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Abstract 

We investigate the complexity of the MEMBERSHIP problem for some geometrically 
defined classes of Boolean functions, i.e., the complexity of deciding whether a Boolean function 
given in DNF belongs to the class. We give a general argument implying that this problem is 
co-NP-hard for any class having some rather benign closure properties. Applying this result we 
show that the MEMBERSHIP problem is co-NP-complete for the class of linearly separable 
functions, threshold functions of order k (for any fixed k O), and some binary-parameter 
analogues of these classes. Finally, we obtain that the considered problem for unions of k 3 
halfspaces is NP-hard, co-NP-hard and belongs to C;, and that the optimal threshold 
decomposition of a Boolean function as a union of halfspaces cannot even be efficiently 
approximated in a very strong sense unless P = NP. In some cases we improve previous 
hardness results on the considered problems. 

1. Introduction 

The class of linearly separable functions corresponds t o  concepts representable by 
a single linear threshold (McCulloch-Pitts) neuron - the basic component of neural 
networks. The problem of recognizing whether a Boolean function is linearly separa- 
ble (and if yes, constructing its threshold representation) is known as the synthesis 
problem of threshold logic [18]. This problem can be formulated as  follows. 
LINEAR SEPARABILITY 
Instance: A Boolean function f in DNF. 
Question: Is f linearly separable? 
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The LINEAR SEPARABILITY problem can be viewed as a special case of the 
MEMBERSHIP problem for a class C of Boolean functions: given f in DNF, decide 
whether f belongs to C. In this paper we investigate the complexity of the MEMBER- 
SHIP problem for some geometrically defined classes of functions, such as linearly 
separable functions, functions of threshold order at most k (for fixed k 3 O), 
unions/intersections of a fixed number of halfspaces, and binary-parameter analogues 
of these classes. 

We give a general argument showing that the MEMBERSHIP problem is co-NP- 
hard for any class having some rather benign closure properties. This argument is then 
used to establish a basic co-NP-hardness result on the complexity of the MEMBER- 
SHIP problem for all classes considered in the paper (this co-NP-hardness result has 
been already given for halfspaces in [19], and for functions of threshold order at most 
k in [24]). 

In fact, in many cases we show that the considered problems are co-NP-complete. 
While for linearly separable functions and functions of fixed threshold order the 
co-NP-inclusion proofs are based on Helly's theorem and a linear programming 
approach, for the binary-parameter classes - zero-one threshold functions, Ham- 
ming balls and small-weight halfspaces - we make use of characterizations of these 
classes based on some properties of the minterms of their elements. We also obtain 
that the MEMBERSHIP problem for the class of unions of k halfspaces (k > 3 fixed) 
is NP-hard, co-NP-hard and belongs to C;, hence it is not contained in NPuco-NP 
unless NP  = co-NP (for the case k = 2 we show only co-NP-hardness and inclusion in 
15). Thus one seems to get higher in the polynomial hierarchy when considering the 
complexity of the MEMBERSHIP problem for unions of k 3 3 halfspaces. Finally, we 
prove that the threshold number of Boolean function given in DNF cannot even be 
efficiently approximated unless P = NP, i.e., it is NP-hard to find a representation of 
a Boolean function as a union of halfspaces such that the number of elements of this 
decomposition is bounded above by any fixed function of the optimal size. 

The hardness results themselves do  not seem to be surprising, as MEMBERSHIP- 
type problems are usually not expected to be solvable in deterministic polynomial 
time. However, there is a motivation for studying the exact complexity of MEMBER- 
SHIP problems (i.e., their location in the polynomial-time hierarchy) coming from 
computational learning theory (see [22,2] for an introduction to the field), as some 
recent results [I, 10, 111 show connections between the complexity of the MEMBER- 
SHIP problem and learnability issues. In fact, all our co-NP-inclusion results could be 
proved using a non-deterministic simulation of the known on-line learning algorithms 
116, 17, 121 for the considered classes, as described in [I, 10, 111 (see [11] for results 
along this line), while the NP-hardness result on the complexity of the MEMBER- 
SHIP problem for the class of unions of k > 3 halfspaces implies negative results on 
the trainability of simple neural networks in some on-line learning models [12]. This 
motivation makes the MEMBERSHIP problem for unions of 2 halfspaces even more 
interesting: showing that it is NP-hard would lead to applications in computational 
learning theory. 



