
ELSEYIER

DISCRETE
APPLIED
MATHEMATICS

Discrete Applied Mathematics 78 (1997) 235--249

Complexity of searching an immobile hider
in a graph

Bernhard von Stengel”,*, Ralph Werchner b

‘Institut ftir Theoretische Informatik, ETH &rich, 8092 &rich, Switzerland

b FB Muthematik, Unicersitiit Frankfurt, Postfach 1 I 1932, 60054 Frankfurt. Germanv

Received 6 September 1995; revised 2 July 1996

Abstract

We study the computational complexity of certain search-hide games on a graph. There are
two players, called searcher and hider. The hider is immobile and hides in one of the nodes
of the graph. The searcher selects a starting node and a search path of length at most k. His
objective is to detect the hider, which he does with certainty if he visits the node chosen for
hiding. Finding the optimal randomized strategies in this zero-sum game defines a fractional
path covering problem and its dual, a fractional packing problem. If the length k of the search
path is arbitrary, then the problem is NP-hard. The problem remains NP-hard if the searcher
may freely revisit nodes that he has seen before. In that case, the searcher selects a connected
subgraph of k nodes rather than a path of k nodes. If k is logarithmic in the number of nodes
of the graph, then the problem can be solved in polynomial time. This is shown using a recent
technique called color-coding due to Alon, Yuster and Zwick. The same results hold for edges
instead of nodes, that is, if the hider hides in an edge and the searcher searches k edges on a
path or on a connected subgraph.

Keywords: Covering and packing; Game theory; Graph search; NP-completeness

1. Introduction

Communication networks are vulnerable to privacy violations. Surveillance of the

network is one way to deter eavesdroppers. This gives rise to various models of pursuit

and evasion on graphs and corresponding complexity considerations. One problem that

has been examined in depth (see [5,18] and references) is the search of a graph by

a team of searchers traversing the edges of the graph in pursuit of a mobile fugitive.

The minimum number of searchers necessary to detect the fugitive with certainty is

called the search number of the graph. Computing it is easy for trees but NP-hard for

general graphs [181. Extensions of this approach to models of privacy in distributed

environments are studied in [IO].

* Corresponding author. E-mail: stengel@inf.cthz.ch.

0 166-2 18X/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved

PII 30166-218X(97)0001 l-5

236 B. van Stengel, R. WerchnerlDiscrete Applied Mathematics 78 (1997) 235-249

We consider a similar, but more static situation: The hider selects an arbitrary node

of the graph for hiding and must stay there. The searcher selects a starting node and

traverses the graph along a path, and his search terminates after he has visited k nodes.

The search is successful if and only if the searcher visits the node chosen for hiding.

Both searcher and hider may randomize. The searcher tries to maximize the probability

of detection and the hider tries to minimize it. We also study this game if the hiding

location is an edge of the graph. Furthermore, we consider - for both node- and edge-

searching - a variant of the game where the searcher may freely revisit a location that

he has already searched. In that case the searcher searches a connected subgraph of

size k rather than a path of length k.

The optimal searcher path problem has been investigated in the literature as one-

sided search, where a prior hiding location distribution is given [24]. This is an im-

portant subcase for several reasons. Firstly, the uniform hiding distribution is opti-

mal for the hider if the searcher can search all locations (nodes or edges of the

graph) with equal maximal probability. With no restriction on the search length and

search on nodes, deciding this question is NP-hard by reduction from the Hamilto-

nian path problem, as shown in [24] and repeated in Proposition 3.1 below. This

argument fails if nodes can be revisited freely or if edges are searched, which is

one reason why we study these alternative search models. Secondly, the two-sided

search problem will in practice be solved by linear programming with delayed col-

umn generation (see Section 2; for heuristics see [6]). Thereby, a profitable column

represents a new search path that improves the detection probability against the cur-

rently computed hiding distribution, just as for one-sided search. In Section 4, we

describe an algorithm for that subproblem, specified for theoretical reasons as the sep-

aration problem. This algorithm works by dynamic programming with color-coding,

and has polynomial running time if the search length is logarithmic in the size of the

graph. In contrast, the standard dynamic programming method is not polynomial in that

case.

One-sided search has also been studied for the more general case that the hider is

overlooked with a certain probability when his location is inspected [24]. Additional

generalizations are costs to the searcher for switching from one location to the next

[16]. These are even harder problems of Markovian dynamic programming [25]. We

have refrained from such generalizations since a chance of overlooking the hider makes

it worthwhile to revisit a location, which complicates the game matrix substantially.

Switch costs suggest the adoption of methods used for the Traveling Salesman Problem,

which is a wide area of research [15]. Of course, these problems are interesting, and

our approach should provide a starting point to tackle them. Our results extend trivially

to the case where search can only start from a restricted set of locations, which we

therefore do not discuss.

Our two-sided search model is a strong simplification of network surveillance. The

bound on inspection resources, here given by the parameter k, is however typical of

surveillance models (also studied in the context of inspection games, see [3]). The

number of locations that can be searched is usually limited, due to budget constraints

B. wn Stengel, R. Werchner IDiscrere Applied Mathematics 78 (1997) 235-249 237

or, say, the time that an intruder stays in place and can be detected during a search.

