Discrete Mathematics \& Mathematical Reasoning Cardinality

Colin Stirling

Informatics

Finite and infinite sets

- $A=\{1,2,3\}$ is a finite set with 3 elements

Finite and infinite sets

- $A=\{1,2,3\}$ is a finite set with 3 elements
- $B=\{a, b, c, d\}$ and $C=\{1,2,3,4\}$ are finite sets with 4 elements

Finite and infinite sets

- $A=\{1,2,3\}$ is a finite set with 3 elements
- $B=\{a, b, c, d\}$ and $C=\{1,2,3,4\}$ are finite sets with 4 elements
- For finite sets, $|X| \leq|Y|$ iff there is an injection $f: X \rightarrow Y$

Finite and infinite sets

- $A=\{1,2,3\}$ is a finite set with 3 elements
- $B=\{a, b, c, d\}$ and $C=\{1,2,3,4\}$ are finite sets with 4 elements
- For finite sets, $|X| \leq|Y|$ iff there is an injection $f: X \rightarrow Y$
- For finite sets, $|X|=|Y|$ iff there is an bijection $f: X \rightarrow Y$

Finite and infinite sets

- $A=\{1,2,3\}$ is a finite set with 3 elements
- $B=\{a, b, c, d\}$ and $C=\{1,2,3,4\}$ are finite sets with 4 elements
- For finite sets, $|X| \leq|Y|$ iff there is an injection $f: X \rightarrow Y$
- For finite sets, $|X|=|Y|$ iff there is an bijection $f: X \rightarrow Y$
- $\mathbb{Z}^{+}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are infinite sets

Finite and infinite sets

- $A=\{1,2,3\}$ is a finite set with 3 elements
- $B=\{a, b, c, d\}$ and $C=\{1,2,3,4\}$ are finite sets with 4 elements
- For finite sets, $|X| \leq|Y|$ iff there is an injection $f: X \rightarrow Y$
- For finite sets, $|X|=|Y|$ iff there is an bijection $f: X \rightarrow Y$
- $\mathbb{Z}^{+}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are infinite sets
- When do two infinite sets have the same size?

Finite and infinite sets

- $A=\{1,2,3\}$ is a finite set with 3 elements
- $B=\{a, b, c, d\}$ and $C=\{1,2,3,4\}$ are finite sets with 4 elements
- For finite sets, $|X| \leq|Y|$ iff there is an injection $f: X \rightarrow Y$
- For finite sets, $|X|=|Y|$ iff there is an bijection $f: X \rightarrow Y$
- $\mathbb{Z}^{+}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are infinite sets
- When do two infinite sets have the same size?
- Same answer

Cardinality of sets

Definition

- Two sets A and B have the same cardinality, $|A|=|B|$, iff there exists a bijection from A to B

Cardinality of sets

Definition

- Two sets A and B have the same cardinality, $|A|=|B|$, iff there exists a bijection from A to B
- $|A| \leq|B|$ iff there exists an injection from A to B

Cardinality of sets

Definition

- Two sets A and B have the same cardinality, $|A|=|B|$, iff there exists a bijection from A to B
- $|A| \leq|B|$ iff there exists an injection from A to B
- $|A|<|B|$ iff $|A| \leq|B|$ and $|A| \neq|B|$ (A smaller cardinality than B)

Cardinality of sets

Definition

- Two sets A and B have the same cardinality, $|A|=|B|$, iff there exists a bijection from A to B
- $|A| \leq|B|$ iff there exists an injection from A to B
- $|A|<|B|$ iff $|A| \leq|B|$ and $|A| \neq|B|$ (A smaller cardinality than $B)$

Unlike finite sets, for infinite sets $A \subset B$ and $|A|=|B|$

Cardinality of sets

Definition

- Two sets A and B have the same cardinality, $|A|=|B|$, iff there exists a bijection from A to B
- $|A| \leq|B|$ iff there exists an injection from A to B
- $|A|<|B|$ iff $|A| \leq|B|$ and $|A| \neq|B|$ (A smaller cardinality than B)