T. Hegedus, N. Megiddo / Discrete Applied Mathematics 66 (1996) 205-218 

2. Definitions and notation 

For n 3 1 ,  denote X ,  = (0 ,  I)", F, = ( f  1 f :  X ,  + ( 0 , l ) ) .  Alternatively, a Boolean 
function f E F, is a function of zero-one valued variables x , ,  . . . , x,. A literal zi is either 
the variable x i  or its negation xi. A term is a conjunction of literals, and a clause is 
a disjunction of literals. We say that a function f E F, is given in disjunctive normal 
form (DNF) if it is represented as a disjunction of terms, and that it is in k-DNF if it is 
represented in a D N F  with at most k literals per term; the C N F  and k-CNF 
representations are defined analogously as conjunctions of clauses. 

A function f E F, is non-decreasing (non-increasing) in xi if for every y, z E X, 
such that yi = 0, zi = 1, and yi = zj for j # i, f(y) < f (z) ( f (y )  2 f (2 ) )  holds. A 
function f~ F, is unate in variable x i  if it is either non-decreasing or non-in- 
creasing in xi. A function f E F, is called monotone if it is non-decreasing in 
all its variables, and it is called unate if it is unate in all its variables. The term 
monotone DNF means that the given DNF representation contains no negated 
variables, and the term unate DNF means that it does not contain both a variable and 
its negation. 

A set of literals S is a minterm of f  E F, if for every vector x E X ,  that assigns 1 to 
every literal in S we have f (x) = 1, and this property holds for no proper subset S' of S.  

Throughout the paper, the term NP-hard (co-NP-hard) means NP-hard (co-NP- 
hard) under <& reductions (polynomial time many-one reductions) (for details on 
6; reductions and other notions from complexity theory used in the paper, see 

C7,3, 141. 

3. A general argument 

A class of Boolean functions is a sequence C = {C,),  ., , C,  G F,. In some cases we 
will also assume that every class contains the two 0-ary (zero-one valued) constant 
functions. For a class C and a Boolean function f we use the notation f E C as 
a shorthand for "f E C,, where 1 is the arity off'". 

Given a class of functions C = {C,) ,  consider the following decision problem. 
MEMBERSHIP FOR C 
Instance: A Boolean function f in DNF. 
Question: Is j ' ~  C? 

Generalizing a reduction from [19],  we will show that the MEMBERSHIP prob- 
lem is co-NP-hard for any class having some rather benign closure properties. 

A class C is closed under projection iff for any n 3 1 and any function f E C,, fixing 
some variables of f'to 0 or 1 produces a function still in C. 

We say that a class C has the projection property iff 
(i) C is closed under projection; 

(ii) for every n 3 1, the n-ary constant one function belongs to C,; 
(iii) there exists an integer 1 such that F,\C, # 0. 
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Theorem 3.1. If C is any class of Boolean functions having the projection property, then 
the MEMBERSHIP problem for C is co-NP-hard. 

Proof. Let C be a class having the projection property. We reduce the DNF TAUT- 
OLOGY problem to MEMBERSHIP for C. 
DNF TAUTOLOGY 
Instance: A Boolean function f in DNF. 
Question: Is f r I ?  
DNF TAUTOLOGY is co-NP-complete, as its complementary problem - DNF 
NON-TAUTOLOGY - is known to be NP-complete [7]. 