We have - somewhat arbitrarily - restricted the searcher’s movement by the structure

of the graph. Another application of our model may be police patrols in a road net-

work, where k is the typical number of road segments that can be patrolled while a

crime to be detected takes place. In arms control, the number k of inspection sites is

typically limited by the terms of a disarmament treaty, for example the 1990 Treaty

on Conventional Forces in Europe. Here our model applies if the searcher’s movement

is restricted due to geographic and organizational conditions that can be described by

a graph. In these circumstances, the optimal detection probability is of interest as a

measure of deterrence from illegal activity.

Books on search theory are [l, 111. A recent general survey is [4], which would

classify our work as two-sided search with immobile target. A continuous search of

the edges of a graph is discussed in [12]. A discrete game where both hider and

searcher choose a node and try to maximize respectively minimize their distance is

studied in [8]. For further references see [4], except for articles related to the search

number of a graph, which are cited in 1: IO].

In Section 2, we define our problem as a zero-sum game and describe an equivalent

linear program (LP). If the length k of the search path is unrestricted, then solving the

game ~ in any of its variants - is NP-hard, as shown in Section 3. For search paths

of logarithmic length in the size of the graph, we provide in Section 4 a polynomial-

time algorithm, based on a recent color-coding technique [2] applied to the separation

problem of the LP in question.

2. LP formulation

The input to our problem is a graph G with node set V and edge set E, and a

positive integer k, called the search length. This gives rise to the described zero-sum

game between two players, called searcher and hider. Both act simultaneously and

will use randomized strategies. Either the nodes or the edges of G serve as locations

for hiding which are inspected by the searcher. If the game is played on V, where

the hider selects a node for hiding, we call it the node search game. If the game is

played on E, we speak of edge search. The searcher selects a starting node and from

there a path with up to k nodes in the case of node search, or up to k edges in the

case of edge search. If a location that is repeated on the path is counted towards the

allowed length k, then we call it a search on paths. Alternatively, the searcher may

freely revisit a location on a path. This is called a search on connected subgraphs. That

is, the deterministic strategies of the searcher are, respectively, the paths or connected

subgraphs of G of size k, which we often just call search paths for brevity. Thus, the

four variants of the game are node and edge search on paths and connected subgraphs,

respectively.

We can assume that G is connected. Otherwise, it is easy to see that the game is just

played on each connected component of G, and that the players choose the component

238 B. von Stengel, R. Werchneri Discrete Applied Mathematics 78 (1997) 235-249

for hiding and searching with a probability that is inversely proportional to the optimal

detection probability in the respective component.

The game can be regarded as a matrix game with, say, the hider as row player and

the searcher as column player. For node search the rows i are indexed by 1,. . . ,I V(,

for edge search by 1,. . . , IE(. The columns j correspond to the possible search paths Sj

(paths or connected subgraphs). The column vectors of the game matrix A (with entries

aij zero or one) are the respective incidence vectors of these search paths. Each vector

has at most k entries equal to one, the rest is zero. For search on connected subgraphs,

every column has exactly k ones since then the searcher can always visit the maximal

number of locations, assuming k d 1 VI (k < IEI).

Let the game matrix A be of dimension Y x s where r is the number of locations

(1. = (VI for node search, r = /El for edge search), and s the number of search paths. An

optimal strategy of the searcher, the maximizing column player, is given by probabilities

pl,...,ps so that

s

c aijpj > d, i= l,...,~, (2.1)
j=l

and so that d is maximal. The inequalities (2.1) say that the search paths are chosen

according to a probability distribution so that each location has at least detection prob-

ability d. This detection probability is optimal if and only if there are probabilities

41,. . . , qr for the hider with the analogous property: The hider hides in location i with

probability qi so that for each search path Sj the detection probability is at most d. In

other words, we have d = d’ in the constraints

qiaij d d’, j=l,...,s. (2.2)
i=l

Such optimal strategies and the optimal detection probability d define the solution

of the game.

As an example, node search with k =2 for the graph in Fig. 1 has the optimal

detection probability f. The hider hides with probability i in one of the nodes 2, 3,

4. The searcher selects, for example, one of the search paths { 1,2}, { 1,3}, {4,5} with

equal probability to have each node inspected with probability at least f .

The constraints (2.1), c pj = 1, and pj 2 0 for j = 1,. . . , s define a linear program

(LP) with variables pj and d, where d is to be maximized. The corresponding dual

LP has the variables qi and d’, where d’ is to be minimized, subject to the constraints

(2.2), Cqi = 1, and qi 2 0 for i= 1,. . . , r. The identical optimal value d or d’ of

either LP defines the optimal detection probability of the game, which is obviously

positive.

We simplify these LPs since the variables d and d’ can be omitted: Instead of

the primal variables pi, consider instead the variables xi defined by xi = pi/d. Then

cJ=l xj = c/“=l pjld= IId, so maximizing d is equivalent to minimizing cJ=, Xi.

