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This paper presents the results of flow computations around plunging airfoils using a
low dissipation finite volume scheme that preserves kinetic energy. The kinetic energy pre-
serving scheme is briefly described and numerical experiments are done on low Mach, low
Reynolds numbers plunging airfoils. Results are discussed and compared with experimental
data.

Nomenclature

Re Reynolds Number
Pr Prandtl Number
M Mach Number
Sr Strouhal Number, ωhL/V∞
x Spatial Coordinate
t Time variable
vi ith component of flow velocity
V∞ Freestream velocity
ρ Density
p Pressure
E Total Energy
H Specific Total Enthalpy
k Specific Kinetic Energy
μ Dynamic Viscosity
λ Volume Viscosity

κ Coefficient of heat conduction
Cp Specific Heat
L Chord Length
h Nondimensional Plunge Amplitude
ω Angular frequency
k̃ Reduced frequency, ωL/V∞
Ω Fixed spatial domain
∂Ω Boundary of the domain Ω

Superscript
i, j Coordinate directions
Subscript
o, p Grid Locations
∞ Far field quantity

I. Introduction

Over the last century, steady airfoils have been thoroughly studied yielding important experimental and
numerical results. On the contrary, unsteady flows around airfoils have not been well characterized due to
their higher complexity. It is still a challenge to obtain accurate empirical data and current computational
capabilities are not sufficient to gain high resolution of the phenomenon. In recent years, unsteady airfoils
have been gaining a lot of interest, especially towards the use of flapping flight in the development of micro
unmanned aircraft vehicles (UAVs).
The flow around a plunging airfoil is characterized by the generation of vortices that strongly interact

in the wake of the airfoil. In order to study such an unsteady flow numerically and capture the phenomena
present in the wake with good resolution, it is crucial to use a scheme that introduces as little dissipation
as possible. When the artificial dissipation of the scheme becomes too large, there is significant uncertainty
whether the damping observed is due to natural viscosity or numerical dissipation.
Jameson recently proposed a scheme that could overcome this problem. In his Kinetic Energy Preserving

(KEP) scheme, the global balance of kinetic energy over the computational domain, along with the balance
of mass, momentum and total energy is respected. The KEP scheme provides improved stability, removing
almost completely the need of adding artificial viscosity and making it the best candidate for this study.
In this work, we used the KEP scheme to perform computations of flows around plunging airfoils at low

Mach and low Reynolds number. Section 2 of this paper briefly describes the Kinetic Energy Preserving
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scheme developed by Jameson and the formalism used to solve the equations. Section 3 describes how the
computations were performed. In Section 4, results are presented and discussed.

II. Kinetic Energy Preserving scheme for viscous flow

In a recent paper, Jameson1,2 presented a new semi-discrete finite volume scheme to solve the Navier-
Stokes equations. This scheme has the property to satisfy the global conservation law for kinetic energy. We
shall briefly describe this scheme in the present section.

II.A. Continuous Model

First, consider the three-dimensional Navier-Stokes equations in their conservative form:

∂u

∂t
+

∂

∂xi
f i(u) = 0 (1)

where

u =

⎡
⎢⎢⎢⎢⎢⎣

ρ

ρv1

ρv2

ρv3

ρE

⎤
⎥⎥⎥⎥⎥⎦ and f i =

⎡
⎢⎢⎢⎢⎢⎣

ρvi

ρviv1 + pδi1 − σi1

ρviv2 + pδi2 − σi2

ρviv3 + pδi3 − σi3

ρviH − vjσij − qj

⎤
⎥⎥⎥⎥⎥⎦ (2)

The viscous stress tensor σij is given for a Newtonian fluid by σij = λδij ∂vk

∂xk + μ
(

∂vi

∂xj + ∂vj

∂xi

)
. Often

in aerodynamics, λ is taken to be equal to − 2
3μ. The heat flux is proportional to the temperature gradient

(Fourier’s Law) qj = −κ ∂T
∂xj .

