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Set Theory

Basic building block for types of objects in discrete mathematics.
Set operations in programming languages: Issues about data
structures used to represent sets and the computational cost of
set operations.
Set theory is the foundation of mathematics.
Many different systems of axioms have been proposed.
Zermelo-Fraenkel set theory (ZF) is standard.
Often extended by the axiom of choice to ZFC.
Here we are not concerned with a formal set of axioms for set
theory. Instead, we will use what is called naive set theory.
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Sets

A set is an unordered collection of objects, e.g., students in this
class; air molecules in this room.
The objects in a set are called the elements, or members of the
set. A set is said to contain its elements.
The notation x ∈ S denotes that x is an element of the set S.
If x is not a member of S, write x /∈ S.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapters 2 and 9 4 / 74



Describing a Set: Roster Method

S = {a,b, c,d}.
Order not important S = {a,b, c,d} = {b, c,a,d}.
Each distinct object is either a member or not; listing more than
once does not change the set. S = {a,b, c,d} = {a,b, c,b, c,d}.
Dots “. . . ” may be used to describe a set without listing all of the
members when the pattern is clear. S = {a,b, c,d , . . . , z} or
S = {5,6,7, . . . ,20}.
Do not overuse this. Patters are not always as clear as the writer
thinks.
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Some Important Sets

B = Boolean values = {true, false}
N = natural numbers = {0,1,2,3, . . . }
Z = integers = {. . . ,−3,−2,−1,0,1,2,3, . . . }
Z+ = Z≥1 = positive integers = {1,2,3, . . . }
R = set of real numbers
R+ = R>0 = set of positive real numbers
C = set of complex numbers
Q = set of rational numbers
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Set Builder Notation

Specify the property (or properties) that all members of the set
must satisfy.
S = {x | x is a positive integer less than 100}
S = {x | x ∈ Z+ ∧ x < 100}
S = {x ∈ Z+ | x < 100}
A predicate can be used, e.g.,

S = {x | P(x)}

where P(x) is true iff x is a prime number.
Positive rational numbers

Q+ = {x ∈ R | ∃p,q ∈ Z+ x = p/q}
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Interval Notation

Used to describe subsets of sets upon which an order is defined, e.g.,
numbers.

[a,b] = {x | a ≤ x ≤ b}

[a,b) = {x | a ≤ x < b}

(a,b] = {x | a < x ≤ b}

(a,b) = {x | a < x < b}

closed interval [a,b]
open interval (a,b)
half-open intervals [a,b) and (a,b]
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Universal Set and Empty Set

The universal set U is the set containing everything currently
under consideration.

I Content depends on the context.
I Sometimes explicitly stated, sometimes implicit.

The empty set is the set with no elements.
Symbolized by ∅ or {}.
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Russell’s Paradox

(After Bertrand Russell (1872–1970); Logician, mathematician and
philosopher. Nobel Prize in Literature 1950.)
Naive set theory contains contradictions.

Let S be the set of all sets which are not members of themselves.

S = {S′ | S′ /∈ S′}

“Is S a member of itself?”, i.e., S ∈ S ?
Related formulation:
“The barber shaves all people who do not shave themselves, but
no one else. Who shaves the barber?”
Modern formulations (such as Zerlemo-Fraenkel) avoid such
obvious problems by stricter axioms about set construction.
However, it is impossible to prove in ZF that ZF is consistent
(unless ZF is inconsistent).
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Things to remember

Sets can be elements of other sets, e.g.,

{{1,2,3},a, {u}, {b, c}}

The empty set is different from the set containing the empty set

∅ 6= {∅}
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Subsets and Set Equality

Definition
Set A is a subset of set B iff every element of A is also an element of
B. Formally: A ⊆ B ↔ ∀x(x ∈ A→ x ∈ B)

In particular, ∅ ⊆ S and S ⊆ S for every set S.

Definition
Two sets A and B are equal iff they have the same elements. Formally:
A = B ↔ A ⊆ B ∧ B ⊆ A.

E.g., {1,5,5,5,3,3,1} = {1,3,5} = {3,5,1}.
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Proper Subsets

Definition
A is a proper subset of B iff A ⊆ B and A 6= B. This is denoted by
A ⊂ B.

A ⊂ B can be expressed by

∀x(x ∈ A→ x ∈ B) ∧ ∃x(x ∈ B ∧ x /∈ A)
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Set Cardinality

Definition
If there are exactly n distinct elements in a set S, where n is a
nonnegative integer, we say that S is finite. Otherwise it is infinite.