B. con Stengel, R. Werchnerl Discrete Applied Mathematics 7X (1997) 235 249 239

1

2 0 3 4

5

Fig. I.

This leads to the LP

minimize 5x1
j=l

subject to 2 aijxj 3 1, i= l,...,r,
J=l

Xj 3 0, j=l,...,S.

The dual of this LP is

maximize EYl
I=1

(2.3)

(2.4)

(2.5)

subject to c Y&j G 1, j= l,...,S,
1x1

yi 3 0, i= l,...,r. (2.6)

The optimal value w of both LPs is the inverse of the optimal detection probability

d of the game. The variables Xj and y, at optimum define the optimal strategies of

the game: normalized, by multiplication with l/w, they represent the probabilities p,

and qr, respectively. The linear programs (2.3)-(2.6) for a general O-l-matrix A are

known as fractional covering and fractional packing problems [21, p. 5621.

If the search length k is constant, then the game can be solved in polynomial time

by enumeration, since the LP is of polynomial size. Node search for k = 2 has a direct

solution based on bipartite matching (described in detail in [7]): If G is represented as

a bipartite graph (with edges in V x V), then a minimum edge cover yields an optimal

solution to (2.3) (2.4); see [20] and [17, pp. 213-2161.

If the search length k is allowed to grow sufficiently fast with the size of the graph,

then solving the game is NP-hard, as we will show in the next section. In general, it is

even difficult to uerifv the optimality of a pair of strategies (pi,. , ps) and (ql, , qr)

for searcher and hider. Although the number s of search paths is very large, only r

of the probabilities pj have to be positive, taking a basic solution of the LP (2.1).

Thus, an optimal search strategy can be specified in space polynomial in the size of

240 B. van Stengel, R. WerchnerIDiscrete Applied Mathematics 78 (1997) 235-249

G. With these probabilities pi, the smallest of the detection probabilities for the nodes

(edges) of G gives a lower bound for the optimal detection probability. However,

verifying directly a claimed maximal detection probability d’ in (2.2) for all s search

paths is not possible in polynomial time since s is too large. There is one exception:

If the hider hides with equal probability in each location, that is, qi = l/r, then the

detection probability for each search path is obviously at most k/r. If this upper bound

for the optimal detection probability can be achieved by a suitable randomized search

strategy, then the game is solved. In this best possible case for the searcher, which can

be verified in polynomial time, we say that the graph G is uniformly searchable.

A graph G is uniformly searchable for node search if it has a Hamiltonian cycle: In

that case, the searcher can select any node with equal probability and search k nodes

in one direction of the cycle. This is only a sufficient condition (for generalizations

see [7]): The graph G in Fig. 1 has no Hamiltonian cycle but is uniformly node-

searchable for k = 3, by selecting one of the search paths { 1,2,3}, { 1,2,4}, { 1,3,5},

{2,4,5}, or {3,4,5} with equal probability. (We have seen above that G is not uni-

formly node-searchable for k = 2.) Similarly, a sufficient condition that G is uniformly

edge-searchable for any k is that G has an Euler cycle (visiting all edges).

In practice, the LP (2.3), (2.4) is very suitable for the revised simplex algorithm

with implicit column generation, which can be used to compute a search strategy until

the detection probability is sufficiently high (compared to its upper bound k/r, for

example). The revised simplex algorithm stores only the LP columns Aj of the current

basic solution. For the pivoting step, a projitable column has to be found, which is

generated directly from the graph, using suitable heuristics if necessary [6].

The separation problem for the dual LP is equivalent to this problem of finding

a profitable column [23, p. 1481. It says: Given a vector y = (yi,. . . ,y,), decide if

all inequalities (2.6) are valid, and if not, produce an inquality that is violated. If

some yi is negative, then a violated inequality is given directly. If y 3 0, then the

separation problem amounts to finding a search path Sj with maximum weight yAj,

interpreting the nonnegative numbers yt , . . . , yr as weights on the nodes (edges) of G.

The separation problem is theoretically important since with the ellipsoid algorithm for

linear programming one can solve the entire LP using a polynomial number of calls

to a ‘subroutine’ that solves the separation problem [13]:

Theorem 2.1. With a polynomial-time algorithm for the separation problem, the LP

can be solved in polynomial time.

For node search on connected subgraphs, the separation problem is that of finding

a maximum weight k-cardinality subtree of G. If G is a tree, this problem can be

solved in polynomial time (see [6,9] and the references therein), so then the game can

be solved in polynomial time. If G is a general graph, then this separation problem

is NP-hard [9]. This would entail the NP-hardness of solving the LP if the objective

function could be chosen arbitrarily, because in that case the converse of Theorem 2.1

holds as well [13]. However, the objective function is special. In the next section, we

B. wn Stmyrl, R. Werchnerl Discwte Applied Mathematics 78 (1997) 235-249 241

will prove directly that solving the search game on connected subgraphs is NP-hard.

In Section 4, we will use Theorem 2.1 to show that the search game can be solved in

polynomial time for search paths of logarithmic length.

