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Abstract

While most current research in Reinforcement Learning (RL)
focuses on improving the performance of the algorithms in
controlled environments, the use of RL under constraints like
those met in the video game industry is rarely studied. Op-
erating under such constraints, we propose Hybrid SAC, an
extension of the Soft Actor-Critic algorithm able to handle
discrete, continuous and parameterized actions in a principled
way. We show that Hybrid SAC can successfully solve a high-
speed driving task in one of our games, and is competitive
with the state-of-the-art on parameterized actions benchmark
tasks. We also explore the impact of using normalizing flows
to enrich the expressiveness of the policy at minimal compu-
tational cost, and identify a potential undesired effect of SAC
when used with normalizing flows, that may be addressed by
optimizing a different objective.

Introduction
Reinforcement Learning (RL) applications in video games
have recently seen massive advances coming from the re-
search community, with agents trained to play Atari games
from pixels (Mnih et al. 2015) or to be competitive with
the best players in the world in complicated imperfect infor-
mation games like DOTA 2 (OpenAI 2018) or StarCraft II
(Vinyals et al. 2019a; 2019b). These systems have compara-
tively seen little use within the video game industry, and we
believe lack of accessibility to be a major reason behind this.
Indeed, really impressive results like those cited above are
produced by large research groups with computational re-
sources well beyond what is typically available within video
game studios.

Our contributions are geared towards industry practition-
ers, by sharing experiments and practical advice for using
RL with a different set of constraints than those met in the re-
search community. For example, in the industry, experience
collection is usually a lot slower, and there are time budget
constraints over the runtime performance of RL agents. We
thus favor off-policy algorithms to improve data efficiency
by re-using past experience, and constrain our architectures
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to relatively small feedforward networks. The approach we
propose in this paper is based on Soft Actor-Critic (Haarnoja
et al. 2018b), which was originally designed for continuous
actions problems. We explore ways to extend it to a hybrid
setting with both continuous and discrete actions, a situation
commonly encountered in video games. We also attempt to
use normalizing flows (Rezende and Mohamed 2015) to im-
prove the quality of the resulting policy with roughly the
same number of parameters, and analyze why this approach
may not be working as well as we initially expected.

Background and related work
We consider the classical Markov Decision Process (MDP)
setting where at each discrete time step t the agent observes
a state st and must take an action at ∼ π(at|st), where π
is the agent’s policy. On the next time step, the environment
transitions to the new state st+1 ∼ P (st+1|st, at) and gives
the agent a reward rt ∼ P (rt|st, at, st+1). The agent’s ob-
jective is to find an optimal policy π∗ that maximizes the
expected discounted return Eπ

[∑
t γ

trt
]
, where γ ∈ [0, 1]

is the discount factor.
In the following, we assume that a state is represented by

a real-valued vector, in a format suitable to be provided as
input to a neural network (e.g. with one-hot encoding of dis-
crete state variables, and normalization of continuous fea-
tures). Actions may be either discrete, continuous, or a mix
of both: a key contribution of this paper is to present a simple
generic approach to action representation, suitable for most
situations one may encounter when training game-playing
agents.

Soft Actor-Critic
Soft Actor-Critic (SAC) (Haarnoja et al. 2018b; 2018c) is
a state-of-the-art model-free algorithm that was originally
proposed for continuous control tasks. It is based on the idea
of adding an entropy bonus to the objective optimized by the
agent, i.e. maximizing Eπ

[∑
t γ

t
(
rt + αH(π(·|st))

)]
. A

higher α encourages the agent to take actions that are more
random, which in particular can help with exploration. This
α parameter can be learned during training by setting a target
entropy for the policy (Haarnoja et al. 2018c).



Normalizing flows
Normalizing flows (Rezende and Mohamed 2015) are in-
vertible transformations applied on top of an initial dis-
tribution to transform it into another distribution, usually
with the goal of making it more expressive. The original
SAC (Haarnoja et al. 2018b) parameterizes the actor using a
spherical Gaussian and uses the reparameterization trick to
backpropagate through the parameters of the distribution. It
is possible to apply normalizing flows on top of this Gaus-
sian policy to make it more expressive (Mazoure et al. 2019),
while still being able to sample from the policy as well as
compute the log-density at any point. This makes it possible
to use normalizing flows to reparameterize the actor in SAC
to get more complex policies while keeping the training al-
gorithm unchanged.