Unlike finite sets, for infinite sets $A \subset B$ and $|A|=|B|$
Even $=\{2 n \mid n \in \mathbb{N}\} \subset \mathbb{N}$ and \mid Even $|=|\mathbb{N}|$

Cardinality of sets

Definition

- Two sets A and B have the same cardinality, $|A|=|B|$, iff there exists a bijection from A to B
- $|A| \leq|B|$ iff there exists an injection from A to B
- $|A|<|B|$ iff $|A| \leq|B|$ and $|A| \neq|B|$ (A smaller cardinality than B)

Unlike finite sets, for infinite sets $A \subset B$ and $|A|=|B|$
Even $=\{2 n \mid n \in \mathbb{N}\} \subset \mathbb{N}$ and \mid Even $|=|\mathbb{N}|$
$f:$ Even $\rightarrow \mathbb{N}$ with $f(2 n)=n$ is a bijection

Countable sets

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, $\left|\mathbb{Z}^{+}\right|=|S|$

Countable sets

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, $\left|\mathbb{Z}^{+}\right|=|S|$
- A set is called countable iff it is either finite or countably infinite

Countable sets

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, $\left|\mathbb{Z}^{+}\right|=|S|$
- A set is called countable iff it is either finite or countably infinite
- A set that is not countable is called uncountable

Countable sets

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, $\left|\mathbb{Z}^{+}\right|=|S|$
- A set is called countable iff it is either finite or countably infinite
- A set that is not countable is called uncountable
\mathbb{N} is countably infinite; what is the bijection $f: \mathbb{Z}^{+} \rightarrow \mathbb{N}$?

Countable sets

Definition

- A set S is called countably infinite, iff it has the same cardinality as the positive integers, $\left|\mathbb{Z}^{+}\right|=|S|$
- A set is called countable iff it is either finite or countably infinite
- A set that is not countable is called uncountable
\mathbb{N} is countably infinite; what is the bijection $f: \mathbb{Z}^{+} \rightarrow \mathbb{N}$?
\mathbb{Z} is countably infinite; what is the bijection $g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$?

The positive rational numbers are countable

 Construct a bijection $f: \mathbb{Z}^{+} \rightarrow \mathbb{Q}^{+}$
The positive rational numbers are countable

 Construct a bijection $f: \mathbb{Z}^{+} \rightarrow \mathbb{Q}^{+}$List fractions p / q with $q=n$ in the $n^{\text {th }}$ row

The positive rational numbers are countable

 Construct a bijection $f: \mathbb{Z}^{+} \rightarrow \mathbb{Q}^{+}$List fractions p / q with $q=n$ in the $n^{\text {th }}$ row
f traverses this list in the order for $m=2,3,4, \ldots$ visiting all p / q with $p+q=m$ (and listing only new rationals)

The positive rational numbers are countable

Construct a bijection $f: \mathbb{Z}^{+} \rightarrow \mathbb{Q}^{+}$
List fractions p / q with $q=n$ in the $n^{\text {th }}$ row
f traverses this list in the order for $m=2,3,4, \ldots$ visiting all p / q with $p+q=m$ (and listing only new rationals)

Countable sets

Theorem
If A and B are countable sets, then $A \cup B$ is countable

Countable sets

Theorem
If A and B are countable sets, then $A \cup B$ is countable

Proof in book

Countable sets

Theorem
If A and B are countable sets, then $A \cup B$ is countable

Proof in book

Theorem

If I is countable and for each $i \in I$ the set A_{i} is countable then $\bigcup_{i \in I} A_{i}$ is countable

Countable sets

Theorem
If A and B are countable sets, then $A \cup B$ is countable

Proof in book

Theorem

If I is countable and for each $i \in I$ the set A_{i} is countable then $\bigcup_{i \in I} A_{i}$ is countable