Definition
The cardinality of a finite set S, denoted by |S|, is the number of
(distinct) elements of S.

Examples:
|∅| = 0
Let S be the set of letters of the English alphabet. Then |S| = 26.
|{1,2,3}| = 3
|{∅}| = 1
The set of integers Z is infinite.
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Power Sets

Definition
The set of all subsets of a set S is called the power set of S.
It is denoted by P(S) or 2S.
Formally: P(S) = {S′ | S′ ⊆ S}

In particular, S ∈ P(S) and ∅ ∈ P(S).
Example:

P({a,b}) = {∅, {a}, {b}, {a,b}}

If |S| = n then |P(S)| = 2n. Proof by induction on n; see later Chapters.
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Tuples

The ordered n-tuple (a1,a2, . . . ,an) is the ordered collection of n
elements, where a1 is the first, a2 the second, etc., and an the n-th
(i.e., the last).
Two n-tuples are equal iff their corresponding elements are equal.

(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)↔ a1 = b1∧a2 = b2∧· · ·∧an = bn

2-tuples are called ordered pairs.
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Cartesian Product

Definition
The Cartesian product of two sets A and B, denoted by A× B, is the
set of all ordered pairs (a,b) where a ∈ A and b ∈ B.
A× B = {(a,b) | a ∈ A ∧ b ∈ B}

Definition
The Cartesian product of n sets A1,A2 . . . ,An, denoted by
A1 × A2 × · · · × An, is the set of all tuples (a1,a2, . . . ,an)
where ai ∈ Ai for i = 1, . . . ,n.
A1 × A2 × · · · × An = {(a1,a2, . . . ,an) | ai ∈ Ai for i = 1,2, . . . ,n}

Example: What is A× B × C where A = {0,1},B = {1,2} and
C = {0,1,2}.
Solution: A× B × C = {(0,1,0), (0,1,1), (0,1,2), (0,2,0),
(0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,1,2)}
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Truth Sets and Characteristic Predicates

We fix a domain U.

Let P(x) be a predicate on U. The truth set of P is the subset of U
where P is true.

{x ∈ U | P(x)}

Let S ⊆ U be a subset of U. The characteristic predicate of S is
the predicate P that is true exactly on S, i.e.,

P(x)↔ x ∈ S
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Set Operations: Union, Intersection, Complement

Given a domain U and two sets A,B.
The union of two sets A,B is defined by
A ∪ B = {x | x ∈ A ∨ x ∈ B}.
General union of several sets:
A1 ∪ · · · ∪ An = {x | x ∈ A1 ∨ · · · ∨ x ∈ An}
The intersection of two sets A,B is defined by
A ∩ B = {x | x ∈ A ∧ x ∈ B}.
General intersection of several sets:
A1 ∩ · · · ∩ An = {x | x ∈ A1 ∧ · · · ∧ x ∈ An}
The complement of A w.r.t. U is defined by

A = {x ∈ U | x /∈ A}
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Set Difference

Definition
The difference between sets A and B, denoted A− B is the set
containing the elements of A that are not in B. Formally:
A− B = {x | x ∈ A ∧ x /∈ B} = A ∩ B

A− B is also called the complement of B w.r.t. A.

Definition
The symmetric difference between sets A and B, denoted A4B is
the set containing the elements of A that are not in B or vice-versa.
Formally:
A4B = {x | x ∈ A xor x ∈ B} = (A− B) ∪ (B − A)

A4B = (A ∪ B)− (A ∩ B).
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Cardinality of Finite Derived Sets
|A ∪ B| = |A|+ |B| − |A ∩ B|
In particular, |A ∪ B| ≤ |A|+ |B|.
|A ∩ B| ≤ |A|
|A ∩ B| ≤ |B|
|A− B| ≤ |A|
|A4B| = ?