An equation for the kinetic energy k = 1
2ρv

i2 can be derived by combining the continuity and the
momentum equations. Indeed,

∂k

∂t
=

∂

∂t

(
1
2
ρvi2

)

= vi ∂

∂t

(
ρvi

) − vi2

2
∂ρ

∂t

It follows by substituting ∂
∂t

(
ρvi

)
and ∂ρ

∂t by their corresponding fluxes that:

∂k

∂t
+

∂

∂xj

[
vj

(
p+ ρ

vi2

2

)
− viσij

]
= p

∂vj

∂xj
− σij ∂v

i

∂xj
(3)

We assume that we are interested in a domain Ω fixed in space. ∂Ω denotes the boundary of Ω. By
integrating (3) over the domain Ω, we get a global conservation law for kinetic energy.

∂

∂t

∫
Ω

kdV = −
∫

∂Ω

[
vj

(
p+ ρ

vi2

2

)
− viσij

]
njdS +

∫
Ω

(
p
∂vj

∂xj
− σij ∂v

i

∂xj

)
dV (4)

Definition 1 A numerical scheme to solve the viscous Navier-Stokes equations is said to be Kinetic Energy
Preserving if it satisfies a discrete analog of (4).

Here we have assumed that the domain contains no discontinuity. If a shockwave is present in Ω, the
relation (4) does not hold anymore.
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II.B. Semi-discrete approach

Now, we consider a finite volume discretization of the governing equations in the domain Ω . The generic
cell is a polyhedral control volume o. Each cell has one or more neighbors. The face separating cell o and
cell p has an area Aop, and we define ni

op to be the unit normal to this face, directed from o to p. Evidently
ni

op = −ni
po. We also define S

i
op = Aopn

i
op. S

i
op can be interpreted as the projected face area in the coordinate

direction i.
Boundary control volumes are closed by an outer face of directed area Si

o = −∑
p S

i
op (a control volume

is delimited by a closed surface).

In this framework, the semi-discrete finite volume approximation of the governing equations takes the
form:

volo
∂uo

∂t
+

∑
p neighbor

f i
op · ni

opAop = 0 (5)

or

volo
∂uo

∂t
+

∑
p neighbor

f i
op · Si

op = 0 (6)

For a boundary control volume b, another contribution to the fluxes f i
b · Sb comes from the outer face.

Now we assume that uo and f i
op take the form:

uo =

⎡
⎢⎢⎢⎢⎢⎣

ρo

ρov
1
o

ρov
2
o

ρov
3
o

ρoEo

⎤
⎥⎥⎥⎥⎥⎦ and f i

op =

⎡
⎢⎢⎢⎢⎢⎣

(ρvi)op

(ρviv1)op + (pδi1 − σi1)op

(ρviv2)op + (pδi2 − σi2)op

(ρviv3)op + (pδi3 − σi3)op

(ρviH)op − (vjσij + qj)op

⎤
⎥⎥⎥⎥⎥⎦ (7)

Jameson has exhibited a set of sufficient conditions on the elements of f i
op that lead to a Kinetic Energy

Preserving (KEP) scheme.

Proposition 1 If the elements of f i
op defined in (15) satisfy the following conditions:

a - (ρvivj)op = 1
2 (ρv

i)op(vj
p + vj

o)

b - (pδij − σij)op = 1
2 (pδ

ij − σij)o + 1
2 (pδ

ij − σij)p

and if the fluxes at the boundaries are evaluated such that:

c - f i
b = f i(ub) where b is a boundary control volume

then the semi discrete finite volume scheme (6) satifies the discrete global variation law for kinetic energy.