(Tang and Agrawal 2018) show that using an Inverse
Autoregressive Flow (IAF) for on-policy trust region pol-
icy optimization can significantly improve exploration in
high-dimensional tasks. (Ward, Smofsky, and Bose 2019)
use Real-valued Non Volume Preserving (Real NVP) flows
to improve exploration in sparse reward settings, while
(Haarnoja et al. 2018a) use Real NVP flows to train max-
imum entropy policies in a hierarchical setting where each
layer is trained on its own reward function. Our experiments
with normalizing flows are similar to and inspired by (Ma-
zoure et al. 2019), who suggest that normalizing flows can
be used to improve the expressiveness of policies in SAC to
get a policy with the same level of quality using less param-
eters.

As suggested in (Mazoure et al. 2019), we use radial flows
in our experiments. We sample ε ∼ N (0, 1) (since we use
the reparameterization trick), and denote by hθ the function
returning a sample from a Gaussian distribution with mean
and standard deviation given by the policy parameterized by
θ. With {fφi}Ni=1 the set of normalizing flows, we can sam-
ple from the policy as follows:

w0 = hθ(ε, st)

wi = fφi ◦ fφi−1
◦ ... ◦ fφ1

(w0)

at = tanh(wN )

We denote by q0 the density of the state-dependent Gaus-
sian distribution w0 is sampled from. The density of the pol-
icy is then tractable according to:

log π(at, st) = log q0(w0)−
N∑
i=1

log

∣∣∣∣det
∂fφi(wi−1)

∂wi−1

∣∣∣∣ (1)

The equations corresponding to the radial flows are taken
from (Rezende and Mohamed 2015) and can be found in the
Appendix (Table 3).

Mixing discrete and continuous actions
Most reinforcement learning research papers focus on en-
vironments where the agent’s actions are either discrete or
continuous. However, when training an agent to play a video
game, it is common to encounter situations where actions

have both discrete and continuous components. Typical ex-
amples include:

• Playing with the same inputs as a player, whose con-
troller may be equipped with both an analog stick (pro-
viding a range of continuous values) and buttons that
can be pressed (yielding potentially many discrete actions
through the various button combinations).

• Letting the agent choose among a set of high-level dis-
crete actions (ex: move, jump, fire), each of them being
associated with continuous parameters (ex: target coordi-
nates for the move action, direction for the jump action,
aiming angle for the fire action).

• Wanting the agent to control systems that have both dis-
crete and continuous components, like driving a car by
combining steering and acceleration (both continuous)
with usage of the hand brake (a discrete binary action).

Such situations require algorithms that are able to handle
a combination of discrete and continuous actions. In what
follows, we propose a parameterization of the policy that can
be easily implemented in SAC, yielding a powerful generic
off-policy RL algorithm for training game-playing agents.

In order to deal with a mix of discrete and continu-
ous action components, a first approach would be to use
a fully continuous actor and somehow find a way to con-
vert part of its continuous output into discrete actions (van
Hasselt and Wiering 2009; Hausknecht and Stone 2016;
Cianflone et al. 2019). Alternatively, one may use instead a
fully discrete actor by discretizing the continuous actions,
taking special care to prevent their number from explod-
ing (Metz et al. 2017; Andriotis and Papakonstantinou 2018;
Tang and Agrawal 2019).

What we would like instead is a method that would natu-
rally incorporate both discrete and continuous actions within
the same algorithm (SAC) in a principled way. In order to
accommodate for the wide range of potential ways for an
agent to interact with a video game environment, we gener-
alize several existing ideas regarding action representation.
We first describe below our proposed generic setting, then
relate it to specific examples from the literature.

