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Abstract

This paper explores the strength of communities in
different types of networks as they are being discovered
through inference algorithms based on the degrees of
the discovered nodes. The goal is to explore the
correlation between the communities of the partial
information network extracted at different steps while
mapping the topology of a network. The paper mea-
sures and analyzes the community size and modularity,
and compares the communities from several partial
information networks using Normalized Mutual Index
(NMI) on four dierent types of real networks: the West
Coast Power Grid, P2P Gnutella, a terrorist network,
and a snapshot of the Internet from CAIDA.

Keywords: Louvain community detection, community
evolution, social networks, technological networks.

1 Introduction

Mapping and monitoring an entire network that is
volatile can be difficult, time-consuming, expensive, or
in some cases impossible, depending on the type of
network in question as discussed in [12]. The current
research deals with discovering community structures
as the network changes, using the existing algorithm
of [9] implemented in NetworkX, on the four networks
described next.

One of the networks considered is West Coast Power
Grid, a technological network. These are typically
man-made, designed, and exist with physical compo-
nents. The current research uses data from Watts
and Strogatz [13]. The network consists of 4941 nodes
representing generators and power substations, and
6594 edges representing high-power transmission lines.

The second network considered is the Noordin Top
Terrorist Network, composed from five major terrorist
organizations that operate in Indonesia. This is a

social dark network, i.e. covert and secretive in nature.
This network evolved in a manner that is purposefully
inefficient [11] with the goal of hiding relationships.
It is expected that this network demonstrate some of
the hallmarks of a social network [8]. However, since
the Noordin Network is a dark network, it lacks some
other traditional distinctions of a social network [11],
for instance there should be few hubs, if any. There
are 139 vertices in this network, with 1499 edges
representing different types of relationships between the
terrorist, such as communication, classmates, relatives,
etc. Noordin Top has the highest degree, and the
degrees range from 0 to 233 counting edge multiplicities
from the different layers [6].

The third network, the Gnutella, is studied as the
first decentralized Peer-to-Peer file sharing networks.
Computers act as both servers and clients and the goal
of the network was to be dynamic and scalable as new
users entered or left the network, attack tolerant and
anonymous. Data came from the Stanford Network
Analysis Project snapshot of a Gnutella network from
August 5, 2002 as an undirected network [7]. The
network has 8846 nodes and 31, 839 edges, and it
consists of one weakly connected component.

The fourth and final network is the interconnection of
Border Gateway Protocol (BGP) relationships between
organizations. Organizations create logical adjacencies
to one another as a way to route traffic throughout
the entire Internet. CAIDA, the Center for Applied
Internet Data Analysis, collects temporal snapshots of
these adjacencies. It is represented as a graph where
nodes represent organizations, and edges represent
the logical connection between these adjacencies [2].
The snapshots compiled are provided by the Stanford
Network Analysis Project from 6 February 2006 [7].
The original graph had 26, 475 nodes and 106, 762
edges. In order to make this network comparable to
the others, this research, chose to use the k-core, where
k = 3, of the original network. This resulted in a
graph where |V (G)| = 1536 and |E(G)| = 6135, and



a diameter of 6 and the degrees range between 1 and
427.

The focus of this research is on the modularity of
networks while inferring the graphs. The networks
that are considered have a variety of qualities of
community partitions. The weakest is Noordin Top
with a modularity of 0.30, however, if one combines
the very small communities into a misfit community,
one gets good 5 communities. Next, the Gnutella
network has a modularity of 0.35 followed closely by the
CAIDA’s network with a modularity of 0.43. These two
networks have much larger communities. Finally, the
highest modularity is of the Power Grid, of 0.94. Since
the Power Grid has many nodes of degree 2, it is much
easier to partition the nodes into communities with
very few edges between communities, thus increasing
the modularity.

1.1 Definitions and Algorithms

The idea of the monitor used in the current re-
search was introduced in the discovery for networks by
Davis [3]. The monitors discover the labels of the edges
and the nodes that it detects, based on the labels of the
true topology inferred. The formal definition is given
below.

