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ABSTRACT

This paper presents discrete convex analysis as a tool for use in economics and
game theory. Discrete convex analysis is a new framework of discrete mat-
hematics and optimization, developed during the last two decades. Recently,
it has been recognized as a powerful tool for analyzing economic or game
models with indivisibilities. The main feature of discrete convex analysis is
the distinction of two convexity concepts, M-convexity and L-convexity, for
functions in integer or binary variables, together with their conjugacy relations-
hip. The crucial fact is that M-concavity in its variant is equivalent to the gross
substitutes property in economics. Fundamental theorems in discrete convex
analysis such as the M-L conjugacy theorems, discrete separation theorems
and discrete fixed point theorems yield structural results in economics such as
the existence of equilibria and the lattice structure of equilibrium price vectors.
Algorithms in discrete convex analysis provide iterative auction algorithms for
finding equilibria.
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1. INTRODUCTION

Convex analysis and fixed point theorems have played a crucial role in eco-
nomic and game-theoretic analysis, for instance, in proving the existence of a
competitive equilibrium and Nash equilibrium; see Debreu (1959), Arrow &
Hahn (1971), and Fudenberg & Tirole (1991). Traditionally, in such studies, it
is assumed that commodities are perfectly divisible, or mixed strategies can be
used, or the space of strategies is continuous. However, this traditional appro-
ach cannot be equally applied to economic models which involve significant
indivisibilities or to game-theoretic models where the space of strategies is
discrete and mixed strategies are not useful. In this paper we present a new
approach based on discrete convex analysis and discrete fixed point theorems
which have been recently developed in the field of discrete mathematics and
optimization and become a powerful tool for analyzing economic or game
models with indivisibilities.

Discrete convex analysis (Murota, 1998, 2003) is a general theoretical
framework constructed through a combination of convex analysis and combi-
natorial mathematics. The framework of convex analysis is adapted to discrete
settings and the mathematical results in matroid/submodular function theory
are generalized.1 The theory extends the direction set forth in discrete optimi-
zation by Edmonds (1970), Frank (1982), Fujishige (1984), and Lovász (1983);
see also Fujishige (2005, Chapter VII). The main feature of discrete convex
analysis is the distinction between two convexity concepts for functions in
integer or binary variables, M-convexity and L-convexity2 together with their
conjugacy relationship with respect to the (continuous or discrete) Legendre–
Fenchel transformation. Roughly speaking, M-convexity is defined in terms of
an exchange property and L-convexity by submodularity.

The application of discrete convex analysis to mathematical economics was
initiated by Danilov et al. (1998, 2001) to show the existence of a Walrasian
equilibrium in an exchange economy with indivisible goods (see also Murota,
2003, Chapter 11). The next stage of the interaction was brought about by the
crucial observation of Fujishige & Yang (2003) that M-concavity in its variant

1 The readers who are interested in general backgrounds are referred to Rockafellar (1970) for
convex analysis, Schrijver (1986) for linear and integer programming, Korte & Vygen (2012)
and Schrijver (2003) for combinatorial optimization, Oxley (2011) for matroid theory, and
Fujishige (2005) and Topkis (1998) for submodular function theory.

2 “M” stands for “Matroid” and “L” for “Lattice.”
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called M\-concavity3 is equivalent to the gross substitutability (GS) of Kelso &
Crawford (1982). The survey papers by Murota & Tamura (2003a) and Tamura
(2004) describe the interaction at the earlier stages of this development.

Concepts, theorems, and algorithms in discrete convex analysis have turned
out to be useful in the modeling and analysis of economic problems. The M-L
conjugacy corresponds to the conjugacy between commodity bundles and
price vectors in economics. The conjugacy theorem in discrete convex analysis
implies, for example, that a valuation (utility) function has the substitutes
property (M\-concavity) if and only if the indirect utility function is an L\-
convex function, where L\-convexity is a variant of L-convexity.

One of the most successful examples of the discrete convex analysis ap-
proach is Fujishige and Tamura’s model (Fujishige & Tamura, 2006, 2007)
of two-sided matching, which unifies the stable matching of Gale & Shapley
(1962) and the assignment model of Shapley & Shubik (1972). The existence
of a market equilibrium is established by revealing a novel duality-related pro-
perty of M\-concave functions. Tamura’s monograph (Tamura, 2009), though
in Japanese, gives a comprehensive account of this model.

Another significant instance of the discrete convex analysis approach is the
design and analysis of auction algorithms. Based on the Lyapunov function
approach of Ausubel (2006) and Sun & Yang (2009), Murota et al. (2013a,
2016) shed a new light on a variety of iterative auctions by making full use of
the M-L conjugacy theorem and L\-convex function minimization algorithms.
The lattice structure of equilibrium price vectors is obtained as an immediate
consequence of the L\-convexity of the Lyapunov function.

The contents of this paper are as follows:

Section 1: Introduction
Section 2: Notation
Section 3: M\-concave set function
Section 4: M\-concave function on Zn

Section 5: M\-concave function on Rn

Section 6: Operations for M\-concave functions
Section 7: Conjugacy and L\-convexity
Section 8: Iterative auctions
Section 9: Intersection and separation theorems
Section 10: Stable marriage and assignment game

3 “M\” and “L\” are read “em natural” and “ell natural,” respectively.
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Section 11: Valuated assignment problem
Section 12: Submodular flow problem
Section 13: Discrete fixed point theorem
Section 14: Other topics

Following the introduction of notations in Section 2, Sections 3 to 5 present
the definition of M\-concave functions and the characterizations of (or equi-
valent conditions for) M\-concavity in terms of demand functions and choice
functions. Section 6 shows the operations valid for M\-concave functions, in-
cluding the convolution operation used for the aggregation of utility functions.
Section 7 introduces L\-convexity as the conjugate concept of M\-concavity,
and Section 8 presents several iterative auctions. Section 9 deals with dua-
lity theorems of fundamental importance, including the discrete separation
theorems and the Fenchel-type minimax relations. Section 10 is a succinct
description of Fujishige and Tamura’s model. Combinations of M\-concave
functions with graph/network structures are considered in Sections 11 and 12.
Section 13 explains the basic idea underlying the discrete fixed point theorems.
Finally Section 14 gives a brief discussion of other related topics.4

2. NOTATION

Basic notations are listed here.

• The set of all real numbers is denoted by R, and the sets of nonnegative
reals and positive reals are denoted, respectively, by R+ and R++. The
set of all integers is denoted by Z, and the sets of nonnegative integers
and positive integers are denoted, respectively, by Z+ and Z++. The
sign ∀ means for all.

• We consistently assume N = {1,2, . . . ,n} for a positive integer n. Then
2N denotes the set of all subsets of N, i.e., the power set of N.

• The characteristic vector of a subset A⊆ N = {1,2, . . . ,n} is denoted by
χA ∈ {0,1}n. That is,

(χA)i =

{
1 (i ∈ A),
0 (i ∈ N \A). (2.1)

4 For other applications, we refer to Murota (2000b, 2009), Katoh et al. (2013), and Simchi-Levi
et al. (2014).
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For i∈ {1,2, . . . ,n}, we write χi for χ{i}, which is the ith unit vector. We
define χ0 = 0 where 0 = (0,0, . . . ,0). We also define 1 = (1,1, . . . ,1).

• For a vector x = (x1,x2, . . . ,xn) and a subset A ⊆ {1,2, . . . ,n}, x(A)
denotes the component sum within A, i.e., x(A) = ∑i∈A xi.

• For two vectors x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn), x≤ y means
the componentwise inequality. That is, x≤ y is true if and only if xi ≤ yi
is true for all i = 1,2, . . . ,n.

• For two integer vectors a and b in Zn with a ≤ b, [a,b]Z denotes the
integer interval between a and b (inclusive), i.e., [a,b]Z = {x ∈ Zn | a≤
x≤ b}.

• For two vectors x and y, x∨ y and x∧ y denote the vectors of compo-
nentwise maximum and minimum. That is, (x∨ y)i = max(xi,yi) and
(x∧ y)i = min(xi,yi) for i = 1, . . . ,n.

• For a real number z ∈ R, dze denotes the smallest integer not smaller
than z (rounding-up to the nearest integer) and bzc the largest integer not
larger than z (rounding-down to the nearest integer). This operation is
extended to a vector by componentwise application.

• For a vector x, supp+(x) = {i | xi > 0} and supp−(x) = {i | xi < 0}
denote the positive and negative supports of x, respectively.

• The `∞-norm of a vector x is denoted as ‖x‖∞, i.e.,

‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).

We also use the following variants:

‖x‖+∞ = max(0,x1,x2, . . . ,xn)

and
‖x‖−∞ = max(0,−x1,−x2, . . . ,−xn).

• For two vectors p = (p1, p2, . . . , pn) and x = (x1,x2, . . . ,xn), their inner
product is denoted by 〈p,x〉, i.e., 〈p,x〉= p>x = ∑

n
i=1 pixi, where p> is

the transpose of p viewed as a column vector.
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• For a function f : Rn→ R∪{+∞} or f : Rn→ R∪{−∞},

dom f = {x | −∞ < f (x)<+∞},
argmin f = {x | f (x)≤ f (y) for all y},
argmax f = {x | f (x)≥ f (y) for all y}.

These notations are used also for f : Zn → R∪ {+∞} or f : Zn →
R∪{−∞}. We sometimes use domR f and domZ f to emphasize that
dom f ⊆ Rn and dom f ⊆ Zn.

• For a set function f : 2N → R∪{+∞} or f : 2N → R∪{−∞},

dom f = {X ⊆ N | −∞ < f (X)<+∞},
argmin f = {X ⊆ N | f (X)≤ f (Y ) for all Y ⊆ N },
argmax f = {X ⊆ N | f (X)≥ f (Y ) for all Y ⊆ N }.

• For a function f and a vector p, f [−p] means the function defined by

f [−p](x) = f (x)− p>x = f (x)−〈p,x〉.

If f is a set function, f [−p] is the set function defined by f [−p](X) =
f (X)− p(X).

• For a function f , four variants of the conjugate function of f are denoted
as

f •(p) = sup{〈p,x〉− f (x)}, f ◦(p) = inf{〈p,x〉− f (x)},
fO(p) = sup{ f (x)−〈p,x〉}, f4(p) = inf{ f (x)+ 〈p,x〉}.

• The convex closure of a function f is denoted by f . The convex hull of
a set S is denoted by S.

• D(p; f ) denotes the demand correspondence for a price vector p and a
valuation function f , defined in (3.16) and (4.21).

• C(·) denotes a choice function. C(· ; f ) denotes the choice function
determined by a valuation function f , defined in (3.17) and (4.23).

• tw(·) denotes the twisting of a set or a vector, defined in (3.18) and
(4.25), respectively.
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• For an arc a in a directed graph, ∂+a denotes the initial (tail) vertex of a,
and ∂−a the terminal (head) vertex of a. That is, ∂+a = u and ∂−a = v
if a = (u,v).

• For a flow ξ in a network, ∂ξ denotes the boundary vector on the vertex
set, defined in (4.36). For a matching M, ∂M denotes the set of the
vertices incident to some edge in M.

• For a potential p defined on the vertex set of a network, δ p denotes the
coboundary of p, the vector on the arc set defined in (12.20).

3. M\-CONCAVE SET FUNCTION

First we introduce M\-concavity for set functions. Let N be a finite set, say,
N = {1,2, . . . ,n}, F be a nonempty family of subsets of N, and f : F → R
be a real-valued function on F . In economic applications, we may think of f
as a single-unit valuation (binary valuation) over combinations of indivisible
commodities N, where F represents the set of feasible combinations.

3.1. Exchange property

Let F be a nonempty family of subsets of a finite set N = {1,2, . . . ,n}. We say
that a function f : F → R is M\-concave, if, for any X ,Y ∈F and i ∈ X \Y ,
we have (i) X− i ∈F , Y + i ∈F and

f (X)+ f (Y )≤ f (X− i)+ f (Y + i), (3.1)

or (ii) there exists some j ∈ Y \X such that X− i+ j ∈F , Y + i− j ∈F and

f (X)+ f (Y )≤ f (X− i+ j)+ f (Y + i− j). (3.2)

Here we use short-hand notations X− i = X \{i}, Y + i =Y ∪{i}, X− i+ j =
(X \{i})∪{ j}, and Y + i− j = (Y ∪{i})\{ j}. This property is referred to as
the exchange property.

A more compact way of defining M\-concavity, free from explicit reference
to the domain F , is to define a function f : 2N→R∪{−∞} to be M\-concave
if it has the following property:

Journal of Mechanism and Institution Design 1(1), 2016
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(M\-EXC) For any X ,Y ⊆ N and i ∈ X \Y , we have

f (X)+ f (Y )≤ max( f (X− i)+ f (Y + i),
max j∈Y\X{ f (X− i+ j)+ f (Y + i− j)}), (3.3)

where (−∞)+ a = a+(−∞) = (−∞)+ (−∞) = −∞ for a ∈ R, −∞ ≤ −∞,
and a maximum taken over an empty set is defined to be −∞. The family
of subsets X for which f (X) is finite is called the effective domain of f , and
denoted as dom f , i.e., dom f = {X | f (X)>−∞}. When f is regarded as a
function on F = dom f , it is an M\-concave function in the original sense.

As a (seemingly) stronger condition than (M\-EXC) we may also conceive
the multiple exchange property:

(M\-EXCm) For any X ,Y ⊆ N and I ⊆ X \Y , there exists J ⊆ Y \X such that
f (X)+ f (Y )≤ f ((X \ I)∪ J)+ f ((Y \ J)∪ I), i.e.,

f (X)+ f (Y )≤ max
J⊆Y\X

{ f ((X \ I)∪ J)+ f ((Y \ J)∪ I)}. (3.4)

Recently it has been shown (Murota, 2016) that (M\-EXCm) is equivalent
to (M\-EXC).

Theorem 3.1. A function f : 2N → R∪{−∞} satisfies (M\-EXC) if and only
if it satisfies (M\-EXCm). Hence, every M\-concave function has the multiple
exchange property (M\-EXCm).

Remark 3.1. The multiple exchange property (M\-EXCm) here is the same
as the “strong no complementarities property (SNC)” introduced by Gul &
Stacchetti (1999) where it is shown that (SNC) implies the gross substitutes
property (GS). On the other hand, (GS) is known (Fujishige & Yang, 2003)
to be equivalent to (M\-EXC) (see Theorem 3.7). Therefore, Theorem 3.1
above reveals that (SNC) is equivalent to (GS). This settles the question since
1999: Is (SNC) strictly stronger than (GS) or not? We now know that (SNC) is
equivalent to (GS). See Murota (2016) for details.

It follows from the definition of an M\-concave function that the (effective)
domain F of an M\-concave function has the following exchange property:

(B\-EXC) For any X ,Y ∈F and i ∈ X \Y , we have (i) X− i ∈F , Y + i ∈F
or
(ii) there exists some j ∈ Y \X such that X− i+ j ∈F , Y + i− j ∈F .

Journal of Mechanism and Institution Design 1(1), 2016
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This means that F forms a matroid-like structure,5 called a generalized ma-
troid (g-matroid), or an M\-convex family.6 An M\-convex family F contai-
ning the empty set forms the family of independent sets of a matroid. For
example, for integers a,b with 0≤ a≤ b≤ n, Fab = {X | a≤ |X | ≤ b} is an
M\-convex family, and F0b (with a = 0) forms the family of independent sets
of a matroid.

Remark 3.2. It follows from Theorem 3.1 that a nonempty family F ⊆ 2N

satisfies (B\-EXC) if and only if it satisfies the multiple exchange axiom:

(B\-EXCm) For any X ,Y ∈F and I ⊆ X \Y , there exists J ⊆ Y \X such that
(X \ I)∪ J ∈F and (Y \ J)∪ I ∈F .

M\-concavity can be characterized by a local exchange property under the
assumption that function f is (effectively) defined on an M\-convex family of
sets (Murota, 1996a, 2003; Murota & Shioura, 1999). The conditions (3.5)–
(3.7) below are “local” in the sense that they require the exchangeability of the
form of (3.3) only for (X ,Y ) with max(|X \Y |, |Y \X |)≤ 2.

Theorem 3.2. A set function f : 2N → R∪{−∞} is M\-concave if and only if
dom f is an M\-convex family and the following three conditions hold:

f (X + i+ j)+ f (X)≤ f (X + i)+ f (X + j) (3.5)

for all X ⊆ N and for all i, j ∈ N \X with i 6= j; and

f (X + i+ j)+ f (X + k)≤ max{ f (X + i+ k)+ f (X + j),
f (X + j+ k)+ f (X + i)} (3.6)

for all X ⊆ N and for all distinct i, j,k ∈ N \X; and

f (X + i+ j)+ f (X + k+ l)≤ max{ f (X + i+ k)+ f (X + j+ l),
f (X + j+ k)+ f (X + i+ l)} (3.7)

for all X ⊆ N and for all distinct i, j,k, l ∈ N \X.

5 See, e.g., Murota (2000b), Oxley (2011), and Schrijver (2003) for matroids.
6 A subset of N can be identified with a 0-1 vector (characteristic vector in (2.1)), and accordingly,

a family of subsets can be identified with a set of 0-1 vectors. We call a family of subsets an
M\-convex family if the corresponding set of 0-1 vectors is an M\-convex set as a subset of ZN .
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When the effective domain dom f contains the emptyset, the local exchange
condition for M\-concavity takes a simpler form without involving (3.7); see
Reijnierse et al. (2002, Theorem 10), Müller (2006, Theorem 13.5), Shioura &
Tamura (2015, Theorem 6.5).

Theorem 3.3. Let f : 2N → R∪{−∞} be a set function such that dom f is an
M\-convex family containing /0 (the empty set). Then f is M\-concave if and
only if (3.5) and (3.6) hold.

It is known (Murota, 2003, Theorem 6.19) that an M\-concave function is
submodular, i.e.,

f (X)+ f (Y )≥ f (X ∪Y )+ f (X ∩Y ) (X ,Y ⊆ N). (3.8)

More precisely, the condition (3.5) above is equivalent to the submodularity
(3.8) as long as dom f is M\-convex (Shioura & Tamura, 2015, Proposition
6.1).

Because of the additional condition (3.6) for M\-concavity, not every
submodular set function is M\-concave. Thus, M\-concave set functions form
a proper subclass of submodular set functions.

Remark 3.3. It follows from (M\-EXC) that M\-concave set functions enjoy
the following exchange properties under cardinality constraints (Murota &
Shioura, 1999, Lemmas 4.3 and 4.6):
• For any X ,Y ⊆ N with |X |< |Y |,

f (X)+ f (Y )≤ max
j∈Y\X

{ f (X + j)+ f (Y − j)}. (3.9)

• For any X ,Y ⊆ N with |X |= |Y | and i ∈ X \Y ,

f (X)+ f (Y )≤ max
j∈Y\X

{ f (X− i+ j)+ f (Y + i− j)}. (3.10)

The former property, in particular, implies the cardinal-monotonicity of the
induced choice function; see Theorem 3.10 and its proof.

Remark 3.4. For a set family F consisting of equi-cardinal sets (i.e., |X |= |Y |
for all X ,Y ∈F ) the exchange property (B\-EXC) takes a simpler form: For
any X ,Y ∈F and i∈X \Y , there exists some j ∈Y \X such that X− i+ j ∈F ,
Y + i− j ∈F . This means that F forms the family of bases of a matroid. An

Journal of Mechanism and Institution Design 1(1), 2016
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M\-concave function defined on matroid bases is called a valuated matroid
in Dress & Wenzel (1990, 1992) and Murota (2000b, Chapter 5) or an M-
concave set function in Murota (1996a, 2003). The exchange property for
M-concavity reads: A set function f is M-concave if and only if (3.10) holds
for any X ,Y ⊆ N and i ∈ X \Y . A corollary of Theorem 3.1: Every M-concave
function (valuated matroid) f has the multiple exchange property (M\-EXCm)
with |J| = |I|. A further corollary of this fact is a classical result in matroid
theory: The base family of a matroid has the multiple exchange property
(B\-EXCm) with |J|= |I|; see, e.g., Schrijver (2003, Section 39.9a).

3.2. Maximization and single improvement property

For an M\-concave function, the maximality of a function value is characterized
by a local condition (Murota, 2003, Theorem 6.26).

Theorem 3.4. Let f : 2N → R∪{−∞} be an M\-concave function and X ∈
dom f . Then X is a maximizer of f if and only if

f (X)≥ f (X− i+ j) (∀ i ∈ X , ∀ j ∈ N \X), (3.11)
f (X)≥ f (X− i) (∀ i ∈ X), (3.12)
f (X)≥ f (X + j) (∀ j ∈ N \X). (3.13)

As a discrete analogue of the subgradient inequality for convex functions,
we have the inequality (3.14) in the following theorem.7

Theorem 3.5. Let f : 2N → R∪{−∞} be an M\-concave function and X ,Y ∈
dom f . Then

f (Y )− f (X)≤ f̂ (X ,Y ), (3.14)

where f̂ (X ,Y ) is defined as follows:

• When |X |= |Y |,

f̂ (X ,Y ) = max
σ

(
∑

i∈X\Y
[ f (X− i+σ(i))− f (X)]

)
,

where the maximum is taken over all one-to-one correspondences σ :
X \Y → Y \X.

7 This is a reformulation of the “upper-bound lemma” (Murota, 2000b, Lemma 5.2.29) for
valuated matroids to M\-concave functions. See also Murota (2003, Proposition 6.25).
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• When |X |< |Y |,

f̂ (X ,Y ) = max
σ

(
∑

i∈X\Y
[ f (X− i+σ(i))− f (X)]

+ ∑
j∈Y\(X∪σ(X))

[ f (X + j)− f (X)]

)
,

where the maximum is taken over all injections σ : X \Y → Y \X.

• When |X |> |Y |,

f̂ (X ,Y ) = max
τ

(
∑

j∈Y\X
[ f (X− τ( j)+ j)− f (X)]

+ ∑
i∈X\(Y∪τ(Y ))

[ f (X− i)− f (X)]

)
,

where the maximum is taken over all injections τ : Y \X → X \Y .

For a vector p = (pi | i ∈ N) ∈ RN we use the notation f [−p] to mean the
function f (X)− p(X), where X ⊆ N and p(X) = ∑i∈X pi. That is,

f [−p](X) = f (X)− p(X) (X ⊆ N). (3.15)

Note that f [−p] is M\-concave if and only if f is M\-concave.
The “if” part of Theorem 3.4, which is the content of the theorem, can be

restated as follows: If X is not a maximizer of f , there exists Y ⊆ N such that
|X \Y | ≤ 1, |Y \X | ≤ 1, and f (X) < f (Y ). By considering this property for
f [−p] with varying p, we are naturally led to the single improvement property
of Gul & Stacchetti (1999):

(SI) For any p ∈ RN , if X is not a maximizer of f [−p], there exists Y ⊆ N
such that |X \Y | ≤ 1, |Y \X | ≤ 1, and f [−p](X)< f [−p](Y ).

The above argument shows that (SI) is true for M\-concave functions. In fact,
(SI) is equivalent to M\-concavity (Fujishige & Yang, 2003).
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3.3. Maximizers and gross substitutability

For a vector p = (pi | i ∈ N) ∈ RN we consider the maximizers of the function
f [−p](X) = f (X)− p(X), where p(X) = ∑i∈X pi for X ⊆ N. We denote the
set of these maximizers by

D(p; f ) = argmax
X
{ f (X)− p(X) | X ⊆ N}. (3.16)

In economic applications, p is a price vector and D(p) = D(p; f ) represents
the demand correspondence.

It is one of the most fundamental facts in discrete convex analysis that the
M\-concavity of a function is characterized in terms of the M\-convexity of its
maximizers; see Murota (1996a), Murota (2003, Theorem 6.30), and Murota
& Shioura (1999).

Theorem 3.6. A set function f : 2N → R∪{−∞} is M\-concave if and only if,
for every vector p ∈ RN , D(p; f ) is an M\-convex family. That is, f satisfies
(M\-EXC) if and only if, for every p ∈ RN , D(p; f ) satisfies (B\-EXC).

The following are two versions of the multiple exchange property of
D(p; f ):

(NC) For any p ∈ RN , if X ,Y ∈ D(p; f ) and I ⊆ X \Y , there exists J ⊆ Y \X
such that (X \ I)∪ J ∈ D(p; f ),

(NCsim) For any p ∈ RN , if X ,Y ∈ D(p; f ) and I ⊆ X \Y , there exists J ⊆
Y \X such that (X \ I)∪ J ∈ D(p; f ) and (Y \ J)∪ I ∈ D(p; f ).

The condition (NC), introduced by Gul & Stacchetti (1999) is called “no
complementarities property” and (NCsim) is a simultaneous (or symmetric)
version of (NC) introduced by Murota (2016). These conditions, (NC) and
(NCsim), are equivalent to each other, and are equivalent to the M\-concavity
of f ; see Remark 3.1 as well as Murota (2016) for details.

In the above we have looked at the family D(p; f ) of the maximizers for
each p ∈ RN . We now investigate how D(p; f ) changes with the variation of
p.

A set function (single-unit valuation function) f : 2N → R∪{−∞} is said
to have the gross substitutes property if 8

8 To be precise, Kelso & Crawford (1982) and also Gul & Stacchetti (1999) treat the case of
f : 2N → R.
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(GS) For any p,q ∈ RN with p≤ q and X ∈ D(p; f ), there exists Y ∈ D(q; f )
such that {i ∈ X | pi = qi} ⊆ Y .

The concept of gross substitutes property, introduced by Kelso & Crawford
(1982), has turned out to be crucial in economics; see, e.g., Roth & Sotomayor
(1990), Bikhchandani & Mamer (1997), Gul & Stacchetti (1999), Ausubel
& Milgrom (2002), Milgrom (2004), Hatfield & Milgrom (2005), Ausubel
(2006), Sun & Yang (2006), Milgrom & Strulovici (2009), and Hatfield et al.
(2016).

The following theorem, due to Fujishige & Yang (2003), plays the key role
in connecting discrete convex analysis and economics.

Theorem 3.7. A set function f : 2N → R∪{−∞} has the gross substitutes
property (GS) if and only if it is M\-concave.

It is known (Hatfield & Milgrom, 2005; Milgrom & Strulovici, 2009) that
the gross substitutes property, and hence M\-concavity, implies the law of
aggregate demand in the following form:

(LAD) For any p,q∈RN with p≤ q and X ∈D(p; f ), there exists Y ∈D(q; f )
such that |X | ≥ |Y |.

Gross substitutes properties for multi-unit valuations are treated in Section
4.3.

3.4. Choice function

A function C : 2N → 2N is called a choice function if C(Z)⊆ Z for all Z ⊆ N.
We have C( /0) = /0 and, possibly, C(Z) = /0 for some nonempty subsets Z. A
choice function C is said to be consistent if C(X) ⊆ Y ⊆ X implies C(Y ) =
C(X). Here we discuss two other properties of choice functions, substitutability
and cardinal monotonicity, which are closely related to M\-concavity.

The substitutability of a choice function C means the following property
(Roth, 1984; Roth & Sotomayor, 1990)

(SCch) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 it holds that Z2∩C(Z1)⊆C(Z2).

Several apparently different formulations of substitutability, each equivalent to
(SCch), are found in the literature:
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• For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 it holds that Z1 \C(Z1)⊇ Z2 \C(Z2).

• i ∈C(X) implies i ∈C(Y ∪{i}) for Y ⊆ X .

• For any X ⊆N and any distinct i, j ∈ X , i∈C(X) implies i∈C(X \{ j}).

A choice function C is said to be cardinal-monotone if |C(Y )| ≤ |C(X)|
for all Y ⊆ X (Alkan, 2002). This property is called increasing property by
Fleiner (2003) and law of aggregate demand by Hatfield & Milgrom (2005).

Remark 3.5. As is well known, consistency and substitutability together are
equivalent to path independence of Plott (1973) which is characterized by
the condition: C(C(X)∪Y ) = C(X ∪Y ) for all X ,Y ⊆ N. This condition is
equivalent to: C(C(X)∪C(Y )) =C(X ∪Y ) for all X ,Y ⊆ N.

Remark 3.6. The above-mentioned properties of choice functions are well-
known key properties in economics and game theory. In the stable matching
problem, for example, consistency and substitutability (i.e., path indepen-
dence) guarantee, roughly, the existence of a stable matching. If, in addition,
the choice functions are cardinal-monotone, then the stable matchings form a
nice lattice (with simple lattice operations, being distributive, etc.). To quote
Alkan (2002, Theorem 10): “The set of stable matchings in any two-sided
market with path-independent cardinal-monotone choice functions is a dis-
tributive lattice under the common preferences of all agents on one side of
the market. The supremum (infimum) operation of the lattice for each side
consists componentwise of the join (meet) operation in the revealed preference
ordering of associated agents. The lattice has the polarity, unicardinality and
complementarity properties.”

Remark 3.7. A function C : 2N → 2N is called comonotone if there exists
a monotone function g : 2N → 2N such that C(X) = X \ g(X) for all X ⊆ N
(Fleiner, 2003). A function C : 2N → 2N is comonotone if and only if C is
a choice function with substitutability. The fixed point approach to stable
matchings of Fleiner (2003) is based on the observation that stable matchings
correspond to fixed points of a certain monotone function associated with the
choice functions and the deferred acceptance algorithm of Gale & Shapley
(1962) can be regarded as an iteration of this function. See also Farooq et al.
(2012).
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A choice correspondence means a function C : 2N → 22N
such that /0 6=

C(Z)⊆ 2Z for all Z ⊆ N. It should be clear that the value C(Z) is not a subset
of N but a family of subsets of N. If C(Z) consists of a single subset for each
Z ⊆ N, then C can be identified with a choice function C : 2N → 2N .

The substitutability of a choice correspondence C is formulated as follows
(Sotomayor, 1999, Definition 4):

(SC1
ch) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 and any X1 ∈ C(Z1), there exists

X2 ∈C(Z2) such that Z2∩X1 ⊆ X2.