We denote an agent action a by a combination of discrete
components ad = (ad1, . . . , a

d
D) and continuous components

ac = (ac1, . . . , a
c
C). Each adi is an integer between 1 and Ki,

and represents the i-th discrete action that can be taken by
the agent. Each acj is an mj-dimensional continuous vec-
tor in Xj ⊂ Rmj , and represents its j-th continuous action.
Discrete components are assumed to be independent given
the observed state s, while continuous components are inde-
pendent given both s and the discrete actions, yielding the
following decomposition:

π(a|s) = π(ad|s)π(ac|s, ad)
= π(ad1|s) . . . π(adD|s)π(ac1|s, ad) . . . π(acC |s, ad)
= Πiπ(adi |s)Πjπ(acj |s, ad)

Here we slightly abuse notations by using the same letter π
to denote both discrete probability mass functions and prob-
ability density functions applied to different components of



the action. A rigorous treatment would rely on measure the-
ory but is beyond the scope of this paper. We observe that
many classical action representations fit the above decom-
position:

1. A single discrete action taken in the set 1, . . . ,K, as in
Atari games (Bellemare et al. 2013). Here D = 1, K1 =
K and C = 0. This yields

π(k|s) = π(ad1 = k|s)

2. C independently sampled 1D continuous actions, as is
typically done in continuous control tasks when comput-
ing acj = tanh(µj(s) + εσj(s)) with ε sampled from a
standard normal distribution (Haarnoja et al. 2018b). Here
D = 0, C is the total dimension of the continuous action
space, and mj = 1 for all j. This yields

π(x|s) = ΠC
j=1π(acj = xj |s)

3. A single m-dimensional continuous action vector, get-
ting rid of the independence constraint from the previous
case #2. This can be achieved for instance with normaliz-
ing flows, where the continuous distribution being learned
does not need to be be axis aligned anymore (Mazoure et
al. 2019). Here D = 0, C = 1 and m1 = m. This yields

π(x|s) = π(ac1 = x|s)

4. An m-dimensional continuous action whose value should
depend on a discrete action taken in 1, . . . ,K, as proposed
for parameterized action spaces by (Wei, Wicke, and Luke
2018). Here (in the general case with no independence as-
sumption on the individual continuous components), this
means that D = 1, K1 = K, C = 1 and m1 = m. This
yields

π(k, x|s) = π(ad1 = k|s)π(ac1 = x|s, ad1 = k)

5. An alternative action representation for parameterized ac-
tion spaces, where the agent takes a discrete action in
1, . . . ,K, and each discrete action k is parameterized by a
different continuous mk-dimensional vector. This is sim-
ilar to what has been used e.g. by (Bester, James, and
Konidaris 2019). Here D = 1, K1 = K, C = K and
mk is the dimension of the parameter being used when
the discrete action is k. This yields

π(k, xk|s) = π(ad1 = k|s)π(ack = xk|s)

The difference compared to the previous formulation #4 is
that instead of using a single continuous parameter whose
value depends on the discrete action being taken, we cre-
ate multiple independent continuous parameters (one for
each discrete action). Since each continuous parameter ack
is only used when the agent takes its associated discrete
action k, its value does not need to depend on the discrete
action chosen by the agent, which is why π(ack = xk|s)
does not need to be conditioned on ad1.

6. A set of D discrete components, with each component adi
(1 ≤ i ≤ D) being a discrete action taken in (1, . . . ,Ki).
Such a representation has been used in particular by (Tang

and Agrawal 2019) to tackle continuous control tasks by
discretizing each continuous dimension i into Ki discrete
bins. In this example D is the number of original continu-
ous dimensions,Ki is the number of bins in the discretiza-
tion of the i-th dimension, while there are no continuous
actions anymore (C = 0). This yields

π(k1, . . . , kD|s) = ΠD
i=1π(adi = ki|s)

As motivated by (Tang and Agrawal 2019), such a rep-
resentation avoids the exponential explosion of discrete
actions that would occur if one chose to use instead a sin-
gle discrete component as in #1. Note that a similar idea
is used in the action branching architecture of (Tavakoli,
Pardo, and Kormushev 2018).

SAC with mixed discrete-continuous actions
Choosing an appropriate policy parameterization
The examples from the previous section are a subset of all
possible ways one can represent the action distribution over
a mix of discrete and continuous components, using our
generic proposed decomposition. From a practitioner point
of view, there is no single best representation that will fit all
use cases. For instance, if the agent needs to press buttons
on a controller, and there are four buttons which can be set
on/off, one can either consider a single discrete component
with 24 = 16 actions, or four independent binary discrete
components. The latter approach has the benefit of reduc-
ing the number of parameters that need to be learned, thanks
to the factored representation, and thus generally scales bet-
ter as the number of discrete components increases. On the
other hand, the independence assumption can make it harder
for the agent to learn coordinated button presses, so the fac-
tored approach may perform badly when interactions be-
tween the discrete components really matter. In general, we
give the following advice to obtain an appropriate represen-
tation for a given task, based on our own experience:
• Identify which action components (both discrete and con-