Proof in book

Finite strings

Theorem

The set Σ^{*} of all finite strings over a finite alphabet Σ is countably infinite

Finite strings

Theorem

The set Σ^{*} of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ Show that the strings can be listed in a sequence

First single string ε of length 0
Then all strings of length 1 in lexicographic order Then all strings of length 2 in lexicographic order

Finite strings

Theorem

The set Σ^{*} of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ Show that the strings can be listed in a sequence

First single string ε of length 0
Then all strings of length 1 in lexicographic order Then all strings of length 2 in lexicographic order

- Each of these sets is countable; so is their union Σ^{*}

Finite strings

Theorem

The set Σ^{*} of all finite strings over a finite alphabet Σ is countably infinite

Proof.

- First define an (alphabetical) ordering on the symbols in Σ Show that the strings can be listed in a sequence

First single string ε of length 0
Then all strings of length 1 in lexicographic order Then all strings of length 2 in lexicographic order

- Each of these sets is countable; so is their union Σ^{*}

The set of Java-programs is countable; a program is just a finite string

Infinite binary strings

- An infinite length string of bits 10010 ...

Infinite binary strings

- An infinite length string of bits 10010 ...
- Such a string is a function $d: \mathbb{Z}^{+} \rightarrow\{0,1\}$

Infinite binary strings

- An infinite length string of bits 10010 ...
- Such a string is a function $d: \mathbb{Z}^{+} \rightarrow\{0,1\}$
- With the property $d_{m}=d(m)$ is the m th symbol

Uncountable sets

Theorem

The set of infinite binary strings is uncountable

Uncountable sets

Theorem
 The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{Z}^{+} \rightarrow X$ exists. So, f must be onto (surjective). Assume that $f(i)=d^{i}$ for $i \in \mathbb{Z}^{+}$. So, $X=\left\{d^{1}, d^{2}, \ldots, d^{m}, \ldots\right\}$. Define the infinite binary string d as follows: $d_{n}=\left(d_{n}^{n}+1\right)$ mod 2. But for each $m, d \neq d^{m}$ because $d_{m} \neq d_{m}^{m}$. So, f is not a surjection.

Uncountable sets

Theorem

The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{Z}^{+} \rightarrow X$ exists. So, f must be onto (surjective). Assume that $f(i)=d^{i}$ for $i \in \mathbb{Z}^{+}$. So, $X=\left\{d^{1}, d^{2}, \ldots, d^{m}, \ldots\right\}$. Define the infinite binary string d as follows: $d_{n}=\left(d_{n}^{n}+1\right) \bmod 2$. But for each $m, d \neq d^{m}$ because $d_{m} \neq d_{m}^{m}$. So, f is not a surjection.

The technique used here is called diagonalization

Uncountable sets

Theorem

The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{Z}^{+} \rightarrow X$ exists. So, f must be onto (surjective). Assume that $f(i)=d^{i}$ for $i \in \mathbb{Z}^{+}$. So, $X=\left\{d^{1}, d^{2}, \ldots, d^{m}, \ldots\right\}$. Define the infinite binary string d as follows: $d_{n}=\left(d_{n}^{n}+1\right) \bmod 2$. But for each $m, d \neq d^{m}$ because $d_{m} \neq d_{m}^{m}$. So, f is not a surjection.

The technique used here is called diagonalization

Uncountable sets

Theorem
 The set of infinite binary strings is uncountable

Proof.

Let X be the set of infinite binary strings. For a contradiction assume that a bijection $f: \mathbb{Z}^{+} \rightarrow X$ exists. So, f must be onto (surjective). Assume that $f(i)=d^{i}$ for $i \in \mathbb{Z}^{+}$. So, $X=\left\{d^{1}, d^{2}, \ldots, d^{m}, \ldots\right\}$. Define the infinite binary string d as follows: $d_{n}=\left(d_{n}^{n}+1\right) \bmod 2$. But for each $m, d \neq d^{m}$ because $d_{m} \neq d_{m}^{m}$. So, f is not a surjection.

