
Discovering and Achieving Goals via World Models

Russell Mendonca*
Carnegie Mellon University

Oleh Rybkin*
University of Pennsylvania

Kostas Daniilidis
University of Pennsylvania

Danijar Hafner
University of Toronto

Deepak Pathak
Carnegie Mellon University

Abstract

How can artificial agents learn to solve wide ranges of tasks in complex visual
environments in the absence of external supervision? We decompose this question
into two problems - discovering new goals and learning to reliably reach them. We
introduce the Latent Explorer Achiever (LEXA), a unified solution to these that
learns a world model from image inputs and uses it to train an explorer and an
achiever policy from imagined trajectories. Unlike prior methods that explore by
reaching previously visited states, the explorer plans to discover unseen surprising
states through foresight, which are then used as diverse targets for the achiever.
After the unsupervised phase, LEXA solves tasks specified as goal images zero-shot
without any additional learning. We introduce a challenging benchmark spanning
across four standard robotic manipulation and locomotion domains with a total
of over 40 test tasks. LEXA substantially outperforms previous approaches to
unsupervised goal reaching, achieving goals that require interacting with multiple
objects in sequence. Finally, to demonstrate the scalability and generality of LEXA,
we train a single general agent across four distinct environments.

1 Introduction

Environment

World Model Environment

Explorer

Achiever

Replay Buffer

Achiever

Random Goal Image

User Goal Image

Unsupervised Interaction

Zero-Shot Evaluation

Figure 1: LEXA learns a world model without any
supervision, and leverages it to train two policies
in imagination. The explorer finds new images and
the achiever learns to reliably reach them. Once
trained, the achiever reaches user-specified goals
zero-shot without further training at test time.

This paper tackles the question of how to build
an autonomous agent that can achieve a di-
verse set of tasks specified by a user at test
time, such as a legged robot standing in cer-
tain pose, a robotic arm rearranging blocks be-
tween bins, or performing chores in a kitchen.
Such a general system would be difficult to re-
alize within the traditional reinforcement learn-
ing (RL) paradigm, where a user specifies task
rewards that the agent finds by sampling its en-
vironment. Designing task rewards requires do-
main knowledge, is time-consuming, and prone
to human errors. Moreover, a traditional RL
would have to explore and retrain for every new
task. Instead, the problem of solving diverse
tasks is often studied under the paradigm of un-
supervised RL, where an agent builds a reper-
toire of skills without any supervision, which
later enable solving human-specified goals with
no or limited further training.
Two challenges Building a capable unsuper-
vised agent for reaching arbitrary goals presents
∗ Equal contribution. Ordering determined by a coin flip. Project page: https://orybkin.github.io/lexa/
Preprint. Under review.

https://orybkin.github.io/lexa/

R
ob

oY
og

a
R

ob
oB

in
s

R
ob

oK
itc

he
n

Figure 2: We benchmark our method across four visual control tasks of varying difficulty: RoboYoga
(Walker, Quadruped), RoboBins, and RoboKitchen. A representative sample of the test-time goals
is shown here. RoboYoga benchmark features complex locomotion and precise control of high-
dimensional agents, RoboBins features manipulation with multiple objects, and RoboKitchen features
a variety of diverse tasks that require complex control strategies such as opening a cabinet.

two major challenges. First, the user-specified goals are often diverse and rare situations, hence the
agent needs to globally explore its environment. Second, the agent then needs to learn to reliably
achieve the diverse intrinsic goals it found during exploration to prepare itself for user-specified goals
at test time. We propose a unified approach that learns a world model together with an explorer policy
and a goal achiever policy in a fully unsupervised manner to address both challenges.

Goal discovery Prior methods for unsupervised goal reaching approach the exploration problem
by relabeling trajectories with previously visited states as goals [2, 40] or by sampling goals from
a density model of previous inputs [18, 32]. The goals can be sampled uniformly [32], or rarely
visited goals can be oversampled [14, 37, 52]. These approaches have in common that they explore
by visiting goals that either have been reached before or are interpolations of previously reached
states. They do not explore far beyond the frontier and suffer from a chicken and egg problem: the
policy does not yet know how to reach interesting goals and thus repeats already known behaviors.
We observe that this leads to poor exploration performance in such methods. To rectify this issue, we
leverage a learned world model to train an explorer policy in imagination. Instead of “generating”
a goal, explorer “discovers” goals by executing a sequence of actions optimized in imagination to
find novel states with high information gain [42, 43]. These states can be several steps away from the
frontier unlocking diverse data for goal reaching in environments where exploration is nontrivial.

Goal reaching The diverse experience collected by the explorer provides start and goal states
for training the goal achiever policy. Because our approach does not rely on goal relabeling [2],
we are free to train the achiever using on-policy trajectories generated by the world model [24,
30, 46]. Training the achiever requires measuring the distance between an the states along an
imagined trajectory and the goal, a non-trivial problem when inputs are high-dimensional images.
We empirically analyze two choices for the distance measures, namely the cosine distance in latent
space and a learned temporal distance and provide recommendations on which distance function is
appropriate for different settings.