tinuous) should be made dependent of each other. When
in doubt, it is advised to start with a simpler parameteri-
zation based on independent components, and only inves-
tigate later the potential benefits of more complex param-
eterizations. Note that in an MDP there always exists an
optimal deterministic policy, for which all action compo-
nents are independent given the state. As a result, it could
be tempting to assume that everything can always be made
independent (in order to simplify the model), but in prac-
tice this may slow down learning, in particular because
it can prevent coordinated exploration across components
(think of the above example with button presses).

• When a continuous component depends on a discrete
component, consider duplicating it (one for each discrete
action) as long as the model size remains reasonable: this
will allow you to consider them as independent, mak-
ing it easier for the model to specialize the value of the
component to each discrete action. For instance, consider
an (x, y) continuous component which gives the 2D co-
ordinates of a mouse click, where the agent has to se-
lect among several discrete actions before clicking (ex:



attack, heal, follow): this continuous component may be
replaced with three independent ones (xa, ya), (xh, yh)
and (xf , yf ) associated to each discrete action, as in point
#5 above. If this is too costly (due to a large number of
discrete actions), you can instead (as in #4) build the pol-
icy network in such a way that the continuous component
head takes as input the discrete one: for details refer to
(Wei, Wicke, and Luke 2018).

• If possible, try to avoid dependencies among continu-
ous dimensions, so as to keep a simple parameterization
where each action dimension can be sampled indepen-
dently. For instance, if your continuous action is a pair
(ax, ay) giving the acceleration of your agent along the x
and y axes, the agent may struggle to explore properly in
situations where it needs to navigate narrow corridors that
may not be axis aligned, since accelerations on both axes
must be correlated to avoid bumping into the walls. In this
specific case, one could for instance make the acceleration
actions relative to the direction the agent is currently fac-
ing (by rotating the axes accordingly), making it easier for
the agent to explore a wide range of forward accelerations
without deviating from its trajectory.

Practical implementation
Network architecture Fig. 1a shows the typical architec-
ture for the actor and critic networks used in standard contin-
uous SAC implementations. Using a different policy param-
eterization (like one of those described previously) calls for
a different network architecture. One common case is shown
in Fig. 1b, in the situation where the agent must take a com-
bination of one discrete action ad with a set of independently
sampled continuous parameters ac.

Note that here, we chose to take an approach similar to
(Xiong et al. 2018) where the critic’s output layer contains
the predicted Q-values of all discrete actions, instead of
feeding the discrete action as input as done in the so-called
“multi-pass” architecture of (Bester, James, and Konidaris
2019). This is because the former is the most commonly
used architecture for discrete actions when using the pop-
ular Deep Q-Network algorithm and its variants (Mnih et
al. 2015; Hessel et al. 2017), but we acknowledge that
the multi-pass architecture of (Bester, James, and Konidaris
2019) is also a valid alternative. We actually implemented it
in SAC, but our preliminary results did not show meaning-
ful improvements, so we did not investigate it further at this
time.

More complex policy parameterizations would lead to
more elaborate architectures for the actor network than
shown in Fig. 1b, e.g.:
• In the case of multiple independent discrete components,

the actor would output several corresponding discrete dis-
tributions πd1 , . . . , π

d
D.

• If the continuous dimensions must be correlated, a differ-
ent parameterization of ac may be used, for instance using
normalizing flows (Mazoure et al. 2019).

• If the continuous action ac must depend on the discrete
action chosen by the agent, then ad can be used as input
when computing µc and σc (Wei, Wicke, and Luke 2018).

