

Proudly Operated by Battelle Since 1965

Discrete Mathematical Approaches to Traffic Graph Analysis

CLIFF JOSLYN WENDY COWLEY, EMILIE HOGAN, BRYAN OLSEN

FLOCON 2015

JANUARY 2015

- The challenge for analytics on cyber network data
- Multi-scale network analysis approaches
- Analysis test environment
 - Netflow traffic analysis
 - RDB and EDA tools
 - VAST challenge data set
- Basic graph statistics
- Labeled graph degree distributions
- Time interval synchrony measurement

Challenge

Asymmetric Resilient Cybersecurity Initiative (ARC), PNNL Research effort on modeling formalisms for general cyber systems

Cyber systems modeling needs unifying methodologies

- Digital: No space, ordinal time, no energy, no conservation laws, no natural metrics (continuity, contiguity)
- **Engineered**: No methods from discovery-based science
- Represent cyber systems as discrete mathematical objects interacting across hierarchically scalar levels
 - Coarse-grained and fine-grained models
 - Each distinctly validated, but interacting
 - Similar to hybrid modeling and qualitative physics
 - Coarse grained discrete model
 - Constrains fine-grained continuous model
 - We are discrete all the way down
- Utilize discrete mathematical foundations
 - Labeled, directed graphs as a base representation of any discrete relation
 - But, equipped with additional constraints, complex attributes
 - And exploiting higher-order combinatorial structures and methods

Netflow Focus

Proudly Operated by Battelle Since 1965

Joslyn, CA; Choudhury, S; Haglin, D; Howe, B; Nickless, B; Olsen, B.: (2013) "Massive Scale Cyber Traffic Analysis: A Driver for Graph Database Research", Proc. 1st Int. Wshop. on GRAph Data Management Experiences and Systems (GRADES 2013)

Analysis Environment

Test data sets

	VAST	CAIDA	Predict	NCCDC
Scope	Netflow	Packet	Packet	Netflow and
 # records/sample period Total size Payload? Time stamps? Total # records available Distribution Sample time period Sampling rate 	<10GB Y Y 69M Open 2 weeks Synthetically Gener-	25M/min Various Y Y Various Registration Multiple 95%	6 TB Various Various Various MOU 10 days ?	Packet 65M/day Y 133M Open 2 days ?
	ateu			

Currently scaling to O(100M) edges

Netezza TwinFin:

- Parallel SQL databases appliance
- Unique asymmetric massively parallel processing (AMPPTM) architecture
- FPGAs for data filtering
- Tableau 8.1 for EDA
- Future: Porting to PNNL's novel high-performance graph database engine GEMS, potential scaling to O(100B-1T) graph edges

Morari, A; Castellana, V; Tumeo, Antonino; Weaver, J; David Haglin, John Feo, Sutanay Choudhury, Oreste Villa: (2014) "Scaling Semantic Graph Databases in Size and Performance", *IEEE Micro*, 34:4, pp: 16-26 January 20, 2015

VAST Data Challenge

- Visual analytics competition co-led by PNNL since about 2005
- Co-located with Visual Analytics Science and Technology (VAST) conference
- Funded by and in the service of specific sponsors and their goals
- 2011-2013 focus on cyber challenge
- Scenario: Big Marketing Situational Awarenes
- PNNL-provided simulated netflow traffic http://vacommunity.org/VAST+Challenge+2013
- Combined with IPS and BigBrother health monitoring
- Challenge
 - Provide visualizations for situational awareness
 - Report events during the timeline
- Submissions
 - About a dozen from universities, commercial partners, individuals

VAST Architecture

Ground Truth

Pacific Northwest

Proudly Operated by Battelle Since 1965

Italics = Events that are not observable in supplied data (red) = Attacks with serious consequences = Attack attempts blocked by IPS

Thanks to Kirsten Whitley

Basic graph statistics: *all with Input X Output*

Netflow: Complex Data Space

IPPs

IPs

- Ports
- **Times:** Start, Finish, Durations
- **Payload:** # packets, # bytes
- Transport protocol

Tremendous initial value just with basic stats!

Many many, combinations, we're cherry-picking a few to show
a.x:1 —1,[2]

To which we bring our new measures:

- Degree distribution:
 - Dispersion, Smoothness
 - Additional metrics

Time intervals

stats! ing a few to a.x:1 -1,[2,5] b.x:3 a.x:3 3,[1,1]a.x:3 -7,[1,3] c.x:2 -8,[2,8] a.z:2 9,[4,6]a.z:3

100.110.120.130:80

"Graph Cube" Contractions

Projections in directed labeled graphs provide natural scalar levels
 Netflow: IPs and Ports

Zhao, Peixiang; Li, Xiaolei; Xin, Dong; and Han, Jiawei: (2011) "Graph Cube: On Warehousing and OLAP Multidimensional Networks", SIGMOD 2011