3. NP-hardness for general search length

We have seen that solving the search game for a graph G and search length k is

equivalent to solving the primal LP (2.3) (2.4) and its dual LP (2.5), (2.6). In this

section, we will prove that solving the primal LP is NP-hard (so that solving the game

is also NP-hard). We will do this by showing that it is NP-complete to decide if there

is a solution xi,. ,x, to the constraints (2.4) so that xxi < r/k. If the objective func-

tion in (2.3) can reach this bound, we have also reached optimum, since there is a

dual feasible solution, namely yi = l/k in (2.6), with dual objective function value r/k.

This describes the case where the hider hides in each location with equal probability,

and the searcher can achieve the maximum detection probability k/r for each loca-

tion. In other words, we will show that it is NP-complete to decide if G is uniformly

searchable.

Proposition 3.1. For node seurch on paths and search length k = /VI, a graph G is

un@ml~~ searchable if and only if G has a Hamiltonian path.

Proof. If G has a Hamiltonian path, then this search path S, visits all nodes, that is,

x, = 1 (and all other variables zero) is an optimal solution to the LP (2.3) (2.4) with

value 1. If G has no Hamiltonian path, then any search path can visit at most k - 1

nodes. Thus, y, = l/(k - 1) is a feasible solution to the dual LP (2.6) with objective

function value k/(k - 1) > 1, so the primal LP does not have value 1. E:

This result has been shown earlier, also for more general detection probabilities [24].

It shows that solving the node search game on paths with general search length k is

NP-complete. Even if k is bounded by / L’l’ for some positive constant E, then one

can also show easily that the Hamiltonian path problem for a graph G’ = (V’, E’) can

be polynomially reduced to the question if a graph G is uniformly node-searchable

with paths of length k. In that construction, k = 1 V’1 and G consists of about (V’! ’ “‘L’

suitably connected copies of G’; for details see [7].

Next, we consider edge search on paths. If the search length is k = lEl, then the graph

G is uniformly searchable if and only if it has an Euler path (proved analogously to

Proposition 3.1). However, that question is easy to decide. We therefore need a different

argument. For a given graph G’, we will reduce, in polynomial time, the question if

G’ has a Hamiltonian path to the question if a graph G is uniformly edge-searchable.

In this construction of G from G’, we will append certain paths to nodes u of G’.

Such a path P consists of 1 new nodes and 1 - 1 new edges and an additional edge

joining an endpoint of P to u. We will call P a tail of the new graph G. Its purpose

242 B. van Stengel, R. Werchnerl Discrete Applied Mathematics 78 (1997) 235-249

is that in a uniform search, it is either searched entirely or not at all, as stated in the

following lemma.

Lemma 3.2. Suppose that the graph G has a tail P of length I and that G is uniformly

searchable for node or edge search on paths or connected subgraphs, for search length

k > 1. Then any search path used with positive probability either contains all nodes

and edges of P or none.

Proof. If G is uniformly searchable, then the corresponding solution to the LP (2.3),

(2.4) defines an exact fractional cover of all nodes (edges) of G by certain search

paths Sj (those with Xj > 0, that is, those chosen with positive probability). All these

search paths have k nodes (edges). Since k > 1, any such search path Sj starting at a

node v of P contains the part of P connecting to the rest of G. Since all nodes (edges)

of P are covered equally, v must be the endpoint of P. 0

Proposition 3.3. For edge search on paths and search length k = IE1/2, it is NP-

complete to decide if a graph G = (V, E) is uniformly searchable.

Proof. Given a connected graph G’ and two nodes u and u’ of G’, we construct a

graph G of polynomial size such that G’ has a Hamiltonian path from u to U’ if and

only if G is uniformly searchable for edge search on paths. This will prove the claim.

Let n and m denote the number of nodes and edges of G’. As indicated in Fig. 2, G

is obtained from G’ as follows: Duplicate every edge of G’. Put a new node on each

edge (this makes the graph simple, in case we want to consider the search game only

on simple graphs). Let G” be the resulting graph, which has 4m edges, and where

every node has even degree. For every original node v of G’ except u and u’, take a

new path with 4m nodes and connect both endpoints to v. This creates a circle C, of

length 4m + 1 connected only by v to the rest of the graph. Append paths P and P’ of

length 4m + 2 to u and u’, respectively. Let k = n(4m + 3). Finally, append a path P”

of length k - (4m - 2(n - 1)) to U. The number IEl of edges of the resulting graph G

is therefore 4m + (n - 2)(4m + 1) + 2(4m + 2) + k - (4m - 2(n - 1)) = 2k.

Assume that G’ has a Hamiltonian path from u to u’, which defines a path in G”.

In G, we take that path, which visits all nodes v of G’ and has 2(n - 1) edges, extend

it by the two tails P and P’, and insert at every node v the path around the circle C,.

This is our first search path, which has k edges. After we remove these edges from

G, the remaining graph has k edges, is connected (since G’ is connected and we have

duplicated the edges of G’), and all nodes have even degree except u and the endpoint

of the tail P”. Thus, this graph has an Euler path, which is our second search path.