Learning algorithm The SAC algorithm (Haarnoja et al.
2018b) is based on the idea of giving an entropy bonus pro-
portional to the entropy of π(a|s). When the action has a
discrete component, the joint entropy definition yields

H
(
π(ad, ac|s)

)
= H

(
π(ad|s)

)
+
∑
ad

π(ad|s)H
(
π(ac|s, ad)

)
Although we could simply give a bonus proportional to this
entropy, we argue that in some situations it may be beneficial
to give different weights to its discrete and continuous parts.
This is because otherwise, depending in particular on the
number of discrete and continuous actions, there would be
a risk for one of these two entropies to “overshadow” the
other, which could harm exploration. As a result, we use as
entropy bonus the weighted sum

αdH
(
π(ad|s)

)
+ αc

∑
ad

π(ad|s)H
(
π(ac|s, ad)

)
(2)

where hyperparameters αd and αc encourage exploration
for discrete and continuous actions respectively. Note that
these two hyperparameters can be tuned automatically dur-
ing learning, using the same optimization technique as de-
scribed in (Haarnoja et al. 2018c), by setting target values
for the discrete and continuous parts in eq. 2.

In terms of practical implementation, a list of the changes
between our proposed Hybrid SAC and the original version
can be found in the Appendix. Note that when there are only
discrete actions, our approach is equivalent to the one pro-
posed concurrently by (Christodoulou 2019).

Experiments with parameterized actions
We evaluate our Hybrid SAC implementation on the same
three parameterized actions environments used by (Bester,
James, and Konidaris 2019):

• Platform is a simple platformer-like game where the agent
has three discrete actions (run, hop and leap), each associ-
ated with a 1D continuous parameter controlling the hor-
izontal displacement.

• Goal is a soccer-based game where the agent needs to
score a goal past a keeper that tries to intercept the ball.
There are again three discrete actions, with respectively
2D, 1D and 1D continuous parameters.

• Half Field Offense is another soccer-based game, also
with three discrete actions, but this time with respectively
2D, 1D and 2D continuous parameters.

In order to allow for a fair comparison with the state-
of-the-art Multi-Pass Q-Network (MP-DQN) algorithm of
(Bester, James, and Konidaris 2019), we re-used their eval-
uation code and tried to match their hyperparameters when-
ever possible. We list the main remaining differences be-
tween our work and theirs in the appendix.

Results are summarized in Table 1. Both algorithms per-
form equally well on Platform, while MP-DQN exhibits
slightly better performance on Goal and significantly bet-
ter performance on HFO. Note however that the MP-DQN
results on HFO are based on an implementation that mixes



(a) Standard SAC (b) Hybrid SAC (one discrete component and one continuous)

Figure 1: (a) On the left, the standard SAC architecture for continuous actions. The actor outputs the mean and standard
deviation vectors µc and σc that are used to sample an action ac by injecting standard normal noise ε and applying a tanh
non-linearity (to keep the action within a bounded range). The critic takes both the state s and the actor’s action ac to estimate
their corresponding Q-value. (b) On the right, an example of our proposed Hybrid SAC architecture, with two independent
components (one discrete and one continuous). The actor computes a shared hidden state representation h that is used to
produce both a discrete distribution πd (typically from a softmax layer) as well as the mean µc and standard deviation σc of the
continuous component. The discrete action ad is sampled from πd while the continuous action ac is computed as in the standard
SAC. The critic network still takes both the state s and the continuous action ac as input, but now predicts the Q-values of all
discrete actions in its output layer.

Platform Goal HFO
Return P(Goal) P(Goal)

MP-DQN 0.987
± 0.039

0.789
± 0.070

0.913
± 0.070

MP-DQN (no MC) - - 0.509
± 0.110

Hybrid SAC 0.981
± 0.013

0.728
± 0.047

0.639
± 0.141

Table 1: Comparison between the Multi-Pass Deep Q-
Network (MP-DQN) algorithm from (Bester, James, and
Konidaris 2019) and our Hybrid SAC implementation. Mean
performance with 95% confidence interval is computed over
30 seeds. Since the MP-DQN results on HFO take advantage
of Monte-Carlo returns, while our Hybrid SAC does not, we
also report in the second row the (significantly degraded)
performance of MP-DQN without Monte-Carlo returns.

Monte-Carlo returns with one-step returns to speed up con-
vergence, an improvement that we did not implement in
our Hybrid SAC. The second row reports the performance
of MP-DQN without mixing Monte-Carlo returns on HFO,
showing that it degrades considerably (at least with the same
hyper-parameters as MP-DQN).

