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Simulation 
  A Simulation is the imitation of the operation of a real-world 
process or system over time. 
 
Brief Explanation 

• The behavior of a system as it evolves over time is 
studied by developing a simulation model. 

• This model takes the form of a set of assumptions 
concerning the operation of the system.   

      The assumptions are expressed in 
o Mathematical relationships 
o Logical relationships 
o Symbolic relationships 

    Between the entities of the system. 
 
Measures of performance 
  The model solved by mathematical methods such as differential 
calculus, probability theory, algebraic methods has the solution usually 
consists of one or more numerical parameters which are called measures of 
performance. 
 
1.1 When Simulation is the Appropriate Tool 

• Simulation enables the study of and experimentation with the internal 
interactions of a complex system, or of a subsystem within a complex 
system. 

 
• Informational, organizational and environmental changes can be 

simulated and the effect of those alternations on the model’s behavior 
can be observer. 

 
• The knowledge gained in designing a simulation model can be of 

great value toward suggesting improvement in the system under 
investigation. 

 
• By changing simulation inputs and observing the resulting outputs, 

valuable insight may be obtained into which variables are most 
important and how variables interact. 

 
• Simulation can be used as a pedagogical device to reinforce analytic 

solution methodologies. 
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• Simulation can be used to experiment with new designs or policies 
prior to implementation, so as to prepare for what may happen. 

 
• Simulation can be used to verify analytic solutions. 

 
• By simulating different capabilities for a machine, requirements can 

be determined. 
 

• Simulation models designed for training, allow learning without the 
cost and disruption of on-the-job learning. 

 
• Animation shows a system in simulated operation so that the plan can 

be visualized. 
 

• The modern system(factory, water fabrication plant, service 
organization, etc) is so complex that the interactions can be treated 
only through simulation. 

 
 
1.2 When Simulation is Not Appropriate 
 

• Simulation should be used when the problem cannot be solved using 
common sense. 

 
• Simulation should not be used if the problem can be solved 

analytically. 
 

• Simulation should not be used, if it is easier to perform direct 
experiments. 

 
• Simulation should not be used, if the costs exceeds savings. 

 
• Simulation should not be performed, if the resources or time are not 

available. 
 

• If no data is available, not even estimate simulation is  not advised. 
 

• If there is not enough time or the person are not available, simulation 
is not appropriate. 
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• If managers have unreasonable expectation say, too much soon – or 
the power of simulation is over estimated, simulation may not be 
appropriate. 

 
• If system behavior is too complex or cannot be defined, simulation is 

not appropriate. 
 

 
1.3 Advantages of Simulation 

• Simulation can also be used to study systems in the design stage. 
 
• Simulation models are run rather than solver. 

 
• New policies, operating procedures, decision rules, information flow, 

etc can be explored without disrupting the ongoing operations of the 
real system. 

 
• New hardware designs, physical layouts, transportation systems can 

be tested without committing resources for their acquisition. 
 

• Hypotheses about how or why certain phenomena occur can be tested 
for feasibility. 

 
• Time can be compressed or expanded allowing for a speedup or 

slowdown of the phenomena under investigation. 
 

• Insight can be obtained about the interaction of variables. 
 

• Insight can be obtained about the importance of variables to the 
performance of the system. 

 
• Bottleneck analysis can be performed indication where work-in-

process, information materials and so on are being excessively 
delayed. 

 
• A simulation study can help in understanding how the system 

operates rather than how individuals think the system operates. 
 

• “what-if” questions can be answered.  Useful in the design of new 
systems. 
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1.4 Disadvantages of simulation 

• Model building requires special training. 
 
• Simulation results may be difficult to interpret. 

 
• Simulation modeling and analysis can be time consuming and 

expensive. 
 

• Simulation is used in some cases when an analytical solution is 
possible or even preferable. 

 
 1.5 Applications of Simulation 
 
 Manufacturing Applications 

1. Analysis of electronics assembly operations 
2. Design and evaluation of a selective assembly station for high-

precision scroll compressor shells. 
3. Comparison of dispatching rules for semiconductor manufacturing 

using large facility models. 
4. Evaluation of cluster tool throughput for thin-film head production. 
5. Determining optimal lot size for a semiconductor backend factory. 
6. Optimization of cycle time and utilization in semiconductor test 

manufacturing. 
7. Analysis of storage and retrieval strategies in a warehouse. 
8. Investigation of dynamics in a service oriented supply chain. 
9. Model for an Army chemical munitions disposal facility. 
 

     Semiconductor Manufacturing 
1. Comparison of dispatching rules using large-facility models. 
2. The corrupting influence of variability. 
3. A new lot-release rule for wafer fabs. 
4. Assessment of potential gains in productivity due to proactive 

retied management. 
5. Comparison of a 200 mm and 300 mm X-ray lithography cell. 
6. Capacity planning with time constraints between operations. 
7. 300 mm logistic system risk reduction. 
 

Construction Engineering 
1. Construction of a dam embankment. 
2. Trench less renewal of underground urban infrastructures. 
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3. Activity scheduling in a dynamic, multiproject setting. 
4. Investigation of the structural steel erection process. 
5. Special purpose template for utility tunnel construction. 
 

           Military Applications 
1. Modeling leadership effects and recruit type in a Army recruiting 

station. 
2. Design and test of an intelligent controller for autonomous 

underwater vehicles. 
3. Modeling military requirements for nonwarfighting operations. 
4. Multitrajectory performance for varying scenario sizes. 
5. Using adaptive agents in U.S. Air Force retention. 
 

Logistics, Transportation and Distribution Applications 
1. Evaluating the potential benefits of a rail-traffic planning 

algorithm. 
2. Evaluating strategies to improve railroad performance. 
3. Parametric Modeling in rail-capacity planning. 
4. Analysis of passenger flows in an airport terminal. 
5. Proactive flight-schedule evaluation. 
6. Logistic issues in autonomous food production systems for 

extended duration space exploration. 
7. Sizing industrial rail-car fleets. 
8. Production distribution in newspaper industry. 
9. Design of a toll plaza 
10. Choosing between rental-car locations. 
11. Quick response replenishment. 

 
           Business Process Simulation 

1. Impact of connection bank redesign on airport gate assignment. 
2. Product development program planning. 
3. Reconciliation of business and system modeling. 
4. Personal forecasting and strategic workforce planning. 

 
Human Systems 

1. Modeling human performance in complex systems. 
2. Studying the human element in out traffic control. 
 
 

           1.6 Systems 
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 A system is defined as an aggregation or assemblage of objects 
joined in some regular interaction or interdependence toward the 
accomplishment of some purpose.   

Example : Production System 
 

 
 

          In the above system there are certain distinct objects, each of which 
possesses properties of interest.  There are also certain interactions occurring 
in the system that cause changes in the system. 
 
1.7 Components of a System 
 
Entity  
        An entity is an object of interest in a system.   
        Ex: In the factory system, departments, orders, parts and products are      
               The entities. 
 
Attribute  
        An attribute denotes the property of an entity. 
        Ex: Quantities for each order, type of part, or number of machines in a                                                           
               Department are attributes of factory system. 
 
Activity  
        Any process causing changes in a system is called as an activity. 
         Ex: Manufacturing process of the department. 
 
State of the System 

Production Control System 

Purchasing Department Fabrication Department Assembly Department 
 

Shipping Department 
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         The state of a system is defined as the collection of variables necessary 
to describe a system at any time, relative to the objective of study.  In other 
words, state of the system mean a description of all the entities, attributes 
and activities as they exist at one point in time. 
 
 
 
Event 
         An event is define as an instaneous occurrence that may change the 
state of the system. 
 
1.8 System Environment 
 The external components which interact with the system and 
produce necessary changes are said to constitute the system environment. 
 In modeling systems, it is necessary to decide on the boundary 
between the system and its environment.  This decision may depend on the 
purpose of the study. 
Ex: In a factory system, the factors controlling arrival of orders may be 
considered to be outside the factory but yet a part of the system 
environment.  When, we consider the demand and supply of goods, there is 
certainly a relationship between the factory output and arrival of orders.  
This relationship is considered as an activity of the system. 
 
Endogenous System 
 The term endogenous is used to describe activities and events 
occurring within a system. Ex: Drawing cash in a bank. 
 
Exogenous System 
 The term exogenous is used to describe activities and events in 
the environment that affect the system. Ex: Arrival of customers. 
 
 
Closed System 
 A system for which there is no exogenous activity and event is 
said to be a closed.  Ex: Water in an insulated flask. 
 
Open system 
 A system for which there is exogenous activity and event is said 
to be a open. Ex: Bank system. 
 
 

www.ncetianz.webs.com

Nce
tia

nz



 

  - 9 - 

 
 
 
 
 
 
 
 
 
 
Discrete and Continuous Systems 
Continuous Systems 
 Systems in which the changes are predominantly smooth are 
called continuous system.  Ex: Head of a water behind a dam. 
 
 
 
 
Head 
Of 
Water 
Behind 
The dam 
 
 
                               Time                            t 
 
Discrete Systems 
 Systems in which the changes are predominantly discontinuous 
are called discrete systems.  Ex: Bank – the number of customers changes 
only when a customer arrives or when the service provided a customer is 
completed. 
 
 
No. of 
Customers 
Waiting in 
The Line    2   
 
                 1 
 
                 0 
                                        Time                           t 
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1.10 Model of a system 
  A model is defined as a representation of a system for the 
purpose of studying the system.  It is necessary to consider only those 
aspects of the system that affect the problem under investigation.  These 
aspects are represented in a model, and by definition it is a simplification of 
the system. 
 
 
 
 
1.11 Types of Models 
 The various types models are 
 

• Mathematical or Physical Model 
• Static Model 
• Dynamic Model 
• Deterministic Model 
• Stochastic Model 
• Discrete Model 
• Continuous Model 
 
 
Mathematical Model 
  Uses symbolic notation and the mathematical equations to 
represent a system. 
 
Static Model 
  Represents a system at a particular point of time and also 
known as Monte-Carlo simulation.  
 
Dynamic Model 
  Represents systems as they change over time. Ex: Simulation of 
a bank 
 
Deterministic Model 
  Contains no random variables.  They have a known set of 
inputs which will result in a unique set of outputs. Ex: Arrival of patients 
to the Dentist at the scheduled appointment time. 
 
Stochastic Model 
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  Has one or more random variable as inputs.  Random inputs 
leads to random outputs.  Ex: Simulation of a bank involves random 
interarrival and service times. 
 
Discrete and Continuous  Model 
  Used in an analogous manner. Simulation models may be 
mixed both with discrete and continuous.  The choice is based on the 
characteristics of the system and the objective of the study. 
 
 
1.12 Discrete-Event System Simulation 
  Modeling of systems in which the state variable changes only at 
a discrete set of points in time.  The simulation models are analyzed by 
numerical rather than by analytical methods. 
  Analytical methods employ the deductive reasoning of 
mathematics to solve the model.  Eg: Differential calculus can be used to 
determine the minimum cost policy for some inventory models. 
  Numerical methods use computational procedures and are 
‘runs’, which is generated based on the model assumptions and 
observations are collected to be analyzed and to estimate the true system 
performance measures. 
  Real-world simulation is so vast, whose runs are conducted 
with the help of computer.  Much insight can be obtained by simulation 
manually which is applicable for small systems. 
 
1.13 Steps in a Simulation study 
 
1. Problem formulation  

Every study begins with a statement of the problem, provided 
by policy makers.  Analyst ensures its clearly understood.  If it is 
developed by analyst policy makers should understand and agree with 
it. 

 
2. Setting of objectives and overall project plan  

The objectives indicate the questions to be answered by 
simulation.  At this point a determination should be made concerning 
whether simulation is the appropriate methodology.  Assuming it is 
appropriate, the overall project plan should include 

• A statement of the alternative systems 
• A method for evaluating the effectiveness of these alternatives 
• Plans for the study in terms of the number of people involved 
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• Cost of the study 
• The number of days required to accomplish each phase of the  

work with the anticipated results. 
 
  

3. Model conceptualization 
   The construction of a model of a system is probably as much 

art as science. The art of modeling is enhanced by an ability  
• To abstract the essential features of a problem 
• To select and modify basic assumptions that characterize the 

system 
• To enrich and elaborate the model until a useful approximation 

results 
 

Thus, it is best to start with a simple model and build toward greater 
complexity.  Model conceptualization enhance  the quality of the 
resulting model and increase the confidence of the model user in the 
application of the model. 
 

4. Data collection  
There is a constant interplay between the construction of model 

and the collection of needed input data. Done in the early stages.  
Objective kind of data are to be collected. 

 
5. Model translation  

Real-world systems result in models that require a great deal of 
information storage and computation.  It can be programmed by using 
simulation languages or special purpose simulation software.  
Simulation languages are powerful and flexible.  Simulation software 
models development time can be reduced. 

 
6. Verified  

It pertains to he computer program and checking the 
performance.  If the input parameters and logical structure and 
correctly represented, verification is completed. 

 
7. Validated  

It is the determination that a model is an accurate representation 
of the real system.  Achieved through calibration of the model, an 
iterative process of comparing the model to actual system behavior 
and the discrepancies between the two. 
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8. Experimental Design  

The alternatives that are to be simulated must be determined.  
Which alternatives to simulate may be a function of runs.  For each 
system design, decisions need to be made concerning 

• Length of the initialization period 
• Length of simulation runs 
• Number of replication to be made of each run 
 
 

9. Production runs and analysis  
They are used to estimate measures of performance for the 

system designs that are being simulated.  
 

10. More runs  
Based on the analysis of runs that have been completed.  The 

analyst determines if additional runs are needed and what design those 
additional experiments should follow. 

 
11. Documentation and reporting  

Two types of documentation. 
• Program documentation 
• Process documentation 
 
Program documentation  
  Can be used again by the same or different analysts to 
understand how the program operates.  Further modification will 
be easier.  Model users can change the input parameters for better 
performance. 
 
Process documentation  
  Gives the history of a simulation project.  The result of 
all analysis should be reported clearly and concisely in a final 
report.  This enable to review the final formulation and 
alternatives, results of the experiments and the recommended 
solution to the problem.  The final report provides a vehicle of 
certification. 
 

12. Implementation  
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Success depends on the previous steps.  If the model user has 
been thoroughly involved and understands the nature of the model and 
its outputs, likelihood of a vigorous implementation is enhanced. 

 
The simulation model building can be broken into 4 phases. 
 
I Phase  

• Consists of steps 1 and 2 
• It is period of discovery/orientation 
• The analyst may have to restart the process if it is 

not fine-tuned 
• Recalibrations and clarifications may occur in this 

phase or another phase. 
 

II Phase 
• Consists of steps 3,4,5,6 and 7 
• A continuing interplay is required among the steps 
• Exclusion of model user results in implications 

during implementation 
 

III Phase 
• Consists of steps 8,9 and 10 
• Conceives a thorough plan for experimenting 
• Discrete-event stochastic is a statistical experiment 
• The output variables are estimates that contain 

random error and therefore proper statistical 
analysis is required. 

 
IV Phase 

• Consists of steps 11 and 12 
• Successful implementation depends on the 

involvement of user and every steps successful 
completion. 
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Chapter 2 
Simulation Examples 

 

• Simulation is often used in the analysis of queueing models. In a simple typical queueing model, shown in  
fig 1, customers arrive from time to time and join a queue or waiting line, are eventually served, and finally leave the system. 

 

 
                                    fig 1: Simple Queuing Model 

 
 

• The term "customer" refers to any type of entity that can be viewed as requesting "service" from a system. 

 

2.1 Characteristics of Queueing Systems  

• The key elements, of a queueing system are the customers and servers. The term "customer"  can refer to people,  

         machines, trucks, mechanics, patients—anything that arrives at a facility and requires service 

•  The term "server"  might refer to receptionists, repairpersons, CPUs in a computer, or washing machines…. 

any resource (person, machine, etc. which provides the requested service. 

• Table 1 lists a number of different queueing systems. 
 

System 
 

Customers 
 

Server(s) 
 Reception desk 

 
People 
 

Receptionist 
 Repair facility 

 
Machines 
 

Repairperson 
 Garage Trucks Mechanic 

Tool crib Mechanics Tool-crib clerk 
Hospital 
 

Patients 
 

Nurses 
 Warehouse Pallets Crane 

Airport 
 

Airplanes 
 

Runway 
 Production line 

 
Cases 
 

Case packer 
 Warehouse Orders Order picker 

Road network 
 

Cars 
 

Traffic light 
 Grocery Shoppers Checkout station 

Laundry 
 

Dirty linen 
 

Washing machines/dryers 
 Job shop Jobs Machines/workers 

Lumberyard Trucks Overhead crane 
Saw mill 
 

Logs 
 

Saws 
 Computer 

 
Jobs 
 

CPU, disk, tapes 
 Telephone Calls Exchange 

Ticket office Football fans Clerk 
Mass transit 
 

Riders 
 

Buses, trains 
 

Calling  population of     
potential customers 

        Waiting line of customers 
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Table 1: Examples of Queueing Systems 

 

� The elements of a queuing system are:- 

• The Calling Population:- 

� The population of potential customers, referred to as the calling population, may be 
assumed to be finite or infinite.  

� For example, consider a bank of 5 machines that are curing tires. After an interval of time, 
a machine automatically opens and must be attended by a worker who removes the tire 
and puts an uncured tire into the machine. The machines are the "customers",  who 
"arrive" at the instant they automatically open. The worker is the "server", who "serves" 
an open machine as soon as possible. The calling population is finite, and consists of the 
five machines. 

 
� In systems with a large population of potential customers, the calling population is 

usually assumed to be finite or infinite. Examples of infinite populations include the potential 
customers of a restaurant, bank, etc. 

 
� The main difference between finite and infinite population models is how the arrival rate is 

defined. In an infinite-population model, the arrival rate is not affected by the number of 
customers who have left the calling population and joined the queueing system. On 
the other hand, for finite calling population models, the arrival rate to the queueing system 
does depend on the number of customers being served and waiting. 

•  System Capacity:- 
 
 

� In many queueing systems there is a limit to the number of customers that may be in the waiting 
         line or system. For example, an automatic car wash may have room for only 10 cars to wait in line to enter 
        the mechanism. 
 
� An arriving customer who finds the  system full does not enter but returns immediately to the calling 
        population. 

 
�    Some systems, such as concert ticket sales for students, may be considered as having 

unlimited capacity. There are no limits on the number of students allowed to wait to 
purchase tickets.  

 
�   When a system has limited capacity, a distinction is made between the arrival rate (i.e., the 

number of arrivals per time unit) and the effective arrival rate (i.e., the number who arrive 
and enter the system per time unit). 

• The Arrival Process:- 

�  Arrival process for infinite-population models is usually characterized in terms of interarrival 
times of successive customers. Arrivals may occur at scheduled times or at random times. 
When at random times, the interarrival times are usually characterized by a probability 
distribution 
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�  The most important model for random arrivals is the Poisson arrival process. If An 
represents the interarrival time between customer n-1 and customer n (A1 is the 
actual arrival time of the first customer), then for a Poisson arrival process. An is 
exponentially distributed with mean I/λ time Units. The arrival rate is λ customers per time 
unit. The number of arrivals in a time interval of length t, say N ( t ) ,  has the Poisson 
distribution with mean λt customers.  

� The Poisson arrival process has been successfully employed as a model of the arrival of 
people to restaurants, drive-in banks, and other service facilities. 
 

� A second important class of arrivals is the scheduled arrivals, such as patients to a     
physician's office or scheduled airline flight arrivals to an airport. In this case, the 
interarrival times [A n ,  n  = 1,2,. . . }  may be constant, or constant plus or minus a 
small random amount to represent early or late arrivals. 

 
�     A third situation occurs when at least one customer is assumed to always be present in 

the queue, so that the server is never idle because of a lack of customers. For 
example, the "customers" may represent raw material for a product, and sufficient raw 
material is assumed to be always available.  

 
�     For finite-population models, the arrival process is characterized in a completely different 

fashion. Define a customer as pending when that customer is outside the queueing 
system and a member of the potential calling population. 

 
�    Runtime of a given customer is defined as the length of time from departure from the 

queueing system until that customer’s next arrival to the queue.   
 

� Let Ai
(i), A2

(i),... be the successive runtimes of customer /, and let S(i)
1, S

(i)
2.....be the 

corresponding successive system times; that is, S(i)
n  is the  total time spent in the 

system by customer i during the nth visit. Figure 2 illustrates these concepts for 
machine 3 in the tire-curing example. The total arrival process is the superposition of the 
arrival times of all customers.  

                               Fig 2 shows the first and second arrival of machine 3. 
 
                                Fig 2: Arrival process for a finite-population model. 
 
 
                                       A1(3)             S1(3)            A2(3)                St2(3) 
                                        
 
 
             Machine  3       pending          open           pending            open 
                                                         (System time)                      (System time) 
 
 
                               First arrival of machine 3           Second arrival of machine 3 
 
 

� One important application of finite population models is the machine repair problem. 
The machines are the customers and a runtime is also called time to failure. When a 
machine fails, it "arrives" at the queuing 

g system (the repair facility) and remains there until it is "served" (repaired). Times to 
failure for a given class of machine have been characterized by the exponential, the 
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Weibull, and the gamma distributions. Models with an exponential runtime are sometimes 
analytically tractable. 

 

• Queue Behavior and Queue Discipline:- 

 
� Queue behavior refers to customer actions while in a queue waiting for service to begin.  

In some situations, there is a possibility that incoming customers may balk (leave when 
they see that the line is too long), renege (leave after being in the line when they see 
that the line is moving too slowly), or jockey (move from one line to another if they 
think they have chosen a slow line). 

� Queue discipline refers to the logical ordering of customers in a queue and determines 
which customer will be chosen for service when a server becomes free.  

 
� Common queue disciplines include fir st-in, first-out (FIFO); last-in  first-

out (LIFO); service in random order (SIRO); shortest processing time 
first |(SPT) and service according to priority (PR). 

 
�  In a job shop, queue disciplines are sometimes based on due dates and on 

expected processing time for a given i type of job. Notice that a FIFO queue 
discipline implies that services begin in the same order as arrivals, but that 
customers may leave the system in a different order because of different-
length service times. 

 
• Service Times and the Service Mechanism:- 

 
� The service times of successive arrivals are denoted by S1, S2, S3…They may 

be constant or of random duration. The exponential,Weibull, gamma, lognormal, 
and truncated normal distributions have all been used successfully as models of 
service times in different situations. 

  . 
� Sometimes services may be identically distributed for all customers of a given type or class or 

priority, while customers of different types may have completely different service-time 
distributions. In addition, in some systems, service times depend upon the time of day or the 
length of the waiting line. For example, servers may work faster than usual when the waiting 
line is long, thus effectively reducing the service times. 

� A queueing system consists of a number of service centers and interconnecting 
queues. Each service center consists of some number of servers, c, working in 
parallel; that is, upon getting to the head of the line, a customer takes the first 
available server. Parallel service mechanisms are either single server (c = 1), 
multiple server (1 < c < ∞), or unlimited servers (c= ∞). (A self-service facility is 
usually characterized as having an unlimited number of servers.)  

 
• Example 1:- 

Consider a discount warehouse where customers may either serve themselves; or wait 
f
o
r
 
o
n
e
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of three clerks, and finally leave after paying a single cashier. The system is 
represented by the flow diagram in figure 1 below: 

 
Figure 1:   Discount warehouse with three service centers  

The subsystem, consisting of queue 2 and service center 2, is shown in more detail in figure 
2 below. Other variations of service mechanisms include batch service (a server serving 
several customers simultaneously) or a customer requiring several servers 
simultaneously. 

 

 
 
 
gh 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Service center 2, with c = 3 parallel servers. 

• Example 2:-A candy manufacturer has a production line which 
consists of three machines separated by inventory-in-process buffers. 
The first machine makes and wraps the individual pieces of candy, the 
second packs 50 pieces in a box, and the third seals and wraps the 
box. The two inventory buffers have capacities of 1000 boxes 
each. As illustrated by Figure 3, the system is modeled as having 
three service centers, each center having c = 1 server (a machine), 
with queue-capacity constraints between machines. It is assumed that 
a sufficient supply of raw material is always available at the first 
queue. Because of the queue-capacity constraints, machine 1 shuts 
down whenever the inventory buffer fills to capacity, while machine 2 
shuts down whenever the buffer empties. In brief, the system consists 
of three single-server queues in series with queue-capacity 
constraints and a continuous arrival stream at the first queue. 

 

 

 

 

 

                                                 

Service center 2 

 

Arrivals Departure 

Queue 1 

Machine 1 

Candy 
maker/wrapper 

Queue 2 

Capacity 
1000 

Queue 3 

Capacity 
1000 

Machine 3 

 Sealer/ wrapper 
 

Machine 2 

Packer 
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Figure 3: Candy production line 

 

2.2  Queueing Notation:-  
. 

� Recognizing the diversity of queueing systems, Kendall [1953] proposed a notational 
system for parallel server systems which has been widely adopted. An abridged 
version of this convention is based on the format A /B / c / N / K. These letters 
represent the following system characteristics: 

� A represents the interarrival time distribution. 
� B represents the service-time distribution. 
� [Common symbols for A and B include M (exponential or Markov), D 

(constant or deterministic), Ek (Erlang of order k), PH (phase-type), H 
(hyperexponential), G (arbitrary or general), and GI (General in-
dependent).] 

� c represents the number of parallel servers. 
� N represents the system capacity. 
� K represents the size of the calling population 
 

� For example, M / M / 1 / ∞ / ∞ indicates a single-server system that has unlimited 
queue capacity and an infinite population of potential arrivals. The interarrival times 
and service times are exponentially distributed. When N and K are infinite, they may 
be dropped from the notation. For example, M / M / 1 / ∞ / ∞ is often shortened to 
M/M/l.  

 
� Additional notation used for parallel server systems is listed in Table 1 given below. 

The meanings may vary slightly from system to system. All systems will be 
assumed to have a FIFO queue discipline. 

 
 

Table 1. Queueing Notation for Parallel Server Systems 

 

 

Pn Steady-state probability of having n customers in system 
Pn,(t) Probability of n customers in system at time t 
 λ Arrival rate 
 λe Effective arrival rate 
 µ Service rate of one server 
 ρ Server utilization 
An Interarrival time between customers n — 1 and n 
Sn, Service time of the nth arriving customer 
Wn Total time spent in system by the nth arriving customer 
Wn

Q Total time spent in the waiting line by customer n   . 
        L(t) The number of customers in system at time / 

L Q(t) The number of customers in queue at time t 
L Long-run time-average number of customers in system 
LQ Long-run time-average number of customers in queue 
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ώ Long-run average time spent in system per customer 
ώQ Long-run average time spent in queue per customer 

 
 
 
 
 
2.3 Simulation of Queuing systems  
 
� A queueing system is described by its calling population, the nature of the arrivals, the 

service mechanism, the system capacity, and the queueing discipline. A single-channel 
queueing system is portrayed in figure1. 