Clicker
1 |A|+ |B|
2 |A|+ |B| − |A ∩ B|
3 |A|+ |B| − 2|A ∩ B|
4 |A|+ |B|+ |A ∩ B|
5 |A|+ |B|+ 2|A ∩ B|
6 |A|+ |B| − |A ∪ B|

|A|+ |B| − 2|A ∩ B|
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Set Identities

Identity laws
A ∪ ∅ = A A ∩ U = A

Domination laws
A ∪ U = U A ∩ ∅ = ∅

Idempotent laws
A ∪ A = A A ∩ A = A

Complementation law
(A) = A

Complement laws

A ∩ A = ∅ A ∪ A = U
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Set Identities (cont.)
Commutative laws

A ∪ B = B ∪ A A ∩ B = B ∩ A

Associative laws
A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C
Distributive laws
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Absorption laws

A ∪ (A ∩ B) = A A ∩ (A ∪ B) = A

De Morgan’s laws

A ∪ B = A ∩ B A ∩ B = A ∪ B
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Relations

Definition
Given sets A1, . . . ,An, a subset R ⊆ A1 × · · · × An is an n-ary relation.

Example: Database R contains tuples (Street name, House number,
currently inhabited flag), i.e., R ⊆ Strings × N× B. So R is a 3-ary
relation.

Definition
Given sets A and B, R ⊆ A× B is a binary relation from A to B.

The property (x , y) ∈ R is also written as xRy .
Example: R ⊆ R× Z where (x , y) ∈ R iff y = bxc (rounding down).

Definition
R ⊆ A× A is called a relation on A.

Example: ≤⊆ Z× Z is the ‘less or equal’ relation on the integers.
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Relations and Matrices

A binary relation R ⊆ A× B can be described by a boolean matrix
(and vice-versa).
Define a boolean matrix M. Index its rows over set A and its
columns of set B.
Let M(a,b) = T iff (a,b) ∈ R.
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Properties of Binary Relations
A binary relation R ⊆ A× A is called

Reflexive iff ∀x (x , x) ∈ R
Symmetric iff ∀x , y ((x , y) ∈ R → (y , x) ∈ R)

Antisymmetric iff ∀x , y ((x , y) ∈ R ∧ (y , x) ∈ R → x = y)

Transitive iff ∀x , y , z ((x , y) ∈ R ∧ (y , z) ∈ R → (x , z) ∈ R).
Examples:
≤ and = are reflexive, but < is not.
= is symmetric, but ≤ is not.
≤ is antisymmetric.
Note: = is also antisymmetric, i.e., = is symmetric and
antisymmetric.
< is also antisymmetric, since the precondition of the implication
is always false.
However, R = {(x , y) | x + y ≤ 3} is not antisymmetric, since
(1,2), (2,1) ∈ R.
All three, =, ≤ and < are transitive.
R = {(x , y) | y = 2x} is not transitive.
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Binary Relations: Example

Let
R = {(x , y) ∈ Z+ × Z+ | ∃k ∈ Z+y = kx}

Clicker: Is R
1 reflexive, symmetric, transitive
2 not reflexive, antisymmetric, not transitive
3 reflexive, not antisymmetric, transitive
4 reflexive, symmetric, not transitive
5 reflexive, antisymmetric, transitive
6 reflexive, not symmetric, not transitive
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Combining Relations
Since relations are sets, they can be combined with normal set
operations, e.g., < ∪ = is equal to ≤, and ≤ ∩ ≥ is equal to =.
Moreover, relations can be composed.

Definition
Let R1 ⊆ A× B and R2 ⊆ B × C. Then R1 is composable with R2.
The composition is defined by

R1 ◦ R2 = {(x , z) ∈ A× C | ∃y ∈ B ((x , y) ∈ R1 ∧ (y , z) ∈ R2)}

Sometimes R1 ◦ R2 is simply written as R1R2.
Example: If A,B,C = Z then

> ◦ > =

{(x , y) ∈ Z× Z | x ≥ y + 2}

.

However if A,B,C = R then

> ◦ > =

>
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Powers of a Relation

Definition
Given a relation R ⊆ A× A on A, its powers are defined inductively by

Base step: R1 = R
Induction step: Rn+1 = Rn ◦ R

If R is a transitive relation, then its powers are contained in R itself.
Moreover, the reverse implication also holds.

Theorem
A relation R on a set A is transitive iff Rn ⊆ R for all n = 1,2, . . . .

Proof by induction on n.
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Equivalence Relations

Definition
A relation R on a set A is called an equivalence relation iff it is
reflexive, symmetric and transitive.

Example: Let Σ∗ be the set of strings over alphabet Σ. Let
R ⊆ Σ∗ × Σ∗ be a relation on strings defined as follows.
R = {(s, t) ∈ Σ∗ × Σ∗ | |s| = |t |}. I.e., two strings are in relation iff they
have the same length.
Verify that R is an equivalence relation. Prove that it is reflexive,
symmetric and transitive.