The reduction from DNF TAUTOLOGY to MEMBERSHIP for C is as follows. 
Let 1 3 1 be an integer such that Ff\Cl # (b (guaranteed by point (iii) of the definition), 
and let h(y) E F,\C, be in DNF. Given an instance of DNF TAUTOLOGY, i.e., 
a function f (x) E Fn in DNF, construct the DNF for the function 

(as h is fixed, this can be done in time polynomial in the length of the description off ). 
Iff = 1, then g(x,y) r 1, thus - by point (ii) of the definition - g(x,y) E C,+l. If not, 
let a E X ,  be such that f (a) = 0. Then g(a,y) = h(y)$Cl, and - as C is closed under 
projection - also g(x,y)$C, +,. That is, f = 1 if and only if g E C,+ which completes 
the proof. 

Notice that - as DNF TAUTOLOGY remains co-NP-complete even when 
restricted to instances in 3-DNF [7] - if we have a function not in C that can be 
represented in k-DNF, then the above argument gives that the MEMBERSHIP 
problem for C remains co-NP-hard even when restricted to instances in max(k, 3)- 
DNF. 

4. Hardness results 

Theorem 3.1 can be readily applied to show that, e.g., the MEMBERSHIP problem 
for the class monotone, unate and symmetric functions is co-NP-complete, even when 
restricted to instances in 3-DNF (the inclusions in co-NP are clear). However, here we 
are interested in the complexity of the MEMBERSHIP problem for some geomet- 
rically defined classes of functions. 

For a function f E F,, denote 

POS( f )=  { x I x ~ X , a n d  f ( x ) =  1). 

A Boolean function f E F, is linearly separable (we will also use the term that f is 
a haIf:~pace) iff there exist w l ,  ... , w,, t E '% such that 
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The MEMBERSHIP problem for the class of linearly separable functions, i.e., the 
LINEAR SEPARABILITY problem mentioned in the introduction, is known to be 
solvable in deterministic polynomial time when restricted to instances in monotone 
DNF [19]. However, as the class of linearly separable functions clearly has the 
projection property, Theorem 3.1 implies that the general LINEAR SEPARABILITY 
problem is co-NP-hard (this is essentially the result given in [19]). We now prove that 
it is in fact co-NP-complete. The co-NP inclusion proof is based on a classical result in 
combinatorial geometry - Helly's theorem3 [13,6] (in fact, a weak version of the 
theorem suffices here). 

Theorem 4.1 (Helly [13,6]). For any jinite collection S1, . . . , Sk of k 2 d + 1 distinct 
convex sets in Sd. 

Theorem 4.2. LINEAR SEPARABILITY is co-NP-complete, even when restricted to 
instances in 3-DNF. 

Proof. The hardness result is implied by Theorem 3.1 and the fact that the function 
yly2 V jlj2 E F2  is not a halfspace (see the note after Theorem 3.1). 

It remains to show that LINEAR SEPARABILITY is in co-NP. First, one can see 
that the question whether a Boolean function f is linearly separable is equivalent to the 
question whether a certain system of 2" linear inequalities with n + 1 unknowns (the 
coefficients are formed by the elements e E X,, the unknowns are w,, . . . , w,, t, and 
the value of f at a point e = (el, . . . ,en) E X, determines whether the inequality 

eiwi - t 2 0 or C:=, eiwi - t < 0 is considered) has any solution, i.e., whether the 
given (open or closed) halfspaces in 3"" have non-empty intersection. Helly's theorem 
then says that the system has no solution if and only if it contains a "small" subsystem 
that has no solution either, implying that the following non-deterministic algorithm can 
be used to decide whether a given function f E F, is not linearly separable. 

Algorithm 4.3. 
(0) Input: A Boolean function f E F, in DNF. 
(1) Select, non-deterministically, n + 2 distinct points from X,. 
(2) Construct the system of linear inequalities corresponding to f and the selected 

points. 
(3) Solve the obtained LP p r ~ b l e m . ~  
(4) If the LP problem is infeasible, then ACCEPT. 

One could also use Caratheodory's theorem as done in [5]  for a similar problem. 
Because of its dimensions (n + 2) x (n + I), this problem is trivial to solve in polynomial time. 
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As the coefficients in the LP  problem are from the set { -  1,0,1}, the algorithm clearly 
runs in time polynomial in the length of the description off, and accepts f if and only if 
f is not linearly separable. 