(SC2
ch) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 and any X2 ∈ C(Z2), there exists

X1 ∈C(Z1) such that Z2∩X1 ⊆ X2.

For a choice function C : 2N → 2N , (SC1
ch) and (SC2

ch) are each equivalent to
(SCch).

Choice function induced from a valuation function: A valuation function
f : 2N→R∪{−∞} with /0∈ dom f induces a choice correspondence C : 2N→
22N

by
C(Z) =C(Z; f ) = argmax{ f (Y ) | Y ⊆ Z}. (3.17)

The assumption “ /0∈ dom f ” ensures that C(Z; f ) 6= /0 for every Z⊆N. In gene-
ral, the maximizer is not unique, and accordingly, C is a choice correspondence
(i.e., C(Z; f ) is a family of subsets of N).

While (SC1
ch) and (SC2

ch) above formulate the substitutability for a choice
correspondence, (SC1) and (SC2) below are the corresponding conditions for a
valuation function f . That is, a valuation function f satisfies (SC1) if and only
if the induced choice correspondence C( · ; f ) satisfies (SC1

ch), and similarly for
(SC2) and (SC2

ch).

(SC1) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 and any X1 ∈C(Z1; f ), there exists
X2 ∈C(Z2; f ) such that Z2∩X1 ⊆ X2.

(SC2) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 and any X2 ∈C(Z2; f ), there exists
X1 ∈C(Z1; f ) such that Z2∩X1 ⊆ X2.

These two conditions are independent of each other; see Examples 3.1 and 3.2
in Farooq & Tamura (2004).

A connection to M\-concavity is pointed out by Eguchi et al. (2003) (see
also Fujishige & Tamura, 2006). This is another important finding, on top of
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Theorem 3.7 (equivalence of M\-concavity to (GS)), which has reinforced the
connection between discrete convex analysis and economics.

Theorem 3.8. Every M\-concave function f : 2N→R∪{−∞} with /0∈ dom f
satisfies (SC1) and (SC2). That is, the choice correspondence induced from an
M\-concave set function has the substitutability properties (SC1

ch) and (SC2
ch).

Proof. Assume Z1 ⊇ Z2.
Proof of (SC1): Let X1 ∈C(Z1; f ) and take X2 ∈C(Z2; f ) with minimum

|(Z2 ∩ X1) \ X2|. To prove by contradiction, suppose that there exists i ∈
(Z2 ∩ X1) \ X2. Since i ∈ X1 \ X2, (M\-EXC) implies (i) f (X1) + f (X2) ≤
f (X1− i)+ f (X2 + i) or (ii) there exists j ∈ X2 \X1 such that f (X1)+ f (X2)≤
f (X1− i+ j)+ f (X2 + i− j). In case (i) we note X1− i⊆ Z1 and X2 + i⊆ Z2,
from which follow f (X1− i)≤ f (X1) and f (X2 + i)≤ f (X2). Therefore, the
inequalities are in fact equalities, and X1− i ∈C(Z1; f ) and X2 + i ∈C(Z2; f ).
But we have |(Z2∩X1)\ (X2 + i)|= |(Z2∩X1)\X2|−1, which contradicts the
choice of X2. In case (ii) we note X1− i+ j ⊆ Z1 and X2 + i− j ⊆ Z2, from
which follow f (X1− i+ j)≤ f (X1) and f (X2 + i− j)≤ f (X2). Therefore, the
inequalities are in fact equalities, and X1− i+ j ∈C(Z1; f ) and X2 + i− j ∈
C(Z2; f ). But we have |(Z2∩X1)\ (X2 + i− j)|= |(Z2∩X1)\X2|−1, which
contradicts the choice of X2.

Proof of (SC2): Let X2 ∈C(Z2; f ) and take X1 ∈C(Z1; f ) with minimum
|(Z2∩X1)\X2|. By the same argument as above we obtain (i) X1− i∈C(Z1; f )
with |(Z2∩ (X1− i)) \X2| = |(Z2∩X1) \X2|− 1, or (ii) X1− i+ j ∈C(Z1; f )
with |(Z2∩ (X1− i+ j))\X2|= |(Z2∩X1)\X2|−1. This is a contradiction to
the choice of X1.

When the maximizer is unique in (3.17) for every Z, we say that f is
unique-selecting. In this case, C in (3.17) is a choice function (i.e., C(Z; f ) is
a subset of N for every Z), and (SC1) and (SC2) both reduce to the following
condition:

(SC) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 it holds that Z2∩C(Z1; f )⊆C(Z2; f ).

Theorem 3.8 yields, as a corollary, the following result of Eguchi & Fujis-
hige (2002).

Theorem 3.9. Every unique-selecting M\-concave function f : 2N → R∪
{−∞} with /0 ∈ dom f satisfies (SC). That is, the choice function induced from
a unique-selecting M\-concave set function has the substitutability property
(SCch).
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Unique-selecting M\-concave functions are well-behaved also with respect
to cardinal monotonicity. The following is a special case of Murota & Yokoi
(2015, Lemma 4.5).

Theorem 3.10. Every unique-selecting M\-concave function f : 2N → R∪
{−∞} with /0 ∈ dom f induces a choice function with cardinal monotonicity.

Proof. The proof is based on the exchange property (3.9) in Remark 3.3. To
prove by contradiction, suppose that there exist X and Y such that X ⊇ Y and
|C(X)| < |C(Y )|. Set X∗ = C(X) and Y ∗ = C(Y ). Then |X∗| < |Y ∗|. By the
exchange property (3.9) there exists j ∈ Y ∗ \X∗ such that f (X∗)+ f (Y ∗) ≤
f (X∗+ j)+ f (Y ∗− j). Here we have f (X∗+ j) < f (X∗) since X∗+ j ⊆ X
and X∗ is the unique maximizer, and also f (Y ∗− j)< f (Y ∗) since Y ∗− j ⊆ Y
and Y ∗ is the unique maximizer. This is a contradiction.

Thus, M\-concave valuation functions entail the three desirable properties.
Recall Remark 3.6 for the implications of this fact.

Theorem 3.11. The choice function induced from a unique-selecting M\-
concave set function f with /0 ∈ dom f has consistency, substitutability, and
cardinal monotonicity.

Finally, we mention a theorem that characterizes M\-concavity in terms of
a parametrized version of (SC1) and (SC2). Recall from (3.15) the notation
f [−p](X) = f (X)− p(X) for p ∈ RN and X ⊆ N. If f is an M\-concave
function (not assumed to be unique-selecting), f [−p] is also M\-concave, and
hence is equipped with the properties (SC1) and (SC2) by Theorem 3.8. In
other words, an M\-concave function f has the following properties.

(SC1
G) For any p ∈ RN , f [−p] satisfies (SC1).

(SC2
G) For any p ∈ RN , f [−p] satisfies (SC2).

The following theorem, due to Farooq & Tamura (2004), states that these two
conditions are equivalent, and each of them characterizes M\-concavity.

Theorem 3.12. For a set function f : 2N → R∪{−∞} with dom f 6= /0, we
have the equivalence: f is M\-concave ⇐⇒ (SC1

G) ⇐⇒ (SC2
G).
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3.5. Twisted M\-concavity

Let W be a subset of N. For any subset X of N we define

tw(X) = (X \W )∪ (W \X). (3.18)

A set function f : 2N → R∪{−∞} is said to be a twisted M\-concave function
with respect to W , if the function f̃ : 2N → R∪{−∞} defined by

f̃ (X) = f (tw(X)) (X ⊆ N) (3.19)

is an M\-concave function (Ikebe & Tamura, 2015). The same concept was
introduced earlier by Sun & Yang (2006, 2009) under the name of GM-concave
functions. Note that f is twisted M\-concave with respect to W if and only if it
is twisted M\-concave with respect to U = N \W .

Mathematically, twisted M\-concavity is equivalent to the original M\-
concavity through twisting, and all the properties and theorems about M\-
concave functions can be translated into those about twisted M\-concave
functions. However, twisted M\-concave functions are convenient sometimes
in the modeling in economics.

For example, as pointed out by Ikebe & Tamura (2015), twisted M\-
concavity implies the same-side substitutability (SSS) and the cross-side com-
plementarity (CSC) proposed by Ostrovsky (2008) in discussing supply chain
networks. For a choice function C : 2N → 2N the same-side substitutability
(SSS) with respect to the bipartition (U,W ) of N means the following property:

(SSS) (i) For any Z1,Z2 ⊆ N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W , we
have Z2∩C(Z1)∩U ⊆C(Z2)∩U , and (ii) the same statement with U
and W interchanged,

and the cross-side complementarity (CSC) means

(CSC) (i) For any Z1,Z2 ⊆ N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W , we
have C(Z1)∩W ⊇C(Z2)∩W , and (ii) the same statement with U and
W interchanged.

For our exposition it is convenient to combine these two into a single property:

(SSS-CSC) (i) For any Z1,Z2⊆N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W ,
we have Z2∩C(Z1)∩U ⊆C(Z2)∩U and C(Z1)∩W ⊇C(Z2)∩W , and
(ii) the same statement with U and W interchanged.
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The connection to twisted M\-concavity is given in the following theorem,9

to be ascribed to Ikebe & Tamura (2015). Recall from (3.17) the definition
of the choice function induced from a valuation function: C(Z) =C(Z; f ) =
argmax{ f (Y ) | Y ⊆ Z}.

Theorem 3.13. The choice function induced from a unique-selecting twisted
M\-concave set function f : 2N → R∪{−∞} with /0 ∈ dom f has the property
(SSS-CSC).

For choice correspondences we need to consider the following pair of
conditions.

(SSS-CSC1) (i) For any Z1,Z2⊆N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W
and any X1 ∈ C(Z1), there exists X2 ∈ C(Z2) such that Z2 ∩X1 ∩U ⊆
X2∩U and X1∩W ⊇ X2∩W , and (ii) the same statement with U and W
interchanged.

(SSS-CSC2) (i) For any Z1,Z2⊆N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W
and any X2 ∈ C(Z2), there exists X1 ∈ C(Z1) such that Z2 ∩X1 ∩U ⊆
X2∩U and X1∩W ⊇ X2∩W , and (ii) the same statement with U and W
interchanged.

The following theorem (Ikebe & Tamura, 2015) states that these two
properties are implied by twisted M\-concavity.

Theorem 3.14. The choice correspondence induced from a twisted M\-concave
set function f : 2N→R∪{−∞} with /0∈ dom f has the properties (SSS-CSC1)
and (SSS-CSC2).

Proof. We prove (SSS-CSC1)-(i) and (SSS-CSC2)-(i); the proofs of (SSS-
CSC1)-(ii) and (SSS-CSC2)-(ii) are obtained by interchanging U and W . As-
sume Z1 ∩U ⊇ Z2 ∩U and Z1 ∩W = Z2 ∩W , and let f̃ be the M\-concave
function in (3.19) associated with f . For X1 ⊆ Z1 and X2 ⊆ Z2 define

Φ(X1,X2) = |(Z2∩X1∩U)\ (X2∩U)|+ |(X2∩W )\ (X1∩W )|.
9 Theorem 3.13 can be understood as a twisted version of Theorem 3.9, though a straightforward

translation of Theorem 3.9 via twisting does not seem to yield Theorem 3.13. Theorem 3.13
can be proved as a special case of Theorem 3.14 below, for which a direct proof is given.
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Proof of (SSS-CSC1)-(i): Let X1 ∈C(Z1; f ) and take X2 ∈C(Z2; f ) with
Φ(X1,X2) minimum. To prove by contradiction, suppose that there exists i ∈(
(Z2∩X1∩U)\(X2∩U)

)
∪
(
(X2∩W )\(X1∩W )

)
. Since i∈ tw(X1)\ tw(X2),

(M\-EXC) for f̃ implies

(i) f̃ (tw(X1))+ f̃ (tw(X2))≤ f̃ (tw(X1)− i)+ f̃ (tw(X2)+ i) or

(ii) there exists j ∈ tw(X2) \ tw(X1) such that f̃ (tw(X1)) + f̃ (tw(X2)) ≤
f̃ (tw(X1)− i+ j)+ f̃ (tw(X2)+ i− j).

Letting

X̂1 =

{
tw(tw(X1)− i)) (in (i)),
tw(tw(X1)− i+ j)) (in (ii)), X̂2 =

{
tw(tw(X2)+ i)) (in (i)),
tw(tw(X2)+ i− j)) (in (ii)),

we can express the above inequalities in (i) and (ii) as

f (X1)+ f (X2)≤ f (X̂1)+ f (X̂2).

As can be verified easily, we have X̂1 ⊆ Z1 and X̂2 ⊆ Z2, from which follow
f (X̂1) ≤ f (X1) and f (X̂2) ≤ f (X2) since X1 ∈ C(Z1; f ) and X2 ∈ C(Z2; f ).
Therefore, the inequalities are in fact equalities, and X̂1 ∈C(Z1; f ) and X̂2 ∈
C(Z2; f ). But we have Φ(X1, X̂2) = Φ(X1,X2)− 1, which contradicts the
choice of X2.

Proof of (SSS-CSC2)-(i): Let X2 ∈C(Z2; f ) and take X1 ∈C(Z1; f ) with
Φ(X1,X2) minimum. By the same argument as above we obtain X̂1 ∈C(Z1; f )
with Φ(X̂1,X2) = Φ(X1,X2)− 1. This is a contradiction to the choice of
X1.

The concept of twisted M\-concavity can also be defined for functions on
integer vectors ZN to be used for multi-unit models. See Section 4.5.

3.6. Examples

Here are some examples of M\-concave set functions.

1. For real numbers ai indexed by i ∈ N, the additive valuation

f (X) = ∑
i∈X

ai (X ⊆ N) (3.20)

is an M\-concave function.
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2. For a set of nonnegative numbers ai indexed by i ∈ N, the maximum-
value function (unit-demand utility)

f (X) = max
i∈X

ai (X ⊆ N) (3.21)

with f ( /0) = 0 is an M\-concave function.

3. For a univariate concave function ϕ : Z→ R∪{−∞} (i.e., if ϕ(t−1)+
ϕ(t +1)≤ 2ϕ(t) for all integers t), the function f defined by

f (X) = ϕ(|X |) (X ⊆ N) (3.22)

is M\-concave. Such f is called a symmetric concave valuation.

4. For a family of univariate concave functions {ϕA | A ∈T } indexed by a
family T of subsets of N, the function

f (X) = ∑
A∈T

ϕA(|A∩X |) (X ⊆ N) (3.23)

is submodular. A function f of the form (3.23) is called laminar concave,
if T is a laminar family, i.e., if [A,B ∈ T ⇒ A∩B = /0 or A ⊆ B or
A⊇ B]. A laminar concave function is M\-concave. See Murota (2003,
Note 6.11) for a proof. A special case of (3.23) with T = {N} reduces
to (3.22).

5. Given a matroid10 on N in terms of the family I of independent sets,
the rank function f is defined by

f (X) = max{|I| | I ∈I , I ⊆ X} (X ⊆ N), (3.24)

which denotes the maximum size of an independent set contained in X .
A matroid rank function (3.24) is M\-concave. A weighted matroid rank
function (or weighted matroid valuation) is a function represented as

f (X) = max{w(I) | I ∈I , I ⊆ X} (X ⊆ N) (3.25)

with some weight w ∈ RN , where w(I) = ∑i∈I wi. A weighted matroid
rank function (3.25) is M\-concave (Shioura, 2012). See Murota (2010)
for an elementary proof for the M\-concavity of (3.25) as well as (3.24).

10 For matroids, see, e.g., Murota (2000b), Oxley (2011), and Schrijver (2003).
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6. Let G = (S,T ;E) be a bipartite graph with vertex bipartition (S,T ) and
edge set E, and suppose that each edge e ∈ E is associated with weight
we ∈ R. For M ⊆ E, we denote by ∂M the set of the vertices incident to
some edge in M, and call M a matching if |S∩∂M |= |M |= |T ∩∂M |.
For X ⊆ T denote by f (X) the maximum weight of a matching that
precisely matches X in T , i.e.,

f (X) = max{w(M) |M is a matching, T ∩∂M = X} (3.26)

with w(M) = ∑e∈M we, where f (X) = −∞ if no such M exists for X .
Then f : 2T → R∪ {−∞} is an M\-concave function. See Murota
(1996c, Example 3.3) or Murota (2000b, Example 5.2.4) for proofs.
Such function is called an assignment valuation by Hatfield & Milgrom
(2005). Assignment valuations cover a fairly large class of M\-concave
functions, but not every M\-concave function can be represented in the
form of (3.26), as shown by Ostrovsky & Paes Leme (2015).

7. Let G = (S,T ;E) be a bipartite graph with vertex bipartition (S,T )
and edge set E, with weight we ∈ R associated with each edge e ∈ E.
Furthermore, suppose that a matroid on S is given in terms of the family
I of independent sets (see Fig. 1). For X ⊆ T denote by f (X) the
maximum weight of a matching such that the end-vertices in S form an
independent set and the end-vertices in T are equal to X , i.e.,

f (X) = max{w(M) | M is a matching,
S∩∂M ∈I , T ∩∂M = X}, (3.27)

where f (X) =−∞ if no such M exists for X . We call such f an indepen-
dent assignment valuation. It is known that an independent assignment
valuation is M\-concave. For proofs, see Murota (2000b, Example
5.2.18), Murota (2003, Section 9.6.2), and Kobayashi et al. (2007). If the
given matroid is a free matroid with I = 2S, (3.27) reduces to (3.26).

3.7. Concluding remarks of section 3

We collect here the conditions that characterize M\-concave set functions:
– Exchange property (M\-EXC) (Section 3.1)
– Multiple exchange property (M\-EXCm)
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MI f (X)
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Figure 1: Independent assignment valuation

= Strong no complementarities property (SNC) (Section 3.1)
– Local exchange property (Theorems 3.2 and 3.3) (Section 3.1)
– Single improvement property (SI) (Section 3.2)
– Exchange property (B\-EXC) for the maximizers D(p; f ) (Section 3.3)
– Multiple (one-sided) exchange property for the maximizers D(p; f )

= No complementarities property (NC) (Section 3.3)
– Multiple exchange property (NCsim) for the maximizers

D(p; f ) (Section 3.3)
– Gross substitutability (GS) (Section 3.3)
– Parametrized substitutability (SC1

G) (Section 3.4)
– Parametrized substitutability (SC2

G) (Section 3.4)

4. M\-CONCAVE FUNCTION ON ZN

In Section 3 we have considered M\-concave set functions, which correspond
to single-unit valuations with substitutability. In this section we deal with
M\-concave functions defined on integer vectors, f : Zn→ R∪{−∞}, which
correspond to multi-unit valuations with substitutability.

4.1. Exchange property

Let N be a finite set, say, N = {1,2, . . . ,n} for n≥ 1. For a vector z ∈ RN in
general, define the positive and negative supports of z as

supp+(z) = {i | zi > 0}, supp−(z) = { j | z j < 0}. (4.1)

Recall that, for i ∈ N, the ith unit vector is denoted by χi.
We say that a function f : ZN →R∪{−∞} with dom f 6= /0 is M\-concave,

if, for any x,y ∈ ZN and i ∈ supp+(x− y), we have (i)

f (x)+ f (y)≤ f (x−χi)+ f (y+χi) (4.2)
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Figure 2: Nearer pair in the definition of M\-concave functions

or (ii) there exists some j ∈ supp−(x− y) such that

f (x)+ f (y)≤ f (x−χi +χ j)+ f (y+χi−χ j). (4.3)

This property is referred to as the exchange property. See Fig. 2, in which
(x′,y′) = (x−χi,y+χi) and (x′′,y′′) = (x−χi +χ j,y+χi−χ j).

A more compact expression of the exchange property is as follows:

(M\-EXC[Z]) For any x,y ∈ ZN and i ∈ supp+(x− y), we have

f (x)+ f (y)≤ max
j∈supp−(x−y)∪{0}

{ f (x−χi+χ j)+ f (y+χi−χ j)}, (4.4)

where χ0 = 0 (zero vector). In the above statement we may change “For
any x,y ∈ ZN ” to “For any x,y ∈ dom f ” since if x 6∈ dom f or y 6∈ dom f ,
(4.4) trivially holds with f (x)+ f (y) =−∞. An M\-concave function f with
dom f ⊆ {0,1}N can be identified with an M\-concave set function introduced
in Section 3.1. A function f is called M\-convex if − f is M\-concave.

It follows from (M\-EXC[Z]) that the effective domain B = dom f of an
M\-concave function f has the following exchange property:

(B\-EXC[Z]) For any x,y ∈ B and i ∈ supp+(x− y), we have (i) x− χi ∈ B,
y+χi ∈ B or
(ii) there exists some j ∈ supp−(x− y) such that x− χi + χ j ∈ B, y+
χi−χ j ∈ B.

A set B ⊆ ZN having this property is called an M\-convex set (or integral
generalized polymatroid, integral g-polymatroid). An M\-convex set contained
in the unit cube {0,1}N can be identified with an M\-convex family of subsets
(Section 3.1).
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M\-concavity can be characterized by a local exchange property under
the assumption that function f is (effectively) defined on an M\-convex set
(Murota, 1996a, 2003; Murota & Shioura, 1999). The conditions (4.5)–(4.9)
below are “local” in the sense that they require the exchangeability of the form
of (4.4) only for some (x,y) with ‖x− y‖1 ≤ 4.

Theorem 4.1. A function f : ZN → R∪{−∞} is M\-concave if and only if
dom f is an M\-convex set and the following conditions hold:

f (x+2χi)+ f (x)≤ 2 f (x+χi) (4.5)

for all x ∈ ZN and for all i ∈ N; and

f (x+χi +χ j)+ f (x)≤ f (x+χi)+ f (x+χ j) (4.6)

for all x ∈ ZN and for all distinct i, j ∈ N; and

f (x+2χi)+ f (x+χk)≤ f (x+χi +χk)+ f (x+χi) (4.7)

for all x ∈ ZN and for all distinct i,k ∈ N; and

f (x+χi +χ j)+ f (x+χk)≤max { f (x+χi +χk)+ f (x+χ j),
f (x+χ j +χk)+ f (x+χi)}

(4.8)

for all x ∈ ZN and for all distinct i, j,k ∈ N; and

f (x+χi +χ j)+ f (x+χk +χl)≤
max{ f (x+χi +χk)+ f (x+χ j +χl),
f (x+χ j +χk)+ f (x+χi +χl)}

(4.9)

for all x ∈ ZN and for all i, j,k, l ∈ N with {i, j}∩{k, l}= /0. Here we allow
the possibility of i = j or k = l.

When the effective domain dom f is an M\-convex set such that 000 ∈
dom f ⊆ ZN

+, the local exchange condition above takes a simpler form that
does not involve (4.9) (Shioura & Tamura, 2015, Theorem 6.8). To cover the
case of dom f = ZN we weaken the assumption on dom f to:

x,y ∈ dom f =⇒ x∧ y ∈ dom f . (4.10)
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Theorem 4.2. Let f : ZN → R∪{−∞} be a function such that dom f is an
M\-convex set satisfying (4.10). Then f is M\-concave if and only if (4.5), (4.6),
(4.7) and (4.8) hold.

Proof. The proof of Shioura & Tamura (2015, Theorem 6.8) works under the
weaker condition (4.10).

The local exchange property above admits a natural reformulation in terms
of the discrete Hessian matrix when dom f = ZN . For x ∈ ZN and i, j ∈ N
define

Hi j(x) = f (x+χi +χ j)− f (x+χi)− f (x+χ j)+ f (x), (4.11)

and let H f (x)= (Hi j(x) | i, j∈N) be the matrix consisting of those components.
This matrix H f (x) is called the discrete Hessian matrix of f at x. The following
theorem, due to Hirai & Murota (2004) and Murota (2007) can be derived
from Theorem 4.2.

Theorem 4.3. A function f : ZN → R is M\-concave if and only if the discrete
Hessian matrix H f (x) = (Hi j(x)) satisfies the following conditions for each
x ∈ ZN:

Hi j(x)≤ 0 for any (i, j), (4.12)
Hi j(x)≤max(Hik(x),H jk(x)) if {i, j}∩{k}= /0. (4.13)

Proof. The correspondence between the conditions in Theorems 4.2 and 4.3
is quite straightforward. With the use of (4.11) we can easily verify: (4.5)⇔
Hii(x)≤ 0, (4.6)⇔ Hi j(x)≤ 0 (i 6= j), (4.7)⇔ Hii(x)≤ Hik(x) (i 6= k), and
(4.8)⇔ Hi j(x)≤max(Hik(x),H jk(x)) (i, j,k: distinct).

It is known (Murota, 2003, Theorem 6.19) that an M\-concave function
f : ZN → R∪{−∞} is submodular on the integer lattice, i.e.,

f (x)+ f (y)≥ f (x∨ y)+ f (x∧ y) (x,y ∈ ZN). (4.14)

More precisely, the condition (4.6) above is equivalent to the submodularity
(4.14) as long as dom f is M\-convex (Shioura & Tamura, 2015, Proposition
6.1). Because of the additional conditions for M\-concavity, not every sub-
modular function is M\-concave. Thus, M\-concave functions form a proper
subclass of submodular functions on ZN .
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It is also known in Murota (1996a, Theorem 4.6) and Murota (2003, The-
orem 6.42) that an M\-concave function f : ZN → R∪ {−∞} is concave-
extensible, i.e., there exists a concave function f : RN → R∪{−∞} such that
f (x) = f (x) for all x ∈ ZN .

Remark 4.1. It follows from (M\-EXC[Z]) that M\-concave functions enjoy
the following exchange properties under size constraints (Murota & Shioura,
1999, Lemmas 4.3 and 4.6):
• For any x,y ∈ ZN with x(N)< y(N),

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x+χ j)+ f (y−χ j)}. (4.15)

• For any x,y ∈ ZN with x(N) = y(N) and i ∈ supp+(x− y),

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x−χi +χ j)+ f (y+χi−χ j)}. (4.16)

The former property, in particular, implies the size-monotonicity of the induced
choice function; see Theorem 4.9 and its proof.

Remark 4.2. If B ⊆ ZN lies in a hyperplane with a constant component
sum (i.e., x(N) = y(N) for all x,y ∈ B), the exchange property (B\-EXC[Z])
takes a simpler form (without the possibility of j = 0): For any x,y ∈ B and
i ∈ supp+(x−y), there exists some j ∈ supp−(x−y) such that x−χi+χ j ∈ B,
y+ χi− χ j ∈ B. A set B ⊆ ZN having this exchange property is called an
M-convex set (or integral base polyhedron). An M\-concave function defined
on an M-convex set is called an M-concave function (Murota, 1996a, 2003).
The exchange property for M-concavity reads: A function f : ZN→R∪{−∞}
is M-concave if and only if, for any x,y ∈ ZN and i ∈ supp+(x− y), it holds
that

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x−χi +χ j)+ f (y+χi−χ j)}. (4.17)

M-concave functions and M\-concave functions are equivalent concepts, in
that M\-concave functions in n variables can be obtained as projections of
M-concave functions in n+ 1 variables. More formally, let “0” denote a
new element not in N and Ñ = {0}∪N. A function f : ZN → R∪{−∞} is
M\-concave if and only if the function f̃ : ZÑ → R∪{−∞} defined by

f̃ (x0,x) =
{

f (x) if x0 =−x(N)
−∞ otherwise (x0 ∈ Z,x ∈ ZN) (4.18)
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is an M-concave function. A function f is called M-convex if− f is M-concave.

4.2. Maximization and single improvement property

For an M\-concave function, the maximality of a function value is characterized
by a local condition as follows, where χ0 = 0 (Murota, 2003, Proposition 6.23,
Theorem 6.26).

Theorem 4.4. Let f : ZN → R∪{−∞} be an M\-concave function and x ∈
dom f .
(1) If f (x) < f (y) for y ∈ dom f , then f (x) < f (x− χi + χ j) for some i ∈
supp+(x− y)∪{0} and j ∈ supp−(x− y)∪{0}.
(2) x is a maximizer of f if and only if

f (x)≥ f (x−χi +χ j) (∀ i, j ∈ N∪{0}). (4.19)

For a vector p = (pi | i ∈ N) ∈ RN we use the notation f [−p] to mean the
function f (x)− p>x, where p> means the transpose of p. That is,

f [−p](x) = f (x)− p>x (x ∈ ZN). (4.20)

By considering the properties of (1) and (2) in Theorem 4.4 for f [−p] with
varying p, we are naturally led to (SSI[Z]) and (SI[Z]) below:11

(SSI[Z]) For any p ∈ RN and x,y ∈ dom f with f [−p](x)< f [−p](y), there
exists i ∈ supp+(x− y)∪ {0} and j ∈ supp−(x− y)∪ {0} such that
f [−p](x)< f [−p](x−χi +χ j).

(SI[Z]) For any p∈RN , if x∈ dom f is not a maximizer of f [−p], there exists
i ∈ N∪{0} and j ∈ N∪{0} such that f [−p](x)< f [−p](x−χi +χ j).

The stronger version (SSI[Z]) is shown to be equivalent to M\-concavity
(Murota & Tamura, 2003b, Theorem 7). This property is named the strong
single improvement property in Shioura & Tamura (2015). The latter (SI[Z])
is the vector version of single improvement property (Section 3.2), called
the multi-unit single improvement property by Milgrom & Strulovici (2009).
We can see from Milgrom & Strulovici (2009, Theorem 13) that (SI[Z]) is
equivalent to M\-concavity under the assumption of concave-extensibility of f
and boundedness of dom f .

11 (SSI[Z]) here is denoted as (M\-SI[Z]) in Murota (2003).
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4.3. Maximizers and gross substitutability

For a vector p = (pi | i ∈ N) ∈ RN we consider the maximizers of the function
f [−p](x) = f (x)− p>x. We denote the set of these maximizers by

D(p; f ) = argmax
x
{ f (x)− p>x}. (4.21)

In economic applications, p is a price vector and D(p) = D(p; f ) represents
the demand correspondence.

It is one of the most fundamental facts in discrete convex analysis that the
M\-concavity of a function is characterized in terms of the M\-convexity of its
maximizers; see Murota (1996a), Murota (2003, Theorem 6.30), and Murota
& Shioura (1999).