Example: Let R = {(a,b) ∈ Z+ × Z+ | a divides b}. This is not an
equivalence relation. It is reflexive and transitive, but not symmetric.
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Congruence modulo m
Let m > 1 be an integer. Show that the relation

R = {(a,b) | a ≡ b( mod m)}

is an equivalence on the set of integers.
Proof: Recall that a ≡ b( mod m) iff m divides a− b.
Reflexivity: a ≡ a( mod m) since a− a = 0 is divisible by m.
Symmetry: Suppose (a,b) ∈ R. Then m divides a− b. Thus there

exists some integer k s.t. a− b = km. Therefore
b − a = (−k)m. So m divides b − a and thus b ≡ a(
mod m), and finally (b,a) ∈ R.

Transitivity: If (a,b) ∈ R and (b, c) ∈ R then a ≡ b( mod m) and
b ≡ c( mod m). So m divides both a− b and b − c.
Hence there exist integers k , l with a− b = km and
b − c = lm. By adding these two equations we obtain
a− c = (a− b) + (b − c) = km + lm = (k + l)m.
Therefore, a ≡ c( mod m) and (a, c) ∈ R.
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Equivalence Classes
Definition
Let R be an equivalence relation on a set A and a ∈ A an element of A.
Let

[a]R = {s | (a, s) ∈ R}

be the equivalence class of a w.r.t. R, i.e., all elements of A that are
R-equivalent to a.

If b ∈ [a]R then b is called a representative of the equivalence class.
Every member of the class can be a representative.

Theorem
Let R be an equivalence on A and a,b ∈ A. The following three
statements are equivalent.

1 aRb
2 [a] = [b]

3 [a] ∩ [b] 6= ∅.
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Partitions of a Set

Definition
A partition of a set A is a collection of disjoint, nonempty subsets that
have A as their union. In other words, the collection of subsets Ai ⊆ A
with i ∈ I (where I is an index set) forms a partition of A iff

1 Ai 6= ∅ for all i ∈ I.
2 Ai ∩ Aj = ∅ for i 6= j
3
⋃

i∈I Ai = A

Theorem
If R is an equivalence on A, then the equivalence classes of R
form a partition of A.
Conversely, given a partition {Ai | i ∈ I} of A there exists an
equivalence relation R that has exactly the sets Ai , i ∈ I, as its
equivalence classes.
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Partial Orders

Definition
A relation R on a set A is called a partial order iff it is reflexive,
antisymmetric and transitive.
If R is a partial order, we call (A,R) a partially ordered set, or poset.

Example: ≤ is a partial order, but < is not (since it is not reflexive).

Example: Let a|b denote the fact that a divides b. Formally:
∃k ∈ Z ak = b. Show that the relation | is a partial order, i.e., (Z+, |) is
a poset.

Example: Set inclusion ⊆ is partial order, i.e., (2A,⊆) is a poset.
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Comparability and Total Orders

Definition
Two elements a and b of a poset (S,R) are called comparable iff aRb
or bRa holds. Otherwise they are called incomparable.

Definition
If (S,R) is a poset where every two elements are comparable, then S
is called a totally ordered or linearly ordered set and the relation R is
called a total order or linear order.

A totally ordered set is also called a chain.

Given a poset (S,R) and S′ ⊆ S a subset in which all elements are
pairwise incomparable. Then S′ is called an antichain.
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Extending Orders to Tuples/Vectors: Standard

Let (S,4) be a poset and Sn = S × S × · · · × S (n times).
The standard extension of the partial order to tuples in Sn is defined by

(x1, . . . , xn) 4 (y1, . . . , yn) ↔ ∀i ∈ {1, . . . ,n} xi 4 yi

Exercise: Prove that this defines a partial order.

Note: Even if (S,4) is totally ordered, the extension to Sn is not
necessarily a total order. Consider (N,≤). Then (2,1) � (1,2) � (2,1).
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Extending Orders to Tuples/Vectors: Lexicographic

Let (S,4) be a poset and Sn = S × S × · · · × S (n times).
The lexicographic order on tuples in Sn is defined by

(x1, . . . , xn) ≺lex (y1, . . . , yn) ↔ ∃i ∈ {1, . . . ,n} ∀k < i xk = yk ∧ xi ≺ yi

Let (x1, . . . , xn) 4lex (y1, . . . , yn) iff (x1, . . . , xn) ≺lex (y1, . . . , yn) or
(x1, . . . , xn) = (y1, . . . , yn).

