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1 Introduction

Classic treatment evaluations typically focus on assessing the total causal effect of a treatment on

an outcome variable, e.g. the average treatment effect (ATE). In many evaluation problems, how-

ever, also the causal mechanisms appear interesting through which a total effect operates. When

for example assessing the effect of an educational program on criminal activity, policy makers

might want to learn whether the total effect is driven by the program’s effect on employment

chances which in turn may affect criminal behaviour, or by other features of the program such as

its impact on personality traits like integrity or discipline. Understanding the causal mechanisms

may be helpful for appropriately designing such educational programs, e.g. whether the focus

should be on increasing employability, personality development, or both.

Causal mediation analysis aims to decompose a total treatment effect into the indirect effect

operating through an intermediate variable called mediator, and the direct effect net of mediation;

see for instance Robins and Greenland (1992) and Pearl (2001). A range of studies bases iden-

tification on conditional independence assumptions given observables with respect to treatment

and mediator assignment in rather flexible (often nonparametric) models; see for instance Pe-

tersen, Sinisi, and van der Laan (2006), Flores and Flores-Lagunes (2009), van der Weele (2009),

Imai, Keele, and Yamamoto (2010), Hong (2010), Albert and Nelson (2011), Imai and Yamamoto

(2011), Tchetgen Tchetgen and Shpitser (2012), and Vansteelandt, Bekaert, and Lange (2012),

among others.1 Contributions concerned with nonparametric identification under conditional in-

dependence conventionally focus on binary treatments. Yet, there are many empirical problems

in which treatment intensity is (close to) continuous, e.g. hours of participation in an educational

program or the dose of a medical treatment.

This paper considers the identification and semi- as well as nonparametric estimation of

natural direct and indirect effects (in the denomination of Pearl (2001))2 when the treatment

is continuous. The indirect effect might either concern a single mediator or reflect the impact

operating through several mediators jointly and in the latter case, conditional independence must

hold for each mediator. We propose an estimator based on weighting by the inverse of conditional

treatment densities (i) given observed covariates and (ii) given covariates and the mediator(s),

also known as generalized propensity scores; see Hirano and Imbens (2005) and Imai and van Dyk

(2004). The generalized propensity scores are either obtained parametrically or nonparametrically

by conditional kernel density estimation. We show that estimation is asymptotically normal

and converges at the rate of one-dimensional nonparametric regression to the effects of interest

under specific regularity conditions. We also provide a simulation study that illustrates the

robustness of our method when compared to classic linear mediation analysis that relies on tight

1In contrast, the seminal papers in mediation analysis of Judd and Kenny (1981) and Baron and

Kenny (1986) assume linear models for both the mediator and the outcome.
2Such effects have also been referred to as pure/total direct and indirect effects by Robins and Green-

land (1992) and Robins (2003) or as net and mechanism treatment effects by Flores and Flores-Lagunes

(2009).
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parametric assumptions. Finally, we apply our approach to data on the Job Corps program, a

U.S. educational intervention for disadvantaged youth. Specifically, we disentangle the program’s

negative effect on crime, measured by the number of arrests in the fourth year, into an indirect

component operating through the mediator employment and a direct remainder effect covering

any other causal mechanisms as for instance personality development. Our findings point to an

important direct and nonlinear reduction of the number of arrests as a consequence of Job Corp

under a sufficiently large treatment intensity of roughly 1000 hours or more, while indirect effects

are close to zero for the investigated range of treatment intensities of up to 2000 hours.

Our paper fills an important methodological gap in the causal mediation literature with con-

tinuous treatment doses, where studies typically rely on rather strong functional form restrictions

for identification. The semi- and nonparametric literature on continuous treatments under condi-

tional independence is relatively sparse and focuses on the estimation of total (rather than direct

and indirect) treatment effects: Flores (2007) proposes a nonparametric kernel regression esti-

mator for average dose-response functions. Lee (2018) estimates the unconditional distribution

of potential outcomes using the estimated generalized propensity score as generated regressors.

Galvao and Wang (2015) propose a semiparametric propensity score weighting estimator. Our

approach can be regarded as an extension of the semi- and nonparametric weighting approaches of

Huber (2014) and Hsu, Huber, and Lai (2018) for discrete treatments to the continuous treatment

case using kernel functions and the concept of the generalized propensity score.3

The remainder of the paper is organized as follows. Section 2 discusses the parameters of

interest along with their identification based on weighting. Section 3 presents the estimation

approach along with its properties. Sections 4 and 5 provide a simulation study based on the Job

Corps experimental study, respectively. Section 6 concludes.

2 Identification

Our goal is to decompose the average treatment effect (ATE) of a continuous treatment variable

D on an outcome variable Y into a direct effect and an indirect effect operating through the

mediator M which may be a scalar or a vector and discrete and/or continuous. For a generic

random variable A, let A denote the support of A. To define the effects of interest, we use

the potential outcome framework, e.g. Rubin (1974), which has been applied in the context of

mediation analysis by Rubin (2004), Ten Have, Joffe, Lynch, Brown, Maisto, and Beck (2007),

and Albert (2008), among others. Let M(d), Y (d,M(d′)) denote the potential mediator state as a

function of the treatment and potential outcome as a function of the treatment and the potential

3The semiparametric version of the proposed estimator is provided in the ‘causalweight’ package by

Bodory and Huber (2018) for the statistical software ‘R’. Further alternatives that permit assessing direct

and indirect effects of continuous treatments are the ‘medflex’ package by Steen, Loeys, Moerkerke, and

Vansteelandt (2017), which implements imputation-based estimation of potential outcomes as suggested

by Vansteelandt, Bekaert, and Lange (2012), and the regression-based ‘mediation’ package by Tingley,

Yamamoto, Hirose, Imai, and Keele (2014).
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mediator, respectively, under treatments values d, d′ ∈ D.

For each unit only one potential outcome and potential mediator state, respectively, are

known, namely those related to the treatment value which is observed for that unit. That is,

the observed mediator and outcome correspond to M = M(D) and Y = Y (D,M(D)) under

the observed treatment state D. In contrast, we cannot observe potential outcomes and me-

diators defined upon treatment values different to the observed one. Specifically, Y (d,M(d′))

is not observed for any individual if d 6= d′, as at least one of d, d′ is necessarily different to

the observed treatment. Identification of causal effects therefore requires specific assumptions.

Similar to Imai, Keele, and Yamamoto (2010) (see their Assumption 1), Tchetgen Tchetgen and

Shpitser (2012) and many others, we base identification on a sequential conditional independence

assumption imposed on treatment and mediator assignment. However, contrary to the standard

in the literature, we consider a continuous treatment rather than a binary one.

Our first assumption requires that given a vector of observed pre-treatment characteristics

which we denote by X, the treatment is conditionally independent of the potential mediator

states and the potential outcomes.

Assumption 2.1 (Conditional Independence of the Treatment):

{Y (d′,m),M(d)}⊥D|X = x for all (d, d′,m, x) ∈ D2 ×M×X .

Assumption 2.1 rules out unobserved confounders jointly affecting the treatment on the one

hand and the mediator and/or the outcome on the other hand conditional on X. In the treatment

or program evaluation literature, this is referred to as conditional independence, selection on

observables, or exogeneity; see Imbens (2004). We point out that conditional independence must

hold with respect to any value in the continuous support of the treatment, which thus appears

stronger than for the binary treatment case.

Our second assumption imposes conditional independence of the mediator given the treatment

and the covariates along with a common support restriction on the conditional density of the

treatment. To this end, let fA(a|B = b) denote the conditional density of variable A at some

value a given that variable B is equal to value b.

Assumption 2.2 (Conditional Independence of the Mediator):

(i) Y (d′,m)⊥M |D = d,X = x for all (d, d′,m, x) ∈ D2 ×M×X .

(ii) fD(d|M = m,X = x) > 0 for all (d,m, x) ∈ D ×M×X .

