
l e a n
software development

www.poppendieck.comMary Poppendieckmary@poppendieck.commary@poppendieck.com

Lean Software Development
Discovering Waste

l e a n

Two Kinds of
Software Development

Product Development
Software intensive products.

Almost never referred to as IT
by the people who do it.

Development generally does
not report to a CIO.

Accounts for a large and
growing majority of
software developed today

Process Support
The Application Development

portion of IT organizations.
If you divide IT into Operations

and Application Development
THEN

“Standard” Lean Tools are
appropriate for IT Operations

Avoid “Standard” Lean Tools for
Application Development

October 112 Copyright©2011 Poppendieck.LLC

l e a n

Lean for Development

Old-Fashioned Chocolate Layer Cake
“We baked 130 cakes in search of the perfect wedge.”

October 11 Copyright©2011 Poppendieck.LLC3

What about?
 Standard work
Do it right the first time
Variation
 5 S’s

Why not?
 Learning cycles
Do it wrong lots of times
Manage flow, not projects
 Simplicity

Operations
Toolkit Development

Toolkit

l e a n

Software Development

1. Build the Right Thing
2. Build the Thing Right
3. Deliver (& Learn) Fast

October 11 Copyright©2011 Poppendieck.LLC4

l e a n

Build the Right Thing

There is nothing so useless as doing efficiently that
which should not be done at all. – Peter Drucker

October 11 Copyright©2011 Poppendieck.LLC5

Most product failures
are caused by

a lack of Customers.
“Don’t to what customers say they
want, understand their problems
and solve them.”– Per Haug Kogstad,

founder, Tandberg (now Cisco)

Think Like a Customer

l e a n

What is Design Thinking?

Diverse Design Team
Framing
Observe the Situation
Conceptualize the Problem

Ideation
Obtain Customer Insights
Visualize/Prototype Ideas

Experimentation
Try Tentative Solutions
Refine Mental Models

October 11 Copyright©2011 Poppendieck.LLC6

Re
fr

am
e*

It
er

at
e

*Pivot

l e a n

Waste 1: Extra Features

Cost of Complexity

The Biggest opportunity for increasing Software
Development Productivity: Write Less Code!

C
os

t
Time

Features / Functions Used in a Typical System

Standish Group Study Reported at XP2002 by Jim Johnson, Chairman

Always 7%

Often 13%

Sometimes
16%

Rarely 19%

Never 45%

Rarely / Never
Used: 64%

Often / Always
Used: 20%

October 11 Copyright©2011 Poppendieck.LLC7

l e a n

Waste 2: Handovers
A handover occurs whenever we separate:*
 Responsibility
 Knowledge
 Action
 Feedback

− What to do
− How to do it
− Actually doing it
− Learning from results

*Alan Ward: Lean Product and Process Development

Not this: But this:
P
R
I
O
R
I
T
I
Z
E
D
!

October 11 Copyright©2011 Poppendieck.LLC8

l e a n

The Lean Startup

October 11 Copyright©2011 Poppendieck.LLC9

†https://elearning.industrial
logic.com/gh/submit?Action
=PageAction&album=blog200
9&path=blog2009/2011/agil
eVsLeanStartup&devLangua
ge=Java

Agile Vs. Lean Startup
Adapted from similar
chart posted by Joshua
Kerievsky, Industrial
Logic Blog† August, 2011

Agile
Product Roadmap
Product Vision
Release Plan

On-Site Customer
Product Owner

Backlog
User Story

Acceptance Test
Definition of Done

Iteration Review
Iteration

Continuous Integration

Customer Feedback

Lean Startup
Business Model Canvas
Product Market Fit
Minimal Viable Product

“Get Out Of The Building”
Entrepreneur

“To Learn” List
Hypothesis

Split Test
Validated Learning

Persevere or Pivot
Build-Measure-Learn Loop

Continuous Deployment

Cohort-based Metrics

l e a n

Software Development

1. Build the Right Thing
2. Build the Thing Right
3. Deliver (& Learn) Fast

October 11 Copyright©2011 Poppendieck.LLC10

l e a n

Build Quality In

How good are you?
When in your release cycle do you try to freeze code and test the system?
What percent of the release cycle remains for this “hardening”?

Typical: 30%

Sometimes: 50%

Top Companies: <10%

Release Cycle

Every software development process ever invented has had the same
primary goal – find and fix defects as early in the development
process as possible. If you are finding defects at the end of the
development process – your process is not working for you.

October 11 Copyright©2011 Poppendieck.LLC11

l e a n

Waste 3: Defects

The Longer Defects are Undetected,
the Harder They are to Find.

October 11 Copyright©2011 Poppendieck.LLC12

l e a n

Waste 4: Technical Debt

 Sloppy Code
Code reviews standards, quality, knowledge transfer.