A negation argument gives that the version of LINEAR SEPARABILITY with 
instances in CNF is also co-NP-complete. 

A natural way to generalize the above result is to consider Boolean functions of 
higher threshold order (defined in [24]). We say that a pair (w; t), w E 'ille (f = ~ f = ,  (r), 
k E N), t E '%, is a separator of degree k for some f E F ,  if and only if 

(assume that the indexing is actually made according to some fixed ordering of the 
non-empty subsets of (1, . . . , n)). A functionf E F ,  is called a threshold function of order 
k if and only if it has a separator of degree k, but no separator of degree k - 1. For any 
dimension n, the two constant functions are threshold functions of order 0. Clearly, 
the class of linearly separable functions consists of all functions of order 0 and 1. 

For any fixed k 3 0, let k-THRESHOLD ORDER RECOGNITION be the MEM- 
BERSHIP problem for the class of Boolean functions of threshold order at most k. 

Theorem 4.4. For any fixed k 3 0, the k-THRESHOLD ORDER RECOGNITION 
problem is co-NP-complete, even when restricted to instances in max{k + 1,3)-DNF. 

Proof. As the class of functions of threshold order at most k has the projection 
property, the co-NP-hardness result follows from Theorem 3.1 (this is essentially the 
result given in [24]). The restriction to max{k + 1,3)-DNF is implied by the fact that 
the k + 1-ary parity function is of threshold order k + 1 [24]. 

To show that k-THRESHOLD ORDER RECOGNITION is in co-NP, a general- 
ization of the above approach for halfspaces, i.e., for the case k = 1, can be used. Once 
again, we have a system of 2" linear inequalities with 1 + ~ f = ,  (Y) unknowns (i.e., 
polynomially many in n for any fixed k), and the coefficients are from { -  1,0,1), so it 
suffices to guess 2 + I:=, ( r )  distinct inequalities and accept if and only if the obtained 
LP  problem is infeasible. 

Once again, a negation argument gives that the version of k-THRESHOLD 
ORDER RECOGNITION with instances in CNF is also co-NP-complete, as it is 
known that f is of threshold order k if and only if its negation is of threshold order 
k [24]. 

A further natural geometrically defined class of functions could be the class of balls. 
However, it turns out that in our setting this class is identical to the class of halfspaces 
(we observe this identity because of the analogous binary classes considered later). 
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A Boolean function f E Fn is a ball if and only if there exist w , ,  . . . , w, ,  r E %, r 3 0, 
such that POS( f )  = { x  J x  E X n  and C:=, (wi  - xi)2 < r 2 ) .  

Lemma 4.5. A Boolean function is a ball if and only if it is linearly separable. 

Proof. Let f E Fn be linearly separable, i.e., 

n 

and x w i x i >  t 
i = l  

for some w l ,  ... , w,, t E 9. Then one can check that 

i.e., f is a ball. 
Conversely, iff E Fn is a ball, i.e., 

POS(f) = ~ X E  X .  and 1 (ui - xi)' b r 
i =  1 

for some v , ,  ... , vn  r E %, r 3 0, then it follows that 

giving that f is linearly separable. [7 

So far, the co-NP inclusion results have been proved using Helly's theorem and the 
existence of polynomial-time algorithms for linear programming. For more restricted 
geometrical concept classes considered in the sequel, these tools cannot be used any 
more. It would be still possible to use a non-deterministic simulation of the known 
efficient on-line learning algorithms for such classes as described in [I, 10,111, but 
here we give more direct inclusion proofs. 

A Boolean function f E Fn is a zero-one threshold function [I23 if and only if there 
exist w , ,  .. . , wn E [O,l], t E JV, such that POS( f )  = { x  Ix E X ,  and C:=, wixi  3 t} 
(functions of this type are called Boolean threshold functions in [20]: we have changed 
the terminology to avoid confusion). Observe that f E Fn is a non-constant zero-one 
threshold function such that POS( f )  = { x  J x  E X ,  and C : = ,  wixi 2 t )  if and only if the 
minterms of f are all t-element subsets of the set of variables { x i  ( wi = 1 and 
1 < i < n). Using this fact, one can decide whether f is a zero-one threshold function 
by computing the minterms off  and then checking whether they define a zero-one 
threshold function. Iff is in monotone DNF, then the whole computation can be done 
in time polynomial in the length of the description off (see any textbook on switching 
theory for details). 