While investigating potential reasons for the slightly
worse average performance of Hybrid SAC on Goal, we re-
alized that the entropy bonus from eq. 2 may have an unde-
sirable effect. Discrete actions with a small π(ad|s) lead to a
reduced entropy bonus for their associated π(ac|s, ad). This
may cause the distribution of some continuous parameters to

sometimes “collapse”. Our preliminary experiments with a
variant aimed at avoiding this collapse matched the results of
MP-DQN, but a more in-depth analysis of this variant is still
needed before we can confidently report on its performance.

Results in a commercial video game

We trained a vehicle in a Ubisoft game, using the proposed
Hybrid SAC with two continuous actions (acceleration and
steering) and one binary discrete action (hand brake). The
objective of the car is to follow a given path as fast as
possible. A video of the resulting behavior is available at
https://youtu.be/bmrNMDEkPyQ. Note that the agent oper-
ates in a test environment that it did not see during training,
and that the discrete hand brake action plays a key role in
staying on the road at such a high speed.

Experiments with Normalizing Flows
Our main objective in an industry setting is to optimize the
final performance of the policy under a budget constraint on
its inference runtime. A potential avenue that could help is to
augment the Gaussian policy obtained from a standard SAC
algorithm with radial flows as advised in (Mazoure et al.
2019), who report significantly improved performance with
a reduced number of parameters. They suggest that such im-
provements could be related to the ability of the policy to
be more expressive, for example by allowing it to be mul-
timodal. In theory, training multimodal policies could yield
agents that behave more naturally, for example in a driving
situation where they could avoid an obstacle by turning ei-
ther left or right.



Figure 2: Comparison of the performance of SAC with and without radial normalizing flows on three Roboschool PyBullet
environments. Curves are averaged on 5 random seeds, and smoothed using Savitzky-Golay filtering with window size 7.

Bullet Roboschool benchmarks
Our SAC baseline consists of a two-layer feedforward net-
work outputting the mean and the standard deviation param-
eterizing a spherical Gaussian. The SAC-NF agent has the
same architecture, but adds several radial flows on the output
of the Gaussian. The resulting action is then squashed using
a tanh as in (Haarnoja et al. 2018b). All the networks are
trained using the Adam optimizer (Kingma and Ba 2014),
details of the models’ architectures can be found in appendix
in Table 2.

We evaluate the different architectures on the PyBullet
Roboschool benchmark (Coumans and Bai 2016). We take
one step of training every ten environment steps, and evalu-
ate the policy every 50,000 steps. All the results are averaged
over 5 random seeds. Since our intention is to see if the boost
in policy expressiveness provided by normalizing flows can
really help during training, we use bigger networks for the
two critics so that the training is not limited by their rela-
tively low capacity. Results of this comparison can be found
in Fig. 2.

Fig. 2 shows that while a smaller policy with two hid-
den layers of 64 neurons with normalizing flows can get re-
sults that are competitive with bigger networks during the
first million iterations as also reported by (Mazoure et al.
2019), this advantage does not always hold as training goes
further. Our results suggest that using normalizing flows on
top of SAC does not yield a significant advantage compared
to simply using the Gaussian policy of the baseline. In the
following section, we will conduct an experiment on a toy
environment to try to understand why.

Normalizing Flows and SAC
In SAC, the actor tries to optimize the Kullback-Leibler
(KL) divergence between the policy and a softmax on the
soft Q-values with temperature α. (Haarnoja et al. 2018b)
demonstrate that updating the policy in such a way improves
it until convergence, and (Abdolmaleki et al. 2018) show
that this update constrains the change of the policy. We thus
try to minimize:

Jπ(φ) = Est∼πφ

[
DKL

(
πφ(·|st)

∣∣∣∣∣∣∣∣exp
(Qθ(st,·)

α

)
Zθ(st)

)]
(3)

where Zθ is the partition function. However, the KL is not
symmetric, and there is no theoretical ground in why πφ
should be the first argument. The main advantage of mini-
mizing eq. 3 with πθ in first position in the KL is tractabil-
ity, as using the reparameterization trick allows us to mini-
mize it without knowing the partition function. To do this,
we rewrite the objective as an expectation on standard nor-
mal noise ε and then sample this expectation:

Jπ(φ) = E
st∼πφ
εt∼N

[
log πφ

(
fφ(εt; st)|st

)
−Qθ

(
st, fφ(εt; st)