 
 
 
 
 
 
 
  Calling population        waiting line     server 
 
    Figure 1: Queueing System 
 
 
� In the single-channel queue, the calling population is infinite; that is, if a unit leaves the calling 

population and joins the waiting line or enters service, there is no change in the arrival rate of 
other units that may need service. 

 
�  Arrivals for service occur one at a time in a random fashion; once they join the waiting line, 

they are eventually served. In addition, service times are of some random length according to 
a probability distribution which does not change over time.  

 
� The system capacity; has no limit, meaning that any number of units can wait in line. 
 
�  Finally, units are served in the order of their arrival by a single server or channel. 
 
� Arrivals and services are defined by the distributions of the time between arrivals and the 

distribution of service times, respectively. 
 
� For any simple single or multi-channel queue, the overall effective arrival rate must be less 

than the total service rate, or the waiting line will grow without bound. When queues grow 
without bound, they are termed “explosive”  or unstable . 

 
� The state of the system is the number of units in the system and the status of the server, 

busy or idle. 
 
�  An event is a set of circumstances that cause an instantaneous change in the state of the 

system. In a single –channel queueing system there are only two possible events that can 
affect the state of the system.  

 
� They are the entry of a unit into the system. 
� The completion of service on a unit. 

 
� The queueing system includes the server, the unit being serviced, and units in the queue. he 

simulation clock is used to track simulated time. If a unit has just completed service, the 
simulation proceeds in the manner shown in the flow diagram of figure.2. Note that the server 
has only two possible states: it is either busy or idle. 
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   Figure 2: Service-just-completed flow diagram 
 
 
 
� The arrival event occurs when a unit enters the system. The flow diagram for the arrival 

event is shown in figure 3. The unit may find the server either idle or busy; therefore, either 
the unit begins service immediately, or it enters the queue for the server. The unit follows 
the course of action shown in fig 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 3: Unit-Entering system flow diagram 
 

 
� If the server is busy, the unit enters the queue. If the server is idle and the queue is 

empty, the unit begins service. It is not possible for the server to be idle and the queue to 
be nonempty. 

Another 
unit 
waiting? 

     
    Unit Enters 
Queue for service 

Server       
Busy? 

Departure 
Event 

Begin Server 
Idle time 

Remove the waiting 
unit from the queue 

 
Begin Servicing the unit 

              
       Arrival Event 

Unit  
Enters 
Service 

www.ncetianz.webs.com

Nce
tia

nz



 

  - 24 - 

 
� After the completion of a service the service may become idle or remain busy with the 

next unit. The relationship of these two outcomes to the status of the queue is shown in 
fig 5. If the queue is not empty, another unit will enter the server and it will be busy. If the 
queue is empty, the server will be idle after a service is completed. These two 
possibilities are shown as the shaded portions of fig 5. It is impossible for the server to 
become busy if the queue is empty when a service is completed. Similarly, it is 
impossible for the server to be idle after a service is completed when the queue is not 
empty. 

 
 

 
 
Simulation clock times for arrivals and departures are computed in a simulation table customized 
for each problem. In simulation, events usually occur at random times. In these cases, a 
statistical model of the data is developed from either data collected and analyzed, or subjective 
estimates and assumptions. 
 

� Random numbers are distributed uniformly and independently on the interval (0, 1). 
Random digits are uniformly distributed on the set {0, 1, 2… 9}. Random digits can be 
used to form random numbers by selecting the proper number of digits for each random 
number and placing a decimal point to the left of the value selected. The proper number 
of digits is dictated by the accuracy of the data being used for input purposes. If the input 
distribution has values with two decimal places, two digits are taken from a random-digits 
table and the decimal point is placed to the left to form a random number. 

 

 
Server      
Status 

Busy 

Idle 

 Queue Status 

Not Empty Empty 

Enter Queue Enter Queue 

 
Enter Service 

 
Impossible 

             Figure 4: Potential unit actions upon arrival  

 
Server      
Status 

Busy 

Idle 

 Queue Status 

Not Empty Empty 

 Impossible 

 
 

 
Impossible 

        Figure 5: Server outcomes after service completion  
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� When numbers are generated using a procedure, they are often referred to as pseudo-
random numbers. Since the method is known, it is always possible to know the sequence 
of numbers that will be generated prior to the simulation. 

 
� In a single-channel queueing system, interarrival times and service times are generated 

from the distributions of these random variables. The examples that follow show how 
such times are generated. For simplicity, assume that the times between arrivals were 
generated by rolling a die five times and recording the up face. Table 1 contains a set of 
five interarrival times are used to compute the arrival times of six customers at the 
queuing system. 

 
                               
         Table 1: Interarrival and Clock Times 
 
 
            C 
 
            
 
 
 
                         Table 2.3 
 
 
 
 
 
 
 
 

� The first customer is assumed to arrive at clock time 0. This starts the clock in operation. 
The second customer arrives two time units later, at a click time of 2. The third customer 
arrives four time units later, at a clock time of 6; and so on.  

 
 

� The second time of interest is the service time. The only possible service times are one, 
two, three, and four time units. Assuming that all four values are equally likely to occur, 
these values could have been generated by placing the numbers one through four on 
chips and drawing the chips from a hat with replacement, being sure to record the 
numbers selected.  

 
 
� Now, the interarrival times and service times must be meshed to simulate the single-

channel queueing system. As shown in table 2, the first customer arrives at clock time 0 
and immediately begins service, which requires two minutes. Service is completed at 
clock time 2. The second customer arrives at clock time 2 and is a finished at clock time 
3. Note that the fourth customer arrived at clock time 7, but service could not begin until 
clock time 9. This occurred because customer 3 did not finish service until clock time 9.  

 
 
� Table 2 was designed specifically for a single-channel queue which serves customers on 

a first-in, first-out (FIFO) basis. It keeps track of the clock time at which each event 
occurs. The second column of table 2 records the clock time of each arrival event, while 
the last column records the clock time of each departure event. 

 
 
 
 

Customer 
 

Interarrival Time Arrival Time on 
Clock 

 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 

-- 
 
2 
 
4 
 
1 
 
2 
 
6 
 

0 
 
2 
 
6 
 
7 
 
9 
 

15 

www.ncetianz.webs.com

Nce
tia

nz



 

  - 26 - 

 
 
 
Table 2: Simulation Table emphasizing Clock Times 

 
       EXAMPLE 1:  Single-Channel Queue  
 

� A small grocery store has only one checkout counter. Customers arrive at this checkout 
counter at random from 1 to 8 minutes apart. Each possible value of interarrival time has 
the same probability of occurrence. The service times vary from 1 to 6 minutes with the 
probabilities shown in table 5. The problem is to analyze the system by simulating the 
arrival and service of 20 customers. 

 
                                                 Table 5: Service Time Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
� A simulation of a grocery store that starts with an empty system is not realistic unless the 

intention is to model the system from startup or to model until steady state operation is 
reached. 

 
� A set of uniformly distributed random numbers is needed to generate the arrivals at the 

checkout counter. Random numbers have the following properties: 
 

1. The set of random numbers is uniformly distributed between 0 and 1. 

E 
Time Service 

Ends 
(Clock) 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

0 
 
2 
 
6 
 
7 
 
9 
 

15 

0 
 
2 
 
6 
 
9 
 

11 
 

15 

2 
 
1 
 
3 
2 
 
1 
 
3 
 
2 
 
1 
 
4 
 

2 
 
3 
 
9 
 

11 
 

12 
 

19 

A 
Customer 

No. 

B 
Arrival 
Time 

(Clock) 
 

C 
Time Service 

Begins 
(Clock) 

 

D 
Service 
Time 

(Duration) 

Service 
Time 
(Min) 

 

  
Probability 

 Cumulative 
Frequency 

Random Digit 
Assignment 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

0.10 
 

0.20 
 

0.30 
 

0.25 
 

0.10 
 

0.05 
 

0.10 
 

0.30 
 

0.60 
 

0.85 
 

0.95 
 

1.00 

01-10 
 

11-12 
 

31-60 
 

61-85 
 

86-95 
 

96-00 
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2. Successive random numbers are independent. 
 
 

� The time-between-arrival determination is shown in table 6. Note that the first random 
digits are 913. To obtain the corresponding time between arrivals, enter the fourth column 
of table 4 and read 8 minutes from the first column of the table. Alternatively, we see that 
0.913 is between the cumulative probabilities 0.876 and 1.000, again resulting in 8 
minutes as the generated time 

 
       

Table 6: Time between Arrivals Determination 

  
 
 
� Service times for all 20 customers are shown in table 7. These service times were 

generated based on the methodology described above, together with the aid of table 5. 
The first customer’s service time is 4 minutes because the random digits 84 fall in the 
bracket 61-85, or alternatively because the derived random number 0.84 falls between 
the cumulative probabilities 0.61 and 0.85. 

 
 
Table 7: Service Times Generated 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
� The essence of a manual simulation is the simulation table. These tables are designed for 

the problem at hand, with columns added to answer the questions posed. The simulation 
table for the single-channel queue, shown, in table 8 that is an extension of table 2. The 
first step is to initialize the table by filling in cells for the first customer. 

 
� The first customer is assumed to arrive at time 0. Service begins immediately and finishes 

at time 4. The customer was in the system for 4 minutes. After the first customer, 
subsequent rows in the table are based on the random numbers for interarrival time and 

      Customers Random Digits Time Between 
Arrivals 
(Min) 

 

Customers 

 

Random Digits 

 

Time Between 
Arrivals 
(Min) 

 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-- 
913 
727 
015 
948 
309 
922 
753 
235 
302 

-- 
8 
6 
1 
8 
3 
8 
.7 
2 
3 
 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

109 
093 
607 
738 
359 
888 
106 
212 
493 
535 

 

1 
1 
5 
6 
3 
8 
1 
2 
4 
5 

  
Customer 

Random 
Digits 

84 
10 
74 
53 
17 
79 
91 
67 
89 
38 

 Service 
Time 
(Min) 

  
Customer 

 
Customer 

 Random 
Digits 

 Service 
Time 
(Min) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

4 
1 
4 
3 
2 
4 
5 
4 
5 
3 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

32 
94 
79 
05 
79 
84 
52 
55 
30 
50 

3 
5 
4 
1 
5 
4 
3 
3 
2 
3 
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service time and the completion time of the previous customer. For example, the second 
customer arrives at time 8. Thus, the server was idle for 4 minutes. Skipping down to the 
fourth customer, it is seen that this customer arrived at time 15 but could not be served until 
time 18. This customer had to wait in the queue for 3 minutes. This process continues for 
all 20 customers. 

 
 
 
Table 8: Simulation Table for the queueing problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. The average waiting time for a customer is 2.8minutes. this is determined in the following 
manner: 

 
                                         Total time customers wait in queue (min) 
 Average Waiting Time =  _________________________________ 
            

                                                     Total no. of customers 
 
                 =        56   = 2.8 minutes 
               20                                   
 

2. The probability that a customer has to wait in the queue is 0.65. This is determined in the 
following manner: 

 
   Probability (wait) = number of customers who wait  

                                                          
                                                             Total number of customers   
   
                                                                 13 
                                 =                    = 0.65 
                                                                 20 
 

3. The fraction of idle time of the server is 0.21. This is determined in the following manner: 
                                  
                                                                        Total idle time of server (minutes)                      

A 
 

Customers 

B 
Time since 
last Arrival 

(Min) 

C 
 

Arrival 
Time 

D 
Service 
Time 

E 
Time 

Service 
Begins 

F 
Time customer 
waits in queue 

G 
Time 

Service 
Ends 

H 
Time customer 

spends in 
system 

4 
1 
4 
6 
2 
4 
5 
4 
7 
7 
9 
13 
12 
7 
9 
5 
7 
8 
6 
4 

124 

I 
Idle 

Time of 
Server 

4 
9 

18 
21 
25 
30 
39 
45 
50 
53 
56 
61 
65 
66 
71 
75 
78 
81 
83 
86 

0 
0 
0 
3 
0 
0 
0 
0 
2 
4 
6 
8 
8 
6 
4 
1 
4 
5 
4 
1 
56 
 

0 
8 
14 
18 
23 
26 
34 
41 
45 
50 
53 
56 
61 
65 
66 
71 
75 
78 
81 
83 

4 
1 
4 
3 
2 
4 
5 
4 
5 
3 
3 
5 
4 
1 
5 
4 
3 
3 
2 
3 
68 

0 
8 

14 
15 
23 
26 
34 
41 
43 
46 
47 
48 
53 
59 
62 
70 
71 
73 
77 
82 

-- 
8 
6 
1 
8 
3 
8 
7 
2 
3 
1 
1 
5 
6 
3 
8 
1 
2 
4 
5 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
4 
5 
0 
2 
1 
4 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

18 
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               Probability of idle server   =   
                                                                        Total run time of simulation (minutes)             
 
                                                               18              
                                                        =               = 0.21 
                                                                86 

The probability of the server being busy is the complement of 0.21, or 0.79. 
 
 

  
 4. The average service time is 3.4 minutes, determined as follows: 

                                                                                                 Total service time       
            Average service time (minutes) =      
                                                                                             Total number of customers  
     68 
                                                  =     = 3.4 minutes 
 20 
 

This result can be compared with the expected service time by finding the mean of the 
service-time distribution using the equation 

 
                                          E(s) =  ∑  sp (s) 
 

Applying the expected-value equation to the distribution in table 2.7 gives an expected 
service time of:   

 
    = 1(0.10) + 2(0.20) + 3(0.30) + 4(0.25) + 5(0.10) + 6(0.50) 
 
      = 3.2 minutes 
 

The expected service time is slightly lower than the average time in the simulation. The 
longer simulation, the closer the average will be to E (S). 

 
 

5. The average time between arrivals is 4.3 minutes. This is determined in the following 
manner: 
 

                                                                                       Sum of all times between arrivals 
(minutes) 

  Average time between arrivals (minutes) =  
                                                                                                        Number of arrivals - 1 
 
                                                                                  82  
                                                                    =                      =   4.3 minutes 
                                                                                  19               
 

One is subtracted from the denominator because the first arrival is assumed to occur at 
time 0. This result can be compared to the expected time between arrivals by finding the 
mean of the discrete uniform distribution whose endpoints are a = 1 and b = 8. The mean 
is given by  

 
                                  a + b      1 + 8 
                  E (A) =  =                      = 4.5 minutes 
                                    2    2  
 
   The expected time between arrivals is slightly higher than the average. However, as the 
simulation becomes longer, the average value of the time between arrivals will approach the 
theoretical mean, E (A). 
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6. The average waiting time of those who wait is 4.3 minutes. This is determined in the 
following manner: 

 
 

Average waiting time of                                  total time customers wait in queue  
Those who wait (minutes)    = 

                                                                                   Total number of customers who wait 
 
 
                                                                 56 
                                                    =                  = 4.3 minutes 
                                                                                       13 
                      

 
7. The average time a customer spends in the system is 6.2 minutes. This can be determined 
in two ways. First, the computation can be achieved by the following relationship:    

 
 
  Average time customer              total time customers spend in the system 
             Spends in the system         =   
                                                                          Total number of customers  
 
                                                                124       
                                       =              = 6.2 minutes 
                                                                 20 
 
The second way of computing this same result is to realize that the following relationship must 
hold: 
 
 
Average time customer        average time customer              average time customer  
Spends in the system      = spends waiting in the queue +   spends in service 
 
From findings 1 and 4 this results in: 
 
   Average time customer spends in the system = 2.8+ 3.4 = 6.2 minutes. 
 
 
EXAMPLE 2:- The Able Baker Carhop Problem  
 
 

� This example illustrates the simulation procedure when there is more than one service 
channel. Consider a drive-in restaurant where carhops take orders and bring food to the 
car. Cars arrive in the manner shown in table 1. There are two carhops-Able and Baker. 
Able is better able to do the job and works a bit faster than Baker. The distribution of their 
service times are shown in tables 2 and 3. 

 
 
                                  Table 1: Interarrival distribution of Cars 
 
 
                                         
 
 
 
 
              

Time Between 
arrivals 
(Min) 

1 
2 
3 
4 

 
Probability 

0.25 
0.40 
0.20 
0.15 

 
Cumulative 
Probability 

0.25 
0.65 
0.85 
1.00 

 Random 
Digit 

Assignment 

01-25 
26-65 
66-85 
86-00 
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� The simulation proceeds in a manner similar to example 1, except that it its more 
complex because of the two servers. A simplifying rule is that Able gets the customer if 
both carhops are idle. Perhaps, Able has seniority. (The solution would be different if the 
decision were made at random or by any other rule.) 

 
                                                Table 2: Service Distribution of Able  
 
 
 
 
 
 
 
     Table 3: Service Distribution of Baker 
                                                                 Table 3: Service Distribution of Baker 
 
 
 
 
 
 
 
 

 
� Here there are more events: a customer arrives, a customer begins service from able, a 

customer completes service from Able, a customer begins service from Baker, and a 
customer completes service from Baker. The simulation table is shown in table 4. 

 
� After the first customer, the cells for the other customers must be based on logic and 

formulas. For example, the “clock time of arrival” in the row for the second customer is 
computed as follows: 

                                      D2 = D1+C2 
 

� .The logic to compute who gets a given customer, and when that service begins, is more 
complex. The logic goes as follows when a customer arrives: if the customer finds able 
idle, the customer begins service immediately with able. If able is not idle but baker is, 
then the customer begins service immediately with baker. If both are busy, the customer 
begins service with the first server to become free.  

 
The analysis of table 4 results in the following:  
 

1. Over the 62-minute period able was busy 90% of the time.  
2. Baker was busy only 69% of the tome. The seniority rule keeps baker less busy. 
3. Nine of the 26 arrivals had to wait. The average waiting time for all customers was only 

about 0.42 minute, which is very small. 
4. Those nine who did have to wait only waited an average of 1.22 minutes, which is quite 

low. 
5. In summary, this system seems well balanced. One server cannot handle all the diners, 

and three servers would probably be too many. Adding an additional server would surely 
reduce the waiting time to nearly zero. However, the cost of waiting would have to be 
quite high to justify an additional server. 

Table 4: Simulation Table for the Carhop Example 
A 

Customer 
No. 

 

B 
Random 

Digits 
for 

Arrival 

C 
Time 

between 
Arrivals 
 

D 
Clock 
time 

Arrival 
 

E 
Random 
Digits 
for 
Service 

F  
Time 

Service 
Begins 
 

G 
Service 
Time 

 

H 
Time 

Service 
Ends 

 

I 
Time 

Service 
Begins 
 

J 
Service 
Time 

 

K 
Time 

Service 
Ends 

 

L 
Time 

In 
Queue 
 

Service Time 
(minutes) 

  
Service Time 

(Minutes) 
2 
3 
4 
5 
 

 
Probability 

0.30 
0.28 
0.25 
0.17 

Cumulative 
Probability 

0.30 
0.58 
0.83 
1.00 

Random-Digit 
Assignment 

01-30 
31-58 
59-83 
84-00 

Service Time 
(minutes) 

  
Service Time 

(Minutes) 
3 
4 
5 
6 
 

 
Probability 

0.35 
0.25 
0.20 
1.00 

Cumulative 
Probability 

0.35 
0.60 
0.80 
1.00 

Random-Digit 
Assignment 

01-35 
36-60 
61-80 
81-00 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

 

-- 
26 
98 
90 
26 
42 
74 
80 
68 
22 
48 
34 
45 
24 
34 
63 
38 
80 
42 
56 
89 
18 
51 
71 
16 
92 

 

-- 
2 
4 
4 
2 
2 
3 
3 
3 
1 
2 
2 
2 
1 
2 
2 
2 
3 
2 
2 
4 
1 
2 
3 
1 
4 

 

0 
2 
6 

10 
12 
14 
17 
20 
23 
24 
26 
28 
30 
31 
33 
35 
37 
40 
42 
44 
48 
49 
51 
54 
55 
59 

 

95 
21 
51 
92 
89 
38 
13 
61 
50 
49 
39 
53 
88 
01 
81 
53 
81 
64 
01 
67 
01 
47 
75 
57 
87 
47 

 

0 
 

6 
10 
 

15 
18 
20 
 

24 
27 
 

30 
 

35 
 

39 
 

43 
45 
 

49 
 

54 
 

59 
 

5 
 

3 
5 
 

3 
2 
4 
 

3 
3 
 

5 
 

4 
 

4 
 

2 
4 
 

3 
 

3 
 

3 
56 

5 
 

9 
15 
 

18 
20 
24 
 

27 
30 
 

35 
 

39 
 

43 
 

45 
49 
 

52 
 

57 
 

62 

 
2 
 
 

12 
 
 
 

23 
 
 

28 
 

32 
 

35 
 

40 
 
 

48 
 

51 
 

56 

 
3 
 
 

6 
 
 
 

4 
 
 

4 
 

3 
 

4 
 

5 
 
 

3 
 

5 
 

6 
43 

 

 
5 
 
 

18 
 
 
 

27 
 
 

32 
 

35 
 

39 
 

45 
 
 

51 
 

56 
 

62 
 

0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
1 
2 
0 
2 
0 
1 
1 
0 
0 
0 
0 
1 
0 
11 

 
 
 
2.4 Simulation of Inventory Systems  
 

An important class of simulation problems involves inventory systems. 
 
�  A simple inventory system is shown in fig 1. This inventory system has a periodic review 

of length N, at which time the inventory level is checked. An order is made to bring the 
inventory up to the level M. At the end of the review period, an order quantity, Q1, is 
placed. In this inventory system the lead time is zero. Demand is shown as being uniform 
over the time period in fig 1. In actuality, demands are not usually uniform and do 
fluctuate over time. One possibility is that demands all occur at the beginning of the cycle. 
Another is that the lead time is random of some positive length. 

 
� Notice that in the second cycle, the amount in inventory drops below zero, indicating a 

shortage. In fig 1, these units are backordered. When the order arrives, the demand for 
the backordered items is satisfied first. To avoid shortages, a buffer, or safety, stock 
would need to be carried. 

 
� Carrying stock in inventory has an associated cost attributed to the interest paid on the 

funds borrowed to buy the items. Other costs can be placed in the carrying or holding 
cost column: renting of storage space, hiring guards, and so on. 

 
�  An alternative to carrying high inventory is to make more frequent reviews, and 

consequently, more frequent purchases or replenishments. This has an associated cost: 
the ordering cost. Also, there is a cost in being short. Larger inventories decrease the 
possibilities of shortages. These costs must be traded off in order to minimize the total 
cost of an inventory system. 

 
� The total cost of an inventory system is the measure of performance. This can be 

affected by the policy alternatives. For example, in fig 1, the decision maker can control 
the maximum inventory level, M, and the cycle, N.  
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� In an (M, N) inventory system, the events that may occur are: the demand for items in the 
inventory, the review of the inventory position, and the receipt of an order at the end of 
each review period. When the lead time is zero, as in fig 1, the last two events occur 
simultaneously. 

 
  

• The Newspaper Seller’s Problem 
  

� A classical inventory problem concerns the purchase and sale of 
newspapers. The paper seller buys the papers for 33 cents each and sells 
them for 50 cents each. Newspapers not sold at the end of the day are sold 
as scrap for 5 cents each. Newspapers can be purchased in bundles of 10. 
Thus, the paper seller can buy 50, 60, and so on. 

 
� There are three types of Newsday’s, “good,” “fair,” and “poor,” with 

probabilities of 0.35, 0.45, and 0.25, respectively. The distribution of papers 
demanded on each of these days is given in table 2.15. The problem is to 
determine the optimal number of papers the newspaper seller should 
purchase. This will be accomplished by simulating demands for 20 days and 
recording profits from sales each day. 

 
 
 
              
The profits are given by the following relationship:  
 
 
                  Revenue                cost of                         lost profit form                  salvage from sale 
 Profit =   form sales               newspapers                  excess demand        of scrap papers 
 
               
  
                Table 5:  Distribution of Newspaper Demanded 
 
 

 
 
               

� Form the problem statement, the revenue from sales is 50 cents for each 
paper sold. The Cost 9 of newspapers is 33 cents for each paper purchased. 
The lost profit from excess demand is 17 cents for each paper demanded 
that could not be provided. Such a shortage cost is somewhat controversial 
but makes the problem much more interesting. The salvage value of scrap 
papers is 5 cents each. 

 
� Tables 6 and 7 provide the random-digit assignments for the types of 

Newsday’s and the demands for those Newsday’s.      
 
   
            Table 6: Random Digit Assignment for Type of Newsday 

Demand Good Fair Poor 

40 
50 

       60  

0.03 
0.05 
0.15 

0.10 
0.18 
0.40 

0.44 
0.22 
0.16 

Demand Probability Distribution 
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           Table 7: Random Digit Assignment for Newspapers Demanded 
 
 
 
 
 
 
 
 
 
 

� The simulation table for the decision to purchase 70 newspapers is shown in 
table 8.On day 1 the demand is for 60 newspapers. The revenue from the 
sale of 60 newspapers is $30.00. Ten newspapers are left over at the end of 
the day. The salvage value at 5 cents each is 50 cents. The profit for the first 
day is determined as follows: 

 
 Profit = $30.00 - $ 23.10 – 0 + $.50 = $7.40        

 
 
Table 8: Simulation table fro purchase of 70 newspapers 

 
 

 
 
 
 
 

 
 
 
 

 
� On the fifth day the demand is greater than the supply. The revenue from 

sales is $35.00, since only 70 papers are available under this policy. An 
additional 20 papers could have been sold. Thus, a lost profit of $3.40 (20*17 
cents) is assessed. The daily profit is determined as follows: 

 
Profit = $35.00 - $23.10 - $3.40 + 0 = $8.50 

 
 

� The profit for the 20-day period is the sum of the daily profits, $174.90. it can 
also be computed from the totals for the 20 days of the simulation as follows: 

 
Total profit = $645 - $462 - $13 .60 + $5.50 = $174.90 

 
 

� In general, since the results of one day are independent of those of previous 
days, inventory problems of this type are easier than queueing problems. 