October 11 Copyright©2011 Poppendieck.LLC13

 Dependencies
A divisible architecture is fundamental.

Technical Debt: Anything that makes code difficult to change

 Unsynchronized Code Branches
The longer two code branches
remain apart, the more difficult
they are to merge together.

 No Test Harness (=Poka Yoke)
Code without a test harness is Legacy Code.

l e a nMatch?

A Defect Injection Process

Specifications

Tests Code

October 11 Copyright©2011 Poppendieck.LLC14

l e a n

A Defect Prevention Process

Specifications

Tests
Code

October 11 Copyright©2011 Poppendieck.LLC15

l e a n
Re

po
rt

s
M

et
ad

at
a

Re
po

rt
s

M
et

ad
at

a

BI
N

A
RI

S

Discipline on Steroids

Testers

Self-Service
Deployments

Source
Code & Tests

UAT Stage
Configure Environment

Deploy Binaries
Smoke Test

Manual Testing

Re
po

rt
s

M
et

ad
at

a

Capacity Stage
Configure Environment

Deploy Binaries
Smoke Test

Run Capacity Tests

Operations
Push-Button

Releases

Testers

Production
Configure Environment

Deploy Binaries
Smoke Test

Acceptance Stage
Configure Environment

Deploy Binaries
Smoke Test

Run Acceptance Tests

Commit Stage
Compile

Commit Tests
Assembly

Code Analysis

BI
N

A
RI

S

VERSION CONTROL

ARTIFACT REPOSITORY

Environment
& Application
Configuration

Scripts

BI
N

A
RI

S

Develop Stage
Design

Code & Script
Unit Test
Refactor

Re
po

rt
s

M
et

ad
at

a

October 11 Copyright©2011 Poppendieck.LLC16

l e a n

Software Development

1. Build the Right Thing
2. Build the Thing Right
3. Deliver (& Learn) Fast

October 11 Copyright©2011 Poppendieck.LLC17

l e a n

The Fastest Learner Wins

October 11 Copyright©2011 Poppendieck.LLC18

Model Build

MeasureLearn

l e a n
Pro

Pro

Waste 5: Work in Progress

Technical
Debt: Change

is too
expensive

Defects! Not
found until

integration…
Too
Slow

Risk:
Building the
Wrong Thing

RISK:
Building the

Wrong Thing.
Competition
Introduces a

better product. Poor
UI

Work in Progress hides problems.

Lower the Work in Progress gradually;
Expose the biggest problems first.

W
or

k
in

 P
ro

gr
es

s Shrink the problems one at a
time, biggest problem first.

W
or

k
in

 P
ro

gr
es

s

October 11 Copyright©2011 Poppendieck.LLC19

l e a n

Waste 6: Task Switching

October 11 Copyright©2011 Poppendieck.LLC20

l e a n

Waste 7: Delays

October 11 Copyright©2011 Poppendieck.LLC21

l e a n

Total Cycle Time

Quick & Dirty Value Stream Map:

Release Cycle
6 Months

October 11 Copyright©2011 Poppendieck.LLC22

Release CycleRelease Cycle

Harden
Select

Features UAT
Develop
Features

Request
Features

Release Cycle

Total Cycle Time
Value-Added Time

Average Start EndStart

Request
Features

Business Model:
 Software installed at customer site
 Support each release
 Avoid releases

Model Build

MeasureLearn

l e a n

Release Cycle
Quarterly

Hardening must be 2 weeks.
Typically: 2-4 week iterations
Code from each iteration goes to integration testing
Automated integration testing becomes necessary

October 11 Copyright©2011 Poppendieck.LLC23

Business issues:
How to price and sell releases?
Which releases to support?

Supporting multiple branches
can create a support nightmare

Public vs. Private releases?

Model Build

MeasureLearn

l e a n

Release Cycle
Monthly

Now you need:
Cross Functional Team
Visualization
Short Daily Meetings
SBE/TDD working!
Hardening 3 days

Business Environment
Works best for:
Software as a Service (SaaS)
Internal Software

October 11 Copyright©2011 Poppendieck.LLC24

Model Build

MeasureLearn

l e a n

Release Cycle
Weekly/Daily/Continuous

Kanban works well

Iterations become irrelevant

High discipline is fundamental

Estimating is largely unnecessary
Rapid cycles of learning drive portfolio decisions

October 11 Copyright©2011 Poppendieck.LLC25

DevOps:
Test & deployment automation is essential

Business Issues:
Increasingly common in startups

The team is everyone.

Model Build

MeasureLearn

l e a n
software development

www.poppendieck.comMary Poppendieckmary@poppendieck.commary@poppendieck.com

Thank You!
More Information: www.poppendieck.com