Indeed in that case, the discrete kinetic energy ko satisfies the following relation:

d

dt

∑
o

voloko = −
∑

b

Sj
b

(
vj

b

(
pb + ρb

vi
b
2

2

)
− vi

bσ
ij
b

)

+
∑

o

(
po

∑
p

vi
o + vi

p

2
Si

op − σij
o

∑
p

vi
o + vi

p

2
Si

op

) (8)

which is indeed a discretization of (4).
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Condition a of the previous proposition is not very restrictive and allows some degrees of freedom in the
construction of the fluxes defined in (15).
Let’s denote by gop the arithmetic average of the quantity g between cell o and cell p : gop = (go+ gp)/2.

We can rewrite condition a

(
ρvivj

)
op
=

(
ρvi

)
op
vj

op (9)

We can evaluate the average
(
ρvi

)
op
by any means (

(
ρvi

)
op
= ρopv

i
op or ρvi

op for example) and then
deduce

(
ρvivj

)
op
by using (9) to satisfy condition a.

This degree of freedom could be used to design schemes that also satisfy other properties than Kinetic
Energy Preservation.

III. Direct Numerical Simulation of a plunging airfoil

The Kinetic Energy Preserving scheme described above was used to compute the flow around a plunging
airfoil. Computations were done for a NACA 0012 airfoil oscillating in a uniform flow. The transversal
motion of the airfoil is given by h(t) = h · cos(ωt).
The freestream flow is characterized by a Mach number M∞, a far field temperature T∞ and a far field
density ρ∞.

Viscosity is evaluated using Sutherland’s formula

μ(T ) = C
T 3/2

T + S

For air, at reasonable temperatures, C = 1.456× 10−6kg/( ms
√
K) and S = 110.4K.

The Reynolds number is based on the chord length of the airfoil L and the free stream velocity V∞ =M∞c∞

Re =
ρ∞LV∞
μ∞

where μ∞ = μ(T∞) (10)

The Prandtl number is given by

Pr =
μCp

κ
(11)

it was taken to be equal to 0.75.

Computational Domain

Simulations were done on a structured “C - mesh” counting 4096 × 512 cells. The computational domain
extends roughly 30 chord lengths downstream and 20 chord lengths upstream, as can be see on figure 2.
The mesh is subject to rigid body motion and moves with the airfoil.

Numerical fluxes

The convective fluxes have to be modified to account for the motion of the mesh. First, let us consider the
hyperbolic system of equation (1) ∂u

∂t +
∂

∂xi f
i(u) = 0 and integrate it over the moving domain Ω(t). We have

using the divergence theorem ∫
Ω(t)

∂u

∂t
dV +

∫
∂Ω(t)

f i(u) · nidS = 0 (12)

However, since ∫
Ω(t)

∂u

∂t
dV =

∂

∂t

∫
Ω(t)

udV +
∫

∂Ω(t)

uv̂i · nidS (13)
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(a) Global domain (b) Mesh detail near the trailing edge

Figure 1. Computational domain

where v̂i is the speed of the boundary of the domain, it follows that

∂

∂t

∫
Ω(t)

udV +
∫

∂Ω(t)

(
f i(u)− uv̂i

) · nidS = 0 (14)

Denote v̂i
op the velocity of the edge separating cells o and p. The convective fluxes, are now given by

f i
op convective =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
ρ(vi − v̂i

op)
]
op[

ρ(vi − v̂i
op)v

1)
]
op
+ popδ

i1[
ρ(vi − v̂i

op)v
2)

]
op
+ popδ

i2[
ρ(vi − v̂i

op)v
3)

]
op
+ popδ

i3[
ρ(vi − v̂i

op)E + pvi
]
op

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

We then used the following averaging formula:

[
ρ(vi − v̂i

op)
]
op
= ρop(v

i
op − v̂i

op)[
ρ(vi − v̂i

op)v
j
]
op
= ρop(v

i
op − v̂i

op)v
j
op[

ρ(vi − v̂i
op)E + pvi

]
op
= ρop(v

i
op − v̂i

op)Eop + popv
i
op

(16)

Condition a of proposition (1) does not require a specific form for the energy flux. We defined it in a
consistent manner with the continuity and momentum fluxes.
Viscous stress was evaluated in each cell by introducing a complementary mesh, for which cell vertices are
the centers of the original control volumes.