The edges of G are covered exactly once by these two paths, that is, G is uniformly

searchable.

Conversely, let G be uniformly searchable and consider an exact fractional cover

of the edges of G by paths of length k. One of these paths has edges and nodes

in the tail P. By Lemma 3.2, that path starts at the endpoint of P. The path cannot

B. eon Stengel, R Werchnerl Discrete Applied Mathematics 78 (1997) 235-249 243

Fig. 2

visit P” since it is too short to reach the endpoint of P”. The path must fit into

G without revisiting edges (otherwise, edges would be wasted and we had no exact

cover). Therefore, it must visit all circles C, and thus all nodes u of the original graph

G’, and end in the tail P’. However, in order to reach the endpoint of P’, the path can

use only 2(n - 1) edges of G”. Thus, it defines a Hamiltonian path of G’. 0

At first glance, search on connected subgraphs looks like an easier problem since it

is not related to Hamiltonian paths. For node search and k = IV(, a connected graph G

is always uniformly searchable using any spanning tree as search path. The argument of

Proposition 3.1 therefore no longer applies. However, the problem is still NP-hard. We

will reduce the NP-complete problem of finding an exact three-cover to the question

if a graph G is uniformly searchable. The construction of G is similar to the reduction

of the exact three-cover problem to the Steiner tree problem [14], with additional tails

appended to the graph so that we can apply Lemma 3.2. The same proof works for

both node and edge search.

Proposition 3.4. For node (edge) search on connected subgraphs and search length

k = IV1/2 (k = lE(/2), it is NP-complete to decide if a graph G = (V,E) is uniformly
searchable.

Proof. We show a reduction from the exact three-cover problem. An instance of

this problem is given by a set U = { 1,. . . ,n}, where n is a multiple of three, and

a collection C = { ct , . . . , c,} of three-element subsets c, of U. The problem is to

decide whether there are n/3 of these sets that cover U. Given U and C, we con-

struct the graph G as follows (see Fig. 3). G consists of a graph G’ with node set

{%U’,Ul,. ..,ti,,W1)...) wn}, and certain paths appended to some nodes of G’. The edges

in G’ join ui to the nodes u, u’, and wj for the three elements j of ci, for i = 1,. ,m.

Thus G’ has 5m edges. To obtain G from G’, we append new paths P, P’, PI,. , P,,
with one of their endpoints to the nodes u, u’, WI,. . , w,, respectively, all of which have

244 B. van Stengel, R WerchnerlDiscrete Applied Mathematics 78 (1997) 235-249

_----------. ,,-- ‘..\ G'
,’ . .

.’ %.

Fig. 3.

length 6m except P’; the length of the tail P’ depends on whether we consider node

or edge search. Let us consider node search first, where k = (n + 1) 6m + in + 1. In

that case, P’ has length k - m + n/3 - 1, and G has 2k nodes.

Suppose D is an exact cover of U, that is, D C C, ID/ = 43, and U D = U. Then the

nodes of G can be partitioned into two trees T and T’: The tree T is the unique span-

ning tree on the nodes u, WI,. . . , w,,, the nodes Vi with ci ED, and the paths P, PI,. . . , P,,.

The tree T’ contains u’, the nodes v; with ci $4 C, and the tail P’. Both T and T’ consist

of k edges.

Conversely, assume that G is uniformly searchable, that is, there is an exact fractional

cover of the nodes of G with connected subgraphs of size k. Let T be one of these

subgraphs (with positive weight) that includes a node of P. By Lemma 3.2, T includes

the endpoint of P. Since T is too small to reach the endpoint of P’, it is disjoint from

P’. Since T has more than (n + 1) 6m nodes it contains all of PI,. . . , n, P and thus the

nodes u and wi,...,w,,. So T contains at most n/3 of the nodes ai. The corresponding

sets ci define a cover of U since every node wj for j E U belongs to T.

In the case of edge search, let k = (n+ 1) 6m+ in, and let P’ have length k-5m+ $n.

Then G has 2k edges. In the same way as before, an exact cover D defines a tree T in

G, where T and its complement T’ in G partition the edges of G into two connected

subgraphs of size k. Conversely, if G is uniformly searchable, then an exact fractional

cover of the edges of G has one connected subgraph T that includes all edges of

p, 9 , . . . ,P,,. Thus, T contains :n edges of G’. Since T is connected, it contains at

most 1 + in nodes of G’, including all nodes U, WI,. . . , w,,. It thus contains at most

n/3 of the nodes vi. As before, the corresponding sets ci cover U. This completes the

proof that the reduction is correct. 0

If the game is played on the nodes of the graph, then connected subgraphs with k

nodes are equivalent to trees with k nodes. One could also consider edge search on

B. van Stengel, R. Werchnerl Discrete Applied Mathematics 78 (1997) 235-249 145

trees (instead of connected subgraphs), although this is not very natural. The preceding

proof shows that solving this game is also NP-hard.