Theorem 4.5. Let f : ZN → R∪{−∞} be a function with a bounded effective
domain. Then f is M\-concave if and only if, for every vector p ∈ RN , D(p; f )
is an M\-convex set. That is, f satisfies (M\-EXC[Z]) if and only if, for every
p ∈ RN , D(p; f ) satisfies (B\-EXC[Z]).

As a straightforward extension of the gross substitutes condition from
single-unit valuations (Section 3.3) to multi-unit valuations it seems natural to
conceive the following condition:

(GS[Z]) For any p,q∈RN with p≤ q and x∈D(p; f ), there exists y∈D(q; f )
such that xi ≤ yi for all i ∈ N with pi = qi.

It turns out, however, that this condition alone is too weak to be fruitful,
mathematically and economically. Subsequently, several different strengthened
forms of (GS[Z]) are proposed in the literature, including Danilov et al. (2003);
Murota & Tamura (2003b); Milgrom & Strulovici (2009); Shioura & Tamura
(2015).

Among others we start with the projected gross substitutes condition12

(PRJ-GS[Z]) of Murota & Tamura (2003b):

(PRJ-GS[Z]) For any p,q ∈RN with p≤ q, any p0,q0 ∈R with p0 ≤ q0 and
x ∈D(p− p0111; f ), there exists y ∈D(q−q0111; f ) such that (i) xi ≤ yi for
all i ∈ N with pi = qi and (ii) x(N)≥ y(N) if p0 = q0,

12 (PRJ-GS[Z]) is denoted as (M\-GS[Z]) in Murota (2003, §6.8).
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where x(N) = ∑i∈N xi and y(N) = ∑i∈N yi. By fixing p0 = q0 = 0 in (PRJ-
GS[Z]) we obtain the following condition:

(GS&LAD[Z]) For any p,q ∈ RN with p ≤ q and x ∈ D(p; f ), there exists
y ∈D(q; f ) such that (i) xi ≤ yi for all i ∈ N with pi = qi and (ii) x(N)≥
y(N).

As the acronym (GS&LAD[Z]) shows, this condition is a combination of
(GS[Z]) above and the law of aggregate demand:

(LAD[Z]) For any p,q ∈ RN with p ≤ q and x ∈ D(p; f ), there exists y ∈
D(q; f ) such that x(N)≥ y(N).

This condition is studied by Hatfield & Milgrom (2005) and Milgrom &
Strulovici (2009). Note, however, that imposing (GS&LAD[Z]) on f is not the
same as imposing (GS[Z]) and (LAD[Z]) on f , since in (GS&LAD[Z]) both
(i) and (ii) must be satisfied by the same vector y. Obviously, (GS&LAD[Z])
implies (GS[Z]) and (LAD[Z]). The amalgamated form (GS&LAD[Z]) is
given in Murota et al. (2013a), whereas the juxtaposition of (GS[Z]) and
(LAD[Z]) is in Milgrom & Strulovici (2009, Theorem 13 (iv)). We may also
consider the following variant (Shioura & Tamura, 2015; Shioura & Yang,
2015) of (GS&LAD[Z]), where the vector q takes a special form13 p+δ χk
with k ∈ N and δ > 0:

(GS&LAD′[Z]) For any p ∈ RN , k ∈ N, δ > 0 and x ∈ D(p; f ), there exists
y ∈D(p+δ χk; f ) such that (i) xi ≤ yi for all i ∈ N \{k} and (ii) x(N)≥
y(N).

M\-concavity can be characterized by these properties as the following
theorem indicates; see Murota & Tamura (2003b), Danilov et al. (2003),
Milgrom & Strulovici (2009, Theorem 13), Shioura & Tamura (2015, Theorem
4.1), and Murota (2003, Theorems 6.34, 6.36). It refers to two other conditions
(SWGS[Z]) and (SS[Z]), which are explained in Remark 4.3 below.

Theorem 4.6. Let f : ZN → R∪{−∞} be a concave-extensible function with
a bounded effective domain. Then we have the following equivalence: (M\-
EXC[Z]) ⇐⇒ (PRJ-GS[Z]) ⇐⇒ (GS&LAD[Z]) ⇐⇒ (GS[Z]) & (LAD[Z])
⇐⇒ (GS&LAD′[Z]) ⇐⇒ (SWGS[Z]). If dom f is contained in ZN

+, each of
these conditions is equivalent to (SS[Z]).

13 Recall that χk denotes the kth unit vector.
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Remark 4.3. The step-wise gross substitutes condition (Danilov et al., 2003)
means:

(SWGS[Z]) For any p ∈RN , k ∈ N and x ∈D(p; f ), at least one of (i) and (ii)
holds true:14

(i) x ∈ D(p+δ χk; f ) for all δ ≥ 0,
(ii) there exists δ ≥ 0 and y ∈ D(p+δ χk; f ) such that yk = xk−1 and
yi ≥ xi for all i ∈ N \{k}.

The strong substitute condition (Milgrom & Strulovici, 2009) for a multi-
unit valuation f means the condition (GS[Z]) for the single-unit valuation f B

corresponding to f :

(SS[Z]) The function f B associated with f satisfies the condition (GS[Z]).

More specifically, the function f B is defined as follows. Let u ∈ZN
+ be a vector

such that dom f ⊆ [000,u]Z. Consider a set NB = {(i,β ) | i ∈ N, β ∈ Z, 1 ≤
β ≤ ui} and define f B : ZNB → R∪{−∞} with dom f B ⊆ {0,1}NB

by

f B(xB) = f (x), xB ∈ {0,1}NB
, xi =

ui

∑
β=1

xB
(i,β ) (i ∈ N). (4.22)

4.4. Choice function

Let b ∈ ZN
+ be an upper bound vector and B = {x ∈ ZN

+ | x≤ b} be the set of
feasible vectors. A function C : B→B is called a choice function if C(x)≤ x
for all x ∈B. Three important properties are identified in the literature (Alkan
& Gale, 2003):

• C is called consistent if C(x)≤ y≤ x implies C(y) =C(x),

• C is called persistent if x≥ y implies y∧C(x)≤C(y),

• C is called size-monotone if x ≥ y implies |C(x)| ≥ |C(y)|, where
|C(x)|= ∑

i∈N
C(x)i.

14 Recall that χk denotes the kth unit vector.
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Remark 4.4. Alkan & Gale (2003) consider a stable allocation model that
extends the stable matching model of Alkan (2002). If the choice functions are
consistent and persistent, the set of stable allocations is nonempty and forms a
lattice. Moreover, if the choice functions are also size-monotone, the lattice of
stable allocations is distributive and has several significant properties, called
polarity, complementarity, and uni-size property.

For a given function f : ZN → R∪{−∞} we define

C(z) =C(z; f ) = argmax{ f (y) | y≤ z}. (4.23)

In general, the maximizer may not be unique, and hence C(z; f )⊆ZN . We also
have the possibility of C(z; f ) = /0 to express the nonexistence of a maximizer.

An important property of M\-concave functions, closely related to persis-
tence, can be found in Eguchi et al. (2003, Lemma 1) and also in Fujishige &
Tamura (2006, Lemma 5.2).

Theorem 4.7. Let f : ZN → R∪{−∞} be an M\-concave function. Then the
following hold.

(SC1[Z]) For any z1,z2 ∈ ZN with z1 ≥ z2 and C(z2; f ) 6= /0 and for any x1 ∈
C(z1; f ), there exists x2 ∈C(z2; f ) such that z2∧ x1 ≤ x2.

(SC2[Z]) For any z1,z2 ∈ ZN with z1 ≥ z2 and C(z1; f ) 6= /0 and for any x2 ∈
C(z2; f ), there exists x1 ∈C(z1; f ) such that z2∧ x1 ≤ x2.

Proof. Assume z1 ≥ z2. For x1 ≤ z1 and x2 ≤ z2 define

Φ(x1,x2) = ∑{(x1)i− (x2)i | i ∈ supp+((z2∧ x1)− x2)}.

Proof of (SC1[Z]): Let x1 ∈C(z1; f ) and take x2 ∈C(z2; f ) with minimum
Φ(x1,x2). To prove by contradiction, suppose that there exists i ∈ supp+((z2∧
x1)− x2). Since i ∈ supp+(x1− x2), (M\-EXC[Z]) implies there exists j ∈
supp−(x1− x2)∪{0} such that

f (x1)+ f (x2)≤ f (x1−χi +χ j)+ f (x2 +χi−χ j).

Here we have x1− χi + χ j ≤ z1 and x2 + χi− χ j ≤ z2; the former is obvious
if j = 0 and otherwise, it follows from (x1) j < (x2) j ≤ (z2) j ≤ (z1) j, and the
latter follows from (x2)i < (z2)i. This implies that f (x1−χi+χ j)≤ f (x1) and
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f (x2 + χi− χ j)≤ f (x2) since x1 ∈C(z1; f ) and x2 ∈C(z2; f ). Therefore, the
inequalities are in fact equalities, and x1−χi+χ j ∈C(z1; f ) and x2+χi−χ j ∈
C(z2; f ). But we have Φ(x1,x2 +χi−χ j) = Φ(x1,x2)−1, which contradicts
the choice of x2.

Proof of (SC2[Z]): Let x2 ∈C(z2; f ) and take x1 ∈C(z1; f ) with minimum
Φ(x1,x2). By the same argument as above we obtain x1− χi + χ j ∈C(z1; f )
with Φ(x1−χi +χ j,x2) = Φ(x1,x2)−1. This is a contradiction to the choice
of x1.

When the maximizer is unique in (4.23) for every z, we say that f is
unique-selecting. In the following we assume that f is unique-selecting and

000 ∈ dom f ⊆ ZN
+. (4.24)

Then C in (4.23) can be regarded as a choice function C : B→B.
The induced choice function C is obviously consistent for any valuation

function f . For persistence, M\-concavity plays an essential role. The fol-
lowing theorem of Eguchi et al. (2003) can be obtained as a corollary of
Theorem 4.7, since for unique-selecting valuation functions, (SC1[Z]) and
(SC2[Z]) are equivalent and both coincide with persistence.

Theorem 4.8. Every unique-selecting M\-concave function f : ZN → R∪
{−∞} with (4.24) induces a persistent choice function.

The size-monotonicity is also implied by M\-concavity (Murota & Yokoi,
2015).

Theorem 4.9. Every unique-selecting M\-concave function f : ZN → R∪
{−∞} with (4.24) induces a size-monotone choice function.

Proof. The proof is based on the exchange property (4.15) in Remark 4.1.
To prove by contradiction, suppose that there exist x,y ∈ ZN such that x≥ y
and |C(x; f )|< |C(y; f )|. Set x∗ =C(x; f ) and y∗ =C(y; f ). Then |x∗|< |y∗|.
By the exchange property (4.15) there exists j ∈ supp−(x∗− y∗) such that
f (x∗)+ f (y∗) ≤ f (x∗+ χ j)+ f (y∗− χ j). Here we have f (x∗+ χ j) < f (x∗)
since x∗+χ j ≤ x by x∗j < y∗j ≤ y j ≤ x j and x∗ is the unique maximizer. We also
have f (y∗−χ j)< f (y∗) since y∗−χ j ≤ y∗ ≤ y and y∗ is the unique maximizer.
This is a contradiction.
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Thus, M\-concave valuation functions entail the three desired properties,
consistency, persistence, and size-monotonicity.15 Recall Remark 4.4 for the
implications of this fact.

Theorem 4.10. For a unique-selecting M\-concave value function f : ZN →
R∪{−∞} with (4.24), the choice function C induced from f is consistent,
persistent, and size-monotone.

Finally, we mention a theorem that characterizes M\-concavity in terms
of a parametrized version of (SC1[Z]) and (SC2[Z]). Recall from (4.20) the
notation f [−p](x) = f (x)− p>x for p∈RN and x∈ZN . If f is an M\-concave
function (not assumed to be unique-selecting), f [−p] is also M\-concave, and
hence is equipped with the properties (SC1[Z]) and (SC2[Z]) by Theorem 4.7.
In other words, an M\-concave function f has the following properties.

(SC1
G[Z]) For any p ∈ RN , f [−p] satisfies (SC1[Z]).

(SC2
G[Z]) For any p ∈ RN , f [−p] satisfies (SC2[Z]).

The following theorem, due to Farooq & Shioura (2005), states that each of
these conditions characterizes M\-concavity.

Theorem 4.11. For a function f : ZN → R∪{−∞} with a bounded nonempty
effective domain, we have the equivalence: f is M\-concave ⇐⇒ (SC1

G[Z])
⇐⇒ (SC2

G[Z]).

4.5. Twisted M\-concavity

Let W be a subset of N. For any vector x ∈ ZN we define tw(x) ∈ ZN by
specifying its ith component tw(x)i as

tw(x)i =

{
xi (i ∈ N \W ),
−xi (i ∈W ).

(4.25)

A function f : ZN → R∪{−∞} is said to be a twisted M\-concave function
with respect to W , if the function f̃ : ZN → R∪{−∞} defined by

f̃ (x) = f (tw(x)) (x ∈ ZN) (4.26)

15 Theorem 4.10 can be extended to quasi M\-concave value functions; see Murota & Yokoi
(2015).
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is an M\-concave function (Ikebe & Tamura, 2015). The same concept has
been introduced by Shioura & Yang (2015), almost at the same time and
independently, under the name of GM-concave functions; see also Sun & Yang
(2008) and Section 14.5. Note that f is twisted M\-concave with respect to W
if and only if it is twisted M\-concave with respect to U = N \W .

Mathematically, twisted M\-concavity is equivalent to the original M\-
concavity through twisting, and all the properties and theorems about M\-
concave functions can be translated into those about twisted M\-concave
functions. In such translations it is often adequate to define the twisted demand
correspondence as16

D̃(p; f ) = argmax
x
{ f (x)− tw(p)>x}. (4.27)

A twisted version of (GS&LAD′[Z]) is introduced by Ikebe et al. (2015)
as the generalized full substitutes (GFS[Z]) condition:

(GFS[Z]) (i) For any p ∈ RN , D̃(p; f ) is a discrete convex set.17

(ii) For any p ∈ RN , k ∈ U , δ > 0, and x ∈ D̃(p; f ), there exists y ∈
D̃(p+δ χk; f ) such that

xi ≤ yi for all i ∈U \{k},
xi ≥ yi for all i ∈W ,

x(U)− x(W ) ≥ y(U)− y(W ).
(4.28)

(iii) For any p ∈ RN , k ∈W , δ > 0, and x ∈ D̃(p; f ), there exists y ∈
D̃(p−δ χk; f ) such that

xi ≤ yi for all i ∈W \{k},
xi ≥ yi for all i ∈U ,

x(W )− x(U) ≥ y(W )− y(U).
(4.29)

The following theorem18 (Ikebe et al., 2015) characterizes twisted M\-concavity
in terms of this condition.

16 Note: x ∈ D̃(p; f ) ⇐⇒ tw(x) ∈ D(p; f̃ ).
17 That is, D̃(p; f ) should coincide with the integer points contained in the convex hull of D̃(p; f ).
18 Theorem 4.12 can be understood as a twisted version of the equivalence “(GS&LAD′[Z])⇔

(M\-EXC[Z])” in Theorem 4.6.
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Theorem 4.12. Let f : ZN → R∪{−∞} be a concave-extensible19 function
with a bounded effective domain. Then f satisfies (GFS[Z]) if and only if it is
a twisted M\-concave function with respect to W.

In the modeling of a trading network (supply chain network), where an
agent is identified with a vertex (node) of the network, each vertex (agent) is
associated with a valuation function f defined on the set of arcs incident to
the vertex. Denoting the set of in-coming arcs to the vertex by U and the set
of out-going arcs from the vertex by W , the function f is defined on U ∪W .
Twisted M\-concave functions are used effectively in this context (Ikebe &
Tamura, 2015; Ikebe et al., 2015; Candogan et al., 2016). See Section 14.2.

With the use of the ordinary (un-twisted) demand correspondence

D(p; f ) = argmax
x
{ f (x)− p>x}, (4.30)

a similar condition was formulated by Shioura & Yang (2015), independently
of Ikebe et al. (2015), to deal with economies with two classes of indivisible
goods such that goods in the same class are substitutable and goods across
two classes are complementary. The condition, called the generalized gross
substitutes and complements (GGSC[Z]) condition, reads as follows:

(GGSC[Z]) (i) For any p ∈ RN , D(p; f ) is a discrete convex set.
(ii) For any p ∈ RN , k ∈ U , δ > 0, and x ∈ D(p; f ), there exists y ∈
D(p+δ χk; f ) that satisfies (4.28).
(iii) For any p ∈ RN , k ∈W , δ > 0, and x ∈ D(p; f ), there exists y ∈
D(p+δ χk; f ) that satisfies (4.29).

This condition also characterizes twisted M\-concavity (Shioura & Yang,
2015).

Theorem 4.13. Let f : ZN→R∪{−∞} be a concave-extensible function with
a bounded effective domain. Then f satisfies (GGSC[Z]) if and only if it is a
twisted M\-concave function with respect to W.

19 The concave-extensibility of f is assumed here for the consistency with the statement of
Theorem 4.6. Mathematically, this assumption can be omitted, since the condition (i) in
(GFS[Z]) is equivalent to the concave-extensibility of f and twisted M\-concave functions are
concave-extensible. Similarly in Theorem 4.13.
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Although Theorems 4.12 and 4.13 have significances in different contexts,
they are in fact two variants of the same mathematical statement. Note that
(GSF[Z]) and (GGSC[Z]) are equivalent, since

D(p; f ) = D̃(tw(p); f ), tw(p+δ χk) =

{
tw(p)+δ χk (k ∈U),
tw(p)−δ χk (k ∈W ).

The multi-unit (or vector) version of the same-side substitutability (SSS)
and the cross-side complementarity (CSC) of Ostrovsky (2008) can be formu-
lated for a correspondence C : ZN → 2Z

N
as follows, where, for any z ∈ ZN ,

the subvector of z on U is denoted by zU ∈ ZU and similarly the subvector on
W by zW ∈ ZW .

(SSS-CSC1[Z]) (i) For any z1,z2 ∈ ZN with zU
1 ≥ zU

2 , zW
1 = zW

2 and C(z2) 6= /0
and for any x1 ∈C(z1), there exists x2 ∈C(z2) such that zU

2 ∧ xU
1 ≤ xU

2
and xW

1 ≥ xW
2 , and (ii) the same statement with U and W interchanged.

(SSS-CSC2[Z]) (i) For any z1,z2 ∈ ZN with zU
1 ≥ zU

2 , zW
1 = zW

2 and C(z1) 6= /0
and for any x2 ∈C(z2) there exists x1 ∈C(z1), such that zU

2 ∧ xU
1 ≤ xU

2
and xW

1 ≥ xW
2 , and (ii) the same statement with U and W interchanged.

The following theorem (Ikebe & Tamura, 2015) states that these two pro-
perties are implied by twisted M\-concavity. Recall from (4.23) that a valuation
function f induces the correspondence20 C(z) =C(z; f ) = argmax{ f (y) | y≤
z} (z ∈ ZN).

Theorem 4.14. For any twisted M\-concave function f : ZN → R∪{−∞},
the induced correspondence C has the properties (SSS-CSC1[Z]) and (SSS-
CSC2[Z]).

Proof. We prove (SSS-CSC1[Z])-(i) and (SSS-CSC2[Z])-(i); the proofs of
(SSS-CSC1[Z])-(ii) and (SSS-CSC2[Z])-(ii) are obtained by interchanging
U and W . Assume zU

1 ≥ zU
2 , zW

1 = zW
2 and C(z1; f ) 6= /0, and let f̃ be the

M\-concave function in (4.26) associated with f . For x1 ≤ z1 and x2 ≤ z2
define

Φ(x1,x2) =∑{(x1)i− (x2)i | i ∈U ∩ supp+((z2∧ x1)− x2)}
+∑{(x2)i− (x1)i | i ∈W ∩ supp+(x2− x1)}.

20 It may be that C(z) = /0 if dom f is unbounded below or {y | y≤ z}∩dom f = /0. The condition
“C(z2) 6= /0” in (SSS-CSC1[Z]), for example, takes care of this possibility.
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Proof of (SSS-CSC1[Z])-(i): Let x1 ∈C(z1; f ) and take x2 ∈C(z2; f ) with
Φ(x1,x2) minimum. To prove by contradiction, suppose that there exists

i ∈
(
U ∩ supp+((z2∧ x1)− x2)

)
∪
(
W ∩ supp+(x2− x1)

)
.

Then i ∈ supp+(tw(x1)− tw(x2)), and (M\-EXC[Z]) for f̃ implies that there
exists j ∈ supp−(tw(x1)− tw(x2))∪{0} such that

f̃ (tw(x1))+ f̃ (tw(x2))≤ f̃ (tw(x1)−χi +χ j)+ f̃ (tw(x2)+χi−χ j).

Letting x̂1 = tw(tw(x1)− χi + χ j)) and x̂2 = tw(tw(x2)+ χi− χ j)) we can
express the above inequality as

f (x1)+ f (x2)≤ f (x̂1)+ f (x̂2).

By considering all possibilities (i ∈U or i ∈W , and j ∈U or j ∈W or j = 0),
we can verify that x̂1 ≤ z1 and x̂2 ≤ z2, from which follow f (x̂1)≤ f (x1) and
f (x̂2)≤ f (x2) since x1 ∈C(z1; f ) and x2 ∈C(z2; f ). Therefore, the inequali-
ties are in fact equalities, and x̂1 ∈ C(z1; f ) and x̂2 ∈ C(z2; f ). But we have
Φ(x1, x̂2) = Φ(x1,x2)−1, which contradicts the choice of x2.

Proof of (SSS-CSC2[Z])-(i): Let x2 ∈C(z2; f ) and take x1 ∈C(z1; f ) with
minimum Φ(x1,x2). By the same argument as above we obtain x̂1 ∈C(z1; f )
with Φ(x̂1,x2) = Φ(x1,x2)−1. This is a contradiction to the choice of x1.

4.6. Examples

Here are some examples of M\-concave functions in integer variables.

1. A linear (or affine) function

f (x) = α + 〈p,x〉 (4.31)

with p ∈ RN and α ∈ R is M\-concave if dom f is an M\-convex set.

2. A quadratic function f : ZN → R defined by

f (x) =
n

∑
i=1

n

∑
j=1

ai jxix j (4.32)
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with ai j = a ji ∈ R (i, j = 1, . . . ,n) is M\-concave if and only if

ai j ≤ 0 for all (i, j), and
ai j ≤ max(aik,a jk) when {i, j}∩{k}= /0. (4.33)

The Hessian matrix H f (x) = (Hi j(x)) defined in (4.11) is given by
Hi j(x) = 2ai j, and (4.33) above is consistent with (4.12), (4.13) in Theo-
rem 4.3.

3. A function f : ZN → R∪{−∞} is called separable concave if it can be
represented as

f (x) = ∑
i∈N

ϕi(xi) (x ∈ ZN) (4.34)

for univariate concave functions21 ϕi : Z→ R∪{−∞} (i ∈ N). A sepa-
rable concave function is M\-concave. In (4.4) for (M\-EXC[Z]) we can
always take j = 0, i.e., (4.2).

4. A function f : ZN → R∪{−∞} is called laminar concave if it can be
represented as

f (x) = ∑
A∈T

ϕA(x(A)) (x ∈ ZN) (4.35)

for a laminar family T ⊆ 2N and a family of univariate concave functions
ϕA :Z→R∪{−∞} indexed by A∈T , where x(A) =∑i∈A xi. A laminar
concave function is M\-concave; see Murota (2003, Note 6.11) for a
proof. A special case of (4.35) with T = {{1},{2}, . . . ,{n}} reduces
to the separable convex function (4.34).

5. M\-concave functions arise from the maximum weight of nonlinear
network flows. Let G = (V,A) be a directed graph with two disjoint
vertex subsets S ⊆V and T ⊆V specified as the entrance and the exit.
Suppose that, for each arc a ∈ A, we are given a univariate concave
function ϕa : Z→ R∪{−∞} representing the weight of flow on the arc
a. Let ξ ∈ ZA be a vector representing an integer flow, and ∂ξ ∈ ZV be
the boundary of flow ξ defined for every v ∈V by

∂ξ (v) = ∑{ξ (a) | arc a leaves v }
−∑{ξ (a) | arc a enters v }. (4.36)

21 Recall that ϕ : Z→R∪{−∞} is called concave if ϕ(t−1)+ϕ(t +1)≤ 2ϕ(t) for all integers
t.
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Then, the maximum weight of a flow that realizes a supply/demand
specification on the exit T in terms of x ∈ ZT is expressed by

f (x) = supξ

{
∑a∈A ϕa(ξ (a)) | (∂ξ )(v) =−x(v) (v ∈ T ),

(∂ξ )(v) = 0 (v ∈V \ (S∪T ))
} (4.37)

where no constraint is imposed on (∂ξ )(v) for entrance vertices v ∈ S.
This function is M\-concave, provided that f does not take the value
+∞ and dom f is nonempty. If S = /0, the function f is M-concave,
since ∑v∈T x(v) = −∑v∈T (∂ξ )(v) = ∑v∈V\T (∂ξ )(v) = 0 in this case.
See Murota (1998, Example 2.3) and Murota (2003, Section 2.2.2) for
details. The maximum weight of a matching in (3.26) can be understood
as a special case of (4.37).

4.7. Concluding remarks of section 4

The concept of M-convex functions is formulated by Murota (1996a) as a
generalization of valuated matroids of Dress & Wenzel (1990, 1992). Then
M\-convex functions are introduced by Murota & Shioura (1999) as a variant
of M-convex functions. Quasi M-convex functions are introduced by Murota
& Shioura (2003). The concept of M-convex functions is extended to functions
on jump systems by Murota (2006); see also Kobayashi et al. (2007).

Unimodularity is closely related to discrete convexity. For a fixed unimo-
dular matrix U we may consider a change of variables x 7→Ux for x ∈ Zn

to define a class of functions { f (Ux) | f : M\-concave} as a variant of M\-
concave functions. Twisted M\-concave functions (Section 4.5) are a typical
example of this construction with U = diag(1, . . . ,1,−1, . . . ,−1); see Sun &
Yang (2008) and Section 14.5 for further discussion in this direction.

5. M\-CONCAVE FUNCTION ON RN

In Sections 3 and 4, we have considered M\-concave functions on 2N and ZN ,
which correspond to valuations for indivisible goods with substitutability. In
this section we deal with M\-concave functions in real vectors, f : RN → R∪
{−∞}, which correspond to valuations for divisible goods with substitutability.
M\-concave functions in real variables are investigated by Murota & Shioura
(2000, 2004a,b).
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5.1. Exchange property

We say that a function f : RN → R∪{−∞} is M\-concave if it is a concave
function (in the ordinary sense) that satisfies

(M\-EXC[R]) For any x,y∈RN and i∈ supp+(x−y), there exist j∈ supp−(x−
y)∪{0} and a positive number α0 ∈ R++ such that

f (x)+ f (y)≤ f (x−α(χi−χ j))+ f (y+α(χi−χ j)) (5.1)

for all α ∈ R with 0≤ α ≤ α0.

In the following we restrict ourselves to closed proper22 M\-concave functi-
ons, for which the closure of the effective domain dom f is a well-behaved
polyhedron (g-polymatroid, or M\-convex polyhedron23); see Murota & Shi-
oura (2008, Theorem 3.2). Often we are interested in polyhedral M\-concave
functions.

Remark 5.1. It follows from (M\-EXC[R]) that M\-concave functions enjoy
the following exchange properties under size constraints:
• For any x,y ∈ RN with x(N)< y(N), there exists α0 ∈ R++ such that

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x+αχ j)+ f (y−αχ j)} (5.2)

for all α ∈ R with 0≤ α ≤ α0.
• For any x,y ∈ RN with x(N) = y(N) and i ∈ supp+(x− y), there exists
α0 ∈ R++ such that

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x−α(χi−χ j))+ f (y+α(χi−χ j))} (5.3)

for all α ∈ R with 0≤ α ≤ α0.

Remark 5.2. If dom f ⊆ RN lies in a hyperplane with a constant compo-
nent sum (i.e., x(N) = y(N) for all x,y ∈ dom f ), the exchange property (M\-
EXC[R]) takes a simpler form excluding the possibility of j = 0. A function
f : RN → R∪{−∞} having this exchange property is called an M-concave
function. That is, a concave function f is M-concave if and only if (5.3) holds.

22 A concave function f : Rn→ R∪{−∞} is said to be proper if dom f is nonempty, and closed
if the hypograph {(x,β ) ∈ Rn+1 | β ≤ f (x)} is a closed subset of Rn+1.

23 A polyhedron P is called an M\-convex polyhedron if its (concave) indicator function f is
M\-concave, where f (x) = 0 for x ∈ P and =−∞ for x 6∈ P. See Murota (2003, Section 4.8)
for details.
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5.2. Maximizers and gross substitutability

For p ∈ RN we denote the set of the maximizers of f [−p](x) = f (x)− p>x by
D(p; f ) ⊆ RN (cf. (4.21)). M\-concavity of a function f is characterized by
the M\-convexity of D(p; f ) (Murota & Shioura, 2000, Theorem 5.2).

Theorem 5.1. A polyhedral concave function f : RN → R∪ {−∞} is M\-
concave if and only if, for every vector p ∈ RN , D(p; f ) is an M\-convex
polyhedron.24

(GS[R]) For any p,q∈RN with p≤ q and x∈D(p; f ), there exists y∈D(q; f )
such that xi ≤ yi for all i ∈ N with pi = qi.

The following theorem is given by Danilov et al. (2003).

Theorem 5.2. A polyhedral M\-concave function f : RN → R∪{−∞} with a
bounded effective domain satisfies (GS[R]).

Proof. This follows from Theorem 7.5 (2) and Theorem 7.7 in Section 7.2.1.