Contributions We introduce the Latent Explorer Achiever (LEXA), an unsupervised goal reaching
agent that trains an explorer and an achiever within a shared world model. At test time, the achiever
solves challenging locomotion and manipulation tasks provided as user-specified goal images. For a
thorough evaluation, we introduce a new challenging goal reaching benchmark by defining a total of
40 diverse goal images across 4 different robot environments. In contrast to common RL benchmarks
such as Atari [5] that require training over 50 different agents and thus enormous computational
resources, our unsupervised RL benchmark only requires training 4 agents, which are then evaluated
across many tasks, allowing for faster iteration time and making the research more accessible. Using
this benchmark, we experimentally study the following scientific questions:

• Does the separation into explorer and achiever policies enable reaching more challenging goals
than were previously possible and outperform state-of-the-art approaches?

• How does forward-looking exploration of goals compare to previous goal exploration strategies?
• How does the distance function affect the ability to reach goals in different types of environments?
• Can we train one general LEXA to control different robots across visually distinct environments?

2

et eg

j − i

xt xg

Vg
t+1atVg

t Vg
Tat+1

Achiever πg(at |st, eg)

st sTst+1

d(si, sj)

rg
t+1 rg

Trg
t

−d(st+1, eg) −d(sT, eg)−d(st, eg)

Explorer πe(at |st)

Replay
Buffer

et

enc encenc

xt

Ve
t+1atVe

t Ve
Tat+1

st sTst+1

re
t+1 re

Tre
t

LD(st+1) LD(sT)LD(st)

θ3θ2θ1

z2
T+1 z3

T+1z1
T+1LD(sT) = Var{ }

World
Model

Figure 3: Explore Achieve Networks learn a single general world model that is used to train an
explorer and a goal achiever policy. The explorer (πe, left) is trained on imagined latent state rollouts
of the world model st:T to maximize the disagreement objective ret = LD(st). The goal achiever
(πg , right) is conditioned on a goal g and is also trained on imagined rollouts to minimize a distance
function d(st+1, eg). Goals are sampled randomly from replay buffer images. For training a temporal
distance function, we use the imagined rollouts of the achiever and predict the number of time steps
between each two states. By combining forward-looking exploration and data-efficient training of the
goal achiever in imagination, Explore Achieve Network provides a simple and powerful solution for
unsupervised reinforcement learning.

2 Latent Explorer Achiever (LEXA)

Our aim is to build an agent that can achieve arbitrary user-specified goals after learning in the
environment without any supervision. This problem presents two challenges, collecting trajectories
that contain diverse goals and learning to reach these goals when specified as a goal image. We
introduce a simple solution based on a world model and imagination training that addresses both
challenges. The world model represents the agent’s current knowledge about the environment and is
used for training two policies, the explorer and the achiever. To explore novel situations, we construct
an estimate of which states the world model is still uncertain about. To reach goals, we train the
goal-conditioned achiever in imagination, using the images found so far as unsupervised goals. At
test time, the agent reaches user-specified goals by deploying the achiever. A summary of the training
procedure is given in Algorithm 1.

2.1 World Model

To efficiently predict potential outcomes of future actions in environments with high-dimensional
image inputs, we leverage a Recurrent State Space Model (RSSM) [23] that learns to predict forward
using compact model states that facilitate planning [7, 50]. In contrast to predicting forward in image
space, the model states enables efficient parallel planning with a large batch size and can reduce
accumulating errors [39]. The world model consists of the following components:

Posterior: qφ(st | st−1, at−1, et), et = encφ(xt)

Dynamics: pφ(st | st−1, at−1)
Image decoder: pφ(xt | st)
Reward predictor: pφ(rt | st)

(1)

The model states st contain a deterministic component ht and a stochastic component zt with diagonal
Gaussian distribution. The deterministic component is implemented as the recurrent state of a Gated
Recurrent Unit (GRU) [11]. The encoder and decoder are convolutional neural networks (CNNs)
and the remaining components are multi-layer perceptrons (MLPs). The world model is trained
end-to-end by optimizing the evidence lower bound (ELBO) via stochastic backpropagation [29, 38]
with the Adam optimizer [28].

3

Algorithm 1: Latent Explorer Achiever (LEXA)
1: initialize: World modelM, Replay buffer D, Explorer πe(at | zt), Achiever πg(at | zt, g)
2: while exploring do
3: TrainM on D
4: Train πe in imagination ofM to maximize exploration rewards

∑
t r

e
t .

5: Train πg in imagination ofM to maximize
∑
t r

g
t (zt, g) for images g ∼ D.

6: (Optional) Train d(zi, zj) to predict distances j − i on the imagination data from last step.
7: Deploy πe in the environment to explore and grow D.
8: Deploy πg in the environment to achieve a goal image g ∼ D to grow D.
9: end while

10: while evaluating do
11: given: Evaluation goal g
12: Deploy πg in the world to reach g.
13: end while

2.2 Explorer

To efficiently explore, we seek out surprising states imagined by the world model [41–43, 45], as
opposed to retrospectively exploring by revisiting previously novel states [4, 6, 8, 34]. As the world
model can predict model states that correspond to unseen situations in the environment, the imagined
trajectories contain more novel goals, compared to model-free exploration that is limited to the replay
buffer. To collect informative novel trajectories in the environment, we train an exploration policy πe
from the model states st in imagination of the world model to maximize an exploration reward:

Explorer: πe(at | st) Explorer Value: ve(st) (2)
To explore the most informative model states, we estimate the epistemic uncertainty as a disagreement
of an ensemble of transition functions. We train an ensemble of 1-step models to predict the next
model state from the current model state. The ensemble model is trained alongside the world model
on model states produced by the encoder qφ. Because the ensemble models are initialized at random,
they will differ, especially for inputs that they have not been trained on [31, 36]:

Ensemble: f(st, θ
k) = ẑkt+1 for k = 1..K (3)

Leveraging the ensemble, we estimate the epistemic uncertainty as the ensemble disagreement. The
exploration reward is the variance of the ensemble predictions averaged across dimension of the
model state, which approximates the expected information gain [3, 42]:

ret (st)
.
=

1

N

∑
n

Var{k}
[
f(st, θk)

]
n (4)

The explorer πe maximizes the sum of future exploration rewards ret using the Dreamer algorithm
[24], which considers long-term rewards into the future by maximizing λ-returns under a learned
value function. As a result, the explorer is trained to seek out situations are as informative as possible
from imagined latent trajectories of the world model, and is periodically deployed in the environment
to add novel trajectories to the replay buffer, so the world model and goal achiever policy can improve.

2.3 Achiever

To leverage the knowledge obtained by exploration for learning to reach goals, we train a goal
achiever policy πg that receives a model state and a goal as input. Our aim is to train a general policy
that is capable of reaching many diverse goals. To achieve this in a data-efficient way, it is crucial
that environment trajectories that were collected with one goal in mind are reused to also learn how
to reach other goals. While prior work addressed this by goal relabeling which makes off-policy
policy optimization a necessity [2], we instead reuse and amplify past trajectories via the world model
that is trained on past trajectories lets us generate an unlimited amount of new imagined trajectories
for training the goal achiever on-policy in imagination. This simplifies policy optimization and can
improve stability, while still sharing all collected experience across many goals.

Achiever: πg(at | st, eg) Achiever Value: vg(st, eg) (5)
To train the goal achiever, we sample a goal image xg from the replay buffer and compute its
embedding eg = encφ(xg). The achiever aims to maximize an unsupervised goal-reaching reward

4

0 1 2 3 4
Environment Samples 1e6

0.0

0.2

0.4

0.6

Av
g

Go
al

 S
uc

ce
ss

Ours+Temporal
Ours+Cosine
DDL

DIAYN
GCSL
Skewfit lie

2 lie
str

etc
h
lie

sid
e

bala
nce

2
sta

nd 2
sta

nd
att

ack

bala
nce

lie
sid

e 2

two le
gs u

p
poin

t

Ours+
Temporal

Ours+
Cosine

DDL

DIAYN

GCSL

Skewfit

0.63 0.4 0.33 0.23 0.4 0.33 0.33 0.4 0.27 0.27 0.07 0.03

0.9 0.7 0.9 0.8 0.73 0.77 0.67 0.4 0.33 0.27 0.37 0.07

0.57 0.2 0.63 0.57 0.37 0 0 0.03 0.13 0.1 0.03 0

0.83 0.87 0.17 0 0 0 0 0 0 0 0.03 0

0.63 0.73 0.13 0 0 0.17 0.27 0.27 0 0 0.03 0

0.17 0.12 0.05 0 0.03 0.11 0.09 0.12 0.01 0 0 0

Figure 4: RoboYoga Quadruped Benchmark. Left: success rates averaged across all 12 tasks.
Right: final performance on each specific task, ranging from light green (0) to dark blue (100%).
We observe that the simple latent cosine distance function works well on this task, substantially
outperforming other competing agents. In the heatmap, most agents can solve the easy tasks, but only
LEXA makes progress on solving a majority of the tasks and achieves good performance.

rg(st, eg). We discuss different choices for this reward in Section 2.4. We again use the Dreamer
algorithm [24] for training, where now the value function also receives the goal embedding as input.
In addition to imagination training, we found it important to perform practice trials with the goal
achiever in the true environment, so that any model inaccuracies along the goal reaching trajectories
may be corrected. To perform practice trials, we sample a goal from the replay buffer and execute the
goal achiever policy for that goal in the environment. These trials are interleaved with exploration
episodes collected by the exploration policy in equal proportion. We note that the goal achiever
learning is entirely unsupervised because the practice goals are simply images the agent encountered
through exploration or during previous practice trails.

2.4 Latent Distances

Training the achiever policy requires us to define a goal achievement reward rg(st, eg) that measures
how close the latent state st should be considered to the goal eg. One simple measure is the cosine
distance in the latent space obtained by inputting image observations into the world-model. However,
such a distance function brings “visually” similar states together even if they could be farther apart
in “temporal” manner as measured by actions needed to reach from one to other. This bias makes
this suitable only to scenarios where most of pixels in the observations are directly controllable, e.g.,
trying to arrange robot’s body in certain shape, such as RoboYoga poses in Figure 2. However, many
environments contain agent as well as the world, such as manipulation involves interacting with
objects that are not directly controllable. The cosine distance would try matching the entire goal
image, and thus places a large weight on both matching the robot and object positions with the desired
goal. Since the robot position is directly controllable it is much easier to match, but this metric overly
focuses on it, yielding poor policies that ignore objects. We address this is by using the number of
timesteps it takes to move from one image to another as a distance measure [26, 27]. This ignores
large changes in robot position, since these can be completed in very few steps, and will instead focus
more on the objects. This temporal cost function can be learned purely in imagination rollouts from
our world model allowing as much data as needed without taking any steps in the real world.
Cosine Distance To use cosine distance with LEXA, for a latent state st, and a goal embedding eg ,
we use the latent inference network q to infer sg , and define the reward as the cosine similarity:

rgt (st, eg)
.
=
∑
i

stisgi, where st = st/‖st‖2, sg = sg/‖sg‖2 (6)