4. Polynomial-time algorithms for logarithmic search length

Solving the search game is NP-hard if the search length k is arbitrary. For constant

k, the problem can be solved in polynomial time by enumeration. In this section, we

show that if k is proportional to the logarithm of the size of the graph G, then the

search game can still be solved in polynomial time. By Theorem 2.1, it suffices to

show that the separation problem can be solved in polynomial time, which says: Given

nonnegative weights on the nodes (edges) of G, find a search path of maximum weight.

Note that the weight of a location that is revisited by the searcher is counted only once.

We solve this separation problem by modifying an algorithm for &ding a simple

path of length k in G. Alon et al. [2] recently presented a technique called color-coding

that solves this problem in polynomial time if k = O(log /VI), answering a long open

question. The standard dynamic programming approach requires to store intermediate

results for all paths with up to k nodes. If k = (VI, then there are in total about 2i”l

such paths, so that the total running time is 0(1 VI2 21’1) [15, p. 401. If k is much

smaller than / V/, however, then there are 0((Vlk) such paths. With color-coding, in

contrast, each node is given a random color and only sets of colors need to be stored

intermediately, in total about 2k if k colors are used. One has to try different colorings,

but if these are taken from a suitable family of hash functions, not too many are

needed to succeed. We adapt the color-coding algorithm to finding a (not necessarily

simple) path of maximum weight. Edge search and search on connected subgraphs can

be solved similarly.

Proposition 4.1. Consider node (edge) seurch on paths or connected subgraphs for

graphs G =(V, E), search length k, and nonnegative weights on the nodes (edges)

of G. Then u search path of maximum weight can be found in time 2°(k)lEl log / VI.

For k = O(log (Vi), this is polynomial in the size of G.

Proof. We show first the algorithm for node search on paths. We proceed in rounds,

where in each round, every node v is assigned a color c(u) in { 1,. . , k}. We will make

sure that every set of k nodes is colorful in at least one round, that is, all its nodes have

different colors. Within each round, we are looking for a colorful path of maximum

weight. This is done by dynamic programming, as follows: For i = 0,. . , k - 1 and

all nodes t’, we consider paths that can be walked in i steps and end in v (for i = 0.

such a path consists of the single node u). For each set C of colors, C C{ 1,. , k},
let M(v, C,i) denote the maximum weight of these paths that have C as the set of

colors of their nodes, where for each color, only the weight of the first node with

that color is counted. (Let M(v, C, i) = - cc if there is no such path, for example

if c(v) $! C or if ICI > i + 1.) The initialization M(v,C,O) is trivial. If y(u) is the

246 B. von Stengel, R. Werchnerl Discrete Applied Mathematics 78 (1997) 235-249

weight of v, then M(v, C, i + 1) (for c(v) E C) is computed as the maximum of the

numbers y(v)+M(u, C - {c(u)}, i) and M(u, C, i) for all edges (0,~) of G. In a round,

computing the numbers M(v, C, i) takes a constant amount of work for every edge,

every C, and every i. So the running time for each round is 0(IEl 2k k).

The maximum weight of a search path is the maximal M(v, C, i) ever computed in

all rounds. The search path itself is easily found, for example by keeping track of the

computation. For the correctness of the algorithm, we have to make sure that every

set of k nodes is colored with k different colors in at least one round. There is such

a k-perfect family of colorings consisting of only 2 Ock) log 1 V(colorings (see [2]; a

k-perfect family of 2’ck) log’ / VJ colorings is somewhat simpler to construct). Each

of those colorings can be generated in 0(1 VI) time. Thus the total running time for

finding a path of maximum weight is 2°(k)lE] log IVI.

For edge search on paths, the edges (u,v) of G have weights J(u,u). We use the

same approach, coloring each edge with one of k possible colors c(u,u). The number

M(u, C, i) represents the maximum weight on a path that ends in the node u, has the

set C of colors of its edges, and is walked in i steps; again, we count only the weight

of the first edge of a color. Inductively for i = 1,. ..,k-1, we computeM(u,C,i+l) as

the maximum of the numbers J(U, u)+M(u, C- (~(0, u)}, i) and M(u, C, i) for all edges

(u, u) with c(u, u) E C. Each round has again running time 0(IE] 2k k). Performing these

rounds for a k-perfect family of colorings of edges, the overall running time is again

2°(k)IEl log IV/ since log I.!? is proportional to log IV].

For search on connected subgraphs, a search path of maximum weight contains

always k locations. Thus, in each round with given coloring, we can omit the parameter

i above since i = (Cl. We define M(u, C) to be the maximum weight of a subgraph

that contains the node u and has exactly one node (edge) of each color in C. For node

search, M(u, C) is computed as the maximum of M(v,D) +M(u,C -0) for all edges

(u,u) and proper subsets D of C. For edge search, that maximum is taken over the

numbers M(u,D) + y(u, u) + M(u, C - D - {c(u, u)}) where c(u, U) E C - D. Since we

consider all subsets C of { 1,. . , k} and their subsets D, these numbers M(u, C) are

computed with O(3k) = 2 ‘ck) steps per edge. Thus, the running time for one round is

20(k) [El.