Assumption 2.2 (i) rules out unobserved confounders jointly affecting the mediator and the

outcome conditional on D and X. This is for instance violated if unobserved post-treatment

variables influence M and Y , and are not fully determined by X and/or D. When M is mul-

tidimensional, Assumption 2.2 (i) needs to hold for each element in M , such that its strength

increases in the number of mediators. Assumption 2.2 (ii) is a common support restriction. It

says that the conditional density (or generalized propensity score) to receive any treatment d in
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the support of D given M,X is larger than zero. This also implies that fD(d|X = x) > 0 and

fM (m|D = d,X = x) > 0 by Bayes’ theorem. Intuitively, it is required that individuals (a) with

comparable values in M and X exist across all possible treatment doses and (b) with comparable

values in D and X exist across all possible mediator values. We note that this assumption could

be relaxed if only a subset of treatment values d was to be considered in the analysis.

Huber (2014) shows the identification of the mean potential outcomes µ(d, d) = E[Y (d,M(d))]

and µ(d, d′) = E[Y (d,M(d′))] with d 6= d′ using weighting by the inverse of specific propensity

scores when Assumptions 2.1 and 2.2 are phrased in a binary context. Specifically,

µ(d, d) = E

[
Y · 1(D = d)

Pr(D = d|X)

]
, (2.1)

µ(d, d′) = E

[
Y · 1(D = d)

Pr(D = d|M,X)
· Pr(D = d′|M,X)

Pr(D = d|X)

]
, (2.2)

1(·) denoting the indicator function. Also, Pr(D = d|X) = E[1(D = d)|X] and Pr(D =

d|M,X) = E[1(D = d)|M,X] are the conditional expectations of the weights, 1(D = d), that

correspond to the treatment propensity scores. In the binary treatment case, (2.1) and (2.2)

therefore correspond to Equations (4) and (5) in Huber (2014).

Closely related identification results can be established for the case of a continuous treatment

when appropriately adapting the weighting expressions; see also the discussion in Flores, Flores-

Lagunes, Gonzalez, and Neumann (2012) and Flores (2007). To this end, denote by ω(D; d, h) a

weighting function that depends on the distance between D and the reference value d as well as

a non-negative tuning parameter h. The closer the tuning parameter h is to zero, the less weight

is given to larger discrepancies between D and d. This modification of the weighting function is

required as truly continuous treatments do not have mass points. The probability of a specific

value d is therefore equal to zero, which excludes the use of indicator functions. For example,

as in Flores, Flores-Lagunes, Gonzalez, and Neumann (2012), we define the weighting function

to be a kernel function: ω(D; d, h) ≡ K ((D − d)/h) /h, where K is a symmetric second order

kernel function assigning more weight to observations closer to d and h is a bandwidth. Under

the assumption that fD(d|M,X) and E[Y |D = d,M,X] are continuous in d, the parameters of

interest are identified in analogy to Equations (2.1) and (2.2) when letting h go to zero:

µ(d, d) = lim
h→0

E

[
Y · ω(D; d, h)

fD(d|X)

]
, (2.3)

µ(d, d′) = lim
h→0

E

[
Y · ω(D; d, h)

fD(d|M,X)
· fD(d′|M,X)

fD(d′|X)

]
. (2.4)

We note that fD(d|X) and fD(d|M,X) are the generalized propensity scores that correspond to

limh→0E[ω(D; d′, h)|X] and limh→0E[ω(D; d′, h)|M,X], respectively.

The identification of the means of the potential outcomes implies the identification of the

direct and indirect effects. The natural direct effect is obtained by assessing the difference in

potential outcomes under two distinct treatment values, say d and d′, when keeping the mediator

fixed at its potential value under either d or d′:

θd,d′(d
′) = µ(d, d′)− µ(d′, d′), θd,d′(d) = µ(d, d)− µ(d′, d), for d 6= d′. (2.5)
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Equivalently, the (average) indirect effects is defined as

δd,d′(d) = µ(d, d)− µ(d, d′), δd,d′(d
′) = µ(d′, d)− µ(d′, d′), for d 6= d′. (2.6)

We note that either θd,d′(d
′) and δd,d′(d) or θd,d′(d) and δd,d′(d

′) add up to the total average

causal effect based on comparing potential outcomes under values d and d′. Furthermore, direct

and indirect effects are permitted to be heterogeneous in M and D, respectively, as θd,d′(d
′)

(δd,d′(d)) might differ from θd,d′(d) (δd,d′(d
′)). This allows for interactions of D and M in the

determination of outcome Y .

3 Estimation

Suppose the availability of a random sample {(Yi,Mi, Di, Xi)}ni=1 from the joint distribution of

(Y,M,D,X) for estimating the potential outcomes as well as the direct and indirect effects. We

first describe fully nonparametric estimation of direct and indirect effects based on kernel methods

along with its properties. At the end of this section, we discuss semiparametric estimation based

on parametric generalized propensity scores. Following standard practice, the subsequent discus-

sion implicitly assumes that regressors have been standardized by dividing by their respective

standard deviations.

For a s-dimensional vector u, let Kh(u) = Πs
j=1k(uj/h)/h be a product kernel with a generic

kernel function k and bandwidth h. Let K1,h1(u) = Πs
j=1k1(uj/h1)/h1 and h1 denote the kernel

function and bandwidth, respectively, for the estimation of the generalized propensity scores, and

K2,h2
and h2 be the respective parameters for estimating the mean potential outcomes (based on

conditioning only on D). In the first step, the generalized propensity scores, i.e., the conditional

densities of D given X or M,X, are obtained by

f̂D(d|Xi) =

∑n
j=1K1,h1

(Xj −Xi, Dj − d)∑n
j=1K1,h1

(Xj −Xj)
and (3.1)

f̂D(d|Mi, Xi) =

∑n
j=1K1,h1

(Mj −Mi, Xj −Xi, Dj − d)∑n
j=1K1,h1

(Mj −Mi, Xj −Xj)
,

respectively. In the second step, (2.3) and (2.4) are estimated by the respective sample analogs

with normalized weights, which we denote by µ̂(d, d) and µ̂(d, d′):

µ̂(d, d) =

n∑
i=1

YiK2,h2
(Di − d)

f̂D(d|Xi)

/ n∑
i=1

K2,h2
(Di − d)

f̂D(d|Xi)
, (3.2)

µ̂(d, d′) =

n∑
i=1

YiK2,h2 (Di − d)

f̂D(d|Mi, Xi)
· f̂D(d′|Mi, Xi)

f̂D(d′|Xi)

/ n∑
i=1

K2,h2 (Di − d)

f̂D(d|Mi, Xi)
· f̂D(d′|Mi, Xi)

f̂D(d′|Xi)
.

Assumption 3.1 invokes several regularity conditions required for the consistency and asymptotic

normality of the proposed estimator.

Assumption 3.1 (Regularity Conditions):

5



(i) The data {Yi,Mi, Di, Xi}, i = 1, ..., n are independent and identically distributed (i.i.d.).

(ii) The probability density function fDMX(d,m, x) is bounded away from zero and is at least

r-order continuously differentiable with respect to (d,m, x), with uniformly bounded deriva-

tives on D ×M×X , a compact and convex subset of R1+sm+sx , where sm and sx are the

dimensions of M and X, respectively.

(iii) E [Y |D = d,M = m,X = x] is at least r-order continuously differentiable with respect to

(d,m, x) on D ×M×X and has uniformly bounded derivatives.

(iv) The symmetric kernels k1 and k2 are bounded differentiable, have convex bounded supports,

and have order r1 ≥ 2 and r2 ≥ 2, respectively.4

(v) The bandwidths h1, h2 and h ≡ min{h1, h2} and the orders r1 and r2 satisfy h1, h2 → 0,

nh1
2sh22h

−1 → ∞, nhh4r11 h−22 → 0, nh1h
2r2
2 = O(1), nh2r1+1

1 = O(1), and h2r11 h−12 h → 0,

as n→∞, where the dimension of the regressors is s ≡ 1 + sm + sx.

Our estimator can be linearized to follow a U -statistic, which is well-studied in the literature.

The smoothness and bandwidth conditions in Assumption 3.1 ensure that the remainder terms

of the projections of the U -statistic and the bias terms are asymptotically first-order negligible.

