

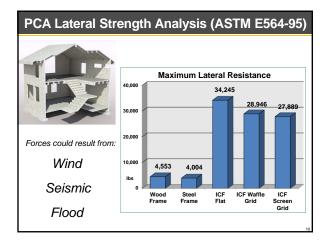
"Quad-Lock Building Systems, Ltd." is a Registered Provider (#J265) with **The American Institute of Architects Continuing Education Systems (AIA/CES).** Credit(s) earned on completion of this program will be reported to **AIA/CES** for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This program is registered with *AIA/CES* for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

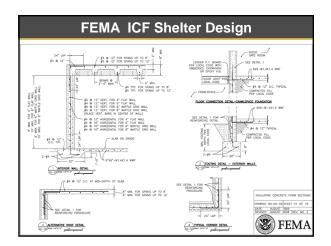
Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

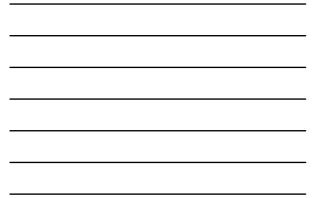
Course Description & Objectives					
	Introduction to ICF/Concrete structures designed for disaster resistance • ICF Concrete Walls, Elevated Floors & Roofs • How do they work? What can I build?				
	Governing Codes and Standards International Code Council American Concrete Institute American Society of Civil Engineers 				
	Case Studies of Disaster Resistant ICF Structures • Louisiana School FEMA Rebuilds & S.F. Residence • H.C. Moore Library & Delaware Beach Home				

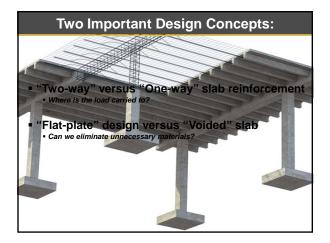
Large Natural Disaster Statistics						
		and land	1 al	172 27 122	alle Car	
N.Y.	Impact:	Sandy 2012	Katrina 2005	2011/2012 Tornados (USA)	500	
		Disaster #1	Disaster #2	Disaster #3		
	# Lives Lost	132	1836	622		
	\$ Damage	\$50 Billion	\$81 Billion	\$44 Billion		
	# Homes Destroyed	72,000	340,000	100,000 (est.)		
		12		- Ho	E	
1 IA	Stor A					

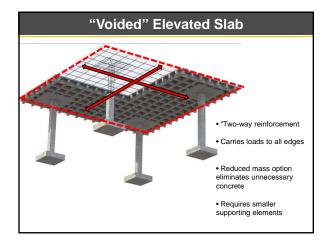


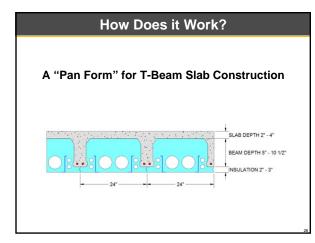
PCA Lateral Strength Analysis (ASTM E564-95)				
Woo Fram		Concrete % Advantage		
Global Lateral Stiffness (lbs/in)	00 708,000	+3,827%		
Load at First Major Damage (lbs) 3,50	0 8,500	+243%		
Displacement at First Major Damage 0.52 (in)	1 0.06	+850%		
Maximum Lateral Resistance (lbs) 4,55	3 34,254	+752%		
Displacement at Max. Lateral Resist. 0.89 (in)	9 2.66	+299%		
Max. Lateral Resist. 0.8		9 2.66		

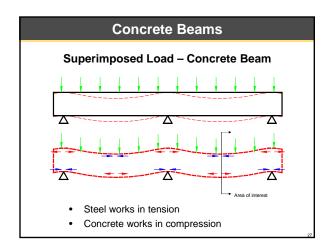


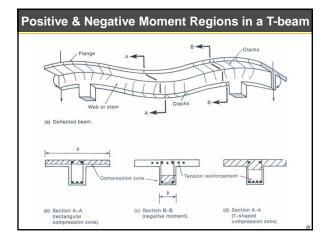




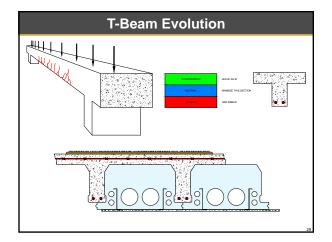


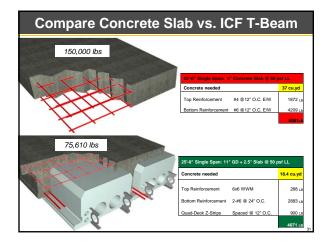

Three Voided Slab ICF Designs

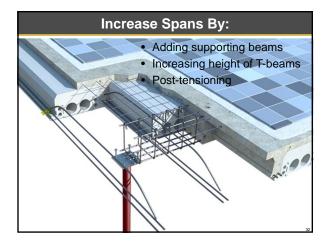

- 1. Cut foam with steel insert
- 2. Moulded foam over engineered steel joist
- 3. Moulded panel with integral steel stiffener

