




#### Introduction

| Total ambulatory procedures (all ages)      | 53,329,00 |
|---------------------------------------------|-----------|
| Ambulatory procedures younger than 15 y     | 3,266,000 |
| Case breakdown—patients younger than 15 y   |           |
| Myringotomy and tubes                       | 667,000   |
| Tonsillectomy with or without adenoidectomy | 530,000   |
| Orthopedic procedures                       | 295,000   |
| Operations on the male genital organs       | 166,000   |
| Adenoidectomy                               | 132,000   |
| Hernia repair                               | 73.000    |

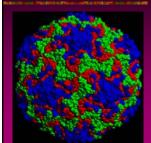
## **Common Considerations**

- Patient selection:
  - ASA 3, 4
  - Ex-premature or young infant
  - Sleep ordered breathing/OSA
- Presence of URI
- Post-operative Pain
- PONV

#### Goals of Lecture:

#### Discuss:

- Child with a runny nose
- Ex-premature infant
- Sleep Disordered Breathing/OSA
- Patients undergoing T&A
- Post-Operative Pain


#### Included in Handout:

- Previously undetected murmur
- Will discuss on Tuesday:
- Post operative Respiratory Complications
- Surgical Environment
- Codeine
- And more

## Child with a Runny Nose



#### The Child With a Runny Nose



- 95% of RTI are viralwide spectrum of species and respiratory tract involvement
- Hyper-reactivity of airways is common for several weeks
- Airways may be more sensitive to "irritants" (secretions, anesthestic agents etc.)

#### The Child With a Runny Nose

Pulmonary function tests --↓ FVC, FEV<sub>1</sub> and PEF ■ ↓ Diffusion

capacity and 1

desaturation

after apnea

iluenzavirus iruses that infect th piratory tract Sessilatory Syncutial

Viruses that infect the upper spiratory tract

ovirus

#### The Child With a Runny Nose

- ... "although anesthesia is not good for the common cold, might it not be a good way of passing the time till the cold is gone?"
- Anesthetic risk usually minor
- Intubation ↑ risk
- Bronchodilators do not ↓ risk
- Glycopyrrolate does not ↓ risk



Ellis. Anaesthesia 10:78-9, 1955

#### The Child With a Runny Nose Cohen and Cameron: >20,000 children 2-7 x increased risk of respiratory complications with URI 11 x increased risk if they were intubated Study criticized for incomplete documentation as to signs and symptoms of URI Cohen and Cameron. Anesth Analg 72: 282-8 1991

#### The Child With a Runny Nose

- Tait et.al examined >1000 children for elective surgery. Risk factors for increased complications included:
  - Use of ETT in child < 5 yrs
  - H/O prematurity or RAD
  - Paternal smoking (?)
  - Airway surgery
  - Copious secretions and/or nasal congestion

Tait et.al. Anesthesiology 95:299-305, 2001

#### The Child With a Runny Nose

- Parnis et.al examining predictors of complications in 2051 patients found that the risk increased with:
  - ETT > LMA > mask airway
  - Parent's report that child has a "cold"
  - H/o snoring, passive smoking
  - Presence of sputum and or nasal congestion
  - Induction with STP > halo > sevo > propofol
  - Non-reversal of muscle relaxant

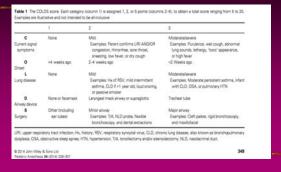
#### Parnis et.al Paed Anaesth 11:29-40,2001

#### The Child With a Runny Nose

- The increased risk associated with RTI's seems to be minimal
  - No closed claims cases
  - There are a few cases of increased atelectasis
  - In Tait et.al's study of >1000 pts, 3 required
  - admission post-op, 2 for pneumonia, 1 for stridor
  - One case report of death related to laryngospasm and cardiac arrest after extubation in a 15 month old child with a URI

Tait and Malviya. Anesthesia with Upper Respiratory Tract Infection, A&A 100, 2005

#### More Recent Studies


- Kim, Kim et.al Korean J Anesthesiol:65; 136-141, 2013
  - Oral ETT, inhalation agents and passive smoking ↑ risk
- Schebesta, Gŭloglu et.al Can J Anesth: 57; 745-50. 2010

#### The Child With a Runny Nose

#### Assessment:

- History of "cold" by parents better predictor of laryngospasm than reliance on symptoms
- Presence of sputum, nasal congestion and RAD ↑ incidence of adverse resp events
- ✓ for fever, dyspnea, lethargy, wheezing, productive cough and lung field abnormalities
- Labs, CXR, naso-pharyngeal swabs, rarely practical or helpful

#### **COLDS Score**



#### The Child With a Runny Nose

#### Anesthetic Management

- Avoid irritants!!! (ETT, excessive secretions)
- Keep child well hydrated, consider humidification
- Consider anticholinergics
- Ensure adequate anesthetic depth before any airway manipulations
- Awake or deep extubation per practioner's preference



## **Consider Cancellation**

- Unable to escalate care
- Can't admit
- "just don't feel right"







## Ex-premature infant

- When are they candidates for outpatient anesthesia?
- Does type of anesthetic matter?
- Does procedure Matter?
- What about full term infant

## Apnea and the Ex-preemie

- Risk is low
- Occurs in PACU
- Younger gestational age
- Pre-existing apnea
- Need for opioids or other sedatives

# Guidelines for Ex-Premature infants (CHCO)

 GUIDELINES: Risk of post-operative apnea and need for postprocedure admission or observation will be determined at the discretion of the attending anesthesiologist. PCA, or post-conception age, is gestational age + post-natal age.

