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LEARNING GOAL

Students use discrete

structures to model and

understand mathematical

relationships and solve

problems.

Components

With this learning goal in
mind, Minnesota students
will have the opportunity to:

1 investigate and apply
systematic counting tech-
niques, set relationships, and
principles of logic to repre-
sent, analyze, and solve
problems.

2 use charts, vertex-edge
graphs, and matrices to
model and solve problems.

3 explore, develop, and analyze
algorithmic thinking to
accomplish a task or solve
a problem.

4 analyze, extend, and model
iterative and recursive
patterns.

(For more detailed informa-
tion, see pages 19-27 in this
content section.)
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“To a large extent mathematics is not about formulas

and equations; it is about CDs and CAT-scans, and

parking meters, and presidential polls, and computer

graphics. Mathematics is about looking at our world

and creating representations we can work with to

solve problems that count.”

Garfunkel, 1997
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Reflections

Computers have changed our culture in fundamental ways, including the way we learn mathemat-
ics, the way we do mathematics, the kinds of problems we can consider. Even our imaginations, our
creative visions, and our sense of what is possible have been altered. One way to think about com-
puters is as discrete machines, capable of dealing only with finite information. Discrete

mathematics, with its many real-world applications and its close ties to computer science, has
grown rapidly over the last thirty years. In the words of John Dossey, it is the “math for our time.”

(Dossey quoted in Kenney, 1991).

Applications of discrete mathematics are found in a variety of settings, including project manage-
ment, communication networks, systems analysis, social decision making, population growth, and
finance. Discrete mathematics is used to design efficient computer networks, optimally assign fre-
quencies to cellular phones, track pollution, fairly rank competitors in a tournament, accurately
represent public opinion in political elections, efficiently schedule large projects, plan optimal
routes, and solve many other problems, both applied and abstract. These applications oblige us to
provide students the knowledge and skills of discrete mathematics to prepare them for life-work in
the twenty-first century.

Discrete mathematics is concerned with finite processes and phenomena. It involves the study of

objects and ideas that can be divided into ‘separate’ or ‘discontinuous’ parts. While discrete
mathematics is sometimes contrasted with calculus, which focuses on infinite processes and con-
tinuous phenomena, it is more a complement to calculus than a competitor.

The concepts and techniques of discrete mathematics can be used to model and solve problems in-
volving enumeration (determining a count), decision making in finite settings, relationships among
a finite number of elements, and sequential change. It is used to investigate settings in which func-
tions are defined on discontinuous sets of numbers, such as the positive integers (Dossey in
Kenney, 1991, p. 1).

Given the relative novelty of discrete mathematics to average citizens as well as many teachers of
mathematics, it may be more helpful to consider some characteristics of discrete mathematics than
to examine its definitions.

Problems in discrete mathematics can be classified into three broad categories:

1. Existence problems deal with whether or not a solution exists for a given problem.

A familiar context for this type of situation is the eighteenth-century problem that intrigued the
Swiss mathematician Leonard Euler (1707-1783). In the 1700s, seven bridges connected two is-
lands in the river to the rest of the city of Königsberg (see Figure 1).

“ …the nonmaterial world
of information process-
ing requires the use of
discrete (discontinuous)
mathematics.”

NCTM, 1989

After describing ways in
which the existence and
traceability of paths are
used in a variety of
cultures, Ascher &
Ascher (1981, p. 164)
conclude: “In the West-
ern history of
mathematics, Euler’s
paper on the
Königsberg bridge is
considered the birth of
the subject called graph
theory.…the achieve-
ments of Euler…might
even be more impres-
sive because of the
more universal nature
of the question.”

This is a vertex-edge
graph representing the
seven bridges of
Königsberg. Vertices are
the land masses con-
nected and the edges
are the bridges.

Figure 1. Representation
of the seven bridges of
Königsberg (now known
as Kaliningrad, Russia)
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Is it possible to walk through the city by crossing each bridge exactly once and return to the origi-
nal starting point? Using a vertex-edge graph in which the vertices represented the landmasses of
the city and the edges represented the bridges, Euler found that there was no such walk possible.
His investigation of this problem, however, led Euler to make a number of generalizations about the
traceability of vertex-edge graphs.

To learn more about what Euler discovered, try to traverse the following graphs without lifting your
pencil or tracing the edges more than once. When can you draw the figures without retracing any
edge and still end up at your starting point? When can you draw the figure without retracing any
edge but end up at a point different from where you started? When can you NOT draw the figure
without retracing an edge? (Crisler et al., 1994, pp. 174-5).

2. Counting problems explore how many solutions may exist for a given problem.

A familiar application is the number of phone numbers that can exist for a given area code. A
seven-digit telephone number cannot begin with a 0 or a 1. A common strategy is to apply the
multiplication principle: multiply the number of possible choices for the first digit, second digit, etc.:

8 x 10 x 10 x 10 x 10 x 10 x 10. There are 8,000,000 possible telephone numbers for a given area
code.

Prior to 1996, Minnesota was served by three area codes: 218, 612, and 507. In 1996, the 320
area code was added. What information would you need to know in order to predict whether or
not the state will need a new area code in the near future?