This metric is the cosine of the angle between the two vectors st, sg in the N−dimensional latent
space. Using this simple metric in our Explore-Achieve framework, we obtain an effective agent for
unsupervised goal reaching, especially for environments with a single controllable agent.
Temporal Distance To use temporal distances with LEXA, we train a neural network d to predict
the number of time steps between two image predicted embeddings of an imagination trajectory. We
sample a trajectory containing si by running the current goal-reaching policy in imagination using a
random initial and goal images sampled from the replay buffer. We select the second state sj to be a
random state later in the same trajectory and regress towards the ground truth number of time steps

5

0 2 4 6 8
Environment Samples 1e6

0.00

0.25

0.50

0.75

1.00

Av
g

Go
al

 S
uc

ce
ss

Ours+Temporal
Ours+Cosine
DDL

DIAYN
GCSL
Skewfit

reach left

reach right

push front

place front

push back push

 both front place

 both front push

 both back

Ours+
Temporal

Ours+
Cosine

DDL

DIAYN

GCSL

SkewFit

1 0.94 1 0.89 0.56 0.94 0.44 0.33

1 1 1 1 0.5 0.5 0 0

1 1 0.83 0 0 0.17 0 0

0.62 0 0.67 0 0 0 0 0

0.18 0.23 0.3 0 0 0 0 0

0.6 0.71 0 0 0.1 0 0 0

Figure 5: RoboBin Goal Benchmark. Left: success rates averaged across all 8 tasks. Right: final
performance on each specific task, ranging from light green (0) to dark blue (100%). We observe that
while the simple latent cosine distance function works on simple goals, temporal distance functions
outperform it on the more challenging tasks requiring manipulations of several blocks (last three
columns in the heatmap), as this distance metric is able to focus on the part of the environment that’s
hardest to manipulate. We further observe that other competing agents perform poorly and only solve
the easiest reaching tasks, struggling either with exploration or learning the downstream policy.

between two states. We implement the temporal distance in terms of predicted image embeddings
êt+k in order to remove extra recurrent information:

Predicted CNN embedding: emb(st) = êt ≈ et
Temporal distance: dω(êt, êt+k) ≈ k/H,

(7)

where H is the maximum distance equal to the imagination horizon. Training distance function only
on imagination data from the same trajectory would cause it to predict poor distance to far away states
coming from other trajectories, such as images that are impossible to reach during one episode. In
order to incorporate learning signal from such far-away goals, we include them by sampling images
from a different trajectory. We annotate these negative samples with the maximum possible distance,
so that the agent always prefers images that were seen in the same trajectory.

rgt (st, eg) = −dω(êt, eg), where êt = emb(st), eg = encφ(xg) (8)
We note this learned distance function depends on the training data policy. However, as the policy
becomes more competent, the distance estimates will be closer to the optimal number of time steps to
reach a particular goal [26]. In our method, we always use the data from the latest policy to train the
distance function via the imagination training, ensuring that the convergence is fast.

3 Experiments

We compare LEXA to several goal reaching approaches to evaluate its empirical performance and
understand the contributions of the individual components. As not many prior methods have shown
success on reaching diverse goals from image inputs, we perform an apples-to-apples comparison by
implementing the baselines using the same world model and policy optimization as our method:
• DDL Dynamic Distance Learning Hartikainen et al. [26] trains a temporal distance function

similar to our method. Following the original algorithm, DDL uses greedy exploration and trains
the distance function on the replay buffer instead of in imagination.

• DIAYN Diversity is All You Need [15] learns a latent skill space and uses mutual information
between skills and reach states as the objective. We augment DIAYN with our explorer policy and
train a learned skill predictor to obtain a skill for a given test image [12].

• GCSL Goal-Conditioned Supervised Learning [20] trains the goal policy on replay buffer goals
and mimics the actions that previously led to the goal. We also augment GCSL with our explorer
policy, as we found no learning success without it.

• SkewFit SkewFit [37] uses model-free hindsight experience replay and explores by sampling
goals from the latent space of a variational autoencoder [29, 38]. Being one of the state-of-the-art
agents, we use the original implementation that does not use a world model or explorer policy.

We introduce three benchmarks for unsupervised goal reaching by defining goal images for a diverse
set of four existing environments, shown in Figure 2:

6

0.0 1.5 3.0 4.5 6.0
Environment Samples 1e6

0.00

0.15

0.30

0.45

Av
g

Go
al

 S
uc

ce
ss

Ours+Temporal
Ours+Cosine
DDL

DIAYN
GCSL
Skewfit

slid
e

kettle hinge

slid
e+kettle

slid
e+hinge light

kettle+light

kettle+hinge

hinge+light

slid
e+light

micro
wave

burner

Ours+
Temporal

Ours+
Cosine

DDL

DIAYN

GCSL

1 0.83 0.39 0.67 0.5 0.28 0.28 0.17 0.06 0 0 0

0.5 0.08 0.5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0.05 0.24 0 0 0 0.05 0 0 0 0 0 0

Figure 6: RoboKitchen Benchmark. Left: success rates averaged across all 12 tasks. Right: final
performance on each specific task, ranging from light green (0) to dark blue (100%). This enviroment
presents both extremely challenging exploration and downstream control, with most prior agents never
solving any tasks. In contrast, LEXA is able to learn both an effective explorer and achiever policy.
Temporal distance functions help LEXA focus on small parts such as the light switch, necessary
to solve these tasks. LEXA makes progress on four out of six base tasks, and is even able to solve
combined goal images requiring e.g. both moving the kettle and opening a cabinet.