Example 5.1. Here is an example to show that (GS[R]) does not imply M\-
concavity. Let f : R2 → R be defined by f (x1,x2) = min(2,x1 + 2x2) on
dom f = R2. This function is not M\-concave because (M\-EXC[R]) fails for
x = (2,0), y = (0,1) and i = 1. However, it satisfies (GS[R]), which can be
verified easily. Thus the converse of Theorem 5.2 does not hold.

5.3. Choice function

In Theorem 4.10 in Section 4.4 we have seen, for the multi-unit indivisible
goods, the choice function induced from a unique-selecting M\-concave value
function is consistent, persistent, and size-monotone in the sense of Alkan &
Gale (2003). In this section we point out that this is also the case with divisible
goods; recall Remark 4.4 in Section 4.4 for the implications of this fact.

For a choice function C : B→B with B = {x ∈ RN
+ | x ≤ b} for some

b∈RN
+, consistency means [C(x)≤ y≤ x⇒C(y) =C(x) ], persistence means

[ x≥ y⇒ y∧C(x)≤C(y) ], and size-monotonicity means [ x≥ y⇒ |C(x)| ≥
|C(y)| ], where |C(x)|= ∑i∈N C(x)i (sum of the components).

24 See the footnote 23.
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Theorem 5.3. For a unique-selecting M\-concave value function f : RN →
R ∪ {−∞} with 000 ∈ dom f ⊆ RN

+, the induced choice function C(x; f ) =
argmax{ f (y) | y≤ x} is consistent, persistent, and size-monotone.25

Proof. The consistency is obvious from the definition of C(x; f ).
To prove persistence26 by contradiction, suppose that y∧C(x; f )≤C(y; f )

fails for some x,y ∈ RN with x≥ y. Set x∗ =C(x; f ), y∗ =C(y; f ). Since y∧
x∗≤ y∗ fails, there exists some i∈N such that yi∧x∗i > y∗i . Then i∈ supp+(x∗−
y∗). We apply (M\-EXC[R]) to x∗,y∗ and i, to obtain j ∈ supp−(x∗−y∗)∪{0}
and α0 > 0 such that

f (x∗)+ f (y∗)≤ f (x∗−α(χi−χ j))+ f (y∗+α(χi−χ j)) (5.4)

for all α with 0 < α ≤ α0. For sufficiently small α > 0 we also have x∗−
α(χi− χ j) ≤ x and y∗+α(χi− χ j) ≤ y; the former follows from x∗j < y∗j ≤
y j ≤ x j for j ∈ supp−(x∗− y∗), and the latter from y∗i < yi∧ x∗i ≤ yi. On the
right-hand side of (5.4), we have f (x∗−α(χi−χ j))< f (x∗) since x∗−α(χi−
χ j) ≤ x and x∗ = C(x; f ) is the unique maximizer of f in {z ∈ RN | z ≤ x},
and similarly, f (y∗+α(χi− χ j)) < f (y∗). This is a contradiction, proving
persistence.

To prove size-monotonicity by contradiction, suppose that there exist
x,y ∈ RN such that x ≥ y and |C(x; f )| < |C(y; f )|. Set x∗ = C(x; f ) and
y∗ =C(y; f ). Then |x∗|< |y∗|. By the exchange property (5.2) in Remark 5.1,
there exists j∈ supp−(x∗−y∗) such that f (x∗)+ f (y∗)≤ f (x∗+αχ j)+ f (y∗−
αχ j) for sufficiently small α > 0. Here we have f (x∗+αχ j)< f (x∗) since
x∗+ αχ j ≤ x by x∗j < y∗j ≤ y j ≤ x j and x∗ is the unique maximizer. We
also have f (y∗−αχ j)< f (y∗) since y∗−αχ j ≤ y∗ ≤ y and y∗ is the unique
maximizer. This is a contradiction, proving size-monotonicity.

5.4. Examples

Here are some examples of M\-concave functions in real variables.

1. A function f : RN → R∪{−∞} is called laminar concave if it can be
represented as

f (x) = ∑
A∈T

ϕA(x(A)) (x ∈ RN) (5.5)

25 As in Section 4.4, f is said to be unique-selecting if C(x; f ) consists of a single element for
every x.

26 This proof for persistence is an adaptation of the one in Murota & Yokoi (2015, Lemma 3.3).
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for a laminar family T ⊆ 2N and a family of univariate (closed proper)
concave functions ϕA :R→R∪{−∞} indexed by A∈T , where x(A) =
∑i∈A xi. A laminar concave function is M\-concave.

2. M\-concave functions arise from the maximum weight of nonlinear
network flows. Let G = (V,A) be a directed graph with two disjoint
vertex subsets S ⊆V and T ⊆V specified as the entrance and the exit.
Suppose that, for each arc a∈A, we are given a univariate (closed proper)
concave function ϕa : R→ R∪{−∞} representing the weight of flow
on the arc a. Let ξ ∈ RA be a vector representing a flow, and ∂ξ ∈ RV

be the boundary of flow ξ defined by (4.36). Then, the maximum
weight of a flow that realizes a supply/demand specification on the exit
T in terms of x ∈ RT is expressed by a function f : RT → R∪{−∞}
defined as (4.37). This function is M\-concave, provided that f does not
take the value +∞ and dom f is nonempty. If S = /0, the function f is
M-concave. See Murota (2003, Section 2.2.1) and Murota & Shioura
(2004a, Theorem 2.10) for details.

5.5. Concluding remarks of section 5

The concept of M-concave functions in continuous variables is introduced for
polyhedral concave functions by Murota & Shioura (2000) and for general
concave functions by Murota & Shioura (2004a). This is partly motivated
by a phenomenon inherent in the network flow/tension problem described in
Section 5.4.

6. OPERATIONS FOR M\-CONCAVE FUNCTIONS

6.1. Basic operations

Basic operations on M\-concave functions on Zn are presented here, whe-
reas the most powerful operation, transformation by networks, is treated in
Section 6.2.

M\-concave functions admit the following operations.

Theorem 6.1. Let f , f1, f2 : ZN → R∪{−∞} be M\-concave functions.
(1) For nonnegative α ∈ R+ and β ∈ R, α f (x)+β is M\-concave in x.
(2) For a ∈ ZN , f (a− x) and f (a+ x) are M\-concave in x.

Journal of Mechanism and Institution Design 1(1), 2016



“p˙05” — 2016/12/18 — 22:56 — page 196 — #46

196 Discrete convex analysis

(3) For p ∈ RN , f [−p] is M\-concave, where f [−p] is defined by (4.20).
(4) For univariate concave functions ϕi : Z→ R∪{−∞} indexed by i ∈ N,

f̃ (x) = f (x)+ ∑
i∈N

ϕi(xi) (x ∈ ZN) (6.1)

is M\-concave, provided dom f̃ 6= /0.
(5) For a ∈ (Z∪{−∞})N and b ∈ (Z∪{+∞})N , the restriction of f to the
integer interval [a,b]Z = {x ∈ ZN | a≤ x≤ b} defined by

f[a,b]Z(x) =
{

f (x) (x ∈ [a,b]Z),
−∞ (x 6∈ [a,b]Z)

(6.2)

is M\-concave, provided dom f[a,b]Z 6= /0.
(6) For U ⊆ N, the restriction of f to U defined by

fU(y) = f (y,0N\U) (y ∈ ZU) (6.3)

is M\-concave, provided dom fU 6= /0, where 0N\U means the zero vector in
ZN\U .
(7) For U ⊆ N, the projection of f to U defined by

fU(y) = sup{ f (y,z) | z ∈ ZN\U} (y ∈ ZU) (6.4)

is M\-concave, provided fU <+∞.
(8) For U ⊆ N, the function f̃ defined at y ∈ ZU and w ∈ Z by

f̃ (y,w) = sup{ f (y,z) | z(N \U) = w,z ∈ ZN\U} (6.5)

is M\-concave, provided f̃ <+∞.
(9) Integer (supremal) convolution f12 f2 : ZN → R∪{−∞,+∞} defined at
x ∈ ZN by

( f12 f2)(x) = sup{ f1(x1)+ f2(x2) | x = x1 + x2, x1,x2 ∈ ZN} (6.6)

is M\-concave, provided ( f12 f2)<+∞.

Proof. See Murota (2003, Theorem 6.15) for the proofs of (1) to (8). In view of
the importance of convolution operations we give a straightforward alternative
proof of (9) in Remark 6.2.
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Remark 6.1. Theorem 6.1 (9) for M\-concavity of convolutions has an impli-
cation of great economic significance. Suppose that U1,U2, . . . ,Uk represent
utility functions. Then the aggregated utility is given by their convolution
U12U22 · · ·2Uk. Theorem 6.1 (9) means that substitutability is preserved in
this aggregation operation.

Remark 6.2. A proof for M\-concavity of the convolution (6.6) is given
here.27 Let f1 and f2 be M\-concave functions, and f = f12 f2. First we
treat the case where dom f1 and dom f2 are bounded. Then dom f = dom f1 +
dom f2 (Minkowski sum) is bounded. For each p ∈ RN we have f [−p] =
( f1[−p])2( f2[−p]), from which follows

argmax( f [−p]) = argmax( f1[−p])+ argmax( f2[−p]).

In this expression, both argmax( f1[−p]) and argmax( f2[−p]) are M\-convex
sets by Theorem 4.5 (only if part), and therefore, their Minkowski sum (the
right-hand side) is M\-convex (Murota, 2003, Theorem 4.23). This means
that argmax( f [−p]) is M\-convex for each p ∈ RN , which implies the M\-
concavity of f by Theorem 4.5 (if part).

The general case without the boundedness assumption on effective domains
can be treated via limiting procedure as follows. For l = 1,2 and k = 1,2, . . .,
define f (k)l : ZN → R∪{−∞} by

f (k)l (x) =
{

fl(x) if ‖x‖∞ ≤ k
−∞ otherwise,

which is an M\-concave function with a bounded effective domain, provi-
ded that k is large enough to ensure dom f (k)l 6= /0. For each k, the convolu-

tion f (k) = f (k)1 2 f (k)2 is M\-concave by the above argument, and moreover,
limk→∞ f (k)(x) = f (x) for each x. It remains to demonstrate the property
(M\-EXC[Z]) for f . Take x,y ∈ dom f and i ∈ supp+(x− y). There exists
k0 = k0(x,y), depending on x and y, such that x,y ∈ dom f (k) for every k ≥ k0.
Since f (k) is M\-concave, there exists jk ∈ supp−(x− y)∪{0} such that

f (k)(x)+ f (k)(y)≤ f (k)(x−χi +χ jk)+ f (k)(y+χi−χ jk).

27 This proof is an adaptation of the proof (Murota, 2004a) for M-convex functions to M\-concave
functions. See Murota (2003, Note 9.30) for another proof using a network transformation.
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Since supp−(x−y)∪{0} is a finite set, at least one element of supp−(x−y)∪
{0} appears infinitely many times in the sequence { jk}. More precisely, there
exists j ∈ supp−(x−y)∪{0} and an increasing subsequence k(1)< k(2)< · · ·
such that jk(t) = j for t = 1,2, . . .. By letting k→ ∞ along this subsequence in
the above inequality we obtain

f (x)+ f (y)≤ f (x−χi +χ j)+ f (y+χi−χ j).

Thus f = f12 f2 satisfies (M\-EXC[Z]), which proves Theorem 6.1 (9).

Remark 6.3. A sum of M\-concave functions is not necessarily M\-concave.
This implies, in particular, that an M\-concave function does not necessarily
remain M\-concave when its effective domain is restricted to an M\-convex
set. For example,28 let S1 = S0∪{(0,1,1)} and S2 = S0∪{(1,1,0)} with S0 =
{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)}, and let fi : Z3→ R∪{−∞} be
the (concave) indicator function29 of Si for i = 1,2. Then f1 + f2 is the
indicator function of S1∩S2 = S0. Here S1 and S2 are M\-convex sets, whereas
S0 is not.30 Accordingly, f1 and f2 are M\-concave functions, but their sum
f1 + f2 is not M\-concave. Functions represented as a sum of two M\-concave
functions are an intriguing mathematical object, investigated under the name
of M\

2-concave function in Murota (2003, Section 8.3).

Remark 6.4. For a function f : Zn→ R∪{−∞} and a positive integer α , the
function f α : Zn→ R∪{−∞} defined by f α(x) = f (αx) (x ∈ Zn) is called a
domain scaling of f . If α = 2, for instance, this amounts to considering the
function values only on vectors of even integers. Scaling is one of the common
techniques used in designing efficient algorithms and this is particularly true
of network flow algorithms. Unfortunately, M\-concavity is not preserved
under scaling. For example,31 let f be the indicator function of a set S =
{c1(1,0,−1)+c2(1,0,0)+c3(0,1,−1)+c4(0,1,0) | ci ∈ {0,1}} ⊆ Z3. This
f is an M\-concave function, but f 2 (= f α with α = 2), being the indicator
function of {(0,0,0),(1,1,−1)}, is not M\-concave. Nevertheless, scaling of
an M\-concave function is useful in designing efficient algorithms (Murota,

28 This example is a reformulation of Murota (2003, Note 4.25) for M-convex functions to
M\-concave functions.

29 fi(x) = 0 for x ∈ Si and =−∞ for x 6∈ Si.
30 (B\-EXC[Z]) fails for S0 with x = (1,0,1), y = (0,1,0), and i = 1.
31 This example is a reformulation of Murota (2003, Note 6.18) for M-convex functions to

M\-concave functions.
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Figure 3: Transformation by a network and a bipartite graph

2003, Section 10.1). It is worth mentioning that some subclasses of M\-concave
functions are closed under scaling operation; linear, quadratic, separable, and
laminar M\-concave functions, respectively, form such subclasses.

Remark 6.5. A class of set functions, named matroid-based valuations, is
defined by Ostrovsky & Paes Leme (2015) with the use of the convolu-
tion operation as well as the contraction operation. For set functions f1, f2 :
2N → R∪{−∞}, the convolution of f1 and f2 is defined by ( f12 f2)(X) =
maxY⊆X( f1(Y )+ f2(X \Y )) for X ⊆ N. For a set function f : 2N→R∪{−∞}
and a subset T of N, the contraction of T is defined as fT (X) = f (X ∪T )−
f (T ) for X ⊆N \T . A set function f is said to be a matroid-based valuation, if
it can be constructed by repeated application of convolution and contraction to
weighted matroid valuations (3.25). By Theorem 6.1, matroid-based valuations
are M\-concave functions. It is conjectured in Ostrovsky & Paes Leme (2015)
that every M\-concave function is a matroid-based valuation.

6.2. Transformation by networks

M\-concave functions can be transformed through networks. Let G = (V,A)
be a directed graph with two disjoint vertex subsets S⊆V and T ⊆V specified
as the entrance and the exit (Fig. 3, left). Suppose that, for each arc a ∈ A, we
are given a univariate concave function ϕa : Z→ R∪{−∞} representing the
weight of flow on the arc a. Let ξ ∈ ZA be a vector representing a flow, and
∂ξ ∈ ZV be the boundary of flow ξ defined by (4.36).

Given a function g : ZS→ R∪{−∞} on the entrance set S, we define a
function f : ZT → R∪{−∞,+∞} on the exit set T by

f (x) = supξ ,z{g(z)+ ∑a∈A ϕa(ξ (a)) | ξ ∈ ZA,

∂ξ = (z,−x,0) ∈ ZS×ZT ×ZV\(S∪T )}. (6.7)
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This function f (x) represents the maximum weight to meet the demand specifi-
cation x at the exit, subject to the flow conservation at the vertices not in S∪T .
The weight consists of two parts, the weight g(z) of supply z at the entrance S
and the weight ∑a∈A ϕa(ξ (a)) in the arcs.

We can regard (6.7) as a transformation of g to f by the network. If the
given function g is M\-concave, the resultant function f is also M\-concave,
provided that f does not take the value +∞ and dom f is nonempty. In other
words, the transformation (6.7) by a network preserves M\-concavity. See
Murota (2003, Section 9.6) for a proof. An alternative proof is given by
Kobayashi et al. (2007).

In particular, an M\-concave set function is transformed to another M\-
concave set function through a bipartite graph (Fig. 3, right). Let G = (S,T ;E)
be a bipartite graph with vertex bipartition (S,T ) and edge set E, with weight
we ∈ R associated with each edge e ∈ E. Given an M\-concave set function
g : 2S→ R∪{−∞} on S, define a set function f on T by

f (X) = max{g(Z)+w(M) | M is a matching,
S∩∂M = Z,T ∩∂M = X} (6.8)

where f (X) =−∞ if no such M exists for X . If g is M\-concave, then f is also
M\-concave, as long as dom f is nonempty. A proof tailored to set functions is
given in the proof of Murota (2000b, Theorem 5.2.18).

6.3. Concluding remarks of section 6

Efficient algorithms are available for the operations listed in Theorem 6.1.
In particular, the convolution (6.6), corresponding to the aggregation of uti-
lity functions, can be computed efficiently (Murota & Tamura, 2003a). The
transformation by networks is also accompanied by efficient algorithms. For
M\-concave function maximization algorithms, see Murota (2003, Chapter 10),
and more recent papers, e.g., Shioura (2004), Tamura (2005), Murota (2010),
Moriguchi et al. (2011), Fujishige et al. (2015), and Shioura (2015).

7. CONJUGACY AND L\-CONVEXITY

Conjugacy under the Legendre transformation is one of the most appealing
facts in convex analysis. This is also the case in discrete convex analysis. The
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conjugacy theorem in discrete convex analysis says that the Legendre trans-
formation gives a one-to-one correspondence between M\-concave functions
and L\-convex functions. Since M\-concavity expresses substitutability of
valuation or utility functions, L\-convexity characterizes substitutability in
terms of indirect utility functions. This fact has a significant application to
auction theory, to be expounded in Section 8.

7.1. L\-convex function

The concept of L\-convexity is defined for functions in discrete (integer)
variables and for those in continuous (real) variables. We start with discrete
variables.

7.1.1. L\-convex function on Zn

First recall that a function g : Zn→ R∪{+∞} is called submodular if

g(p)+g(q)≥ g(p∨q)+g(p∧q) (p,q ∈ Zn), (7.1)

where p∨ q and p∧ q mean the vectors of componentwise maximum and
minimum of p and q, respectively. To define L\-convexity of g, we consider a
function g̃ in n+1 variables (p0, p) = (p0, p1, . . . , pn) defined as

g̃(p0, p) = g(p− p01) (p0 ∈ Z, p ∈ Zn), (7.2)

where 111 = (1,1, . . . ,1). Then we say that g : Zn → R∪{+∞} is L\-convex
if the associated function g̃ : Zn+1→ R∪{+∞} is a submodular function in
(p0, p), i.e., if for all p0,q0 ∈ Z and for all p,q ∈ Zn it holds

g(p− p01)+g(q−q01)≥ g((p∨q)− (p0∨q0)1)
+g((p∧q)− (p0∧q0)1).

(7.3)

Remark 7.1. The significance of the extra variable p0 in the definition of L\-
convexity is most transparent when n= 1. When n= 1 we have (p∨q, p∧q) =
(p,q) or (q, p), according to whether p≥ q or p≤ q. Hence the submodular
inequality (7.1) is always satisfied, and every function g : Z→ R∪{+∞} is
submodular. On the other hand, the inequality (7.3) for (p0, p) = (1, t) and
(q0,q) = (0, t +1) yields g(t−1)+g(t +1) ≥ 2g(t) for t ∈ Z, which shows
the convexity of g on Z. The converse is also true. Therefore, a function
g : Z→ R∪{+∞} is L\-convex if and only if g(t−1)+g(t +1)≥ 2g(t) for
all t ∈ Z.
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Remark 7.2. For a set function µ : 2N→R∪{+∞}, L\-convexity is equivalent
to submodularity (3.8). Recall the notation χX for the characteristic vector
of a subset X ; see (2.1). A set function µ can be identified with a function
g : ZN → R∪{+∞} with domg⊆ {0,1}N by µ(X) = g(χX) for X ⊆ N, and
µ is submodular if and only if the corresponding g is L\-convex.

Remark 7.3. Matroid rank functions have a dual character of being both L\-
convex and M\-concave. It is L\-convex as it is submodular, and M\-concave
as already mentioned in Section 3.6.

L\-convexity can be characterized by a number of equivalent conditions
(Favati & Tardella, 1990; Fujishige & Murota, 2000; Murota, 2003).

Theorem 7.1. For g : Zn→R∪{+∞} the following conditions, (a) to (d), are
equivalent:
(a) L\-convexity, i.e., (7.3).
(b) Translation-submodularity:32 for all p,q ∈ Zn and for all α ∈ Z+

g(p)+g(q)≥ g((p−α1)∨q)+g(p∧ (q+α1)). (7.4)

(c) Discrete midpoint convexity: for all p,q ∈ Zn

g(p)+g(q)≥ g
(⌈

p+q
2

⌉)
+g
(⌊

p+q
2

⌋)
(7.5)

where d·e and b·c denote the integer vectors obtained by componentwise
rounding-up and rounding-down to the nearest integers, respectively.
(d) For any p,q ∈ Zn with supp+(p−q) 6= /0, it holds that33

g(p)+g(q)≥ g(p−χA)+g(q+χA), (7.6)

where A = argmax
i
{pi−qi}.

It is known (Murota, 2003, Theorem 7.20) that an L\-convex function
g : Zn→ R∪{+∞} is convex-extensible, i.e., there exists a convex function
g : Rn → R∪ {+∞} such that g(p) = g(p) for all p ∈ Zn. Moreover, the
convex extension g can be constructed by a simple procedure; see Murota
(2003, Theorem 7.19).

32 This condition is labeled as (SBF\[Z]) in Murota (2003, Section 7.1). Note that α is restricted
to be nonnegative, and the inequality (7.4) for α = 0 coincides with submodularity (7.1).

33 This condition is labeled as (L\-APR[Z]) in Murota (2003, Section 7.2). Recall the notation
χA for the characteristic vector of A, as defined in (2.1).
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Remark 7.4. A nonempty set P⊆ Zn is called an L\-convex set if its indicator
function34 is an L\-convex function. In other words, P 6= /0 is an L\-convex set
if it satisfies one of the following equivalent conditions, where p,q ∈ Zn and
p0,q0 ∈ Z:

(a) p− p01, q−q01 ∈ P =⇒ (p∨q)− (p0∨q0)1, (p∧q)− (p0∧q0)1 ∈
P.

(b) p,q ∈ P, α ∈ Z+ =⇒ (p−α1)∨q, p∧ (q+α1) ∈ P.

(c) p,q ∈ P =⇒
⌈ p+q

2

⌉
,
⌊ p+q

2

⌋
∈ P.

(d) p,q ∈ P, supp+(p− q) 6= /0 =⇒ p− χA, q + χA ∈ P with A =
argmax

i
{pi−qi}.

For an L\-convex function g, the effective domain domg and the set of mini-
mizers argming are L\-convex sets. See Murota (2003, Section 5.5) for more
about L\-convex sets.

Remark 7.5. A function g : Zn→ R∪{+∞} is called an L-convex function
if it is an L\-convex function such that there exists r ∈ R for which g(p+
1) = g(p)+ r for all p ∈ Zn. L-convex functions and L\-convex functions
are equivalent concepts, in that L\-convex functions in n variables can be
identified, up to the constant r, with L-convex functions in n+ 1 variables.
Indeed, a function g : Zn→ R∪{+∞} is L\-convex if and only if the function
g̃ : Zn+1→ R∪{+∞} in (7.2) is an L-convex function (with r = 0).

7.1.2. L\-convex function on Rn

We turn to continuous variables. A function g : Rn → R∪ {+∞} is said
to be L\-convex if it is a convex function (in the ordinary sense) such that
g̃(p0, p) = g(p− p01) (p0 ∈ R, p ∈ Rn) is a submodular function in n+ 1
variables, i.e., for all p0,q0 ∈ R and for all p,q ∈ Rn

g(p− p01)+g(q−q01)≥ g((p∨q)− (p0∨q0)1)
+g((p∧q)− (p0∧q0)1).

(7.7)

34 g(p) = 0 for p ∈ P and =+∞ for p 6∈ P.
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In the following we restrict ourselves to closed proper L\-convex functions,35

for which the closure of the effective domain domg is a well-behaved polyhe-
dron (L\-convex polyhedron36); see Murota & Shioura (2008, Theorem 3.3).
For a closed proper convex function g : Rn→ R∪{+∞}, the condition (7.7)
for L\-convexity is equivalent to translation-submodularity: for all p,q ∈ Rn

and for all α ∈ R+

g(p)+g(q)≥ g((p−α1)∨q)+g(p∧ (q+α1)). (7.8)

Often we are interested in polyhedral L\-convex functions.
L\-convex functions in real variables are investigated by Murota & Shioura

(2000, 2004a,b, 2008).

7.2. Conjugacy

7.2.1. Functions in continuous variables

For a function f : Rn→ R∪{+∞} (not necessarily convex) with dom f 6= /0,
the convex conjugate f • : Rn→ R∪{+∞} is defined by

f •(p) = sup{〈p,x〉− f (x) | x ∈ Rn} (p ∈ Rn), (7.9)

where 〈p,x〉= ∑
n
i=1 pixi is the inner product of p = (pi) ∈ Rn and x = (xi) ∈

Rn. The function f • is also referred to as the (convex) Legendre(–Fenchel)
transform of f , and the mapping f 7→ f • as the (convex) Legendre(–Fenchel)
transformation. A fundamental theorem in convex analysis states that the
Legendre transformation gives a symmetric one-to-one correspondence in the
class of all closed proper convex functions. That is, for a closed proper convex
function f , the conjugate function f • is a closed proper convex function and
the biconjugacy ( f •)• = f holds.

To formulate the correspondence between concave functions f : Rn →
R∪ {−∞} and convex functions g : Rn → R∪ {+∞} with dom f 6= /0 and
domg 6= /0, we introduce the following variants of the transformation (7.9):

fO(p) = sup{ f (x)−〈p,x〉 | x ∈ Rn} (p ∈ Rn), (7.10)

g4(x) = inf{g(p)+ 〈p,x〉 | p ∈ Rn} (x ∈ Rn), (7.11)

35 A convex function g : Rn→ R∪{+∞} is said to be proper if domg is nonempty, and closed
if the epigraph {(p,α) ∈ Rn+1 | α ≥ g(p)} is a closed subset of Rn+1.

36 A polyhedron is called an L\-convex polyhedron if its (convex) indicator function is L\-convex.
See Murota (2003, Section 5.6) for details.
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where fO : Rn→ R∪{+∞} and g4 : Rn→ R∪{−∞}. The biconjugacy is
expressed as ( fO)4 = f , (g4)O = g for closed proper concave functions f
and closed proper convex functions g.

Theorem 7.2.
(1) The transformations (7.10) and (7.11) give a one-to-one correspondence
between the classes of all closed proper concave functions f and closed proper
convex functions g.
(2) For a closed proper concave function f : Rn→ R∪{−∞}, the conjugate
function fO : Rn→R∪{+∞} is a closed proper convex function and ( fO)4=
f .
(3) For a closed proper convex function g : Rn → R ∪ {+∞}, the conju-
gate function g4 : Rn→ R∪{−∞} is a closed proper concave function and
(g4)O = g.

Addition of combinatorial ingredients to the above theorem yields the
conjugacy theorem between M\-concave and L\-convex functions (Murota &
Shioura, 2004a).

Theorem 7.3.
(1) The transformations (7.10) and (7.11) give a one-to-one correspondence
between the classes of all closed proper M\-concave functions f and closed
proper L\-convex functions g.
(2) For a closed proper M\-concave function f :Rn→R∪{−∞}, the conjugate
function fO : Rn → R∪ {+∞} is a closed proper L\-convex function and
( fO)4 = f .
(3) For a closed proper L\-convex function g : Rn→ R∪{+∞}, the conjugate
function g4 : Rn→ R∪{−∞} is a closed proper M\-concave function and
(g4)O = g.

The M\/L\-conjugacy is also valid for polyhedral concave/convex functions;
see Murota & Shioura (2000) and Murota (2003, Theorem 8.4).

Theorem 7.4.
(1) The transformations (7.10) and (7.11) give a one-to-one correspondence
between the classes of all polyhedral M\-concave functions f and polyhedral
L\-convex functions g.
(2) For a polyhedral M\-concave function f : Rn→ R∪{−∞}, the conjugate
function fO :Rn→R∪{+∞} is a polyhedral L\-convex function and ( fO)4=
f .
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(3) For a polyhedral L\-convex function g : Rn→ R∪{+∞}, the conjugate
function g4 : Rn → R ∪ {−∞} is a polyhedral M\-concave function and
(g4)O = g.

As corollaries of the conjugacy theorems, the following characterizations
of M\-concavity and L\-convexity in terms of the conjugate functions are
obtained.

Theorem 7.5.
(1) A function f : Rn→ R∪{−∞} is closed proper M\-concave if and only
if the conjugate function fO : Rn → R∪ {+∞} by (7.10) is closed proper
L\-convex.
(2) A function f : Rn→ R∪{−∞} is polyhedral M\-concave if and only if the
conjugate function fO : Rn→ R∪{+∞} by (7.10) is polyhedral L\-convex.

Theorem 7.6.
(1) A function g : Rn → R∪ {+∞} is closed proper L\-convex if and only
if the conjugate function g4 : Rn → R∪ {−∞} by (7.11) is closed proper
M\-concave.
(2) A function g : Rn→ R∪{+∞} is polyhedral L\-convex if and only if the
conjugate function g4 : Rn→ R∪{−∞} by (7.11) is polyhedral M\-concave.

L\-convexity, being equivalent to translation-submodularity, is a stronger
property than mere submodularity. When we replace L\-convexity of fO in
Theorem 7.5 (2) with submodularity, we obtain a larger class of polyhedral
concave functions f than M\-concave functions. The following theorem is
ascribed to Danilov & Lang (2001) in Danilov et al. (2003); see also Shioura
& Tamura (2015, Appendix) for technical supplements.