Basic Graph Statistics: VAST

Proudly Operated by Battelle Since 1965

VAST IP		Mean flows per	VAST IPP	Me	ean flows per	VAST Port	Me	ean flows per
Flows	69,396,995		Flows	69,396,995		Flows	69.396.995	
Nodes	1,440	48,192	Nodes	10,066,187	6.89	Nodes	65.536	1.058.91
Outs	1,424	48,734	Outs	8,784,807	7.90	Outs	64.501	1.075.91
Leaves	16	1.1%	Leaves	1,281,380	12.7%	Leaves	1.035	1.6%
Ins	1,345	51,596	Ins	2,533,742	27.39	Ins	65.536	1.058.91
Roots	95	6.6%	Roots	7,532,445	74.8%	Roots	-	0.0%
Internals	1,329	92.3%	Internals	1,252,362	12.4%	Internals	64,501	98.4%
Pairs present	30,161	2,301	Pairs present	14,387,421	4.82	Pairs present	986.385	70,35
Pairs possible	1,915,280	36	Pairs possible	22,258,434,457,794	0.00000312	Pairs possible	4,227,137,536	0.01641702
Density	1.57%		Density	0.0000646%		Density	0.023%	0.01011702
Mean Ports/IP	6,990.41							

Flows by IP

Log(# Flows): Red=Out, Green=In

Flows by Port

Proudly Operated by Battelle Since 1965

8

January 20, 2015

FLOUT

13

Basic Payload View: Exfiltration

Proudly Operated by Battelle Since 1965

January 20, 20

Basic Payload View: Exfiltration

Beyond Volume for Anomaly Detection

Anomaly Label	Definition	Traffic Feature Distributions Affected
Alpha Flows	Unusually large volume point to point flow	Source address, destination address (possibly ports)
DOS	Denial of Service Attack (distributed or single-source)	Destination address, source address
Flash Crowd	Unusual burst of traffic to single destination, from a "typ- ical" distribution of sources	Destination address, destination port
Port Scan	Probes to many destination ports on a small set of desti- nation addresses	Destination address, destination port
Network Scan	Probes to many destination addresses on a small set of destination ports	Destination address, destination port
Outage Events	Traffic shifts due to equipment failures or maintenance	Mainly source and destination address
Point to Multipoint	Traffic from single source to many destinations, e.g., content distribution	Source address, destination address
Worms	Scanning by worms for vulnerable hosts (special case of Network Scan)	Destination address and port

- Packets and bytes not always sufficient to identify behavioral patterns
- IP and port behavior can tell the difference
 - E.g. port scan in figure
 - Entropy of DstIP, DstPort

A Lakhina, M Crovella, C Diot: (2005) "Mining Anomalies Using Traffic Feature Distributions", *SIGCOMM 05* January 20, 2015

Pacific Northwest NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965

Labeled Degree Distributions

- Incoming and outgoing
- IPs, Ports, IPPs
- Labeled degree distributions

 $C_{C} = B_{E}$ Input: C/A/D = 2/1/1
Output: B/A/C/E = 2/1/1/1
Joint: C/A/B/D/E = 3/2/2/1/1

Information Measures of IP/Port Distributions

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Analysis" 2014 Int. Wshop. on Engineering Cyber Security and Resilience (ECSaR14)

http://www.ase360.org/bitstream/handle/123456789/157/ecsar2014_paper4.pdf

Labeled Degree Distributions

Proudly Operated by Battelle Since 1965

19

Smoothness with Dispersion

Proudly Operated by Baffelle Since 1965

Smoothness is definitely significant

- Lakhina et al. use IP/port smoothness (entropy) only
- Able to identify many behavioral patterns
 - Bullet: > 1 sigma significant
 - Star: > 2 sigma significant

Anomaly	H(srcIP)	H(srcPort)	H(dstIP)	H(dstPort)
Alpha	-0.38 ± 0.32 •	-0.19 ± 0.47	-0.37 ± 0.33 •	-0.35 ± 0.35
DOS	-0.05 \pm 0.57	$\textbf{-0.20} \pm \textbf{0.51}$	-0.35 \pm 0.20 $^{\bullet}$	$\textbf{-0.08} \pm \textbf{0.49}$
Flash	0.21 ± 0.49	0.49 ± 0.26 •	-0.28 \pm 0.22 ullet	0.13 ± 0.58
Port Scan	-0.33 \pm 0.19 ullet	0.07 ± 0.40	-0.41 \pm 0.15 *	0.70 \pm 0.14 *
Net. Scan	-0.19 \pm 0.22	0.84 \pm 0.17 *	$\textbf{0.20} \pm \textbf{0.21}$	-0.29 ± 0.16 •
Outage	0.51 ± 0.33 ullet	0.31 ± 0.31	0.51 ± 0.34 •	0.24 ± 0.20
PtMult.	-0.18 \pm 0.16 ullet	-0.17 ± 0.12 •	0.66 \pm 0.04 *	0.68 \pm 0.06 *
Unknown	$\textbf{-0.28} \pm \textbf{0.39}$	$\textbf{0.02} \pm \textbf{0.46}$	$\textbf{-0.35} \pm \textbf{0.34}$	0.17 ± 0.55
False	-0.01 \pm 0.49	$\textbf{0.27} \pm \textbf{0.46}$	$\textbf{-0.00} \pm \textbf{0.46}$	-0.04 \pm 0.57