)]
(4)

where fφ reparameterizes the policy in terms of the noise
ε. The particular choice of using the KL divergence from
πφ to the target softmax is motivated mainly by the con-
venience of its implementation. However, in classifica-
tion tasks we generally try to minimize the negative log-
likelihood, which is equivalent to minimizing the KL di-
vergence from the empirical distribution to the parame-
terized one. In policy distillation, (Czarnecki et al. 2019;
Parisotto, Ba, and Salakhutdinov 2015; Schmitt et al.
2018) good results are reported when trying to mini-

mize Eπφ
[∑τ

t=1∇φH×
(
π(st)||πφ(st)

)]
whereH× is the

cross-entropy, and the trajectories are sampled according to
the student policy πφ instead of the teacher policy π. We
also did some experiments with distillation (not included
here) which confirm that this way of doing policy distilla-
tion yields good results. All these observations suggest that
if we interpret eq. 3 as trying to distill the “teacher” softmax
over Q-values into the “student” parameterized policy πφ, a
KL in the other direction would yield better results. This mo-
tivates the following comparison to measure the difference
between these alternative objectives.

In this comparison, we fix a random state s0 and try to
get our policy to approximate a toy distribution π, in this
case a Gaussian mixture, for this fixed state. Several objec-
tives are evaluated, and we monitor the impact of using each
objective on the shape of the final distribution after 10,000
steps of training. All hyperparameters are identical to our
Roboschool experiment. We compare the Gaussian policy as
used in SAC to the SAC-NF policy which adds three radial
flows on top of the Gaussian. We compare the two direc-



Figure 3: Comparison between the final shapes of the policy distribution with several objectives after trying to match a Gaussian
mixture for 10,000 steps. The blue and orange densities correspond to the target Gaussian mixture π and the learned distribution
πφ respectively. Top row uses normalizing flows, while the bottom row is using a Gaussian policy. Various divergence metrics
are evaluated from left to right.

tions of the KL divergence, as well as the Jensen-Shannon
divergence (Lin 1991). We also tried to linearly switch from
DKL(πφ||π) to DKL(π||πφ) during training. Results of this
comparison can be found in Fig. 3. We use the kernel den-
sity estimate provided in the seaborn library (Waskom et al.
2018) to estimate the density of the distributions.

From this toy experiment, one reason why normalizing
flows did not seem to improve performance on Roboschool
could be that any advantage gained in expressiveness of the
policy by enriching it with normalizing flows is lost by the
optimization procedure used in SAC. Indeed, when using the
same objective as SAC (leftmost column in Fig. 3), there
seems to be very little difference between using a Gaussian
policy and one with normalizing flows, since both collapse
on a single mode of the target distribution. Note that in this
comparison we did not take the impact of the temperature
into account (another comparison on the impact of the tem-
perature can be found in Fig. 4 and 5 in the Appendix). How-
ever, when we invert the KL (as we do in supervised learning
and distillation) or use the Jensen-Shannon divergence, it ap-
pears that the normalizing flows help the policy better match
the complete target distribution.

These results suggest that using normalizing flows could
yield some benefits when used with other objectives than
the one used in SAC. We ran some experiments reverting
the KL using importance sampling, but training was too
unstable. We identify the exploration of other metrics be-
tween distributions, such as the Jensen-Shannon divergence
or the Wasserstein distance, as potential research avenues
that could yield significant improvements when used in con-
junction with normalizing flows in SAC.

Conclusion
We introduced Hybrid SAC, an extension to the SAC al-
gorithm that can handle discrete, continuous and mixed
discrete-continuous actions. It exhibits competitive perfor-
mance with the state-of-the-art on parameterized actions
benchmarks. We showed that Hybrid SAC can be success-
fully applied to train a car on a high-speed driving task in
a commercial video game, demonstrating the practical use-
fulness of such an algorithm for the video game industry.
Our study of the use of normalizing flows with the SAC al-
gorithm also suggests that future approaches could further
improve SAC by using other objectives than the KL, so as to
better leverage normalizing flows.
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Appendix
Implementation differences between Hybrid SAC
and SAC
• The entropy bonus used in the target value for the critic

network Q is computed as in eq. 2, where the discrete
part can be computed exactly (due to the finite number of
discrete actions) while the continuous one needs to be ap-
proximated by sampling, as is usually done for continuous
SAC.