Theorem 7.7. Let f : RN →R∪{−∞} be a polyhedral concave function with
a bounded effective domain. Then the following conditions are equivalent:37

(a) f satisfies (GS[R]).
(b) For every p ∈RN , each edge (one-dimensional face) of D(p; f ) is parallel

to a vector d with |supp+(d)| ≤ 1 and |supp−(d)| ≤ 1.
(c) fO : RN → R∪{+∞} by (7.10) is a submodular function.

37 Recall the definition of (GS[R]) from Section 5.2. Also recall from Theorem 5.2 that polyhedral
M\-concave functions satisfy (GS[R]).
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Remark 7.6. In Danilov et al. (2003) a bounded polyhedron P is called a
quasi-polymatroid if each edge (one-dimensional face) is parallel to a vector
d with |supp+(d)| ≤ 1 and |supp−(d)| ≤ 1. It follows from Fujishige et al.
(2004, Theorem 3.1) that every face of a quasi-polymatroid whose normal
vector has the full support N is obtained from an M-convex polyhedron (base
polyhedron) by a scaling along axes. We mention in passing that a pointed
convex polyhedron is called polybasic if each edge is parallel to a vector d
with |supp+(d)|+ |supp−(d)| ≤ 2 (Fujishige et al., 2004).

Remark 7.7. In the canonical situation, where f : Rn→ R is a strictly con-
cave smooth function, the equivalence between (GS[R]) of f and the sub-
modularity of g = fO is easily derived by simple calculus. Let x(p) be the
unique maximizer of f (x)−〈p,x〉. We have pi = ∂ f/∂xi for i = 1, . . . ,n, and
g(p) = f (x(p))−〈p,x(p)〉. This implies ∂g/∂ pi = −xi (i = 1, . . . ,n), and
hence ∂ 2g/∂ pi∂ p j =−∂xi/∂ p j (i, j = 1, . . . ,n). On the other hand, the sub-
modularity of g is equivalent to ∂ 2g/∂ pi∂ p j ≤ 0 (i 6= j), and (GS[R]) of f is
represented as ∂xi/∂ p j ≥ 0 (i 6= j).

7.2.2. Functions in discrete variables

We turn to functions defined on integer vectors. For functions f : Zn →
R∪{−∞} and g : Zn→ R∪{+∞} with dom f 6= /0 and domg 6= /0, the trans-
formations (7.10) and (7.11) are modified to

fO(p) = sup{ f (x)−〈p,x〉 | x ∈ Zn} (p ∈ Rn), (7.12)

g4(x) = inf{g(p)+ 〈p,x〉 | p ∈ Zn} (x ∈ Rn), (7.13)

where fO : Rn→ R∪{+∞} and g4 : Rn→ R∪{−∞}.
The conjugacy between M\-concavity and L\-convexity in this case reads

as follows.38

Theorem 7.8.
(1) For an M\-concave function f :Zn→R∪{−∞}, the conjugate function fO :
Rn→R∪{+∞} is a (locally polyhedral) L\-convex function, and ( fO)4(x) =
f (x) for x ∈ Zn.

38 In Theorem 7.8 (1), O is defined by (7.12) and 4 by (7.11). In (2), 4 is defined by (7.13) and
O by (7.10).
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(2) For an L\-convex function g : Zn → R∪{+∞}, the conjugate function
g4 : Rn → R∪ {−∞} is a (locally polyhedral) M\-concave function, and
(g4)O(p) = g(p) for p ∈ Zn.

For integer-valued functions f and g, fO(p) and g4(x) are integers for
integer vectors p and x. Hence (7.12) with p ∈ Zn and (7.13) with x ∈ Zn, i.e.,

fO(p) = sup{ f (x)−〈p,x〉 | x ∈ Zn} (p ∈ Zn), (7.14)

g4(x) = inf{g(p)+ 〈p,x〉 | p ∈ Zn} (x ∈ Zn), (7.15)

define transformations of f : Zn → Z∪{−∞} to fO : Zn → Z∪{+∞} and
g : Zn→ Z∪{+∞} to g4 : Zn→ Z∪{−∞}, respectively.

The conjugacy theorem for integer-valued discrete-variable M\-concave
and L\-convex functions reads as follows; see Murota (1998) and Murota
(2003, Theorem 8.12).

Theorem 7.9.
(1) The transformations (7.14) and (7.15) give a one-to-one correspondence
between the classes of all integer-valued M\-concave functions f and integer-
valued L\-convex functions g.
(2) For an integer-valued M\-concave function f : Zn→ Z∪{−∞}, the con-
jugate function fO : Zn→ Z∪{+∞} is an integer-valued L\-convex function
and ( fO)4 = f .
(3) For an integer-valued L\-convex function g :Zn→Z∪{+∞}, the conjugate
function g4 : Zn→ Z∪{−∞} is an integer-valued M\-concave function and
(g4)O = g.

As corollaries of the conjugacy theorems, the following characterizations
of M\-concavity and L\-convexity in terms of the conjugate functions are
obtained.

Theorem 7.10.
(1) A function f : Zn→ R∪{−∞} is M\-concave if and only if the conjugate
function fO : Rn→ R∪{+∞} by (7.12) is (locally polyhedral) L\-convex.
(2) A function f : Zn→ Z∪{−∞} is M\-concave if and only if the conjugate
function fO : Zn→ Z∪{+∞} by (7.14) is L\-convex.

Theorem 7.11.
(1) A function g : Zn→ R∪{+∞} is L\-convex if and only if the conjugate
function g4 : Rn→ R∪{−∞} by (7.13) is (locally polyhedral) M\-concave.
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(2) A function g : Zn→ Z∪{+∞} is L\-convex if and only if the conjugate
function g4 : Zn→ Z∪{−∞} by (7.15) is M\-concave.

L\-convexity, being equivalent to translation-submodularity, is a stronger
property than mere submodularity. Naturally, we may wonder if L\-convexity
of fO in Theorem 7.10 can be replaced by submodularity. However, the
following example denies this possibility.39

Example 7.1. Here is an example of a function f such that the conjugate
function fO is submodular, but f is not M\-concave. Let f : Z2→ R∪{−∞}
be defined by f (x1,x2) = min(2,x1 + 2x2) on dom f = {(x1,x2) ∈ Z2 | 0 ≤
x1 ≤ 2,0≤ x2 ≤ 1}, whose numerical values are

f (0,0) = 0, f (1,0) = 1, f (2,0) = 2; f (0,1) = f (1,1) = f (2,1) = 2.

This function is not M\-concave because (M\-EXC[Z]) fails for x = (2,0),
y = (0,1) and i = 1. The conjugate function fO : R2→ R∪{+∞} of (7.12) is
given by

fO(p1, p2) = max(0,2−2p1,2− p2,2−2p1− p2)

=


0 (p1 ≥ 1, p2 ≥ 2),
2−2p1 (2p1 ≤min(2, p2), p2 ≥ 0),
2− p2 (p2 ≤min(2,2p1), p1 ≥ 0),
2−2p1− p2 (p1 ≤ 0, p2 ≤ 0).

The function fO is submodular, as is easily verified, but it is not L\-convex since
the translation-submodularity (7.8) fails for g = fO, p = (1,2), q = (0,0) and
α = 1 with g(p)+g(q) = 0+2 = 2 and g((p−α1)∨q)+g(p∧ (q+α1)) =
g(0,1)+g(1,1) = 2+1 = 3. It is also noted that fO(p1/2, p2) is L\-convex
in (p1, p2).

In spite of the above example, M\-concavity of a set function f : 2N →
R∪{−∞} can be characterized by submodularity of the conjugate function
fO, which is defined by

fO(p) = max{ f (X)− p(X) | X ⊆ N} (p ∈ Rn) (7.16)

as an adaptation of (7.12).
39 Shioura & Tamura (2015, Example 7.4) also shows this. See Theorem 7.7 for the continuous

case.
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Theorem 7.12. A set function f : 2N → R∪{−∞} is M\-concave if and only
if the conjugate function fO : Rn→ R∪{+∞} in (7.16) is submodular.

This theorem can be derived from a combination of Ausubel & Milgrom
(2002, Theorem 10) with Theorem 3.7 in Section 3.3; see also Shioura &
Tamura (2015, Section 7.2.2) for an alternative proof.

7.3. Minimization of L\-convex functions

The set of the minimizers of an L\-convex function on Zn forms a well-behaved
“discrete convex” subset of Zn. Recall from Remark 7.4 that a nonempty set
P⊆ Zn is called an L\-convex set if

p,q ∈ P =⇒ (p−α1)∨q, p∧ (q+α1) ∈ P (∀α ∈ Z+). (7.17)

This condition with α = 0 gives

p,q ∈ P =⇒ p∨q, p∧q ∈ P, (7.18)

which shows that an L\-convex set forms a sublattice of Zn. A bounded L\-
convex set has the (uniquely determined) maximal element and the (uniquely
determined) minimal element.

Theorem 7.13. Let g : ZN →R∪{+∞} be an L\-convex function and assume
argming 6= /0. Then the set of the minimizers argming is an L\-convex set. If
argming is bounded, there exist the maximal and the minimal minimizer of g.

Proof. This follows easily from the translation-submodularity in Theorem 7.1
(b).

For an L\-convex function, the minimality of a function value is characteri-
zed by a local condition as follows (Murota, 2003, Theorem 7.14). Recall the
notation χY for the characteristic vector of a subset Y ; see (2.1).

Theorem 7.14. Let g : ZN → R∪{+∞} be an L\-convex function and p ∈
domg.
(1) If g(p)> g(q) for q∈ domg, then g(p)> g(p+χY ) for some Y ⊆ supp+(q−
p) or g(p)> g(p−χZ) for some Z ⊆ supp−(q− p).
(2) p is a minimizer of g if and only if

g(p)≤ g(p+χY ) (∀Y ⊆ N), g(p)≤ g(p−χZ) (∀Z ⊆ N). (7.19)
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Proof. (1) This follows from Theorem 7.15 below. If g(q)< g(p) in (7.20),
g(p+ χYk)− g(p) < 0 for some k or g(p− χZ j)− g(p) < 0 for some j. (2)
This is immediate from (1).

Theorem 7.15. Let g : ZN → R∪{+∞} be an L\-convex function. For p,q ∈
domg we have

g(q)≥ g(p)+
m

∑
k=1

[g(p+χYk)−g(p)]+
l

∑
j=1

[g(p−χZ j)−g(p)], (7.20)

where40 /0 6= Y1 ⊆ Y2 ⊆ ·· · ⊆ Ym = supp+(q− p), /0 6= Z1 ⊆ Z2 ⊆ ·· · ⊆ Zl =
supp−(q− p), and

q− p =
m

∑
k=1

χYk−
l

∑
j=1

χZ j . (7.21)

Proof. (1) If supp+(q− p) is nonempty, (7.6) for (q, p) implies

g(q)≥ g(p+χY1)+g(q−χY1)−g(p) = [g(p+χY1)−g(p)]+g(q2),

where q2 = q−χY1 . If supp+(q2− p) is nonempty, (7.6) for (q2, p) implies

g(q2)≥ g(p+χY2)+g(q2−χY2)−g(p) = [g(p+χY2)−g(p)]+g(q3),

where q3 = q2− χY2 = q− χY1 − χY2 . Repeating this, we obtain q′ = q−
∑

m
k=1 χYk = p∧q and

g(q)≥ g(q′)+
m

∑
k=1

[g(p+χYk)−g(p)]. (7.22)

By the similar procedure starting with (p,q′) we obtain p = q′+∑
l
j=1 χZ j and

g(q′)≥ g(p)+
l

∑
j=1

[g(p−χZ j)−g(p)]. (7.23)

Adding (7.22) and (7.23) we obtain (7.20).
40 The decomposition (7.21) is uniquely determined: m = max(0,q1− p1, . . . ,qn− pn), Yk =
{i | qi− pi ≥ m+1− k} (k = 1, . . . ,m); l = max(0, p1−q1, . . . , pn−qn), Z j = {i | pi−qi ≥
l +1− j} ( j = 1, . . . , l).
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7.3.1. Algorithms for L\-convex minimization

Algorithms for L\-convex function minimization are considered by Murota
(2000a), Kolmogorov & Shioura (2009), Murota & Shioura (2014, 2016),
Murota et al. (2016), and Shioura (2017); see also Murota (2003, Section 10.3).
Among others we present here the following two algorithms.41

Algorithm GREEDY

Step 0: Find a vector p◦ ∈ domg and set p := p◦.
Step 1: Find ε ∈ {+1,−1} and X ⊆ N that minimize g(p+ εχX).
Step 2: If g(p)≤ g(p+ εχX), then output p and stop.
Step 3: Set p := p+ εχX and go to Step 1.

Algorithm GREEDYUPMINIMAL

Step 0: Find a vector p◦ ∈ domg such that {q | q≥ p◦}∩ argming 6= /0
and set p := p◦.
Step 1: Find the minimal minimizer X ⊆ N of g(p+χX).
Step 2: If X = /0, then output p and stop.
Step 3: Set p := p+χX and go to Step 1.

The algorithm GREEDY can start with an arbitrary initial vector p◦ in
the effective domain, and the vector p may increase or decrease depending
on ε = +1 or −1. The output of the algorithm GREEDY is not uniquely
determined, varying with the choice of ε and X in case of ties in minimizing
g(p+εχX) in Step 1. Step 1 amounts to minimizing two set functions ρ+(X)=
g(p+χX)−g(p) and ρ−(X) = g(p−χX)−g(p) over all subsets X of N. As
a consequence of submodularity of g, both ρ+ and ρ− are submodular set
functions and they can be minimized efficiently (i.e., in strongly polynomial
time). The second algorithm, GREEDYUPMINIMAL, keeps increasing the
vector p, until it reaches the smallest minimizer of g that is greater than
or equal to p◦. Accordingly, the initial vector p◦ must be small enough to
ensure {q | q≥ p◦}∩ argming 6= /0. If g has the minimal minimizer p∗min and
p◦ ≤ p∗min, then the algorithm GREEDYUPMINIMAL outputs p∗min.

The correctness of the algorithms, at their termination, is guaranteed by
Theorem 7.14, whereas the following exact bounds for the number of updates
of p are established recently in Murota & Shioura (2014).

41 Algorithm GREEDY is called “steepest descent algorithm” in Murota (2003, Section 10.3.1).
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Theorem 7.16.
(1) The number of updates of p in the algorithm GREEDY is exactly equal to

µ(p◦) = min{‖p◦− p∗‖+∞ +‖p◦− p∗‖−∞ | p∗ ∈ argming} (7.24)

under the assumption of argming 6= /0, where ‖q‖+∞ = max(0,q1,q2, . . . ,qn)
and ‖q‖−∞ = max(0,−q1,−q2, . . . ,−qn).
(2) The number of updates of p in the algorithm GREEDYUPMINIMAL is
exactly equal to42

µ̂(p◦) = min{‖p◦− p∗‖∞ | p∗ ∈ argming, p◦ ≤ p∗} (7.25)

under the assumption of {q | q≥ p◦}∩argming 6= /0. If the minimal minimizer
p∗min exists and p◦ ≤ p∗min, then µ̂(p◦) = ‖p◦− p∗min‖∞.

We can conceive variants of GREEDYUPMINIMAL by changing “UP” to
“DOWN” and/or “MINIMAL” to “MAXIMAL” according to Table 1 (a). For ex-
ample, the algorithm GREEDYDOWNMINIMAL is obtained from GREEDYUP-
MINIMAL by changing Steps 0 and 1 to:

Step 0: Find a vector p◦ ∈ domg such that {q | q≤ p◦} ∩argming 6= /0
and set p := p◦.
Step 1: Find the maximal minimizer X ⊆ N of g(p−χX).

Starting with an initial vector p◦ large enough to ensure {q | q ≤ p◦} ∩
argming 6= /0, this algorithm keeps decreasing the vector p. If g has the mini-
mal minimizer p∗min, the algorithm stops when it reaches p∗min. The number
of updates of p in GREEDYDOWNMINIMAL is exactly equal to ‖p◦− p∗min‖∞

(Murota et al., 2016, Proposition 3.7). Table 1 (b) shows the output and the
number of updates of p for the four algorithms.

In Section 8 we shall discuss connection of L\-convex function minimiza-
tion to iterative auctions. The algorithm GREEDYUPMINIMAL corresponds to
ascending (English) auctions, and GREEDYDOWNMAXIMAL to descending
(Dutch) auctions. In connection to two-phase (English–Dutch) auctions it is
natural to consider two-phase algorithms for L\-convex function minimization.

The combination of GREEDYUPMINIMAL and GREEDYDOWNMAXIMAL

results in the following algorithm:

42 We have µ̂(p◦) = +∞ if there is no p∗ ∈ argming with p∗ ≥ p◦. It can be shown that
µ̂(p◦) ∈ {µ(p◦),+∞} holds for all p◦ ∈ Zn; see Shioura (2017) for the proof.
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Table 1: Algorithms GREEDY-{UP, DOWN}-{MINIMAL, MAXIMAL}

(a) Description of the algorithms
GREEDY MINIMAL MAXIMAL

UP Step 0 p◦ such that {q | q≥ p◦}∩ argming 6= /0 (i.e., p∗max ≥ p◦)
Step 1 minimal minimizer X of g(p+χX) maximal minimizer X of g(p+χX)

DOWN Step 0 p◦ such that {q | q≤ p◦}∩ argming 6= /0 (i.e., p∗min ≤ p◦)
Step 1 maximal minimizer X of g(p−χX) minimal minimizer X of g(p−χX)

(b) Output and the exact number of updates of p
GREEDY MINIMAL MAXIMAL

UP Output p∗min if p∗min ≥ p◦; otherwise p∗max
min({q | q≥ p◦}∩ argming)

# Updates ‖p◦− p∗min‖∞ if p∗min ≥ p◦; ‖p◦− p∗max‖∞

otherwise µ̂(p◦)
DOWN Output p∗min p∗max if p∗max ≤ p◦; otherwise

max({q | q≤ p◦}∩ argming)
# Updates ‖p◦− p∗min‖∞ ‖p◦− p∗max‖∞ if p∗max ≤ p◦;

otherwise µ̌(p◦)
p◦: initial vector, p∗min: minimal minimizer of g, p∗max: maximal minimizer of g

µ̂(p◦) = min{‖p◦− p∗‖∞ | p∗ ∈ argming, p◦ ≤ p∗}
µ̌(p◦) = min{‖p◦− p∗‖∞ | p∗ ∈ argming, p◦ ≥ p∗}

Algorithm TWOPHASEMINMAX

Step 0: Find a vector p◦ ∈ domg and set p := p◦. Go to Up Phase.
Up Phase:

Step U1: Find the minimal minimizer X ⊆ N of g(p+χX).
Step U2: If X = /0, then go to Down Phase.
Step U3: Set p := p+χX and go to Step U1.

Down Phase:
Step D1: Find the minimal minimizer X ⊆ N of g(p−χX).
Step D2: If X = /0, then output p and stop.
Step D3: Set p := p−χX and go to Step D1.

It can be shown from Theorem 7.1 (d) that, at the end of the up phase,
the vector p satisfies the condition {q | q ≤ p} ∩ argming 6= /0 required
for an initial vector of GREEDYDOWNMAXIMAL. Therefore, the output of
TWOPHASEMINMAX is guaranteed to be a minimizer of g. An upper bound
on the number of updates of p is given in Murota et al. (2016, Theorem 4.13)
which is improved to the following statement by Murota & Shioura (2016);
see also Remark 7.8. Recall the definition of µ(p◦) from (7.24).
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Theorem 7.17. For any initial vector p◦, the algorithm TWOPHASEMINMAX

terminates by outputting some minimizer of g. The number of updates of the
vector p is bounded by µ(p◦) in the up phase and by µ(p◦) in the down phase;
in total, bounded by 2µ(p◦).

For the analysis of the Vickrey–English–Dutch auction algorithm (Section
8.3), it is convenient to consider the combination of GREEDYUPMINIMAL

and GREEDYDOWNMINIMAL. The resulting two-phase algorithm is called
TWOPHASEMINMIN, which is the same as TWOPHASEMINMAX except that
Step D1 is replaced by

Step D1: Find the maximal minimizer X ⊆ N of g(p−χX).

An upper bound on the number of updates of p is given in Murota et al.
(2016, Theorem 4.12), which is improved by Murota & Shioura (2016) to
the following statement; see also Remark 7.9. Recall the notation ‖q‖+∞ =
max(0,q1,q2, . . . ,qn) for q ∈ Zn.

Theorem 7.18. For any initial vector p◦, the algorithm TWOPHASEMINMIN

terminates by outputting the minimal minimizer p∗min of g, if p∗min exists. The
number of updates of the vector p is bounded by µ(p◦) in the up phase and
is exactly equal to ‖p◦− p∗min‖+∞ in the down phase; in total, bounded by
µ(p◦)+‖p◦− p∗min‖+∞ .

Remark 7.8. For the algorithm TWOPHASEMINMAX, Murota et al. (2016,
Theorem 4.13) show that the number of updates of p is bounded by η(p◦, p∗)=
‖p◦− p∗‖+∞ +‖p◦− p∗‖−∞ in the up phase, by 2η(p◦, p∗) in the down phase,
and in total by 3η(p◦, p∗), where p∗ denotes the output of the algorithm.
Theorem 7.17 gives an improved bound since η(p◦, p∗)≥ µ(p◦). Murota et al.
(2013a, Theorem 3.2) state a bound for a two-phase auction algorithm, saying
that the number of updates of p in TWOPHASEMINMAX is bounded by µ(p◦)
in the up phase, by 2µ(p◦) in the down phase, and in total by 3µ(p◦); see
Murota et al. (2013b) for the proof.

Remark 7.9. For the algorithm TWOPHASEMINMIN, Murota et al. (2016,
Theorem 4.12) show that the number of updates of p is bounded by η(p◦, p∗min)=
‖p◦− p∗min‖+∞ + ‖p◦− p∗min‖−∞ in the up phase, by 2η(p◦, p∗min) in the down
phase, and in total by 3η(p◦, p∗min). Theorem 7.18 gives an improved bound
since η(p◦, p∗min)≥ µ(p◦) and η(p◦, p∗min)≥ ‖p◦− p∗min‖+∞ .
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Remark 7.10. Besides TWOPHASEMINMAX and TWOPHASEMINMIN, we
can obtain other variants of two-phase algorithms by choosing appropriate
combinations from among the algorithms GREEDY-{UP, DOWN}-{MINIMAL,
MAXIMAL} listed in Table 1.

7.4. Concluding remarks of section 7

In this paper we put more emphasis on M\-concave functions and give L\-
convex functions only a secondary role as the conjugate of M\-concave functi-
ons, though, in fact, they are equally important and play symmetric roles in
discrete convex analysis.

The concept of L-convex functions is formulated by Murota (1998), compa-
tibly with the accepted understanding of the relationship between submodula-
rity and convexity expounded by Lovász (1983). Then L\-convex functions are
introduced by Fujishige & Murota (2000) as a variant of L-convex functions,
together with the observation that they coincide with submodular integrally
convex functions considered earlier by Favati & Tardella (1990). The concept
of quasi L-convex functions is also introduced by Murota & Shioura (2003),
in accordance with quasisupermodularity of Milgrom & Shannon (1994). L-
convex functions in continuous variables are defined by Murota & Shioura
(2000, 2004a), partly motivated by a phenomenon inherent in the network
flow/tension problem described in Murota (2003, Section 2.2.1).

Recently, the concept of L-convex functions is extended to functions on
graph structures, which are more general than Zn. See Kolmogorov (2011),
Huber & Kolmogorov (2012), Fujishige (2014), and Hirai (2015, 2016a,b) for
the recent development.

8. ITERATIVE AUCTIONS

This section presents a unified method of analysis for iterative auctions (dy-
namic auctions) by combining the Lyapunov function approach of Ausubel
(2006) with discrete convex analysis. We are mainly concerned with the multi-
item multi-unit model, where there are multiple indivisible goods for sale
and each good may have several units. The bidders’ valuation functions are
assumed to have gross substitutes property. This section is mostly based on
Murota et al. (2013a, 2016) with some new results from Murota & Shioura
(2016).
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8.1. Auction models and Walrasian equilibrium

Fundamental concepts about auctions are introduced here only briefly; see,
e.g., Gul & Stacchetti (2000), Milgrom (2004), Cramton et al. (2006), and
Blumrosen & Nisan (2007) for comprehensive accounts.

In the auction market, there are n types of items or goods, denoted by
N = {1,2, . . . ,n}, and m bidders, denoted by M = {1,2, . . . ,m}, where m ≥
2. We have ui units available for each item i ∈ N, where ui is a positive
integer. We denote the integer interval as [000,u]Z = {x ∈ Zn | 000 ≤ x ≤ u},
where u = (u1,u2, . . . ,un). Each vector x ∈ [000,u]Z is called a bundle; a bundle
x = (x1,x2, . . . ,xn) corresponds to a (multi-)set of items, where xi represents
the multiplicity of item i ∈ N. Each bidder j ∈M has his valuation function
f j : [000,u]Z→ R; the number f j(x) represents the value of the bundle x worth
to bidder j. The case with ui = 1 for all i ∈ N is referred to as single-unit
auction, while the general case with u ∈ Zn

++ as multi-unit auction. Note that
[000,111]Z = {0,1}n, where 111 = (1,1, . . . ,1). A further special case where each
bidder is interested in getting at most one item is called unit-demand auction.

In an auction, we want to find an efficient allocation and market clearing
prices. An allocation of items is defined as a set of bundles x1,x2, . . . ,xm ∈
[000,u]Z satisfying ∑

m
j=1 x j = u. Given a price vector p ∈Rn

+, each bidder j ∈M
wants to have a bundle x which maximizes the value f j(x)− p>x. For j ∈M
and p ∈ Rn

+, define

D j(p) = D(p; f j) = argmax{ f j(x)− p>x | x ∈ [000,u]Z }. (8.1)

We call the set D j(p)⊆ [000,u]Z the demand set. The auctioneer wants to find a
pair of a price vector p∗ and an allocation x∗1,x

∗
2, . . . ,x

∗
m such that x∗j ∈ D j(p∗)

for all j ∈M. Such a pair is called a (Walrasian) equilibrium and p∗ is called
a (Walrasian) equilibrium price vector.

Although the Walrasian equilibrium possesses several desirable properties,
it does not always exist. Some condition has to be imposed on bidders’
valuation functions before the existence of a Walrasian equilibrium can be
guaranteed. Throughout this section we assume the following conditions for
bidders’ valuation functions f j ( j = 1,2, . . . ,m):

(A0) f j is monotone nondecreasing,
(A1) f j is an M\-concave function,
(A2) f j takes integer values.
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Recall from Sections 3.3 and 4.3 that a valuation function is M\-concave if
and only if it has the gross substitutes (GS) property (in its stronger form); see
Theorems 3.7 and 4.6, in particular.

Remark 8.1. Whereas we are mainly concerned with the multi-unit model
here, the single-unit model is treated more extensively in the literature, e.g.,
Kelso & Crawford (1982), Gul & Stacchetti (1999, 2000), Milgrom (2004),
Blumrosen & Nisan (2007), Cramton et al. (2006), and Milgrom & Strulovici
(2009). The method of analysis presented in this section remains meaningful
and interesting also for the single-unit model.

Remark 8.2. Iterative auctions for unit-demand auction are discussed exten-
sively in the literature, e.g., Vickrey (1961), Demange et al. (1986), Mo et al.
(1988), Sankaran (1994), Mishra & Parkes (2009), Andersson et al. (2013),
and Andersson & Erlanson (2013). Specifically, the Vickrey–English auction
by Demange et al. (1986), the Vickrey–Dutch auction by Mishra & Parkes
(2009), and the Vickrey–English–Dutch auction by Andersson & Erlanson
(2013) are such iterative auctions. Although these three algorithms are propo-
sed independently of the iterative auction algorithms for the multi-unit model,
it is possible to give a unified treatment of these iterative auction algorithms by
revealing their relationship to the Lyapunov function approach (Section 8.3).

8.2. Lyapunov function approach to iterative auctions

In this section we describe the Lyapunov function-based iterative auctions
developed by Ausubel (2006) and Sun & Yang (2009). Our objective is to
clarify the underlying mathematical structure with the aid of discrete convex
analysis, and to derive sharp upper or exact bounds on the number of iterations
in the iterative auctions.

For j ∈M and p ∈ Rn
+, we define the indirect utility function Vj : Rn

+→ R
by

Vj(p) = V (p; f j) = max{ f j(x)− p>x | x ∈ [000,u]Z }, (8.2)

and the Lyapunov function by

L(p) =
m

∑
j=1

Vj(p)+u>p (p ∈ Rn), (8.3)
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where the vector u ∈ Zn
+ represents the numbers of available units for items in

N.
Under the assumptions (A0)–(A2) it can be shown43 that there exists

an equilibrium price vector p∗ whose components are nonnegative integers.
Henceforth we assume that the price vector p in iterative auctions is always
chosen to be a nonnegative integer vector, i.e., p ∈ Zn

+. Accordingly, we
regard Vj and L as integer-valued functions defined on nonnegative integers,
i.e., Vj : Zn

+→ Z and L : Zn
+→ Z.

The ascending auction algorithm based on the Lyapunov function (Ausubel,
2006; Sun & Yang, 2009) is as follows:

Algorithm ASCENDMINIMAL

Step 0: Set p := p◦, where p◦ ∈ Zn
+ is an arbitrary vector satisfying

p◦ ≤ p∗min (e.g., p◦ = 000).
Step 1: Find the minimal minimizer X ⊆ N of L(p+χX).
Step 2: If X = /0, then output p and stop.
Step 3: Set p := p+χX and go to Step 1.

The above algorithm can be interpreted in auction terms as follows:44

Algorithm ASCENDMINIMAL (in auction terms)
Step 0: The auctioneer sets p := p◦, where p◦ ∈ Zn should satisfy p◦ ≤ p∗min.
Step 1: The auctioneer asks the bidders to report their demand sets
D j(p) ( j ∈M), and finds the minimal minimizer X ⊆ N of L(p+χX).
Step 2: The auctioneer checks if X = /0; if X = /0 holds, then the auctioneer

reports p as the final price vector and stop.
Step 3: The auctioneer sets p := p+χX and returns to Step 1.