- Dispersion adds great value
 - Simpler computational
 - Mathematically necessary together with smoothness
 - We believe even more significant methodologically

A Lakhina, M Crovella, C Diot: (2005) "Mining Anomalies Using Traffic Feature Distributions", SIGCOMM 05 January 20, 2015

IP Distributional Statistics

Proudly Operated by Baffelle Since 1965

Servers: Unexceptional

- Attackers: Small dispersion, smoothness related to # victims
- Upper right: Outlier artifacts from simulation

•		/ 10.200.20.2	112 22		•		
	0	Flows	1,712,733	•		7	Ŏ
9		lps	2				
		` \kappa	0.050).0.4			10.0.0.5	
8		G	0.970				
		DCTID	Count				
7		DSTIP	Count				
		172.30.0.4	668,135				
6							
		- 10.15.7.85					
5	O	-1	10 1 50 10				
		Flows	10,168,48	⁴ 1,748,019			
4		lps	2	6			
		\kappa	0.043	0.125			
3		G	0.494	0.001			
		DSTI	P Cour	t Count			
2	•	172.20.0.15	9,069,934	1.747.731			
		172.30.0.4	1,098,550	71			
1	:		172.30.0.5	70			
	•	~ 10.6.6.6	172.30.0.6	70			
0	•	04	172.30.0.7	69			
			172.30.0.2	8			

DOS Attack

Pacific Northwest

Attacks: Flows and Dispersion

Proudly Operated by Battelle Since 1965

Outbound Attackers

Attacks: Flows and Smoothness

25

Time Intervals

- Series and parallel relations between events
- Aggregations over graph contractions
- Measures of synchrony

Interval Orders

- Dual Orders: $\geq_S, \geq_W, \supseteq$
- $\overline{x} \leq_S \overline{y} \to \overline{x} \leq_W \overline{y}$
- Near Conjugacy: $\bar{x} \leq_W \bar{y}$ iff $\bar{x} \not\subseteq \bar{y}$, where no endpoints are equal
- Proper intersection (from the left) (not an order):

Joslyn, Cliff; Hogan, Emilie; and Pogel, Alex: (2014) "Interval Valued Rank in Finite Ordered Sets", submitted, arXiv:1409.6684 January 20, 2015

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Interval Operations

Addition (interval, Minkowski sum): $\bar{x} + \bar{y} := [x_* + y_*, x^* + y^*]$ Subtraction (interval): $\bar{x} - \bar{y} := [x_* - y^*, x^* - y_*]$ Absolute Value (interval): $|\bar{x}| = [|\bar{x}|_*, |\bar{x}|^*]$, where

$$\begin{aligned} |\bar{x}|_{*} &:= \begin{cases} 0, & x_{*}x^{*} \leq 0\\ \min(|x_{*}|, |x^{*}|), & x_{*}x^{*} > 0\\ |\bar{x}|^{*} &:= \max(|x_{*}|, |x^{*}|). \end{aligned}$$

Separation (interval): $\|\bar{x}, \bar{y}\| := |\bar{x} - \bar{y}|$ Midpoint (scalar): $\hat{x} = \frac{x_* + x^*}{2} \in \mathbb{R}$ Width (scalar): Scalar values: $W(\bar{x}) := |x^* - x_*| \in \mathbb{R}$. Mean (interval): For $X = \{\bar{x}_i\}_{i=1}^N$, mean $(X) := \frac{\sum_{i=1}^N \bar{x}_i}{N}$ Union Over Gaps (interval):

January 20, 2015

5 6

Min Sep.

Max Sep. <

9

1 2 3

Interval Analyses

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

1000

V.

α

ν.

1500

Λ

28

Metcalf's "Encounter Graphs"

Proudly Operated by Battelle Since 1965

Undirected links between edges

Link if intervals overlap or are separated by no more than δ

δ = .5

Metcalf, Leigh: (2014) "Analyzing Flow Using Encounter Complexes", Flocon 2014

Durations by IP Group

Pacific Northwest

IPs by Order Relation: Series Motifs

Sum of SC, sum of SR, sum of SNDY and sum of SNDW for each IP. Color shows details about BOWTIE.