We say that a monitor on node i detects a node j if
d(i, j) ≤ 1. Also, then the monitor on i discovers the
label of j and the deg j. A monitor on node i detects
an edge ij if i and ij are incident, and i detects the
label ij of the edge (i.e. that the monitor discovers the
label of the other end node of ij).
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Figure 1: A monitor placed at node v3, from [3]

Paper [3] thus defined a monitor to be a sensor that
is placed at node i that detects its incident edges and its
neighbors as shown in Figure 1. That is, for example,
if each of two monitors i and j will individually detect
node k, they will identify that it is the same k.

The Undiscovered Neighbor Degree Discovery
(UNDD) algorithm is used to light the networks:
http://faculty.nps.edu/rgera/projects.html [4]. The
algorithm uses the above described monitors to light up
the network as follows: A monitor is placed randomly

on an initial vertex x. Then the monitor discovers
N(x), which is the set of neighbors of x. Moreover,
a list of all discovered nodes in graph G is created
and labelled L(G). For each y ∈ N(x), the algorithm
queries y for the count |N(y) − L(G)|. This value
|N(y) − L(G)| counts the number of undiscovered
nodes adjacent to y, which was defined as undiscovered
neighbor degree of y and formally define as

DoUN(y) = |N(y)− L(G)|,∀y ∈ N(x).

Recall that the relative complement of a set X with
respect to Y is Y \X = {x ∈ Y ∧ x /∈ X}. This is used
in Algorithm 1 as presented using pseudo code for
V (G)\MonitorList. For further details, one can refer
to [8]

The line labeled ** is to preserve a ‘non-complete’
information setting. That is, one can’t update all the
neighbor’s (i.e. 2-distant nodes) fake degree, because
one may not be aware of them in the inferred graph.
This should actually have no impact though on the
algorithm operation (except, perhaps under certain
fringe cases of restarting) since the algorithm only
ever chooses from nodes already in the inferred graph
(i.e. seen nodes). It is valuable to point out as the
line and condition are removed for the upper-bound
algorithm a complete information about the network
is still preserved.

2 Methodology

Running the UNDD algorithm through these four
networks created partial networks at each monitor
placement. The Louvain community detection method
is used to determine communities within the network.
Modularity is used to quantify the community detection
during the inference. It returns a value between −1 and
1 and it shows how well partitioned in communities is
the current network, compared to a similar size random
network [9]. At each step of network discovery the
modularity is also calculated for each network.

Normalized Mutual Information (NMI) that com-
pares two community partitions (as they are discovered)
of graphs [1] is used. NMI will return values between
0 and 1. A value closer to 1 means the two partitions
are closer to identical. A value closer to 0 signifies two
partitions are less similar [10]. Note that NMI values
are related to the partitions of a network and hence it
would be inappropriate to compare NMI values from the
CAIDA network to NMI values from the Power Grid.
Rather NMI is better used as a measure of how similar
the partitions of the network are to each other.

A limitation of NMI, specific to this research, is
comparing partitions of networks with different size

http://faculty.nps.edu/rgera/projects.html


Algorithm 1: Undiscovered Neighbor Degree
Discovery with Restart [5]

Input: G original graph
Output: Ginf , a set of nodes and edges that form

the inferred graph

NextNode← a random node from G

repeat

ListOfMonitors.add(NextNode)
Ginf .add(NextNode)

UpdateList.add(NextNode.neighbors)
foreach NextNode.neighbor do

UpdateList.add( (NextNode.neighbor).neighbors )
if NextNode.neighbor /∈ Ginf then

Ginf .add(NextNode.neighbor)
1 RestartCounter = 0

else
SeenCount(NextNode.neighbor)+ = 1

foreach NextNode.edge do
if NextNode.edge /∈ Ginf then
Ginf .add(NextNode.edge)

foreach UpdateList.node do
** if node ∈ Ginf then

node.FakeDegree =
length(node.neighbors\Ginf )