The analysis of the algorithm ASCENDMINIMAL can be made transparent
by using concepts and results from discrete convex analysis. Before presenting
formal theorems, we enumerate the major mathematical ingredients.

• As pointed out by Ausubel (2006), the Walrasian equilibrium price
vector can be characterized as a minimizer of the Lyapunov function L
and an iterative auction algorithm can be understood as a minimization
process of the Lyapunov function L(p). See Theorem 8.1.

43 The integrality follows from the fact that an integer-valued M\-concave function f on Zn has
an integral subgradient (or supergradient) at every point x in dom f .

44 See Ausubel (2006, Appendix B) for details about the implementation of Steps 2 and 3.
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• The conjugate function of an M\-concave function is an L\-convex
function, and vice versa (the conjugacy theorem in Section 7.2). Hence
the indirect utility function Vj is an L\-convex function and therefore,
the Lyapunov function L is an L\-convex function. See Theorem 8.2.

• The L\-convexity of the Lyapunov function L implies a nice combinato-
rial structure of the equilibrium prices. The set of the equilibrium prices
is an L\-convex set (Remark 7.4), which is more special than just being
a sublattice. See Theorem 8.3.

• The L\-convexity of the Lyapunov function L enables us to utilize general
results on L\-convex function minimization (Section 7.3) to analyze
the behavior of iterative auction algorithms, such as convergence to
an equilibrium price and the number of iterations needed to reach the
equilibrium price. See Theorem 8.4 as well as Theorem 8.9.

We now present the theorems substantiating the above-mentioned points.
The conditions (A0)–(A2) are assumed implicitly in the following four theo-
rems. Recall that a Walrasian equilibrium exists under these conditions. The
first theorem is due to Ausubel (2006, Proposition 1); see Sun & Yang (2009,
Lemma 1) for a more general result.

Theorem 8.1. A vector p ∈ Zn
+ is an equilibrium price vector if and only if it

is a minimizer of the Lyapunov function L.

Proof. The key of the proof is the fact that the set of excess supply vectors
at a price vector p, i.e., {u−∑

m
j=1 x j | x j ∈ D j(p) ( j = 1,2, . . . ,m)}, coincides

with the set of subgradients of the Lyapunov function L at p; see Ausubel
(2006).

Theorem 8.2.
(1) For each j ∈M, the indirect utility function Vj is an L\-convex function.
(2) The Lyapunov function L is an L\-convex function.

Proof. (1) When regarded as Vj : Zn
+→ Z, the definition (8.2) of Vj shows that

Vj is the conjugate function of f j in the sense of (7.14). That is, Vj = fOj in the
notation of Section 7.2. Then Theorem 7.9 (2) shows the L\-convexity of Vj.

(2) In the definition (8.3) of L, each Vj is L\-convex by (1), and the linear
term u>p is obviously L\-convex. The sum of L\-convex functions is again
L\-convex by Theorem 7.1. Hence the Lyapunov function L is L\-convex.
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Theorem 8.3. The equilibrium price vectors form a bounded L\-convex set.45

That is, for two equilibrium price vectors p∗, q∗ and any nonnegative integer
α , both (p∗−α1)∨ q∗ and p∗ ∧ (q∗+ α1) are equilibrium price vectors.
In particular, the minimal equilibrium price vector p∗min and the maximal
equilibrium price vector p∗max are uniquely determined.

Proof. This follows from the L\-convexity of the Lyapunov function (Theo-
rem 8.2) and the L\-convexity of the set of the minimizers (Remark 7.4); the
boundedness is easily shown.

Theorem 8.4. For an initial vector p◦ with p◦ ≤ p∗min, the algorithm ASCEND-
MINIMAL outputs the minimal equilibrium price vector p∗min and the number
of updates of the price vector is exactly equal to ‖p∗min− p◦‖∞.

Proof. The Lyapunov function L is an L\-convex function by Theorem 8.2,
and the algorithm ASCENDMINIMAL is nothing but the algorithm GREEDYUP-
MINIMAL in Section 7.3 applied to L. Since the minimal minimizer of the Lya-
punov function L is the minimal equilibrium price vector p∗min by Theorem 8.1,
the auction algorithm ASCENDMINIMAL yields the minimal equilibrium price
vector p∗min. The number of updates of the price vector is equal to ‖p∗min− p◦‖∞

by Theorem 7.16 (2).

Theorem 8.4 is due to Murota et al. (2016), while the finite termination
is noted in Ausubel (2006). The bound for the number of iterations in AS-
CENDMINIMAL is given as the `∞-distance from the initial price vector p◦

to the minimal equilibrium price vector p∗min. This implies, in particular, that
the trajectory of the price vector generated by the ascending auction is the
“shortest” path between the initial vector and the minimal equilibrium price
vector.

8.2.1. Variants of auction algorithms

A variant of the ascending auction algorithm, called ASCENDMAXIMAL, is
obtained through the application of the algorithm GREEDYUPMAXIMAL in
Section 7.3 to the Lyapunov function L. Two other variants of the descending
auction algorithm, called DESCENDMAXIMAL and DESCENDMINIMAL, are

45 See Remark 7.4 for L\-convex sets. If we consider real price vectors, the equilibrium price
vectors form an L\-convex polyhedron.
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obtained through the application of the algorithms GREEDYDOWNMAXIMAL

and GREEDYDOWNMINIMAL in Section 7.3 to the Lyapunov function L,
where DESCENDMAXIMAL coincides with the descending auction algorithm
in Ausubel (2006). The general results for L\-convex function minimization
summarized in Table 1 (b) in Section 7.3 imply the following exact bounds
(Murota et al., 2016).

Theorem 8.5.
(1) For an initial vector p◦ with p◦ ≤ p∗max, the algorithm ASCENDMAXIMAL

outputs p∗max and the number of updates of the price vector is exactly equal to
‖p∗max− p◦‖∞.
(2) For an initial vector p◦ with p◦≥ p∗max, the algorithm DESCENDMAXIMAL

outputs p∗max and the number of updates of the price vector is exactly equal to
‖p∗max− p◦‖∞.
(3) For any initial vector p◦ with p◦≥ p∗min, the algorithm DESCENDMINIMAL

outputs p∗min and the number of updates of the price vector is exactly equal to
‖p∗min− p◦‖∞.

A two-phase auction algorithm, consisting of an ascending auction phase
followed by a descending phase, can be obtained by applying the algorithm
TWOPHASEMINMAX in Section 7.3 to the Lyapunov function L. Another two-
phase auction algorithm can be obtained from TWOPHASEMINMIN. Then
Theorems 7.17 and 7.18 imply the following (Murota & Shioura, 2016).

Theorem 8.6.
(1) For any initial vector p◦, the two-phase algorithm TWOPHASEMINMAX

outputs some equilibrium price p∗. The number of updates of the vector p
is bounded by µ(p◦) in the ascending phase and by µ(p◦) in the descending
phase; in total, bounded by 2µ(p◦).
(2) For any initial vector p◦, the two-phase algorithm TWOPHASEMINMIN

outputs the minimal equilibrium price p∗min. The number of updates of the
vector p is bounded by µ(p◦) in the ascending phase and is exactly equal to
‖p◦− p∗min‖+∞ in the descending phase; in total, bounded by µ(p◦)+ ‖p◦−
p∗min‖+∞ .

Two-phase algorithms with more flexibility are given in Murota et al.
(2013a), and Murota & Shioura (2016).
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Remark 8.3. The algorithm TWOPHASEMINMAX, when applied to valuation
functions on {0,1}N (single-unit valuations), coincides with a special case of
“Global Dynamic Double-Track (GDDT) procedure” proposed in Sun & Yang
(2009). The “global Walrasian tâtonnement algorithm” proposed by Ausubel
(2006) repeats ascending and descending phases until some equilibrium is
found. Theorem 7.17 shows that the global Walrasian tâtonnement algorithm
terminates after only one ascending phase and only one descending phase.
Put differently, the behavior of the global Walrasian tâtonnement algorithm
coincides with that of TWOPHASEMINMAX.

Remark 8.4. Besides TWOPHASEMINMAX, we can obtain many variants of
two-phase algorithms by choosing appropriate combinations from among the
algorithms GREEDY-{UP, DOWN}-{MINIMAL, MAXIMAL} listed in Table 1.
In Section 8.3, for example, we consider the combination of GREEDYUPMI-
NIMAL and GREEDYDOWNMINIMAL.

8.3. Unit-demand auctions

Fundamental multi-item unit-demand auction algorithms such as the Vickrey–
English, Vickrey–Dutch, Vickrey–English–Dutch auctions can be reformulated
in the framework of the Lyapunov function approach. In so doing we can
derive bounds for the number of iterations in these auction algorithms from
the corresponding results about L\-convex function minimization presented in
Section 7.3.

The unit-demand auction model is a special case of the single-unit auction
model, where each bidder is a unit-demand bidder, being interested in getting
at most one item. We continue to use notations N = {1,2, . . . ,n} for the set of
items and M = {1,2, . . . ,m} for the set of bidders. For each item i and each
bidder j, we denote by v ji the valuation of item i by bidder j, which is assumed
to be a nonnegative integer, i.e., v ji ∈ Z+. The valuation function f j : 2N→ Z+

of bidder j is given by

f j(X) =

{
max{v ji | i ∈ X} (if X 6= /0),
0 (if X = /0). (8.4)

A valuation function of this form, often called a unit-demand valuation,46 is a
gross substitutes valuation, as pointed out by Gul & Stacchetti (1999). In other

46 See, e.g., Cramton et al. (2006, Section 9.2.2) and Blumrosen & Nisan (2007, Definition
11.17).
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words, a unit-demand valuation is M\-concave; see (3.21). We are interested in
finding the minimal Walrasian equilibrium price vector p∗min ∈ ZN

+ by iterative
auctions.

Fundamental iterative auction algorithms such as the Vickrey–English
auction of Demange et al. (1986) (the variant by Mo et al. (1988) and Sankaran
(1994), to be more specific), the Vickrey–Dutch auction of Mishra & Parkes
(2009), and the Vickrey–English–Dutch auction of Andersson & Erlanson
(2013) can be recast into the Lyapunov function-based framework. The follo-
wing theorem is due to Murota et al. (2016, Theorem 5.5); the specific forms
of the auction algorithms are described in Remark 8.5.

Theorem 8.7. Let L : ZN
+→ Z be the Lyapunov function associated with the

unit-demand valuations (8.4).
(1) For any initial price vector p◦ with p◦ ≤ p∗min, the sequence of price vec-
tors p generated by the algorithm VICKREY ENGLISH is the same as that of
GREEDYUPMINIMAL applied to L.
(2) For any initial price vector p◦ with p◦ ≥ p∗min, the sequence of price vec-
tors p generated by the algorithm VICKREY DUTCH is the same as that of
GREEDYDOWNMINIMAL applied to L.
(3) For any initial price vector p◦, the sequence of price vectors p generated
by the algorithm VICKREY ENGLISH DUTCH is the same as that of TWOP-
HASEMINMIN applied to L.

Theorem 8.7 above is established on the basis of the following technical
observations (Murota et al., 2016, Lemma 5.7), which relate the descending
directions of the Lyapunov function with “sets in excess demand” (see Re-
mark 8.5) used in the Vickrey–English, Vickrey–Dutch, Vickrey–English–
Dutch auction algorithms.

Proposition 8.8. Let p ∈ ZN
+ be a price vector.

(1) A set X ⊆ N is the maximal set in excess demand at price p if and only if X
is the minimal minimizer of L(p+χX)−L(p).
(2) A set Z ⊆ supp+(p) is the maximal set in positive excess demand at price p
if and only if X = supp+(p)\Z is the maximal minimizer of L(p−χX)−L(p).

Theorem 8.7 enables us to resort to the general results for L\-convex
function minimization in Section 7.3 to establish the following (exact or upper)
bounds on the number of iterations in the unit-demand auction algorithms,
where (1) and (2) are given in Andersson & Erlanson (2013, Corollary 2), and
(3) is in Murota & Shioura (2016).
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Theorem 8.9.
(1) For any initial price vector p◦ with p◦ ≤ p∗min, the number of updates
of the price vector in the algorithm VICKREY ENGLISH is exactly equal to
‖p◦− p∗min‖∞.
(2) For any initial price vector p◦ with p◦ ≥ p∗min, the number of updates
of the price vector in the algorithm VICKREY DUTCH is exactly equal to
‖p◦− p∗min‖∞.
(3) For any initial price vector p◦, the number of updates of the price vector
in the algorithm VICKREY ENGLISH DUTCH is bounded by µ(p◦) in the
ascending phase and is exactly equal to ‖p◦− p∗min‖+∞ in the descending phase;
in total, bounded by µ(p◦)+‖p◦− p∗min‖+∞ .

Proof. We prove the claims to illustrate the use of the general results in Section
7.3. (1) follows from Theorem 8.7 (1) and Theorem 7.16 (2). (2) follows from
Theorem 8.7 (2) and Table 1 (b). (3) follows from Theorem 8.7 (3) and
Theorem 7.18.

Remark 8.5. The Vickrey–English, Vickrey–Dutch, Vickrey–English–Dutch
auction algorithms are described here, following Andersson & Erlanson (2013)
and Andersson et al. (2013). Denote by 0 an artificial item (null-item) which
has no value (i.e., v j0 = 0 for all j ∈M) and is available in an infinite number of
units. For each bidder j∈M and a price vector p∈ZN

+, define D j(p)⊆N∪{0}
by

D j(p) = argmax{v ji− pi | i ∈ N∪{0}}
= {i ∈ N∪{0} | v ji− pi ≥ v ji′− pi′ (∀i′ ∈ N∪{0})},

where p0 = 0. For an item set Y ⊆ N and a price vector p ∈ ZN
+, define

O(Y, p) = { j ∈M | D j(p)⊆ Y},
U(Y, p) = { j ∈M | D j(p)∩Y 6= /0}.

The set O(Y, p) consists of bidders who only demand items in Y at price p,
while U(Y, p) is the set of bidders who demand some item in Y at price p.
Obviously, O(Y, p)⊆U(Y, p). A set X ⊆ N is said to be in excess demand at
price p if it satisfies

|U(Y, p)∩O(X , p)|> |Y | ( /0 6= ∀Y ⊆ X).

Journal of Mechanism and Institution Design 1(1), 2016



“p˙05” — 2016/12/18 — 22:56 — page 226 — #76

226 Discrete convex analysis

For each price vector p there uniquely exists a maximal set in excess demand.47

The Vickrey-English auction algorithm due to Mo et al. (1988) and Sankaran
(1994), a variant of the one in Demange et al. (1986), is as follows:

Algorithm VICKREY ENGLISH

Step 0: Set p := p◦, where p◦ ∈ ZN
+ is an arbitrary vector satisfying

p◦ ≤ p∗min (e.g., p◦ = 000).
Step 1: Find the maximal set X ⊆ N in excess demand at price p.
Step 2: If X = /0, then output p and stop.
Step 3: Set p := p+χX and go to Step 1.

The Vickrey-Dutch auction algorithm refers to the variants of the sets
D j(p) and O(Y, p) defined as

D+
j (p) = D j(p)∩ supp+(p),

O+(Y, p) = { j ∈M | D+
j (p)⊆ Y}.

A set X ⊆ N is said to be in positive excess demand at price p if X ⊆ supp+(p)
and

|U(Y, p)∩O+(X , p)|> |Y | ( /0 6= ∀Y ⊆ X).

For each price vector p there uniquely exists a maximal set in positive excess
demand.48 The Vickrey–Dutch auction by Mishra & Parkes (2009) is as
follows:

Algorithm VICKREY DUTCH

Step 0: Set p := p◦, where p◦ ∈ ZN
+ is an arbitrary vector satisfying p◦ ≥ p∗min.

Step 1: Find the maximal set Z ⊆ N in positive excess demand at price p, and
set X := supp+(p)\Z.

Step 2: If X = /0, then output p and stop.
Step 3: Set p := p−χX and go to Step 1.

The Vickrey–English–Dutch auction by Andersson & Erlanson (2013) is a
combination of the Vickrey–English and Vickrey–Dutch auctions, as follows:

47 See Mo et al. (1988, Proposition 1), Andersson & Erlanson (2013, Proposition 1), and
Andersson et al. (2013, Theorem 1).

48 See Andersson & Erlanson (2013, Theorem 2).
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Algorithm VICKREY ENGLISH DUTCH

Step 0: Set p := p◦, where p◦ ∈ ZN
+ is an arbitrary vector. Go to Ascending

Phase.
Ascending Phase:

Step A1: Find the maximal set X ⊆ N in excess demand at price p.
Step A2: If X = /0, then go to Descending Phase.
Step A3: Set p := p+χX and go to Step A1.

Descending Phase:
Step D1: Find the maximal set Z ⊆ N in positive excess demand at

price p, and set X := supp+(p)\Z.
Step D2: If X = /0, then output p and stop.
Step D3: Set p := p−χX and go to Step D1.

8.4. Concluding remarks of section 8

Use of discrete convex analysis in the Lyapunov function approach is also
conceived by Drexl & Kleiner (2015). Besides the basic form of ascending
auction, the paper proposes and analyzes the “singleton-based tâtonnement”
which reflects a certain practice in auction design. It also discusses the double-
track adjustment process of Sun & Yang (2009) as an application of the
framework of Section 8.2; the underlying key fact here is that gross substitutes
and complements are represented by twisted M\-concave functions (Section
3.5). Lehmann et al. (2006) shows a connection between discrete convex
analysis and combinatorial auctions. Sun & Yang (2014) proposes a dynamic
auction for multiple complementary goods that goes beyond the framework
discussed in this paper.

9. INTERSECTION AND SEPARATION THEOREMS

9.1. Separation theorem

The duality principle in convex analysis can be expressed in a number of
different forms. One of the most appealing statements is in the form of the
separation theorem, which asserts the existence of a separating affine function
y = α∗+ 〈p∗,x〉 for a pair of convex and concave functions. In application to
economic problems, the separating vector p∗ gives the equilibrium price.

In the continuous case we have the following.
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Theorem 9.1. Let f : Rn→R∪{+∞} and h : Rn→R∪{−∞} be convex and
concave functions, respectively (satisfying certain regularity conditions). If

f (x)≥ h(x) (∀x ∈ Rn),

there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x)≥ α
∗+ 〈p∗,x〉 ≥ h(x) (∀x ∈ Rn).

In the discrete case we are concerned with functions defined on integer
points: f : Zn→ R∪{+∞} and h : Zn→ R∪{−∞}. A discrete separation
theorem means a statement like:

For any f : Zn→ R∪{+∞} and h : Zn→ R∪{−∞} belonging
to certain classes of functions, if f (x)≥ h(x) for all x ∈ Zn, then
there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x)≥ α
∗+ 〈p∗,x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued
α∗ ∈ Z and p∗ ∈ Zn.

In application to economic problems, the separating vector p∗ in a discrete
separation theorem often gives the equilibrium price in markets with indivisible
goods.

Discrete separation theorems capture deep combinatorial properties in
spite of the apparent similarity to the separation theorem in the continuous
case. In this connection we note the following facts that indicate the difficulty
inherent in discrete separation theorems.49 Let f :Zn→R∪{+∞} be a convex-
extensible function, with the convex closure f . Also let h : Zn→ R∪{−∞}
be a concave-extensible function, with the concave closure h. In the following
statements, =⇒6 stands for “does not imply.”

1. f (x)≥ h(x) (∀x ∈ Zn) =⇒6 f (x)≥ h(x) (∀x ∈ Rn).

2. f (x)≥ h(x) (∀x ∈ Zn) =⇒6 existence of α∗ ∈ R and p∗ ∈ Rn.

3. existence of α∗ ∈R and p∗ ∈Rn =⇒6 existence of α∗ ∈ Z and p∗ ∈ Zn.

49 See Murota (2003, Examples 1.5 and 1.6) for concrete examples.
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It is known that discrete separation theorems hold for M\-convex/M\-
concave functions and for L\-convex/L\-concave functions. The M\-separation
theorem (Theorem 9.2) is shown by Murota (1996a, 1998, 1999) in terms of
M-convex/concave functions, and the L\-separation theorem (Theorem 9.3) by
Murota (1998) in terms of L-convex/concave functions. The assumptions of
the theorems refer to the convex and concave conjugate functions of f and h
defined, respectively, by50

f •(p) = sup{〈p,x〉− f (x) | x ∈ Zn} (p ∈ Rn), (9.1)
h◦(p) = inf{〈p,x〉−h(x) | x ∈ Zn} (p ∈ Rn). (9.2)

Theorem 9.2 (M\-separation theorem). Let f : Zn → R∪{+∞} be an M\-
convex function and h : Zn→ R∪{−∞} be an M\-concave function such that
domZ f ∩ domZh 6= /0 or domR f • ∩ domRh◦ 6= /0. If f (x) ≥ h(x) (∀x ∈ Zn),
there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x)≥ α
∗+ 〈p∗,x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued α∗ ∈ Z and
p∗ ∈ Zn.

Theorem 9.3 (L\-separation theorem). Let g : Zn → R∪ {+∞} be an L\-
convex function and k : Zn→ R∪{−∞} be an L\-concave function such that
domZg∩ domZk 6= /0 or domRg• ∩ domRk◦ 6= /0. If g(p) ≥ k(p) (∀p ∈ Zn),
there exist β ∗ ∈ R and x∗ ∈ Rn such that

g(p)≥ β
∗+ 〈p,x∗〉 ≥ k(p) (∀p ∈ Zn).

Moreover, if g and k are integer-valued, there exist integer-valued β ∗ ∈ Z and
x∗ ∈ Zn.

As an immediate corollary of the M\-separation theorem we can obtain an
optimality criterion for the problem of maximizing the sum of two M\-concave
functions, which we call the M\-concave intersection problem. Note that the
sum of M\-concave functions is no longer M\-concave and Theorem 4.4 does
not apply. Recall the notation f [−p](x) = f (x)−〈p,x〉.

50 We have f •(p) =− f4(−p) and h◦(p) =−hO(p) in the notation of (7.12) and (7.13).
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Theorem 9.4 (M\-concave intersection theorem). For M\-concave functions
f1, f2 : Zn→ R∪{−∞} and a point x∗ ∈ domZ f1∩domZ f2 we have

f1(x∗)+ f2(x∗)≥ f1(x)+ f2(x) (∀x ∈ Zn)

if and only if there exists p∗ ∈ Rn such that

f1[−p∗](x∗)≥ f1[−p∗](x) (∀x ∈ Zn),

f2[+p∗](x∗)≥ f2[+p∗](x) (∀x ∈ Zn).

These conditions are equivalent, respectively, to

f1[−p∗](x∗)≥ f1[−p∗](x∗+χi−χ j) (∀ i, j ∈ {0,1, . . . ,n}),
f2[+p∗](x∗)≥ f2[+p∗](x∗+χi−χ j) (∀ i, j ∈ {0,1, . . . ,n}),

and for such p∗ we have

argmax
Z

( f1 + f2) = argmax
Z

f1[−p∗]∩ argmax
Z

f2[+p∗].

Moreover, if f1 and f2 are integer-valued, we can choose integer-valued p∗ ∈
Zn.

An extension of the M\-concave intersection theorem is given in Theorem
10.4, which constitutes the technical pivot in the Fujishige–Tamura model that
unifies the stable marriage and the assignment game (see Remark 10.1).

Remark 9.1. Three different proofs are available for the M\-concave inter-
section theorem. The original proof (Murota, 1996a) is based on the reduction
of the M\-concave intersection problem to the M-convex submodular flow
problem; see Remark 12.2 in Section 12.1. Then Theorem 9.4 is derived
from the negative-cycle optimality criterion (Theorem 12.2) for the M-convex
submodular flow problem. The second proof is based on the reduction to the
discrete separation theorem, which is proved by the polyhedral-combinatorial
method using the (standard) separation theorem in convex analysis; see the
proof of Murota (2003, Theorem 8.15). The third proof Murota (2004b) is a
direct constructive proof based on the successive shortest path algorithm.
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9.2. Fenchel duality

Another expression of the duality principle is in the form of the Fenchel duality.
This is a min-max relation between a pair of convex and concave functions
and their conjugate functions. Such a min-max theorem is computationally
useful in that it affords a certificate of optimality.

We start with the continuous case. For a function f : Rn→R∪{+∞} with
dom f 6= /0, the convex conjugate f • : Rn→ R∪{+∞} is defined by51

f •(p) = sup{〈p,x〉− f (x) | x ∈ Rn} (p ∈ Rn). (9.3)

For h : Rn→R∪{−∞}, the concave conjugate h◦ : Rn→R∪{−∞} is defined
by

h◦(p) = inf{〈p,x〉−h(x) | x ∈ Rn} (p ∈ Rn). (9.4)

Theorem 9.5. Let f : Rn→R∪{+∞} and h : Rn→R∪{−∞} be convex and
concave functions, respectively (satisfying certain regularity conditions). Then

inf{ f (x)−h(x) | x ∈ Rn}= sup{h◦(p)− f •(p) | p ∈ Rn}.

We now turn to the discrete case. For any functions f : Zn→ Z∪{+∞}
and h : Zn→ Z∪{−∞}, we define the discrete versions of (9.3) and (9.4) as

f •(p) = sup{〈p,x〉− f (x) | x ∈ Zn} (p ∈ Zn), (9.5)
h◦(p) = inf{〈p,x〉−h(x) | x ∈ Zn} (p ∈ Zn). (9.6)

Then we have a chain of inequalities:

inf{ f (x)−h(x) | x ∈ Zn} sup{h◦(p)− f •(p) | p ∈ Zn}≥ ≥

inf{ f (x)−h(x) | x ∈ Rn} ≥ sup{h◦(p)− f •(p) | p ∈ Rn},
(9.7)

where f and h are the convex and concave closures of f and h, respectively,
and f • and h

◦ are defined by (9.3) for f and (9.4) for h. We observe that

1. The second inequality (≥) in the middle of (9.7) is in fact an equality
(=) (under mild regularity conditions) by the Fenchel duality theorem in
convex analysis (Theorem 9.5);

51 We have f •(p) =− f4(−p) and h◦(p) =−hO(p) in the notation of (7.10) and (7.11).
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2. The first inequality ( ≥ ) in the left of (9.7) can be strict (i.e., 6=) even
when f is convex-extensible and h is concave-extensible, and similarly
for the third inequality ( ≥ ) in the right. See Examples 9.1 and 9.2
below.52

Example 9.1. For f ,h : Z2→ Z defined as

f (x1,x2) = |x1 + x2−1|, h(x1,x2) = 1−|x1− x2|

we have inf{ f −h}= 0, inf{ f −h}=−1. The conjugate functions (9.5) and
(9.6) are given by

f •(p1, p2)=

{
p1 ((p1, p2) ∈ S)
+∞ (otherwise), h◦(p1, p2)=

{
−1 ((p1, p2) ∈ T )
−∞ (otherwise)

with S = {(−1,−1),(0,0),(1,1)} and T = {(−1,1),(0,0),(1,−1)}. Hence
sup{h◦− f •}= h◦(0,0)− f •(0,0) =−1−0 =−1. Then (9.7) reads as

inf{ f −h} > inf{ f −h} = sup{h◦− f •} = sup{h◦− f •}.
(0) (−1) (−1) (−1)

Example 9.2. For f ,h : Z2→ Z defined as

f (x1,x2) = max(0,x1 + x2), h(x1,x2) = min(x1,x2)

we have inf{ f − h} = inf{ f − h} = 0. The conjugate functions (9.5) and
(9.6) are given as f • = δS and h◦ = −δT in terms of the (convex) indicator
functions53 of S = {(0,0),(1,1)} and T = {(1,0),(0,1)}. Since S∩T = /0,
the function h◦− f • is identically equal to −∞, whereas sup{h◦− f •} = 0
since f • = δS, h

◦
=−δT and S∩T = {(1/2,1/2)}. Then (9.7) reads as

inf{ f −h} = inf{ f −h} = sup{h◦− f •} > sup{h◦− f •}.
(0) (0) (0) (−∞)

The Fenchel-type duality holds for M\-convex/M\-concave functions and
L\-convex/L\-concave functions. The Fenchel-type duality theorem originates
in Murota (1996a) (see also Murota, 1998) and formulated into the following
form in Murota (2003). The essence of the theorem is the assertion that the first
and third inequalities in (9.7) are in fact equalities for M\-convex/M\-concave
functions and L\-convex/L\-concave functions.

52 These examples are taken from Murota (2009).
53 δS(p) = 0 for p ∈ S and =+∞ for p 6∈ S.
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Theorem 9.6 (Fenchel-type duality theorem).
(1) Let f : Zn→ Z∪{+∞} be an integer-valued M\-convex function and h :
Zn→ Z∪{−∞} be an integer-valued M\-concave function such that domZ f ∩
domZh 6= /0 or domZ f •∩domZh◦ 6= /0, where f • and h◦ are defined by (9.5)
and (9.6). Then we have

inf{ f (x)−h(x) | x ∈ Zn}= sup{h◦(p)− f •(p) | p ∈ Zn}. (9.8)

If this common value is finite, the infimum and the supremum are attained.
(2) Let g : Zn→ Z∪{+∞} be an integer-valued L\-convex function and k :
Zn→ Z∪{−∞} be an integer-valued L\-concave function such that domZg∩
domZk 6= /0 or domZg•∩ domZk◦ 6= /0, where g• and k◦ are defined by (9.5)
and (9.6). Then we have

inf{g(p)− k(p) | p ∈ Zn}= sup{k◦(x)−g•(x) | x ∈ Zn}. (9.9)

If this common value is finite, the infimum and the supremum are attained.

The Fenchel-type duality theorem can be formulated for real-valued functi-
ons f ,g : Zn → R∪ {+∞} and h,k : Zn → R∪ {−∞} as well; see Murota
(2003, Theorem 8.21).

Remark 9.2. For the Fenchel-type duality, the two functions must be consis-
tent with respect to the types (M\ or L\). In Example 9.1, f is M\-convex and
h is L\-concave. This is also the case in Example 9.2.