• RoboYoga We use the walker and quadruped domains of the DeepMind Control Suite [47] to
defined the RoboYoga benchmark, consisting of 12 goal images that correspond to different body
poses for each of the two environments, such as lying down, standing up, and balancing.

• RoboBins Based on MetaWorld [51], we create a scene with a Sawyer robotic arm, two
bins, and two blocks of different colors. The goal images specify tasks that include reaching,
manipulating only one block, and manipulating both blocks.

• RoboKitchen The last benchmark involves the challenging kitchen environment from [22],
where a franka robot can interact with various objects including a burner, light switch, sliding
cabinet, hinge cabinet, microwave, or kettle. The goal images we include describe tasks that
require interacting with only one object, as well as interacting with two objects.

3.1 RoboYoga Benchmark

The environments in this benchmark are directly controllable, since they only contain the robot and
no other objects. We recall that for such settings we expect the cosine distance to be a very effective
metric, since success requires exactly matching the goal image. Training is thus faster compared to
using learned temporal distances, where the metric is learned from scratch.

From Figure 4 we see that this is indeed the case for the Quadruped environment, and LEXA with
the cosine metric outperforms all prior approaches on both the Walker and Quadruped environments.
Furthermore with temporal distances LEXA makes better progress compared to prior work on a much
larger number of goals as can be seen from the per-task performance, even though average success
over goals looks similar to that of DDL. We found similar results on the Walker environment, and
include them in the appendix.

3.2 RoboBins Benchmark

This environment nvolves interaction with block objects, and thus not directly controllable, and so
we expect LEXA to perform better with the temporal distance metric. We see that LEXA beats all
prior approaches, and is also able to make progress on all goals in the benchmark.From the per-task
performance in Figure 5 we see that the main difference in performance between using temporal
distance and cosine can be seen in the tasks involving two blocks, which are the most complex tasks
in this environment (the last 3 columns of the per-task plot). The best performing prior method is
DDL which completely solves reaching, and is about 3 times worse on pushing. This is because
the the method sees a lot less data relevant to the harder tasks owing to poorer exploration since it
doesn’t have the disagreement objective. We see that while skewfit make some progress on reaching,
it completely fails on harder tasks involving manipulation.

7

0 2 4 6 8
Environment Samples 1e6

0.00

0.25

0.50

0.75

1.00

Av
g

Go
al

 S
uc

ce
ss

Ours
No imagination
training for distance

No explorer
No neg
 sampling

rea
ch lef

t

rea
ch rig

ht

push fro
nt

plac
e fr

ont

push back push

 both
 fro

nt plac
e

 both
 fro

nt push

 both
 back

Ours

No Imag

No
explorer

No neg
 samples

1 0.94 1 0.89 0.56 0.94 0.44 0.33

0.89 1 0.89 0.72 0.33 0.83 0.06 0.06

0.89 0.56 0.11 0 0.33 0.11 0 0

1 1 0.67 0.67 1 0.17 0.28 0

Figure 7: Ablations Testing different components of LEXA with temporal distances on the RoboBins
benchmark. We observe that training a separate exploration policy is crucial for solving most tasks,
as the agent never discovers them in the no explorer version. Training temporal distance on negative
samplies significantly speeds up learning, and both negative sampling and training in imagination as
opposed to real data is important for performance on the hardest tasks.

3.3 RoboKitchen Benchmark

This benchmark involoves a very diverse set of objects, that require different manipulation behavior.
We see from Figure 6 that our approach with learned temporal distance is able to learn multiple
RoboKitchen tasks, some of which require sequentially completing 2 tasks in the environment. All
prior methods barely make progress due to the challenging nature of this benchmark, and furthermore
using the cosine distance function makes very limited progress. The gap in performance between
using the two distance functions is much larger in this environment compared to RoboBins since
there are many more objects and they are not as clearly visible as the blocks.

3.4 Single Agent Across All Environments

Figure 8: Single agent trained across Kitchen, RoboBin,
Walker, with final performance on each specific task, rang-
ing from light green (0) to dark blue (100%). LEXA with
temporal distance is able to make progress on tasks from all
environments, while LEXA+cosine and DDL don’t make
progress on the kitchen tasks.

In the previous sections we have
shown that our approach can reach di-
verse goals in different environments.
However, we trained a new agent
for every new environment, which
doesn’t scale well to large numbers
of environments. Thus we investi-
gate if we can train a train a sin-
gle agent across all the environments
in the benchmark (i.e RoboKitchen,
RoboBins, Walker and Quadruped).
From Figure 8 we see that our ap-
proach with learned temporal dis-
tance is able to make progress on
tasks from RoboKitchen, RoboBins
Reaching, RoboBins Pick & Place and
Walker, while the best prior method on
the single-environment tasks (DDL)
mainly solves walker tasks and reach-
ing from RoboBin.

3.5 Ablation Study

Exploration Quality Effective exploration is a necessary condition for goal reaching, since without
diverse data it is not possible to train a good controller. In order to examine the diversity of the
data collected during training, we also log the ’coincidental success’, i.e whether in the process of
collecting data, the agent exhibits behavior that is need to solve an evaluation task. We include the
Figure in the appendix, and see that while dynamical distances encounter reaching goals, our method
encounters the harder tasks like place much more often.