Time integration

Time integration was done using a TVD Runge Kutta second order multistage time stepping scheme3. For
a semi discrete law in the form

∂u

∂t
+R(u, t) = 0 (17)
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the scheme advances from time n to time n+ 1 by

u1 = un −ΔtR(un, tn)

un+1 =
1
2
un +

1
2
u1 − 1

2
ΔtR(u1, tn+1)

The explicit dependance in time of the operator R is due to mesh motion. This means that both the
location and velocity of the mesh need to be updated at tn+1 before evaluating R(u1, tn+1).
This time discretization does not guarantee the preservation of kinetic energy in time. One could use a
Crank-Nicholson semi implicit scheme as suggested by Jameson1 to ensure conservation in time, but the
computational costs would increase enormously.

Far field artificial dissipation

As the mesh coarsens in the far field, roughly 5 chord lengths away from the airfoil, small spurious oscillations
associated with acoustic waves can be observed. It was shown in previous work1,2, 4 that the number of
cells required to ensure a non oscillatory solution and stability was governed by the local cell Reynolds
number, which has to be of the order of unity to guarantee these properties. However, covering the entire
computational domain with cells as fine as the ones in the wake is currently too expensive.
A small amount of dissipation, based on the Jameson-Schmidt-Turkel (JST) scheme7,8 was added in

the far field to control these unphysical oscillations and prevent the explosion of the number of grid points.
Furthermore, at the very edges of the computational domain, where the cells are the biggest, artificial
dissipation is larger and behaves like a sponge that prevents the reflection of the acoustic waves into the
computational domain.
The dissipation introduced in the far field was derived from the JST scheme by dropping the lower order

diffusive term and conserving the higher order term to control odd/even modes. It shall be noted that no
dissipation was introduced in the near field of the airfoil, an area encompassing about 70% of the cells. If we
consider the conservation equation ∂u

∂t +
∂
∂xf(u) = 0, the truncation error introduced by our second order

scheme can be seen as a continuous term in a modified differential equation

∂u

∂t
+

∂

∂x
f(u) = O(Δx2,Δt2)

The idea is to introduce an extra diffusive term that will modify the truncation error

∂u

∂t
+

∂

∂x
f(u) = −Δxpλ(4) ∂

4u

∂x4
+O(Δx2,Δt2)

with λ(4) ≥ 0 and p ≥ 2 to preserve the order of the scheme. If
∂u

∂t
+
1
Δx

[
hi+ 1

2
− hi− 1

2

]
= 0

is a finite volume semi-discretization of the equation where hi± 1
2
is the numerical flux, we can introduce a

correction di± 1
2
to the flux to obtain the desired property. This can be done by taking

di+ 1
2
= αi+ 1

2
ε(4) (−ui+2 + 3ui+1 − 3ui + ui−1)

similarly to what is done in the JST scheme. αi+ 1
2
is proportional to the spectral radius of the local jacobian

matrix and ε(4) is a switch to add dissipation only where needed, as described in the original JST scheme.
di+ 1

2
is proportional to Δx3 ∂3u

∂x3 |i.

IV. Results

We now present the results obtained using the numerical methods described above. We chose the various
parameters describing the motion of the plunging airfoil to match the ones studied by Jones and Platzer5,6.
Flows around plunging airfoils can be classified according to their Strouhal numbers Sr = ωhL

V∞
= hk̃. In all

the results presented, the Mach number is taken to be M∞ = .2 and the Reynolds number is Re = 1850.
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Figure 2. Artificial dissipation is added only in the darker area

Drag production at low Strouhal number - Sr = 0.29

The amplitude of the plunging motion is h = 0.08 and the reduced frequency k̃ = 3.6 resulting in a Strouhal
number Sr = 0.288. For such a Strouhal number the resulting flow exerts drag on the airfoil. Figure 3
shows the density contour: not only the flow pattern is clear on this picture, but this is also evidence that
there are some non negligeable compressibility effects, even at such a low Mach number. Figure 4 represents
the vorticity of the flow. As can be seen, the vortical structure of the wake is in agreement with the results
obtained by Jones et al., cf. figure 5. Figure 6 is a plot of the evolution in time of the lift coefficient C� and
the drag coefficient Cd. A positive Cd indicates that the fluid exerts drag on the airfoil in the flow direction.
On the abscissa, the non dimensional time is defined by t̄ = t

t0
, t0 = L

V∞
.