For all four versions of the search game, the total running time of the algorithm is

thus 2°(k)IEl log IV]. This is polynomial in the size of G if k = O(log /VI). 0

It is natural to ask if the game can be solved in polynomial time for graphs G = (V,E)

and a search length k that is asymptotically larger than log) VI. Suppose this holds for

node search on paths and, say, for all k = O(log” I VI) for some c(> 1. We claim that

this would give us an algorithm to solve an instance of 3SAT with n clauses in time

2’(““‘), which would be a rather unexpected result. Namely, the satisfiability of such

an instance of 3SAT can be reduced to the question if a graph G’ with k= O(n)

nodes has a Hamiltonian path [22, p. 1931. We append a very long path to the starting

node of the Hamiltonian path whose length is a multiple of k to mm G’ into a graph

G=(V,E) so that k=loga IV1 and thus [VI =2k’i(. Then Lemma 3.2 implies that G’ has

B. con Stengel, R. Werchnerl Discrete Applied Mathematics 78 (1997) 235-249 247

a Hamiltonian path if and only if G is uniformly searchable. Since we can decide this

in running time that is polynomial in 1 VI, this would give us the mentioned algorithm

for solving the 3SAT instance.

In practice, an algorithm for the separation problem will not be used with the

ellipsoid method but rather for finding a profitable column when using the revised

simplex algorithm. It is typical to generate such a column by dynamic programming.

In the case of node search on paths, for example, a path of maximum weight is com-

puted for successively longer paths. In order to decide if the weight of a new node

11 can be added to the current path of maximum weight, it is necessary to know if I‘

belongs to that path or not. In the proof of Proposition 4.1, this information is repre-

sented by sets of colors, instead of storing directly the possible sets of nodes on the

current paths. However, this requires storing 0(1 Vlk) such sets instead of only O(2’)

color sets. Prior to the color-coding technique of [2], Monien [19] proposed an algo-

rithm for finding a simple path of length k in time O(k! IE]). He showed that for the

dynamic programming step, much fewer sets of nodes have to be stored than with the

naive approach. This algorithm can also be modified to solve the separation problem

for node and edge search on paths. Even though its running time is asymptotically

worse than when using color-coding, it may be superior for small values of k. and

simpler to implement. We conclude our study with an outline of this method.

Consider node search on paths, search length k, and nonnegative weights on the

nodes of G. For each node v and i = 1,. , k, let F(c‘, i) denote the family of node sets

S so that there is a path ending in c that is walked in i - I steps and visits exactly

the nodes in S (so /S] < i). The families F(v, i) can be constructed inductively for

successively larger values of i, starting with i = 1. Analogously to [19], we only store

a certain wpresentative subfamily F’(a, i) of F(z:, i) that has the following property:

For any set A of k - i or fewer nodes and a set S in F(c, i) disjoint to A of maximum

weight, there exists some S’ in F’(c, i) that is also disjoint to A and has the same

maximum weight. The reason for this condition is that some S in F(u,i) is eventually

extended by a set A of nodes, where A is disjoint to S and iA\ < k - i, to obtain

a search path of maximum weight. For that purpose, S can be replaced by a set S’

from F’(c, i).

The sets of the representative family F’(v, i) are organized in a rooted tree 7’(1:. i)

with node and edge labels, defined as follows: Every node of T(v, i) is either labeled

with a set S from F(v, i) or with a special symbol iL (it is also useful to store the

weight of S). Every edge of T(u,i) is labeled with a node of G. If A is the set of

edge labels on the path from the root of T(v, i) to some node t of T(a, i), then t is

labeled with a set from F(v,i) disjoint to A of maximum weight. If there is no set in

F(v, i) disjoint to A (for example if 2: E A), then t is labeled with 3,. If a node t of

T(v, i) has depth less than k - i (with the root at depth 0) and is labeled with a set

S E F(v, i), then t has ISI direct successors connected to t by edges labeled with the

elements from S. All other nodes of r(r,i) are terminal nodes.

Note that the tree T(v, i) has depth at most k - i and consists of O((i - 1)“-I) nodes.

The labels of these nodes form a representative family F’(L’, i): If A C V and \A(< k-i.

248 B. von Stengel, R. WerchnerlDiscrete Applied Mathematics 78 (1997) 235-249

then a set S’ E F(v, i) disjoint to A of maximum weight (if such a set exists) is found

as follows: Start with the root of T(v,i) as the current node t in T(v,i). If the label

of t is 1, then there is no set S’ E F(v, i) disjoint to A. If the label S of t is disjoint

to A, the result is S’ =S. Otherwise, descend in T(v, i) along an edge labeled with

some element of S n A and repeat the step with the respective successor of t as the

new current node. This procedure terminates with a node t of T(v, i) where the set of

edge labels on the path from the root of T(v, i) to t is a subset A’ of A. The label S’

of t has maximum weight among the sets in F(v, i) disjoint to A’, so it certainly has

maximum weight among the sets disjoint to A.

