelation function of the magnetization. This
is in contrast to the well-known result from nuclear scattering,
where the nuclear scattering cross section

dX
—N<q) ~ / Cw(r) exp(—iqr)d’r )

is equal to the Fourier transform of the autocorrelation function
of the nuclear density [14]:

Cn(r) ~ / AN(X) AN(X +1)d’x, 3)

where AN(r) = N(r) — (N) denotes the so-called excess
scattering-length density, and (N) is the (constant) average
scattering-length density, which only gives a contribution to
d¥y/dQ2atq=0.

In order to compare the results for the correlation function
of the spin-misalignment SANS cross section,

ax
CM(y’Z)N/d_S;w

with the autocorrelation function of the magnetization spin
misalignment Cgy(r), which is not decorated by the neutron-
magnetic interaction, we define the latter as follows [9]:

(gy.q-) expligr) d’q, 4)

Csm(r) ~ f M, (x)M,(x+1)d’x. ®)

Using the convolution theorem, this expression can be rewrit-
ten as

Com(r) ~ / FL(@P + 171, (@P] explian) d°q.  (6)

Note the additional difference between both correlation func-
tions: C), involves only a 2D integration over q space, because
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FIG. 2. (Color online) Semiquantitative comparison between ex-
perimental data [11] and micromagnetic simulations for the spin-
misalignment SANS cross section of nanoporous iron (porosity:
P =32%; puoHy=0.6T). The respective scattering signal at a
saturating field of 1.83 T has been subtracted in both data sets.
Logarithmic color scale is used.

dX ) /dS2 is experimentally accessible only in the plane per-
pendicular to the incoming neutron beam [small-angle approx-
imation: q = (0,q,,g;)], whereas Cgy is naturally obtained by
a 3D Fourier transformation [due to ]\A/fx,y = Mx,y(qx,qy,qz)].
Therefore, in order to compare both correlation functions, we
have to employ for the corgputatlon of Csm the same averaged
2D Fourier components | M, | and |M |2 that enter d Xy /d <2,
i.e., the integration in Eq. (5) is also only carried out over the
y-z plane.

Before discussing the correlations functions, we show
in Fig. 2 comparison between the experimental (spin-
misalignment) SANS cross section of nanoporous iron [11]
and the results of the micromagnetic simulations. The sim-
ulation data exhibit an overall good agreement with the
experimental data and the anisotropic character of d X, /d<2
is clearly reproduced; this supports the validity of our micro-
magnetic simulation methodology.

The correlation functions at 0.6 T, obtained using Eqs. (4)
and (6), are depicted in Fig. 3 along the horizontal (z) and ver-
tical (y) direction. One recognizes the existence of anisotropic
correlations already for the autocorrelation function of the
spin misalignment (not influenced by the interaction between
neutrons and magnetic moments), which may be expected due
to the long-range and anisotropic nature of the magnetodipolar
interaction (see also Fig. 1); the difference between both
directions is significant (in particular for r = 30-40 nm) with
Csm along the vertical direction being exclusively positive
definite, while Cgy along the horizontal direction intersects
the r axis at r =20 nm and possesses a global minimum
at r =30 nm. The existence of anticorrelations in Cgy
around the particular  value is a manifestation of the typical
magnetization distribution M (r) around a pore (see Fig. 1),
which is due to the configuration of the magnetodipolar field
in the vicinity of such an inclusion. Namely, the perpendicular
magnetization component changes its sign along the direction
of applied field at a distance comparable with the pore
diameter. Of course, the zeros and global minima of the
correlation functions are dependent on the applied magnetic
field. We point out (see also explanations above) that the
difference between the correlation functions corresponding to
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FIG. 3. (Color online) Comparison between the normalized au-
tocorrelation function of the spin misalignment Cgy (solid lines)
and the normalized correlation function of the spin-misalignment
SANS cross section Cy, (dashed lines) along different directions in
the y-z detector plane (uoHy = 0.6 T). The right images show the
corresponding combination of Fourier components, projected into the
plane of the 2D detector: (autocorrelation) [M,|* + |M,|% (SANS)
|M. > + |M 1> cos? 6 — (M M* + M*M .)sinf cosf. Pixels in the
corners of the images have ¢ S 0.4 nm’] Logarithmic color scale
is used.

both approaches—neutron scattering and micromagnetics—is
also significant, in particular, for » = 20-50 nm.