Max Separation and Width by Order Relation: Series Motifs

Proudly Operated by Baffelle Since 1965

Average of SNDY vs. average of SNDW. Color shows details about BOWTIE. Details are shown for IP.

Interval Attack Analysis

Proudly Operated by Baffelle Since 1965

- Attack: Botnet DOS, workstations to external server
- Attacker synchrony
- Durations decrease in attack
- Separations also decrease

V.

v.

Overall increase in synchrony T -

Min Sep. Max Sep. 🗲 α.

Thank you!

Proudly Operated by Battelle Since 1965

- Initial research effort with test data
- Transitioning certain capabilities to operational data
- Engaging multi-scale graph (logins)
- Porting to high performance graph database capability
- Eager to collaborate with community
 - Traffic analysis (Netflow)
 - Cyber graph analytics
 - Semantic graph databases

cliff.joslyn@pnnl.gov

Joslyn, Cliff; Cowley, Wendy; Hogan, Emilie; and Olsen, Bryan: (2014) "Discrete Mathematical Approaches to Graph-Based Traffic Analysis", 2014 Int. Wshop. On Engineering Cyber Security and Resilience (ECSaR14), http://www.ase360.org/bitstream/handle/123456789/157/ecsar2014_paper4.pdf

Cliff Joslyn, Wendy Cowley, Emilie Hogan, Bryan Olsen: (2015) "Discrete Mathematical Approaches to Traffic Graph Analysis", Flocon 2015

Joslyn, CA; Choudhury, S; Haglin, D; Howe, B; Nickless, B; Olsen, B.: (2013) "Massive Scale Cyber Traffic Analysis: A Driver for Graph Database Research", Proc. 1st Int. Wshop. on GRAph Data Management Experiences and Systems (GRADES 2013) 34

BACKUP

Netflow Data Sizing

Traffic analysis an essential big data problem

- Direct acquisition from routers or reuse of publicly databases
- Direct IPFLOW measurement or aggregation of packet capture
- Typical data rates from one typical PNNL network monitor:

	Average	Stdev
Flows/day (M)	613.2	242.5
Packets/day (B)	27.6	11.9
Bytes/day (T)	24.1	11.1
Packets/flow	178.7	702.6
Bytes/flow (K)	153.1	596.4

Multi-Scale With Login Graphs from Event Logs

Basic Graph Statistics: Test

Test IP Mean flows per Flows 9 Nodes 5 1.80 2.25 Outs 4 Leaves 1 20.0% 4.50 Ins 2 60.0% Roots 3 Internals 1 20.0% Pairs present 1.80 5 Pairs possible 8 1.13 Density 62.50% Mean Ports/IP 1.80

Test IPP		Mean flows per
Flows	9	
Nodes	8	1.13
Outs	7	1.29
Leaves	1	12.5%
Ins	3	3.00
Roots	5	62.5%
Internals	2	25.0%
Pairs present	8	1.13
Pairs possible	21	0.43
Density	38.10%	

Test Port	Mean	flows per
Flows	9	
Nodes	3	3.00
Outs	3	3.00
Leaves	-	0.0%
Ins	3	3.00
Roots	-	0.0%
Internals	3	100.0%
Pairs present	6	1.50
Pairs possible	9	1.00
Density	66.67%	
Mean IPs/Port	2.67	

Measure Behavior

Proudly Operated by Battelle Since 1965

- Combinatorial measures on count distributions = integer partitions
- Dispersion
 - Normalized cardinality of support
 - In [0,1], varies with rank

Smoothness

- Entropy normalized over a variable support
- In [0,1], increases within ranks
- Relatively independent "coordinates"
 - Consider $I = G \times \kappa = \frac{\mathrm{H}(f(\vec{C}))}{\log_2(N)} \leq G, \kappa$
 - For N >= 8, ranges of I of each rank can overlap

$$G(\vec{C}) := \frac{\mathbf{H}(f(\vec{C}))}{\log_2(m)} = \frac{-\sum_{l=1}^m \frac{C_l}{N} \log_2\left(\frac{C_l}{N}\right)}{\log_2(m)}$$

Measure Behavior

α - 8

9

- Maximal dispersion: \kappa = 1
- Maximal smoothness: January 20, 2015

- ▶ C=<10>, m = 1
- Minimal dispersion: \kappa = 0
- Minimal smoothness:G = 0

Measure Behavior

9 9 œ C = <2,2,2,2,2,2 >, m = 5Moderate dispersion: ø kappa = 0.704 Maximal smoothness: Smoothness 2 Dispersion 2 G = 1.00C=<6,4>, *m* = 2 *C*=<*6*, *1*, *1*, *1*, *1*>, *m* = *5* Low dispersion: Moderate dispersion: \kappa = 0.70 kappa = 0.30High smoothness: "Low" smoothness: G = 0.76G = 0.97