 Former premature infants born prior to 37 weeks gestational age who are less than 56 weeks PCA at the time of surgery should be admitted overnight for cardiorespiratory monitoring or may require prolonged observation in the PACU prior to discharge.

 Full term infants (gestational age greater than 37 weeks) require overnight admission or extended PACU observation if they are less then 44 weeks PCA at the time of surgery.

 Patient who receive local anesthesia or spinal anesthesia only without systemic sedation, may be post-operatively managed at the discretion of the attending anesthesiologist.

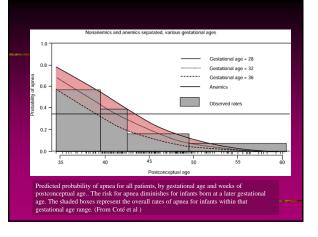
#### Lucille Packard

It is the policy of Lucile Packard Children's Hospital Stanford to admit infants for observation after receiving anesthesia or sedating drugs if they meet any of the following criteria:

- A. Born prior to 37 weeks gestational age (GA) AND current age is less than 52 weeks post-menstrual age (PMA).
- B. All infants less than 44 weeks PMA irrespective of GA.
- C. Meet criteria 1 AND currently less than 60 weeks PMA AND have concurrent pertinent medical issues as defined by anesthesiologist.

These infants will be admitted to a monitored bed in a unit with the staff, equipment, and experience necessary to respond immediately to an apneic episode. Observation will occur for a minimum of 12 hours post anesthetic, and will be continued for at least 12 hours following any apneic event.

#### **Full Term Infants**


- Several case reports
- One with clonidine in caudal
- Some of these babies were found to have abnormal sleep studies
- < 44 weeks PMA</p>

## Ambulatory Surgicenter (CHCO)

- Term infants > 6 months of age
- Or a former premature infant older than 60 weeks post-conception and not currently on home monitors may be discharged home on the day of surgery if no other indications for admission exist.

# Cote: A Practice for Infants and children

- Risk of apnea exceeds 1% in infants born at 32 weeks PCA until ~ 56 weeks
- Increased risk with:
  - Anemia
  - AGA infants
  - On-going apnea at home
- All anesthestics have been implied

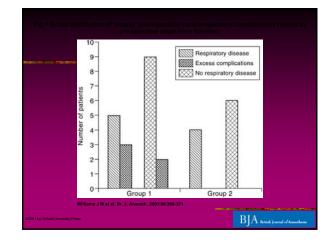




# Williams J M et al. Br. J. Anaesth. 2001;86:366-371

.

Post-operative recovery after inguinal herniotomy in ex-premature infants: comparison between sevoflurane and spinal anaesthesia


#### ble 1

Takes 4 Patient characteristics and intra-operative data. A comparison of post-conceptual age (PCA), gestational age (GA), weight (Wt), pre-operative haemoglobin (Hb) and anaesthetic time (induction-skin closure) for the two groups (median (range)). There was no significant difference between the groups with regard to and variable. n=number of patients

|                          | Group 1 ( n =14) sevolurane | Group 2 ( n =10) spinal |  |
|--------------------------|-----------------------------|-------------------------|--|
| PCA (weeks)              | 38 [32-46]                  | 40 [36-44]              |  |
| GA (weeks)               | 30 [23-35]                  | 8 [26-33]               |  |
| Wt (kg)                  | 2.6 [1.2-3.5]               | 2.8 [1.7-3.6]           |  |
| Hb (g d) <sup>-1</sup> ) | 10.2 [9.0-13.4]             | 10.9 [9.6-12.7]         |  |
| Biateral repairs (n)     | 7                           | 5                       |  |
| Induction-incision (min) | 23 [16-29]                  | 19 [11-28]              |  |
| Incision-closure (min)   | 26 (10-45)                  | 28 [12-48]              |  |

Post-operative recovery after inguinal herniotomy in ex-premature infants: comparison between sevoflurane and spinal anaesthesia

|                                | Sevo Pre | Sevo Post | Spinal Pre | Spinal Post |
|--------------------------------|----------|-----------|------------|-------------|
| SpO2 (%)                       | 97       | 97        | 96         | 96          |
| Heart Rate<br>(BPM)            | 150      | 155       | 142        | 150         |
| % time SPO2<br>< 90%           | 6 (1-63) | 6 (0-48)  | 6 (0-17)   | 6 (2-28     |
| # of episodes<br>of desat/hour | 9 (3-20) | 10 (4-14) | 6 (2-11)   | 7 (3-16     |



Cochrane Database Syst Rev. 2003;(3):CD003669. Regional (spinal, epidural, caudal) versus general anaesthesia in preterm infants undergoing inguinal herniorrhaphy in early infancy. Craven PD, Badawi N, Henderson-Smart DJ, O'Brien M.

No difference-but small numbers

- Pediatr Surg Int. 2014 Oct;30(10):1069-73. Epub 2014 Sep 4. Spinal anesthesia for inguinal hernia repair in infants: a feasible and safe method even in emergency cases.Lambertz A et.al
- No complications, smaller babies

#### Pediatr Surg Int. 2013 Aug;29(8):801-4. doi: 10.1007/s00383-013-3330-8. Epub 2013 Jun 19.

Postoperative apnea after inguinal hernia repair in formerly premature infants: impacts of gestational age, postconceptional age and comorbidities.

<u>Ozdemir T<sup>1</sup>, Arıkan A</u>.

#### Author information

#### Abstract

PURPOSE: It is common practice for premature infants undergoing elective inguinal hemia (H) repair to be hospitalized for postoperative apnea monitoring. This study evaluated the risk of apnea after H repair with regard to gestational age (GA) and postconceptional age (PCA) in formerly premature infants.