Let ZERO-ONE THF RECOGNITION be the MEMBERSHIP problem for the 
class of zero-one threshold functions. 
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Theorem 4.6. ZERO-ONE THF RECOGNITION is co-NP-complete, even when 
restricted to instances in 3 - D N F .  

Proof. The co-NP-hardness result follows from Theorem 3.1 and the fact that the 
function y l y ,  V j 1 j 2  E F2 is not a zero-one threshold function. 

To prove the inclusion in co-NP, consider the following non-deterministic 
algorithm. 

Algorithm 4.7. 
(0) Input: A Boolean function f E F, in DNF. 
( 1 )  Delete the negated variables from the DNF representation off: Denote g E F, 

the function represented by the modified (monotone) DNF formula. 
(2) Compute the minterms of g, and check whether they define a zero-one thre- 

shold function. If yes, let h = g; if not, let h E F, be the constant one function. 
(3) Select, non-deterministically, a point x E X,. 
(4) Iff (x) # h(x) then ACCEPT. 

As the function g constructed in step (1) is in monotone DNF, its minterms can be 
computed in time polynomial in the length of the description of g (as observed above). 
This implies that Algorithm 4.7 runs in time polynomial in the length of the descrip- 
tion off: 

To prove the correctness of the algorithm, notice that iff is a monotone function, 
then g -f in step (1). That is, iff is a zero-one threshold function, then the function 
h constructed in step (2) is logically equivalent tof: Thus, iff is a zero-one threshold 
function, we surely do not accept in step (4). On the other hand, iff is not a zero-one 
threshold function, then - as the function h constructed in step (2) always is 
a zero-one threshold function - it must be the case that h +f, and a computation 
accepting f in step (4) must exist. That is, f is accepted if and only if it is not a zero-one 
threshold function, which completes the proof. 

Let us continue with a binary version of balls. A Boolean function f E F,, is called 
a Hamming ball [I21 if and only if there exist wl, ... , w, E [O,l], k E 3, such that 
POS(f) = {x Ix E X, and XI=, lwi - xil < k). It can be shown that Hamming balls 
are exactly those halfspaces which are representable using weights from the set 
{ - 1 , l )  [12]. Observe that a non-constant function f E F, is a Hamming ball such that 
POS( f )  = {x Ix E X, and X:=, 1 wi - xi\ < k )  if and only if the minterms off are all 
n - k-element subsets of the set of literals {zi I zi = xi if wi = 1 and zi = xi otherwise, 
1 ,< i < n) .  One can thus decide whether f is a Hamming ball by computing its 
minterms and checking whether they define a Hamming ball. I f f  is given in mate  
DNF, then all this can be done in time polynomial in the length of the description of 
f (argue similarly as in the monotone case). 

Let HAMMING BALL RECOGNITION be the MEMBERSHIP problem for the 
class of Hamming balls. 
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Theorem 4.8. HAMMING BALL RECOGNITION is co-NP-complete, even when 
restricted to instances in 3-DNF. 

Proof. Again, the co-NP-hardness result follows from Theorem 3.1 and the fact that 
the function y l y ,  V j l j 2  E F2 is not a Hamming ball. 

To prove the inclusion in co-NP, consider the following non-deterministic 
algorithm. 

Algorithm 4.9. 
(0) input: A Boolean function f E F, in DNF. 
(1) Select, non-deterministically, u, v E X,. Continue if ui = 0, ui = 1, u j  = vj for 

j # i. (for some i), and f (u) # f (v); otherwise stop. 
(2) Assume w.1.o.g. that f (u) = 1 and f (v) = 0 (the other case is analogous). 
(3) For i = 1,2, ..., n do 

iff ( u l ,  ... , u ~ - ~ ,  1 - ui ,u i+, ,  ... ,u,) = 0 then let wi = ui 
else let wi = 1 - ui. 