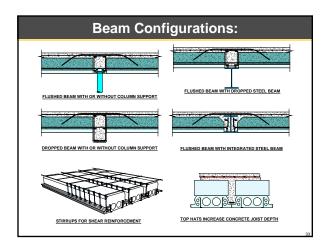


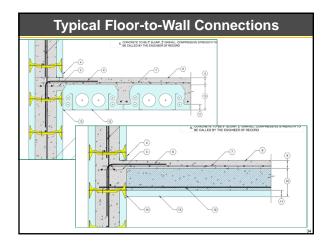


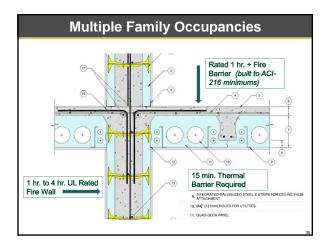






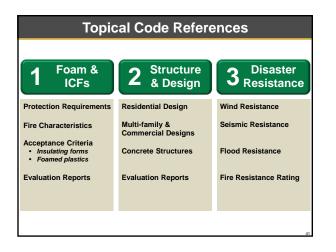


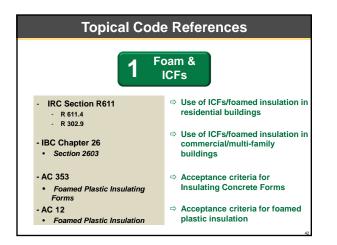




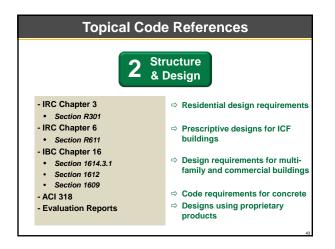
Desired Characteristics ** Code Mandated	Wood Frame	Steel Frame	Conv. Concrete	ICF Concrete
Moisture Resistant**				
Wind Resistant**			"Low or No Capacity"	
Seismic Resistant**		₽		
Thermal Continuity**		\$\$	"High Added Cost"	
Fire Resistant**		ΨΨ		
Safe/Non-toxic**		"Yes"	"Inherent To Design	
Impact Resistant				
Adaptable to Design & Utilities				

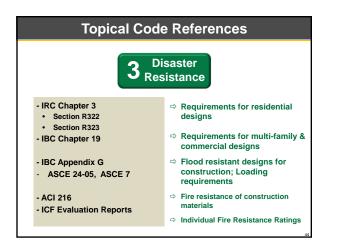
Desired Characteristics of Building Shells					
Desired Characteristics ** Code Mandated	Wood Frame	Steel Frame	Conv. Concrete	ICF Concrete	
Moisture Resistant**	ļ	\$\$	Yes	Yes	
Wind Resistant**	\$\$	\$	Yes	Yes	
Seismic Resistant**	\$\$	\$	Yes	Yes	
Thermal Continuity**	\$	\$\$	\$\$	Yes	
Fire Resistant**	ļ	\$\$	Yes	Yes	
Safe/Non-toxic**	Yes	Yes	Yes	Yes	
Impact Resistant	ļ	Ţ	Yes	Yes	
Adaptable to Design & Utilities	\$	\$\$	\$\$	Yes	

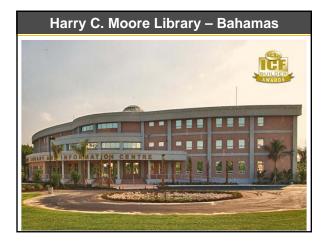


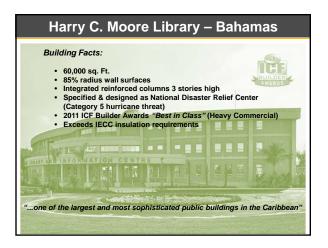


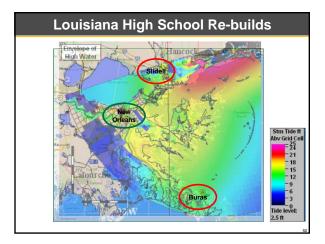
Relevant Codes and Standards				
INTERNATIONAL	International Residential Code			
CODE COUNCIL	• Chapters 3, 6 & 11			
INTERNATIONAL	International Building Code			
CODE COUNCIL	• Chapters 16 & 19			
INTERNATIONAL	International Energy Conservation			
CODE COUNCIL	Code			
ASCE	ASCE 24-05			
American Besletty of Civil Engineer	• Flood Resistant Design & Construction			
American Concrete Institute"	ACI 318 • Building Requirements for Structural Concrete			





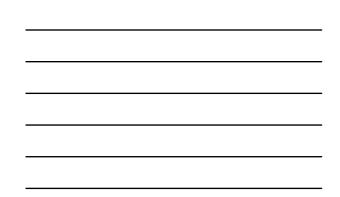


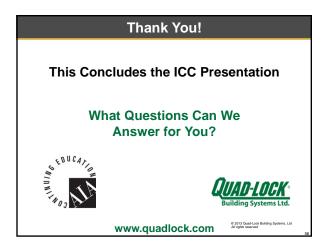




Custom Home – Dewey Beach, MD Sulling Facts: 9. 101 completion 9. Compliant to IBC 2003, ACI 318, ASCE 24, ASCE 7. 9. Beismic zone C; Wind exposure D – 120 mph 9. do% reduction in heating/cooling plant size 114 cost premium over IRC mainmums for wood-frame 125 coseds IECC insulation requirements

FEMA School Replacement Projects


High School Building Facts:


- 140,000 sq. Ft. (S.H.S), 150,000 sq. Ft. (S.P.H.S)
 Compliant to IBC 2006, ACI-318, ASCE-7
 Wind categories 130 mph (S.H.S) and 145 mph (S.P.H.S.)
 Exposure class C
 Elevated 13' to 18' above grade
 Exceeds IECC 2012 insulation levels

+

Elevated SFR – Treasure Isle, LA Residence Building Facts: Post-Katrina rebuild ICF/ concrete "sandwich" (Floor – Walls – Roof) Compliant to IRC, ACL318, & ASCE-24 Seismic zone 'A Wind 130mph – Exposure C 20'-2" above MSL BFE = 15' above MSL BFE = 15' above MSL Helical piers to 31'6" below grade BFE = 15' above MSL Exceeds IECC 2012 insulation requirements