 

 

Type of Newsday Probability Cumulative 
probability 

Random Digit 
Assignment 

Good 
Fair 
Poor 

0.35 
0.45 
0.20 

0.35 
0.80 
1.00 

01 – 35 
36 – 80  
81 - 00 

Demand Good Fair Poor Good Fair Poor 

Cumulative Distribution Random Digit Assignment 

40 
50 
60 
 

0.03 
0.08 
0.23 

 

0.10 
0.28 
0.68 

0.44 
0.66 
0.82 

01 – 03 
04- 08 
09 - 23 

01 – 10 
11 – 28 

   29 - 68 

01 – 44 
45 – 66 
67 - 82 

Day Random digits 
for type of 
Newsday 

Type of 
Newsday 

Random 
digits for 
demand 

Demand Revenue 
from sales 

Lost profit 
from excess 

demand 

Salvage 
from 

sale of 
scrap 

Daily 
profit 

1 
2 
3 
 

94 
77 
49 

Poor 
Fair 
Fair 

80 
20 
15 

60 
50 
50 
 

$30 
$25 
$25 

- 
- 
- 
 

$0.50 
$1.0 
$1.0 

$7.40 
$2.90 
$2.90 

www.ncetianz.webs.com

Nce
tia

nz



 

  - 35 - 

 
Simu lation of an (M, N) Inventory System  

 
� Suppose that the maximum inventory level, M, is 11 units and the review 

period, N, is 5 days. The problem is to estimate, by simulation, the average 
ending units in inventory and the number of days when a shortage condition 
occurs. The distribution of the number of units demanded per day is shown in 
table 9. In this example, lead-time is a random variable, as shown in table 10. 
Assume that orders are placed at the close of business and are received for 
inventory at the beginning as determined by the lead-time.  

 
Table 9: Random digits assignments for daily demand 
 
 
 
Random digits assignments 

 
          Table 10: Random digit assignments for lead time 

 
 
 
 
 
 
 
 
 

         Table 11: Simulation table for (M, N) Inventory System 
 
 
 
 
 
 
 
 
 
 
 
Note : Refer cycle 2,3,4,5 from Text book page no 47.  
 
 

� To make an estimate of the mean units in ending inventory, many cycles 
would have to be simulated. For purposes of this example, only five cycles 
will be shown. The reader is asked to continue the example as an exercise at 
the end of the chapter. 

 
� The random-digit assignments for daily demand and lead time are shown in 

the rightmost columns of tables 9 and 10. The resulting simulation table is 
shown in table 11.The simulation has been started with the inventory level at 
3 units and an order of 8 units scheduled to arrive in 2 days time.  

 
� Following the simulation table for several selected days indicates how the 

process operates. The order for 8 units is available on the morning of the 
third day of the first cycle, raising the inventory level from 1 unit to 9 units; 

 

Demand Probability Cumulative 
Probability 

Random digits 
assignments 

0 
1 
2 

0.10 
0.25 
0.35 

0.10 
0.35 
0.70 

01 – 10 
11 – 35 
36 - 70 

Lead Time 
(Days) 

Probability Cumulative 
Probability 

 

Random digits 
assignments 

 

1 
2 
3 

0.6 
0.3 
0.1 

0.6 
0.9 
1.0 

1 – 6 
7 – 9 

0 

Cycle Day Beginning 
Inventory 

Random digits 
for demand 

Demand Ending 
Inventory 

Shortage 
quantity 

Order  
quantity 

Random digits 
For lead time 

 

Days 
order 
arr 

 
 
1 

1 
2 
3 
4 
5 
 

3 
2 
9 
7 
4 

24 
35 
65 
81 
54 

1  
1 
2 
3 
2 
 

2 
1 
7 
4 
2 

0 
0 
0 
0 
0 

- 
- 
- 
- 
9 

- 
- 
- 
- 
5 
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demands during the remainder of the first cycle reduced the ending inventory 
level to 2 units on the fifth day. Thus, an order for 9 units was placed. The 
lead time for this order was 1 day. The order of 9 units was added to 
inventory on the morning of day 2 of cycle 2.  

 
 

� Notice that the beginning inventory on the second day of the third cycle was 
zero. An order for 2 units on that day led to a shortage condition. The units 
were backordered on that day and the next day;; also on the morning of day 
4 of cycle 3 there was a beginning inventory of 9 units that were backordered 
and the 1 unit demanded that day reduced the ending inventory to 4 units. 

 
� Based on five cycles of simulation, the average ending inventory is 

approximately 3.5 (88/25) units. On 2 of 25 days a shortage condition 
existed. 
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3_____ 

General Principles 
Introduction  

• This chapter develops a common framework for the modeling of 
complex systems using discrete-event simulation. 

• It covers the basic building blocks of all discrete-event simulation 
models: entities and attributes, activities and events. 

• In discrete-event simulation, a system is modeled in terms of its 
state at each point in time; the entities that pass through the system 
and the entities that rep-j resent system resources; and the activities 
and events that cause system state to change. 

• This chapter deals exclusively with dynamic, stochastic system 
(i.e. involving time and containing random elements) which 
changes in a discrete manner. 

3.1 Concepts in Discrete-Event Simulation 
• The concept of a system and a model of a system were 

discussed briefly in earlier chapters. 
• This section expands on these concepts and develops a 

framework for the development of a discrete-event model of a 
system. 

• The major concepts are briefly defined and then illustrated 
with examples:  

• System: A collection of entities (e.g., people and 
machines) that ii together over time to accomplish one or 
more goals. 

• Model: An abstract representation of a system, usually 
containing structural, logical, or mathematical 
relationships which describe a system in terms of state, 
entities and their attributes, sets, processes, events, 
activities, and delays. 

• System state: A collection of variables that contain all 
the information necessary to describe the system at any 
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time. 
• Enti ty: Any object or component in the system which 

requires explicit representation in the model (e.g., a 
server, a customer, a machine). 

 
o Attributes: The properties of a given entity (e.g., the 

priority of a v customer, the routing of a job through a 
job shop). 

o List: A collection of (permanently or temporarily) 
associated entities ordered in some logical fashion 
(such as all customers currently in a waiting line, 
ordered by first come, first served, or by priority). 

o Event: An instantaneous occurrence that changes the 
state of a system as an arrival of a new customer). 

o Event notice: A record of an event to occur at the 
current or some future time, along with any associated 
data necessary to execute the event; at a minimum, the 
record includes the event type and the event time. 

o Event list: A list of event notices for future events, 
ordered by time of occurrence; also known as the future 
event list (FEL ). 

o Activity: A duration of time of specified length (e.g., a 
service time or arrival time), which is known when it 
begins (although it may be defined in terms of a 
statistical distribution). 

o Delay: A duration of time of unspecified indefinite 
length, which is not known until it ends (e.g., a 
customer's delay in a last-in, first-out waiting line 
which, when it begins, depends on future arrivals). 

o Clock: A variable representing simulated time. 
• The future event list is ranked by the event time recorded in 

the event notice. 
• An activity typically represents a service time, an interarrival 

time, or any other processing time whose duration has been 
characterized and defined by the modeler. 

• An activity’s duration may be specified in a number of ways: 
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1. Deterministic-for example, always exactly 5 
minutes. 

2. Statistical-for example, as a random draw from 
among 2,5,7 with equal probabilities. 

3. A function depending on system variables 
and/or entity attributes. 

• The duration of an activity is computable from its specification 
at the instant it begins . 

• A delay's duration is not specified by the modeler ahead of time, 
but rather is determined by system conditions. 

 
• A delay is sometimes called a conditional wait, while an activity 

is called unconditional wait.  

• The completion of an activity is an event, often called primary 
event. 

• The completion of a delay is sometimes called a conditional or                                                     
secondary event. 

           EXAMPLE 3.1   (Able and Baker, Revisited) 
       Consider the Able-Baker carhop system of Example 2.2. A 
discrete-  event model has the following components: 

 
    System state 

        LQ(t), the number of cars waiting to be served at time t 
       LA(t), 0 or 1 to indicate Able being idle or busy at time t 
       LB (t), 0 or 1 to indicate Baker being idle or busy at time t 

   Entities 
        Neither the customers (i.e., cars) nor the servers need to 
be  explicitly  represented, except in terms of the state 
variables, unless certain customer averages are desired 
(compare Examples 3.4 and 3.5) 

   Events  
             Arrival event 

         Service completion by Able 
         Service completion by Baker 
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   Activities 
      Interarrival time, defined in Table 2.11 
       Service time by Able, defined in Table 2.12 
       Service time by Baker, defined in Table 2.13 

   Delay  
            A customer's wait in queue until Able or Baker becomes 
free. 

3.2   The Event-Scheduling/Time-Advance Algorithm 

• The mechanism for advancing simulation time and guaranteeing 
that all events occur in correct chronological order is based on 
the future event list (FEL).  

• This list contains all event notices for events that have been 
scheduled to occur at a future time. 

• At any given time t, the FEL contains all previously scheduled 
future events and their associated event times 

•   The FEL is ordered by event time, meaning that the events are 
arranged chronologically; that is, the event times satisfy 
    t < t1 <= t2 <= t3 <= ….,<= tn 

  t is the value of CLOCK, the current value of   simulated time. The event 
  dated with time t1 is called the imminent event; that is, it is the next event 
  will occur.  After the system snapshot at simulation time CLOCK == t 
  has been updated, the CLOCK is advanced to simulation time  
  CLOCK _= t1 and the imminent event notice is removed from the FEL 
   and the event executed.. This process repeats until the simulation is over. 

• The sequence of actions which a simulator must perform to advance the clock and build a new 
system snapshot is called the event-scheduling/time-advance algorithm 
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 Old system snapshot at time t 
 
ClK 
 

System State 
 
 

 
 

Future Event List 
 

 
 

T 
 

(5,1,6) 
 

 
 

(3, t1)— Type 3 event to occur at timet1 
 (1, t2)— Type 1 event to occur at time t2 
 (1, t3)- Type 1 event to occur at time t3 
(2, tn)— Type 2 event to occur at time tn 
 

 
 

 
Event-scheduling/time-advance algorithm 
Step 1. Remove the event notice for the imminent event 
             (event 3, time t\) from PEL  
Step 2. Advance CLOCK to imminent event time 
             (i.e., advance CLOCK from r to t1). 
 Step 3. Execute imminent event: update system state, 
             change entity attributes, and set membership as needed. 
 Step 4. Generate future events (if necessary) and 
              place their event notices on PEL ranked by event time. 
(Example: Event 4 to occur at time t*, where t2 < t* < t3.)  
Step 5. Update cumulative statistics and counters. 
 
 

 
 

New system snapshot at time t1 

OCK 
 

System 
State 
 

 
 

Future Event List 
 

 
 

t\ 
 

(5,1,5) 
 

 
 

(1, t2)— Type 1 event to occur at time t1 
(4, t*)— Type 4 event to occur at time t* 
(1, t3)— Type 1 event to occur at time t3 
(2, tn)— Type 2 event to occur at time tn 
 

 
 

Figure 3.2 Advancing simulation time and updating system image
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• The management of a list is called list processing 
• The major list processing operations performed on a FEL are 

removal of the imminent event, addition of a new event to the 
list, and occasionally removal of some event (called cancellation 
of an event). 

•  As the imminent event is usually at the top of the list, its removal 
is as efficient as possible. Addition of a new event (and 
cancellation of an old event) requires a search of the list. 
The removal and addition of events from the PEL is illustrated in 
Figure 3.2. 

o When event 4 (say, an arrival event) with event time t* is 
generated at step 4, one  possible way to determine its 
correct position on the FEL is to conduct a top-down 
search:  

        If t* < t2, place event 4 at the top of the FEL. 
        If t2 < t* < t3,    place event 4 second on the list. 
        If t3, < t* < t4,    place event 4 third on the list. 
 
        If tn < t*,  event 4 last on the list. 
o Another way is to conduct a bottom-up search. 

•   The system snapshot at time 0 is defined by the initial conditions 
and the generation of the so-called exogenous events. 

•  The method of generating an external arrival stream, called 
bootstrapping. 

•  Every simulation must have a stopping event, here called E, 
which defines how long the simulation will run.   There are 
generally two ways to stop a simulation: 

    1. At time 0, schedule a stop simulation event at a specified 
future time TE. Thus, before simulating, it is known that the 
simulation will run over the time interval [0, TE]. Example: 
Simulate a job shop for TE = 40 hours. 

2.  Run length TE is determined by the simulation itself. 
Generally, TE is the time of occurrence of some specified 
event E. Examples: TE is the time of the 100th service 
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completion at a certain service center. TE is the time of 
breakdown of a complex system.  

 
 
 
 

3.3 World Views 
•  When using a simulation package or even when using a manual 

simulation, a modeler adopts a world view or orientation for 
developing a model. 

•  Those most prevalent are the event scheduling world view, the   
process-interaction worldview, and the activity-scanning 
world view. 

•  When using a package that supports the process-interaction 
approach, a simulation analyst thinks in terms of  processes . 

•   When using the event-scheduling approach, a simulation analyst 
concentrates on events and their effect on system state. 

•   The process-interaction approach is popular because of its 
intuitive appeal, and because the simulation packages that 
implement it allow an analyst to describe the process flow in 
terms of high-level block or network constructs. 

•   Both the event-scheduling and the process-interaction 
approaches use a / variable time advance. 

•   The activity-scanning approach uses a fixed time increment and 
a rule-based approach to decide whether any activities can begin 
at each point in simulated time. 

•    The pure activity scanning approach has been modified by what 
is      called the three-phase approach. 

•    In the three-phase approach, events are considered to be 
activity 

       duration-zero time units. With this definition, activities are 
divided 

             into two categories called B and  
C. 

o B activities:  Activities bound to occur; all primary 
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events and unconditional activities. 

o C activities:  Activities or events that are conditional 
upon certain conditions being true. 

• With the. three-phase approach the simulation proceeds with 
repeated execution of the three phases until it is completed: 
� Phase A:  Remove the imminent event from the FEL and 

advance the clock to its event time. Remove any other 
events from the FEL that have the event time. 

�  Phase B:  Execute all B-type events that were removed 
from the FEL. 

� Phase C: Scan the conditions that trigger each C-type 
activity and activate any whose conditions are met. 
Rescan until no additional C-type activities can begin or 
events occur. 

• The three-phase approach improves the execution efficiency of 
the activity scanning method. 

 

EXAMPLE 3.2   (Able and Baker, Back Again) 
. Using the three-phase approach, the conditions for beginning each 
activity in Phase C are: 

Activity                   Condition 
Service time by Able A customer is in queue and Able is 
idle, 
Service time by Baker A customer is in queue, Baker is idle, 

and Able is busy. 
 

3.4 Manual Simulation Using Event Scheduling 
• In an event-scheduling simulation, a simulation table is used to 

record the successive system snapshots as time advances. 
• Lets consider the example of a grocery shop which has only one 

checkout counter. 

Example 3.3 (Single-Channel Queue) 
• The system consists of those customers in the waiting line plus the 

one (if any) checking out. 
• The model has the following components: 
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o System state (LQ(i), Z,S(r)), where LQ((] is the number of 
customers in the waiting line, and LS(t) is the number being 
served (0 or 1) at time t. 

o Entities The server and customers are not explicitly 
modeled, except in terms of the state variables above. 

o Events 
Arrival (A) 
Departure (D) 
Stopping event (£"), scheduled to occur at time 60. 

o Event notices 
(A, i). Representing an arrival event to occur at future 
time t 
(D, t), representing a customer departure at future time t 
(£, 60), representing the simulation-stop event at future 
time 60 

o Activities 
Inlerarrival time, denned in Table 2.6 
Service time, defined in Table 2.7 

o Delay 
Customer time spent in waiting line. 

• In this model, the FEL will always contain either two or three 
event notices. 

• The effect of the arrival and departure events was first shown in 
Figures 
below
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 Fig 1(A): Execution of the arrival event. 
 

Arrival event 
Occurs at CLOCK = t 

Is 
LS(t) 
= 1? 

Set LS(t)=1 Increase LQ(t) by 
1 

Generate service time a*; 
Schedule new departure 
event at time t + s*  

Generate interarrival time 
a*; 
Schedule new arrival event 
at time t + a* 

Collect statistics 

Return control to time-
advance routine to 
continue simulation 

N Y 
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Fig 1(B): Execution of the departure event. 
 
 
 
 

Departure event occurs at 
CLOCK = t 

Set LS(t)=0 
Is 
LQ(t)>
0? 

Reduce LQ(t) by 1  

Generate service 
time s*; 
Schedule new 
departure event at 
time t + s* 

Collect Statistics 

Return control to 
time-advance 
routine to continue 
simulation 

N Y 
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• Initial conditions are that the first customer arrives at time 0 and 
begins service. 

• This is reflected in Table below by the system snapshot at time zero 
(CLOCK = 0), with LQ (0) = 0, LS (0) = 1, and both a departure event 
and arrival event on the FEL. 

• The simulation is scheduled to stop at time 60. 
• Two statistics, server utilization and maximum queue length, will be 

collected. 
• Server utilization is defined by total server busy time .(B) divided by 

total time(Te). 
• Total busy time, B, and maximum queue length MQ, will be 

accumulated as the simulation progresses. 
• As soon as the system snapshot at time CLOCK = 0 is complete, the 

simulation begins. 
• At time 0, the imminent event is (D, 4). 
• The CLOCK is advanced to time 4, and (D, 4) is removed from the 

FEL. 
• Since LS(t) = 1 for 0 <= t <=  4 (i.e., the server was busy for 4 

minutes), the cumulative busy time is Increased from B = 0 to B = 4. 
• By the event logic in Figure 1(B), set LS (4) = 0 (the server becomes 

idle). 
• The FEL is left with only two future events, (A, 8) and (E, 0). 
• The simulation CLOCK is next advanced to time 8 and an arrival 

event is executed. 
• The simulation table covers interval [0,9]. 
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Simulation table for checkout counter. 

 
 

Example 3.4 (The Checkout-Counter Simulation, 
Continued) 

• Suppose the system analyst desires to estimate the mean response time 
and mean proportion of customers who spend 4 or more minutes in 
the system the above mentioned model has to be modified. 

o Entities (Ci, t), representing customer Ci who arrived at time t. 
o Event notices (A, t, Ci ), the arrival of customer Ci at future 

time t 
             (D, f, Cj), the departure of customer Cj at future 
time t. 

o Set "CHECKOUT LINE," the set of all customers currently at 
the checkout Counter (being served or waiting to be served), 
ordered by time of arrival 

Clock LQ(t) LS(t) FEL Comment B MQ 
0 0 1 (D,4) 

(A,8) 
(E,60) 

First A 
occurs (a* = 
8) schedule 
next A 
(s* = 4) 
schedule 
next D  

0  0 

4 0 0 (A,8) 
(E,60) 

First D 
occurs;(D,4) 

4 0 

8 0 1 (D,9) 
(A,14) 
(E,60) 

Second A 
occurs;(A,8) 
(a* = 6) 
schedule 
next A 
(s* = 1) 
schedule 
next D 

4 0 

9 0 0 (A,14) 
(E,60) 

Second D 
occurs;(D,9) 

5 0 
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• Three new statistics are collected: S, the  sum of customers response 
times for all customers who have departed by the current time; F, the 
total number of  customers who spend 4 or more minutes at the check 
out counter; ND the total number of departures up to the current 
simulation time. 

• These three cumulative statistics are updated whenever the departure 
event occurs. 

• The simulation table is given below 
  
 Simulation Table for Example 3.4  
             System state                                                  Cumulative statistics 
Clock LQ(t) LS(t) Checkout 

line 
FEL S N D F 

0 0 1 (C 1,0) (D,4,C1) 
(A,8,C2) 
(E,60) 

0 0 0 

4 0 0  (A,8,C2) 
(E,60) 

4 1 1 

8 0 0 (C2,8) (D,9,C2) 
(A,14,C3) 
(E,60) 

4 1 1 

9 0 0  (A,14,C3) 
(E,60) 

5 2 1 

 

 Example 3.5 (The Dump Truck Problem) 
• Six dump truck are used to haul coal from the entrance of a small 

mine to the railroad. 
• Each truck is loaded by one of two loaders. 
• After loading, a truck immediately moves to scale, to be weighted as 

soon as possible. 
• Both the loaders and the scale have a first come, first serve waiting 

line(or queue) for trucks. 
• The time taken to travel from loader to scale is considered negligible. 
• After being weighted, a truck begins a travel time and then afterward 

returns to the loader queue. 
• The model has the following components: 

o System state 
[LQ(0, L(f), WQ(r), W(r)], where 
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LQ(f) = number of trucks in loader queue 
L(t) = number of trucks (0,1, or 2)being Loaded 
 WQ(t)= number of trucks in weigh queue 
W(t) = number of trucks (0 or 1) being weighed, all at 
simulation time t 

 
 

o Event notices  
 (ALQ,, t, DTi), dump truck arrives at loader queue 
(ALQ) at time t  
(EL, t, DTi), dump truck i ends loading (EL) at time t 
(EW, t, DTi), dump truck i ends weighing (EW) at time t 

o Entities The six dump trucks (DTI,..., DT6) 
o Lists 

Loader queue, all trucks waiting to begin loading, 
ordered on a first-come, first-served basis  
Weigh queue, all trucks waiting to be weighed, ordered 
on a first-come, first-serve basis. 

o Activities Loading time, weighing time, and travel time. 
o Delays Delay at loader queue, and delay at scale. 

Distribution of Loading for the Dump Truck 
Loading time Probability Cumulative 

probability 
Random-Digit 
Assignment 

5 0.30 0.30 1-3 
10 0.50 0.80 4-8 
15 0.20 1.00 9-0 
 
Distribution of Weighing Time for the Dump Truck 
Weighing time  Probability Cumulative 

probability 
Random-Digit 
Assignment 

12 0.70 0.70 1-7 
16 0.30 1.00 8-0 
 
Distribution of Travel Time for the Dump Truck 
Travel time Probability  Cumulative 

probability 
Random-Digit 
Assignment 

40 0.40 0.40 1-4 
60 0.30 0.70 5-7 
80 0.20 0.90 8-9 
100 0.10 1.00 0 
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• The activity times are taken from the following list 
Loading 
time 

10 5 5 10 15 10 10 

Weighing 
time 

12 12 12 16 12 16  

Travel 
time 

60 100 40 40 80   

 
• Simulation table for Dump Truck problem 

 
             System state                                   Lists                                 
cumulative stat 
Clock 
t 

LQ(t) L(t) WQ(t) W(t) Loader 
queue 

Weigh 
queue 

FEL BL BS 

0 3 2 0 1 DT4 
DT5 
DT6 

 (EL,5,DT3) 
(EL,10,DT2) 
(EL,12,DT1) 

0 0 

5 2 2 1 1 DT5 
DT6 

DT3 (EL,10,DT2) 
(EL,5 + 5 ,DT4) 
(EW,12,DT1) 

10 5 

10 1 2 2 1 DT6 DT3 
DT2 

(EL,10,DT4) 
(EW,12,DT1) 
(EL,10+10,DT5) 

20 10 

10 0 2 3 1  DT3 
DT2 
DT4 

(EW,12,DT1) 
(EL,20,DT5) 
(EL,10+15,DT6) 

20 10 

12 0 2 2 1  DT2 
DT4 

(EL,20,DT5) 
(EW,12+12,DT3) 
(EL,25,DT6) 
(ALQ,12+60,DT1) 

24 12 

20 0 1 3 1  DT2 
DT4 
DT5 

(EW,24,DT3) 
(EL,25,DT6) 
(ALQ,72,DT1) 

40 20 

24 0 1 2 1  DT4 
DT5 

(EL,25,DT6) 
(EW,24+12,DT2) 
(ALQ,72,DT1) 
(ALQ,24+100,DT3) 

44 24 

 
 
 
Average Loader Utilization = 44/2   = 0.92 
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                                                   24 
 
Average Scale Utilization=24/24 = 1.00 
*************************************************************
***** 

4. Random-Number Generation 
 
 
Random numbers are a necessary basic ingredient in the simulation of almost all discrete 
systems. Most computer languages have a subroutine, object, or function that will generate a 
random number. Similarly simulation languages generate random numbers that arc used to 
generate event limes and other random variables. 
4.1 Properties of Random Numbers 
A sequence of random numbers, W1, W2, .. , must have two important statistical properties, 
uniformity and independence. Each random number Ri, is an independent sample drawn from a 
continuous uniform distribution between zero and 1. That is, the pdf is given by 

                                  F(x)={  
1, 0 ≤x≤1  

                          
0,  o therw ise 

This density function is shown in Figure 7.1. The expected value of each Ri, is:                                                            
                1 

E(R} =  ∫     x d x  =   
                   0  
and the variance is given by 
 

V(R)=∫   x2dx – [E(R )]2 =     
-  ( )

   

 

=   - =  
 
 

Figure 7.1*   The: pdf for random 
numbers. 
 
 
 

Some consequences of the uniformity and independence 
properties are the following: 

1. If the interval (0,1) is divided into n classes, or subintervals of equal length, the expected 
number of observations m each interval ii N/n where A' is the total number of observations. 
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2- The probability of observing a value in a particular interval is of the previous values 
drawn 
 
 
 
 
4.2 Generation of  Pseudo-Random Numbers  

Pseudo means false,so false random numbers are being generated.The goal of any generation 
scheme, is to produce a sequence of numbers belween zero and 1 which simulates, or 
initates, the ideal properties of uniform distribution and independence as closely as possible. 

When generating pseudo-random numbers, certain problems or errors can occur. These 
errors, or departures from ideal randomness, are all related to the properties stated previously. 
Some examples include the following 

1. The generated numbers may not be uniformly distributed. 
2. The generated numbers may be discrete -valued instead continuous valued 
3. The mean of the generated numbers may be too high or too low.  
4. The variance of the generated numbers may be too high or  low 
5. There may be dependence. The following are examples: 

            (a) Autocorrelation between numbers. 

            (b) Numbers successively higher or lower than  adjacent numbers. 
            (c) Several numbers above the mean followed by several numbers below the mean. 
 
Usually, random numbers are generated by a digital computer as part of the simulation. 

Numerous methods can be used to generate the values. In selecting among these methods, or 
routines, there are a number of important considerations. 

1. The routine should be fast. . The total cost can be managed by selecting a computationally 
efficient method of random-number generation. 

2. The routine should be portable to different computers, and ideally to different 
programming languages .This is desirable so that the simulation program produces the 
same results wherever it is executed. 

3. The routine should have a sufficiently long cycle. The cycle length, or period, represents 
the length of the random-number sequence before previous numbers begin to repeat 
themselves in an earlier order. Thus, if 10,000 events are to be generated, the period should 
be many times that long, 
     A  special case cycling is degenerating. A routine degenerates when  the same random 
numbers appear repeatedly. Such an occurrence is certainly unacceptable. This can happen 
rapidly with some methods. 

4. The random numbers should be replicable. Given the starting point (or conditions), it 
should be possible to generate the same set of random numbers, completely independent of 
the system that is being simulated. This is helpful for debugging purpose and is a means of 
facilitating comparisons between systems.  