3. Optimization problems focus on finding a “best” solution to a particular problem, “best” be-
ing defined by the context of the problem—the most efficient method, or the shortest path, or the
fairest decision, etc.

Fair division conflicts are common. One context is voting apportionment schemes. Central High
School has 464 sophomores, 240 juniors and 196 seniors. The problem involves dividing the 20
seats on the student council among the three classes. An ideal ratio (total population divided by
the number of seats) results in 45 students per seat. The calculated quotas for each class (the class
size divided by the ideal ratio) result in decimal values. That presents a dilemma, as a single seat
cannot be split to give part of it to the seniors, part of it to the juniors, and part of it to the sopho-
mores. How could the 20 seats be distributed fairly? (Crisler et al., 1994, pp. 59-60)

These problems illustrate the characteristic ways of thinking in discrete mathematics that can
be␣ developed over the entire mathematics curriculum. The basic questions that should be asked at
every level are:

1. Is there a solution to this problem?

2. How can we solve this problem? How many solutions are there?

3. Which of these solutions is the “best” within the context of the problem?

FIGURE 2

“ The educational value
of much simple discrete
mathematics lies pre-
cisely in the fact that it
forces students to think
about very elementary
things…”

Kenney, 1991
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“ At the introductory level
discrete mathematics
should be based on a
handful of important
ideas, not on theories or
standard algorithms. It
should concentrate on
problems that require
students to think in
contexts that are familiar
and natural, and it
should not resort to
poorly understood
routines.”

Gardiner in Kenney,
1991

Discrete mathematics is especially rich in the variety of applications it can treat. Some typical ex-
amples include:

routing problems—design an efficient plan for city-wide snow removal

scheduling problems—design an optimal schedule for legislative subcommittee meetings

matching problems—fill necessary jobs with capable applicants at minimal cost

sorting problems—describe an efficient method for alphabetizing 100,000 names

searching problems—describe a method for locating a particular item in a data base

There are some content areas that are typically identified with the field of discrete mathematics.
These include:

combinatorics—the application of systematic counting techniques

graph theory—the use of vertex-edge diagrams to study relationships among a finite number of
elements

game theory—the mathematics of voting, fair division, apportionment, and cooperation and com-
petition

recursion—the method of describing sequential change by indicating how the next stage of a pro-
cess is determined by previous stages

algorithmic thinking—the development and analysis of a rule system to solve a problem or a
class of problems

This last notion, algorithmic thinking, is a particularly important concept in discrete mathematics.
Problems precede algorithms, but once the problem has been stated, the focus is on how it might
be solved. Our interest in algorithms is in their development and analysis; computers can usually
carry out the rote steps of algorithms. Examples of algorithmic thinking include whether all the pro-
posed solution procedures are correct and which are most efficient. It is in the design of algorithms
that new insights into the original problem are often found.

Discrete mathematics is accessible to students at all levels. Arithmetic offers a fertile field for inter-
esting problems in discrete mathematics. Many practical everyday problems can be modeled as
graphs. Almost any puzzle or challenging problem, even (and especially) those of a recreational na-
ture, will involve discrete mathematics in some form. There is a growing literature of excellent
materials that can be used to promote discrete thinking. (See the Sample Problems, the Sample
Tasks, and the Teaching Resources in this section.)

There are workable and practical ways to include discrete mathematics in an already over-
crowded curriculum (Hart, 1991, pp. 76-77).

“ The development and
analysis of algorithms lie
at the heart of computer
methods of solving prob-
lems.”

NCTM, 1989

“ This standard neither
advocates nor describes
a separate course in
discrete mathematics at
the secondary school
level; rather, it identifies
those topics from dis-
crete mathematics that
should be integrated
throughout the high
school curriculum.”

NCTM, 1989

• Many topics in discrete mathematics, including matrices, counting techniques, induction, sets, and
sequences overlap with other content strands. A teacher can emphasize these topics that do
“double duty” in the curriculum.

• The tools and techniques of discrete mathematics can be used to approach traditional mathemat-
ics in new ways. For example, recursive formulas can represent sequential change, vertex-edge
graphs can model relationships in mathematical problems, or matrices can be used to solve sys-
tems of linear equations.
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• Short units can be taught on discrete topics, such as graph theory or game theory.

• Mathematics courses can be integrated in such a way that discrete mathematics occurs amidst
algebra, trigonometry, geometry, statistics and probability topics. Many new standards-based
curriculum projects, developed with sponsorship from the National Science Foundation, take this
approach to content organization, and hold promise for delivering the Minnesota Graduation Stan-
dards in mathematics in efficient and meaningful ways.

“ Discrete mathematics is
core mathematics. Why?

• it is used widely in the
real world

• it provides a broader
view of mathematics

• it reinforces mathemati-
cal thinking

• it uses powerful math-
ematical tools

• it is active and alive

• it is pedagogically
powerful and acces-
sible”

Hart, 1997

Discrete mathematics is both important and relevant to many real-world situations. It is, in fact, the
mathematics used by many decision-makers in our society, including workers in health care, trans-
portation, telecommunications, and a variety of government agencies. Introducing topics from
discrete mathematics thus serves to broaden students’ knowledge of the range of mathematics
while making the “school to work” connection.