(4) For i = 1,2, ..., n do 
if wi = 1 then let zi = xi else let zi = xi.  

(5) Delete the literals zi from the DNF representation of f (for i = 1,2, ... ,n). 
Denote g E F, the function represented by the modified (unate) DNF formula. 

(6) Compute the minterms of g, and check whether they define a Hamming ball. If 
yes, let h = g; if not, let h E F, be the constant one function. 

(7) Select, non-deterministically, a point x E X,. 
(8) Iff (x) # h(x) then ACCEPT. 

As the function g constructed in step (4) is in unate DNF, its minterms can be 
computed in time polynomial in the length of the description of g. This implies that 
Algorithm 4.9 runs in time polynomial in the length of the description off. 

To prove the correctness of the algorithm, notice that iff is  a Hamming ball, then 
- as the center off in step (3) and the "signs" of the variables off in step (4) are 
computed correctly, and then g r f - the function h constructed in step (6) is logically 
equivalent tof. Thus, iff is a Hamming ball, we surely do not accept in step (8). On the 
other hand, iff is not a Hamming ball, then - as the function h constructed in step (6) 
always is a Hamming ball - it is the case that h $f,  and a computation accepting f in 
step (8) must exist. That is, f is accepted if and only if it is not a Hamming ball, which 
completes the proof. 

A negation argument gives that the version of HAMMING BALL RECOGNI- 
TION with instances in CNF is also co-NP-complete. 

A Boolean function f E F, is called a small-weight halfspace [I21 if and only if there 
exist w,, .. . , w, E { - 1,0,1}, t E 9, such that POS( f )  = {x Ix E X, and C:=, wixi 2 t } .  
Let SMALL-WEIGHT HSP RECOGNITION be the MEMBERSHIP problem for 
the class of small-weight halfspaces. 
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Theorem 4.10. The SMALL-WEIGHT HSP RECOGNITION problem is co-NP- 
complete, even when restricted to instances in 3-DNF. 

Proof. The proof is analogous to that for Hamming balls (the case of irrelevant 
variables has to be handled). 

Again, the version of SMALL-WEIGHT HSP RECOGNITION with instances in 
unate DNF is solvable in deterministic polynomial time. 

We say that a Boolean function f E F, is a union of k halfspaces iff can be expressed 
as a disjunction of k (not necessarily distinct) linearly separable functions from F,,. 
A threshold decomposition of a Boolean function f is a collection of linearly separable 
functions whose disjunction is equivalent to $ The threshold number t (f)  of f is 
defined as the smallest integer k such that there is a k-element threshold decomposi- 
tion for f (we do not allow empty disjunctions, hence t( f )  3 1 for any Boolean 
function f ). An optimal threshold decomposition of a Boolean function f is a threshold 
decomposition of f with t( f )  elements. 

We are interested in the following decision problem (for fixed k 3 1). 
UNION O F  k HALFSPACES 
Instance: A Boolean function f in DNF. 
Question: Is the threshold number of f  at most k? 

First consider a restricted version of this problem. Denote by 6 the common 
partial order on X,, i.e., for x,y E X,, x 6 y iff xi d yi for all i (1 6 i 6 n). A monotone 
Boolean function is uniquely determined by its minimal l's, by the vectors x such that 
f (x) = 1 and for every y # x such that y d x, necessarily f (y) = 0. The norm of a vector 
x E X, is defined as Ix 1 1  = xi. A monotone Boolean function f is called graphic if 
all the minimal 1's off are of norm at most 2. Graphic functions are easily seen to be 
exactly those functions that are representable in monotone 2-DNF. We say that 
a Boolean function is a graphic halfspace if it is a graphic function and a halfspace. 

It is known that LINEAR SEPARABILITY with instances in monotone 2-DNF is 
solvable in deterministic polynomial time [I], and the same holds true for the 
UNION O F  2 HALFSPACES problem as well [IS]. However, fork 3 3 the problem 
becomes harder. 