The technique used here is called diagonalization
Similar argument shows that \mathbb{R} via $[0,1]$ is uncountable using infinite decimal strings (see book)

More on the uncountable

Corollary

The set of functions $F=\{f \mid f: \mathbb{Z} \rightarrow \mathbb{Z}\}$ is uncountable

More on the uncountable

Corollary

The set of functions $F=\{f \mid f: \mathbb{Z} \rightarrow \mathbb{Z}\}$ is uncountable

The set of functions $C=\{f \mid f: \mathbb{Z} \rightarrow \mathbb{Z}$ is computable $\}$ is countable

More on the uncountable

Corollary

The set of functions $F=\{f \mid f: \mathbb{Z} \rightarrow \mathbb{Z}\}$ is uncountable

The set of functions $C=\{f \mid f: \mathbb{Z} \rightarrow \mathbb{Z}$ is computable $\}$ is countable
Therefore, "most functions" in F are not computable!

Schröder-Bernstein Theorem

Theorem
 If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$

Schröder-Bernstein Theorem

Theorem
 If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$

- Example $|(0,1)|=|(0,1]|$

Schröder-Bernstein Theorem

```
Theorem
If |A| \leq |B| and |B| \leq |A then |A| = |B|
```

- Example $|(0,1)|=|(0,1]|$
- $|(0,1)| \leq|(0,1]|$ using identity function

Schröder-Bernstein Theorem

Theorem

If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$

- Example $|(0,1)|=|(0,1]|$
- $|(0,1)| \leq|(0,1]|$ using identity function
- $|(0,1]| \leq|(0,1)|$ use $f(x)=x / 2$ as $(0,1 / 2] \subset(0,1)$

Cantor's theorem

Theorem

$|A|<|\mathcal{P}(A)|$

Cantor's theorem

Theorem

$|A|<|\mathcal{P}(A)|$

Proof.

Consider the injection $f: A \rightarrow \mathcal{P}(A)$ with $f(a)=\{a\}$ for any $a \in A$. Therefore, $|A| \leq|\mathcal{P}(A)|$. Next we show there is not a surjection $f: A \rightarrow \mathcal{P}(A)$. For a contradiction, assume that a surjection f exists. We define the set $B \subseteq A: B=\{x \in A \mid x \notin f(x)\}$. Since f is a surjection, there must exist an $a \in A$ s.t. $B=f(a)$. Now there are two cases:
(1) If $a \in B$ then, by definition of $B, a \notin B=f(a)$. Contradiction
(2) If $a \notin B$ then $a \notin f(a)$; by definition of $B, a \in B$. Contradiction

Implications of Cantor's theorem

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|)$

Implications of Cantor's theorem

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}|<|S|<|\mathbb{R}|$

Implications of Cantor's theorem

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}|<|S|<|\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900. Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF

Implications of Cantor's theorem

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}|<|S|<|\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900. Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality

Implications of Cantor's theorem

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}|<|S|<|\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900. Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality
- $S_{0}=\mathbb{N}$ and $S_{i+1}=\mathcal{P}\left(S_{i}\right)$

Implications of Cantor's theorem

- $\mathcal{P}(\mathbb{N})$ is not countable (in fact, $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$)
- The Continuum Hypothesis claims there is no set S with $|\mathbb{N}|<|S|<|\mathbb{R}|$
- It was 1st of Hilbert's 23 open problems presented in 1900. Shown to be independent of ZF set theory by Gödel/Cohen in 1963: cannot be proven/disproven in ZF
- There exists an infinite hierarchy of sets of ever larger cardinality
- $S_{0}=\mathbb{N}$ and $S_{i+1}=\mathcal{P}\left(S_{i}\right)$
- $\left|S_{0}\right|<\left|S_{1}\right|<\ldots<\left|S_{i}\right|<\left|S_{i+1}\right|<\ldots$