(i.e. # of undiscovered neighbors)

2 if RestartCounter == 2 then
3 NextNode← a random node from

V (G)\ListOfMonitors
4 else

NextNodes←
MaxFakeDegreeNodes(Ginf\ListOfMonitors)
if length(NextNodes) > 1 then

NextNode=node with minimum of
SeenCount(NextNodes)

else
NextNode = NextNodes

5 RestartCounter+ = 1

until 50% of nodes have monitors

node list. If there is a great disparity between the size of
the node lists, the NMI value might be misleading. This
is due to the construction of the confusion matrix. The
confusion matrix will only account for nodes common
to the two graphs being compared. Thus, any nodes in
the ground truth, but not in the inferred region, will not
affect NMI. An example of this shortcoming is in the
early stages of discovery using UNDD. The comparison
partition might only contain a few dozen nodes, while
the ground truth node list has thousands of nodes. The

NMI calculations for this early step will only account
for the few dozen in the comparison partition, and
ignore the thousands in the ground truth that have not
been discovered. Therefore the NMI value from those
early steps is less informative, has the potential to be
misleading.

For this reason, consecutive discovery steps using
NMI are evaluated. This is named as the NMI deriva-
tive. The NMI derivative is calculated by comparing
the current step of discovery to the subsequent step
of discovery. In this methodology, the comparison
partition can be thought of as the current step of
discovery. The ground truth partition is the subsequent
step of discovery. This will minimize the impact of
different node list sizes on the NMI value. Obviously,
once the rate of discovery of nodes decreases, the
necessity to calculate the NMI derivative is minimized.
However there is an aspect of UNDD that makes the
NMI derivative useful.

In UNDD, there is a potential that not all nodes
(and therefore edges), will be discovered. The most
common reason for this is having multiple disconnected
components in the network. If the network is not
connected, UNDD will never discover the components
outside of the component the algorithm originates in
since no restarts in UNDD algorithm is chosen to use.
Additionally, there are edges between nodes that never
have a high enough Undiscovered Neighborhood Degree
to have a monitor placed on them, and therefore are
never discovered. All of these possibilities contribute
to potential for information in the network that can
not be found in UNDD. This means that UNDD might
never truly discover all of the network. There are
no such limitations in the calculations of modularity
when partitioning the network. While this potential
difference between modularity and full discovery in
UNDD represents a small percentage of the overall
network, networks with low modularity, can impact the
NMI values. To avoid this, the final step of discovery
in UNDD as the ground truth is used. Using this
technique of calculating NMI Derivative, disconnected
components were prevented from impacting the calcu-
lations of NMI.

3 Results and Analysis

The values described above for each of the snapshots
are graphed and compared to each other with respect
to five major characteristics: percent nodes discovered,
percent edges discovered, modularity of the snapshot,
derivative NMI comparison, and NMI comparison to
the ground truth network.

There is a general consistency: the vertices of the



Figure 2: Comparing Snapshots for the Power Grid.
Black - NMI compared to ground truth. Blue -
Derivative NMI. Red - Modularity. Green - % Nodes
Discovered. Cyan - % Edges Discovered.

Figure 3: Comparing Snapshots for Noordin Top. Black
- NMI compared to ground truth. Blue - Derivative
NMI. Red - Modularity. Green - % Nodes Discovered.
Cyan - % Edges Discovered.

networks are discovered quickly, and this is expected
from the design of UNDD that discovers the hubs
quickly. This results in fast discovery of the nodes and
edges. This does not equate to an equally fast and
accurate picture of the community structure. As more
of the network’s edges are discovered, our picture of the
community structure generally evolved.

The Power Grid had the highest modularity, and
therefore the community structure is discovered and
remains stable early in the discovery process (Figure 2).

Figure 4: Comparing Snapshots for Gnutella. Black -
NMI compared to ground truth. Blue - Derivative NMI.
Red - Modularity. Green - % Nodes Discovered. Cyan
- % Edges Discovered.