Assumption 3.1(iv) imposes standard regularity conditions for kernel functions. By Assump-

tion 3.1(v), the second step bias is characterized by hr22 , while the first step bias is dominated by

terms of order hr11 and hs1, which involves the dimension of the regressors s. Therefore, for the first

step, a higher-order kernel is required in dependence of the dimension of the regressors. For the

second step, Assumption 3.1 (v) implies that one may either use the same (higher-order) kernel

and bandwidth as for the first step, or alternatively a second-order kernel, requiring a smaller

bandwidth h2 < h1. In the latter case, the estimation error of the first step density estimators

is first-order asymptotically negligible.5 The following theorem provides the main result of the

paper, namely the asymptotic normality of our estimator.

Theorem 3.1 (Asymptotics for the Nonparametric Case)

Suppose Assumptions 2.1, 2.2 and 3.1 hold with r ≥ max{r1, r2}. Then

√
nh (µ̂(d, d)− µ(d, d))

=

√
h

n

n∑
i=1

(Yi − µ(d, d))
K2,h2

(Di − d)

fD(d|Xi)
− (E[Y |D = d,Xi]− µ(d, d))

K1,h1
(Di − d)

fD(d|Xi)
+ op (1)

d−→N (0, Vd),

where

Vd ≡

 E [V ar[Y |D = d,X]/fD(d|X)]R(k2) if h = h1 = h2 and k1 = k2,

E
[
E
[
(Y − µ(d, d))

2 ∣∣D = d,X
]
/fD(d|X)

]
R(k2) if h = h2 < h1,

4A kernel k is of order r if
∫
k(u)du = 1,

∫
ulk(u)du = 0 for 0 < l < r, and

∫
|urk(u)|du <∞.

5Furthermore, the convergence rate is slower than the rate when we use the same higher-order kernel

for both steps.
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in which R(k) ≡
∫∞
−∞ k2(u)du and

√
nh (µ̂(d, d′)− µ(d, d′))

=

√
h

n

n∑
i=1

(
(Yi − µ(d, d′))K2,h2(Di − d)

− (g(d,Mi, Xi)− µ(d, d′))K1,h1
(Di − d)

) fD(d′|Mi, Xi)

fD(d|Mi, Xi)fD(d′|Xi)

+ (g(d,Mi, Xi)− E [g(d,M,Xi)|D = d′, Xi])
K1,h1

(Di − d′)
fD(d′|Xi)

+ op (1)

d−→N (0, Vdd′),

where we define g(d,Mi, Xi) ≡ E[Y |D = d,Mi, Xi] and

Vdd′ ≡


(
E
[
V ar[Y |D = d,X]

f2
D(d′|M,X)

fD(d|M,X)f2
D(d′|X)

]
+ E [V ar[g(d,M,X)|D = d′, X]/fD(d′|X)]

)
R(k2) if h = h1 = h2 and k1 = k2,

E
[
E
[
(Y − µ(d, d′))

2 ∣∣D = d,X
]

f2
D(d′|M,X)

fD(d|M,X)f2
D(d′|X)

]
R(k2) if h = h2 < h1.

For inference, one may use a sample analog estimator for the asymptotic variance. For example,

given a uniform consistent estimator Ê[Y |D = d,X = x] for E[Y |D = d,X = x], a consistent for

Vd is

V̂d =
h

n

n∑
i=1

(
(Yi − µ̂(d, d))

K2,h2(Di − d)

f̂D(d|Xi)
−
(
Ê[Y |D = d,Xi]− µ(d, d)

) K1,h1(Di − d)

f̂D(d|Xi)

)2
.

This applies both when a single bandwidth is used such that h = h1 = h2 and k1 = k2 as well as

when h = h1 < h2. V̂dd′ is obtained analogously.

As an alternative to basing variance estimation on the sample analogs of Theorem 3.1, one

may apply bootstrap methods. Bootstrapping is known to be valid for local constant estima-

tors; see Horowitz (2001). In the proof of Theorem 3.1, we can replace the random sample

{(Yi,Mi, Di, Xi)}i=1,...,n with the bootstrap sample {(Y ∗i ,M∗i , D∗i , X∗i )}i=1,...,n and replace the

population distribution p and E with the empirical distribution p∗ and E∗.6 Thus the bootstrap

is valid in this context.

Our theory so far only considered the case in which all elements in X and M are continuous

variables. We subsequently briefly discuss the inclusion of discrete variables. Consider a discrete

covariate, X̃, that only takes a finite number of values and enters the conditioning set in Assump-

tions 2.1 and 2.2 in addition to the continuously distributed X. The conditional density of D = d

given the covariates may be estimated by

f̂D(d|Xi, X̃i) =

∑n
j=1 1(X̃j = X̃i)Kh(Xj −Xi)Kh(Dj − d)∑n

j=1 1(X̃j = X̃i)Kh(Xj −Xj)
,

6Lemma 3.1 in Powell, Stock, and Stoker (1989) and the asymptotic linear representation for the

U-statistic hold for the bootstrap estimator. The Lyapounov condition holds by the same argument.
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i.e., in subcells defined upon the values of X̃. Analogously, f̂D(d|Mi, Xi, X̃i) is obtained. Re-

placing f̂D(d|Xi) and f̂D(d|Mi, Xi) in (3.2) by f̂D(d|Xi, X̃i), and f̂D(d|Mi, Xi, X̃i), respectively,

allows estimating µ(d, d) and µ(d, d′). When substituting fDMX(d,m, x) and E[Y |D = d,M =

m,X = x] by fDMXX̃(d,m, x, x̃) and E[Y |D = d,M = m,X = x, X̃ = x̃], respectively, in

Assumption 3.1, our previous asymptotic results remain valid.7

We conclude this section by considering semiparametric estimation of µ(d, d) and µ(d, d′), in

which the generalized propensity scores fD(d|X) and fD(d|M,X) are parametrically specified.

To this end, we invoke the following assumption on the first step estimation of the generalized

propensity scores.

Assumption 3.2 (Parametric Generalized Propensity Scores):

(i) The estimator γ̂x of the generalized propensity score model fD(d|x; γx), γx ∈ Γx ⊆ Rsx , sat-

isfies supx∈X |fD(d|x; γ̂x)−fD(d|x; γx0)| = Op(n
−1/2), where γx0 ∈ Γx such that fD(d|x) =

fD(d|x; γx0) for all x ∈ X ;

(ii) The estimator γ̂mx of the generalized propensity score model fD(d|m,x; γmx), γmx ∈ Γmx ⊆
Rsmx , satisfies supm∈M,x∈X |fD(d|m,x; γ̂mx)−fD(d|m,x; γmx0)| = Op(n

−1/2) where γmx0 ∈
Γmx, such that fD(d|m,x) = fD(d|m,x; γmx0) for all m ∈M and x ∈ X .

(iii) fD(d|x) and fD(d|m,x) are uniformly bounded above and bounded away from zero on D ×
M×X .

A sufficient condition for Assumption 3.2 is the following. Suppose that the joint density

function of D, M and X, fDMX(d,m, x) is uniformly bounded above and bounded away from

zero and follows a parametric model such that |fDMX(d,m, x)− fDMX(d,m, x; γ̂)| is Op(n
−1/2)

uniformly. γ̂ is a root-n consistent estimator for γ0 (typically based on maximum likelihood) with

fDMX(d,m, x) = fDMX(d,m, x; γ0). Let fX(x), fDX(d, x), fMX(m,x) be the marginal den-

sity functions. Then fD(d|x) = fDX(d, x)/fX(x) and fD(d|m,x) = fDMX(d,m, x)/fMX(m,x),

which can be consistently estimated by fD(d|x; γ̂) = fDX(d, x; γ̂)/fX(x; γ̂) and fD(d|m,x; γ̂) =

fDMX(d,m, x; γ̂)/fMX(m,x; γ̂). Semiparametric estimators for µ(d, d) and µ(d, d′) are given by

µ̂(d, d) =

n∑
i=1

YiK2,h2
(Di − d)

f̂D(d|Xi; γ̂x)

/ n∑
i=1

K2,h2 (Di − d)

f̂D(d|Xi; γ̂x))
, (3.3)

µ̂(d, d′) =

n∑
i=1

YiK2,h2 (Di − d)

f̂D(d|Mi, Xi; γ̂mx))
· f̂D(d′|Mi, Xi; γ̂mx)

f̂D(d′|Xi; γ̂x)

/ n∑
i=1

K2,h2 (Di − d)

f̂D(d|Mi, Xi; γ̂mx)
· f̂D(d′|Mi, Xi; γ̂mx)

f̂D(d′|Xi; γ̂x)
.