5.Most  important, and as indicated previously, the generated random numbers should closely 
approximate the ideal statistical properties of uniformity and independences 

4.3 Techniques for Generating Random Numbers 
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4.3.1 Linear   Congruential  Method 

The linear congruential method, initially proposed by Lehmer [1951], produces a sequence of 
integers, X\, X2,... between zero and m — 1 according to the following recursive relationship: 

X i+1 = (a Xi + c) mod m,     i = 0,1, 2,. . .(7.1) 

The initial value X0 is called the seed, a  is called the constant multiplier, c is the increment, and 
m is the modulus.  

If c ≠ 0 in Equation (7.1), the form is called the   mixed  congruential method. When c = 0, the 
form is known as the  multiplicative congruential method. The selection of the values for a, c, m 
and Xo drastically affects the statistical properties and the cycle length. . An example will 
illustrate how this technique operates. 

EXAMPLE  4.1 
Use the linear  congruential method to generate a sequence of random numbers with X0 = 27,  
a= 17, c = 43, and m = 100.   Here, the integer values generated will all be between zero and 
99   because of the value of the modulus . These random integers should appear to be uniformly 
distributed the integers zero to 99.Random numbers between zero and 1 can be generated by 
 
Ri =Xi/m, i= 1,2,……     (7.2) 

 
The sequence of Xi and subsequent   Ri values is computed as follows: 

X0 = 27 

X1 = (17.27 + 43) mod 100 = 502 mod 100 = 2 

R1=2⁄100=0. 02 

X2 = (17 • 2 + 43) mod 100 = 77 mod 100 = 77 
 
R2=77  ⁄100=0. 77 

                       *[3pt] X3  = (17•77+ 43) mod 100 = 1352 mod 100 = 52 
                        R3=52 ⁄100=0. 52 

 
 
First, notice that the numbers generated from Equation (7.2) can only assume values from 

the set I = {0,1 /m, 2/m,..., (m — l)/m), since each Xi is an integer in the set {0,1,2,..., m — 
1}. Thus, each Ri is discrete on I, instead of continuous on the interval [0, 1], This 
approximation appears to be of little consequence, provided that the modulus m is a very large 
integer. (Values such as m = 231 — 1 and m = 248 are in common use in generators appearing in 
many simulation languages.) By maximum density is meant that the values assumed by  Ri = 1, 
2,..., leave no large gaps on [0,1] 

Second, to help achieve maximum density, and to avoid cycling (i.e., recurrence of the same 
sequence of generated numbers) in practical applications, the generator should have the largest 
possible period. Maximal period can be achieved by the proper choice of a, c, m, and  X0 . 

• For m a power of 2, say m =2b and c ≠ 0, the longest possible period is P = m = 2b, 
which is achieved provided that c is relatively prime to m (that is, the greatest common 
factor of c and m is l   ) ,  and =a = l+4k, where k is an integer. 

• For m a power of 2, say m =2b and c = 0, the longest possible period is P = m⁄4 = 2b-2, 
which is achieved provided that the seed X0 is odd  and the multiplier ,a, is given by a=3+8K , for 
some 

K=0,1,.. 
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• For m a prime number and c=0, the longest possible period is P=m-1, which is achieved 
provided that the multiplier , a, has the property that the smallest integer k such that  

a k- 1is divisible by m is k= m-1. 

 

 

EXAMPLE 4.3 

Let m = 102 = 100, a = 19, c = 0, and X0 = 63, and generate a sequence c random integers using 
Equation (7.1). 

X0 = 63 

X1 = (19)(63) mod 100 = 1197 mod 100 = 97  

X2 = (19) (97) mod 100 = 1843 mod 100 = 43 

 X3 = (19) (43) mod 100 = 817 mod 100 = 17 

      . 
      . 
      . 

      . 

When m is a power of 10, say m = 10b  , the modulo operation is 

accomplished by saving the b rightmost (decimal) digits.  

EXAMPLE 4.4 
Let a = 75 = 16,807, m = 231-1 = 2,147,483,647 (a prime number), and c= 0. These choices 
satisfy the conditions that insure a period of P = m— 1 . Further, specify a seed, XQ = 123,457. 
The first few numbers generated are as follows: 
 

X1= 75(123,457) mod (231 - 1) = 2,074,941,799 mod (231 - 1) 

  X1 = 2,074,941,799 

R1=  X1 ⁄231 

X2 = 75(2,074,941,799) mod(231 - 1) = 559,872,160 

R2 =  X2 ⁄231= 0.2607 

X3 = 75(559,872,160) mod(231 - 1) = 1,645,535,613 

R3 =  X3 ⁄231= 0.7662 
 

www.ncetianz.webs.com

Nce
tia

nz



 

MCA52 – System Simulation & Modeling  57  

Notice that this routine divides by m + 1 instead of m ; however, for sucha large value of m , 
the effect is negligible. 

4.3.2 Combined Linear Congruential Generators 

As computing power has increased, the complexity of the systems that we are able to simulate has 
also increased. 

. One fruitful approach is to combine two or more multiplicative congruen-tial generators in such a way 
that the combined generator has good statistical properties and a longer period. The following result from 
L'Ecuyer [1988] suggests how this can be done: 

If  Wi, 1 , Wi , 2. . . , W  i,k are any independent, discrete-valued random variables (not necessarily identically 
distributed), but one of them, say   Wi, 1, is uniformly distributed on the integers 0 to mi — 2, then 

Wi=     mod m1 - 1 

is uniformly distributed on the integers 0 to mi — 2. 
 

To see how this result can be used to form combined generators, let Xi,1, X i,2,..., X i,k 
be the i th output from k different multiplicative congru-ential generators, where the j th 
generator has prime modulus mj, and the multiplier  aj is chosen so that the period is mj — 1. 
Then the j'th generator is producing integers Xi,j that are approximately uniformly distributed 
on 1 to mj - 1, and Wi,j = X i,j — 1 is approximately uniformly distributed on 0 to mj - 2. 
L'Ecuyer [1988] therefore suggests combined generators of the form 

 
                           

k 
∑(-1) j-1 X i,j      mod   m1 – 1 

j=1 
with 

R i        =      {           Xi/m1 ,                        Xi > 0 
                    m1 -1 ⁄ m1                               Xi = 0 
 

Notice that the " (-1)j-1 "coefficient implicitly performs the subtraction X i,1-1; for example,  

if k    =   2,   then  (-1)°(X i 1   - 1) - ( - l ) l ( X i 2  - 1)=∑2
j=1( -1)

j-1 X i,j      
 The maximum possible period for such a generator is 

(m1 -1)(m2 - l ) - - -  ( mk  - 1) 

                                                                2 k-1 

which   is achieved by the following generator: 
 

  EXAMPLE 4.5 
For 32-bit computers, L'Ecuyer [1988] suggests combining k = 2 generators with m1 = 
2147483563, a1= 40014, m2 = 2147483399, and a2 = 40692. This leads to the following algorithm: 

1.     Select seed X1,0 in the range [1, 2147483562] for the first generator,      and seed X2.o in the 
range [1, 2147483398]. 
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         Set j =0. 
2.     Evaluate each individual generator. 

            X 1, j+1 = 40014X 1,j   mod 2147483563  

              X2,j+i = 40692X2,j   mod 2147483399 
3 Set 
                     Xj+1 = ( X 1, j+1 - X 2 j+1)  mod 2147483562 

 
 

4.      Return     
                  R j+1     =      Xj+1 ⁄  2147483563   ,                  X j+1 > 0 

                                  
                             2147483563 / 2147483563.        X j +1= 0 

 5. Set j = j + 1 and go to step 2. 

4.4 Tests for Random Numbers  
The desirable properties of random numbers — uniformity and independence  To insure that 
these desirable properties are achieved, a number of tests can be performed (fortunately, the 
appropriate tests have already been conducted for most commercial simulation software}. The 
tests can be placed in two categories according to the properties of interest,  
 
The first entry in the list below concerns testing for uniformity. The second through fifth 
entries concern testing for independence. The five types of tests 

1. Frequency test          Uses the Kolmogorov-Smirnov or the chi- square test to compare the 
distribution of the set of numbers generated to a uniform distribution. 
  2. Runs test.     Tests the runs up and down or the runs above, and           below the mean by 

comparing the actual values to expected values. The statistic for comparison is the chi-square. 
 
 3.Autocorrelation test Tests the correlation between numbers     and  compares the sample 
correlation to the expected correlation of zero. 
  4.  Gap test.      Counts the number of digits that appear between  repetitions of   particular digit 
and then uses the Kolmogorov-Smirnov test to compare  with the expected size of gaps,  
  5   Poker test  . Treats numbers grouped together as a poker hand.       Then the  hands obtained 
are compared to what is expected using the chi-square test. 

                    In testing for uniformity, the hypotheses are as follows: 

 

H0: Ri   ~  U/[0,1]  

                               H1: Ri  ~U/[0,l] 

The null hypothesis, H0 reads that the numbers are distributed uniformly on the interval [0,1]. 
Failure to reject the null hypothesis means that no evidence of nonuniformity has been detected 
on the basis of this test. This does not imply that further testing of the generator for uniformity is 
unnecessary. 
 In testing for independence, the hypotheses are as follows: 

H0: Ri ~ independently  
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H1:Ri~independently 

 
This null hypothesis  H0    reads that the numbers are independent. Failure to reject the null 
hypothesis means that no evidence of dependence has been detected on the basis of this test. 
This does not imply that further testing of the generator for independence is unnecessary. 
 

 
For each test, a level of significance a must be stated. The level a is the probability of 

rejecting the null hypothesis given that the null hypothesis is true, or 
a = P (reject H0 |H0   true) 

The decision maker sets the value of & for any test. Frequently, a is set to 0.01 orO.05. 
 
If several tests are conducted on the same set of numbers, the probability of rejecting the null 

hypothesis on at least one test, by chance alone [i.e., making a Type I (a) error], increases. Say 
that a= 0.05 and that five different tests are conducted on a sequence of numbers. The 
probability of rejecting the null hypothesis on at least one test, by chance alone, may be as large 
as 0.25. 

 

4.4.1 Frequency Tests 

A basic test that should always be performed to validate a new generator is the test of uniformity. 
Two different methods of testing are available. They are the Kolmogorov-Smirnov and the 
chi-square test. Both of these tests measure the degree of agreement between the distribution of a 
sample of generated random numbers and the theoretical uniform distribution. Both tests are based 
on the null hypothesis of no significant difference between the sample distribution and the 
theoretical distribution. 

 
1. The Kolmogorov-Smirnov test. This test compares the continuous cdf, F(X), of the 

uniform distribution to the empirical cdf, SN(x), of the sample of  N observations. By definition, 

F(x) = x,     0 <= x <= 1 

If the sample from the random-number generator is R1 R2, ,•  •  •, RN, then the empirical cdf, SN(X), 
is defined by 

SN(X)     =      number of   R1 R2, ,•  •  •, Rn which  are <= x 
                                                 N 

As N becomes larger, SN(X)  should become a better approximation to F(X) ,  provided that the 
null hypothesis is true. 

 
The Kolmogorov-Smirnov test is based on the largest absolute deviation between F(x) and 

SN(X) over the range of the random variable. That is.it is based on the statistic 
D = max | F(x) - SN(x)|                           (7.3) 

For testing against a uniform cdf, the test procedure follows these steps: 
Step 1.   Rank the data from smallest to largest.  Let   R(i) denote the   i th smallest 
observation, so that 

R (1)  <= R (2)    <=  •   •   • <=  R (N)  

     Step 2.    Compute 
                                

             D+  =     max       {    i/N   -  R (i)            }
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                                   1<= i <=N 

 

              D- =     max       {    i/N   -  R (i)        }    
 

                               1<= i <=N 

                       

                                           
Step3. Compute D = max(D+, D-). 
Step 4. Determine the critical value, Da, from Table A.8 for the specifiedsignificance level a 
and the given sample size N. 
Step 5. If the sample statistic D is greater than the critical value, Da, the null hypothesis that the 
data are a sample from a uniform distribution is rejected. 
 
If D <= Da, conclude that no difference has been detected between 
the true  distribution of {    R1 R2, ,•  •  •, Rn }  and the uniform distribution. 
 
EXAMPLE 4.6 

Suppose that the five numbers 0.44,0.81,0.14,0.05,0.93 were generated, and it is desired to 
perform a test for uniformity using the Kolmogorov-Smirnov test with a level of significance a 
of 0.05.  
First, the numbers must be ranked from smallest to largest. The calculations can be facilitated by 
use of Table 7.2. The top row lists the numbers from smallest (R(1) ) to largest (R(n) ) .The 
computations for D+, namely i / N  -R(i}  and for D-, namely R(i ) - ( i - l ) /  N, are easily accomplished 
using Table 7.2. The statistics are computed as D+ = 0.26 and D- = 0.21. Therefore, D = 
max{0.26, 0.21} = 0.26. The critical value of D, obtained from Table A.8 for a = 0.05 and N = 
5, is 0.565. Since the computed value, 0.26, is less than the tabulated critical value, 0.565, the 
hypothesis of no difference between the distribution of the generated numbers and the uniform 
distribution is not rejected. 

 

Table 7.2. Calculations for 
Kolmogorov-Smirnov Test 

R(i) 0.05 0.14 0.44 0.81 0.93 
i/N 0.20 0.40 0.60 0.80 1.00 
i / N  - R(i) 0.15 0.26 0.16 — 0.07 
R(i) – (i-1)/N V     0.05 — 0.04 0.21 0.13 

 
 
The calculations in Table 7.2 are illustrated in Figure 7.2, where the empirical cdf, SN(X), 

is compared to the uniform cdf, F(x). It can be seen that D+ is the largest deviation of 
SN(x) above F(x), and that D- is the largest deviation of SN(X) below F(x). For example,                
at  R(3)  the value  of         D+ is given by             3/5 - R(3) = 0.60 - 0.44 =0.16 and      of 
D- is    given by                R(3)  = 2/5 = 0.44 - 0.40 = 0.04.   Although the     test      
statistic D is defined     by Equation      (7.3) as        the maximum   deviation over all x, it 
can be seen from 
Figure 7.2 that the maximum deviation will always occur at one of the jump points  R(1) , R(2)  . 
. . , and thus the deviation at other values of x need not be considered.  

2. The chi-square test. The chi-square test uses the sample statistic 
                       n              
            X0

2 = ∑    (Oi - Ei)
2/Ei 
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                      i=1  
 

                                    Figure 7.2.   Comparison of F(x) and SN(X), 

where Oi; is the observed number in the i th class, Ei is the expected number in the ith class, and n 
is the number of classes. For the uniform distribution, Ei  the expected number in each class is 
given by 

                             Ei = N/n 

for equally spaced classes, where N is the total number of observations. It can be shown that the 
sampling distribution of  X0

2   is approximately the chi-square distribution with n - 1 degrees of 
freedom  

EXAMPLE 4.7 

Use the chi-square test with a = 0.05 to test whether the data shown below are uniformly 
distributed. Table 7.3 contains the essential computations. The test uses n = 10 intervals of equal 
length, namely    

[0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0). The value of X0
2  is 3.4. This is compared with the critical value 

X2
0.05,9

=16.9.Since X0
2  is much smaller than the tabulated value of  X2

0.05,9 , the null hypothesis of 
a uniform distribution is not rejected. 
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0.34 
0.83 
0.96 
0.47 
0.79 
0.99 
0.37 
0.72 
0.06 
0.18 
 

0.90 
0.76 
0.99 
0.30 
0.71 
0.17 
0.51 
0.43 
0.39 
0.26 
 

0.25 
0.79 
0.77 
0.17 
0.23 
0.99 
0.54 
0.56 
0.84 
0.97 
 

0.89 
0.64 
0.67 
0.82 
0.19 
0.46 
0.01 
0.97 
0.24 
0.88 
 

0.87 
0.70 
0.56 
0.56 
0.82 
0.05 
0.81 
0.30 
0.40 
0.64 
 

0.44 
0.81 
0.41 
0.05 
0.93 
0.66 
0.28 
0.94 
0.64 
0.47 
 

0.12 
0.94 
0.52 
0.45 
0.65 
0.10 
0.69 
0.96 
0.40 
0.60 
 

0.21 
0.74 
0.73 
0.31 
0.37 
0.42 
0.34 
0.58 
0.19 
0.11 
 

0.46 
0.22 
0.99 
0.78 
0.39 
0.18 
0.75 
0.73 
0.79 
0.29 
 

0.67 
0.74 
0.02 
0.05 
0.42 
0.49 
0.49 
0.05 
0.62 
0.78 
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Both the Kolmogorov-Smirnov and the chi-square test are acceptable for testing the uniformity 
of a sample of data, provided that the sample size is large. However, the Kolmogorov-Smirnov test 
is the more powerful of the two and is recommended. Furthermore, the Kolmogorov-Smirnov test 
can be applied to small sample sizes, whereas the chi-square is valid only for large samples, say 
N>=50. 
 

Imagine a set of 100 numbers which are being tested for independence where the first 10 values 
are in the range 0.01-0.10, the second 10 values are in the range 0.11-0.20, and so on. This set of 
numbers would pass the frequency tests with ease, but the ordering of the numbers produced 
by the generator would not be random. The tests in the remainder of this chapter are concerned 
with the independence of random numbers which are generated. The presentation of the tests is 
similar to that by Schmidt and Taylor [1970]. 
 

Table 7.3. Computations for Chi-Square Test 
Interval 
 

Oi 
 

Ei 
 

0 
Oi  - Ei 

( 
(Oi - 
E )2 

(Oi  -  Ei
)2/Ei

2 
 

  ,    
1 
 

8 
 

10 
 

-2 
 

4 
 

0.4 
 2 

 
8 
 

10 
 

—2 
 

4 
 

0.4 
 3 

 
10 
 

10 
 

0 
 

0 
 

0.0 
 4 

 
9 
 

10 
 

-1 1 
 

0.1 
 5 

 
12 
 

10 
 

2 
 

4 
 

0.4 
 6 

 
8 
 

10 
 

-2 
 

4 
 

0.4 
 7 

 
10 
 

10 
 

0 
 

0 
 

0.0 
 8 

 
14 
 

10 
 

4 
 

16 
 

1.6 
 9 

 
10 
 

10 
 

0 
 

0 
 

0.0 
 10 11 10 1 1 0.1 

 
 

100 
 

100 
 

0 
 

 
 

34 
 

 
 
 
4.4.2 Runs Tests 
 

1. Runs up and runs down. Consider a generator that provided a set of 40 numbers in the 
following sequence: 

 0.08 0.09 0.23 0.29 0.42 0.55 0.58 0.72 0.89 0.91 
0.11 0.16 0.18 0.31 0.41 0.53 0.71 0.73 0.74 0.84 
0.02 0.09 0.30 0.32 0.45 0.47 0.69 0.74 0.91 0.95 
0.12 0.13 0.29 0.36 0.38 0.54 0.68 0.86 0.88 0.91 
 

Both the Kolmogorov-Smirnov test and the chi-square test would indicate that the numbers are 
uniformly distributed. However, a glance at the ordering shows that the numbers are 
successively larger in blocks of 10 values. If these numbers are rearranged as follows, there is 
far less reason to doubt their independence 

0.41 0.68 0.89 0.84 0.74 0.91 0.55 0.71 0.36 0.30 
0.09 0.72 0.86 0.08 0.54 0.02 0.11 0.29 0.16 0.18 
0.88 0.91 0.95 0.69 0.09 0.38 0.23 0.32 0.91 0.53 
0.31 0.42 0.73 0.12 0.74 0.45 0.13 0.47 0.58 0.29 
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The runs test examines the arrangement of numbers in a sequence to test the hypothesis of 
independence. 
Before defining a run, a look at a sequence of coin tosses will help with some terminology. 
Consider the following sequence generated by tossing a coin 10 times: 
       

               H T T H H T T T H T  
 

There are three mutually exclusive outcomes, or events, with respect to the sequence. Two of 
the possibilities are rather obvious. That is, the toss can result in a head or a tail. The third 
possibility is "no event." The first head is preceded by no event and the last tail is succeeded by no 
event. Every sequence begins and ends with no event. 
 

A run is defined as a succession of similar events preceded and followed by a different 
event. The length of the run is the number of events that occur in the run. In the coin-flipping 
example above there are six runs. The first run is of length one, the second and third of length 
two, the fourth of length three. and the fifth and sixth of length one. 

 
There are two possible concerns in a runs test for a sequence of number The number of 

runs is the first concern and the length of runs is a second concern. The types of runs 
counted in the first case might be runs up and runs down. An up run is a sequence of numbers 
each of which is succeeded by a larger number. Similarly, a down run is a sequence of numbers 
each of which is succeeded by a smaller number. To illustrate the concept, consider the following 
sequence of 15 numbers: 

-0.87     +0.15     +0.23     +0.45     -0.69     -0.32     -0.30    +0.19  -.24   +0.18    +0.65     +0.82    -0.93    
+0.22      0.81 

The numbers are given a " + " or a " — " depending on whether they are followed by a larger 
number or a smaller number. Since there are 15 numbers, and they are all different, there will be 
14 +'s and — 's. The last number is followed by "no event" and hence will get  neither a + nor a 
— . The sequence of 14 +s and — 's is as follows: 

-       +       +       +     -      -      -     +     -     +     +     -     + 

Each succession of + 's and — 's forms a run. There are eight runs. The first run is of length one. 
the second and third are of length three, and so on. Further, there are four runs up and four runs 
down. 

There can be too few runs or too many runs.   Consider the following sequence of 
numbers: 

0.08    0.18    0.23    0.36    0.42    0.55    0.63    0.72    0.89    0.91 
 

This sequence has one run, a run up. It is unlikely that a valid random-number generator would 
produce such a sequence. Next, consider the following sequence 

0,08    0.93    0.15    0.96    0.26    0.84    0.28    0.79    0.36    0.57 

This sequence has nine runs, five up and four down. It is unlikely that a sequence of lO numbers 
would have this many runs. What is more likely is that the number of runs will be somewhere 
between the two extremes. These two extremes can be formalized as follows: if N is the number 
of numbers in a sequence, the maximum number of runs is N — I and the minimum number of 
runs is one. 

 
If a is the total number of runs in a truly random sequence, the mean and variance of a are 

given by 
µa   =  2N – 1 / 3                        (7.4) 
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and 
 
σ a

2  =  16N – 29 / 90                  (7.5) 
 

For N > 20, the distribution of a is reasonably approximated by a normal distribution, N( µa , σ a
2 

) This approximation can be used to test the independence of numbers from a generator. In that 
case the standardized normal test statistic is developed by subtracting the mean from the observed 
number of runs, a , and dividing by the standard deviation. That is, the test statistic is 

 
                                          Z0 =  a  -    µa   / σa 

 
Substituting Equation (7,4) for µa   and the square root of      Equation (7.5) for 

σa    yields  
                              Z0   

 =  a  - [( 2N  -  1)/3]    /  sqrt((16N – 29) / 90 )  
      

   where Zo ~ N(0 1). Failure to reject the hypothesis of independence occur when   — za / 2 <= 
Zo <= za / 2   where a is the level of significance. The critical values and rejection region are 
shown in Figure 7.3. 
 

 
        
 
 
 
 
 
 
 

                                                                Failure to reject Figure 7.3.    

 

 

2. Runs above and below the mean. The test for runs up and runs down 
is not completely adequate to assess the independence of a group of numbers. 
Consider the following 40 numbers: 

0.63 0.72 0.79 0.81 0.52 0.94 0.8.1 0.93 0.87 0.67 
0.54 0.83 0.89 0.55 0.88 0.77 0.74 0.95 0.82 0.86 
0.43 0.32 0.36 0.18 0.08 0.19 0.18 0.27 0.36 0.34 
0.31 0.45 0.49 0.43 0.46 0.35 0.25 0.39 0.47 0.41 

 

The sequence of runs up and runs down is as follows: 

+  +  +  -  +  -  +  -  -  -  +  +  -  +  -  -  +  -  +  -  -  +  -  -  +  -  +  +  -  -  +  +  -  +  -  -  +  +  - 
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This sequence is exactly the same as that in Example 7.8. Thus, the numbers would pass the 
runs-up and runs-down test. However, it can be observed that the first 20 numbers are all 
above the mean [(0.99 + O.OO)/2 = 0.495] and the last 20 numbers are all below the mean. 
Such an occurrence is highly unlikely. The previous runs analysis can be used to test for this 
condition, if the definition of a run is changed. Runs will be described as being above the 
mean or below the mean. A " + " sign will be used to denote an observation above the mean, 
and a "-" sign will denote an observation below the mean. 

 
For example, consider the following sequence of 20 two-digit random numbers; 

0.40   0.84   0.75   0.18   0.13   0.92   0.57   0.77   0.30   0.71 
0.42   0.05   0.78   0.74   0.68   0.03   0.18   0.51    0.10   0.37 

The pluses and minuses are as follows: 

-   +     +    -    -    +    +    +    -    +    -    -    +    +    +    -    -    +    -    -  

In this case, there is a run of length one below the mean followed by a run of length two 
above the mean, and so on. In all. there are 11 runs, five of which are above the mean 
and six of which are below the mean. Let n1 and n2 be the number of individual 
observations above and below the mean and let b be the total number of runs. Notice that 
the maximum number of runs is N = n1 + n2 and the minimum number of runs is one. 
Given n1 and n2. the mean — with a continuity correction suggested by Swed and Eisenhart 
[1943] —and the variance of b for a truly independent sequence are given by 

µb  =2 n1 n2 / N  +1/2                                                     (7.6) 

and 

σb
2=2n1n2(2n1n2-N)   /   N2(N – 1)          (7.7) 

For either n1  or n2 greater than 20, b is approximately normally distributed. The test statistic 
can be formed by subtracting the mean from the number of runs and dividing by the 
standard deviation, or 

 

               Z0   = (b-(2n1n2/N)-1/2) / [2n1n2(2n1n2-N/N2(N-1)] 1/2 
 

Failure to reject the hypothesis of independence occurs when        —za/2 <= Z0 < =za/2-, 
where a is the level of significance. 