Lemma
If (S,4) is totally ordered then (Sn,4lex ) is totally ordered.
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Functions as Relations

Definition
Let A,B be nonempty sets. A relation f ⊆ A× B is called a partial
function from A to B iff it satisfies the function condition

(a,b) ∈ f ∧ (a, c) ∈ f → b = c

I.e., f assigns every element a ∈ A at most one element in B.
Partial functions from A to B are denoted as f : A→ B, and we write
f (a) = b instead of (a,b) ∈ f .
Functions are also called mappings or transformations.

Definition
A partial function f : A→ B is called a total function iff every element
in A is assigned an element in B, i.e., ∀a ∈ A∃b ∈ B (a,b) ∈ f .
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Terminology about Functions

Let f : A→ B be a function from A to B.
We say that f maps A to B.
A is called the domain of f .
B is called the codomain of f .
If f (a) = b then b is the image of a under f and a is the preimage
of b.
f (A) := {b ∈ B | ∃a ∈ A f (a) = b} is called the range of f .
(Note the difference between the range and the codomain.)
Two functions f : A→ B and g : A′ → B′ are equal iff A = A′,
B = B′ and ∀a ∈ A f (a) = g(a).
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Representing Functions

Functions can be specified in different ways:
Explicit statement of assignments, e.g., f (2) = 4, f (3) = 1,
f (4) = 17.
A formula, e.g., f (x) = 5x2 − 3x + 12.
An algorithm/program, e.g., If x is odd and x > 17 then f (x) = 5
else if x is even then f (x) = x/2, otherwise f (x) = 3x .
General conditions on a function that have just one unique
solution.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapters 2 and 9 40 / 74



Injections, Surjections, Bijections

Definition
A function f : A→ B is injective (“one-to-one”) iff f (a) = f (b)→ a = b.
Then f is called an injection.

Definition
A function f : A→ B is surjective (“onto”) iff ∀b ∈ B ∃a ∈ A f (a) = b.
Then f is called a surjection.

A function f : A→ B is surjective iff f (A) = B, i.e., the range is equal to
the codomain.

Definition
A function f : A→ B is bijective iff it is injective and surjective. Then f
is called a bijection or one-to-one correspondence.
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Reasoning about Injections, Surjections
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Inverse Function
Definition
If f : A→ B is a bijection then the inverse of f , denoted by f−1 is
defined as the function f−1 : B → A s.t. f−1(b) = a iff f (a) = b.

If f is not a bijection then the inverse does not exist.
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Examples

Does the inverse of the following functions exist? Why (not)?
f : R→ R, f (x) = x + 1
f : R→ R, f (x) = x2

f : N→ N, f (x) = 2x
f : R→ R, f (x) = 2x
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Function Composition
Definition
Let f : B → C and g : A→ B. The composition function f ◦ g is defined
by f ◦ g : A→ C with f ◦ g(a) = f (g(a)).

(The common notation differs between functions and relations. For
functions f ◦ g normally means “first apply g, then apply f ”. For
relations it is vice-versa: R1 ◦ R2 means “first R1, then R2”; see above.)

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapters 2 and 9 45 / 74



Floor and Ceiling Functions
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Proving Properties of Functions

Example: Prove that if x is a real number, then b2xc = bxc+ bx + 1/2c.
Solution: Let x = n + ε , where n is an integer and 0 ≤ ε < 1.

Case 1: ε < 1/2.
2x = 2n + 2ε and b2xc = 2n, since 0 ≤ 2ε < 1.
bx + 1/2c = n, since x + 1/2 = n + (1/2 + ε) and
0 ≤ 1/2 + ε < 1. Hence, b2xc = 2n and
bxc+ bx + 1/2c = n + n = 2n.