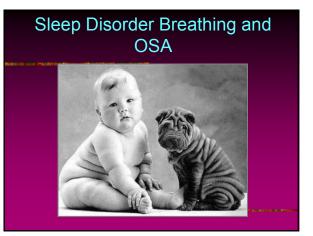
METHODS: Formerly premature infants who had undergone elective IH repair between 01/2000 and 12/2012 were reviewed retrospectively in terms of GA, PCA, body weight, and comorbidilies. All postoperative apneas were evaluated.

RESULTS: A total of 428 formerly premature inflant charts were reviewed. Eleven babies had postoperative apnea. Infants younger than 45 weeks PCA were found more prore to develop postoperative apnea after II H pear. In older infants (PCA between 48 and 60 weeks), comorbidities create predisposition to apnea postoperatively. These comorbidities are bronchopulmonary dysplasia, necrotizing enterocolitis and former apnea episodes. Anemia and lower brith weight are also risk factors.

CONCLUSION: This study suggests that low GA and PCA, low birth weight, anemia, and complicated past medical history affect respiratory complication rates, particularly apnee in formerly premature infants undergoing elective IH repair. Severe apneas occurred earlier than mild ones. Overnight monitoring is mandatory in small infants with low GA and PCA. Otherwise healthy, older infants may be operated on outpatient basis.

#### Peds Surg Int 2013

- 428 infants
- Group 1: <45 weeks PCA</p>
- Group 2: 45-60 weeks PCA
- 9 apnea in Group 1 (4.7%)
- 2 apnea in Group 2 (0.8%)


|                                   | Group 1         | Group 2         |
|-----------------------------------|-----------------|-----------------|
| Total no. of patients             | 191             | 237             |
| GA (week)                         | $30\pm3.5$      | $31 \pm 4$      |
| PCA (week)                        | $42 \pm 4$      | $53 \pm 7$      |
| Birth weight (g)                  | $1{,}600\pm660$ | $1{,}550\pm700$ |
| History of mechanical ventilation | 38 %            | 39 %            |
| Associated cardiac anomaly        | 21 %            | 20 %            |
| BPD                               | 17 %            | 19 %            |
| NEC                               | 1.2 %           | 1 %             |
| Hemoglobin level (g/dl)           | $9.6 \pm 2$     | $9.2 \pm 1.5$   |

|                | Apnea     |           | Total |
|----------------|-----------|-----------|-------|
|                | Apnea (–) | Apnea (+) |       |
| Group          |           |           |       |
| Gl             |           |           |       |
| Count          | 182       | 9         | 191   |
| % Within group | 95.3      | 4.7       | 100.0 |
| % Within apnea | 43.6      | 81.8      | 44.6  |
| G2             |           |           |       |
| Count          | 235       | 2         | 237   |
| % Within group | 99.2      | 0.8       | 100.0 |
| % Within apnea | 56.4      | 18.2      | 55.4  |
| Total          |           |           |       |
| Count          | 417       | 11        | 428   |
| % Within group | 97.4      | 2.6       | 100.0 |
| % Within apnea | 100.0     | 100.0     | 100.0 |

## Current Recommendations (Cóte)

- Admit all ex preemie < 60 weeks PCA until apnea free for at least 12 hours
- Consider Caffeine (10mg/kg)
- Consider regional
- Ensure adequate HgB
- Full term infants < 44 weeks PMA may be at risk







Anesthesia & Analgesia: June 2014 - Volume 118 - Issue 6 - p 1157–1159 doi: 10.1213/ANE.0b013e31829ec1e6 Editorials: Editorial **The Elephant in the Room: Lethal Apnea at Home after Adenotonsillectomy Brown, Karen A. MD\*; Brouillette, Robert T. MD**\*

#### Society for Pediatric Anesthesia

Section Editor: Peter J. Davis

Death or Neurologic Injury after Tonsillectomy in Children with a Focus on Obstructive Sleep Apnea: Houston, We Have a Problem!

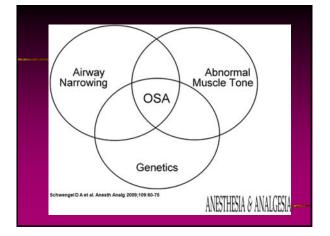
Charles J. Coté, MD,\* Karen L. Posner, PhD,† and Karen B. Domino, MD, MPH†

 BACKGROUND: Obesity is epidemic in the United States and with it comes an increased incidence of obstructive skep apreal (054). Evidence regarding opioid sensibility as well as meent descriptors of deaths after transilicatomy compared a survey of all members of the Society for Pediatric Aresthesia regarding advectment events in children underging torsilications. METMODS: An electronic survey was sent to 2377 members of the Society for Pediatric Anesthesia. Advandand, data from the American Society of Anesthesiological Coded Clamis Project were obtained. Advecse events during or after tonsilicatomy with or without adenoidetomy in children. Shee children were compared with all other children b proportions and test for continuous variables. RESULTS: A total of 129 cases were identified. Shell to 214 – Volume meeting inclusion criteria for having adequate data. Another 19 cases with Lesure 6 car p. 1276–117