 

EXAMPLE 4.9 
Determine whether there is an excessive number of runs above or below the mean for the 
sequence of numbers given in Example 7.8. The assignment of +  's and — 's results in the 
following: 
 -    +    +    +     +    +    +    +    -    -     -    +    +    -    +     -    -     -    -    -    -    -    +    +   
-    -    -    -    +    +    -    -    +   -    +    -  -   + +  - 
The values of n1,n2,  and b are as follows: 

n1= 18 

www.ncetianz.webs.com

Nce
tia

nz



 

MCA – 52 System Simulation & Modeling  67   

n2= 22  

N = n1 +n2 = 40 

 b = 17 

Equations (7.6) and (7.7) are used to determine   µb   and  σb
2  as follows: 

 µb   = 2(18)(22)/40  +  1/2 = 20.3 
σb

2  =  2(18)(22)[(2)(18)(22)-40] /(40)2 (40-1)=9.54 
Since n2 is greater than 20, the normal approximation is acceptable, resulting in a Z0 value 
of 
 

Z0  = 17-20.3/√9.54 =  -1.07 

Since  Z0.025 = 1.96 the hypothesis of independence cannot be rejected on 

the basis of this test 

 
3. Runs test: length of runs. Yet another concern is the length of runs. As an example of 

what might occur, consider the following sequence of numbers 
 

0.16, 0.27, 0.58, 0.63, 0.45, 0.21, 0.72, 0.87, 0.27, 0.15, 0.92, 0.85,... 
Assume that this sequence continues in a like fashion: two numbers below the mean followed by 
two numbers above the mean.   A test of runs above and below the mean would detect no 
departure from independence. However, it is to be expected that runs other than of length two 
should occur. 

Let Y, be the number of runs of length  i  in a sequence of N numbers. For an independent 
sequence, the expected value of Yj for runs up and down is given by 
 

E(Yi) = 2/(i+3)![ N(i2+3i+1)-(i3+3i2-i-4) ]    ,i   <=   N - 2    (7.8) 

E(Yi) =2/N!   i = N – 1                                                          (7.9) 

 
For runs above and below the mean, the expected value of y, is approximately given by 

E(Yi) = N wi  / E(I ),   N>20                                                 (7.10) 

where wi  the approximate probability that a run has length i, is given by 

wi=( n1 /N)I (n2/N)  + (n1/N)(n2/N)I      N>20                     (7.11) 

and where E(I ) , the approximate expected length of a run, is given by 

E(I )=  n1 / n2     + n2/ n1                                  N>20                     (7.12) 

The approximate expected total number of runs (of all lengths) in a sequence of length N, 
E(A), is given by 

 

E(A)=N/ E(I)                  N>20                     (7.13)                      

The appropriate test is the chi-square test with Oi, being the observed number of runs of length 
i. Then the test statistic is 
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X0
2=∑i=1

L [ Oi - E(Yi)2 ]  / E(Yi) 

where L = N - 1 for runs up and down and L = N for runs above and below the mean. If the null 
hypothesis of independence is true, then X0

2is approximately chi-square distributed with L — 1 
degrees of freedom. 

EXAMPLE 4.10 
Given the following sequence of numbers, can the hypothesis that the numbers are independent 
be rejected on the basis of the length of runs up and down at 
a =0.05? 
 

0.30 0.48 0.36 0.01 0.54 0.34 0.96 0.06 0.61 0.85 
0.48 0.86 0.14 0.86 0.89 0.37 0.49 0.60 0.04 0.83 
0.42 0.83 0.37 0.21 0.90 0.89 0.91 0.79 0.57 0.99 
0.95 0.27 0.41 0.81 0.96 0.31 0.09 0.06 0.23 0.77 
0.73 0.47 0.13 0.55 0.11 0.75 0.36 0.25 0.23 0.72 
0.60 0.84 0.70 0.30 0.26 0.38 0.05 0.19 0.73 0.44 

For this sequence the +'s and —'s are as follows 

+  -  -  +  -  +  -  +  +  -  +  -  +  +  -  +  +  -  +  -  +  -  -  +  -  +  -  -  +  -  -  +  +  +  -  -  -  +  +  -  -  -  +  -  
+  -  -  -  +  -  +  -  -  -  +  -  +  +  -   

 

The length of runs in the sequence is as follows: 

1,2,1,1,1,1,2,1,1,1,2,1,2,1,1,1,1,2,1,1, 1,2,1,2,3,3,2,3,1,1,1,3,1,1,1, 
3,1,1,2,1 

The number of observed runs of each length is as follows: 
 
Run  length ,i 1 2 3 
Observe Run 0i 26 9 5 

The expected numbers of runs of lengths one, two, and three are computed from Equation 
(7.8) as 

E(Yi) = 2/4![60(1 + 3 + 1) - (1 + 3 - 1 - 4)]= 25.08  

 E(Y2) = 2/5![60(4 + 6 + 1) - (8 + 12 - 2- 4)] = 10.77 

E(Y3) =2/6![60(9 + 9 +  1) – (27 + 27  - 3 – 4)] =3.04 

The mean total number of runs (up and down) is given by Equation (7.4) as 

µa = 2(60)-1/3=39.67 

Thus far, the E(Yi) for i = 1, 2, and 3 total 38.89. The expected number of runs of length 4 or 
more is the difference   µa –∑ 3i=1   E(Yi)  or 0.78 
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Table 7.4. Length of Runs Up and Down: x2 Test 
[0, - E ( Y , ) }2  
 

Rim Length, 
i 
 

Observed Number of 
Runs, Oj 
 

Expected Number of 
Runs, E (Y , ) 
 

E ( Y i ) 
 26 

9   } 

5   }  14 

25.08 

10.77 } 

3.82    }  14.5 9 

0.03  

0.02 

     1  
     2 
>=3 
 40 

 
39.67 
 

0.05 
 

 

4.4.3 Tests for Autocorrelation 

The tests for autocorrelation are concerned with the dependence between numbers in a sequence. As 
an example, consider the following sequence of numbers: 

0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 0.83 0.93 
0.99 0.15 0.33 0.35 0.91 0.41 0.60 0.27 0.75 0.88 
0.68 0.49 0.05 0.43 0.95 0.58 0.19 0.36 0.69 0.87 

 
From a visual inspection, these numbers appear random, and they would probably pass all the tests 
presented to this point. However, an examination of the 5th, 10th, 15th (every five numbers 
beginning with the fifth), and so on. indicates a very large number in that position. Now, 30 
numbers is a rather small sample size to reject a random-number generator, but the notion is 
that numbers in the sequence might be related. In this particular section, a method for 
determining whether such a relationship exists is described. The relationship would not have 
to be all high numbers. It is possible to have all low numbers in the locations being 
examined, or the numbers may alternately shift from very high to very low. 

The test to be described below requires the computation of the autocorrelation between 
every m numbers (m is also known as the lag) starting with the ith number. Thus, the 
autocorrelation p,m between the following numbers would be of interest: /?,-, Rj+m, Ri+2m, • • 
•, Ri+(M+\)m- The value M is the largest integer such that / + (M + l)m < N, where N is the 
total number of values in the sequence. (Thus, a subsequence of length M + 2 is being 
tested.) 
 

Since a nonzero autocorrelation implies a lack of independence, the following two-
tailed test is appropriate: 

                                                          H0: ρim= 0 

                                                          Hi: ρim    ≠ 0 

 

For large values of M, the distribution of the estimator of  ρim denoted ρ^im is 
approximately normal if the values Ri, Ri+m, Ri+2m,…….Ri+(M+1)m are un-correlated. Then the test 
statistic can be formed as follows: 

                                Z0  = ρ^im / σ ρ^im 
 

which is distributed normally with a mean of zero and a variance of 1, under the 
assumption of independence, for large M. 
 

The formula for ρ^im   in a slightly different form, and the standard deviation of the  
estimator, σ ρ^im are given by Schmidt and Taylor [1970] as follows: 

 
                  ρ^im   =  1/ M +1[ ∑M

k=0  Ri +km Ri+(k+1)m  ]  -  0.25 
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and  
                 σ ρ^im   =  √ (13M + 7) / 12(M +1) 
   After computing Z0, do not reject the null hypothesis of    independence if - za/2 <= Z0  <= 
za/2, where a is the level of significance 
If ρim > 0, the subsequence is said to exhibit positive autocorrelation. In this case, successive 
values at lag m have a higher probability than expected of being close in value (i.e., high 
random numbers in the subsequence followed by high, and low followed by low). On the 
other hand, if  ρim < 0, the subsequence is exhibiting negative autocorrelation, which means 
that low random numbers tend to be followed by high ones, and vice versa. The desired prop-
erty of independence, which implies zero  autocorrelation, means that there is no discernible 
relationship of the nature discussed here between successive, random numbers at lag m. 

 

EXAMPLE 4.12 
Test whether the 3rd, 8th, 13th, and so on, numbers in the sequence at the beginning of this 
section are autocorrelated. (Use a = 0.05.) Here, i = 3 (beginning with the third number), 
m = 5 (every five numbers), N = 30 (30 numbers in the sequence), and M = 4 (largest integer 
such that 3 + (M +1)5 < 30). Then, 
 
ρ^35   = 1/ 4 + 1[ (0.23)(0.28) + (0.28)(0.33) + (0.33)(0.27) + (0.27)(0.05) + (0.05)(0.36) ]  = 
-0.1945 
and 
 
σ ρ^35= √ (13(4) + 7) / 12(  4 + 1) = 0.1280 

Then, the test statistic assumes the value 
Z0   =  -0.1945/0.1280 = -1.516 

Now, the critical value is 
Z0.025   =   1.96 

 

Therefore, the hypothesis of independence cannot be rejected on the basis of this test. 
 
It can be observed that this test is not very sensitive for small  

 values of   M, particularly when the numbers being tested are on the low side. Imagine  what 
would happen if each of the entries in the foregoing computation of ρ^im   were equal to zero. 
Then, ρ^im   would be  equal to  —0.25  and  the  calculate would   have    the value of   
  —1.95, not quite enough to reject the hypothesis  of  independence.  
  

Many sequences can be formed in a set of data, given a large value of N. For example, 
beginning with the first number in the sequence, possibilities include  

1) the sequence of all numbers,  
(2) the sequence formed from the first. third, fifth,..., numbers,  
(3) the sequence formed from the first, fourth, numbers, and so on. If a — 0.05, there is a 

probability of 0.05 of rejecting a true hypothesis.  If 10 independent sequences are examined, the 
probability of finding no significant autocorrelation, by chance alone, is (0.95)10 or 0.60. Thus, 
40% of the time significant autocorrelation would be detected when it does not exist. If a is 0.10 
and 10 tests are conducted, there is a 65% chance of finding autocorrelation by chance alone. In 
conclusion, when "fishing" for autocorrelation, upon performing numerous tests, autocorrelation 
may eventually be detected, perhaps by chance alone, even when no autocorrelation is present. 

 
4.4.4 Gap Test 
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The gap test is used to deter.nine the significance of the interval between the recurrences 
of the same digit. A gap of length x occurs between the recurrences of some specified digit. 
The following example illustrates the length of gaps associated with the digit 3: 

4, 1, 3, 5, 1, 7. 2. 8. 2. 0, 7. 9. 1. 3. 5, 2, 7, 9. 4. 1. 6. 3 
3, 9. 6, 3, 4. 8, 2. 3, 1, 9, 4. 4, 6. 8. 4, 1, 3. 8. 9. 5. 5. 7 
3, 9, 5, 9. 8, 5. 3. 2, 2, 3, 7. 4, 7. 0. 3. 6. 3, 5, 9. 9. 5. 5 
5, 0, 4. 6. 8. 0, 4. 7. 0, 3. 3, 0, 9, 5. 7, 9. 5. 1. 6. 6. 3. 8 
8, 8, 9, 2, 9. 1. 8. 5, 4. 4. 5, 0, 2. 3, 9, 7. 1. 2. 0. 3, 6. 3 

To facilitate the analysis, the digit 3 has been underlined. There are eighteen 3's in the 
list. Thus, only 17 gaps can occur. The first gap is of length 10. the second gap is of length 
7, and so on. The frequency of the gaps is of interest. The probability of the first gap is 
determined as follows: 

10 of these terms 

P(gapof l0) = P(no3)---P(no3)P(3) =  (0.9)10   (0.1)               (7.12) 

since the probability that any digit is not a 3 is 0.9, and the probability  

that any digit is a 3 is 0.1. In general, 

P(t  followed by exactly x non-r digits) = (0.9)x (0.1), X = 0.1.2.. 
The theoretical frequency distribution for randomly ordered digits is given by  

   P(gap <=x)  = F(x) =  0.1  ∑ xn=0 (0.9)n  = 1  - 0.9 x+1                         

The procedure for the test follows the steps below. When applying the test to random 
numbers, class intervals such as [0, 0.1), [0.1,0.2),. . . play the role of  random digits. 

Step 1. Specify the cdf for the theoretical frequency distribution given by Equation (7.14) 
based on the selected class interval width.  
Step2.Arrange the observed sample of gaps in a cumulative distribution with these same 
classes. 
Step 3.  Find D, the maximum deviation between F(x) and SN(X)  as in Equation (7.3). 
Step 4. Determine the critical value, Da, from Table A.8 for the   specified  value of a and 
the sample size N. 
Step 5. If the calculated value of D is greater than the tabulated  value of  Da, the null 
hypothesis of independence is rejected. 

EXAMPLE 4.13 
Based on the frequency with which gaps occur, analyze the 110 digits above to test whether 
they are independent. Use a = 0.05. The number of gaps is given by the number of data 
values minus the number of distinct digits, or 110 —10 = 100 in the example. The number of 
gaps associated with the various digits are as follows: 

 
Digit                      0      1       2      3       4       5      6      7     8       9  
Number  of  gaps   7      8      8      17     10     13    7      8     9      13 

 

The gap test is presented in Table 7.6. The critical value of D is given by 
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  D0.05  =  1.36 / √ 100 =  0.136 

Since D = max |F(x) - SN(x)| = 0.0224 is less than D0.05    do not reject the     hypothesis of 
independence on the basis of this test. 

Table 7.6. Gap-Test Example 
Gap Length 
 

Frequen
cy 

Relative      Cumulative Relative  
Frequency            Frequency     F(x)          
|F(x)-sN(x)|                              

0-3 
 

35 
 

0.35 
 

0.35 
 

0.3439 
 

0.0061 
4-1 
 

22 
 

0.22 
 

0.57 
 

0.5695 
 

0.0005 
8-11 
 

17 
 

0.17 
 

0.74 
 

0.7176 
 

0.0224 
12-15 
 

9 
 

0.09 
 

0.83 
 

0.8147 
 

0.0153 
16-19 
 

5 
 

0.05 
 

0.88 
 

0.8784 
 

0.0016 
20-23 
 

6 
 

0.06 
 

0.94 
 

0.9202 
 

0.0198 
24-27 
 

3 
 

0.03 
 

0.97 
 

0.9497 
 

0.0223 
28-31 
 

0 
 

0.0 
 

0.97 
 

0.9657 
 

0.0043 
32-35 
 

0 
 

0.0 
 

0.97 
 

0.9775 
 

0.0075 
36-39 
 

2 
 

0.02 
 

0.99 
 

0.9852 
 

0.0043 
40-43 
 

0 
 

0.0 
 

0.99 
 

0.9903 
 

0.0003 
44-47 
 

1 
 

0.01 
 

1.00 
 

0.9936 
 

0.0064 
 

 
4.4.5 Poker Test 

The poker test for independence is based on the frequency with which certain digits are 
repeated in a series of numbers. The following example shows an unusual amount of 
repetition: 
 
0.255,   0.577,   0.331,   0.414,   0.828,   0.909,   0.303,0.001,    ... 

In each case, a pair of like digits appears in the number that was generated. In three-digit 
numbers there are only three possibilities, as follows: 

1. The individual numbers can all be different. 
2. The individual numbers can all be the same. 
3. There can be one pair of like digits. 

The probability associated with each of these possibilities is given by the following 
 

P(three different digits) = P(second different from the first)   x P(third different from the 

first and second) = (0.9)(0.8) = 0.72  

P(three like digits) = P(second digit same as the first)  x   P (third digit same as the first) = 

(0.1)(0.1) = 0.01 

P(exactly one pair) = 1 - 0.72 - 0.01 = 0.27 

Alternatively, the last result can be obtained as follows: 

P(exactly one pair) = (3 2) (0.1)(0.9) = 0.27 

The following example shows how the poker test (in conjunction with the chi-square test) is 
used to ascertain independence. 
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EXAMPLE 4.14 
A sequence of 1000 three-digit numbers has been generated and an analysis indicates that 
680 have three different digits, 289 contain exactly one pair of like digits, and 31 contain 
three like digits. Based on the poker test, are these numbers independent? Let a = 0.05. The 
test is summarized in Table 7.7. 

The appropriate degrees of freedom are one less than the number of class  intervals. Since 
47.65  >  X2 

0.05.2 
= 5.99. the independence of the numbers is  rejected on  the basis  of this 

test. 
 
Table 7.7. Poker-Test Results 

 

 
 
 

**** * 
    

5 . Random - Variate Generation 

 
 
 
INTRODUCTION : 
 

This chapter deals with procedures for sampling from a variety of widely used 
continuous and discrete distributions. Here it is assumed that a distribution has been 
completely specified, and ways are sought to generate samples from this distribution 
to be used as input to a simulation model. The purpose of the chapter is to explain and 
illustrate some widely used techniques for generating random variates, not to give a state-
of-the-art survey of the most efficient techniques. 

 

TECHNIQUES : 
 

- INVERSE TRANSFORMATION TECHNIQUE 
- ACCEPTANCE-REJECTION TECHNIQUE 

 
All these techniques assume that a source of uniform (0,1) random numbers is available 
R1,R2….. where each R1 has probability density function 
 
 

( 0 , - E i ) 2  
 

Combination, i 
 

Observed 
Frequency, O, 
 

Expected 
Frequency, £, 
 E, 

 Three different digits 
 

680 
 

720 
 

2.22 
 Three like digits 

 
31 
 

10 
 

44.10 
 289 

 
270 
 

1.33 
 

Exactly one pair 
 1000 

 
1000 
 

47.65 
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pdf    fR(X)=   1   ,  0<= X <=1 
 0   ,  otherwise  

 
cumulative distribution function 
 
cdf                    fR(X)=   0     ,  X<0 
   X   ,  0<= X <= 1 
   1    ,  X>1 
 
The random variables may be either discrete or continuous. 
 
 
 
5.1  Inverse Transform Technique : 

The inverse transform technique can be used to sample from exponential, the 
uniform, the Weibull, and the triangular distributions and empirical distri-Jbutions. 
Additionally, it is the underlying principle for sampling from a wide variety of discrete 
distributions. The technique will be explained in detail for the exponential distribution 
and then applied to other distributions. It is the  most straightforward, but always the 
most efficient., technique computationally. 
 
5.1.1 EXPONENTIAL DISTRIBUTION :  
 
The exponential distribution, discussed as before has probability density function (pdf) 
given by 
 
  f(X)=            λe-λx ,  x ≥ 0 
           0,           x < 0 
 
and cumulative distribution function (cdf) given by 
 
   f(X)= ∫-∞ x  f(t) dt =  1 – e –λx, x ≥ 0  
          0,            x < 0  
 

The parameter    can be interpreted as the mean number of occurrences per time unit. 
For example, if interarrival times Xi , X2, X3, . . . had an exponential distribution with rate  , 
then     could be interpreted as the mean number of arrivals per time unit, or the arrival 
rate| Notice that for any j 
 
  E(Xi)= 1/λ 
so that      is the mean interarrival time.  The goal here is to develop a procedure for generating 
values X1,X2,X3, ….. which have an exponential distribution. 

The inverse transform technique can be utilized, at least in principle, for any 
distribution. But it is most useful when the cdf. F(x), is of such simple form that its 
inverse, F   , can be easily computed. A step-by-step procedure for the inverse 
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transform technique illustrated by me exponential distribution, is as 
follows:     
 

 

Step 1. Compute the cdf of the desired random variable X. For the exponential 
distribution, the cdf is F(x) = 1 — e    , x > 0.  
 

Step 2. Set F(X) = R on the range of X. For the exponential distribution, it 
becomes  
1 – e-λX     = R on the range x >=0. Since X is a random variable (with the exponential 
distribution in this case), it follows that 1 -    is also a random variable, here called 
R. As will be shown later, R has a uniform distribution over the interval (0,1)., 
 
Step 3. Solve the equation F(X) = R for X in terms of R. For the exponential 
distribution, the solution proceeds as follows: 

1 – e-λx = R 
e-λx= 1 – R 

-λX= ln(1 - R) 

x=-1/λ ln(1 – R)  

 ( 5.1 )    

 

Equation (5.1) is called a random-variate generator for the exponential dis-
tribution. In general, Equation (5.1) is written as X=F-1(R ). Generating a 
sequence of values is accomplished through steps 4.  

Step 4. Generate (as needed) uniform random numbers R1, R2, R3,... and 
compute the desired random variates by 

Xi = F-1  (Ri) 

For the exponential case, F   (R) = (-1/λ)ln(1- R) by Equation (5.1), so that 

 

   Xi = -1/λ ln ( 1 – Ri)  ( 5.2 ) 

for i = 1,2,3,.... One simplification that is usually employed in Equation (5.2) is to 
replace 1 – Ri by Ri to yield 

     Xi = -1/λ ln Ri  ( 5.3 ) 
 

which is justified since both Ri and 1- Ri are uniformly distributed on (0,1). 
 

Table 5.1 Generation of Exponential Variates X, with Mean 1, Given Random Numbers  
Ri, 
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I                    1                      2                        3                          4                          5          

Ri          0.1306             0.0422              0.6597                  0.7965           0.7696 

Xi         0.1400             0.0431               1.078                    1.592              1.468      
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 Table 5.1 gives a sequence of random numbers from Table A.1 and the computed exponential 
variates, Xi, given by Equation (5.2) with a value of    = 1. Figure 5.1(a) is a histogram of 200 
values, R1,R2,…R200 from the uniform distrubition and figure 5.1(b) 

 
 

 

Figure 5.1.   (a) Empirical histogram of 200 uniform random numbers; (b) empirical histogram 
of 200 exponential variates; (c) theoretical uniform density on (0,1); (d) theoretical exponential 
density with mean 1. 
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Figure 5.2.   Graphical view of the inverse transform technique. 

and Figure 5.1(b) is a histogram of the 200 values, X1,X2,…,X200, 
computed by Equation (5.2).  Compare these empirical histograms with the 
theoretical density functions in Figure 5.1(c) and (d). As illustrated here, a 
histogram is an estimate of the underlying density function. (This fact is used 
in Chapter 9 as a way to identify distributions.) 

Figure 5.2 gives a graphical interpretation of the inverse transform technique. The cdf 
shown is F(x) = 1- e    an exponential distribution with rate     . To generate a valueX1 with 
cdf F(X), first a random number Ri between 0 and 1 is generated, a horizontal line is drawn 
from R1 to the graph of the cdf, then a vertical line is dropped to the x -axis to obtain X1, the 
desired result. Notice the inverse relation between R1 and X1, namely 

                                                      Ri = 1 – e –X1 

and  

                                                     X1 = -ln ( 1 – R1 ) 

   
In general, the relation is written as 
 
     R1 = F ( X 1 ) 
and 
 
    X1 = F -1 ( R1) 
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Why does the random variable X1 generated by this procedure have the desired 
distribution? Pick a value JCQ and compute the cumulative probability 

P(X1 < x0) = P(R1 < F(x0)) = F(X0) 
To see the first equality in Equation (8.4), refer to Figure 5.2, where the fixed numbers x0 
and F(X0) are drawn on their respective axes. It can be seen that X1 < xo when and only 
when R1 < F(X0). Since 0 < F(xo) < 1, the second equality in Equation (8.4) follows 
immediately from the fact that R\ is uniformly distributed on (0,1). Equation (8.4) 
shows that the cdf of X1 is F; hence, X1 has the desired distribution. 

 

 5.1.2 Uniform Distribution : 
 
Consider a random variable X that is uniformly distributed on the interval [a, b]. A 
reasonable guess for generating X is given by 
                              X = a + (b - a)R                                                         (5.5) 
[Recall that R is always a random number on (0,1). The pdf of X is given by 

 
          f (x) =  1/ ( b-a ), a ≤ x ≤ b 
                0,  otherwise 
 
 

The derivation of Equation (5..5) follows steps 1 through 3 of Section 5.1.1:  
    Step 1. The cdf is given by 
 
   F(x) =  0,    x < a 
               ( x – a ) / ( b –a ), a ≤ x ≤ b 
               1,   x > b 
 
 

Step 2. Set F(X) = (X - a)/(b -a) = R 
Step 3. Solving for X in terms of R yields X = a + (b — a)R, which agrees 

with Equation (5.5). 
 
 
5.1.3 Discrete Distribution  

All discrete distributions can be generated using the inverse transform technique, 
either numerically through a table-lookup procedure, or in some cases algebraically 
with the final generation scheme in terms of a formula. Other techniques are 
sometimes used for certain distributions, such as the convolution technique for the 
binomial distribution. Some of these methods are discussed in later sections. This 

(5.4) 
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subsection gives examples covering both empirical distributions and two of the 
standard discrete distributions, the (discrete) uniform and the geometric. Highly 
efficient table-lookup procedures for these and other distributions are found in Bratley, 
Fox, and Schrage [1987]  and Ripley [1987]. 

Table 5.5. Distribution of Number of Shipments, X 

 

 

 

Example 1   (An Empirical Discrete Distribution) : 

At the end of the day, the number of shipments on the loading dock of the IHW 
Company (whose main product is the famous, incredibly huge widget) is either 0, 1, or 
2, with observed relative frequency of occurrence of 0.50, 0.30, and 0.20, respectively. 
Internal consultants have been asked to develop a model to improve the efficiency of 
the loading and hauling operations, and as part of this model they will need to be able 
to generate values, X, to represent the number of shipments on the loading dock at the 
end of each day. The consultants decide to model X as a discrete random variable with 
distribution as given in Table 5.5 and shown in Figure 5.6. 

The probability mass function (pmf), P(x) is given by 

p(0)= P(X = 0) = 0.50 
p(1)= P(X = 1) = 0.30 
p(2)= P(X = 2) = 0.20 

and the cdf, F(x) = P(X < x ) ,  is given by 

      0, x < 0  

     F(x) =  0.5, 0 ≤ x < 1 

      0.8, 1 ≤ x < 2 

1.0  2 ≤ x 

 

 

 

 

 

 

 

 

X PM F(X) 
0 
1 
2 

0.50 
0.30 
0.20 
 

0.50 
0.80 
1.00 
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Figure 5.6.   The cdf of number of shipments, X. 
 

Table 5.6. Table for Generating the Discrete Variate 
X 

 
 

Input, 
 

Output, 
 I n Xi 

1 0.50 0 
2 0.80 1 
3 1.00 2 

 

Recall that the cdf of a discrete random variable always consists of horizontal line 
segments with jumps of size p(x) at those -points, x, which the random variable can 
assume. For example, in Figure 8.6 there is a jump of size = 0.5 at x = 0, of size p(l)=0.3 
at x=1, and of size p(2) = 0.2 at x=2. 