Theorem 4.11 [25,23]. For any $xed k 3 3, UNION O F  k HALFSPACES with 
instances in monotone 2-DNF is NP-complete. 

Proof. The NP-hardness result was proved in [2SJ for k = 3; the generalization for 
k 3 4 - due to [23] - follows from the case k = 3, as the threshold number of some 
f (xl ,  . . . , x,) E F, in monotone 2-DNF is at most 3 if and only if the threshold number 
Off (x l , . . . ,xn)  V yly2 y3y4 " '  y 2 ( , - 3 ) - 1 Y 2 ( k - 3 ) ~ F n + 2 ( k - 3 )  is at most k. 

In fact, the hardness results in [25,23J are on the problem of deciding whether 
graphic function is a union of k graphic halfspaces. However, they are also valid in the 
form given here, as it is known that a graphic function is a union of 1 halfspaces if and 
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only if it is a union of 1 graphic halfspaces [23]. We sketch the proof of this fact for 
completeness. 

For a monotone Boolean function h E F, denote M ,  the set of its minimal l's, and 
let h'g" E F, be the monotone function such that M,w = {x Ix E M ,  and Ix  I 6 2). It is 
known that if a monotone function h is a halfspace, then also h@) is a (graphic) 
halfspace (this follows from Theorem 10.4 in [8]; another proof is given in 1231). 

Now assume that a graphic function f is a union of 1 halfspaces, i.e., let 
f = f, V ... Vf,, where the f,'s are halfspaces. As f is a monotone function, without 
loss of generality the f,'s can be also assumed to be monotone [9]. Then we have 
f = f Fr) V ... v f lgr), where f p", . . . ,f igr' are graphic halfspaces, which completes the 
proof of claim. 

It remains to show that for any fixed k 3 3 the UNION O F  k HALFSPACES 
problem with instances in monotone 2-DNF is in NP. 

Using Theorem 10.4 from [8] and some standard bounds on the size of weights 
required to represent halfspaces [18,17], it can be shown that a graphic function f G F, 
is a (graphic) halfspace if and only if there exist non-negative integers w,, ... , w,, 
t having O(n log n) bits long binary encodings such that for all x E X,, Ix  1 6 2, 
f (x) = 1 if and only if I;=, wixi 3 t. Then - as we have seen that any threshold 
decomposition of a graphic function can be assumed to consist of graphic halfspaces 
- the following non-deterministic algorithm decides in polynomial time whether 
a graphic function f E F, is a union of k halfspaces. Select, non-deterministically, some 
O(n log n) bits long integer coefficients defining k graphic halfspaces f ,  , . . . ,f, E F, (in 
the sense of the above representation scheme), and accept if and only if 
f = f1 V ... V f,. Clearly, as both f and f l  V ... V f ,  are graphic functions, they are 
identical if and only if M f  = M f l v  . v f k ,  what can be decided in deterministic 
polynomial time evaluating f and fi V ... Vf ,  on the elements of the set {x lx  E X, 
and I x l  d 2). 

The general UNION O F  k HALFSPACES problem is clearly not easier than its 
restriction to instances in monotone 2-DNF. 

Theorem 4.12. (i) UNION O F  2 HALFSPACES is co-NP-hard and belongs to C';. 
(ii) For any $xed k 2 3, UNION O F  k HALFSPACES is NP-hard, co-NP-hard, 

and belongs to C';. 

Proof. The co-NP-hardness result follows in both cases from Theorem 3.1, as the 
considered classes have the projection property. The NP-hardness result for part (ii) 
follows from Theorem 4.11. Using the fact that for any 1 1, the threshold number of 
the function y, y, V y,y, V ... y , ,  ,y,, E F,, is exactly 1 [6,9], all hardness results 
can be shown to remain valid even when the problems are restricted to instances in 
3-DNF. The inclusions in Cq are proved in all cases by the algorithm that guesses, 
existentially, a threshold decomposition, and then verifies, universally, whether the 
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decomposition is logically equivalent to the instance of the decision problem (all this 
computation can be done efficiently, as it is known [18,17] that any halfspace f E F, 
can be represented using integer weights with O(n1ogn) bits long binary 
encoding). 