Case 2: ε ≥ 1/2
2x = 2n + 2ε = (2n + 1) + (2ε− 1) and b2xc = 2n + 1,
since 0 ≤ 2ε− 1 < 1.
bx + 1/2c = bn + (1/2 + ε)c = bn + 1 + (ε− 1/2)c = n + 1
since 0 ≤ ε− 1/2 < 1. Hence, b2xc = 2n + 1 and
bxc+ bx + 1/2c = n + (n + 1) = 2n + 1.
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Factorial Function
Definition
The factorial function f : N→ N, denoted as f (n) = n! assigns to n the
product of the first n positive integers.

f (0) = 0! = 1

and
f (n) = n! = 1 · 2 · · · · · (n − 1) · n

Can be approximated by Stirling’s formula:

g(n) =
√

2πn
(n

e

)n

We have approximately n! ∼ g(n) in the sense that
limn→∞ n!/g(n) = 1 and

√
2πnn+1/2e−n ≤ n! ≤ e nn+1/2e−n
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Closure

Definition
A closure operator on a set S is a function C : 2S → 2S that satisfies
the following conditions for all X ,Y ⊆ S.
Extensive: X ⊆ C(X )

Monotone: X ⊆ Y → C(X ) ⊆ C(Y )

Idempotent: C(C(X )) = C(X )

A set X is called closed under C iff X = C(X ).
Often closure operators are derived from (one or several) operations
on the elements of a set. E.g., the closure under addition is defined as

C(X ) := X ∪ {a1 + · · ·+ ak | a1, . . . ,ak ∈ X}

N is closed under addition, but not under subtraction. 3− 7 = −4 /∈ N.
R is closed under multiplication, but not under division.

1/0 /∈ R.
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Closure (cont.)

Closure operators can also be defined by properties of sets.
Let P : 2S → {T,F} a property of sets.
Let C(X ) be the smallest set Y s.t. X ⊆ Y and P(Y ), i.e., the
smallest extension of X that satisfies property P.
This yields a closure operator only if such a smallest Y actually
exists.
Example: Binary relations R ⊆ S × S are subsets of S × S.
Define the transitive closure of relations C : 2S×S → 2S×S by

C(R) := The smallest transitive relation R′ with R ⊆ R′

The transitive closure of relations does exist, because the
intersection of transitive relations is transitive.
Thus C(R) :=

⋂
R⊆R′,R′ transitive R′.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapters 2 and 9 50 / 74



Sequences
Sequences are ordered lists of elements, e.g.,
2,3,5,7,11,13,17,19, . . . or a,b, c,d , . . . .

Definition
A sequence over a set S is a function f from a subset of the integers
(typically N or N− {0}) to the set S.
If the domain of f is finite then the sequence is finite.

Example: Let f : N− {0} → Q be defined by f (n) := 1/n.
This defines the sequence

1,
1
2
,
1
3
,
1
4
, . . .

Let an = f (n). Then the sequence is also written as a1,a2,a3, . . . or as

{an}n∈N−{0}
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Geometric vs. Arithmetic Progression

A geometric progression is a sequence of the form

a,ar ,ar2,ar3, . . . ,arn, . . .

where both the initial element a and the common ratio r are real
numbers.
An arithmetic progression is a sequence of the form

a,a + d ,a + 2d ,a + 3d , . . . ,a + nd , . . .

where both the initial element a and the common difference d are
real numbers.
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Recurrence Relations

Definition
A recurrence relation for the sequence {an}n∈N is an equation that
expresses an in terms of (one or more of) the previous elements
a0,a1, . . . ,an−1 of the sequence.

Typically the recurrence relation expresses an in terms of just a
fixed number of previous elements, e.g.,
an = g(an−1,an−2) = 2an−1 + an−2 + 7.
The initial conditions specify the first elements of the sequence,
before the recurrence relation applies.
A sequence is called a solution of a recurrence relation iff its
terms satisfy the recurrence relation.
Example: Let a0 = 2 and an = an−1 + 3 for n ≥ 1. Then a1 = 5,
a2 = 8, a3 = 11, etc. Generally the solution is f (n) = 2 + 3n.
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Fibonacci Sequence

The Fibonacci sequence is described by the following linear
recurrence relation.
f (0) = 0, f (1) = 1 and f (n) = f (n − 1) + f (n − 2) for n ≥ 2.
You obtain the sequence 0,1,1,2,3,5,8,13, . . . .
How to solve general recurrence with
f (0) = a, f (1) = b, f (n) = c · f (n − 1) + d · f (n − 2) ?
Linear algebra. Matrix multiplication. Base transforms. Diagonal
form., etc.
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Solving Recurrence Relations