For generating discrete random variables, the inverse transform technique becomes a 
table-lookup procedure, but unlike the case of continuous variables, interpolation is 
not required. To illustrate the procedure, suppose that R1 = 0.73 is generated. 
Graphically, as illustrated in Figure 8.6, first locate R1 = 0.73 on the vertical axis, next 
draw a horizontal line segment until it hits a "jump" in cdf, and then drop a 
perpendicular to the horizontal axis to get the generated variate. Here R1 = 0.73 is 
transformed to X1 = 1. This procedure is analogous to the procedure used for 
empirical continuous distributions,except that the final step of linear interpolation is 
eliminated. 

0                            1                              2                           3                               

 
 
F(x) 
 
 
 
 
  1 
 
R1=0.73 

 
 
 
0.5 
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The table-lookup procedure is facilitated by construction of a table such as table 5.6. 
When R1 == 0.73 is generated, first find the interval in which R1 lies. In general, for R 
= R1, if 

                                       F (xi-1) = ri-1 < R ≤ ri = F(xi)    
 (5.13)

 

then set X1 = xi. Here ro = 0, x0 =     , while x1,x2,….,xn  are the possible values of the 
random variable, and rk = p(x1) +….. + p(xk), k = 1,2,..., n. For this example, n = 3, x1 = 
0, x2 = 1, x3 = 2, and hence r1 = 0.5, r2 = 0.8, and r3 = 1.0. (Notice that rn = 1.0 in all 
cases.) 

Since n = 0.5 < R1 = 0.73 < r2=0.8, set X1 = x2 = 1. The generation scheme is 
summarized as follows: 

      0,  R ≤ 0.5 

     X =  1, 0.5 < R ≤ 0.8 

     2, 0.8 < R ≤ 1.0 

Example 8.4 illustrates the table-lookup procedure, while the next example illustrates 
an algebraic approach that can be used for certain distributions. 

Example 2   (A Discrete Uniform Distribution) : 

Consider the discrete uniform distribution on {1,2,..., k} with pmf and cdf given by 

p(x) = 1/k,    x = 1,2, . ..k, 

  

 
   
       0,  x < 1   
     
      1/k,  1≤ x < 2 
 
       2/k,  2 ≤ x < 3 
         . 
  F (x)  =                     . 
         . 
      k-1/k,  k-1 ≤ x < k 
      1,  k ≤ x 
 
 
Let xi=i and ri = p(l) + ……. + p(xi) —F(xi) = i/k for i=1,2,..., k. Then by using Inequality 
(5.13) it can be seen that if the generated random number R satisfies 

and 
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   R i-1 = i-1 / k < R ≤ ri = i/k  ( 5.14)  
then X is generated by setting X = i . Now, Inequality (5.14) can be solved for j: 

   i – 1 < Rk ≤ i 

    Rk ≤ i  < Rk +1    (5.15)  

 

Let [y] denote the smallest integer > y. For example, [7.82] = 8, [5.13] = 6 and [-1,32] = -1. For y > 0, 
[y] is a function that rounds up. This notation and Inequality (5.15) yield a formula for generating 
X, namely 
 
    X = ┌ R k┐ 
 
For example, consider generating a random variate X, uniformly distributed on {1,2,..., 10}. The 
variate, X, might represent the number of pallets to be loaded onto a truck. Using Table A.I as a 
source of random numbers, R, and Equation (5.16) with k = 10 yields 

  

The procedure discussed here can be modified to generate a discrete uniform random variate 
with any range consisting of consecutive integers. Exercise 13 asks the student to devise a 
procedure for one such case.  
 
Example 3   (The Geometric Distribution) 
Consider the geometric distribution with pmf 

p(x) = p ( l - p ) x ,     x = 0,1,2,... 
where 0 < p < 1. Its cdf is given by 

F(x) = ∑xj=0 p(1 – p)j 

              =  p{1- (1- p)x+1 } / 1 – (1 – p) 

       =  1 – ( 1 – p)x+1  

 
for x = 0, 1, 2, ... Using the inverse transform technique [i.e., Inequality (5.13)], recall that a 
geometric random variable X will assume the value x whenever 

F(x - 1) = 1 - (1 –p)x   <  R  < 1 - (1 – p) x+1    = F(x)       (5.19) 
where R is a generated random number assumed 0 < R <1. Solving Inequality (5.19) for x 
proceeds as follows: 
 
                              (1-p)x+1  ≤ 1 – R < ( 1 – p )x 
                ( x + 1)ln (1 – p) ≤ ln (1 – R ) < x ln(1 – p) 
 

R1 = 0.78, 
R2 = 0.03, 
R3 = 0.23, 
R4 = 0.97, 

Xi = [7.8] = 8 

X2 = [0.3] = 1 
X3 = [2.3] = 3 
X4 = [9.7] = 10 
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But 1 – p < 1 implies that ln(1-p) < 0. so that 
 
            Ln ( 1 –R ) / ln ( 1 –p ) -1 ≤ x < ln(1 – R) / ln (1 – p)                                        (5.20) 
Thus, X=x for that integer value of x satisfying Inequality (5.20) or in brief using the round-up 
function ┌ .┐ 
 
                              X =     ln (1 – R ) / ln (1 – p ) – 1               ( 5.21) 
 
Since p is a fixed parameter, let   = —l/£n(l — p). Then    > 0  and, by Equation (5.21), X = [ -          
]. By Equation (5.1),                    is an exponentially distributed random variable with mean    , so 
that one way of generating a geometric variate with parameter p is to generate (by any method) 
an exponential variate with parameter,  subtract one, and round up.Occasionally, a geometric 
variate X is needed which can assume values {q, q + 1, q + 2,...} with pmf p(x) = p(1 - p)    (x = q, q 
+1,...). Such a variate, X can be generated,  
using Equation (5.21), by 
  
   X = q + ln (1-R)/ ln(1 – p) -1 
One of the most common cases is q = 1. 
 
 
 

5.2Acceptance-Rejection Technique : 
 
Suppose that  an  analyst needed to devise a method for generating random  variates, X, 
uniformly distributed  between ¼ and 1.  One way to proceed would be to follow these steps: 
  
   Step1 :     Generate a random number R. 
 
   Step 2a.:   If R > 1/4, accept X = /?, then go to step 3. 
 
   Step 2b.:  If R < 1/4, reject /?, and return to step 1. 
 
   Step 3.:     If another uniform random variate on [1/4,1] is needed, repeat the    procedure   
                       beginning at step 1. If not, stop. 
 

Each time step 1 is executed, a new random number R must be generated. Step 2a is an 
“acceptance” and step 2b is a "rejection" in this acceptance- 
rejection technique. To summarize the technique, random variates (R) with 
some distribution (here uniform on [0,1]) are generated until some condition 
(R > 1/4) is satisfied. When the condition is finally satisfied, the desired random variate, X (here 
uniform on [1/4,1]), can be computed (X = R). This procedure can be shown to be correct by 
recognizing that the accepted values of 
R are conditioned values; that is, R itself does not have the desired distribution, 
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but R conditioned on the event {R > 1/4} does have the desired distribution. 
To show this, take 1/4 < a < b < 1; then 

P ( a < R ≤ b | ¼ ≤  R ≤ 1 ) = P (a < R ≤ b ) / P ( ¼ ≤ R ≤ 1 )  =   b – a /  3/4     (5.28) 

which is the correct probability for a uniform distribution on [1/4, 1]. Equation (5.28) says 
that the probability distribution of /?, given that R is between 1/4 and 1 (all other values 
of R are thrown out), is the desired distribution. Therefore, if 1/4 < R < 1, set X = R. 
 

5.2.1 Poisson Distribution : 

A Poisson random variable, N, with mean a > 0 has pmf  
 

p(n) = P(N = n) = e-α αn/ n! , n = 0,1,2,……. 
but more important, N can be interpreted as the number of arrivals from a Poisson arrival 
process in one unit of time. Recall that the inter- arrival times, A1, A2,... of successive 
customers are exponentially distributed 
with rate a (i.e., a is the mean number of arrivals per unit time); in addition, an 
exponential variate can be generated by Equation (5.3). Thu/there is a relationship 
between the (discrete) Poisson distribution and the (continuous) exponential distribution, 
namely 
    N = n                                   (5.29) 
if and only if  
 A1 + A2 + …………+ An ≤ 1 < A1 + ….. + An + An+1    (5.30) 
 
Equation (5.29)/N = n, says there were exactly n arrivals during one unit of time; but 
relation (8.30) says that the nth arrival occurred before time 1 while the (n + l)st arrival 
occurred after time l) Clearly, these two statements are equivalent. Proceed now by 
generating exponential interarrival times until some arrival, say n + 1, occurs after time 
1; then set N = n. 

For efficient generation purposes, relation (5.30) is usually simplified by first using 
Equation (5.3), Ai= (—1/ α )ln Ri, to obtain 

∑ i=1n – 1/α ln Ri ≤ 1 <  ∑n+1i=1 -1/α ln Ri 
Next multiply through by                reverses the sign of the inequality, and use the fact 
that a sum of logarithms is the logarithm of a product, to get 
  ln ∏ni=1 Ri = ∑ni=1 ln Ri ≥ - α > ∑n+1i=1 ln Ri = ln ∏n+1i=1 Ri 

Finally, use the relation elnx=x for any number x to obtain 

 ∏n i=1 Ri ≥ e-α > ∏n+1 i=1  Ri    ( 8.31)
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 which is equivalent to relation (8.30).The procedure for generating a Poisson random 
variate, N, is given by the following steps: 

 

Step 1.  Set n = 0, P = 1. 
Step 2.  Generate a random number Rn+i and replace P by P •Rn+i.  
Step 3.  If P < e-0, then accept N = n. Otherwise, reject the current n, \ increase n 
by        one, and return to step 2. 
 

Notice that upon completion of step 2, P is equal to the rightmost expression in 
relation (5.31). The basic idea of a rejection technique is again exhibited; if P > e~a in 
step 3, then n is rejected and the generation process must proceed through at least 
one more trial. 
 How many random numbers will be required, on the average to generate 
one poisson variate, N? if N=n, then n+1 random numbers are required so the 
average number is given by 

E(N+1) = α  +1 
 

Which is quite large if the mean , alpha, of the poisson distribution is large. 
 

Example 4 : 
Generate three Poisson variates with mean a =-02. First compute £"" = e^°'2 = 0.8187. 
Next get a sequence of random numbers R from Table A.I and follow steps 1 to 3 
above: 
 
Step l.           Set n = 0, P = 1. 
Step 2.          R1 = 0.4357, P = 1 • R1 = 0.4357.  
Step 3.          Since P = 0.4357 < e-b = 0.8187, accept N = 0. 
Step 1-3.       (Ri =0.4146 leads to N = 0.) 
Step l.           Set n = 0, P = 1. 

Step 2.          R1= 
0.8353, P = 1 - R1 = 
0.8353. 
Step 3.          Since P > 
e-b, reject n = 0 and 
return to step 2 with n 
= 1.   
Step 2.          R2 = 

0.9952, P = R1R2 = 0.8313. )  
Step 3.          Since P > e-b, reject n = 1 and return to step 2 with n = 2. 
Step 2.          R3 = 0.8004, P = R1R2R3 = 0.6654. 
Step 3.          Since P < e-b, accept N = 2. 

 

five random numbers, to generate three Poisson variates here (N = 0, and N = 
2), but in the long run to generate, say, 1000 Poisson variates = 0.2 it would 
require approximately 1000 (a +1) or 1200 random numbers. 

 
 
 

n         Rn+1                    p            accept/reject          Result 
0         0.4357      0.4357          P<e-b (accept)     N=0 
0         0.4146      0.4146          P<e-b (accept)      N=0 
0         0.8353      0.8353          P≥e-b (reject) 
1         0.9952       0.8313         P≥ e-b (reject) 
2         0.8004       0.6654         p < e-b (accept)   N=2 
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6 : Input Modeling 
 

• Input data provide the driving force for a simulation model. In the simulation of a 
queuing system, typical input data are the distributions of time between arrivals 
and service times. 

• For the simulation of a reliability system, the distribution of time-to=failure of a 
component is an example of input data. 

 
There are four steps in the development of a useful model of input data: 
 

• Collect data from the real system of interest. This often requires a substantial time and resource 
commitment. Unfortunately, in some situations it is not possible to collect data  

• Identify a probability distribution to represent the input process. When data are available, this 
step typically begins by developing a frequency distribution, or histogram, of the data. 

• Choose parameters that determine a specific instance of the distribution family. When data are 
available, these parameters may be estimated from the data. 

• Evaluate the chosen distribution and the associated parameters for good-of-fit. Goodness-of-fit 
may be evaluated informally via graphical methods, or formally via statistical tests. The chi-
square and the Kolmo-gorov-Smirnov tests are standard goodness-of-fit tests. If not satisfied 
that the chosen distribution is a good approximation of the data, then the analyst returns to the 
second step, chooses a different family of distributions, and repeats the procedure. If several 
iterations of this procedure fail to yield a fit between an assumed distributional form and the 
collected data 

6.1 Data Collection  

• Problems are found at the end of each chapter, as exercises for the reader, in mathematics, 
physics, chemistry, and other technical subject texts. 

• Data collection is one of the biggest tasks in solving real problem. It is one of the most 
important and difficult problems in simulation. And even if when data are available, they have 
rarely been  recorded in a form that is directly useful for simulation input modeling. 

• "GIGO," or "garbage-in, garbage-out," is a basic concept in computer science and it applies 
equally in the area of discrete system simulation. -Many are fooled by a pile of computer output 
or a sophisticated animation, as if these were the absolute truth. 

 

• Many lessons can be learned from an actual experience in data collection. The first five exercises 
at the end of this chapter suggest some situations in which the student can gain such experience. 
 
The following suggestions may enhance and facilitate data collection, although they are not all –
inclusive. 

1. A useful expenditure of time is in planning. This could begin by a practice or pre 
observing session. Try to collect data while preobserving. 
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2.  Try to analyze the data as they are being collected. Determine if any data 
being collected are useless to the simulation. There is no need to collect 
superfluous data. 

3.  Try to combine homogeneous data sets. Check data for homogeneity in 
successive time periods and during the same time period on successive days. 

4.  Be aware of the possibility of data censoring, in which a quantity of interest is not 
observed in its entirety. This problem most often occurs when the analyst is 
interested in the time required to complete some process (for example, 
produce a part, treat a patient, or have a component fail), but the process begins 
prior to, or finishes after the completion of, the observation period. 

5.  To determine whether there is a relationship between two variables, 
build a scatter diagram.  

6.  Consider the possibility that a sequence of observations which appear to be 
independent may possess autocorrelation. Autocorrelation may exist in 
successive time periods or for successive customers. 

7.  Keep in mind the difference between input data and output or performance 
data, and be sure to collect input data. Input data typically represent the 
uncertain quantities that are largely beyond the control of the system and will 
not be altered by changes made to improve the system. 

Example  6.1   (The Laundromat) 

• As budding simulation students, the first two authors had assignments to simulate the 
operation of an ongoing system. One of these systems, which seemed to be a rather simple 
operation, was a self-service Laundromat with 10 washing machines and six dryers. 
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 Fig 6.1  Ragged, coarse, and appropriate histogram : 

(a) original data- too ragged; (b) combining adjacent cells – too coarse; 
(c)  combining adjacent cells - appropriate 
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6.2  Identifying the Distribution with Data. 

• In this section we discuss methods for selecting families of input distributions when data are 
available. 

6.2.1 Histogram 

• A frequency distribution or histogram is useful in identifying the shape of a distribution.  A 
histogram is constructed as follows: 

1. Divide the range of the data into intervals (intervals are usually of equal width; however, unequal 
widths however, unequal width may be used if the heights of the frequencies are adjusted). 

2. Label the horizontal axis to conform to the intervals selected. 
3. Determine the frequency of occurrences within each interval.  
4. Label the vertical axis so that the total occurrences can be plotted for each interval. 
5. Plot the frequencies on the vertical axis. 
 

• If the intervals are too wide, the histogram will be coarse, or blocky, and its shape and other 
details will not show well. If the intervals are too narrow, the histogram will be ragged and 
will not smooth the data. 

• The histogram for continuous data corresponds to the probability density function of a 
theoretical distribution. 

 
Example 6.2 :  The number of vehicles arriving at the northwest corner of an intersection in a 5 min 
period between 7 A.M. and 7:05 A.M. was monitored for five workdays over a 20-week period. 
Table shows the resulting data. The first entry in the table indicates that there were 12:5 min periods 
during which zero vehicles arrived, 10 periods during which one vehicles arrived, and so on, 
 
 
  Table 6:1 Number of Arrivals in a 5 Minute period  
 
Arrivals                                                                        Arrivals             
Per period                          Frequency                      Per Period                                     Frequency 
   0                                          12                                     6                                                      7 
   1                                          10                                     7                                                      5 
   2                                          19                                     8                                                      5   
   3                                          17                                     9                                                      3  
   4                                          10                                    10                                                     3 
   5                                           8                                      11                                                    1  
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Fig 6.2  Histogram of number of arrivals per period. 
 

Example 6.3 :  Life tests were performed on a random sample of electronic chips at 1.5 
times the nominal voltage, and their lifetime (or time to failure) in days was recorded: 

 
79.919 3.081 0.062 1.961 5.845 
3.027 6.505 0.021 0.013 0.123 
6.769 59.899 1.192 34.760 5.009 
18.387 0.141 43.565 24.420 0.433 
144.695 2.663 17.967 0.091 9.003 
0.941 0.878 3.371 2.157 7.579 
0.624 5.380 3.148 7.078 23.96
0.590 1.928 0.300 0.002 0.543 
7.004 31.764 1.005 1.147 0.219 
3.217 14.382 1.008 2.336 4.562 

 
Lifetime, usually considered a continuous variable, is recorded here to three decimal-
place accuracy. The histogram is prepared by placing the data in class intervals. 
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6.2.2 Selecting the Family of Distributions 

• Additionally, the shapes of these distributions were displayed. The purpose of preparing  
histogram is to infer a known pdf or pmf. A family of distributions is selected on the basis of 
what might arise in the context being investigated along with the shape of the histogram. 

• Thus, if interarrival-time data have been collected, and the histogram has a shape similar to 
the pdf in Figure 5.9.the  assumption of an exponential distribution would be warranted.  

• Similarly, if measurements of weights of pallets of freight  are being made, and the 
histogram appears symmetric about the mean with a shape like that shown in Fig 5.12, the 
assumption of a normal distribution would be warranted. 

• The exponential, normal, and Poisson distributions are frequently encountered and are 
not difficult to analyze from a computational standpoint. Although more difficult to 
analyze, the gamma and Weibull distributions provide array of shapes, and should not be 
overlooked when modeling an underlying probabilistic process. Perhaps an exponential 
distribution was assumed, but it was found not to fit the data. The next step would be to 
examine where  the lack of fit occurred.  

• If the lack of fit was in one of the tails of the distribution, perhaps a gamma or Weibull 
distribution would more adequately fit the data. 
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• Literally hundreds of probability distributions have been created, many with some 
specific physical process in mind. One aid to selecting distributions is to use the physical 
basis of the distributions as a guide. Here are some examples: 

 Binomial : Models the number of successes in n trials, when the trials are independent with 
common success probability, p; for example, the number of defective computer chips found 
in a lot of n chips.  

Negative Binomial (includes the geometric distribution) : Models the number of trials 
required to achieve k successes; for example, the number of computer chips that we must 
inspect to find 4 defective chips. 

 Poisson : Models the number of independent events that occur in a fixed amount of time 
or space: for example, the number of customers that arrive to a store during 1 hour, or the 
number of defects found in 30 square meters of sheet metal.  

Normal : Models the distribution of a process that can be thought of as the sum of a number 
of component processes; for example, the time to assemble a product which is the sum of the 
times required for each assembly operation. Notice that the normal distribution admits 
negative values, which may be-impossible for process times. 

Lognormal : Models the distribution of a process that can be thought of as the product of 
(meaning to multiply together) a number of component processes; for example, the rate of 
return on an investment, when interest is compounded, is the product of the returns for a 
number of periods. 

Exponential  : Models the time between independent events, or a process time which is 
memoryless (knowing how much time has passed gives no information about how much 
additional time will pass before the process is complete); for example, the times between 
the arrivals of a large number of customers who act independently of each other.  

  
 The exponential is a highly variable distribution and is sometimes overused because it 

often leads to mathematically tractable models. Recall that, if the time between events is 
exponentially distributed, then the number of events in a fixed period of time is Poisson. 

Gamma : An extremely flexible distribution used to model nonnegative random variables. The 
gamma can be shifted away from 0 by adding a constant.  

Beta : An extremely flexible distribution used to model bounded (fixed upper and lower limits) 
random variables. The beta can be shifted away from 0 by adding a constant and can have a 
larger range than [0,1] by multiplying by a constant. 

Erlang  : Models processes that can be viewed as the sum of several exponentially distributed 
processes; for example, a computer network fails when a computer and two backup 
computers fail, and each has a time to failure that is exponentially distributed. The Erlang is a 
special case of the gamma.  

Weibull :  Models the time to failure for components; for example, the time to failure for a disk 
drive. The exponential is a special case of the Weibull. 

Discrete or Continuous Uniform Models complete uncertainty , since all outcomes are  equally 
likely. This distribution is often overused when there are no data. 
Triangular Models a process when only the rninimum, most-likely, and maximum values of the 
distribution are known; for example, the minimum, most- likely, and maximum time required to 
test a product. 
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Empirical Resamples from the actual data collected; often used when no theoretical 
distribution seems appropriate. 

• Do not ignore physical characteristics of the process when selecting distributions. Is the 
process naturally discrete or continuous valued? Is it bounded or is there no natural 
bound? This knowledge, which does not depend on data, can ,help narrow the family of 
distributions from which to choose. 

 
6.2.3 Quantile-Quantile Plots 

• Further, our perception of the fit depends on widths of the histogram intervals. But even 
if the intervals are well chosen, grouping of data into cells makes it difficult to compare a 
histogram to a continues probability density function   

• If X is a random variable with cdf F, then the q-quintile of X is that y such that F(y) 
= P(X < y) = q, for 0 < q < 1. When F has an invererse, we write y = F-1(q). 

• Now let {Xi, i = 1, 2,. . . ,n}  
be a sample of data from X.  Order the observations from the smallest to the 
largest, and denote these as {yj, j =1,2 ,,,n}, where y1 < y2 < ….. < yn- Let j 
denote the ranking or order number. Therefore, j = 1 for the smallest and j = n for 
the largest. The q-q plot is based on the fact that y1 is an estimate of the (j — 1/2)/n 
quantile of X other words, 

 
 
   Yj is approximately F-1  

 
 

• Now suppose that we have chosen a distribution with cdf F as a possible representation of 
the distribution of X. If F is a member of an appropriate family of distributions, then a 
plot of yj versus F-1((j —1/2)/n) will be approximately a straight line. 

6.3    Parameter Estimation  

• After a family of distributions has been selected, the next step is to estimate the 
parameters of the distribution. Estimators for many useful distributions are described in 
this section. In addition, many software packages—some of them integrated into 
simulation languages—are now available to compute these estimates. 

 

6.3.1 Preliminary Statistics: Sample Mean and Sample Variance 

• In a number of instances the sample mean, or the sample mean and sample variance, are 
used to estimate of the parameters of hypothesized distribution; see Example 9.4. In the 
following paragraphs, three sets of equations are given for computing the sample mean and 
sample variance, -Equations (9.1) and (9.2). Equations (9.3}.and (9.4}. are used when the 
data are discrete and have been grouped in frequency distribution. Equations (9.5) and 
(9.6) are used when the data are discrete or continuous and-have been placed in class 

      J – ½ 
         n 
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intervals. Equations (9.5) and (9.6) are approximations and should be used only when the 
raw data are unavailable. 

• If the observations in a sample of size n are X1, X2,..., Xn, the sample mean ( X) is defined 
by 

  
 

 

                            and the sample variance, s2 is defined by                                                                        

 

 
 
 
 
 
 If the data are discrete and grouped in frequency distribution, Equation (9.1) and 
(.2) can be modified to provide for much greater computational efficiency, The sample 
mean can be computed by  
 

 
 

 
 

And the sample variance by  
 

 
 
 
 

 

where k is the number of distinct values of X and fj is the observed frequency of the value Xj, of 
X. 

6.3.2  Suggested Estimators 

• Numerical estimates of the distribution parameters are needed to reduce the family 
of distributions to a specific distribution and to test the resulting hypothesis.  

• These estimators are the maximum-likelihood estimators based on the raw data. (If 
the data are in class intervals, these estimators must be modified.)  

 
      ∑n

i=1 Xi 
X=  
            n 

9.1 

 
      ∑n

i=1 Xi2 – n X2  
S2=  
               n -1  

 
           ∑n

j=1 fjXj  
X2=  
               n  

 
           ∑k

j=1 fjXj 2 – n X2  
X2=  
                   n  - 1  

9.2 

9.3 

9.4 
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• The triangular distribution is usually employed when no data are available, with the 
parameters obtained from educated guesses for the minimum, most likely, and 
maximum possible value's; the uniform distribution may also be used in this way if 
only minimum and maximum values are available. 

• Examples of the use of the estimators are given in the following paragraphs. The 
reader should keep in mind that a parameter is an unknown constant, but the estimator 
is a statistic or random variable because it depends on the sample values. To distinguish 
the two clearly, if, say, a parameter is denoted by a, the estimator will be denoted by α. 

6.4 Goodness-of-Fit Tests  

• These two tests are applied in this section to hypotheses about distributional forms of 
input data. 
Goodness-of-fit tests provide help full guidance for evaluating the  suitability of 
a potential input model. 

• However, since there is no single correct distribution in a real application, you 
should not be a slave to the verdict of such tests.  

• It is especially important to understand the effect of sample size. If very  little data are 
available, then a goodness-of-fit test is unlikely to reject any candidate distribution; but if 
a lot of data are available,  then a goodness-of-fit test will likely reject all candidate 
distribution. 

6.4.1 Chi-Square Test 
• One procedure for testing the hypothesis that a random sample of size n of the 

random variable X follows a specific distributional form is the chi-square goodness-of-
fit test. 

• This test formalizes the intuitive idea of comparing the histogram of the data to the 
shape of the candidate density or mass function, The  test is valid for large sample sizes, 
for both discrete and continuous distribution  assumptions, When parameters are 
estimated by maximum likelihood. 

 
 
 
 
  

 

• where 0, is the observed frequency in the ith class interval and Ei, is the expected 
frequency in that class interval. The expected frequency for each class interval is 
computed as Ei=npi, where pf is the theoretical, hypothesized probability associated 
with the ith class interval. 