By invoking Assumption 3.2, the asymptotic theory for these estimators simplifies considerably

when compared to the nonparametric case; see Theorem 3.2 below.

7Note that sx and sm correspond to the numbers of continuous variables in X and M , respectively,

i.e., without the discrete covariate X̃.
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Theorem 3.2 (Asymptotics for the Semiparametric Case)

Suppose Assumptions 2.1, 2.2, 3.1(i)-(iv), and 3.2 hold with r ≥ r2. Let the order of the

kernel r2 = 2. The bandwidth h2 satisfy h2 → 0, nh2 →∞, and nh52 → 0. Then√
nh2 (µ̂(d, d)− µ(d, d))

=

√
h2
n

n∑
i=1

(Yi − µ(d, d))
K2,h2

(Di − d)

fD(d|Xi)
+ op(1)

d−→ N (0, Vd),

where Vd = E
[
E
[
(Y − µ(d, d))

2 ∣∣D = d,X
]
/fD(d|X)

]
R(k2) and

√
nh2 (µ̂(d, d′)− µ(d, d′))

=

√
h2
n

n∑
i=1

(Yi − µ(d, d′))
K2,h2

(Di − d)fD(d′|Mi, Xi)

fD(d|Mi, Xi)fD(d′|Xi)
+ op(1)

d−→ N (0, Vdd′),

where Vdd′ = E
[
E
[
(Y − µ(d, d′))

2 ∣∣D = d,M,X
]

f2
D(d′|M,X)

fD(d|M,X)f2
D(d′|X)

]
R(k2).

The main advantage of the semiparametric approach over the fully nonparametric estimator

is that it circumvents the curse of dimensionality problem when the dimensions of X and/or M

are large. On the downside, misspecifications of the generalized propensity scores generally result

in inconsistent estimators of potential outcomes and effects.

4 Simulation study

This section provides a simulation study to investigate the finite sample behaviour of our semi-

and nonparametric methods based on the following data generating process:

Y = 0.3D + 0.3M + αDM + 0.3X + βD3 + U,

M = 0.3D + 0.3X + V, D = 0.3X +W,

X ∼ Uniform(−1.5, 1.5), U, V,W ∼ Uniform(−2, 2), independently of each other.

Outcome Y is a function of the observed variables D,M,X and an unobserved term U . α gauges

the interaction effect between D and M . α = 0 satisfies the assumption of no interaction as

discussed in Robins (2003), implying that the direct effect θd,d′(d) = θd,d′(d
′) in (2.5) and the

indirect effect δd,d′(d) = δd,d′(d
′) in (2.6). In contrast, for α 6= 0, direct and indirect effects are

heterogeneous. β determines whether the direct effect of D on Y is linear (β=0) or nonlinear,

namely cubic (β 6= 0). Mediator M is a function of D,X and the unobservable V . Note that the

indirect effect is linear, as M is linear in D and Y is linear in M . Treatment D is linearly deter-

mined by X and the unobservable W . The covariate X, which confounds the treatment-outcome,

treatment-mediator, and mediator-outcome relation, is continuously uniformly distributed with

support ranging from -1.5 to 1.5. Finally, the unobservables follow uniform distributions with

support ranging from -2 to 2. They are statistically independent of each other as well as of X.
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We consider 1000 simulations and two sample sizes n = 1000, 4000 to investigate the perfor-

mance of our nonparametric weighting approach based on (3.2). As the dimension of (D,X,M) is

equal to s = 3 (see Section 3) in our simulation, we set the orders of the Epanechnikov kernels in

(3.1) and (3.2) to r1 = 4 and r2 = 2, respectively. Furthermore, the bandwidth h1 is determined

by multiplying the respective standard deviations of D,X,M with C1n
−0.12, where C1 = 3.03 is

the constant term in a Silverman (1986)-type rule of thumb for fourth-order Epanechnikov kernels.

Analogously, h2 is obtained using C2n
−0.25, with C2 = 2.34 being the constant for second-order

Epanechnikov kernels. We note that these choices of r1, r2, h1, h2 satisfy the regularity conditions

in Assumption 3.1 required for the satisfaction of Theorem 3.1.

Furthermore, we consider semiparametric weighting based on parametric estimation of the

generalized propensity scores in (3.3). We to this end (incorrectly) assume D to be normally

distributed given X or given (X,M), respectively. Bandwidth h2 is in this case obtained using

the standard rule of thumb for one dimensional kernel regression: C2n
−0.2, with C2 = 2.34. For

all kernel-based computations, we use the ‘np’ package by Hayfield and Racine (2008) for the

statistical software ‘R’. Besides estimation using bandwidths based on the rule of thumb, we

consider undersmoothed versions, in which bandwidths of all kernel procedures are divided by 2.

For comparison, we in addition estimate the direct and indirect effects based on linear OLS

regressions of the mediator on a constant, the treatment, and covariate and of the outcome

on a constant, the treatment, the mediator, and the covariate, respectively. Concerning the

definition of the direct and indirect effects, we set d′ = 0. For d, we consider a sequence of values

defined by an equidistant grid between (and including) −1.5 and 1.5 with step size 0.1 (i.e. d ∈
{−1.5,−1.4, ...1.4, 1.5}, however without including 0 for obvious reasons.

Table 1 reports the means of the absolute bias (abias), standard deviation (sd), and root

mean squared error (RMSE) across all treatment comparisons considered for each effect under

α = 0.5 (effect hetorgeneity) and β = 0 (fully linear model). Not surprisingly, the OLS-based

estimators (OLS) have the lowest standard deviations of all methods due to their parametric

assumptions. On the downside, the OLS estimates of θ(d) and δ(d) are non-negligibly biased

under either sample size due to the omission of the treatment-mediator interactions. In contrast,

the nonparametric weighting estimator with rule of thumb bandwidths (W np) is considerably

less biased. Undersmoothing (W np us) generally entails an even lower absolute bias, but as

expected a higher standard deviation. A qualitatively similar pattern is observed for semipara-

metric weighting with a parametric first step (W p). Undersmoothing (W p us), which in the

semiparametric case only concerns h2, reduces the absolute bias and increases the standard devi-

ation. We also note that the semi- and nonparametric versions do not uniformly dominate each

other in terms of RMSE across the effects and sample sizes considered.

Table 2 gives the estimates for α = 0 (effect homogeneity) and β = 0.25 (nonlinear direct

effects). The OLS estimates of the direct effects are severely biased due to the cubic effect of D

in the outcome model, while the indirect effect estimates are unbiased, as they are indeed linear.

In contrast, the absolute biases of both the semi- and nonparametric weighting estimators for the

direct effects are considerably smaller and decreasing in the sample size. Again, undersmoothing
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Table 1: Simulations α = 0.5, β = 0

θ̂(d) θ̂(0) δ̂(d) δ̂(0)

abias sd RMSE abias sd RMSE abias sd RMSE abias sd RMSE

n = 1000

OLS 0.124 0.035 0.130 0.000 0.035 0.035 0.124 0.013 0.125 0.001 0.013 0.013

W np 0.020 0.057 0.062 0.062 0.056 0.086 0.077 0.010 0.077 0.039 0.007 0.040

W np us 0.016 0.101 0.103 0.044 0.100 0.113 0.048 0.035 0.060 0.023 0.024 0.034

W p 0.086 0.040 0.100 0.085 0.040 0.095 0.022 0.018 0.031 0.011 0.014 0.018

W p us 0.051 0.081 0.098 0.050 0.080 0.095 0.005 0.022 0.023 0.003 0.016 0.016

n = 4000

OLS 0.124 0.017 0.126 0.000 0.017 0.017 0.124 0.006 0.124 0.000 0.006 0.006

W np 0.016 0.038 0.044 0.054 0.037 0.069 0.065 0.008 0.065 0.034 0.005 0.034

W np us 0.021 0.063 0.067 0.043 0.062 0.079 0.048 0.021 0.052 0.026 0.014 0.029

W p 0.061 0.027 0.069 0.061 0.026 0.067 0.012 0.010 0.017 0.005 0.007 0.009

W p us 0.048 0.049 0.070 0.049 0.048 0.070 0.003 0.012 0.013 0.001 0.009 0.009

Note: ‘abias’, ‘sd’, and ‘RMSE’ report the the average absolute bias, standard deviation, and root

mean squared error, respectively, of the effects across all treatment values d ∈ {−1.5,−1.4, ...1.4, 1.5}

and d′ = 0. ‘OLS’, ‘W np’, ‘W np us’, ‘W p’, and ‘W p us’ refer to linear regression, nonparametric

weighting, nonparametric weighting with undersmoothing in the kernel procedures, weighting with a

parametric generalized propensity score, and weighting with a parametric generalized propensity score

and undersmoothing in the kernel function, respectively.

generally entails a lower absolute bias than relying on rule of thumb bandwidths, but leads to

higher standard deviations. Interestingly, the undersmoothed semiparametric version (W p us)

dominates among all weighting approaches both in terms of small absolute biases and RMSEs,

despite incorrectly assuming normality.