Finding a formula for the n-th term of the sequence generated by
a recurrence relation is called solving the recurrence relation.
Such a formula is called a closed formula.
Various methods for solving recurrence relations will be covered in
Chapter 8 where recurrence relations will be studied in greater
depth.
Here we illustrate by example the method of iteration in which we
need to guess the formula.
The guess can be proved correct by the method of induction
(Chapter 5).
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Iterative Solution Example 1

Method 1: Working upward, forward substitution.
Let an be a sequence that satisfies the recurrence relation
an = an−1 + 3 for n ≥ 2 and suppose that a1 = 2.

a2 = 2 + 3
a3 = (2 + 3) + 3 = 2 + 3 · 2
a4 = (2 + 2 · 3) + 3 = 2 + 3 · 3

an = an−1 + 3 = (2 + 3 · (n − 2)) + 3 = 2 + 3(n − 1)
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Iterative Solution Example 2

Method 2: Working downward, backward substitution.
Let an be a sequence that satisfies the recurrence relation
an = an−1 + 3 for n ≥ 2 and suppose that a1 = 2.

an = an−1 + 3
= (an−2 + 3) + 3 = an−2 + 3 · 2
= (an−3 + 3) + 3 · 2 = an−3 + 3 · 3

= a2 + 3(n − 2) = (a1 + 3) + 3(n − 2) = 2 + 3(n − 1)
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Common Sequences

See also The On-Line Encyclopedia of Integer Sequences (OEIS) at
http://oeis.org/
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Summations

Given a sequence {an}. The sum of the terms am,am+1, . . . ,an is
written as

am + am+1 + · · ·+ an

n∑
j=m

aj

∑
m≤j≤n

aj

The variable j is called the index of summation. It runs through all the
integers starting with its lower limit m and ending with its upper limit n.
More generally for an index set S one writes∑

j∈S

aj
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Useful Summation Formulae
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Products

Given a sequence {an}. The product of the terms am,am+1, . . . ,an is
written as

am ∗ am+1 ∗ · · · ∗ an

n∏
j=m

aj

∏
m≤j≤n

aj

More generally for an index set S one writes∏
j∈S

aj
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Counting: Finite Sequences

Given a finite set S with |S| = k .
How many different sequences over S of length n are there?
Clicker

1 k · n
2 k + n
3 nk

4 kn

5 n · kn

6 k · nk
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Counting: Finite Sequences

Given a finite set S with |S| = k .
How many different sequences over S of length n are there?
Answer: For each of the n elements of the sequence there are k
possible choices. So the answer is k ∗ k ∗ · · · ∗ k (n times).
In other words, we get ∏

1≤j≤n

k = kn

How many sequences over S of length ≤ n are there?

Sum over the (non-overlapping!) cases of length j = 0,1,2, . . . ,n.

n∑
j=0

k j =
kn+1 − 1

k − 1

(By the sum formula of the previous slide.)
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Counting: Relations and Functions on Finite Sets

Let A and B be finite sets, i.e., |A| and |B| are finite.

What is the size of A× B ?

|A× B| = |A| · |B|

How many binary relations R ⊆ A× B from A to B are there?

The number of relations from A to B is the number of subsets of
A× B. Thus the answer is 2|A|·|B|.

How many total functions f : A→ B from A to B are there?

A total function f assigns exactly one element from B to every
element of A. Thus for every element of a ∈ A there are |B|
possible choices for f (a) ∈ B. Thus the answer is |B||A|.

The set of all total functions f : A→ B from A to B is denoted by

BA

Thus we get that |BA| = |B||A|.
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Cardinality of (Infinite) Sets
The sizes of finite sets are easy to compare.
But what about infinite sets?
Can one infinite set be larger than another?

Definition
Two sets A and B have the same cardinality, written |A| = |B| iff
there exists a bijection from A to B.
We say |A| ≤ |B| iff there exists an injection from A to B.
A has lower cardinality than B, written |A| < |B| iff |A| ≤ |B| and
|A| 6= |B|.