8

Ablation of different components We ran ablations of our approach on the RoboBins environment,
where we examined the effect of removing negative sampling while training the distance function,
removing disagreement for the exploration policy, and training the distance function with real world
data from the replay buffer instead of imagination data. From the plots in Figure 7 we see that using
a separate explorer policy is the most critical component, and without the explore the agent does
not collect good data from which to learn from. Without negative sampling the agent learns slower,
and this is probably because the distance function doesn’t produce reasonable outputs when queried
on images that are more than horizon length apart, since it is never trained on such data. Training
the distance function with real data converges to slightly lower success than using imagination data,
since real data is sampled in an off-policy manner due to its limited quantity.

4 Related Work

Learning to Achieve Goals The problem of learning to reach many different goals has been
commonly addressed with model-free methods that learn a single goal-conditioned policy [2, 27, 40].
Recent work has combined these approaches with various ways to generate training goals, such
as asymmetric self-play [33, 44] or by sampling goals of intermediate difficulty [14, 18]. These
approaches can achieve remarkable performance in simulated robotic domains, however, they focus
on the settings where the agent can directly perceive the low-dimensional environment state.
A few works have attempted to scale these model-free methods to visual goals by using contrastive
[49] or reconstructive [32, 37] representation learning. However, these approaches struggle to
perform meaningful exploration as no clear reward signal is available to guide the agent toward
solving interesting tasks. Chebotar et al. [10], Tian et al. [48] avoid this challenge by using a large
dataset of interesting behaviors. Pong et al. [37], Zhang et al. [52] attempt to explore by generating
goals similar to those that have already been seen, but do not try to explore truly novel states.
A particularly relevant set of approaches used model-based methods to learn to reach goals via explicit
planning [13, 17] or learning model-regularized policies [35]. However, these approaches are limited
by short planning horizons. In contrast, we learn long-horizon goal-conditioned value functions
which allows us to solve more challenging tasks. More generally, most of the above approaches are
limited by simplistic exploration, while our method leverages model imagination to search for novel
states, which significantly improves exploration and in turn the downstream capabilities of the agent.
Learning Distance Functions A crucial challenge for visual goal reaching is the choice of the
reward or the cost function for the goal achieving policy. Several approaches use representation
learning to create a distance in the feature space [9, 32, 49, 50]. However, this naive distance may not
be most reflective of how hard a particular goal is to reach. One line of research has proposed using
the mutual information between the current state and the goal as the distance metric [1, 12, 15, 21],
however, it remains to be seen whether this approach can scale to more complex tasks.
Other works proposed temporal distances that measure the amount of time it takes to reach the goal.
One approach is to learn the distance with approximate dynamic programming using Q-learning
methods [16, 19, 27]. Our goal achiever is most similar to Hartikainen et al. [26], who learn a
temporal distance with simple supervised learning on recent policy experience. In contrast to [26],
we always train this distance function on the most recent policy data in imagination, and we further
integrate this achiever policy into our explore-achieve framework and leverage world models to
discover novel goals for the achiever to practice on.

5 Conclusion

We presented Explorer Achiever Network (LEXA), a unified agent for unsupervised RL that explores
its environment, learns to reach the discovered goals, and solves image-based tasks at test time in
zero-shot way. By searching for novelty in imagination, LEXA explores better than prior approaches
and discovers meaningful behaviors in substantially more diverse environments than considered
by prior work. Further, LEXA is able to solve challenging downstream tasks specified as images,
even being able to train a single policy in several different environments together. By proposing a
challenging benchmark and the first agent to achieve meaningful performance on these tasks, we
hope to stimulate future research on unsupervised agents, which we believe are fundamentally more
scalable than traditional agents that require a human to design the tasks and rewards for learning.
Many challenges remain for building effective unsupervised agents. Many of the tasks in our proposed
benchmark are still largely unsolved and there remains room for progress on the algorithmic side both

9

for the world model and for the policy optimization parts. Further, it is important to demonstrate the
benefits of unsupervised agents on diverse real-world systems to verify their scalability. Finally, for
widespread adoption, it is crucial to consider the problem of goal specification and design methods
that act on goals that are easy to specify, such as via natural language. We believe our framework
provides a solid foundation for future work to make concrete progress on these goals.
Acknowledgements We thank Ben Eysenbach, Stephen Tian, Sergey Levine, Dinesh Jayaraman,
Karl Pertsch, Ed Hu and the members of GRASP lab and Pathak lab for insightful discussions. We
also thank Murtaza Dalal and Chuning Zhu for help with MuJoCo environments.