Remark 9.3. Whereas the L\-separation and M\-separation theorems are
parallel or conjugate to each other in their statements, the Fenchel-type duality
theorem is self-conjugate, in that the substitution of f = g• and h = k◦ into
(9.8) results in (9.9) by virtue of the biconjugacy g = (g•)• and k = (k◦)◦

(Theorem 7.9). With the knowledge of M-/L-conjugacy (Section 7.2), these
three duality theorems are almost equivalent to one another; once one of them
is established, the other two theorems can be derived by relatively easy formal
calculations.

9.3. Concluding remarks of section 9

The significance of the duality theorems of this section in combinatorial op-
timization is mentioned here. Frank’s discrete separation theorem (Frank,
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1982) for submodular/supermodular set functions is a special case of the L\-
separation theorem. Frank’s weight splitting theorem (Frank, 1981) for the
weighted matroid intersection problem is a special case of the M\-concave
intersection problem. Edmonds’s intersection theorem (Edmonds, 1970) for
(poly) matroids in the integral case is a special case of the Fenchel-type duality
(Theorem 9.6 (1)). Fujishige’s Fenchel-type duality theorem (Fujishige, 1984)
for submodular set functions is a special case of Theorem 9.6 (2). Murota
(2003, Section 8.2.3) gives more details.

10. STABLE MARRIAGE AND ASSIGNMENT GAME

Two-sided matching (Roth & Sotomayor, 1990; Abdulkadiroğlu & Sönmez,
2013) affords a fairly general framework in game theory, including the stable
matching of Gale & Shapley (1962) and the assignment model of Shapley
& Shubik (1972) as special cases. An even more general framework has
been proposed by Fujishige & Tamura (2007) in which the existence of an
equilibrium is established on the basis of a novel duality-related property of
M\-concave functions. The results of Fujishige & Tamura (2007) are described
in this section.54

10.1. Fujishige–Tamura model

Let P and Q be finite sets and put

E = P×Q = {(i, j) | i ∈ P, j ∈ Q},

where we think of P as a set of workers and Q as a set of firms, respectively.
We suppose that worker i works at firm j for xi j units of time, gaining a salary
si j per unit time. Then the labor allocation is represented by an integer vector

x = (xi j | (i, j) ∈ E) ∈ ZE

and the salary by a real vector s = (si j | (i, j) ∈ E) ∈ RE . We are interested in
the stability of a pair (x,s) in the sense to be made precise later.

For i ∈ P and j ∈ Q we put

E(i) = {i}×Q = {(i, j) | j ∈ Q}, E( j) = P×{ j}= {(i, j) | i ∈ P},

54 This section is based on Murota (2009, Section 11.10).
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and for a vector y on E we denote by y(i) and y( j) the restrictions of y to E(i)
and E( j), respectively. For example, for the labor allocation x we obtain

x(i) = (xi j | j ∈ Q) ∈ ZE(i), x( j) = (xi j | i ∈ P) ∈ ZE( j)

and this convention also applies to the salary vector s to yield s(i) and s( j).
It is supposed that for each (i, j) ∈ E lower and upper bounds on the salary

si j are given, denoted by π i j ∈R∪{−∞} and π i j ∈R∪{+∞}, where π i j ≤ π i j.
A salary s is called feasible if π i j ≤ si j ≤ π i j for all (i, j) ∈ E. We put

π =(π i j | (i, j)∈E)∈ (R∪{−∞})E , π =(π i j | (i, j)∈E)∈ (R∪{+∞})E .

Each agent (worker or firm) k ∈ P∪Q evaluates his/her state x(k) of labor
allocation in monetary terms through a function fk : ZE(k) → R∪{−∞}. Here
the effective domain dom fk = {z ∈ ZE(k) | fk(z)>−∞} is assumed to satisfy
the following natural condition:

dom fk is bounded and hereditary, with unique minimal element 0, (10.1)

where dom fk being hereditary means that 0 ≤ z ≤ y ∈ dom fk implies z ∈
dom fk. In what follows we always assume that x is feasible in the sense that

x(i) ∈ dom fi (i ∈ P), x( j) ∈ dom f j ( j ∈ Q).

A pair (x,s) of feasible allocation x and feasible salary s is called an outcome.

Example 10.1. The stable marriage problem can be formulated as a special
case of the present setting. Put π = π = 0 and define fi : ZE(i) → R∪{−∞}
for i ∈ P and f j : ZE( j) → R∪{−∞} for j ∈ Q as

fi(y) =


ai j (y = χ j, j ∈ Q),
0 (y = 0),
−∞ (otherwise),

f j(z) =


bi j (z = χi, i ∈ P),
0 (z = 0),
−∞ (otherwise),

(10.2)

where the vector (ai j | j ∈ Q) ∈ RQ represents (or, is an encoding of) the pre-
ference of “man” i ∈ P over “women” Q, and (bi j | i ∈ P) ∈ RP the preference
of “woman” j ∈ Q over “men” P. Then a matching X is stable if and only if
(x,s) = (χX ,0) is stable in the present model.
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Example 10.2. The assignment model is a special case where π =(−∞, . . . ,−∞),
π = (+∞, . . . ,+∞) and the functions fi and f j are of the form of (10.2) with
some ai j,bi j ∈ R for all i ∈ P, j ∈ Q.

10.2. Market equilibrium

Given an outcome (x,s) the payoff of worker i ∈ P is defined to be the sum of
his/her evaluation of x(i) and the total income from firms:

fi(x(i))+ ∑
j∈Q

si jxi j (=: ( fi + s(i))(x(i))). (10.3)

Similarly, the payoff of firm j ∈ Q is defined as

f j(x( j))−∑
i∈P

si jxi j (=: ( f j− s( j))(x( j))). (10.4)

Each agent (i ∈ P or j ∈ Q) naturally wishes to maximize his/her payoff
function.55

A market equilibrium is defined as an outcome (x,s) that is stable under
reasonable actions (i) by each worker i, (ii) by each firm j, and (iii) by each
worker-firm pair (i, j). To be specific, we say that (x,s) is stable with respect
to i ∈ P if

( fi + s(i))(x(i)) = max{( fi + s(i))(y) | y≤ x(i)}. (10.5)

Similarly, (x,s) is said to be stable with respect to j ∈ Q if

( f j− s( j))(x( j)) = max{( f j− s( j))(z) | z≤ x( j)}. (10.6)

In technical terms (x,s) is said to satisfy the incentive constraint if it satisfies
(10.5) and (10.6).

The stability of (x,s) with respect to (i, j) is defined as follows. Suppose
that worker i and firm j think of a change of their contract to a new salary
α ∈ [π i j,π i j]R and a new working time of β ∈ Z+ units. Worker i will be
happy with this contract if there exists y ∈ ZE(i) such that

y j = β , yk ≤ xik (k ∈ Q\{ j}), (10.7)

( fi + s(i))(x(i))< ( fi +(s− j
(i) ,α))(y), (10.8)

55 We have ( fi + s(i))(x(i)) = fi[+s(i)](x(i)) and ( f j− s( j))(x( j)) = f j[−s( j)](x( j)) in the notation
of (4.20).
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where (s− j
(i) ,α) denotes the vector s(i) with its j-th component replaced by α .

Note that y means the new labor allocation of worker i with an increased payoff
given on the right-hand side of (10.8). Similarly, firm j is motivated to make
the new contract if there exists z ∈ ZE( j) such that

zi = β , zk ≤ xk j (k ∈ P\{i}), (10.9)

( f j− s( j))(x( j))< ( f j− (s−i
( j),α))(z), (10.10)

where (s−i
( j),α) is the vector s( j) with its i-th component replaced by α . Then

we say that (x,s) is stable with respect to (i, j) if there exists no (α,β ,y,z) that
simultaneously satisfies (10.7), (10.8), (10.9) and (10.10).

We now define an outcome (x,s) to be stable if, for every i ∈ P, j ∈ Q,
(x,s) is (i) stable with respect to i, (ii) stable with respect to j, and (iii) stable
with respect to (i, j). This is our concept of market equilibrium.

A remarkable fact, found by Fujishige & Tamura (2007), is that a market
equilibrium exists if the functions fk are M\-concave.

Theorem 10.1. Assume that π ≤ π and, for each k ∈ P∪Q, fk is an M\-
concave function satisfying (10.1). Then a stable outcome (x,s) ∈ ZE ×RE

exists. Furthermore, we can take an integral s ∈ ZE if π ∈ (Z∪ {−∞})E ,
π ∈ (Z∪{+∞})E , and fk is integer-valued for every k ∈ P∪Q.

10.3. Technical ingredients

The technical ingredients of the above theorem can be divided into the fol-
lowing two theorems, due to Fujishige & Tamura (2007). Note also that
sufficiency part of Theorem 10.2 (which we need here) is independent of
M\-concavity.

Theorem 10.2. Under the same assumption as in Theorem 10.1 let x be a
feasible allocation. Then (x,s) is a stable outcome for some s if and only if
there exist p ∈ RE , u = (u(i) | i ∈ P) ∈ (Z∪{+∞})E and v = (v( j) | j ∈ Q) ∈
(Z∪{+∞})E such that

x(i) ∈ argmax{( fi + p(i))(y) | y≤ u(i)}, (10.11)
x( j) ∈ argmax{( f j− p( j))(z) | z≤ v( j)}, (10.12)
π ≤ p≤ π, (10.13)
(i, j) ∈ E,ui j <+∞ =⇒ pi j = π i j,vi j =+∞, (10.14)
(i, j) ∈ E,vi j <+∞ =⇒ pi j = π i j,ui j =+∞. (10.15)
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Moreover, (x, p) is a stable outcome for any (x, p,u,v) satisfying the above
conditions.

Theorem 10.3. Under the same assumption as in Theorem 10.1 there exists
(x, p,u,v) that satisfies (10.11)–(10.15). Furthermore, we can take an integral
p ∈ ZE if π ∈ (Z∪{−∞})E , π ∈ (Z∪{+∞})E , and fk is integer-valued for
every k ∈ P∪Q.

It is worth while noting that the essence of Theorem 10.3 is an intersection-
type theorem for a pair of M\-concave functions, Theorem 10.4 below, due to
Fujishige & Tamura (2007). Indeed Theorem 10.3 can be derived easily from
Theorem 10.4 applied to

fP(x) = ∑
i∈P

fi(x(i)), fQ(x) = ∑
j∈Q

f j(x( j)). (10.16)

Theorem 10.4. Assume π ≤ π for π ∈ (R∪{−∞})E and π ∈ (R∪{+∞})E ,
and let f ,g : ZE → R∪{−∞} be M\-concave functions such that the effective
domains are bounded and hereditary, with unique minimal element 0. Then
there exist x∈ dom f ∩domg, p∈RE , u∈ (Z∪{+∞})E and v∈ (Z∪{+∞})E

such that

x ∈ argmax{( f + p)(y) | y≤ u}, (10.17)
x ∈ argmax{(g− p)(z) | z≤ v}, (10.18)
π ≤ p≤ π, (10.19)
e ∈ E,ue <+∞ =⇒ pe = πe,ve =+∞, (10.20)
e ∈ E,ve <+∞ =⇒ pe = πe,ue =+∞. (10.21)

Furthermore, we can take an integral p ∈ ZE if π ∈ (Z∪{−∞})E , π ∈ (Z∪
{+∞})E , and f and g are integer-valued.

Remark 10.1. Two special cases of Theorem 10.4 are worth mentioning.

• The first case is where π = (−∞, . . . ,−∞) and π = (+∞, . . . ,+∞). In
this case, (10.19) is void, and we must have ue = ve = +∞ for all e ∈
E by (10.20) and (10.21). Therefore, the assertion of Theorem 10.4
reduces to: There exist x ∈ dom f ∩ domg and p ∈ RE such that x ∈
argmax( f + p) and x ∈ argmax(g− p), which coincides with the M\-
concave intersection theorem (Theorem 9.4).
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• The second case is where π = π = 0, which corresponds to the discrete
concave stable marriage model of Eguchi et al. (2003). Let w be a vector
such that y ≤ w for all y ∈ dom f ∩ domg. By (10.19) we must have
pe = 0 for all e ∈ E. For each e ∈ E, we must have ue =+∞ or ve =+∞

(or both) by (10.20) and (10.21). Therefore, the assertion of Theorem
10.4 reduces to: There exist x ∈ dom f ∩domg, u∈ZE , and v∈ZE such
that w = u∨v, x ∈ argmax{ f (y) | y≤ u}, and x ∈ argmax{g(z) | z≤ v}.
This is the main technical result of Eguchi et al. (2003) that implies the
existence of a stable allocation in their model.

10.4. Concluding remarks of section 10

The Fujishige–Tamura model contains several recently proposed matching
models such as Eriksson & Karlander (2000), Fleiner (2001), Sotomayor
(2002) as well as Eguchi & Fujishige (2002), Eguchi et al. (2003), Fujishige &
Tamura (2006) as special cases. In particular, the hybrid model of Eriksson &
Karlander (2000), with flexible and rigid agents, is a special case where P and
Q are partitioned as P = P∞∪P0 and Q = Q∞∪Q0, and π i j =−∞, π i j =+∞

for (i, j) ∈ P∞×Q∞ and π i j = π i j = 0 for other (i, j). Realistic constraints
on matchings such as lower quotas can be expressed in terms of matroids
(Fleiner, 2001; Fleiner & Kamiyama, 2016; Kojima et al., 2014; Goto et al.,
2016; Yokoi, 2016).

11. VALUATED ASSIGNMENT PROBLEM

As we have seen in Sections 3.6 and 6.2, M\-concave set functions are amenable
to (bipartite) graph structures. As a further step in this direction we describe the
valuated (independent) assignment problem, introduced by Murota (1996b,c).
In contrast to the original formulation of the problem in terms of valuated
matroids (or M-convex set functions), we present here a reformulation in terms
of M\-concave set functions for the convenience of applications to economics
and game theory.

11.1. Problem description

The problem we consider is the following:56

56 This problem is a variant of the valuated independent assignment problem.
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V+ V−
A

Mf + f −

w

Figure 4: Valuated assignment problem

[M\-concave matching problem] Given a bipartite graph G=(V+,V−;A),
a pair of M\-concave set functions f+ : 2V+ → R∪{−∞} and f− : 2V+ →
R∪{−∞}, and a weight function w : A→ R (see Fig. 4), find a matching
M (⊆ A) that maximizes

w(M)+ f+(∂+M)+ f−(∂−M), (11.1)

where w(M) = ∑{w(a) | a ∈M}, and ∂+M (resp., ∂−M) denotes the set of
the vertices in V+ (resp., V−) incident to M. For (11.1) to be finite, we have
implicit constraints that

∂
+M ∈ dom f+, ∂

−M ∈ dom f−. (11.2)

In applications the empty set often belongs to dom f+ (resp., dom f−), in
which case dom f+ (resp., dom f−) forms the family of independent sets of a
matroid. If f+ ≡ 0 and f− ≡ 0 (with dom f+ = 2V+

and dom f− = 2V−), this
problem coincides with the conventional weighted matching problem.

An important special case of the M\-concave matching problem arises
from a very special underlying graph G≡ = (V+,V−;A≡) that represents a
one-to-one correspondence between V+ and V−. In other words, given a pair
of M\-concave set functions f1, f2 : 2V → R∪{−∞} and a weight function
w : V →R, let V+ and V− be disjoint copies of V and A≡ = {(v+,v−) | v∈V},
where v+ ∈V+ and v− ∈V− denote the copies of v ∈V . The given functions
f1 and f2 are regarded as set functions on V+ and V−, respectively. Then we
obtain the following problem:

[M\-concave intersection problem] Given a pair of M\-concave set functi-
ons f1, f2 : 2V → R∪{−∞} and a weight function w : V → R, find a subset X
that maximizes

w(X)+ f1(X)+ f2(X), (11.3)

where w(X) = ∑v∈X w(v).
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11.2. Optimality criterion by potentials

We show the optimality criterion for the M\-concave matching problem in
terms of potentials, where a potential means a function p : V+∪V−→R (or a
vector p ∈ RV+∪V−) on the vertex set V+∪V−. In the following theorem due
to Murota (1996c) (see also Murota, 2000b, Theorem 5.2.39), the statement (1)
refers to the existence of an appropriate potential, whereas its reformulation
in (2) reveals the duality nature.57 For each arc a = (u,v) ∈ A, ∂+a denotes
the initial (tail) vertex of a, and ∂−a the terminal (head) vertex of a, i.e.,
∂+a = u ∈ V+ and ∂−a = v ∈ V−, where all the arcs are assumed to be
directed from V+ to V−.

Theorem 11.1 (Potential criterion). Let M be a matching in G = (V+,V−;A)
satisfying (11.2) for the M\-concave matching problem to maximize (11.1).
(1) M is an optimal matching if and only if there exists a potential p : V+∪
V−→ R such that

(i) w(a)− p(∂+a)+ p(∂−a)
{
≤ 0 (a ∈ A),
= 0 (a ∈M),

(ii) ∂+M is a maximizer of f+[+p+],
(iii) ∂−M is a maximizer of f−[−p−],

where p+ and p− are the restrictions of p to V+ and V−, respectively, and
f+[+p+] and f−[−p−] are defined by

f+[+p+](X) = f+(X)+∑{p(u) | u ∈ X} (X ⊆V+),

f−[−p−](Y ) = f−(Y )−∑{p(v) | v ∈ Y} (Y ⊆V−).

(2)

maxM{w(M)+ f+(∂+M)+ f−(∂−M)}=
minp{max( f+[+p+])+max( f−[−p−]) |
w(a)− p(∂+a)+ p(∂−a)≤ 0 (a ∈ A)}.

(3) If f+, f− and w are all integer-valued, the potential p in (1) and (2) can
be chosen to be integer-valued.
(4) Let p be a potential that satisfies (i)–(iii) in (1) for some (optimal) matching
M = M0. A matching M′ is optimal if and only if it satisfies (i)–(iii) (with M
replaced by M′).

57 Compare the identity in (2) with the Fenchel-type duality in Theorem 9.6.
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In connection to (ii) and (iii) in (1) in Theorem 11.1, Theorem 3.4 shows:

X ∈ argmax( f+[+p+]) ⇐⇒
f+(X)− f+(X−u+ v)+ p(u)− p(v)≥ 0 (∀u ∈ X , ∀v ∈V+ \X),
f+(X)− f+(X−u)+ p(u)≥ 0 (∀u ∈ X),
f+(X)− f+(X + v)− p(v)≥ 0 (∀v ∈V+ \X),

(11.4)

Y ∈ argmax( f−[−p−]) ⇐⇒
f−(Y )− f−(Y −u+ v)− p(u)+ p(v)≥ 0 (∀u ∈ Y, ∀v ∈V− \Y ),
f−(Y )− f−(Y −u)− p(u)≥ 0 (∀u ∈ Y ),
f−(Y )− f−(Y + v)+ p(v)≥ 0 (∀v ∈V− \Y ).

(11.5)

These expressions are crucial in deriving the second optimality criterion (The-
orem 11.3) in Section 11.3 and in designing efficient algorithms for the M\-
concave matching problem.

The optimality condition for the M\-concave intersection problem (11.3)
deserves a separate statement in the form of weight splitting, though it is an
immediate corollary of the above theorem.

Theorem 11.2 (Weight splitting for M\-concave intersection).
(1) A subset X ⊆V maximizes w(X)+ f1(X)+ f2(X) if and only if there exist
w1,w2 : V → R such that

(i) [“weight splitting”] w(v) = w1(v)+w2(v) (v ∈V ),
(ii) X is a maximizer of f1[+w1],
(iii) X is a maximizer of f2[+w2].

(2) max
X
{w(X)+ f1(X)+ f2(X)}

= min
w1,w2
{max( f1[+w1])+max( f2[+w2]) | w(v) = w1(v)+w2(v) (v ∈V )}.

(3) If f1, f2 and w are all integer-valued, we may assume that w1,w2 : V → Z.

11.3. Optimality criterion by negative-cycles

As the second criterion for optimality we describe the negative-cycle criterion.
First we need to introduce the auxiliary graph GM = (Ṽ ,AM) associated with a
matching M satisfying ∂+M ∈ dom f+ and ∂−M ∈ dom f− in (11.2). Define
X = ∂+M and Y = ∂−M.

The vertex set Ṽ of the auxiliary graph GM is given by Ṽ = V+∪V−∪
{s+,s−}, where s+ and s− are new vertices often referred to as “source vertex”
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and “sink vertex” respectively. The arc set AM consists of nine disjoint parts:

AM = (A◦∪M◦)∪ (A+∪F+∪S+)∪ (A−∪F−∪S−)∪R,

where58

A◦ = {a | a ∈ A} (copy of A),

M◦ = {a | a ∈M} (a: reorientation of a),

A+ = {(u,v) | u ∈ X , v ∈V+ \X , X−u+ v ∈ dom f+},
F+ = {(u,s+) | u ∈ X}, (11.6)

S+ = {(s+,v) | v ∈V+ \X},
A− = {(v,u) | u ∈ Y, v ∈V− \Y, Y −u+ v ∈ dom f−},
F− = {(s−,u) | u ∈ Y},
S− = {(v,s−) | v ∈V− \Y},
R = {(s−,s+)}.

The arc length `M(a) for a ∈ AM is defined by

`M(a) =



−w(a) (a ∈ A◦),
w(a) (a = (u,v) ∈M◦, a = (v,u) ∈M),
f+(X)− f+(X−u+ v) (a = (u,v) ∈ A+),
f+(X)− f+(X−u) (a = (u,s+) ∈ F+),
f+(X)− f+(X + v) (a = (s+,v) ∈ S+),
f−(Y )− f−(Y −u+ v) (a = (v,u) ∈ A−),
f−(Y )− f−(Y −u) (a = (s−,u) ∈ F−),
f−(Y )− f−(Y + v) (a = (v,s−) ∈ S−),
0 (a = (s−,s+) ∈ R).

(11.7)

A directed cycle in GM of a negative length with respect to the arc length
`M is called a negative cycle. As is well known in network flow theory, there
exists no negative cycle in (GM, `M) if and only if there exists a potential
p : Ṽ → R such that

`M(a)+ p(∂+a)− p(∂−a)≥ 0 (a ∈ AM), (11.8)

where ∂+a denotes the initial (tail) vertex of a, and ∂−a the terminal (head)
vertex of a. With the use of (11.4), (11.5) and (11.8), Theorem 11.1 is translated
into the following theorem; see Remark 11.1. This theorem gives an optimality
criterion in terms of negative cycles; see Murota (1996c) and Murota (2000b,
Theorem 5.2.42).

58 The reorientation of an arc a = (u,v) means the arc (v,u), to be denoted as a.
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Theorem 11.3 (Negative-cycle criterion). In the M\-concave matching pro-
blem to maximize (11.1), a matching M satisfying (11.2) is optimal if and only
if there exists in the auxiliary graph GM no negative cycle with respect to the
arc length `M.

Remark 11.1. The condition (11.8) for a ∈ (F+ ∪ S+)∪ (F− ∪ S−) refers
to p(s+) and p(s−), while the potential p in Theorem 11.1 is defined only
on V+ ∪V−. To derive (11.8) from Theorem 11.1 we may define p(s+) =
p(s−) = 0. Indeed, the conditions imposed on p(s+) by (11.8) are

f+(X)− f+(X−u)+ p(u)− p(s+)≥ 0 (u ∈ X),

f+(X)− f+(X + v)+ p(s+)− p(v)≥ 0 (v ∈V+ \X),

which are satisfied by (11.4) if p(s+) = 0. Similarly for p(s−).

11.4. Concluding remarks of section 11

Theorems 11.1 and 11.3 contain several standard results in matroid optimiza-
tion, such as Frank’s weight splitting theorem (Frank, 1981) for the weighted
matroid intersection problem. The proofs of Theorems 11.1 and 11.3 can be
found in Murota (1996c) and Murota (2000b, Section 5.2). There are two
key lemmas, called “upper-bound lemma” and “unique-max lemma,” which
capture the essential properties inherent in M-concavity. On the basis of these
optimality criteria efficient algorithms can be designed for the M\-concave
matching problem. For algorithmic issues, see Murota (1996b) and Murota
(2000b, Section 6.2).

The valuated matching problem treated in this section is generalized to the
submodular flow problem in Section 12.

12. SUBMODULAR FLOW PROBLEM

12.1. Submodular flow problem

Let G = (V,A) be a directed graph with vertex set V and arc set A. Suppose
that each arc a ∈ A is associated with upper-capacity c(a), lower-capacity c(a),
and cost γ(a) per unit flow. Furthermore, for each vertex v ∈V , the amount of
flow supply at v is specified by x(v).

The minimum cost flow problem is to find a flow ξ = (ξ (a) | a ∈ A)
that minimizes the total cost 〈γ,ξ 〉A = ∑a∈A γ(a)ξ (a) subject to the capacity
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constraint c(a)≤ ξ (a)≤ c(a) (a ∈ A) and the supply specification. Here the
supply specification means a constraint that the boundary ∂ξ of ξ defined by

∂ξ (v) = ∑{ξ (a) | a ∈ δ
+v}−∑{ξ (a) | a ∈ δ

−v} (v ∈V ) (12.1)

should be equal to a given value x(v), where δ+v and δ−v denote the sets of
arcs leaving (going out of) v and entering (coming into) v, respectively. We
can interpret x(v) = ∂ξ (v) as the net amount of flow entering the network at v
from outside.

We consider the integer flow problem, which is described by an integer-
valued upper-capacity c : A→ Z∪{+∞}, an integer-valued lower-capacity
c : A→Z∪{−∞}, a real-valued cost function γ : A→R, and an integer supply
vector x : V → Z, where it is assumed that c(a) ≥ c(a) for each a ∈ A. The
variable to be optimized is an integral flow ξ : A→ Z.

[Minimum cost flow problem MCFP (linear arc cost)]59

Minimize Γ0(ξ ) = ∑
a∈A

γ(a)ξ (a) (12.2)

subject to c(a)≤ ξ (a)≤ c(a) (a ∈ A), (12.3)
∂ξ = x, (12.4)
ξ (a) ∈ Z (a ∈ A). (12.5)

A generalization of the minimum cost flow problem MCFP is obtained
by relaxing the supply specification ∂ξ = x to the constraint that the flow
boundary ∂ξ should belong to a given subset B of ZV representing “feasible”
or “admissible” supplies:60

∂ξ ∈ B. (12.6)

Such problem is called the submodular flow problem, if B is an M-convex set
(integral base polyhedron; see Remark 4.2).61 This problem is introduced by
Edmonds & Giles (1977).

59 MCFP stands for Minimum Cost Flow Problem.
60 By the flow conservation law, the sum of the components of ∂ξ is equal to zero, i.e., ∂ξ (V )= 0,

for any flow ξ . Accordingly we assume that B is contained in the hyperplane {x ∈RV | x(V ) =
0}.

61 In the conventional formulation (Fujishige, 2005, Chapter III), the M-convex set B is given by
an integer-valued submodular set function that describes B; see also Murota (2003, Section
4.4).
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[Submodular flow problem MSFP1 (linear arc cost)]62

Minimize Γ1(ξ ) = ∑
a∈A

γ(a)ξ (a) (12.7)

subject to c(a)≤ ξ (a)≤ c(a) (a ∈ A), (12.8)
∂ξ ∈ B, (12.9)
ξ (a) ∈ Z (a ∈ A). (12.10)

A further generalization of the problem is obtained by introducing a cost
function for the flow boundary ∂ξ rather than merely imposing the constraint
∂ξ ∈ B. Namely, with a function f : ZV → R∪{+∞} we add a new term
f (∂ξ ) to the objective function, thereby imposing constraint ∂ξ ∈ B = dom f
implicitly. If the function f is M-convex, the generalized problem is called the
M-convex submodular flow problem, introduced by Murota (1999).

[M-convex submodular flow problem MSFP2 (linear arc cost)]

Minimize Γ2(ξ ) = ∑
a∈A

γ(a)ξ (a)+ f (∂ξ ) (12.11)

subject to c(a)≤ ξ (a)≤ c(a) (a ∈ A), (12.12)
∂ξ ∈ dom f , (12.13)
ξ (a) ∈ Z (a ∈ A). (12.14)

The special case of the M-convex submodular flow problem MSFP2 with a
{0,+∞}-valued f reduces to the submodular flow problem MSFP1.

A still further generalization is possible by replacing the linear arc cost
in Γ2 with a separable convex function. Namely, using univariate convex
functions63 fa : Z→ R∪{+∞} (a ∈ A), we consider ∑

a∈A
fa(ξ (a)) instead of

∑
a∈A

γ(a)ξ (a) to obtain MSFP3 below.

[M-convex submodular flow problem MSFP3 (nonlinear arc cost)]

Minimize Γ3(ξ ) = ∑
a∈A

fa(ξ (a))+ f (∂ξ ) (12.15)

subject to ξ (a) ∈ dom fa (a ∈ A), (12.16)
∂ξ ∈ dom f , (12.17)
ξ (a) ∈ Z (a ∈ A). (12.18)

62 MSFP stands for M-convex Submodular Flow Problem. We use denotation MSFPi with
i = 1,2,3 to indicate the hierarchy of generality in the problems.

63 fa(t−1)+ fa(t +1)≥ 2 fa(t) for all integers t.

Journal of Mechanism and Institution Design 1(1), 2016



“p˙05” — 2016/12/18 — 22:56 — page 247 — #97

Kazuo Murota 247

Obviously, MSFP2 is a special case of MSFP3 with

fa(t) =
{

γ(a)t (t ∈ [c(a),c(a)]Z),
+∞ (otherwise). (12.19)

Conversely, MSFP3 can be put into the form MSFP2; see Remark 12.1.