Note that this definition applies to general sets, not only to finite ones.
An infinite set (but not a finite one) can have the same cardinality as a
strict subset.
Example: The set of natural numbers N and the set of even numbers
even := {2n |n ∈ N} have the same cardinality, because f : N→ even
with f (n) = 2n is a bijection.
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Countable Sets

Definition
A set S is called countably infinite, iff it has the same cardinality
as the natural numbers, |S| = |N|.
A set is called countable iff it is either finite or countably infinite.
A set that is not countable is called uncountable.
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Hilbert’s Grand Hotel

The Grand Hotel (example due to David Hilbert) has countably infinite
number of rooms, each occupied by a guest. We can always
accommodate a new guest at this hotel. How is this possible?
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The Positive Rational Numbers are Countable
Construct a bijection f : N→ Q+.
List fractions p/q with q = n in the n-th row.
f traverses this list in the following order.
For n = 1,2,3, . . . do visit all p/q with p + q = n.
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Finite Strings

Theorem
The set Σ∗ of all finite strings over a finite alphabet Σ is countably
infinite.

Proof.
First define an (alphabetical) ordering on the symbols in Σ.
Show that the strings can be listed in a sequence.
First all strings of length 0 in lexicographic order.
Then all strings of length 1 in lexicographic order.
Then all strings of length 2 in lexicographic order, etc.
This implies a bijection from N to Σ∗.

In particular, the set of all Java-programs is countable, since every
program is just a finite string.
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Combining Countable Sets

Theorem
The union S1 ∪ S2 of two countably infinite sets S1,S2 is countably
infinite.

Proof.
(Sketch) Since S1,S2 are countably infinite, there must exist bijections
f1 : N→ S1 and f2 : N→ S2. Consider the disjoint parts S1 and
S2 − S1. If S2 − S1 is finite then consider this part separately and build
a bijection f : N→ S1 ∪ S2 by shifting f1 by |S2 − S1|. Otherwise,
construct bijections between the two parts and the even/odd natural
numbers, respectively.
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Uncountable Sets

Theorem
The set of infinite binary strings is uncountable.

Proof.
Assume by contraposition that a bijection f : N→ InfiniteStrings exists.
Let dn be the n-th symbol of string f (n). We define a string x such that
the n-th symbol of x is dn + 1 mod 2. Thus ∀n ∈ N x 6= f (n) and f is
not a surjection. Contradiction.

Similarly for the infinite decimal strings (over digits {0,1,2, . . . ,9}).
Just use modulo 10 instead of modulo 2.

The technique used in the proof above is called diagonalization.
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The Real Numbers are Uncountable
A similar diagonalization argument shows uncountability of R.

Theorem
The real numbers in the interval (0,1) ⊆ R are uncountable.

Proof.
(Sketch) Construct a bijection between (0,1) and the set of infinite
binary strings. E.g., a string 10011 . . . means the number 0.10011 . . . .
Some slight problem arises because the same number can be
represented by different infinite strings. Also infinite strings can be
eventually constant. Handle these cases separately.

Theorem
The real numbers R are uncountable.

Proof.
Find a bijection between (0,1) and R. E.g., f (x) = tan(πx − π/2).
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Cantor’s Theorem (Georg Cantor, 1845-1918)

Theorem
Let S be a set and 2S be its powerset (the set of all subsets of S).
There does not exist any surjection f : S → 2S.

Proof.
Assume, by contraposition, that such a surjection f exists. We define
the set G ⊆ S as follows. G := {x ∈ S | x /∈ f (x)}. Since f is a
surjection, there must exist an s ∈ S s.t. G = f (s). Now there are two
cases:

1 If s ∈ G then, by def. of G, s /∈ f (s) = G. Contradiction.
2 If s /∈ G = f (s) then s /∈ f (s). Thus, by def. of G, s ∈ G.

Contradiction.
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Implications of Cantor’s Theorem
By Cantor’s Theorem there cannot exist any bijection f : S → 2S.
However, an injection is trivial to find. Let f (x) := {x}.
By the definition of Cardinality this means that |S| < |2S|,
i.e., a powerset has strictly larger cardinality than its base set.
Thus 2N is not countable. (It can also be shown that |R| = |2N|.)
The Continuum hypothesis claims there there does not exist any
set S with |N| < |S| < |R|, i.e., nothing strictly between.
This problem was 1st on the list of Hilbert’s 23 problems
presented in 1900. It was shown to be independent of ZFC
(Zermelo-Fraenkel set theory) by Gödel/Cohen in 1963, i.e., it
cannot be (dis)proven in ZFC.
There exists an infinite hierarchy of sets of ever larger cardinality.
Let S0 := N and Si+1 := 2Si . Then |Si | < |Si+1| for all i .
The existence of even larger cardinals beyond his hierarchy is a
problem of axiomatics beyond ZFC. See “Large Cardinals”.
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