References

[1] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel. Variational option discovery algorithms.
arXiv preprint arXiv:1807.10299, 2018. 9

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. arXiv preprint arXiv:1707.01495,
2017. 2, 4, 9

[3] P. Ball, J. Parker-Holder, A. Pacchiano, K. Choromanski, and S. Roberts. Ready policy one:
World building through active learning. In International Conference on Machine Learning,
pages 591–601. PMLR, 2020. 4

[4] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing
Systems, pages 1471–1479, 2016. 4

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013. 2

[6] L. Beyer, D. Vincent, O. Teboul, S. Gelly, M. Geist, and O. Pietquin. Mulex: Disentangling
exploitation from exploration in deep rl. arXiv preprint arXiv:1907.00868, 2019. 4

[7] L. Buesing, T. Weber, S. Racaniere, S. Eslami, D. Rezende, D. P. Reichert, F. Viola, F. Besse,
K. Gregor, D. Hassabis, et al. Learning and querying fast generative models for reinforcement
learning. arXiv preprint arXiv:1802.03006, 2018. 3

[8] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018. 4

[9] V. Campos, A. Trott, C. Xiong, R. Socher, X. Giró-i Nieto, and J. Torres. Explore, discover and
learn: Unsupervised discovery of state-covering skills. In International Conference on Machine
Learning, pages 1317–1327. PMLR, 2020. 9

[10] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,
R. Julian, C. Finn, et al. Actionable models: Unsupervised offline reinforcement learning of
robotic skills. arXiv preprint arXiv:2104.07749, 2021. 9

[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014. 3

[12] J. Choi, A. Sharma, S. Levine, H. Lee, and S. S. Gu. Variational empowerment as representation
learning for goal-based reinforcement learning. In Deep Reinforcement Learning workshop at
the Conference on Neural Information Processing Systems (DRL), 2020. 6, 9

[13] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568, 2018.
9

[14] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-explore: a new approach
for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019. 2, 9

10

[15] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018. 6, 9

[16] B. Eysenbach, R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging planning
and reinforcement learning. arXiv preprint arXiv:1906.05253, 2019. 9

[17] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages 2786–2793. IEEE, 2017. 9

[18] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In International conference on machine learning, pages 1515–1528. PMLR,
2018. 2, 9

[19] C. Florensa, J. Degrave, N. Heess, J. T. Springenberg, and M. Riedmiller. Self-supervised
learning of image embedding for continuous control. arXiv preprint arXiv:1901.00943, 2019. 9

[20] D. Ghosh, A. Gupta, J. Fu, A. Reddy, C. Devin, B. Eysenbach, and S. Levine. Learning to reach
goals without reinforcement learning. arXiv preprint arXiv:1912.06088, 2019. 6, 13

[21] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. arXiv preprint
arXiv:1611.07507, 2016. 9

[22] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019. 7

[23] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. arXiv preprint arXiv:1811.04551, 2018. 3

[24] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2019. 2, 4, 5

[25] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193, 2020. 13

[26] K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine. Dynamical distance learning for semi-
supervised and unsupervised skill discovery. ICLR, 2020. 5, 6, 9

[27] L. P. Kaelbling. Learning to achieve goals. In IJCAI, pages 1094–1099. Citeseer, 1993. 5, 9

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 3

[29] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013. 3, 6

[30] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. Model-ensemble trust-region policy
optimization. arXiv preprint arXiv:1802.10592, 2018. 2

[31] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016. 4

[32] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning
with imagined goals. In Advances in Neural Information Processing Systems, pages 9191–9200,
2018. 2, 9

[33] O. OpenAI, M. Plappert, R. Sampedro, T. Xu, I. Akkaya, V. Kosaraju, P. Welinder, R. D’Sa,
A. Petron, H. P. d. O. Pinto, et al. Asymmetric self-play for automatic goal discovery in robotic
manipulation. arXiv preprint arXiv:2101.04882, 2021. 9

[34] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 16–17, 2017. 4

11

[35] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik,
A. A. Efros, and T. Darrell. Zero-shot visual imitation. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 2050–2053, 2018. 9

[36] D. Pathak, D. Gandhi, and A. Gupta. Self-supervised exploration via disagreement. In
International Conference on Machine Learning, pages 5062–5071, 2019. 4

[37] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering
self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019. 2, 6, 9

[38] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014. 3, 6

[39] V. Saxena, J. Ba, and D. Hafner. Clockwork variational autoencoders. arXiv preprint
arXiv:2102.09532, 2021. 3

[40] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In
International conference on machine learning, pages 1312–1320. PMLR, 2015. 2, 9

[41] J. Schmidhuber. Curious model-building control systems. In [Proceedings] 1991 IEEE
International Joint Conference on Neural Networks, pages 1458–1463. IEEE, 1991. 4

[42] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore
via self-supervised world models. arXiv preprint arXiv:2005.05960, 2020. 2, 4

[43] P. Shyam, W. Jaśkowski, and F. Gomez. Model-based active exploration. arXiv preprint
arXiv:1810.12162, 2018. 2, 4

[44] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation
and automatic curricula via asymmetric self-play. ICLR, 2018. 9

[45] Y. Sun, F. Gomez, and J. Schmidhuber. Planning to be surprised: Optimal bayesian exploration
in dynamic environments. In International Conference on Artificial General Intelligence, pages
41–51. Springer, 2011. 4

[46] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
SIGART Bulletin, 2(4):160–163, 1991. 2

[47] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018. 7

[48] S. Tian, S. Nair, F. Ebert, S. Dasari, B. Eysenbach, C. Finn, and S. Levine. Model-based visual
planning with self-supervised functional distances. arXiv preprint arXiv:2012.15373, 2020. 9

[49] D. Warde-Farley, T. Van de Wiele, T. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih. Unsuper-
vised control through non-parametric discriminative rewards. arXiv preprint arXiv:1811.11359,
2018. 9

[50] M. Watter, J. T. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. 2015. 3, 9

[51] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pages 1094–1100. PMLR, 2020. 7

[52] Y. Zhang, P. Abbeel, and L. Pinto. Automatic curriculum learning through value disagreement.
Advances in Neural Information Processing Systems, 33, 2020. 2, 9