Remark 12.1. Problem MSFP3 on G = (V,A) can be written in the form of
MSFP2 on a larger graph G̃ = (Ṽ , Ã). We replace each arc a = (u,v) ∈ A
with a pair of arcs, a+ = (u,v−a ) and a− = (v+a ,v), where v+a and v−a are
newly introduced vertices. Accordingly, we have Ã = {a+,a− | a ∈ A} and
Ṽ = V ∪{v+a ,v−a | a ∈ A}. For each a ∈ A we consider a function f̃a : Z2→
R∪{+∞} given by

f̃a(t,s) =
{

fa(t) (t + s = 0),
+∞ (otherwise),

and define f̃ : ZṼ → R∪{+∞} by

f̃ (x̃) = ∑
a∈A

f̃a(x̃(v+a ), x̃(v
−
a ))+ f (x̃|V ) (x̃ ∈ ZṼ ),

where x̃|V denotes the restriction of x̃ to V . For a flow ξ̃ : Ã→ Z, we have
ξ̃ (a+) = ξ̃ (a−) if (∂ ξ̃ (v+a ),∂ ξ̃ (v−a )) ∈ dom f̃a. Problem MSFP3 is thus redu-
ced to MSFP2 with objective function Γ̃2(ξ̃ ) = f̃ (∂ ξ̃ ), where the function f̃ is
M-convex.

Remark 12.2. The M\-concave intersection problem (Section 9.1) can be
formulated as an M-convex submodular flow problem. Suppose we want to
maximize the sum f1(x)+ f2(x) of two M\-concave functions f1, f2 :Zn→R∪
{−∞}. Let f̃1, f̃2 : Zn+1→ R∪{−∞} be the associated M-concave functions;
see (4.18). We consider an M-convex submodular flow problem on the bipartite
graph G = (V1∪V2,A) in Fig. 5, where Vi = {vi0,vi1, . . . ,vin} for i = 1,2 and
A = {(v1 j,v2 j) | j = 0,1, . . . ,n}. The boundary cost function f : ZV1×ZV2 →
R∪{+∞} is defined by f (x1,x2) =− f̃1(x1)− f̃2(−x2) for x1 ∈ ZV1 and x2 ∈
ZV2 , which is an M-convex function. The arc costs are identically zero and
no capacity constraints are imposed (γ(a) = 0, c(a) = +∞, c(a) =−∞ for all
a ∈ A). Since x1 =−x2 if (x1,x2) = ∂ξ for a flow ξ in this network, this M-
convex submodular flow problem is equivalent to the problem of maximizing
f1(x)+ f2(x). Theorem 9.4 for the M-convex intersection problem can be
regarded as a special case of Theorem 12.1 for the M-convex submodular flow
problem.
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Figure 5: M-convex submodular flow problem for M\-concave intersection
problem

In subsequent sections we show optimality criteria for the M-convex sub-
modular flow problem in terms of potentials and negative cycles.

12.2. Optimality criterion by potentials

We show the optimality criterion for the M-convex submodular flow problem
MSFP3 in terms of potentials. A potential means a function p : V → R (or
a vector p ∈ RV ) on the vertex set V . The coboundary of a potential p is a
function δ p : A→ R on the arc set A defined by

δ p(a) = p(∂+a)− p(∂−a) (a ∈ A), (12.20)

where, for each arc a∈ A, ∂+a denotes the initial (tail) vertex of a and, ∂−a the
terminal (head) vertex of a. The following theorem is due to Murota (1999);
see also Murota (2003, Section 9.4).

Theorem 12.1 (Potential criterion). Consider the M-convex submodular flow
problem MSFP3.
(1) For a feasible flow ξ : A→ Z, two conditions (OPT) and (POT) below are
equivalent.

(OPT) ξ is an optimal flow.
(POT) There exists a potential p : V → R such that64

(i) ξ (a) ∈ argmin fa[+δ p(a)] for every a ∈ A, and
(ii) ∂ξ ∈ argmin f [−p].

(2) Suppose that a potential p : V →R satisfies (i) and (ii) above for an optimal
flow ξ . A feasible flow ξ ′ is optimal if and only if

64 By notation (4.20), fa[+δ p(a)] means the function defined as fa[+δ p(a)](t) = fa(t) +
(p(∂+a)− p(∂−a))t for all t ∈ Z.
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(i) ξ ′(a) ∈ argmin fa[+δ p(a)] for every a ∈ A, and
(ii) ∂ξ ′ ∈ argmin f [−p].

(3) If the cost functions fa (a ∈ A) and f are integer-valued, there exists an
integer-valued potential p : V → Z in (POT). Moreover, the set of integer-
valued optimal potentials,

Π
∗ = {p | p : integer-valued optimal potential },

is an L-convex set.65

In connection to (i) and (ii) in (POT) in Theorem 12.1, note the equivalen-
ces:

ξ (a) ∈ argmin fa[+δ p(a)] ⇐⇒ for d =±1
fa(ξ (a)+d)− fa(ξ (a))+d[p(∂+a)− p(∂−a)]≥ 0, (12.21)
∂ξ ∈ argmin f [−p] ⇐⇒
∆ f (∂ξ ;v,u)+ p(u)− p(v)≥ 0 (∀u,v ∈V ), (12.22)

where

∆ f (z;v,u) = f (z+χv−χu)− f (z) (z ∈ dom f ;u,v ∈V ). (12.23)

These expressions are crucial in deriving the second optimality criterion (The-
orem 12.2) in Section 12.3 and in designing efficient algorithms for the M-
convex submodular flow problem.

12.3. Optimality criterion by negative cycles

The optimality of an M-convex submodular flow can also be characterized by
the nonexistence of negative cycles in an auxiliary network. This fact leads to
the cycle-cancelling algorithm. We consider the M-convex submodular flow
problem MSFP2 that has a linear arc cost. This is not restrictive, since MSFP3
can be put in the form of MSFP2 (Remark 12.1).

For a feasible flow ξ : A→ Z we define an auxiliary network as follows.
Let Gξ = (V,Aξ ) be a directed graph with vertex set V and arc set Aξ =

65 A nonempty set P⊆ Zn is called an L-convex set if it is an L\-convex set (Remark 7.4) such
that p ∈ P implies p+1, p−1 ∈ P. See Murota (2003, Chapter 5) for details.
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A◦
ξ
∪B◦

ξ
∪Cξ consisting of three disjoint parts:

A◦
ξ

= {a | a ∈ A, ξ (a)< c(a)},
B◦

ξ
= {a | a ∈ A, c(a)< ξ (a)} (a: reorientation of a),

Cξ = {(u,v) | u,v ∈V, u 6= v, ∂ξ − (χu−χv) ∈ dom f}. (12.24)

We define an arc length function `ξ : Aξ → R by

`ξ (a) =


γ(a) (a ∈ A◦

ξ
),

−γ(a) (a ∈ B◦
ξ
, a ∈ A),

∆ f (∂ξ ;v,u) (a = (u,v) ∈Cξ ).

(12.25)

We refer to (Gξ , `ξ ) as the auxiliary network.
A directed cycle in Gξ of a negative length with respect to the arc length `ξ

is called a negative cycle. As is well known in network flow theory, there exists
no negative cycle in (Gξ , `ξ ) if and only if there exists a potential p : V → R
such that

`ξ (a)+ p(∂+a)− p(∂−a)≥ 0 (a ∈ Aξ ). (12.26)

With the use of (12.21), (12.22) and (12.26), Theorem 12.1 is translated into
the following theorem which gives an optimality criterion in terms of negative
cycles; see Murota (1999) and also Murota (2003, Section 9.5).

Theorem 12.2 (Negative-cycle criterion). For a feasible flow ξ : A→ Z to the
M-convex submodular flow problem MSFP2, the conditions (OPT) and (NNC)
below are equivalent.

(OPT) ξ is an optimal flow.
(NNC) There exists no negative cycle in the auxiliary network (Gξ , `ξ )

with `ξ of (12.25).

12.3.1. Cycle cancellation

The negative-cycle optimality criterion states that the existence of a negative
cycle implies the non-optimality of a feasible flow. This suggests the possibility
of improving a non-optimal feasible flow by the cancellation of a suitably
chosen negative cycle.

Suppose that negative cycles exist in the auxiliary network (Gξ , `ξ ) for
a feasible flow ξ , where the arc length `ξ is defined by (12.25). Choose a
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negative cycle having the smallest number of arcs, and let Q (⊆ Aξ ) be the set
of its arcs. Modifying the flow ξ along Q by a unit amount we obtain a new
flow ξ defined by

ξ (a) =


ξ (a)+1 (a ∈ Q∩A◦

ξ
),

ξ (a)−1 (a ∈ Q∩B◦
ξ
),

ξ (a) (otherwise).
(12.27)

The following theorem66 shows that the updated flow ξ is a feasible flow with
an improvement in the objective function in (12.11):

Γ2(ξ ) = ∑
a∈A

γ(a)ξ (a)+ f (∂ξ ).

Theorem 12.3. For a feasible flow ξ : A→ Z to the M-convex submodular
flow problem MSFP2, let Q be a negative cycle having the smallest number of
arcs in (Gξ , `ξ ). Then ξ in (12.27) is a feasible flow and

Γ2(ξ )≤ Γ2(ξ )+ `ξ (Q)< Γ2(ξ ). (12.28)

12.4. Concluding remarks of section 12

On the basis of the optimality criteria in Theorems 12.1 and 12.2 we can
design efficient algorithms for the M-convex submodular flow problem, where
the expressions (12.21) and (12.22) are crucial. For algorithmic issues, see
Murota (1999), Murota (2003, Section 10.4), Iwata & Shigeno (2003), Murota
& Tamura (2003a), and Iwata et al. (2005).

13. DISCRETE FIXED POINT THEOREM

Discrete fixed point theorems in discrete convex analysis originate in the
theorem of Iimura et al. (2005) based on Iimura (2003), which is described in
this section. Subsequent development and other types of discrete fixed point
theorems are mentioned in Section 13.5.

66 The inequality (12.28) is by no means obvious. See Murota (1999) and Murota (2003, Section
10.4) for the proof.
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13.1. Discrete fixed point theorem

To motivate the discrete fixed point theorem of Iimura et al. (2005), we first
take a glimpse at Kakutani’s fixed point theorem.

Let S be a subset of Rn and F be a set-valued mapping (correspondence)
from S to itself, which is denoted as F : S→→ S (or F : S→ 2S). A point
x ∈ S satisfying x ∈ F(x) is said to be a fixed point of F . Kakutani’s fixed point
theorem reads as follows.

Theorem 13.1. A set-valued mapping F : S→→ S, where S⊆ Rn, has a fixed
point if

(a) S is a bounded closed convex subset of Rn,
(b) For each x ∈ S, F(x) is a nonempty closed convex set, and
(c) F is upper-hemicontinuous.

In the discrete fixed point theorem (Theorem 13.2 below) we are concerned
with F : S→→ S, where S is a subset of Zn. The three conditions (a) to (c) in
Theorem 13.1 above are “discretized” as follows.

• Condition (a) assumes that the domain of definition S is nicely-shaped
or well-behaved. In the discrete case we assume S to be “integrally
convex.”

• Condition (b) assumes that each value F(x) is nicely-shaped or well-
behaved. In the discrete case we assume that F(x) = F(x)∩Zn, where
F(x) denotes the convex hull of F(x).

• Condition (c) assumes that mapping F is continuous in some appropriate
sense. In the discrete case we assume F to be “direction-preserving.”

The key concepts, “integrally convex set” and “direction-preserving map-
ping,” are explained in Section 13.2. The discrete fixed point theorem of Iimura
et al. (2005) is the following.

Theorem 13.2. A set-valued mapping F : S→→ S, where S⊆ Zn, has a fixed
point if

(a) S is a nonempty finite integrally convex subset of Zn,
(b) For each x ∈ S, F(x) is nonempty and F(x) = F(x)∩Zn, and
(c) F is direction-preserving.
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y y

Figure 6: Integral neighbor N(y) of y (◦: point of N(y))

Integrally convex Not integrally convex Not integrally convex

Figure 7: Concept of integrally convex sets

13.2. Integrally convex set and direction-preserving mapping

13.2.1. Integrally convex set

The integral neighborhood of a point y ∈ Rn is defined as

N(y) = {z ∈ Zn | ‖z− y‖∞ < 1}. (13.1)

See Fig. 6. A set S⊆ Zn is said to be integrally convex if

y ∈ S =⇒ y ∈ S∩N(y) (13.2)

for any y ∈ Rn (Favati & Tardella, 1990). Figure 7 illustrates this concept. We
have S = S∩Zn for an integrally convex set S. It is known that L\-convex sets
and M\-convex sets are integrally convex. See Murota (2003, Section 3.4) and
Moriguchi et al. (2016) for more about integral convexity.

13.2.2. Direction-preserving mapping

Let S be a subset of Zn and F : S→→ S be a set-valued mapping (corre-
spondence) from S to S. For x = (x1, . . . ,xn) ∈ Zn we denote by π(x) =
(π1(x), . . . ,πn(x)) ∈Rn the projection of x to F(x); see Fig. 8. This means that
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x

❥
π(x)

F(x)

Figure 8: Projection π(x) with σ(x) = sign(π(x)− x) = (+1,−1)

π(x) is the point of F(x) that is nearest to x with respect to the Euclidean norm.
We define the direction sign vector σ(x) ∈ {+1,0,−1}n as

σ(x) = (σ1(x), . . . ,σn(x)) = (sign(π1(x)− x1), . . . ,sign(πn(x)− xn)),

where

sign(y) =


+1 (y > 0),

0 (y = 0),
−1 (y < 0).

Then we say that F is direction-preserving if for all x,z ∈ S with ‖x− z‖∞ ≤ 1
it holds that

σi(x)> 0 =⇒ σi(z)≥ 0 (i = 1, . . . ,n). (13.3)

Note that this is equivalent to saying that σi(x)σi(z) 6=−1 for each i = 1, . . . ,n
if x,z ∈ S and ‖x− z‖∞ ≤ 1. Being direction-preserving is interpreted as being
“continuous” in the discrete setting.

13.3. Illustrative examples

Example 13.1. The significance of being direction-preserving is most transpa-
rent in the case of n = 1. Let S = [a,b]Z be an integer interval with a,b ∈ Z
and a≤ b. Consider F : S→→ S represented as F(x) = [α(x),β (x)]Z, where
α(x),β (x) ∈ Z and a ≤ α(x) ≤ β (x) ≤ b. The projection π(x) and the di-
rection sign vector σ(x) are given by

π(x)=


x (α(x)≤ x≤ β (x)),
α(x) (x≤ α(x)−1),
β (x) (x≥ β (x)+1),

σ(x)=


0 (α(x)≤ x≤ β (x)),
+1 (x≤ α(x)−1),
−1 (x≥ β (x)+1).
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Figure 9: Necessity of the assumption of integral convexity

Suppose that F is direction-preserving, which means σ(x)σ(x+1) 6=−1 for
all x with a≤ x < b. There are three possibilities:

(i) σ(x) = +1 for all x ∈ S,
(ii) σ(x) =−1 for all x ∈ S,
(iii) σ(x) = 0 for some x ∈ S.

In the first case (i) we must have x+ 1 ≤ α(x) ≤ b for all x ∈ S, but this is
impossible for x = b. Similarly, the second case (ii) is not possible, either.
Therefore, we must have the third case (iii), and then the x satisfying σ(x) = 0
is a fixed point of F .

Example 13.2. The assumption (a) of integral convexity in Theorem 13.2
cannot be weakened to the “hole-free” property: S = S∩Zn. Let n = 3 and
consider a subset S of Z3 (Fig. 9) given by

S = {a = (0,1,0), b = (1,0,0), c = (2,0,0), d = (3,0,0), e = (4,0,1)},

which is not integrally convex, but satisfies S = S∩Zn. Define F : S→→ S by

F(a) = F(b) = {e}, F(c) = {a,e}, F(d) = F(e) = {a}.

For each x ∈ S, F(x) is a nonempty subset of S satisfying F(x) = F(x)∩Zn.
Furthermore, F is direction-preserving. Indeed we have

π(a)−a = ( 4, −1, 1),
π(b)−b = ( 3, 0, 1),
π(c)− c = ( 0, 1/2, 1/2),
π(d)−d = (−3, 1, 0),
π(e)− e = (−4, 1, −1),

σ(a) = (+1, −1, +1),
σ(b) = (+1, 0, +1),
σ(c) = ( 0, +1, +1),
σ(d) = (−1, +1, 0),
σ(e) = (−1, +1, −1)

and the condition (13.3) holds for every pair (x,z) with ‖x− z‖∞ ≤ 1, i.e., for
(x,z) = (a,b),(b,c),(c,d),(d,e). Thus, F meets the conditions (b) and (c) in
Theorem 13.2, but F has no fixed point.
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13.4. Proof outline

The proof of Theorem 13.2 consists of the following three major steps; the
reader is referred to Iimura et al. (2005) for the detail.

1. An integrally convex set S has a simplicial decomposition T with a nice
property. For each y ∈ Rn contained in the convex hull of S, let T (y)
denote the smallest simplex in T that contains y. Then the simplicial
decomposition T has the property that all the vertices of T (y) belong to
the integral neighborhood N(y) of y. That is, the set of the vertices of
T (y), to be denoted by V (y), is given as V (y) = T (y)∩N(y).

2. With reference to the simplicial decomposition T , we define a piecewise
linear extension, say, f of the projection π by

f (y) = ∑
x∈V (y)

λxπ(x) (y = ∑
x∈V (y)

λxx, ∑
x∈V (y)

λx = 1, λx ≥ 0).

By Brouwer’s fixed point theorem applied to f : S→ S, we obtain a fixed
point y∗ ∈ S of f , i.e., y∗ = f (y∗).

3. From the equations

∑
x∈V (y∗)

λx(π(x)− x) = ∑
x∈V (y∗)

λxπ(x)− ∑
x∈V (y∗)

λxx = f (y∗)− y∗ = 0

and the assumption of F being direction-preserving, we see that π(x)−
x = 0 for some x ∈ V (y∗). Let x∗ be such a point in V (y∗). Then x∗

is a fixed point of F , since x∗ = π(x∗) ∈ F(x∗), from which follows
x∗ ∈ F(x∗)∩Zn = F(x∗) by condition (b).

13.5. Concluding remarks of section 13

The discrete fixed point theorem initiated by Iimura (2003) and Iimura et al.
(2005) aims at a discrete version of Brouwer’s fixed point theorem. Related
work in this direction includes Laan van der et al. (2006), Danilov & Koshevoi
(2007), Chen & Deng (2006, 2008, 2009), Yang (2008, 2009), Talman & Yang
(2009), Iimura & Yang (2009), Iimura (2010), Deng et al. (2011), Laan van
der et al. (2010, 2011), and Iimura et al. (2012). Discrete fixed point theorems
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are used successfully in showing the existence of a competitive equilibrium
under indivisibility, a pure Nash equilibrium with discrete strategy sets, etc.

Efforts are made to weaken the condition (c) of “direction preserving” in
Theorem 13.2. Weaker conditions called “locally gross direction preserving”
and “simplicially locally gross direction preserving” are considered by Yang
(2008, 2009), Iimura & Yang (2009), and Iimura (2010). Further variants are
found in Talman & Yang (2009), Laan van der et al. (2011), and Iimura et
al. (2012). These studies, however, share the framework of mappings and
correspondences defined on integrally convex sets or their simplicial divisions.

The proof of Theorem 13.2 by Iimura et al. (2005) is not constructive,
relying on Brouwer’s fixed point theorem. Constructive proofs are given by
Laan van der et al. (2006) and Laan van der et al. (2011). Computational com-
plexity of finding a fixed point for direction-preserving mappings is discussed
by Chen & Deng (2006, 2008, 2009) and Deng et al. (2011).

Another type of (discrete) fixed point theorem, the lattice-theoretical fixed
point theorem of Tarski (1955), is a powerful tool used extensively in eco-
nomics and game theory; see Milgrom & Roberts (1990), Vives (1990), and
Topkis (1998). For stable matchings, use and power of Tarski’s fixed point
theorem are demonstrated by Adachi (2000), Fleiner (2003), and Farooq et
al. (2012). It may be said, however, that Tarski’s fixed point theorem is rather
independent of discrete convex analysis.

Yet another type of discrete fixed point theorems are considered in the
literature, including Robert (1986), Shih & Dong (2005), Richard (2008), Yang
(2008), Sato & Kawasaki (2009) and Kawasaki et al. (2013).

14. OTHER TOPICS

14.1. Matching market and economy with indivisible goods

Since the seminal paper by Kelso & Crawford (1982), the concept of gross
substitutes with its variants has turned out to be pivotal in discussing matching
market and economy with indivisible goods. The literature includes, e.g., Roth
& Sotomayor (1990), Bikhchandani & Mamer (1997), Gul & Stacchetti (1999),
Ausubel & Milgrom (2002), Fujishige & Yang (2003), Milgrom (2004), Hat-
field & Milgrom (2005), Ausubel (2006), Sun & Yang (2006, 2009), Milgrom
& Strulovici (2009), Hatfield et al. (2016).

Application of discrete convex analysis to economics was started by Da-
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nilov et al. (1998, 2001) for the Walrasian equilibrium of indivisible markets
(see also Murota, 2003, chapter 11). The interaction between economics and
discrete convex analysis was reinforced decisively by the observation of Fu-
jishige & Yang (2003) that M\-concavity (of set functions) is equivalent to
the gross substitutes property (Theorem 3.7 in Section 3.3). This equivalence
is extended to functions in integer variables (Section 4.3). While the reader
is referred to Tamura (2004) and Murota (2003, chapter 11) for this earlier
development, we mention more recent papers below.

As described in Section 10, the Fujishige-Tamura model of two-sided
matching markets, proposed by Fujishige & Tamura (2006, 2007), is a common
generalization of the stable marriage model (Gale & Shapley, 1962) and the
assignment game (Shapley & Shubik, 1972).

Inoue (2008) uses the property of M\-convex sets that they are closed
under (Minkowski) summation, to show that the weak core in a finite exchange
economy is nonempty if every agent’s upper contour set is M\-convex. Kojima
et al. (2014) present a unified treatment of two-sided matching markets with
a variety of distributional constraints that can be represented by M\-concave
functions. It is shown that the generalized deferred acceptance algorithm is
strategy-proof and yields a stable matching. Yokote (2016) considers a market
in which each buyer demands at most one unit of commodity and each seller
produces multiple units of several types of commodities. The core and the
competitive equilibria are shown to exist and coincide under the assumption
that the cost function of each seller is M\-convex.

Algorithmic aspects of Walrasian equilibria are investigated by Paes Leme
& Wong (2016) in a general setting, in which the algorithms from discrete
convex analysis are singled out as efficient methods for the gross substitutes
case. See also Paes Leme (2014), Murota & Tamura (2003a) and Murota (2003,
Section 11.5).

14.2. Trading networks

M\-concavity plays a substantial role in the modeling and analysis of vertical
trading networks (supply chain networks) introduced by Ostrovsky (2008) and
further studied by Hatfield et al. (2013), Fleiner (2014), Fleiner et al. (2015),
Ikebe et al. (2015), Ikebe & Tamura (2015), and Candogan et al. (2016) in
more general settings.

In a trading network, an agent is identified with a vertex (node) of the
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network. In-coming arcs to a vertex represent the trades in which the agent
acts as a buyer and out-going arcs represent the trades in which the agent acts
as a seller. Each vertex v of the network is associated with a choice function
Cv and/or a valuation function fv of the agent, defined on the set Uv∪Wv of
the arcs incident to v, where Uv is the set of in-coming arcs to the vertex v and
Wv is the set of out-going arcs from v. In particular, the function fv is a set
function on Uv∪Wv in the single-unit case, whereas it is a function on ZUv∪Wv

in the multi-unit case.
In the single-unit case, Ostrovsky (2008) identifies the key property of a

choice function, called the same-side substitutability (SSS) and the cross-side
complementarity (CSC), which are discussed in Section 3.5. These properties
are satisfied by the choice function induced from a unique-selecting twisted
M\-concave valuation function fv, with twisting by Wv; see Theorem 3.13. The
multi-unit case is treated by Ikebe & Tamura (2015). The conditions (SSS)
and (CSC) are generalized to (SSS-CSC1[Z]) and (SSS-CSC2[Z]), and these
conditions are shown to be satisfied by the choice function induced from a
unique-selecting twisted M\-concave valuation fv; see Theorem 4.14 in Section
4.5.

Discrete convex analysis is especially relevant and useful when valuation
functions and the price vector p are explicitly involved in the model as in
Hatfield et al. (2013); Ikebe et al. (2015); Candogan et al. (2016). Specifically,
we can use the results from discrete convex analysis as follows:

• The existence of a competitive equilibrium (Hatfield et al., 2013, De-
finition 3) can be proved with the aid of the M\-concave intersection
theorem (Theorem 9.4).

• The lattice structure of the equilibrium price vectors can be shown
through the conjugacy relationship between M\-concavity and L\-convexity
(Section 7.2).

• The equivalence of chain stability and stability can be established with
the aid of the negative-cycle criterion for the M-convex submodular flow
problem (Theorem 12.2). Recall from Remark 12.2 that the M\-concave
intersection problem can be formulated as an M-convex submodular
flow problem.

• Fundamental computational problems for a trading network, such as
checking stability, computing a competitive equilibrium, and maximizing
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the welfare, can often be solved with the aid of algorithms known in
discrete convex analysis, such as those for maximizing M\-concave
functions and for solving the M-convex submodular flow problem. See
Candogan et al. (2016) as well as Murota & Tamura (2003a), Murota
(2003, Chapter 11), and Ikebe et al. (2015).

14.3. Congestion games

Congestion games (Rosenthal, 1973), which are equivalent to (exact) “finite”
potential games (Monderer & Shapley, 1996), are a class of games possessing
a Nash equilibrium in pure strategies. There are various generalizations of
potential games, such as: ordinal and generalized ordinal (Monderer & Shapley,
1996) and best-response (Voorneveld, 2000) potential games. For algorithmic
aspects of congestion games, we refer to Roughgarden (2007) and Tardos &
Wexler (2007).

Recently, a connection is made by Fujishige et al. (2015) between con-
gestion games on networks and discrete convex analysis. It has been known
(Fotakis, 2010) that for every congestion game on an extension-parallel net-
work, considered by Holzman & Law-yone (2003), any best-response sequence
reaches a pure Nash equilibrium of the game in n steps, where n is the number
of players. It is pointed out by Fujishige et al. (2015) that the fast convergence
of best-response sequences is a consequence of M\-convexity of the associated
potential function, which is a laminar convex function and hence is M\-convex;
see (4.35) in Section 4.6.

In economics, potential games on some subset of a Euclidean space are
more widely studied. A maximizer of (some sort of) potential function is
a Nash equilibrium. We also have the converse if the potential function
is “concave,” since local optimality implies the global optimality there. Ui
(2006, 2008) studies the condition for a local maximizer of a function on
the integer lattice to become a global maximizer of the function as well, with
application to best-response potential games on the integer lattice. In Ui (2008),
it is shown that a condition analogous to midpoint concavity, called “larger
midpoint property,” is sufficient for the equivalence of local optimality and
global optimality, and shows the equivalence of a Nash equilibrium and a
maximizer of the best-response potential function. A more general condition
for the equivalence of local and global optimality is studied in Ui (2006), along
with its relation to M-, L-, L\-, and M\-convex functions.
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14.4. Integrally concave games

Another study on the games on the integer lattice Zn is found in Iimura &
Watanabe (2014), which deals with n-person symmetric games with integrally
concave payoff functions defined on the n-product of a finite integer interval.
Here, the integral concavity is in the sense of Favati & Tardella (1990); see also
Murota (2003, Section 3.4). It is shown that every game in this class of games
has a (not necessarily symmetric) Nash equilibrium, which is located within a
unit distance from the diagonal of strategy space. Although assuming concavity
on the entire strategy space is somewhat stringent, this result generalizes the
result of Cheng et al. (2004) that every n-person symmetric “two-strategy”
game has a (not necessarily symmetric) Nash equilibrium, because any real-
valued function on the n-product of a doubleton is integrally concave. A further
generalization has been made by Iimura & Watanabe (2016), which implies the
existence of an equilibrium in discrete Cournot game with concave industry
revenue, convex cost, and nonincreasing inverse demand.

14.5. Unimodularity and tropical geometry

Unimodular coordinate transformations are a natural operation for discrete
convexity; see Sun & Yang (2008) and Baldwin & Klemperer (2016). In
Section 4.7 we have mentioned that a function f is twisted M\-concave if and
only if it is represented as f (x) = g(Ux) with U = diag(1, . . . ,1,−1, . . . ,−1)
for some M\-concave function g. Another such example is a class of mul-
timodular functions in Hajek (1985) which are used in discrete-event con-
trol (Altman et al., 2000). A function f : Zn → R∪ {+∞} is said to be
multimodular if the function f̃ : Zn+1 → R∪ {+∞} defined by f̃ (x0,x) =
f (x1− x0,x2− x1, . . . ,xn− xn−1) for x0 ∈ Z and x ∈ Zn is submodular in n+1
variables. This means that f is multimodular if and only if the function
g(x) = f (Dx) is L\-convex, where D = (di j | 1 ≤ i, j ≤ n) is a bidiagonal
matrix defined by dii = 1 (i = 1, . . . ,n) and di+1,i = −1 (i = 1, . . . ,n− 1).
This matrix D is unimodular, and its inverse D−1 is an integral matrix with
(D−1)i j = 1 for i ≥ j and (D−1)i j = 0 for i < j. Therefore, a function f is
multimodular if and only if it is represented as f (x) = g(Ux) with U = D−1

for some L\-convex function g.
The fundamental role of unimodularity for discrete convexity, beyond

unimodular coordinate transformations, is investigated in Danilov & Koshevoy
(2004) under the name of “unimodular systems.” An application of unimodular
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systems to competitive equilibrium is found in Danilov et al. (2001).
Another recent topic, of a similar flavor, is tropical geometry. Baldwin

& Klemperer (2016) investigate indivisibility issues in terms of tropical ge-
ometry. The Ricardian theory of international trade is treated by Shiozawa
(2015), mechanism design by Crowell & Tran (2016), and dominant strategy
implementation by Weymark (2016). The interaction of tropical geometry with
economics may yield unexpected results.67
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