The situation becomes even more interesting if the magnetic
system possesses a second symmetry breaking (in addition to
the symmetry breaking caused by the external magnetic field).
It can lead to the formation of nontrivial 3D correlations,
i.e., the correlation lengths of the magnetization distribution
can be significantly different along the three coordinate
axes. One may observe this effect, e.g., by introducing an
antisymmetric exchange contribution to the total energy,
also called Dzyaloshinskii-Moriya (DM) interaction [15,16].
This interaction, which is due to the relativistic spin-orbit
coupling, favors the formation of spin canting [17], and
on the phenomenological level of micromagnetic theory the
corresponding energy term can be expressed as [18]

D
EDMzﬁszva-(VxM)dv, )

where D denotes an effective DM constant. As far as
the magnetic SANS cross section of nanocrystalline bulk
ferromagnets is concerned, it is certainly possible that, due
to the lack of inversion symmetry near interface regions,
d¥,/dS2 depends on Epy. However, this will be the subject
of future studies.

Another example for a magnetic system with nontrivial 3D
correlations is a polycrystalline magnet with a nonisotropic
(e.g., in-plane) distribution of anisotropy axes of the individual
grains (see Fig. 4). Here we have simulated this situation for
the case of nanoporous cobalt. The choice of this material was
motivated by the strong uniaxial anisotropy (K, = 400 kJ/m?
[13]). The random 2D distribution of anisotropy axes is
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FIG. 4. (Color online) Isosurfaces of the 3D magnetization
Fourier components |1\7x(q)|2 and |1\~4y(q)|2 of porous cobalt at an
external magnetic field of uoHy = 0.6 T applied in z direction.
The image below schematically shows the assumed distribution of
uniaxial anisotropy axes in the x-z plane.

in the x-z plane. All structural parameters including the
porosity value are the same as we used for the simulations
on porous iron. The local saturation magnetization and the
exchange-stiffness constant of cobalt were, respectively, taken
as uoMy; = 1.76 T and A = 28 pJ/m [19]. The Volume of the
simulated Co sample is V = 0.48 x 0.48 x 0.48 um?, also
discretized into N ~ 5 x 10° mesh elements.

The simulation results are displayed in Fig. 4 as isosurfaces
of the 3D magnetization Fourier components |M (Gx,qy, g
and |My(qx,qy,qz)|2. One can clearly see that both Fourier
components are strongly influenced by the magnetodipolar
interaction, which results in a 3D clover-leaf-shaped pattern
that was already presented in Fig. 1 as a projection into
the plane g, = 0. But the most important observation is
that |M,|*> and M, | are qualitatively different (for a direct
qualitative comparison one should rotate, e.g., the |M,C|2
component around q, taking into account the relation between
the Fourier components and the coordinate system). The
magnetodipolar ¢ structure”mlM |2 is more pronounced, since
the corresponding coordinate vector ey, is perpendicular to the
uniaxial anisotropy axes in the sample. This result shows that
the magnetic correlations in porous cobalt with an in-plane
distribution of anisotropy axes have a nontrivial 3D character.
The components cannot be fully matched by rotation around
q;, in contrast to the case of a 3D random distribution of
anisotropy axes (see the results on porous iron above).

IV. SUMMARY AND CONCLUSIONS

Using micromagnetic simulations we have computed the
magnetization distribution of nanoporous ferromagnets (iron
and cobalt) which exhibits strong dipolar correlations due
to nanoscale spatial variations of the magnitude of the
magnetization. The results were used in order to compute
the correlation function of the spin-misalignment SANS
cross section, which is affected in a twofold manner by the
magnetodipolar interaction, and the autocorrelation function
of the spin misalignment, which by contrast depends only on
the magnetization distribution. Our approach was validated by
comparing the simulation results with experimental neutron
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data; we have reported a corrected averaging procedure for
computing the Fourier components of the magnetization,
which results in an anisotropic |M,|>. As a consequence
of the long-range and anisotropic character of the internal
magnetodipolar field, we find strongly anisotropic magnetic
correlations. For a polycrystalline magnet with a nonisotropic
distribution of anisotropy axes of the individual grains,
the existence of nontrivial 3D correlations was demon-
strated. Our results underline the importance of the mag-
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netodipolar interaction for understanding magnetic neutron
scattering.
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