• When optimizing the critic network Q with a transition
sampled from the replay buffer, only the output associ-
ated with the discrete action taken in this transition is op-
timized, similar to the Deep Q-Network algorithm (Mnih
et al. 2015).

• The discrete part π(ad|s) of the policy is optimized by
minimizing the KL divergence between this distribution
and the one induced by the softmax on the Q-values with
temperature αd. Since these Q-values depend on the con-
tinuous components ac, we sample ac ∼ π(ac|s, ad) in
order to compute qd = Q(s, ad, ac) for each ad, and take
a gradient step to minimize the KL divergence between
π(ad|s) and P (ad) ∝ exp(qd/αd). As is usually done in
continuous SAC, we multiply this gradient by αd so as to
prevent it from blowing up for small values of αd.

• Finally, the same ac sampled above are re-used to com-
pute the update step for the continuous part of the policy.
This update is essentially the same as in continuous SAC,
as in eq. 7 of (Haarnoja et al. 2018c), except that it is per-
formed as a weighted average over all discrete actions ad,
where the weight is given by π(ad|s) (i.e. mimicking the
weighting scheme of eq. 2).

Differences between MP-DQN and Hybrid SAC
The main differences between our implementation of Hy-
brid SAC and the Multi-Pass DQN algorithm from (Bester,
James, and Konidaris 2019) are the following:

• We do not use the Multi-Pass architecture in our critic Q,
because it significantly slows down learning and did not
seem to really help in our preliminary experiments with
SAC. Additional experiments are needed to fully investi-
gate the potential benefits of this architecture for Hybrid
SAC.

• For the sake of simplicity, we use a squashing tanh to
bound the actions instead of the inverting gradient tech-
nique (Hausknecht and Stone 2016), and do not use gra-
dient clipping.

• Since our approach is based on SAC, while MP-DQN is
based on a combination of DQN (Mnih et al. 2015) and
DDPG (Lillicrap et al. 2016), we do not use ε-greedy ex-
ploration nor add noise to continuous actions, but instead
rely on the actor’s stochasticity for exploration.

• We tweaked our actor and critic learning rates (as well
as SAC-specific hyperparameters like the target dis-
crete and continuous entropies) by a cursory search over
reasonable-looking values.

• In the Platform environment, we do not use the custom
initialization of the continuous parameters from (Bester,
James, and Konidaris 2019) because we found it easy
enough to get good results without it.

• In the Half Field Offense environment, we do not mix
Monte-Carlo returns with one-step returns. Incorporat-
ing Monte-Carlo returns is not entirely straightforward in
SAC due to the need to account for the entropy bonus, so
we leave it to future work.

Roboschool hyperparameters

Parameter Value
Optimizer Adam

Learning rate 3× 10−4

Discount (γ) 0.99
Replay buffer size 106

Alpha 0.05
Number of hidden layers 2
Neurons per hidden layer 256

Activation function ReLU
Minibatch size 1024

Target smoothing coefficient 0.005
Training / environment steps 0.1
Number of environment steps 107

Number of radial flows 3

Table 2: SAC hyperparameters used in Roboschool.

Normalizing flows parameterization
We note d the dimension of the action space. We parameter-
ize φ = (z0, x, y) ∈ R3 as follows:

Parameter Value
α exp(x)
β −α+ exp(y)

fφ(z) z + β · z−z0
α+r(z)

r(z) ||z − z0||2
det

∂fφ(z)
∂z

(
1 + β

α+r(z) −
βr(z)

(α+r(z))2

)
·
(

1 + β
α+r(z)

)d−1
Table 3: Parameterization of the normalizing flows.

Additional experiments with normalizing flows
Fig. 4 and 5 extend the results presented in Fig. 3 where we
train a policy πφ to match a target distribution π.



Figure 4: Comparison between the final shapes of the policy distribution πφ (in orange) trained with the same objective as SAC
after trying to match a Gaussian mixture π (in blue) with different temperatures α for 10,000 steps. Note the collapse of the
policies on one mode of π unless α gets very high, for both normalizing flows (top row) and Gaussian policy (bottom row).

Figure 5: Same as Fig. 4 but swapping the arguments of the KL divergence objective. Note that the policies no longer collapse
onto a single mode of the target π, and the normalizing flow policy is better able to approximate the shape of π.