Finally, Table 3 provides the results when setting α = 0.5, β = 0.25 (effect heterogeneity and

nonlinear direct effects). Three out of four OLS effect estimates exhibit important biases, while

both the semi- and nonparametric weighting estimators are less biased and superior to OLS in

terms of average RMSEs under either sample size. All in all, the simulations demonstrate the

merits of our methods in terms of robustness to deviations from specific parametric assumptions.

This, however, comes at an efficiency cost which decreases in the sample size. The results suggest

that our methods perform decently in sample sizes with several thousand observations (or more),

which is quite common in empirical research.
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Table 2: Simulations α = 0, β = 0.25

θ̂(d) θ̂(0) δ̂(d) δ̂(0)

abias sd RMSE abias sd RMSE abias sd RMSE abias sd RMSE

n = 1000

OLS 0.280 0.029 0.282 0.280 0.029 0.282 0.001 0.011 0.011 0.001 0.011 0.011

W np 0.099 0.055 0.117 0.097 0.055 0.115 0.035 0.009 0.036 0.038 0.008 0.039

W np us 0.043 0.096 0.106 0.041 0.097 0.105 0.021 0.025 0.033 0.023 0.024 0.034

W p 0.127 0.042 0.138 0.129 0.043 0.139 0.024 0.018 0.030 0.018 0.015 0.023

W p us 0.023 0.078 0.083 0.024 0.078 0.085 0.008 0.018 0.020 0.004 0.016 0.016

n = 4000

OLS 0.281 0.015 0.281 0.281 0.015 0.281 0.000 0.006 0.006 0.000 0.006 0.006

W np 0.064 0.036 0.074 0.061 0.036 0.072 0.031 0.006 0.031 0.034 0.005 0.034

W np us 0.035 0.059 0.069 0.033 0.059 0.068 0.024 0.014 0.028 0.026 0.014 0.029

W p 0.076 0.026 0.082 0.078 0.027 0.084 0.015 0.009 0.017 0.007 0.007 0.010

W p us 0.019 0.046 0.052 0.023 0.046 0.054 0.004 0.010 0.010 0.001 0.009 0.009

Note: ‘abias’, ‘sd’, and ‘RMSE’ report the the average absolute bias, standard deviation, and root

mean squared error, respectively, of the effects across all treatment values d ∈ {−1.5,−1.4, ...1.4, 1.5}

and d′ = 0. ‘OLS’, ‘W np’, ‘W np us’, ‘W p’, and ‘W p us’ refer to linear regression, nonparametric

weighting, nonparametric weighting with undersmoothing in the kernel procedures, weighting with a

parametric generalized propensity score, and weighting with a parametric generalized propensity score

and undersmoothing in the kernel function, respectively.

5 Empirical illustration

We apply our method to the Job Corps study which was conducted in the mid-1990s to assess

the publicly funded U.S. Job Corps program. The program targets individuals who are between

16 and 24 years, legally reside in the U.S., and come from low-income households. Participants

received approximately 1200 hours of vocational training and education, housing, and board over

an average duration of 8 months. Schochet, Burghardt, and Glazerman (2001) and Schochet,

Burghardt, and McConnell (2008) discuss in detail the study design and report the average

effects of program assignment on a broad range of outcomes. Their findings suggest that Job

Corps increases educational attainment, reduces criminal activity, and increases employment and

earnings, at least for some years after the program.

Several previous studies investigated various causal mechanisms of the Job Corps program.

Flores and Flores-Lagunes (2009) find a positive direct effect of program assignment on earnings

when controlling for the mediator work experience which they assume to be conditionally exoge-

nous given observed covariates. Also Huber (2014) invokes a selection on observables assump-

tion and estimates a positive direct health effect when controlling for the mediator employment.
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Table 3: Simulations α = 0.5, β = 0.25

θ̂(d) θ̂(0) δ̂(d) δ̂(0)

abias sd RMSE abias sd RMSE abias sd RMSE abias sd RMSE

n = 1000

OLS 0.298 0.037 0.303 0.280 0.037 0.283 0.124 0.013 0.125 0.001 0.013 0.013

W np 0.100 0.061 0.122 0.114 0.060 0.132 0.076 0.011 0.077 0.038 0.008 0.039

W np us 0.044 0.102 0.112 0.056 0.101 0.120 0.047 0.035 0.060 0.023 0.024 0.034

W p 0.133 0.046 0.145 0.130 0.047 0.142 0.028 0.020 0.039 0.018 0.016 0.024

W p us 0.028 0.083 0.091 0.028 0.082 0.090 0.008 0.022 0.025 0.004 0.016 0.017

n = 4000

OLS 0.299 0.018 0.300 0.281 0.018 0.282 0.124 0.007 0.124 0.000 0.007 0.007

W np 0.064 0.039 0.076 0.078 0.038 0.089 0.065 0.008 0.065 0.034 0.005 0.034

W np us 0.035 0.063 0.073 0.049 0.062 0.083 0.047 0.021 0.052 0.026 0.014 0.029

W p 0.080 0.029 0.087 0.079 0.029 0.086 0.017 0.011 0.022 0.007 0.008 0.010

W p us 0.025 0.049 0.058 0.026 0.048 0.058 0.004 0.012 0.014 0.001 0.009 0.009

Note: ‘abias’, ‘sd’, and ‘RMSE’ report the the average absolute bias, standard deviation, and root

mean squared error, respectively, of the effects across all treatment values d ∈ {−1.5,−1.4, ...1.4, 1.5}

and d′ = 0. ‘OLS’, ‘W np’, ‘W np us’, ‘W p’, and ‘W p us’ refer to linear regression, nonparametric

weighting, nonparametric weighting with undersmoothing in the kernel procedures, weighting with a

parametric generalized propensity score, and weighting with a parametric generalized propensity score

and undersmoothing in the kernel function, respectively.

Frölich and Huber (2017) use an IV strategy based on two instruments to disentangle the earnings

effect of being enrolled in Job Corps into an indirect effect via hours worked and a direct effect

(likely related to a change in human capital). The results point to the existence of an indirect

rather than a direct mechanism. Using a partial identification approach allowing for mediator

endogeneity, Flores and Flores-Lagunes (2010) derive bounds for direct and indirect effects of

Job Corps assignment on employment and earnings mediated by the achievement of a GED, high

school degree, or vocational degree.

Contrary to these previous contributions which consider binary treatment definitions, our

interest lies in the effect of different doses, i.e. lengths of participation in Job Corps on an outcome

variable capturing criminal behaviour, namely the number of arrests. Our treatment definition

follows Flores, Flores-Lagunes, Gonzalez, and Neumann (2012) who assess the program’s total

effect on earnings. In contrast, our mediation analysis investigates whether the time spent in Job

Corps affects the number of arrests indirectly through employment or ‘directly’, i.e. through any

other causal mechanisms. More precisely, our treatment variable D is defined as the total hours

spent either in academic or vocational classes in the 12 months following the program assignment

according to the survey.The mediator M is the proportion of weeks employed in the second year,
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while the outcome variable Y corresponds to the number of times the individual was arrested by

the police in the fourth year after the random assignment.