|                             | Overall<br>(N = 111) | Children at risk<br>for OSA (n = 63) | All other children<br>(n = 48) | P     |
|-----------------------------|----------------------|--------------------------------------|--------------------------------|-------|
| Dutcome                     |                      |                                      |                                | 0.035 |
| Death                       | 73 (66%)             | 42 (67%)                             | 31 (65%)                       |       |
| Permanent neurologic injury | 13 (11%)             | 4 (6%)                               | 9 (19%)                        |       |
| Prolonged hospitalization   | 11 (10%)             | 6 (10%)                              | 5 (10%)                        |       |
| No harm                     | 3 (3%)               | 1 (2%)                               | 2 (4%)                         |       |
| Not provided or unknown     | 11 (10%)             | 10 (16%)                             | 1 (2%)                         |       |
| ocation of event            |                      |                                      |                                | 0.218 |
| In the operating room       | 18 (16%)             | 9 (14%)                              | 9 (19%)                        |       |
| Postanesthesia care unit    | 13 (12%)             | 6 (10%)                              | 7 (15%)                        |       |
| On a ward                   | 12 (11%)             | 9 (14%)                              | 3 (6%)                         |       |
| In an automobile            | 2 (2%)               | 0 (0%)                               | 2 (4%)                         |       |
| At home                     | 53 (48%)             | 29 (46%)                             | 24 (50%)                       |       |
| Not provided or unknown     | 13 (12%)             | 10(16%)                              | 3 (6%)                         |       |
| ttributed cause of event    |                      |                                      |                                | 0.018 |
| Hemorrhage                  | 31 (28%)             | 11 (17%)                             | 20 (42%)*                      |       |
| Aonea                       | 40 (36%)             | 29 (46%)*                            | 11 (23%)                       |       |
| Other                       | 17 (15%)             | 9 (14%)                              | 8 (17%)                        |       |
|                             |                      |                                      | 9 (19%)                        |       |

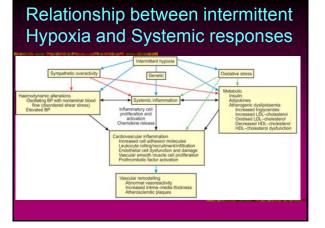
| Case                                  | Narrative                                                                                                                                                                                            |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anesthesia event                      | 3 year old was extubated, there was no blood pressure or oxygen saturation on arrival in PACU; the child died.                                                                                       |
| Anesthesia event                      | After extubation, a 3 year old developed laryngospasm, postobstructive pulmonary edema, required ECMO and died.                                                                                      |
| Possible rapid codeine<br>metabolizer | A 9 year old was discharged after overnight observation and found dead that right, high morphine levels found; possible<br>rapid codeline metabolizer.                                               |
| Anesthesia event                      | A 4 year old developed apnea in PACU, was given multiple doses of naloxone, and discharged on codeine. Apnea spells                                                                                  |
|                                       | occurred at home but the parents decided not to go to the hospital and he was found dead the next morning.                                                                                           |
| Surgical/anesthesia<br>event          | A 5 year old suffered cardiac arrest in the operating room due to kinking of tracheal tube by Dingman retractor; permanent<br>neurologic injury resulted.                                            |
| Nursing event                         | A 6 year old developed apnea and respiratory arrest 10 h after surgery on the ward with death as the outcome.                                                                                        |
| Anesthesia event                      | A morbidly obese 15-year-old 250-kg teenager arrested on induction of anesthesia; death.                                                                                                             |
| Anesthesia/surgical<br>event          | An obese 2-year-old child with a positive OSA history was found dead at home 2 h after discharge. The child left with the<br>grandmother's boyfriend while the mother and grandmother went shopping. |
| Anesthesia/surgical<br>event          | An 8-year-old obese child with a positive history for OSA spent the first night in the pediatric intensive care unit, was<br>discharged home the next morning, and found dead that night.            |
| PACU = postanesthesia o               | are unit; ECMO = extracorporeal circulation membrane oxygenation; OSA = obstructive sleep apnea.                                                                                                     |
|                                       | Desire in Advised Frances and Advised Managements (Managements)                                                                                                                                      |

| Risk factor                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Death or Neurologic Iniury after         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Obesity as well as increasing obesity                                                                                                                                                                                                                                                                                                                                                                                                                         | Tondhotoms in Collines with a Focus or   |
| Positive family history                                                                                                                                                                                                                                                                                                                                                                                                                                       | Obstructive Steep Aprees Houston, We     |
| Ethnicity (African American)                                                                                                                                                                                                                                                                                                                                                                                                                                  | Have, a Problem                          |
| History of reactive arivey disease                                                                                                                                                                                                                                                                                                                                                                                                                            | Cote, Charles 1, Posner, Karen L; Domino |
| Congenital arivey abnormality (e.g., mid facial hypoplasia)                                                                                                                                                                                                                                                                                                                                                                                                   | Karen B.                                 |
| Congenital arivene (e.g., Down syndrome)                                                                                                                                                                                                                                                                                                                                                                                                                      | Anosthesia & Anolgosia, 118(6):1276-128  |
| Male gender                                                                                                                                                                                                                                                                                                                                                                                                                                                   | June 2014.                               |
| Enlarged tonsils                                                                                                                                                                                                                                                                                                                                                                                                                                              | doi: 10.1215/ANE.0b015e318294fc47        |
| Symptoms<br>Louds anorim; (heard through closed door)<br>Gaspa at night<br>Pauses in breathing at night<br>Night terrors<br>Resitess alcop<br>Continuity and terrors<br>Proceding<br>Stoep walking<br>Unisual alcep positions<br>Unisual alcep positions<br>Unisual alcep positions<br>Unisual alcep positions<br>Unisual alcep positions<br>Difficult to awaken in the morning<br>Daytime irrinability<br>Morning headache<br>Daytime simmolence<br>Enuresis |                                          |
| Frequent upper respiratory infections                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 5. Risk Factors and Symptoms of    |
| Risk factors and symptoms abstracted from the following references:                                                                                                                                                                                                                                                                                                                                                                                           | Obstructive Sleep Apres                  |