Figure 3. Density field in the airfoil’s wake - Sr = 0.29

Thrust generation at high Strouhal number - Sr = 0.60

As the Strouhal number is increased the flow pattern changes and thrust is generated. In this section, we
present the results obtained for a Strouhal number of Sr = 0.60. Figures 7 and 8 depict the computed density
and vorticity fields for h = 0.1 and k̃ = 0.6. The flow pattern is in excellent agreement with experimental
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Figure 4. Vorticity distribution in the airfoil’s wake - Sr = 0.29

Figure 5. Streak lines, experimental data by Jones and Platzer - Sr = 0.29
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Figure 6. Lift and Drag history - Sr = 0.29

data by Jones et al. corresponding to this Strouhal number (see figure 9) and we observe on figure 10 that
thrust is indeed generated. However, it should be noted that Jones’ experimental result was obtained for
h = 0.2 and k̃ = 0.3. When we tried to compute the flow for these values, we still observed generation of
thrust, but the flow pattern was quite different. The large amplitude of the motion (for h = 0.2) creates
important leading edge vortices that interact strongly with the trailing edge vortices in the wake, as can be
seen on figure 11.
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Figure 7. Density field in the airfoil’s wake - Sr = .60, h = .1, k̃ = .6

Figure 8. Vorticity distribution in the airfoil’s wake - Sr = .60, h = .1, k̃ = .6

Figure 9. Streak lines, experimental data by Jones and Platzer - Sr = 0.60, h = .2, k̃ = .3

Lift and thrust generation - Sr = 1.5

This is by far the most interesting case, as lift and thrust are generated by the oscillating airfoil. The
nondimensional plunging amplitude is h = .12 and the reduced frequency k̃ = 12.3, resulting in a Strouhal
number Sr = 1.48. Figures 12 and 13 depict the density and the vorticity of the flow in the airfoil’s wake.
The dual-mode vortex street described by Jones et al.5 is clearly visible. Our numerical computations are
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Figure 10. Lift and Drag history - Sr = 0.60, h = .1, k̃ = .6

Figure 11. Vorticity field in the airfoil’s wake - Sr = .60, h = .2, k̃ = .3

again in excellent agreement with Jones et al. experimental results, as shown in figure 14.
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Figure 12. Density field in the airfoil’s wake - Sr = 1.5

Figure 13. Vorticity distribution in the airfoil’s wake - Sr = 1.5

Figure 14. Streak lines, experimental data by Jones and Platzer - Sr = 1.5

V. Conclusion

This paper shows how to solve with high resolution the flow around plunging airfoils using a finite volume
formulation. The method proposed uses the Kinetic Energy Preserving scheme proposed by Jameson and a
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Figure 15. Lift and Drag history - Sr = 1.5

modified version of the JST artificial dissipation model in the far field to ensure a non oscillatory solution.
The resulting code proved to be robust and extremely low dissipative. Applications with coarser grids
containing “only” 1024× 256 cells (results not presented in the present document) showed that even though
the far field results were largely degraded, the time history curves of C� and Cd were still relatively close
to the ones obtained with fine grids. On an other hand it appears that the code can be easily modified to
deal with airfoil motions more complex, like a combination of pitching and plunging motion obeying non
sinusoidal variations. These remarks lead us to think that this code would be particularly well suited in
the study of optimal motions of rigid airfoils (in a sense of propulsion efficiency) at relatively low reynolds
numbers.
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