We invoke sequential conditional independence of the treatment and the mediator as outlined

in Section 2 based on a rich set of pre-treatment covariates X, which overlaps with the control

variables used in Flores, Flores-Lagunes, Gonzalez, and Neumann (2012). Specifically, we control

for individual characteristics like age, gender, ethnicity, language competency, education, marital

status, household size and income, previous receipt of social aid, and family background (e.g.

parents’ education), as well as health and health-related behavior at base line. Conditioning on

such a rich set of socio-economic variables appears important, as identification relies on success-

fully controlling for all confounders jointly influencing at least two out of the three variables time

in treatment, employment in the second year, and arrests in the fourth year. Furthermore, we

condition on variables that are predictive for the duration in the program, namely expectations

about Job Corps and interaction with the recruiters. Such factors appear important as they are

likely correlated with personality traits like motivation, which may also affect the mediator and

the outcome. Finally, we include pre-treatment outcome and mediator variables that reflect labor

market and criminal behavior prior to Job Corps. This permits controlling for unobserved con-

founders that are time constant in the sense that they only affect the mediator and the outcome

through their respective pre-treatment values.

We, however, acknowledge that our framework does not allow for dynamic confounding,

implying that the length of treatment and/or the share of employment are affected by confounders

that are themselves influenced by initial treatment decisions. This would for instance be the

case if initial treatment participation affected motivation, which in turn influenced treatment

duration, employment, and criminal behaviour. Even though we hope that the limited time

horizon considered for the treatment (first year) and the mediator (second year) mitigates issues

related to dynamic confounding, this threat to identification needs to be borne in mind when

interpreting the results.

The original Job Corps data set consists of 15,386 individuals prior to program assignment,

but a substantial share never enrolled in the program and dropped out of the study. We focus

on the 10, 775 observations for which both the post-treatment variables M and Y are observed

in the follow-up surveys after 2 and 4 years, respectively. There are cases of item non-response

in various elements of X measured at the baseline survey, for which we account by the inclusion

of missing dummies. Similar to Flores, Flores-Lagunes, Gonzalez, and Neumann (2012), we

restrict our evaluation sample to observations with a positive treatment intensity, i.e. D > 0,

ultimately consisting of 4,000 individuals. Table 4 provides descriptive statistics for the pre-

treatment covariates as well as the treatment, mediator, and outcome variables in our evaluation

sample, along with the numbers of non-missing observations.

Individuals in our evaluation sample were on average 18.33 years old at baseline when applying

for Job Corps and woman made up 44%. Half of the applicants were black, while whites and

hispanics accounted for 25% and 17%, respectively. Regarding education, 18% of those with non-

missing values held a high school diploma and 4% a General Education Diploma (GED). A large
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Table 4: Descriptives

variable mean sd min max non missing

female 0.44 0.50 0.00 1.00 4000

age 18.33 2.14 16.00 24.00 4000

white 0.25 0.43 0.00 1.00 4000

black 0.50 0.50 0.00 1.00 4000

hispanic 0.17 0.38 0.00 1.00 4000

years of education 10.05 1.54 0.00 20.00 3945

GED diploma 0.04 0.20 0.00 1.00 3982

high school diploma 0.18 0.39 0.00 1.00 3982

native English 0.86 0.35 0.00 1.00 3950

divorced 0.01 0.09 0.00 1.00 3953

separated 0.01 0.11 0.00 1.00 3953

cohabiting 0.03 0.18 0.00 1.00 3953

married 0.02 0.13 0.00 1.00 3953

has children 0.18 0.38 0.00 1.00 3981

ever worked 0.41 0.49 0.00 1.00 1405

average weekly gross earnings 19.41 98.66 0.00 2000.00 3999

is household head 0.11 0.31 0.00 1.00 3933

household size 3.52 2.01 0.00 15.00 3944

designated for nonresidential slot 0.17 0.38 0.00 1.00 4000

total household gross income (in categories) 3.51 2.21 1.00 7.00 2508

total personal gross income (in categories) 1.11 0.48 1.00 7.00 1774

mum’s years of education 11.50 2.60 0.00 20.00 3263

dad’s years of education 11.45 2.90 0.00 20.00 2506

dad did not work when 14 0.06 0.23 0.00 1.00 3575

received AFDC every month 0.80 0.40 0.00 1.00 1148

received public assistance every month 0.85 0.36 0.00 1.00 946

received food stamps 0.45 0.50 0.00 1.00 3836

welfare receipt during childhood (in categories) 2.07 1.19 1.00 4.00 3726

poor/fair general health status 0.13 0.33 0.00 1.00 3953

physical/emotional problems 0.04 0.20 0.00 1.00 3950

extent of marijuana use 2.54 1.55 0.00 4.00 1469

extent of hallucinogen use 2.76 1.73 0.00 4.00 204

ever used other illegal drugs 0.01 0.08 0.00 1.00 2628

extent of smoking 1.53 0.98 0.00 4.00 2084

extent of alcohol consumption 3.14 1.21 0.00 4.00 2306

ever arrested 0.24 0.43 0.00 1.00 3951

times in prison 0.07 0.35 0.00 5.00 3951

time by recruiter speaking of Job Corps (in categories) 2.05 0.94 1.00 4.00 3922

extent of recruiter support 1.59 1.07 1.00 5.00 3911

idea about wished training 0.85 0.35 0.00 1.00 3944

expected hourly wage after Job Corps 9.95 6.57 5.00 96.00 1799

expected improvement in maths 1.32 0.53 1.00 3.00 3916

expected improvement in reading skills 1.53 0.65 1.00 3.00 3932

expected improvement in social skills 1.48 0.68 1.00 3.00 3932

expected to be training for a job 1.04 0.23 1.00 3.00 3922

worried about Job Corps 0.37 0.48 0.00 1.00 3944

1st contact with recruiter by phone 0.41 0.49 0.00 1.00 3953

1st contact with recruiter in office 0.39 0.49 0.00 1.00 2315

expected stay in Job Corps 6.64 9.81 0.00 36.00 4000

total hrs spent in 1st year classes (D) 1194.15 964.89 0.86 5142.86 4000

Share of weeks employed in 2nd year (M) 44.05 37.84 0.00 100.00 4000

Number of arrests in year 4 (Y ) 0.15 0.62 0.00 8.00 4000
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share of respondents (had) received public assistance or welfare benefits, pointing to economic

hardship. 24% had been arrested at least once prior to program assignment (excluding minor

motor vehicles violations). Concerning treatment intensity (D), individuals spent on average 1194

hours either in academic or vocational classes in the first year after assignment. This corresponds

to roughly 149 days of 8 hours. Thus, individuals with a positive treatment intensity were on

average almost 30 working weeks in Job Corps in the first year. The treatment distribution is

right skewed as the median is somewhat lower, amounting to 966 hours in classes. Concerning

the share of weeks employed in the second year (M), the individuals were on average 44.05% in

employment. Finally, the average number of arrests in the fourth year (Y ) amounts to 0.15. Most

individuals were never arrested, while 9% were arrested at least once.

We evaluate the direct and indirect effects for 20 different values of positive treatment in-

tensity between 100 and 2000 hours in steps of 100 vs. a minor treatment of just 40 hours,

corresponding to roughly one working week spent in class. That is, we estimate θ̂(d), θ̂(d′), δ̂(d),

and δ̂(d′) for each of d ∈ {100, 200, ..., 1900, 2000} and d′ = 40, which appears sufficiently rich

to approximate the quasi-continuous nature of our outcome variable.8 Due to large number of

covariates, the generalized propensity scores are estimated parametrically. We therefore assume

that D is conditionally log normally distributed given X or (X,M), as it is common for non-

negative treatments; see for instance Imai and van Dyk (2004). As for semiparametric weighting

in Section 4, estimation relies on (3.3) and the rule of thumb for determining bandwidth h2. We

note that the obtained results are quite similar when assuming a conditional normal distribution

of D (instead of log-normality) and/or applying undersmoothing by taking half of the rule of

thumb bandwidth h2. Inference is based on bootstrap standard errors obtained by bootstrapping

the effects 999 times.