Corollary 4.13. For any$xed k 2 3, the UNION O F  k HALFSPACES problem is not 
in NPuco-NP unless N P  = co-NP. 

Proof. As both N P  and co-NP are closed under Q$ reductions, no NP-hard problem 
can be in co-NP unless NP  = co-NP, and no co-NP-hard problem can be in NP  
unless N P  = co-NP. 

We now turn out attention to the following optimization problem (considered in 

~91 ) .  
OPTIMAL THRESHOLD DECOMPOSITION 
Instance: A Boolean function f in DNF. 
Task: Find an optimal threshold decomposition for$ 
This problem is related to the decision problem 
THRESHOLD NUMBER 
Instance: A Boolean function f in D N F  and an integer K. 
Question: Is the threshold number off at most K? 
which is not easier than its previous fixed-parameter analogues. 

Theorem 4.14. THRESHOLD NUMBER is NP-hard, co-NP-hard, and belongs to 
2;. 

Proof. Follows from our previous arguments (in fact, the NP-hardness result was 
given already in [6]). 

Corollary 4.15. THRESHOLD NUMBER is not in NP  uco-NP unless NP  = co-NP. 

Corollary 4.16 (Danzer et al. [6]). OPTIMAL THRESHOLD DECOMPOSITION 
is  NP-hard. 

Moreover, using the fixed-parameter hardness results from Theorem 4.12 and 
standard arguments from [7], one can show that the optimal threshold decomposi- 
tion cannot be efficiently approximated (with respect to the number of elements) 
within any constant factor p < $ unless P = NP. However, we will show that this 
problem is not efficiently approximable in a much stronger sense (the definition is 
motivated by similar notions in [21] used for a somewhat different problem). 

Definition 4.17. Let 17 be a minimization problem, and h be any function of the single 
variable opt. We say that 17 is h(opt)-approximable if and only if there exists a constant 
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a and a polynomial time algorithm APPROX such that on input of any instance I of 
L7 for which opt(I) 3 a, APPROX outputs a feasible solution with cost at most 
h(opt(I)) (notice that the algorithm is required to perform well only asymptotically, 
from some a on). 

Theorem 4.18. The OPTIMAL THRESHOLD DECOMPOSITION problem is not 
h(opt)-approximable for any function h unless P = NP. 

Proof. Let a 2 1 be any fixed higher, h any function of a single variable, and k any 
integer such that k 3 h(a) + 1 and k 3 a + 1. Consider the following reduction from 
DNF TAUTOLOGY to UNION O F  a HALFSPACES. Given f (x) E F,, in DNF, 
construct the DNF for the function 

If f - 1 then the threshold number of g is a (use the fact that the threshold 
number of the function yly2 V y3y4 V ... yZl- lyzl E Fzl  is exactly 1). If f $ 1, 
let a E X ,  be such that f (a) = 0. Then the projection g(a, y,, y2, ... , y2,, 
v,, v2, ... , vk, w,, w2, ... , wk) has threshold number at least k, hence g has threshold 
number at least k 2 a + 1. That is, f = 1 if and only if the threshold number of g is at 
most a, thus UNION O F  a HALFSPACES remains co-NP-hard for instances of the 
constructed type. As the threshold number of the constructed instances is either a or at 
least h(cc) + 1, an h(opt)-approximation algorithm which performs well on all instan- 
ces with threshold number at least a would solve the above co-NP-hard problem in 
polynomial time. As h and a were arbitrary, this concludes the proof. 

Notice that using a negation argument all results on the complexity of the UNION 
of k HALFSPACES problem can be shown to hold also for the dual INTER- 
SECTION O F  k HALFSPACES problem with instances in CNF. One can also see 
that our non-approximately result on threshold decompositions still holds if the 
approximation algorithm only decides whether there exists a threshold decomposition 
with fewer elements than the upper bound. 
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