• It can be shown thatX02 approximately follows the chi-square distribution 
with k-s-1 degrees of freedom, where s represents the number of param- 
eters of the hypothesized distribution estimated by sample statistics. The 
hypotheses are :  

H0:  the random variable, X, conforms to the distributional  assumption with  
the parameter(s) given by the parameter estimate(s) 

 
          k     ( Oi – Ei)2 
 X0

2= ∑  
          I=1        Ei 

9.16 
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H1 : the random variable X does  not conform 

• If the distribution being tested is discrete, each value of the random variable should be a 
class interval, unless it is necessary to combine adjacent class intervals to meet the 
minimum expected cell-frequency requirement. For the discrete case, if combining 
adjacent cells is not required, 

    Pi = P(XI) = P(X =Xi) 

Otherwise, pi, is determined by summing the probabilities of appropriate adjacent cells. 

• If the distribution being tested is continuous, the class intervals are given by [ai-1,ai), , 
where ai-1 and ai, are the endpoints of the ith class interval.  For the continuous case 
with assumed pdf f(x), or assumed  cdf F(x), pi, can be computed By 

    Pi= ∫ai-1 
ai  f(x) dx= F(ai) – F(ai -1 ) 

6.4.2  Chi-Square Test with Equal Probabilities 

• If a continuous distributional assumption is being tested, class intervals  that  are equal in 
probability  rather than equal in width of interval should  be used.  

• Unfortunately, there is as yet no method for deter mining the; probability associated with 
each interval that maximize the; power  of a test o f  a given size. 

    Ei = n p i ≥ 5 

• Substituting for p i  yields     n/k ≥  5 

• and solving for k yields                                            k ≤  n/5   

6.4.3 Kolmogorov - Smirnov Goodness-of-Fit Test 

• The chi-square goodness-of-fit test can accommodate the estimation of parameters from 
the data with a resultant decrease in the degrees of freedom (one for J each parameter 
estimated). The chi-square test requires that the data be placed in class intervals, and in 
the case of  continues distributional assumption, this grouping is arbitrary. 

• Also, the distribution of the chi-square test statistic is known only approximately, and 
the power of the test is sometimes rather low. As a result of these considerations, 
goodness-of-fit tests, other than the chi-square, are desired. 

• The Kolmogorov-Smirnov test is particularly useful when sample sizes are small and 
when no parameters have been estimated from the data.  

• ( Kolmogoro-Smirnov Test for Exponential Distribution) 

• Suppose that 50 interarriaval times (in minutes) are collected over the following 100 
minute interval (arranged in order of occurrence) :  
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0.44      0.53      2.04     2.74     2.00    0.30    2.54     0.52     2.02     1.89     1.53    0.21 

2.80     0.04       1.35     8.32     2.34    1.95      0.10    1.42     0.46    0.07      1.09   0.76 

5.55     3.93       1.07     2.26     2.88    0.67    1.12    0.26     4.57     5.37     0.12     3.19 

1.63     1.46      1.08      2.06     0.85     0.83    2.44    2.11    3.15     2.90      6.58    0.64 
 
Ho : the interarrival times are exponentially distributed 
H1:  the interarrival times are not exponentially distributed 
 

• The data were collected over the interval 0 to T = 100 min. It can be shown that if 
the underlying distribution of interarrival times { T1, T2, … } is exponential, the 
arrival times are uniformly distributed on the interval (0,T). 

• The  arrival times T1, T1+T2, T1+T2+T3,…..,T1+…..+T50 are obtained by 
adding interarrival times. 

• On a (0,1) interval, the points will be [T1/T, (T1+T2)/T,…..,(T1+….+T50)/T]. 
 

0.0044   O.0097 0.0301 0.0575 0.0775 0.0805 0.1059 0.1111 0.1313 0.1502 
0.1655   0.1676 0.1956 0.1960 0.2095 0.2927 0.3161 0.3356 0.3366 0.3508 
0.3553  0.3561 0.3670 0.3746 0.4300 0.4694 0.4796  0.5027 0.5315 0.5382 
0.5494   0.5520 0.5977 0.6514 0.6526 0.6845 0.7008 0.7154 0.7262 0.7468 
0.7553  0.7636 0.7880 0.7982 0.8206 0.8417 0.8732 0.9022 0.9680 0.9744 
 

6.4.4 p-Values and "Best Fits" 

• To apply a goodness-of-fit test a significance level must be chosen. The traditional 
significance levels are 0.1,0.05, and 0.01. Prior to the availability of high-speed 
computing, having a small set of standard values made it possible to produce tables 
of useful critical values. Now most statistical software computes critical values as 
needed, rather than storing them in tables. Thus, if the analyst prefers a level of 
significance of, say, 0.07, then he or she can choose it. 

• However, rather than require a prespecified  significance level, many software packages 
compute a p-value for the test statistic. The p-value is the significance  level at 
which one would just reject H0 for the given value of the test statistic. while a small p-
value suggests a poor fit (to accept we would have to insist on almost no risk). 

• The p-value can be viewed as a measure of fit, with larger values being better. This 
suggests that we could fit every distribution at our disposal, compute a test statistic for 
each fit, and then choose the distribution that yields the largest p-value.  

• While we know of no input modeling software that implements this specific algorithm, 
many such packages do include a "best-fit"' option in which the software recommends an 
input model to the user based on evaluating all feasible models. 

• In the end some summary measure of fit, like the p-value, is used to rank the distributions. 
There is nothing wrong with this, but there are several things to keep in mind: 
1. The software may know nothing about the physical basis of the data and that 

information can  suggest distribution families that are appropriate. 
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2. Recall that both the Erlang and the exponential distributions are special cases of the 
gamma, while the exponential is also a special case of the more flexible Weibull. 
Automated best-fit procedures tend to choose the more flexible distributions (gamma 
and Weibull over Erlang and exponential) because the extra flexibility allows closer 
conformance to the data and a better summary measure of fit. But again, close 
conformance to the data may not always lead to the most appropriate input model. 

3. A summary statistic, like the p-value, is just that, a summary measure. It says little or 
nothing about where the lack of fit occurs (in the body of the distribution, in the right tail 
or in the left tail). A human, using graphical tools, can see where the lack of fit occurs 
and decide whether or  not it is important for the application at hand. 

6.5  Selecting Input Models without Data  

• Unfortunately. it is often necessary in practice to develop a simulation model for 
demonstration purposes or a preliminary study—before any i data are available.) In this 
case the modeler must be resourceful in choosing  input models and must carefully 
check the sensitivity of results to the  models. 

Engineering data : Often a product or process has performance ratings pro vided by the 
manufacturer. 

Expert option :  Talk to people who are experienced with  the procesws or similar 
processes. Often they can provide optimistic, pessimistic and most likely times. 

Physical or conventional limitations  : Most real processes have physical limit on performance. 
Because of company policies, there may be upper limits on how long a process may take. Do 
not ignore obvious limits or bound: that narrow the range of the input process. 

The nature of the process  It can be used to justify a particular choice  even when no data are 
available. 
 
6.6 Multivariate and Time-Series Input Models  

The random variables presented were considered to be independent of any other variables 
within the context of the problem. However, variables may be related, and if the variables 
appear in a simulation model as inputs, the relationship should be determined and taken into 
consideration. 
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7. Verification and Validation of Simulation Models 

• One of the most important and difficult tasks facing a model developer is 
the verification  and validation of the simulation model. 

•  It is the job of the model developer to work closely with the end users 
throughout the period (development and validation to reduce this 
skepticism and to increase the credibility. 

• The goal of the validation process is twofold:  

                 1:   To produce a model that represents true system behavior 
closely enough for the model to be used as a substitute for the actual 
system for the purpose of experimenting with system.  

                 2: To increase an   acceptable, level the credibility of the model ,so 
that the model will be used by managers and other decision makers. |  

• The verification and validation process consists of the following components:- 

                  1:Verification is concerned with building the model right. It is 
utilized in comparison of the conceptual model to the computer representation 
that implements that conception.  It asks the questions: Is the model 
implemented correctly in the computer? Are the input parameters and logical 
structure of the model correctly represented? 

  2: Validation is concerned with building the right model. It is 
utilized to determine that a model is an accurate representation of the real 
system. It is usually achieved through the calibration of the model.

  

 
7.1 Model Building, Verification, and Validation  
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• The first step  in model building consists of observing the real system and the 

interactions among its various components and collecting data on its behavior. Operators, 
technicians, repair and maintenance personnel, engineers, supervisors, and managers 
under certain aspects of the system which may be unfamiliar to others. As model 
development proceeds, new questions may arise, and the model developers will return, 
to this step of learning true system structure and behavior.  

 
•  The second step in model building is the construction of a conceptual model - a 

collection of assumptions on the components and the structure of the system, plus 
hypotheses on the values of model input parameters, illustrated by the following 
figure. 

 
• The third step is the translation of the operational model into a computer 

recognizable form- the computerized model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
                         Fig. 7.1 Model building, Verification and Validation 

 
 

                    
 
7.2 Verification of Simulation Models  
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The purpose of model verification is to assure that the conceptual model is 
reflected 

accurately in the computerized representation.  
 
The conceptual model quite often involves some degree of abstraction about system 
operations, or some amount of simplification of actual operations.  
 
Many common-sense suggestions can be given for use in the verification process:- 
 
 

1: Have  the computerized representation checked by someone other than its developer. 
 

2:  Make a flow diagram which includes each logically possible action a system can take 
when  an  
    event occurs, and follow the model logic for each a for each action for each event type. 

 
3: Closely examine the model output for reasonableness under a variety of  settings of 
input   
    parameters.  
 
4. Have the computerized representation print the input parameters at the end of the 
simulation  
    to be sure that these parameter values have not been changed inadvertently. 
 
5. Make the computerized representation of self-documenting as possible. 
 
6. If the computerized representation is animated, verify that what is seen in the 
animation  
    jmitates the actual system.  
 
7. The interactive run controller (IRC) or debugger is an essential component of 
successful  
     simulation model building. Even the best of simulation analysts makes mistakes or 
commits logical  
     errors when building a model. The IRC assists in finding and correcting those 
errors in the  
    follow ways: 

 

     (a) The simulation can be monitored as it progresses.  
     (b) Attention can be focused on a particular line of logic or multiple lines  of logic that 

constitute a  
           procedure or a particular entity.  
     (c) Values of selected model components can be observed. When the simulation has 

paused, the  
          current value or status of variables, attributes, queues, resources, counters, etc., 

can  
           be observed. 
     (d) The simulation can be temporarily suspended, or paused, not only to view information 

but also to  
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           reassign values or redirect entities. 
 

8. Graphical interfaces are recommended for accomplishing verification &  validation . 
 

     7.3 Calibration and Validation of Models 
 

• Verification and validation although are conceptually distinct, usually are 
conducted simultaneously by the modeler. 

 

• Validation is the overall process of comparing the model and its behavior to the 
real system and its behavior. 

 

• Calibration is the iterative process of comparing the model to the real system, 
making adjustments to the model, comparing again and so on. 

 

• The following figure 7.2 shows the relationship of the model calibration to the 
overall validation process. 

• The comparison of the model to reality is carried out by variety of test 

• Test are subjective and objective. 

• Subjective test usually involve people, who are knowledgeable about one or more 
aspects of the system, making judgments about the model and its output.  

• Objective tests always require data on the system's behavior plus the 
corresponding data produced by the model.  

 

 

 Compare Model to reality 

     Revised 

 Real 

                          Sys Compare revised model to reality  

  Revised 
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   Compare second revision to reality 

 Revised  

Fig. 7.2 Iterative process of calibration a model 

 

• A possible criticism of the calibration phase, were it to stop at point, ie.,  the 
model has been validated only for the one data set used; that is, the model has 
been "fit" to one data set 

• Validation is not an either/or proposition—no model is ever totally representative 
of the system under study. In addition, each revision of the model, as in the Figure 
above involves some cost, time, and effort. 

 
As an aid in the validation process, Naylor and Finger [1967] formulated a three step 
approach which has been widely followed:- 

1. Build a model that has high face validity. 

2. Validate model assumptions. 
3. Compare the model input-output transformations to corresponding input-output 
transformations for the real system. 

 
 

  7.3.1 FACE  VALIDITY

• The first goal of the simulation modeler is to construct a model that appears 
reasonable on its face to model users and others who are knowledgeable about the 
real system being simulated.  

• The users of a model should be involved in model construction from its 
conceptualization to  its implementation to ensure that a high degree of realism is 
built into the model through reasonable assumptions regarding system structure, 
and reliable data.  

• Another advantage of user involvement is the increase in the models perceived 
validity or credibility without which manager will not be willing to trust simulation 
results as the basis for decision making. 

• Sensitivity analysis can also be used to check  model's face validity. 

• The model user is asked if the  model behaves in the expected way when one or  
more input variables is changed. 

•  Based on experience and observations on the real system  the model user and model 
builder would probably have some notion at least of the direction of change in model 
output when an input variable is increased or decreased. 

•  The model builder must attempt to choose the most critical input variables for 
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testing if it is too expensive or time consuming to: vary all input variables. 

 

7.3.2 Validation of Model Assumptions  
 

     *Model assumptions fall into two general classes: structural 
assumptions and     data  assumptions. 
 
*Structural assumptions involve questions of how the system operates and usually 
involve simplification and abstractions of reality. 
 
*For example, consider the customer queuing and service facility in a bank. Customers 
may form one line, or there may be an individual line for each teller. If there are many 
lines, customers may be served strictly on a first-come, first-served basis, or some 
customers may change lines if one is moving faster. The number of tellers may be fixed or 
variable. These structural assumptions should  be verified by actual observation during 
appropriate time periods together with discussions with managers and tellers regarding 
bank policies and actual implementation of these policies. 
 
*Data assumptions should be based on the collection of reliable data and correct 
statistical analysis of the data.  
 
*data were collected on:  

1. Inter arrival times of customers during several 2-hour periods of peak loading 
("rush-hour" traffic) 

2. Inter arrival times during a slack period 
3. Service times for commercial accounts 
4. Service times for personal accounts. 
 

*The procedure for analyzing input data consist of three steps:- 
 
  

       1: Identifying the appropriate probability distribution. 
 
       2: Estimating the parameters of the hypothesized distribution . 
        
       3: Validating the assumed statistical model by goodness – of – fit test such as the  
           chi-square test, KS test and by graphical methods. 
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10.3.3 Validating Input-Output Transformation:- 
• In this phase of validation process the model is viewed as input –

output transformation . 

• That is, the model accepts the values of input parameters and 
transforms these inputs into output measure of performance. It is 
this correspondence that is being validated. 

• Instead of validating the model input-output transformation by 
predicting the future ,the modeler may use past historical data which 
has been served for validation purposes that is, if one set has been 
used to develop calibrate the model, its recommended that a separate 
data test be used as final validation test. 

• Thus accurate “ prediction of the past” may replace prediction of the 
future for purpose of validating the future. 

• A necessary condition for input-output transformation is that some 
version of the system under study exists so that the system data 
under at least one set of input condition can be collected to compare 
to model prediction. 

• If the system is in planning stage and no system operating data can 
be collected, complete input-output validation is not possible. 

• Validation increases modeler’s confidence that the model of existing 
system is accurate. 

• Changes in the computerized representation of the system, ranging 
from relatively minor to relatively major include : 

1: Minor changes of single numerical parameters such as speed 
of the machine, arrival rate of the customer etc. 

2: Minor changes of the form of a statistical distribution such 
as distribution of service time or a time to failure of a machine. 

3: Major changes in the logical structure of a subsystem such 
as change in queue discipline for waiting-line model, or a change 
in the scheduling rule for a job shop model. 

4: Major changes involving a different design for the new 
system such as computerized inventory control system replacing 
a non computerized system . 

       If the change to the computerized representation of the system is 
minor such as in items one or two these change can be carefully verified and 
output from new model can be accepted with  considerable confidence. 

Partial validation of substantial model changes in item three and four may be 
possible. 
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7.3.4: Input-Output Validation: Using Historical Input 
Data 
  
 When using artificially generated data as input data the modeler expects the           
model   produce event patterns that are compatible with, but not  identical  to, 
the event patterns that occurred in the real system during the period of data 
collection. 
 
• Thus, in the bank model, artificial input data {X\n, X2n, n = 1,2, , .} for inter 

arrival and service times were generated and replicates of the output data 
Y2 were compared to what was observed in the real system  

 
• An alternative to generating input data is to use the actual historical 

record, {An, Sn, n = 1,2,...}, to drive simulation model and then to compare 
model output to system data. 

 
 
• To  implement this technique for the bank model, the data Ai, A2,..., S1 S2 

would have to be entered into the model into arrays, or stored on a file to be 
read as the need arose. 

 
• To  conduct a validation test using historical input data, it is important 

that all  input data  (An, Sn,...) and all the system response data, such as 
average delay(Z2), be collected during the same time period. 

 
 
•  Otherwise, comparison of model responses to system responses, such as the 

comparison of average  delay in the model (Y2) to that in the system (Z2), could 
be misleading. 

 
• responses (Y2 and 22) depend on the inputs (An and Sn) as well as on the 

structure  of the system, or model. 
 
 
• Implementation of this technique could be difficult  for a large system 

because of the need for simultaneous data collection of all  input variables and 
those response variables of primary interest.  

 
7.3.5: Input-Output Validation: Using a Turing Test 
 

  *In  addition to statistical tests, or when no statistical test is readily  applicable 

   persons  knowledgeable about system behavior can be used to compare  model  
output   to system output. 

 *For  example, suppose that five reports of system performance over five different 
days are prepared, and simulation output are  used  to produce five "fake" reports. 
The 10 reports should all be in exactly in the same format and should contain 
information of the type that manager and engineer have previously seen  on  the 
system. 
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• The ten reports are randomly shuffled and given to the engineers , who is 
asked to decide which report are fake and which are real. 

• If engineer identifies substantial number of fake reports the model 
builder questions the engineer and uses the information gained to improve 
the model. 

• If the engineer cannot distinguish between fake and real reports with any 
consistency ,the modeler will conclude that this test provides no evidence 
of model inadequacy . 

• This type of validation test is called as TURING TEST. 
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8. OUTPUT ANALYSIS OF A MODEL 
 
8.1 Types of simulation w.r.t Output Analysis 
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8.2 Stochastic Nature of output data 
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8.3 Measures of Performance and their Estimation 
 

 
8.3.1 Point Estimation 
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8.3.2 Interval Estimation 
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8.4 Output Analysis for Terminating simulations 
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8.4.1 Statistical background 
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8.4.3 Confidence Intervals specified precision 
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8.4.4 Confidence Intervals for Quantiles 

www.ncetianz.webs.com

Nce
tia

nz



 

MCA52 – System Simulation & modeling  119   
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8.5 Output analysis for Steady state simulation 

 

 
8.5.1 Initialization Bias 
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8.5.2 Replication Method 
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8.5.3 Sample Size 
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8.5.4 Batch Means for Interval estimation 
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8.14 Summary 
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9. Simulation of Computer Systems 
 
 

Simulation is used extensively to simulate computer systems, because of their 
great importance to the everyday operations of business, industry, government and 
universities. The motivations for simulating computer systems, the different types of 
approaches used, and the interplay between characteristics of the model and 
implementation strategies are discussed below. 

9.1 Introduction  
 

Computer systems are incredibly complex. A computer system exhibits 
complicated behavior at time scales from the time it takes to "flip" a transistor’s state 
(on the order of 10-11 seconds) to the time it takes a human to interact with it (on the 
order of seconds or minutes). Computer systems are designed hierarchically, in an 
effort to manage this complexity. Figure below illustrates the point. 

 

Computer System Level     
           

            
            
            
        Disk Farm   

  CPU Level     
 

       Gate Level 
   
       

 

 
 

 

Main Memory 

Memory interface unit 

Translation lookaside buffer 

Instruction prefetch unit 

Microcode instruction unit 

Arithmetic/logical unit  
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Different levels of abstraction 
• At a high level of abstraction (the system level) one might view 

computational activity in terms of tasks circulating among servers, 
queueing for service when a server is busy. 

•  A lower level in the hierarchy can view the activity among components of a 
given processor (its registers, its memory hierarchy). 

•  A lower level still one views the activity of functional units that together 
make up a central processing unit. 

•  At an even lower level one can view the logical circuitry that makes it all 
happen. 

 
Simulation is used extensively at every level of this hierarchy, with results from 

one level being used at another. For instance, engineers working on designing a new chip 
will begin by partitioning the chip functionally, establish interfaces between the 
subsystems, then design and test the subsystems individually. Given a subsystem design, 
the electrical properties of the circuit are first studied, using a circuit simulator that solves 
differential equations describing electrical behavior. At this level engineers work to en-
sure that signal timing is correct throughout the circuit, and that the electrical properties 
fall within the parameters intended by the design. Once this level of validation has been 
achieved, the electrical behavior is abstracted into logical behavior; e.g., signals formerly 
thought of as thought of as logical 1's or 0's. A different type of simulator is next used to test 
the correctness of the circuit's logical behavior. A common testing technique is  
to present the design with many different sets of logical inputs for which the desired 
logical outputs are known.  Discrete-event simulation is used to evaluate the logical 
response of the circuit to each test vector, and is also used to evaluate timing. Once a 
chip’s subsystems are designed and tested, the designs are integrated, and then the whole 
system is subjected to testing, again by simulation. 

 
At a higher level one simulates using functional abstractions. For instance, a 

memory chip could be modeled simply as an array of numbers and a reference to 
memory as just an indexing operation. A special type of description language exists 
for this level, called “register-transfer language”. This is like a programming 
language, with preassigned names for registers and other hardware-specific entities, 
and with assignment statements used to indicate data transfer between hardware 
entities. For example, the sequence below loads into register R3 the data whose memory 
address is in register R6, subtracts one from it, and writes the result into the memory 
location that is word-adjacent (a word in this example is 4 bytes in size) to the 
location first read. 

R3=M [R6];     R3=R3-1; 

R6=R6+4;        M [R6] =R3; 

 

The abstraction makes sense when one is content to assume that the memory works, and 
that the time to put a datum in or out is a known constant. The "known constant" is a 
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value resulting from analysis at a lower level of abstraction. Functional abstraction is 
also commonly used to simulate subsystems of a central processing unit (CPU), when 
studying how an executing program exercises special architectural features of the CPU.  

 
At higher level still one might study how an input-output (I/O) system behave in 

response to execution of a computer program. The program's behavior may be abstracted to 
the point of being modeled but with some detailed description of I/O demands, e.g., with a 
Markov-chain that with some specificity describes an I/O operation as the Markov chain 
transitions. The behavior of the I/O devices may be abstracted to the point that all that is 
considered is how long it takes to complete a specified I/O operation. Because of these 
abstractions one can simulate larger systems, and simulate them more quickly. The 
execution of a program is modeled with a randomly sampled CPU service interval; its 
I/O demand is modeled as a randomly sampled service time on a randomly sampled I/O 
device. 

 

9.2 Simulation Tools 
 

Hand-in-hand with different abstraction levels one finds different tools used to 
perform and evaluate simulations.  

 
 An important characteristic of a tool is how it supports model building. In 

many tools one constructs networks of components whose local behavior is already 
known and already programmed into the tool. This is a powerful paradigm for 
complex model construction. At the low end of the abstraction hierarchy, electrical 
circuit simulators and gate-level simulators are driven by network descriptions. 
Likewise, at the high end of the abstraction hierarchy, tools that sirnulate queueing 
networks and Petri nets are driven by network descriptions, as are sophisticated 
commercial communication-system simulators that have extensive libraries of 
preprogrammed protocol behaviors. 

 
VHDL Language 

• A very significant player in computer-system design at lower levels of 
abstraction is the VHDL language. 

•  VHDL is the result of a U.S. effort in the 1980s to standardize the 
languages used to build electronic systems for the government.  

• VHDL serves both as a design specification and as a simulation 
specification. 

•  VHDL is a rich language, full of constructs specific to digital systems, as 
well as the normal constructs one finds in a procedural programming 
language. 

•  It achieves its dual role by imposing a clear separation between system 
topology and system behavior.  
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• Design specification is a matter of topology, whereas simulation 
specification is a matter of behavior.  

• The language promotes user-defined programmed behavior. 
•  VHDL is also innovative in its use of abstract interfaces which different 

''architectures” at different levels of abstraction may be attached. 
• VHDL is widely used in the electrical engineering community but is hardly 

used outside of it. 
Disadvantage of VHDL 
 

• VHDL is a big language, requiring a substantive VHDL compiler, and vendors 
typically target the commercial market at prices that exclude academic research. 

 
Advantage of VHDL 

 
• The relative rigidity of the programming model makes possible graphical 

model building, thereby raising the whole model-building endeavor up 
to a higher level of abstraction. Some tools have so much preprogrammed 
functionality that it is to design and run a model without writing a single line 
of computer code. 

 

9.2.1 Process Orientation 

• A process-oriented view implies that the tool must support separately 
schedulable "user threads."  

• A “user thread" is a separately schedulable thread of execution control 
implemented as part of a single executing process.  

•  A group of user threads operate in the same process memory space, 
with each thread having allocated to it a relatively small portion of that 
space for its own use.  

• The private space is used to store variables that are local to the thread, and 
information needed to support the suspension and resumption of that 
thread. 

 
• In process-oriented simulations, a thread is executed at a particular point in 

simulation time, say t, as a result of some event being scheduled at time t; the 
thread execution is in some sense the event handler.  

• The thread yields by executing a statement whose semantics mean "suspend 
this thread until the following condition occurs”  

• The hold statement is a classic example of this, it specifies how long in 
simulated time the thread suspends.  

• The CSIM model has examples of all of these. 
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Execution of CSIM Model 

• The model is compiled and linked with CSIM libraries, creating an 
executable which, when run, simulates the model. 

•  The main procedure associated with any C++ program—where program 
execution begins—is buried inside the CSIM kernel.  

• Beginning execution, control enters inside the CSIM kernel where initialization 
is done; then the kernel calls procedure sim.  

• CSIM requires a modeler to declare a procedure called sim, and that sim call 
create to turn the call into a thread. This call creates the first thread. 

•  In the specific example of interest that thread generates customers, 1000 of 
them. It enters a loop where it first suspends for an exponentially distributed 
period of time (an interarrival delay), and after that delay simply creates a new 
customer, and returns to the top of the loop. The call to customer creates a 
new thread.  

• sim calls customer, which calls create. create allocates the internal data 
structures for the new thread, schedules that new thread to execute at the 
current simulation time, but before executing the thread further, control is 
returned to sim. 

• On receiving back control, sim immediately suspends through a hold call, and 
the scheduler selects the thread whose invocation time is least among all 
executable threads. 

•  Almost always this will be the customer thread just created. This thread 
begins execution at the call to use, which suspends the thread until all 
customers generated before it have finished their executions, and then an 
implicit hold is performed on behalf of the thread, modeling its service delay. 

