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Outline

The challenge for analytics on cyber network data
Multi-scale network analysis approaches
Analysis test environment

Netflow traffic analysis
RDB and EDA tools
VAST challenge data set

Basic graph statistics
Labeled graph degree distributions
Time interval synchrony measurement
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Challenge

Asymmetric Resilient Cybersecurity Initiative (ARC), PNNL
Research effort on modeling formalisms for general cyber systems 

Cyber systems modeling needs unifying methodologies
Digital:  No space, ordinal time, no energy, no conservation laws, no natural 
metrics (continuity, contiguity)
Engineered:  No methods from discovery-based science 

Represent cyber systems as discrete mathematical objects 
interacting across hierarchically scalar levels

Coarse-grained and fine-grained models
Each distinctly validated, but interacting
Similar to hybrid modeling and qualitative physics

Coarse grained discrete model 
Constrains fine-grained continuous model

We are discrete all the way down
Utilize discrete mathematical foundations

Labeled, directed graphs as a base representation of any discrete relation
But, equipped with additional constraints, complex attributes
And exploiting higher-order combinatorial structures and methods



Netflow Focus
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GOAL: Multi-scale network modeling
• Modeling assumption 1: Netflow for first cut

Inherently multi-scale:  drilldown to packet level, scalar 
“sweet spot”?
Broad interest beyond ARC
Ample use cases
Both public and private test databases available

• Modeling assumption 2: VAST Challenge fort test data
Open
Ground truth
Moderate size

Joslyn, CA; Choudhury, S; Haglin, D; Howe, B; Nickless, B; Olsen, B.: (2013) “Massive Scale Cyber Traffic Analysis: A Driver for Graph 
Database Research”, Proc. 1st Int. Wshop. on GRAph Data Management Experiences and   Systems (GRADES 2013)



Test data sets

Currently scaling to O(100M) edges
Netezza TwinFin: 

Parallel SQL databases appliance
Unique asymmetric massively parallel processing (AMPPTM) architecture 
FPGAs for data filtering

Tableau 8.1 for EDA
Future: Porting to PNNL’s novel high-performance graph database 
engine GEMS, potential scaling to O(100B-1T) graph edges

Analysis Environment
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Morari, A; Castellana, V; Tumeo, Antonino; Weaver, J; David Haglin, John Feo, Sutanay Choudhury, Oreste
Villa: (2014) “Scaling Semantic Graph Databases in Size and Performance”,  IEEE Micro, 34:4, pp: 16-26



VAST Data Challenge

Visual analytics competition co-led by PNNL since about 2005
Co-located with Visual Analytics Science and Technology (VAST) 
conference
Funded by and in the service of specific sponsors and their goals
2011-2013 focus on cyber challenge
Scenario: Big Marketing Situational Awareness
PNNL-provided simulated netflow traffic
Combined with IPS and BigBrother health monitoring
Challenge

Provide  visualizations for situational awareness
Report events during the timeline

Submissions
About a dozen from universities, commercial partners, individuals
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http://vacommunity.org/VAST+Challenge+2013



VAST Architecture

Three BM sites
Mostly web 
traffic
Clients and 
servers both 
inside and 
outside
Simulated 
external users 
hitting internal 
servers
Some I/O 
ambiguity on 
bidirectional 
Netflow
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Ground Truth

Italics = Events that are not observable in supplied data
(red) = Attacks with serious consequences

= Attack attempts blocked by IPS

Thanks to Kirsten Whitley
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Netflow: Complex Data Space

Basic graph statistics: all with Input X Output
Flow count
IPPs
IPs
Ports
Times: Start, Finish, Durations
Payload: # packets, # bytes
Transport protocol

Tremendous initial value just with basic stats!
Many many, combinations, we’re cherry-picking a few to 
show

To which we bring our new measures:
Degree distribution: 

Dispersion, Smoothness
Additional metrics

Time intervals
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“Graph Cube” Contractions

Projections in directed labeled graphs provide natural scalar levels
Netflow: IPs and Ports

IP 
Projection

IPP

Port 
Projection

Zhao, Peixiang; Li, Xiaolei; Xin, Dong; and Han, Jiawei: (2011) “Graph Cube: On Warehousing and OLAP 
Multidimensional Networks”, SIGMOD 2011
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Basic Graph Statistics: VAST
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VAST IPP Mean flows per
Flows 69,396,995                  
Nodes 10,066,187                  6.89               
Outs 8,784,807                    7.90               
Leaves 1,281,380                     12.7%
Ins 2,533,742                    27.39             
Roots 7,532,445                     74.8%
Internals 1,252,362                     12.4%