The trees T(v, i) can be computed successively for i = 1,. , . , k. Let y(u) denote the

weight of v and let y(S) denote the weight of a set S c V. For i < k and v E V, the

tree T(v, i + 1) is constructed from the trees T(u, i) for the neighbors u of v in G. Let

S, be the label of the root of T(u, i), and, if v ES,, let SL be the label of its successor

along the edge labeled with v. To determine the label of the root of T(v, i + l), one

has to compute the maximum of v(v) + y(S,) if v @ S,, and of v(v) + y(SL) and y(S,)

if v E S,, for all neighbors u of v. The construction of T(v, i + 1) continues in that

manner, descending along the same edge labels in the trees T(u, i) as in T(v, i + 1).

Finally, the search path of maximum weight is one of the labels of the one-node trees

T(v, k). The total running time of this algorithm is O(k! JEJ) which follows from the

bound Cf=,(i - l)k-’ = O((k - l)!) and the time O(k) required for testing disjointness.

A straightforward modification of this algorithm solves the separation problem for

edge search on paths in the same running time. It is an open question if the approach

of [19] can be applied to the separation problem for node or edge search on connected

subgraphs.

Acknowledgements

The node search game was posed as a problem jointly with Buyang Cao [7].

We thank Jeff Edmonds, Ulrich Faigle, And& Frank, Fred Glover, and the referees

for helpful comments. This research was done at the International Computer Science

Institute in Berkeley.

References

[l] R. Ahlswede and I. Wegener, Search Problems (Wiley, New York, 1987).
[2] N. Alon, R. Yuster and U. Zwick, Color-coding: a new method for finding simple paths, cycles and

other small subgraphs within large graphs, Proc. 26th ACM Symp. Theory of Computing (1994)

326-335.

[3] R. Avenhaus, B. van Stengel and S. Zamir, Inspection games, in: R.J. Aumamr and S. Hart, eds.,

Handbook of Game Theory, Vol. 3 (North-Holland, Amsterdam, to appear).
[4] S. Benkoski, M.G. Monticino and J.R. Weisinger, A survey of the search theory literature, Naval Res.

Logist. 38 (1991) 469-494.

[5] D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms 12 (1991) 230-245.

[6] B. Cao, Search-hide games on trees, Eur. J. Oper. Res. 80 (1993) 175-183.

B. con Stenqel, R. Werchner I Discrete Applied Mathematics 78 (1997) 235-249 249

[71

PI

[91

1101

iI41

1151
[I61

[I71

[If31
[I91

WI

PII
P21
~231

v41

1251

B. Cao and B. von Stengel, Search-hide games on graphs, Technical Report S-9303, University of the

Federal Armed Forces Munich, Germany (1993).

F.R.K. Chung, J.E. Cohen and R.L. Graham, Pursuit-evasion games on graphs, J. Graph Theory I2

(1988) 1599167.

M. Fischetti. H.W. Hamacher, K. Jomsten and F. Maiffioli. Weighted k-cardinality trees: complexity

and polyhedral structure, Networks 24 (1994) I I-21.

M. Franklin, Z. Galil and M. Yung, Eavesdropping games: a graph-theoretic approach to privacy m

distributed systems, Proc. 34th IEEE Symp. Foundations of Computer Science (1993) 670&679.

S. Gal, Search Games (Academic Press, New York, 1980).

S. Gal, Continuous search games, in: D.V. Chudnovsky and G.V. Chudnovsky, eds., Search Theory

-Some Recent Developments (Dekker, New York, 1989) 33-53.

M. Grotschel, L. Lo&z and A. Schrijver, Geometric Algorithms and Combinatorial Optimization

(Springer. Berlin, 1988).

R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher. cds..

Complexity of Computer Computations (Plenum, New York, 1972) 8% 103.

E.L. Lawler et al., eds., The Traveling Salesman Problem (Wiley, Chichester, 1985).

U. Lossncr and I. Wegener, Discrete sequential search with positive switch cost. Math. Oper. Res. 7

(1982) 426-440.

L. Lovasz and M.D. Plummer, Matching Theory, Ann. Discrete Math., Vol. 29 (North-Holland.

Amsterdam. 1986).

N. Megiddo et al., The complexity of searching a graph. J. ACM 35 (1988) 18-44.

B. Monien. How to find long paths efficiently, in: G. Ausiello and M. Lucertini, eds.. Analysis and

Design of Algorithms for Combinatorial Problems, Ann. Discrete Math., Vol. 25 (North-Holland,

Amsterdam. 1985) 2399254.

G.L. Nemhauser and L.R. Trotter, Jr., Properties of vertex packing and independence system polyhedra,

Math. Programming 6 (1974) 48 ~ 6 I.

G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization (Wiley, New York, 1988).

C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, 1994).

A. Schrijver, Theory of Linear and Integer Programming (Wiley, Chichester, 1986).

K.E. Trummel and J.R. Weisinger, The complexity of the optimal searcher path problem. Oper. Res

34 (1986) 3244327.

I. Wegener. Optimal search with positive switch cost is NP-hard. Inform. Process. Lett. 21 (1985)

49952.