Figure 5: Comparing Snapshots for CAIDA. Black -
NMI compared to ground truth. Blue - Derivative NMI.
Red - Modularity. Green - % Nodes Discovered. Cyan
- % Edges Discovered.

The Noordin and CAIDA networks follow very similar
trends, and they are both social networks (one being a
dark network). As more of the edges are discovered, the
accuracy of the community structure improves as seen
in Figure 3 and Figure 5.

One difference between the Power Grid and Noordin
or CAIDA is in the construction of the network. The
Power Grid is man made, and lacks redundancy or
hubs. The network has many vertices with few edges,
essentially creating many paths with in the network.



Figure 6: Comparing Community Sizes for the Gnutella
network

Figure 7: Comparing Community Sizes for the Power
Grid network

This network has a very stable community structure,
and communities are discovered as soon as they are
encountered. The CAIDA and Noordin networks are
a technical and dark social network, respectively. Their
modularity is not as high as the Power Grid, so more of
the network must be discovered in order to determine
the community structure. The CAIDA network has a
better community structure earlier in discovery than
the Noordin network, and this is due to the fact that the
Noordin network is a dark network. As stated earlier,
a dark network will develop covertly, purposely making
community detection more difficult.

The obvious outlier in these four networks is the
Gnutella network whose results are shown in Figure 4.
One might assume that since Gnutella is both a tech-

Figure 8: Comparing Community Sizes for the Noordin
Top network

Figure 9: Comparing Community Sizes for the CAIDA
network

nological and somewhat social network, it would be
have similarly to the CAIDA or Noordin networks, but
instead, its propensity to keep users anonymous also
prevents reliable community detection. Additionally, it
is designed in such a way that strong communities are
not created, by distributing the connections between
users in an attempt to lower the load on servers. Instead
of an increasing NMI as in the other three networks,
NMI decreases and remains low as monitors are placed.
Part of the reason the NMI remains low for so long is
that the communities change drastically as more of the
network is discovered, see Figure 6. This pattern of
community changing as each monitor is being placed,
matches the goal of the users in the network to not
be obviously identified and clustered. The other three



networks have relatively little change in the number of
communities, and the sizes increase in a relatively linear
fashion.

The Gnutella network is drastically different. Both
the size and number of communities change significantly
as monitors are placed. The differences are evident
when viewed in a graph, as in Figure 6 compared tot
the other three networks in Figures 7, 8 and 9. This
indicates there are not clearly defined partitions of
communities in the Gnutella network. The vertices are
closely related, and with every edge discovered there
is significant alteration of the community partitions.
The variation on the size and count of community in
consecutive snapshots is what keeps the NMI low, and
supports the good blending of the users in order to
protect their identity.

4 Conclusion

Different network structures lend themselves differ-
ently to the method of discovery. Modularity alone
is not sufficient to determine whether a step in the
inference provides good community detection compa-
rable to the final inferred network. Prior knowledge
of the structure of the network that is being exploited
or discovered is critical to knowing how accurate the
partial representation is at any given step of discovery.
For example, the inferred structure of the Power Grid
was very accurate at all levels of discovery, whereas
the inferred structure of the Gnutella network was
inaccurate until the entire network was discovered.
This leads to believe that by knowing what type of
network is being discovered, one can make a more
educated assessment of how many monitors are needed.
However, more networks should be analyzed to answer
this question.

Also of importance is the fact that the inferences
are limited to how well the current discovery partitions
match the full network partitions. A high NMI value
simply means that the partitions in the first network
match the partitions in the second network. But since
any nodes not common to both networks are ignored
completely in the calculation, these values may not be
accurate. An extension that takes into account the
number of nodes not used in the computation would
be beneficial. Therefore, when the optimal amount
of monitors to be placed in a undiscovered network
is determined, one must understand that it can only
be determined into which communities the discovered
nodes fall, and not the structure of the entire network.
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