Pairs present 14,387,421                  4.82               
Pairs possible 22,258,434,457,794  0.00000312 
Density 0.0000646%

IP 
Projection

IPP

Port 
Projection

VAST IP Mean flows per
Flows 69,396,995  
Nodes 1,440             48,192                 
Outs 1,424             48,734                 
Leaves 16                   1.1%
Ins 1,345             51,596                 
Roots 95                   6.6%
Internals 1,329             92.3%

Pairs present 30,161          2,301                    
Pairs possible 1,915,280     36                          
Density 1.57%

Mean Ports/IP 6,990.41       

VAST Port Mean flows per
Flows 69,396,995                  
Nodes 65,536                          1,058.91       
Outs 64,501                          1,075.91       
Leaves 1,035                             1.6%
Ins 65,536                          1,058.91       
Roots -                                  0.0%
Internals 64,501                           98.4%

Pairs present 986,385                        70.35             
Pairs possible 4,227,137,536             0.01641702 
Density 0.023%



# Flows by IP

# 0 in: 95
# 0 out: 16
# > 0 on both: 1328



# Flows by Port
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Basic Payload View: Exfiltration
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Basic Payload View: Exfiltration
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Beyond Volume for Anomaly Detection

Packets and bytes not always sufficient 
to identify behavioral patterns
IP and port behavior can tell the 
difference

E.g. port scan in figure
Entropy of DstIP, DstPort
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A Lakhina, M Crovella, C Diot: (2005) “Mining Anomalies Using Traffic Feature Distributions”, SIGCOMM 05



IP 
Projection

IPP

Port 
Projection

Labeled Degree Distributions

How can we 
characterize 
relationships between 
IPs, Ports, etc.?

How many other 
IPs/ports talked to?
How distributed?
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Input: C/A/D = 2/1/1
Output: B/A/C/E = 2/1/1/1

Joint: C/A/B/D/E = 3/2/2/1/1

Analyze the distributions of labels
Incoming and outgoing
IPs, Ports, IPPs
Labeled degree distributions



Information Measures of IP/Port Distributions
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Dispersion = 0.70
Smoothness = 0.76

Dispersion = 0.70
Smoothness = 1.00

Dispersion = 0.30
Smoothness = 0.97

DISPERSION:
# IPs, ports relative to # flows
Math: Log count ratio

SMOOTHNESS:
Even or lumpy distribution of IPs, ports
Math: Normalized entropy

CA Joslyn, W Cowley, EA Hogan,  B Olsen:  (2014) “Discrete Mathematical Approaches to Graph-Based Traffic 
Analysis” 2014 Int. Wshop. on Engineering Cyber Security and Resilience (ECSaR14)  
http://www.ase360.org/bitstream/handle/123456789/157/ecsar2014_paper4.pdf



Labeled Degree Distributions

Information measures on integer partitions
N flows distributed into m <= N “buckets”
Dispersion: How many buckets m relative to # 
flows N?

Smoothness: How smoothly are those N
flows distributed over the m buckets?

19



Smoothness is definitely significant
Lakhina et al. use IP/port smoothness (entropy) only
Able to identify many behavioral patterns

Bullet: > 1 sigma significant
Star: > 2 sigma significant

Dispersion adds great value
Simpler computational
Mathematically necessary together with smoothness
We believe even more significant methodologically

Smoothness with Dispersion
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IP Distributional Statistics
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Servers: 
Unexceptional
Attackers: Small 
dispersion, 
smoothness related 
to # victims
Upper right: Outlier 
artifacts from 
simulation

Flows 1,712,733 
Ips 2 
\kappa 0.050 
G 0.970 

DSTIP Count 
172.30.0.4 1,044,598 
172.20.0.4 668,135 

Flows 1,748,019 
Ips 6 
\kappa 0.125 
G 0.001 

DSTIP Count 
172.30.0.4 1,747,731 
172.30.0.3 71 
172.30.0.5 70 
172.30.0.6 70 
172.30.0.7 69 
172.30.0.2 8 

Flows 10,168,484 
Ips 2 
\kappa 0.043 
G 0.494 

DSTIP Count 
172.20.0.15 9,069,934 
172.30.0.4 1,098,550 



DOS Attack
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Attacks: Flows and Dispersion
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Attacks: Flows and Smoothness
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Series and parallel relations between events
Aggregations over graph contractions
Measures of synchrony

Time Intervals

25



Interval Orders
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Joslyn, Cliff; Hogan, Emilie; and Pogel, Alex: (2014) “Interval Valued Rank in Finite Ordered Sets”, submitted, arXiv:1409.6684



Interval Operations
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Interval Analyses
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First effort: Overall statistical analysis
Average widths
Counts for three overlap categories
Amount of overlap