12

A Experimental Details

Environments The episode length is 150 for RoboBin and RoboKitchen and 1000 for RoboYoga.
We show all goals in Figure 10 For both Walker and Quadruped, the success criterion is based on
the largest violation across all joints. The global rotation of the Quadruped is expressed as the three
independent Euler angles. Global position is not taken into account for the success computation.
RoboBin. The success criterion is based on placing all objects in the correct position within 10
cm. For reaching task, the success is based on placing the arm in the correct position within 10 cm.
RoboKitchen uses 6 degrees of freedom end effector control implemented with simulation-based
inverse kinematics. The success criterion is based on placing all objects in the correct position with
a threshold manually determined by visual inspection. Note that this is a strict criterion: the robot
needs to place the object in the correct position, while not perturbing any other objects.
Evaluation We reported success percentage at the final step of the episode. All experiments were
ran 3 seeds. Plots were produced by binning every 3e5 samples. Heatmap shows performance at the
best timestep. Each model was trained on a single high-end GPU provided by either an internal cluster
or a cloud provider. The training took 2 to 5 days. The final experiments required approximately 100
training runs, totalling approximately 200 GPU-days of used resources.
Implementation We base our agent on the Dreamer implementation. For sampling goals to train
the achiever, we sample a batch of replay buffer trajectories and sample both the initial and the goal
state from the same batch, therefore creating a mix of easy and hard goals. To collect data in the real
environment with the achiever, we sample the goal uniformly from the replay buffer. We include
code in the supplementary material. The code to reproduce all experiments will be made public upon
the paper release under an open license.
Hyperparameters LEXA hyperparameters follow Dreamer V2 hyperparameters for DM control
(which we use for all our environments). For the explorer, we use the default hyperparameters from
the Dreamer V2 codebase [25]. We use action repeat of 2 following Dreamer. LEXA includes only
one additional hyperparameter, the proportion of negative sampled goals for training the distance
function. It is specified in Table 1. The hyperparameters were chosen by manual tuning due to limited
compute resources. The base hyperparameters are shared across all methods for fairness.
DIAYN baseline We found that this baseline performs best when the reverse predictor is condi-
tioned on the single image embedding e rather than latent state s. We use a skill space dimension
of 16 with uniform prior and Gaussian reverse predictor with constant variance. For training, we
produce the embedding using the embedding prediction network from Section 2.4. We observed
that DIAYN can successfully achieve simple reaching goals using the skill obtained by running the
reverse predictor on the goal image. However, it struggles with more complex tasks such as pushing,
where it only matches the robot arm.
GCSL baseline We found that this baseline performs best when the policy is conditioned on the
single image embedding e rather than latent state s. This baseline is trained on the replay buffer
images and only uses imagined rollouts to train an explorer policy. For training, we sample a random
image from a trajectory and sample the goal image from the uniform distribution over the images
later in the trajectory following [20]. We similarly observe that this baseline can perform simple
reaching goals, but struggles with more complex goals.

0 2 4 6 8
1e6

0.0

1.5

3.0

4.5

RoboBins: Reaching

0 2 4 6 8
1e6

0.0
0.3
0.6
0.9
1.2

RoboBins: Pushing

0 2 4 6 8
1e6

0.00

0.25

0.50

0.75

1.00
RoboBins: Pick&Place

Ours+Temporal DDL Skewfit

Figure 9: Coincidental success rate on RoboBins

13

Figure 10: All goals for the four environments.

0.0 1.5 3.0 4.5 6.0
Environment Samples 1e6

0.00

0.25

0.50

0.75

1.00

Av
g

Go
al

 S
uc

ce
ss

Ours+Temporal
Ours+Cosine
DDL

DIAYN
GCSL
Skewfit

lie
fro

nt

lie
back

leg
s u

p
kneel sta

nd

sta
nd on

e fe
et

lea
n back

sid
e a

ngle
brid

ge

head
 sta

nd
boat

ara
besq

ue

Ours+
Temporal

Ours+
Cosine

DDL

DIAYN

GCSL

SkewFit

0.97 0.8 1 0.17 0.3 0.37 0.2 0.2 0.07 0.17 0 0.1

1 0.9 0.93 0.97 0.87 0.57 0.77 0.93 0.9 0.63 0.57 0.17

1 0.97 0.5 0.7 0.4 0.53 0.2 0.03 0.13 0.17 0 0.13

0 0 0 0 0 0.03 0 0 0.03 0 0 0

0.1 0.2 0 0 0 0 0 0 0 0 0 0

0.09 0.24 0 0 0 0 0 0 0 0 0 0

Figure 11: RoboYoga Walker Benchmark

Hyperparameter Value Considered values

Action repeat (all environments) 2 2
Proportion of negative samples 0.1 0, 0.1, 0.5, 1
Proportion of explorer:achiever data collected in real environment 0.5:0.5 0.5:0.5
Proportion of explorer:achiever training imagination rollouts 0.5:0.5 0.5:0.5

Table 1: Hyperparameters for LEXA

14

	Introduction
	Latent Explorer Achiever (LEXA)
	World Model
	Explorer
	Achiever
	Latent Distances

	Experiments
	RoboYoga Benchmark
	RoboBins Benchmark
	RoboKitchen Benchmark
	Single Agent Across All Environments
	Ablation Study

	Related Work
	Conclusion
	Experimental Details