To verify whether our estimates of the generalized propensity score fD(d|M,X) successfully

balance the distributions of the covariates and the mediator across treatment intensities, we

conduct a test that is in the spirit of Smith and Todd (2005). Specifically, we linearly regress

each of the 65 elements in X (that also include missing dummies) as well as M on the log

treatment intensity, the generalized propensity score (given X and M) estimated at the sample

values of D, and the score’s square.9 If (X,M) and D are not associated given the estimated

propensity score such that the latter satisfies the balancing property, then the coefficient on the

log treatment should be statistically insignificant in most cases. The p-values of the coefficient

averages 56.7% and is only in 4 regressions (6%) smaller than 5%, such that we do not find

evidence for a violation of the balancing property.

The upper panel of Figure 1 displays the direct effects under treatment (left) and non-

8In a robustness check, we set d′ = 0 (no classes at all) and also include observations with zero

treatment intensity in our analysis. The point estimates are similar to those presented in this section and

the conclusions are the same.
9Using cubic or quartic polynomials of the propensity score yields similar results.
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Figure 1: Direct effects (top) and indirect effects (bottom) under treatment (left) and

non-treatment (right)
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treatment (right). The direct effects and their marginal changes as a function of d, ∂θ(d)
∂d , are

quite heterogeneous over the range of values d. While small treatment intensities do not appear

to directly reduce the number of arrests, direct effects are statistically significantly negative at

the 5% level from 1000 hours on, when the pointwise 95% confidence intervals (dashed lines) do

not include zero. The effect peaks in absolute terms around 1700 hours, reducing the number of

arrests by 0.07 to 0.08. In relative terms, this effect is substantial, given that the average number

of arrests in the fourth year is 0.15; see Table 4.

The lower panel of Figure 1 provides the indirect effects under treatment (left) and non-

treatment (right) operating through employment. All indirect effects are very small in absolute

terms and never statistically different from zero at the 5% level. Summing up, our results point

to an important direct, nonlinear reduction of the number of arrests in the fourth year as a

consequence of Job Corp under a sufficiently large treatment intensity of roughly 1000 hours or

more. In contrast, the effects of program-induced employment changes on arrests are close to

zero for the investigated range of treatment intensities.

6 Conclusion

Assuming sequential conditional independence, we proposed semi- and nonparametric methods

(using either parametric or nonparametric generalized propensity scores) for estimating direct

and indirect effects of a continuous treatment based on inverse probability weighting and kernel

methods. We demonstrated the asymptotic normality of the estimators under particular regularity

conditions and investigated their finite sample behaviour in a simulation study. Finally, we applied

the semiparametric method to the Job Corps program. We found this educational intervention to

directly and nonlinearly decrease the number of arrests in the fourth year after assignment when

controlling for employment as mediator. The semiparametric version of the proposed estimator

is available in the ‘causalweight’ package by Bodory and Huber (2018) for the statistical software

‘R’.
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A Appendix

A.1 Proof of Theorem 3.1

Let the supremum norm of a function A(z) be ‖A‖ ≡ supz |A(z)|. Our estimator has a form of

Â/B̂. A Taylor expansion gives

Â

B̂
=
A

B
+
Â−A
B

− A

B2
(B̂ −B) +Op(‖Â−A‖‖B̂ −B‖+ ‖B̂ −B‖2). (A.1)

The numerator of the estimator µ̂(d, d) is

1

n

n∑
i=1

YiK2,h2(Di − d)
f̂X(Xi)

f̂DX(d,Xi)

=
1

n

n∑
i=1

YiK2,h2
(Di − d)

(
1

fD(d|Xi)
+
f̂X(Xi)− fX(Xi)

fDX(d,Xi)
− f̂DX(d,Xi)− fDX(d,Xi)

fD(d|X = Xi)fDX(d,Xi)

)

+Op

(
1

n

n∑
i=1

Y 2
i K

2
2,h2

(Di − d)

)
Op

(
‖f̂DX − fDX‖2

)
. (A.2)

The kernel-based estimator satisfies the uniform convergence rate as in Lemma B.3 in Newey

(1994),

sup
(d,m,x)∈D×M×X

∣∣∣f̂DMX(d,m, x)− fDMX(d,m, x)
∣∣∣ = Op

(( log n

nh1
s

)1/2
+ h1

r1
)
. (A.3)

Thus the last term in (A.2) is Op

(
h−12

(
(log n/(nh1

s))
−1/2

+ h1
r1
)2)

= op((nh)−1/2) by As-

sumption 3.1(iv).

We analyze the third term in the parentheses in (A.2),

− 1

n

n∑
i=1

YiK2,h2
(Di − d)

f̂DX(d,Xi)− fDX(d,Xi)

fD(d|X = Xi)fDX(d,Xi)

= − 1

n

n∑
i=1

YiK2,h2(Di − d)

fD(d|X = Xi)fDX(d,Xi)

 1

n

n∑
j=1

K1,h1(Dj − d)K1,h1(Xj −Xi)− fDX(d,Xi)


≡ 1

n(n− 1)

n∑
i=1

∑
j 6=i

p(Zi, Zj)

=
1

n

n∑
i=1

E[p(Zi, Zj)|Zi] +
1

n

n∑
j=1

E[p(Zi, Zj)|Zj ]− E[p(Zi, Zj)] +Rem (A.4)

which is a U -statistic with Zi ≡ (Yi, Di, Xi) and

p(Zi, Zj) ≡ −
YiK2,h2

(Di − d)

fD(d|X = Xi)fDX(d,Xi)

(
K1,h1(Dj − d)K1,h1(Xj −Xi)− fDX(d,Xi)

)
.
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To control the remainder term Rem, we calculate

E
[
p(Zi, Zj)

2
]

=E
[ Y 2

i K
2
2,h2

(Di − d)

f2D(d|X = Xi)f2DX(d,Xi)
E
[(
K1,h1

(Dj − d)K1,h1
(Xj −Xi)− fDX(d,Xi)

)2∣∣∣Zi]]
=O(h−12 h−s1 ).

Assumption 3.1(v) implies that E
[
p(Zi, Zj)

2
]
h = O(h−12 h−s1 h) = o(n) that further implies Rem =

op((nh)−1/2) by Lemma 3.1 in Powell, Stock, and Stoker (1989). The projection E[p(Zi, Zj)|Zj ]
satisfies

1

n

n∑
j=1

E[p(Zi, Zj)|Zj ]

=− E

E [Yi|Di, Xi]K2,h2(Di − d)

fD(d|X = Xi)fDX(d,Xi)

 1

n

n∑
j=1

K1,h1
(Dj − d)K1,h1

(Xj −Xi)− fDX(d,Xi)

∣∣∣∣∣Zj


=− 1

n

n∑
j=1

E [Y |D = d,X = Xj ]

fD(d|X = Xj)
K1,h1

(Dj − d) + E [E [Y |D = d,X]] +Op(h2
r2 + h1

r1)

=Op((nh1)−1/2).

Also, the projection E[p(Zi, Zj)|Zi] satisfies

E[p(Zi, Zj)|Zi]

=− E
[

YiK2,h2(Di − d)

fD(d|X = Xi)fDX(d,Xi)

(
K1,h1

(Dj − d)K1,h1
(Xj −Xi)− fDX(d,Xi)

)∣∣∣∣Zi]
=− YiK2,h2

(Di − d)

fD(d|X = Xi)fDX(d,Xi)

(
E
[
K1,h1

(Dj − d)K1,h1
(Xj −Xi)

∣∣∣Zi]− fDX(d,Xi)
)

=− YiK2,h2(Di − d)

fD(d|X = Xi)fDX(d,Xi)

(
h1
r1Gi + op(h1

r1)
)
,

where Gi ≡
(
∂r1

∂dr1 fDX(d,Xi) + ∂r1

∂X
r1
i

fDX(d,Xi)
) ∫

ur1K1(u)du/r1!. The last term in (A.4) is

E[p(Zi, Zj)] = −E
[

YiK2,h2(Di − d)

fD(d|X = Xi)fDX(d,Xi)

(
E
[
K1,h1(Dj − d)K1,h1(Xj −Xi)

∣∣∣Zi]− fDX(d,Xi)
)]

= −E
[

YiK2,h2
(Di − d)

fD(d|X = Xi)fDX(d,Xi)

(
h1
r1Gi + op(h1

r1)
)]
.