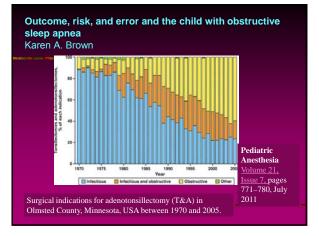

# Childhood versus Adult OSAS features

|                                    | Children                                   | Adults                                        |
|------------------------------------|--------------------------------------------|-----------------------------------------------|
| resentation                        |                                            |                                               |
| Age                                | 2-6-yr peak                                | Increased elderly                             |
| Gender                             | Male = female                              | Males > females                               |
| Obesity                            | Few                                        | Most                                          |
| Tonsils and adenoids               | Often enlarged                             | Rarely enlarged                               |
| Davtime sleepiness                 | Less common than in adults but can be seen | Common                                        |
| Sleep                              |                                            |                                               |
| Obstruction                        | Obstructive apnea or hypoventilation       | Obstructive apnea                             |
| Sleep architecture                 | Usually normal                             | Decreased delta and REM                       |
| Arousals with obstruction          | May not be seen                            | At end of each apnea                          |
| Treatment                          |                                            |                                               |
| Surgical                           | Definitive therapy in most patients        | Minority of cases with inconsisten<br>results |
| Medical (positive airway pressure) | Selected patients                          | Most common therapy                           |


# Severity Ranking System Based on Polysomnography

|              | Apnea-hyponea index | Oxygen Saturation |
|--------------|---------------------|-------------------|
|              |                     | Nadir             |
| Normal       | 0-1                 | >92               |
| Mild OSA     | 2-4                 |                   |
| Moderate OSA | 5-9                 |                   |
| Severe OSA   | >10                 | <80               |
|              |                     |                   |




## Role of Hypoxia

- Rats -- intermittent hypoxia → ↑ develop opioid sensitivity
- Hypoxia → inflammatory response and vascular remodeling
- Wilson et.al and others have found a 2 ½ X increase in the incidence of respiratory complications in children undergoing T&A who had evidence of nocturnal desaturation to 80% or less



#### **Tonsillectomy in 2012**

- Pediatric Anesthesia Volume 21, Issue 7, pages 771–780, July 2011 Karen Brown
- Obstructive symptoms and sleep disordered breathing are most common causes of T&A
- Few polysomnography
- ↑ incidence of peri-op complications
- ↓ doses of opioids or sedatives



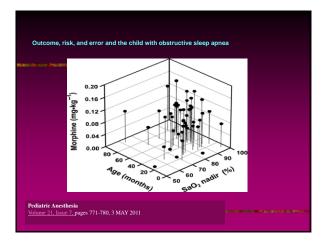
### STBUR

Paediatr Anaesth. 2013 Jun;23(6):510-6. doi: 10.1111/pan.12155. Epub 2013 Apr 1.

The STBUR questionnaire for predicting perioperative respiratory adverse events in children at risk for sleepdisordered breathing.

Tatt AR, Voepel-Lewis T, Christensen R, O'Brien LM.

- Snoring
- Trouble Breathing
- UnRefreshed


#### **STBUR**

#### Does your child:

- Snore more than ½ the time?
- Snore loudly?
- Trouble/struggle to breath
- Stop breathing during the night
- Wake up Unrefreshed
- Score > 3 = 3X risk of PRAE(perioperative respiration)
- Score =5 + 10 X risk of PRAE

#### Anesthetic Considerations

- ↑ pre-op desat= ↑ sensitivity to opioids
- Require less opioids
- Standard opioid doses may be relative overdose
- Consider nocturnal oxygen monitoring





## IV Ibuprofen vs. Placebo

- 161 patients
- T&A
- Lower fentanyl requests
- Lower # of doses
- Lower total dose

|                          | Placebo<br>(N = 79)<br>No. of events | IV-Ibuprofen<br>(N = 82)<br>No. of events |
|--------------------------|--------------------------------------|-------------------------------------------|
| Vomiting                 | 2                                    | 3                                         |
| Agitation                | 3                                    | 1                                         |
| Infusion site pain       | 0                                    | 3                                         |
| Nausea                   | 1                                    | 2                                         |
| Hemorrhage*              | 1                                    | 2                                         |
| Restlessness             | 2                                    | 0                                         |
| Rash erythematous        | 2                                    | 0                                         |
| Bronchospasm             | 2                                    | 0                                         |
| Urticaria                | 0                                    | 2                                         |
| Headache                 | 1                                    | 0                                         |
| Epistaxis                | 1                                    | 0                                         |
| Pyrexia                  | 1                                    | 0                                         |
| Erythema                 | 1                                    | 0                                         |
| Swelling Face            | 1                                    | 0                                         |
| Infusion site discomfort | 0                                    | 1                                         |
| Cough                    | 0                                    | 1                                         |
| Hypoxia                  | 0                                    | 1                                         |
| Irritability             | 0                                    | 1                                         |
| Hematemesis*             | 0                                    | 1                                         |

#### Pediatrics 2015

#### Morphine or Ibuprofen for Post-Tonsillectomy Analgesia: A Randomized Trial

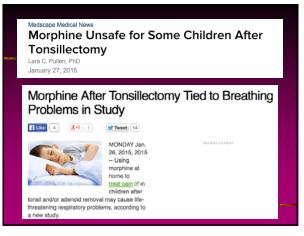
Lauren E. Kelly, PhD<sup>11</sup>, Doron D. Sommer, MD<sup>1</sup>, Jayant Ramakrishna, MD<sup>1</sup>, Stephanie Hoffbauer, BHSc<sup>1</sup>, Sadaf Arbab-tafti, BHSc<sup>1</sup>, Diane Reid, MD<sup>1</sup>, Jonathan Maclean, MD<sup>1</sup>, Gideon Koren, MD<sup>12,4</sup>