Problem in VAST: Too many short flows



Metcalf’s “Encounter Graphs”

Undirected links 
between edges
Link if intervals 
overlap or are 
separated by no 
more than δ
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Metcalf, Leigh: (2014) “Analyzing Flow Using Encounter Complexes”, Flocon 2014

δ = .5 δ = 1 δ = 2



Durations by IP Group
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IPs by Order Relation: Series Motifs
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Max Separation and Width by Order 
Relation: Series Motifs
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Interval Attack Analysis

Attack: Botnet DOS, 
workstations to external 
server
Attacker synchrony
Durations decrease in 
attack
Separations also decrease
Overall increase in 
synchrony
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Thank you!

Initial research effort with test data
Transitioning certain capabilities to operational data
Engaging multi-scale graph (logins)
Porting to high performance graph database capability
Eager to collaborate with community

Traffic analysis (Netflow)
Cyber graph analytics
Semantic graph databases

cliff.joslyn@pnnl.gov
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Joslyn, Cliff; Cowley, Wendy; Hogan,  Emilie; and Olsen, Bryan: (2014) “Discrete Mathematical Approaches to 
Graph-Based Traffic Analysis”, 2014 Int. Wshop. On Engineering Cyber Security and Resilience (ECSaR14), 
http://www.ase360.org/bitstream/handle/123456789/157/ecsar2014_paper4.pdf

Cliff Joslyn, Wendy Cowley, Emilie Hogan, Bryan Olsen: (2015) “Discrete Mathematical Approaches to Traffic 
Graph Analysis”, Flocon 2015

Joslyn, CA; Choudhury, S; Haglin, D; Howe, B; Nickless, B; Olsen, B.: (2013) “Massive Scale Cyber Traffic Analysis: A 
Driver for Graph Database Research”, Proc. 1st Int. Wshop. on GRAph Data Management Experiences and   
Systems (GRADES 2013)



BACKUP
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Netflow Data Sizing

Traffic analysis an essential big data problem
Direct acquisition from routers or reuse of publicly databases
Direct IPFLOW measurement or aggregation of packet capture

Typical data rates from one typical PNNL network monitor:
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Multi-Scale
With Login Graphs from Event Logs

Multi-scalar 
linkage of 
cyber graphs
Information 
measures for 
feature 
identification
Across levels 
to identify 
hierarchical 
scaling 
structure
Scale to 
massive 
graphs

37



Basic Graph Statistics: Test
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Test IP Mean flows per
Flows 9         
Nodes 5         1.80                      
Outs 4         2.25                      
Leaves 1          20.0%
Ins 2         4.50                      
Roots 3          60.0%
Internals 1          20.0%

Pairs present 5         1.80                      
Pairs possible 8          1.13                      
Density 62.50%

Mean Ports/IP 1.80    

Test IPP Mean flows per
Flows 9         
Nodes 8         1.13                      
Outs 7         1.29                      
Leaves 1          12.5%
Ins 3         3.00                      
Roots 5          62.5%
Internals 2          25.0%

Pairs present 8         1.13                      
Pairs possible 21        0.43                      
Density 38.10%

IP 
Projection

IPP

Port 
Projection

Test Port Mean flows per
Flows 9              
Nodes 3              3.00         
Outs 3              3.00         
Leaves -           0.0%
Ins 3              3.00         
Roots -           0.0%
Internals 3               100.0%

Pairs present 6              1.50         
Pairs possible 9               1.00         
Density 66.67%

Mean IPs/Port 2.67         



Measure Behavior

Combinatorial measures on count 
distributions = integer partitions
Dispersion

Normalized cardinality of support
In [0,1], varies with rank

Smoothness
Entropy normalized over a variable 
support
In [0,1], increases within ranks

Relatively independent “coordinates”
Consider 
For N >= 8, ranges of I of each rank can 
overlap
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Measure Behavior

C=<1,1,1,1,1,1,1,1,1,1>
, m = 10
Maximal dispersion: 
\kappa = 1
Maximal smoothness: 
G = 1January 20, 2015 40

C=<10>, m = 1
Minimal dispersion: 
\kappa = 0
Minimal smoothness: 
G = 0



Measure Behavior

January 20, 2015 41

C=<6,1,1,1,1>,  m = 5
Moderate dispersion: 
\kappa = 0.70
“Low” smoothness: 
G = 0.76

C=<2,2,2,2,2>, m = 5
Moderate dispersion: 
\kappa = 0.70
Maximal smoothness: 
G = 1.00

C=<6,4>, m = 2
Low dispersion: 
\kappa = 0.30
High smoothness: 
G = 0.97
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