Therefore

1

n

n∑
i=1

E[p(Zi, Zj)|Zi]− E[p(Zi, Zj)] =− 1

n

n∑
i=1

YiK2,h2(Di − d)

fD(d|X = Xi)fDX(d,Xi)

(
h1
r1Gi + op(h1

r1)
)

+ E

[
YiK2,h2

(Di − d)

fD(d|X = Xi)fDX(d,Xi)

(
h1
r1Gi + op(h1

r1)
)]

= Op(h1
r1/
√
nh2)

= op((nh)−1/2).
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The same argument shows the second term in the parentheses in (A.2) is of smaller order.

Thus we obtain the asymptotic linear representation for the numerator of µ̂(d, d) in (A.2) to be

1

n

n∑
i=1

YiK2,h2
(Di − d)

f̂X(Xi)

f̂DX(d,Xi)
− E[E[Y |D = d,X]]

=
1

n

n∑
i=1

(YiK2,h2
(Di − d)− E[Y |D = d,X = Xi]K1,h1

(Di − d)) /fD(d|Xi) + op

(
(nh)−1/2

)
.

The denominator of µ̂(d, d) is equivalent to the numerator of µ̂(d, d) by replacing Yi with 1.

By the same argument as above, we obtain

1

n

n∑
i=1

K2,h2
(Di − d)

f̂X(Xi)

f̂DX(d,Xi)
− 1 =

1

n

n∑
i=1

K2,h2
(Di − d)−K1,h1

(Di − d)

fD(d|Xi)
+ op

(
(nh)−1/2

)
.

By the Taylor expansion in (A.1), we then obtain

µ̂(d, d)− µ(d, d) =
1

n

n∑
i=1

IFi + op

(
(nh)−1/2

)
,

where IFi ≡ (Yi − µ(d, d))
K2,h2

(Di−d)
fD(d|Xi)

− (E[Y |D = d,Xi]− µ(d, d))
K1,h1

(Di−d)
fD(d|Xi)

. Next we show

asymptotic normality by Lyapounov CLT with third absolute moment. The Lyapounov condition

holds because(
n∑
i=1

V ar[IFi]

)−3/2 n∑
i=1

E
[
|IFi|3

]
=O

(
(nh−1)−3/2

) n∑
i=1

E
[
|IFi|3

]
= O

(
(nh)

−1/2
)

= o(1).

Then by the similar argument, we obtain the asymptotic variance limn→∞ hV ar[IFi] = Vd.

Now we turn to µ̂(d, d′). Let

Ω̂i = Ω̂(Mi, Xi)

≡ f̂D(d′|M = Mi, X = Xi)

f̂D(d|M = Mi, X = Xi)f̂D(d′|X = Xi)
=

f̂DMX(d′,Mi, Xi)f̂X(Xi)

f̂DMX(d,Mi, Xi)f̂DX(d′, Xi)

≡ ÂiF̂i
B̂iĈi

= Ωi + Ωi
Âi −Ai
Ai

+ Ωi
F̂i − Fi
Fi

− Ωi
B̂i −Bi
Bi

− Ωi
Ĉi − Ci
Ci

+Op

(
‖B̂i −Bi‖2

)
.

We use the same argument as in the above proof for µ̂(d, d). We analyze the numerator of

µ̂(d,M(d′)), 1
n

∑n
i=1 YiK2,h2

(Di−d)Ω̂i. Let s.o. stands for smaller order terms. In the U -statistic
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in (A.4), the s.o. are n−1
∑n
i=1E[p(Zi, Zj)|Zi]− E[p(Zi, Zj)] +Rem = op((nh)−1/2). Thus

1

n

n∑
i=1

YiK2,h2
(Di − d)Ωi

Âi −Ai
Ai

=
1

n

n∑
j=1

E

[
E[Yi|Di,Mi, Xi]K2,h2(Di − d)

Ωi
Ai

(K1,h1(Dj − d′)K1,h1(Mj −Mi)K1,h1(Xj −Xi)−Ai)
∣∣∣∣Zj]+ s.o.

=
1

n

n∑
j=1

E[Yi|Di = d,Mi = Mj , Xi = Xj ]
Ωj
Aj
fDMX(d,Mj , Xj)K1,h1(Dj − d′)

− E
[
E[Yi|Di = d,Mi, Xi]ΩifD|MX(d|Mi, Xi)

]
+Op(h1

r1 + h2
r2) + s.o.

=
1

n

n∑
j=1

g(d,Mj , Xj)
ΩjBj
Aj

K1,h1(Dj − d′)− µ(d, d′) +Op(h1
r1 + h2

r2) + s.o.

By the same argument, we obtain

− 1

n

n∑
i=1

YiK2,h2
(Di − d)Ωi

B̂i −Bi
Bi

=
1

n

n∑
j=1

g(d,Mj , Xj)ΩjK1,h1
(Dj − d) + µ(d, d′) +Op(h1

r1 + h2
r2) + s.o.,

− 1

n

n∑
i=1

YiK2,h2
(Di − d)Ωi

Ĉi − Ci
Ci

=− 1

n

n∑
j=1

E [g(d,M,Xj)|D = d′, X = Xj ]K1,h1
(Dj − d′)/fD(d′|X = Xj)

+ E[Y (d,M(d′))] +Op(h1
r1 + h2

r2) + s.o.,

and

1

n

n∑
i=1

YiK2,h2(Di − d)Ωi
F̂i − Fi
Fi

=
1

n

n∑
j=1

E [g(d,M,Xj)|D = d′, X = Xj ]− µ(d, d′) +Op(h1
r1 + h2

r2) + s.o = Op(n
−1/2).

Collecting all these terms, we obtain the asymptotic linear representation for the numerator

n−1
∑n
i=1 YiK2,h2(Di − d)Ω̂i. Replacing Yi with 1 gives the asymptotic linear representation for

the denominator: n−1
∑n
i=1K2,h2(Di − d)Ω̂ = n−1

∑n
i=1

(
K2,h2(Di − d) − K1,h1(Di − d)

)
Ωi +

op((nh)−1/2). The Lyapounov CLT gives the asymptotic normality. �

A.2 Proof of Theorem 3.2

We first consider the µ̂(d, d). Let Ωi(γ) = 1/fD(d|Xi) and Ω̂i(γ) = 1/fD(d|Xi; γ̂x). It is true that

by mean-value expansion, Ω̂i(γ)−Ωi(γ) = −w̄−2i (fD(d|Xi)− fD(d|Xi; γ̂x)) for some w̄i between
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fD(d|Xi) and fD(d|Xi; γ̂x). Then Ω̂i(γ) − Ωi(γ) = Op(n
−1/2) uniformly over i. We start with

the numerator of the estimator µ̂(d, d). Note that

1

n

n∑
i=1

YiK2,h2
(Di − d)Ω̂i(γ)

=
1

n

n∑
i=1

YiK2,h2
(Di − d)Ωi(γ) +

1

n

n∑
i=1

YiK2,h2
(Di − d)(Ω̂i(γ)− Ωi(γ))

=
1

n

n∑
i=1

YiK2,h2
(Di − d)Ωi(γ) +Op((nh2)−1/2)Op(n

−1/2)

=
1

n

n∑
i=1

YiK2,h2
(Di − d)Ωi(γ) + op(1),

where the second equality holds by a similar argument for Theorem 2 of Abrevaya, Hsu, and Lieli

(2015). The derivation for the denominator follows the same arguments. By the Taylor expansion

(A.1) and E[Ω|D = d]fD(d) = 1,

µ̂(d, d)− µ(d, d) =
1

n

n∑
i=1

(
Yi − µ(d, d)

fD(d|Xi)

)
K2,h2

(Di − d) +Op
(
(nh2)−1

)
.

The asymptotic normality is shown by Lyapounov CLT with third absolute moment as the

arguments in the proof of Theorem 3.1. The arguments for µ̂(d, d′) case are similar. �
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