 
CSIM Example 

Threads access variables that are globally visible to all threads, and variables that 
are local to a specific thread. Variables Total Customers and NumberOf Customers 
are examples of global variables; local variables i (in sim) and service (in 
customer) are examples of local variables. Every instance of customer has its own 
copy of service. Local variables, the location of where a thread resumes execution, and 
the contents of machine registers at the time a thread suspended are all part of the 
thread state. To start a thread's execution, the scheduler must restore all of a thread's 
state to the appropriate places. There are different ways to store and restore a thread's 
state. The most common involve the program's runtime stack. When a program 
makes a procedure call, the runtime system pushes a new "stack frame"  onto the stack. 
A stack frame contains the return address of the calling routine, copies of input 
arguments to the procedure, and space for local variables used by the called procedure. 
A machine register called the stack-frame pointer contains the address of the first byte 
of the frame; machine code that references local variables does so using addressing modes 
that specify an offset from the stack-frame pointer and cause the hardware to compute 
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the actual address by adding the offset to the contents of the stack-frame pointer. When 
the called procedure returns control to the caller, the runtime system pops its frame off 
the stack. 

 
 
 
 

Void procA(int a)   rtn adrs in scheduler   
{                                                    a   procA stack frame 
create(“thread”);        
int x;      x 
procB(x=2*a);                             rtn adrs in procA 
procB(2*x);                                 b    procB stack frame 
}                                                    x 
void procB(int b)    
{      rtn adrs in procB  procC stack frame 
int x;     c  
procC(x=2*b);   
procC(2*x);    rtn adrs in procC  hold stack frame 
}      c 
void procC(int c) 
{ 
hold(c); 
} 
    Fig. 9.2 Runtime stack in threaded simulation 

 
 
Figure 9.2 illustrates a sequence of procedures and the stack of frames present on 

the first call to hold. The call to hold suspends the thread, and when the thread 
executes once again it will require all the information shown on the stack. Consequently 
the threading mechanism save this portion of the stack, and restore it before the thread is 
executed again. CSIM's approach is to have all threads use the same stack space as they 
execute, with the frame for the first procedure in the thread body always starting at 
the same memory location. When the thread suspends, the CSIM kernel copies the 
used stack into separate storage associated with the thread. To restore a thread, the 
CSIM kernel first copies the previously stored stack into the fixed stack position, then 
lets the normal runtime control take over. The CSIM kernel also saves and restores 
machine registers. An alternative approach to thread stack management avoids 
the copying costs by preallocating memory for the stack of each different thread. 
Machine registers must still be saved and restored, but a switch between threads is faster 
because only the stack pointer must be changed, not the stack itself. The key limitation of 
such an approach is that one must declare ahead of time the maximum stack size a thread 
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may require, and there is always the danger of the thread’s pushing the stack beyond its 
allocation. 

 
Process-oriented simulators are known to be slower than event-oriented 

simulators, stack management being a key contributing factor. Depending on the 
threading implementation, there may be additional factors. CSIM’s threads are tailored to 
simulation, and the internal scheduling mechanisms are purely temporal ones. However, 
threading is a concept that extends well beyond simulation and threads exist in more 
general forms. 

 
The problem for a simulator is that it wants to select the next thread to run, based 

on simulation time. Most thread systems have ways of explicitly making a blocked thread 
runnable, and of having a running thread block itself. The simulation scheduler can itself be 
a thread. When it runs, it identifies the next thread to run, as a function of an ordinary 
event-list, puts that thread in the runnable set, and blocks itself. The one thread that can 
now be run does, and as a part of its suspension sequence causes the scheduler to be 
runnable, and blocks itself. 

 
9.2.2 Event Orientation 

• An event-oriented simulator is much simpler to design and implement using 
a general programming language. 

•  The semantics of the program expressing a model are the semantics of the 
programming language; there is no hidden activity akin to stack 
management or thread scheduling. 

•  It is natural to use object oriented techniques and express a simulation in 
terms of messages passed between simulation objects.  

• Languages like C++ and Java are outstanding for developing abstract base 
classes to express the general structure of the simulator.  

• In such an approach model building entails development of concrete classes 
derived from the base classes, which includes expression of their methods. 

 
Example 

     We suppose a simulation system has an abstract base class for all 
simulation objects, and for all events comrnunicated below objects. Figure displays a 
simple example of such base classes, in C++. The SimEvt class defines an interface 
for all event data structures a user would define. The SimEvt base class contains a 
“private” data member that stores the time-stamp of a delivered event, and contains 
a “public” method that allows any code to see what time-stamp is. Class 
SimScheduler is declared to be a “friend class” which means that its methods have 
the same access privileges to an event’s data as does the SimEvt class. The last bit 
of mystery is the functions ~SimEvt and ~SimObj prefaced by the keyword virtual. 
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A modeler may tailor to the application, by definition, new event classes that include 
the entire interface of the SimEvt class. PktEvt  is an example of this. The user 
wished for the event to carry a data packet of general length, and so endows the 
class with the infrastructure necessary to store and access that packet. The user 
creates a “derived” instance of the class by calling the PktEvt  constructor, which 
initializes its specialized data structures. The critical feature is that pointer to an 
PktEvt  instance can b passed to any routine with a type declaration of SimEvt, and 
that routine can call the SimEvt methods and deal with the event in those terms. 
This is exactly what happens when a simulation object schedules an event. 

class SimEvt { 
friend bool operator<(const SimEvt  &el,  const SimEvt &e2); friend bool 
operator==(const SimEvt &el,  const SimEvt &e2); friend class 
SimScheduler; 
private; 
   stime _time; 
public: 
SimEvt(); 
Virtual –SimEvt(); 
 Void set-time (stime when) {_time =when ;}  
 stime get_timeQ {return _time ;} 
}; 
 
class SimObj { 
  protected: 
  public: 
      SimObj(); 
Virtual –SimObj(); 
Virtual void acceptEvt(SimEvt *)=0; 
}; 
 
class SimScheduler{ 
 public: 
   SimScheduler(); 
   Int ScheduleEvt(SimObj *, SimEvt *, stime delay); 
   Stime now(); 
}; 
 
class PktEvt : public SimEvt { 
 private: 
  int pkt_length; 
  void *packet; 
 public: 
  PktEvt(); 
  PktEvt(int len, void*pkt) { 
    Packet=(void *)new char[len]; 
    Memcpy(packet, pkt, len); 
    Pkt_length=len; 
} 
~PktEvt() {delete packet;} 
void * get_pkt()  {return pkt;} 
int get_pkt_length {return pkt_length; } 
}; 
 

Class SimScheduler gives the interface for a scheduler object. Class SimObj is 
the abstract base class for a simulation object. Its interface specifies a "virtual" 
method acceptEvt; any schedulable object the modeler may wish to define must 
include this method as part of its interface. acceptEvt is called by the simulation 
scheduler to pass an event to the object. The action where the object's acceptEvt 
method is the simulation of the event; a pointer to the event that causes the 
execution is passed as a parameter in that call. This event was ScheduleEvt 
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method associated with an instance of the SimScheduler class. The code 
scheduling the event has first created the event, acquired a pointer to the SimObj 
instance to receive the event, and decided on the delay into the future when the 
event ought to be received and acted upon. 

 
            Flexibility is the key requirement in computer-systems simulation. 
Flexibility in most contexts means the ability to use the full power of a general 
programming language. This requires a level of programming expertise that is not 
needed for the use of commercial graphically oriented modeling packages. The 
implementation requirements of an object-oriented event-oriented approach are 
much less delicate than for a threaded simulator, and the amount of simulator 
overhead involved in delivering an event to an object is considerably less than the 
cost of a context switch in a threaded system. The choice of using a process-
oriented or event-oriented simulator-or writing one’s own-is a function of the level 
of modeling ease, versus execution speed. It also happens that the process-oriented 
view is more naturally employed at the higher levels of the abstraction hierarchy. 
 
 
Typical System 
 

Model Results 
 

Tools 
 

CPU network 
 
 
Processor 
 
 
Memory system  
ALU 
 Logic network 
 

Job throughput, Job 
response time 
 
Instruction throughput, 
Time/instruction 
 
Miss rates, response 
time Timing, 
correctness Timing, 
correctness 
 

Queueing network, Petri net 
simulators, scratch 
 
VHDL, scratch 
 
 
VHDL, scratch 
VHDL, scratch 
VHDL, scratch 
 

 
 The table lists different levels of abstraction in computer-systems 
simulation, the sorts of questions whose answers are sought from the models, and 
the sorts of tools typically used for modeling. 
 

9.3 Model Input  

There are different means of providing input to a model. The model might be driven by  

• Stochastically generated input, using either simple or complicated operational 
assumptions, used at the high end of the abstraction. Useful for the study the system 
behavior over a range of scenarios. 

• Trace input, measured from actual systems used at lower levels.  
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� High-level systems simulations accept a stream of job descriptions; CPU 
simulations accept a stream of instruction descriptions, memory simulations accept a 
stream of memory references; and gate-level simulations accept a stream of logical 
signals. 
� Computer systems modeled as queueing networks typically interpret "customers" 
as computer programs; servers typically represent services such as attention by the 
CPU or an input/output system. 
�  Random sampling generates customer interarrival times, and it may also be used to 
govern routing and time-in-service. 
�  However, it is common in computer systems contexts to have routing and service 
times be state dependent; e.g., the next server visited is already specified in the 
customer's description, or may be the attached server with least queue length. 

 

9.3.1 Modulated Poisson Process 
 

� An input model that is sometimes used to retain a level of tractability is a 
modulated Poisson process, or MPP. 

�  The underlying framework is a continuous-time Markov chain (CTMC). 
� A CTMC is always in some state; for descriptive purposes states are named by the 

integers: 1, 2,.... 
�  The CTMC remains in a state for a random period of time, transitions randomly 

to another state, stays there for a random period of time, transitions again, and so 
on. 

�  The CTMC behavior is completely determined by its generator matrix, Q = 
{q,j}. For states i<> j, entry q,j describes the rate at which the chain transitions 
from state i into state j.  

� The rate describes how quickly the transition is made; its units are transitions per 
unit simulation time. 

�  Diagonal element q,i is the negated sum of all rates out of state i : q,i = - € qi,j 
� An operational view of the CTMC is that upon entering a state i , it remains in 

that state for an exponentially distributed period of time, the exponential having 
rate –qi,i Making the transition, it chooses state j with probability –qi,j / qi,i  .  

� Many CTMCs are ergodic, meaning that, left to run forever, every state is 
visited infinitely often. 

�  In an ergodic chain ΠI, denotes state i’s stationary probability, which we can 
interpret as the long-term average fraction of time the CTMC is in state i. 

�  A critical relationship exists between stationary probabilities and transition 
rates: for every state i, 

   

   πi  ∑  qi,j      =   ∑ πj  qj,i   

9.3.2 Virtual Memory Referencing 
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� Randomness can also be used to drive models in the middle levels of abstraction.  
� In such a system, the data and instructions used by the program are 

organized in units called pages. 
�  All pages are the same size, typically 210 to 212 bytes in size. 
�  The physical memory of a computer is divided into page frames, each capable 

of holding exactly one page. 
�  The decision of which page to map to which frame is made by the operating 

system. 
�  As the program executes, it makes memory references to the "virtual memory," 

as though it occupied a very large memory starting at address 0, and is the only 
occupant of the memory. 

�  On every memory reference made by the program, the hardware looks up the 
identity of the page frame containing the reference, and translates the virtual 
address into a physical address. 

�  The hardware may discover that the referenced page is not present in the main 
memory; this is called & page fault 

� When a page fault occurs, the hardware alerts the operating system, which then 
takes over to bring in the referenced page from a disk and decides which page 
frame should contain it. 

�  The operating system may need to evict a page from a page frame to make 
room for the new one. 

�  The policy the operating system uses to decide which page to evict is called 
the "replacement policy”.  

�  The quality of a replacement policy is often measured in terms of the fraction 
of references made whose page frames are found immediately, the hit ratio. 

� Virtual memory systems are used in computers that support concurrent 
execution of multiple programs. 

�  In order to study different replacement policies one could simulate the 
memory-referencing behavior of several different programs, simulate the 
replacement policy, and count the number of references that page-fault.  

� Virtual memory works well precisely because programs do tend to exhibit a 
certain type of behavior, so-called locality of reference.  

� The program references tend to cluster in time and space, that when a 
reference to a new page is made and the page is brought in from the disk, it 
is likely that the other data or instructions on the page will also soon be 
referenced.  

� In this way the overhead of bringing in the page is amortized over all the 
references made to that page before it is eventually evicted.  

� A program's referencing behavior can usually be separated into a sequence of 
"phases," where during each phase the program makes references to a relatively 
small collection of pages called its working set. 

� Phase transitions essentially change the program's working set. The challenge 
for the operating system is to recognize when the pages used by a program are 
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no longer in its working set, for these are the pages it can safely evict to make 
room for pages that are in some program's working set. 

 

9.4 High-Level Computer System Simulation 

Here we illustrate concepts typical of high-level computer simulations, by sketching 
a simulation model of a computer system that services requests from the World Wide 
Web. 
 
EXAMPLE  

• A company that provides a major web site for searching and links to sites for 
Travel, commerce, entertainment, and the like wishes to conduct a capacity 
planning study. 

•  The overall architecture of their system is shown in Figure. 

•  At the back end one finds data servers responsible for all aspects of handling 
specific queries and updating databases. 

•  Data servers receive requests for service from application servers—
machines dedicated to running specific applications supported by the site.  

• In front of applications are web servers that manage the interaction of 
applications with the World Wide Web, and the portal to the whole system 
is a load-balancing router that distributes requests directed to the web site 
among web servers. 

 

• The goal of the study is to determine the site's ability to handle load at peak 
periods. 

•  The desired output is an empirical distribution of the access response time.  

• Thus, the high-level simulation model should focus on the impact of timing 
at each level that is used, system factors that affect that timing, and the effects 
of timing on contention for resources.  

        
       

    ●Router 

 
 
       Web servers 
 LAN 

   
 
 

          Data servers 
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 Application servers 
  
 
 
 
             Data disks 

•   To understand where those delays occur let us consider the processing  
associated with a typical query. 

• All entries into the system are through a dedicated router, which examines the 
request and forwards it to some web server.  

• It is reasonable to assume one switching time for a preexisting request and a 
different time for a new request. 

•  The result of the first step is selection of a web server, and enqueueing 
there of a request for service. 

•  A web server can be thought of as having a queue of threads of new 
requests, a queue of threads that are suspended awaiting a response from an 
application server, and a queue of threads "ready" to process responses 
from application servers. 

• An accepted request from the router creates a new request thread. 

• The servicing of a new request amounts to identification of an 
application and associated application server. 

•  A request for service is formatted and forwarded to an application 
server, and the requesting thread joins the suspended queue. 

•  At an application server, requests for service are organized along 
application types. 

•  A new request creates a thread that joins a new request queue associated 
with the identified application. 

•  An application request is modeled as a sequence of sets of requests from 
data servers, interspersed with computational bursts — e.g., 

 
burst 1 
request data from Dl, D3 and D5 
burst 2 
request data from Dl and D2 
burst 3 
 

• An application server will implement a scheduling policy over sets of 
ready application threads.  

• A data server creates a new thread to respond to a data request and places it 
in a queue of ready threads.  
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• A data server may implement memory-management policies, and may 
require further coordination with the application server to know when to 
release used memory. 

•  Upon receiving service the thread requests data from a disk, and suspends 
until the disk operation completes, at which point the thread is moved from 
the suspended list to the ready list, and when executed again reports back to 
the application server associated with the request.  

• The thread suspended at the application server responds; eventually the 
application thread finishes and reports its completion back to the web-server 
thread that initiated it, which in turn communicates the results back over the 
Internet. 

 
The web-site model is an excellent candidate for a threaded (process-oriented) 

approach to modeling. There are two natural approaches for defining a process. One 
emulates our CSIM example, defining each request as a process. The model would be 
expressed from the point of view of a request going through the router, to a web server, and so 
on.  
 
Disadvantage of query centered modeling 

One complication with equating a query with a process is that it is not an exact 
fit to what happens in this model. A query passed from application server to data server 
may actually cause multiple concurrent requests to the data disks—it is insufficient to 
"push" a query process from router to disks and back. A query process can spawn 
concurrent supporting processes, which implies encoding a fork-and-join synchronization 
mechanism (a process spawns new processes, and waits for them to return). The CSIM 
example illustrated this by having the main thread suspend, once all job arrival 
processes had been generated, until the last one finished. 
 
Advantage of query centered modeling 

The advantage to a query-centered modeling approach is clarity of expression, 
and the ease with which query-oriented statistics can be gathered. A given query process 
can simply measure its delays at every step along the way, and upon departing the system 
include its observations in the statistical record the simulation maintains for the system. 
 

An alternative process-oriented approach is to associate processes with servers. 
The simulation model is expressed from an abstracted point of view of the servers' 
operating system. Individual queries become messages that are passed between 
server processes. An advantage of this approach is that it explicitly exposes the 
scheduling of query processing at the user level. The modeler has both the opportunity 
and the responsibility to provide the logic of scheduling actions that model processing 
done on behalf of a query. It is a modeling viewpoint that simplifies analysis of server 
behavior — an overloaded server is easily identified by the length of its queue of 
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runnable queries. However, it is a modeling viewpoint that is a bit lower in abstraction 
than the first one, and requires more modeling and coding on the part of the user. 
 

An event-oriented model of this system need not look a great deal different than 
the second of our process-oriented models. Queries passed as messages between servers 
have an obvious event-oriented expression. A modeler would have to add to the logic, 
events, and event handlers that describe the way a CPU passes through simulation 
time. In an event-oriented model one would need to define events that reflect "starting" 
and "stopping" the processing of a query, with some scheduling logic interspersed. 
Additional events and handlers need to be defined for any "signaling" that might be 
done between servers in a process-oriented model. A process-oriented approach, even 
one focused on servers rather than queries, lifts model expression to a higher level of 
abstraction and reduces the amount of code that must be written. In a system as 
complex as the web site, one must factor complexity of expression into the overall 
model-development process. 
 
 
 
 
 
9.5 CPU Simulation 
 

The main challenge to making effective use of a CPU is to avoid stalling it, which 
happens whenever the CPU commits to executing an instruction whose inputs are not all 
present. A leading cause of stalls is the latency delay between CPU and main memory, 
which can be tens of CPU cycles.  

One instruction may initiate a read, 
 e.g., 

load $2,  4($3) 

which is an assembly-language statement that instructs the CPU to use the data in register 3 
(after adding value 4 to it) as a memory address, and to put the data found at that address 
in register 2. If the CPU insisted on waiting for that data to appear in register 2 before 
further execution, the instruction could stall the CPU for a long time if the referenced 
address was not found in the cache. High-performance CPUs avoid this by recognizing 
that additional instructions can be executed, up to the point where the CPU attempts to 
execute an instruction that reads the contents of register 2, 

 e.g., 

add $4, $2, $5 

This instruction adds the contents of registers 2 and 5 and places the result in register 4. 
If the data expected in register 2 is not yet present, the CPU will stall. 

To allow the CPU to continue past a memory load it is necessary to 
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� mark the target register as being unready 

� allow the memory system to asynchronously load the target register while the CPU 
continues on in the instruction stream 

� stall the CPU if it attempts to read a register marked as unready 

� Clear the unready status when the memory operation completes. 

 
The sort of arrangement described above was first used in the earliest 

supercomputers, designed in the 1960s. Modern microprocessors add some additional 
capabilities to exploit instruction-level parallelism (ILP). 
 
Pipelining 

• The technique of pipelining has long been recognized as a way of accelerating 
the execution of computer instructions. 

•  Pipelining exploits the fact that each instruction goes sequentially through 
several stages in the course of being processed; separate hardware resources are 
dedicated to each stage, permitting multiple instructions to be in various 
stages of processing concurrently  

• A typical sequence of stages in an ILP CPU are as follows: 

Instruction fetch :  the instruction is fetched from the memory. 
Instruction decode :  the memory word holding the instruction is inter-           
preted to determine what   operation is specified; the registers involved 
are identified. 
Instruction issue :  an instruction is "issued" when there are no 
constraints holding it back from being executed. Constraints that keep an 
instruction from being issued include data not yet being ready in an input 
register, and unavailability of a functional unit (e.g., arithmetic-logical-
unit) needed to execute the instruction. 
Instruction execute :  the instruction is performed. 

Instruction complete :  results of the instruction are stored in the 
destination register. 

Instruction graduate :  executed instructions are graduated in the 
order that they appear in the order that they appear in the instruction 
stream. 

9.6 Memory Simulation 

• One of the great challenges of computer architecture is finding ways to effec-
tively deal with the increasing gap in operation speed between CPUs and main 
memory.  

• The main technique that has evolved is to build hierarchies of memories.  
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• A relatively small memory—the L1 cache—operates at CPU speed. A larger 
memory—the L2 cache— is larger, and operates more slowly.  

• The main memory is larger still, and slower still. The smaller memories hold 
data that was referenced recently.  

• Data moves up the hierarchy on demand, and ages out as it becomes disused, 
to make room for the data in current use. 

•  For instance, when the CPU wishes to read memory location 100000, hardware 
will look for it in the L1 cache, and failing to find it there, look for it in the L2 
cache. 

•  If found there, an entire block containing that reference is moved from the L2 
cache into the L1 cache.  

• If not found in the L2 cache, a  block of data containing location 10000 is 
copied from the main memory to the L2 cache, and part of that block  is copied 
into the LI cache. 

•  It may take 50 cycles or more to accomplish this.  

• After this cost has been suffered, the hope and expectation is that the CPU 
will continue to make references to data in the block brought in, because 
accesses to LI data are made at CPU speeds. 

• After a block ceases to be referenced for a time, it is ejected from the LI 
cache.  

• It may remain in the L2 cache for a while, and be brought back into the LI 
cache if any element of the block is referenced again. 

• Eventually a block remains unreferenced long enough so that it is ejected also 
from the L2 cache. 

 
            An alternative method copies back a block from one memory level to the lower 
level, at the point the block is being ejected from the faster level. The write-through 
strategy avoids writing back blocks when they are ejected, whereas the write-back 
strategy requires that an entire block be written back when ejected, even if only one word 
of the block was modified, once. 
 

The principal measure of the quality of a memory hierarchy is its hit ratio at each 
level. As with CPU models, to evaluate a memory hierarchy design one must study the 
design in response to a very long string of memory references. Direct-execution 
simulation can provide such reference stream, as can long traces measured reference 
traffic. Nearly every caching system is a demand system, which means that a new block 
is not brought into a cache before a reference is made to a word in that block.  

 
Set Associativity 
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• The concept of set associativity arises in response to the cost of the 
mechanism used to look for a match. 

• Imagine we have an L2 cache with 2 million memory words.  
• The CPU references location 10000—the main memory has, say, 212 words, 

so the L2 cache holds but a minute fraction of the main memory.  
• How does the hardware determine whether location 10000 is in the L2 

cache? It uses what is called an associative memory, one that associates 
search keys with data.  

• One queries an associative memory by providing some search key. If the key 
is found in the memory, then the data associated with the key is returned, 
otherwise indication of failure is given. 

 
Fully Associative 

• A fully associative cache is one where any address can appear anywhere in 
the cache. 

•  The idea is to partition the address space into sets. Figure given 
illustrates how a 48-bit memory address might be partitioned in key, set id, 
and block offset.  

 
K bits      s bits       b bits 

 
  

High order bit 47 46 45 ….                16 15      ……..               8 7…..         2 1 0 lower 
order bit 

 
 

• Any given memory address is mapped to the set identified by its set id 

address bits. 
•  This scheme assigns the first block of 2b addresses to set 0, the second 

block of 2b addresses to set 1, and so on, wrapping around back to set 0 
after 2s blocks have been assigned.  

• Each set is given a small portion of the cache—the set size—which 
typically is 2 or 4 or 8 words. Only those addresses mapped to the same 
set compete for storage in that space.  

• Given an address, the hardware uses the set id bits to identify the set 
number, and the key bits to identify the key. 

•  The hardware matches the keys of the blocks already in the 
identified set to comparator inputs, and also provides the key of the 
sought address as input to all the comparators.  

• Comparisons are made in parallel; in the case of a match, the block 
offset bits are used to index into the identified block to select the 
particular address being referenced. 
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Least-recently-used 
• LRU is the replacement policy most typically used. When a reference is 

made and is not found in a set, some block in the set is ejected to make 
room for the one containing the new reference.  

• LRU is one of several replacement policies known as stack policies. These 
are characterized by the behavior that for any reference in any reference 
string, if that reference misses in a cache of size n, then it also misses in 
every cache of size m <n, and if it hits in a cache of size m, then it hits in 
every cache of size n> m 

• The stack distance of a block in this list is its distance from the front; the 
most recently referenced block has stack distance 1, the next most recently 
referenced block has stack distance 2, the LRU block has stack distance 
64.  

• Presented with a reference, the simulation searches the list of cache blocks 
for a match. 

•  If no match is found, then by the stack property no match will be found in any cache 
of a size smaller than 64, on this reference, for this reference string. If a match is 
found and the block has stack distance k, then no match will be found in any 
cache smaller than size k, and a match will always be found in a cache of size 
larger than k. 

•  Rather than record a hit or miss, one increment the kth element of a 64-element 
array that records the number of matches at each LRU level. 

•  To determine how many hits occured in a cache of size n, one sums up the counts 
of the first n elements of the array.  

• Thus, with a little arithmetic at the end of the run, one can determine (for each set 
cache) the number of hits for every set of every size between 1 and 64. 

 
Reference trace     A    B   C    A   D   B   A   D   C   D   F   C   B   F   E     Hits array 
Stack distance 1    A    B   C    A   D   B   A   D   C   D   F   C   B   F   E           0 
Stack distance 2           A    B   C    A   D   B   A   D   C   D  F   C   B   F           1 
Stack distance 3                  A   B    C    A   D   B   A   A  C  D   F   C   B           5 
 
 

Figure illustrates the evolution of an LRU list in response to a reference string. 
• Under each reference is the state of the LRU stack after the reference is 

processed.  
• The horizontal direction from left to right symbolizes the trace, reading 

from left to right.  
• A hit is illustrated by a circle, with an arrow showing the migration of the 

symbol to the top of the heap.  
• The "hits" array counts the number of hits found at each stack distance.  
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• Thus we see that a cache of size 1 will have a hit ratio of 0/15, a cache of 
size 1 will have a hit ratio of 1/15, and a cache of size 3 will have a hit ratio 
of 6/15. 

• In one pass one can get hit ratios for varying set sizes, but it is important to 
note that each change in set size corresponds to a change in the overall size 
of the entire cache 
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