## Morphine vs. Ibuprofen

| Demographics                                       | Morphine ( $N = 46$ ) | Ibuprofen (N = 38) |
|----------------------------------------------------|-----------------------|--------------------|
| Age, y                                             | 5.07 (2.45)           | 5.14 (2.25)        |
| Weight, kg                                         | 27.36 (8.78)          | 22.38 (9.59)       |
| BMI                                                | 17.31 (3.00)          | 18.29 (4.56)       |
| Gender, female                                     | 50% (23)              | 54% (22)           |
| Preoperative tonsil size                           | 2.80 (0.61)           | 3.05 (0.58)        |
| Total number of desaturation events (preoperative) | 3.55 (3.63)           | 4.51 (8.48)        |
| Diagnosis                                          |                       |                    |
| SDB                                                | 57% (26)              | 48% (19)           |
| Obstructive sleep apnea                            | 32% (15)              | 45% (18)           |
| SDB with recurrent tonsillitis                     | 11% (5)               | 7% (5)             |
| Ethnicity                                          |                       |                    |
| Caucasian                                          | 87% (40)              | 93% (38)           |
| African American                                   | 7% (3)                | 7% (5)             |
| Middle Eastern                                     | 4% (2)                | 0                  |
| South American                                     | 2% (1)                | 0                  |

## Morphine vs. Ibuprofen

|                                            | Ibuprofer | N = 26  | Morph | nine (N = 30) | P Value |
|--------------------------------------------|-----------|---------|-------|---------------|---------|
| Lowest 0 <sub>2</sub> saturation (% nadir) |           |         |       |               |         |
| Preoperative                               | 85.39     | (6.93)  | 83    | 5.97 (7.86)   |         |
| Postoperative                              | 81.27     | (15.81) | 81    | .63 (12.75)   |         |
| ∆ Lowest 0 <sub>2</sub> saturation         | 3.96      | (12.65) | 2     | 2.38 (12.30)  | .64     |
| Mean 02 saturation (% nadir)               |           |         |       |               |         |
| Preoperative                               | 97.41     | (1.02)  | 97    | .20 (1.22)    |         |
| Postoperative                              | 96.55     | (2.07)  | 95    | 6.00 (2.18)   |         |
| ▲ Mean 0 <sub>2</sub> saturation           | 0.79      | (2.33)  | 2     | 2.13 (1.42)   | .33     |
| Total number of desaturation events/h      |           |         |       |               |         |
| Preoperative                               | 4.52      | (7.87)  | 3     | 5.64 (3.71)   |         |
| Postoperative                              | 3.04      | (3.27)  | 14    | 26 (11.85)    |         |
| ▲ Total desaturation events/h              | -1.79     | (7.57)  | + 11  | .17 (15.02)   | <.01    |
| Number of children improved                | 65%       | (17/26) | 1     | 3% (4/30)     | <.01    |


## Morphine vs. Ibuprofen

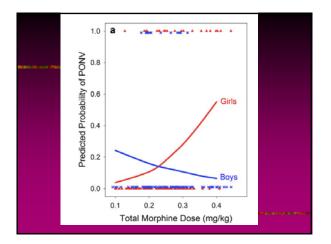
Demographics

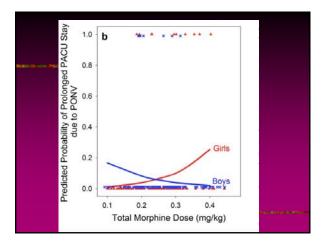
Pain scores

#### O2 nadirs and mean O2 nadirs-similar

|                                       | Ibu          | MS              |      |
|---------------------------------------|--------------|-----------------|------|
| Total number of desaturation events/h |              |                 |      |
| Preoperative                          | 4.52 (7.87)  | 3.64 (3.71)     |      |
| Postoperative                         | 3.04 (3.27)  | 14.26 (11.85)   |      |
| arDelta Total desaturation events/h   | -1.79 (7.57) | + 11.17 (15.02) | <.01 |
| Number of children improved           | 65% (17/26)  | 13% (4/30)      | <.01 |




#### Race


- African Americans compared to Caucasians
  - ↑ SDB
  - ↑ OSAS
- African Americans have lower O<sub>2</sub>Sat nadir
- May need higher doses



## Morphine vs. Gender

|                                              |              | <0.2                            | 0.2-<0.3            | ≥0.3                |          |
|----------------------------------------------|--------------|---------------------------------|---------------------|---------------------|----------|
|                                              |              | Number of Cases (%)             | Number of Cases (%) | Number of Cases (%) | P Value* |
| RD                                           | F            | 5 (12)                          | 3 (6)               | 12 (52)             | 0.001    |
|                                              | M            | 4 (12)                          | 6 (13)              | 8 (32)              | 0.079    |
| PONV                                         | F            | 4 (10)                          | 8 (16)              | 10 (43)             | 0.003    |
|                                              | M            | 6 (18)                          | 7 (15)              | 1 (4)               | 0.172    |
| Pruritus                                     | F            | 29 (73)                         | 42 (84)             | 17 (74)             | 0.636    |
|                                              | м            | 24 (73)                         | 35 (76)             | 20 (80)             | 0.521    |
| Prolonged stay in                            | F            | 2 (5)                           | 1 (2)               | 8 (35)              | 0.002    |
| PACU due to RD                               | M            | 5 (15)                          | 3 (6)               | 5 (20)              | 0.841    |
| Prolonged stay in                            | F            | 2 (5)                           | 3 (6)               | 5 (22)              | 0.068    |
| PACU due to PONV                             | M            | 4 (12)                          | 3 (6)               | 1 (4)               | 0.295    |
| PACU due to PONV<br>Exact test on the Spears | M<br>man.com | 4 (12)<br>metation coefficient. |                     | 1 (4)               | 0.295    |







| QA Events              | Normal weight (n = 4171), (%) | Overweight (n = 875), (%) | Obese (n = 1048), (%) | P values* |
|------------------------|-------------------------------|---------------------------|-----------------------|-----------|
| Preoperative           |                               |                           |                       |           |
| Asthma                 | 12.7                          | 14.4                      | 16.1                  | 0.006     |
| Diabetes               | 0.53                          | 0.4                       | 2.6                   | 0.001     |
| Hypertension           | 14                            | 2.6                       | 4.1                   | 0.001     |
| intraoperative         |                               |                           |                       |           |
| Difficult mask airway  | 2.2                           | 3.6                       |                       | 0.001     |
| Difficult laryngoscopy | 0.4                           | 0.2                       | 1.3                   | 0.005     |
| Bronchospasm           | 0.4                           | 0.0                       | 0.5                   | 0.156     |
| Dental injury          | 0.0                           | 0.1                       | 0.1                   | 0.111     |
| Cardiac arrest         | 0.0                           | 0.0                       | 0.0                   | 05        |
| PACU                   |                               |                           |                       |           |
| Upper ainway           |                               |                           |                       |           |
| Obstruction            | 0.07                          | 0.3                       | 1.6                   | 0.001     |
| Stay >3 h              | 0.86                          | 1.3                       | 1.9                   | 0.026     |
| 22 antiemetics         | 0.6                           | 1.1                       | 1.3                   | 0.039     |
| Vomiting               | 0.4                           | 0.5                       | 0.6                   | 0.263     |
| Unplanned admit        | 0.5                           | 0.5                       | 1.0                   | 0.063     |

| Adverse events                          | Normal weight (n = 200) | Severely obese (n = 100) | P      |
|-----------------------------------------|-------------------------|--------------------------|--------|
| Any intraoperative or emergence events* | 3 (1.5)                 | 14 (14.0)                | <0.001 |
| Bronchospasm                            | 1                       | 2                        | 0.259  |
| Airway obstruction                      | 0                       | $\bigcirc$               | <0.001 |
| Stridor/taryngospasm                    | 1                       | 4                        | 0.044  |
| Aspiration                              | 0                       | 0                        | -      |
| Severe hypoxemia, SpOg ≤ 70%            | 1                       | (5)                      | 0.017  |
| Any recovery room events*               | 1 (0.5)                 | 3 (3.0)                  | 0.074  |
| Bronchospasm                            | 0                       | 1                        | 1.000  |
| Airway obstruction                      | 0                       | 3                        | 0.036  |
| Aspiration                              | 0                       | 0                        | -      |
| Reoperation for tonsillar bleeding      | 1                       | 0                        | 1.000  |
| Tracheal reintubation®                  | 1                       | 1                        | 1.000  |
| Any perioperative events*               | 4 (2.0)                 | 15 (15.0)                | <0.001 |

### More References

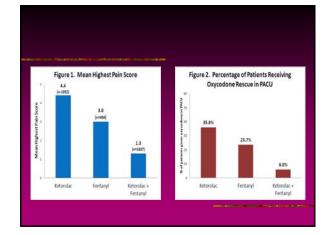
- <u>Brown KA</u>, et.al. Recurrent hypoxemia in children is associated with increased analgesic sensitivity to opiates. <u>Anesthesiology</u>. 2006 Oct;105(4):665-9
- <u>Brown KA, et.al:</u> Recurrent hypoxemia in young children with obstructive sleep apnea is associated with reduced opioid requirement for analgesia. Anesthesiology. 2004 Apr;100(4):806-10;

#### <u>Obstructive sleep apnoea in children:</u> <u>perioperative considerations.</u> Patino M, Sadhasivam S, Mahmoud M. Br J Anaesth. 2013 Dec;111

- Counsel Family
- Discuss with Surgery

### **Other Analgesics**

- Dexmedetoidine
- IV Acetaminophen
- Ibuprofen
- Short Acting Opioids
- Topical LA infiltration




#### ASA 2014 Abstracts



Multimodal Versus Single Agent Analgesia for Pediatric Myringotomy and Pressure Equalization Tube Insertion

- >3000 pts undergoing ear tubes
- RCT
  - Fentanyl
  - Entanyl + ketorolac
  - Ketorolac





#### Post-operative Pain Management

- Combined general-regional techniques are very common
- Most blocks are placed after the child is anesthetized.
- Ultrasound has made this easier and more practical

#### Catheters

- With good education and follow up, easy and effective
- Minimal complications
  - Skin
  - Mechanical
  - Leaking

#### **PRAN Data Base**

- Caudals
- Transverse Abdominas plane blocks

Can J Anaesth. 2009 Nov;56(11):843-50. Continuous peripheral nerve blocks for postoperative analgesia in children: feasibility and side effects in a cohort study of 339 catheters. Dadure C, Bringuier S, Raux et.al

Anesth Analg. 2003 Sep;97(3):687-90. Perioperative continuous peripheral nerve blocks with disposable infusion pumps in children: a prospective descriptive study. Dadure C, Pirat P, Raux et.al

Paediatr Anaesth. 2011 Apr;21(4):406-10Feasibility and efficacy of placement of continuous sciatic perineural catheters solely under ultrasound guidance in children: a descriptive study. Ponde VC, Desai AP, Shah DM, Johari AN.

### Post-operative Pain Management

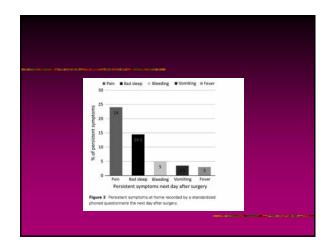
- Fentanyl can be used intra-nasally if no IV access. Blood levels appear to be equivalent to IV
- Morphine 0.05-0.1 mg/kg
- Hydromorphone 5-15 ug/kg
- Ketorolac 0.5 mg/kg IV, 1mg/kg IM intranasal max doses 30mg

#### Post-operative Pain Management

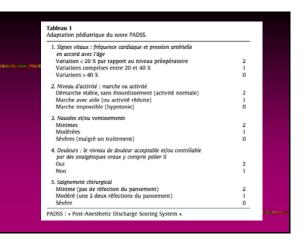
- Acetaminophen (A) up to 45 mg/kg p.r.
- Bolton et.al measured serum levels in 55 pts undergoing T&T, who received 40 mg/kg p.r. pre-operatively.
  - Levels did not reach toxicity in any pts
  - Efficacy, esp post discharge was deemed greater (although no control group)


Bolton et.al. Paed Anaesth 12:29-35,2002

#### Acetaminophen


- Intravenous-
  - 12.5mg/kg IV infused over 15mins q 4 hours
  - 15mg/kg over 15 minutes q 6 hours
- Very effective can be used in a wide variety of situations
- Educate health care providers regarding other meds with acetaminophen

| De dote e | Society for Pediatric Anesthesia                                                             |       |
|-----------|----------------------------------------------------------------------------------------------|-------|
|           | Wake Up Safe<br>Acetaminophen Warning                                                        |       |
|           | WAKE UP SAFE®<br>The Pediatric Anesthesia Quality Improvement Initiative<br>October 22, 2014 |       |
|           | Warning: Risk of acetaminophen overdose                                                      | TRACT |


#### Paediatric anaesthesia [1155-5645] Moncel yr:2015



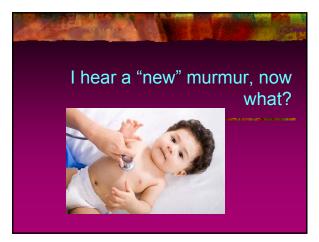
| Table 1 Demographic data                   |             |
|--------------------------------------------|-------------|
| Total number of patients, n                | 1060        |
| Male, n (%)                                | 734 (69)    |
| Female, n (%)                              | 326 (31)    |
| Age (months)                               | 62 (30-118) |
| Weight (kg)                                | 19 (13-31)  |
| Type of surgery, n (%)                     |             |
| Digestive                                  | 81 (8)      |
| Urological                                 | 345 (32)    |
| Orthopedic                                 | 306 (29)    |
| ENT/dental/ophthalmological                | 183 (18)    |
| Plastic                                    | 83 (8)      |
| Neurosurgery                               | 8 (0.8)     |
| Long-term central venous catheter          | 24 (2)      |
| Endoscopic procedure                       | 30 (3)      |
| Type of anesthesia                         |             |
| General, n (%)                             | 513 (48)    |
| General combined with loco regional, n (%) | 547 (52)    |
| Length of surgery (min)                    | 58 (42-75)  |
| Length of PACU (min)                       | 85 (65-100) |







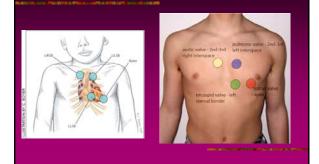
Demographics of Unplanned Admissions Following Ambulatory Surgery During 33 Months at a Children's Hospital


Arlyne K. Thung, M.D., Vidya T. Raman, M.D., Thomas A. Taghon, D.O., Joseph Tobias, M.D. Nationwide Childrens, Columbus, Ohio, United States

- All Ambulatory patients 2011-2013
- 1.07% unplanned admission
- Most common cause: surgery
- Most common service: ENT

#### Conclusion

- RTI have increased but minor risks of respiratory complications
- Ex-premature infants
- STBUR score and opioids dosing
- T&A-new concerns, new options for pain relief
- PAD-SS






#### Murmurs

- Very common
- Highest incidence at 3 or 4 years
- "Functional" = normal heart
- Usually short, and soft
- Louder when pt supine or ↑ heart rate

#### Common Locations to Hear Murmurs



## Common "functional" murmurs

- Still murmur-
  - musical or vibratory, midsystolic,
  - left sternal border
- Peripheral pulmonary stenosis
  - ejection murmur
  - LUSB, radiates-neonates
- Venous Hum-
  - continuous murmur louder in upright position
  - Upper chest

#### How loud?

- Grade I Heard only with intense concentration
- Grade II Faint, but heard immediately
- Grade III Easily heard, of intermediate intensity
- Grade IV Easily heard, palpable thrill/vibration on chest wall
- Grade V Very loud, thrill present, audible with only edge
- of stethoscope on chest wall
- Grade VI Audible with stethoscope off the chest wall

#### What to do?

- Controversial
- If child is growing well, acyanotic and has good exercise tolerance-anesthesia well tolerated
- Look for systemic symptoms
- If in doubt-Echo +/- Pediatric cardiologist

#### Symptoms of Heart Disease

- Feeding difficulties: disinterest, fatigue, diaphoresis, tachypnea, dyspnea
- Poor exercise tolerance
- Resp distress, grunting, nasal flaring, retractions
- Frequent respiratory tract infections
- Central cyanosis or poor capillary refill
- Absent or abnormal peripheral pulses

Modifi ed from Pelech AN: Evaluation of the pediatric patient with a cardiac murmur. Pediatr Clin North Am 1999; 46:167-188.

## If in Doubt

- Call Cardiology
- Postpone Case
- Reschedule?