The inclusion of discrete mathematics in the K-12 curriculum has other payoffs for teachers and
students:

1. Discrete mathematics is full of unsolved problems and unique strategies. A focus on discrete
mathematics reinforces the central theme of problem solving in mathematics education while com-
municating to students the contemporary and dynamic nature of mathematics. It increases
students’ understanding of what it means to DO mathematics by encouraging them to formulate
and test conjectures.

2. The study of discrete mathematics also has the potential to promote students’ critical thinking,
mathematical reasoning, and visualization skills while making important connections between
mathematics and unique problem situations. Discrete mathematics often utilizes geometric ideas in
ways that complement symbolic manipulation, providing students with multiple ways to think
about and approach problems.

3. Discrete mathematics does not have extensive prerequisites, yet it poses challenging problems to
all students. These challenges are engaging and accessible, and can broaden and enrich the other
content strands. Discrete mathematics has the potential to stimulate greater interest in mathemat-
ics among students of all abilities at all grade levels.

4. Discrete mathematics has the potential to provide students with an array of new and powerful
models for thinking about and doing mathematics, including vertex-edge graphs and matrices.

We will need to renew ourselves as learners of mathematics to give adequate time and attention to
this relatively recent field of discrete mathematics. The Curriculum and Evaluation Standards for
School Mathematics of the National Council of Teachers of Mathematics and the Minnesota Gradua-
tion Standards recommend that our teaching style should reflect a problem solving approach that
permeates the entire mathematics program. Discrete mathematics provides rich and motivating
contexts and challenges in which both teachers and students can become engaged, thereby in-
creasing the chances that both groups will continue their study of mathematics and improve their
problem solving skills.
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Vignette: Discrete Mathematics in the Classroom

Mr. K. wanted his fourth grade students to explore discrete mathematics,
and more specifically, algorithmic thinking. This lesson, related to finding a ‘shortest path,’ was to
precede a more detailed investigation of vertex-edge graphs, including characteristics that deter-
mined their traceability. Mr. K. wanted his students to learn that although there may be many
approaches to solving a real-life problem, there might be one best (optimal) solution.

It has just snowed. Each of the three towns of Tri-Square Village, Quad-Square Town, and
Cobblestone City need to have their streets plowed. The plow driver would like to plow with
the least amount of driving. Beginning and ending at the road to the garage, what route
should the snowplow take? How many blocks does the plow travel for the shortest route?
Can you find a strategy to find the length of the shortest route?

The map of the first town was distributed and students were assigned to work with partners.

Tri-Square Village

Plow begins and ends here

Business and industry
use counting and opti-
mization to solve
problems, such as find-
ing a shortest path to
route a telephone call.

In Minnesota this is a
very real life situation:
is there a best way to
clear snow? Shortest
path may be one of
many factors influenc-
ing plowing patterns.

The focus is on orga-
nized counting. The
teacher is careful to
clarify students’ ques-
tions.

MR. K: Are there any questions before you begin to explore this problem?

STUDENT: How do you know how long a path is? Should we count blocks?

MR. K: Yes, that seems to be the best unit of measure for this situation.

STUDENT: If you only go halfway down the block and turn onto another street, do you only count
that as half?

MR. K: Right. Don’t forget you have to plow both sides of the street.

STUDENT: Should we count the blocks a plow travels to get out of the garage and back in?

MR. K: If you consider those blocks part of the plowing route, then you should count them.
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Mr. K. circulated among the students.

STUDENT: Sometimes we are going over a street more than twice. I think I need two different col-
ored pencils.

STUDENT: Well, if you see two lines, you have done both sides of the street. One line means you
have to go back over the street to plow the other side.

STUDENT: I have so many lines, I need another paper.

STUDENT: I have so many lines, I can’t tell which is the route I want. I’m going to get a transparency
and some pens.

STUDENT: The first time we tried, we got a route that was 24 blocks long, but some of the streets
were covered three times. Then we got it down to 20 blocks.

STUDENT: How could you get it down to 20? I think it has to be 24 because there are 3 blocks with
4 sides each that have to be plowed both ways so 3 blocks multiplied by 4 sides multiplied by 2 is
24.

STUDENT: Well, we got it down to 20 because we noticed that the streets or parts of streets that
are between two blocks get counted twice. So in this problem you have to subtract 4 blocks. That is
the number of blocks that get counted twice.

After groups shared their solutions, the class agreed that although the route could be more than
20 blocks, 20 blocks was the shortest snow plowing route for Tri-Square Village. The students
observed that there were many different ways to plow this route. (A few groups felt it was impor-
tant to count the two blocks to and from the garage, so their shortest route was 22 blocks.)

Mr. K. passed out another map and the students again worked in partners.

Quad-Square Town

Plow begins and ends here

Students know where
the supplies are that
may used for solving
problems. They have
been encouraged to use
a variety of tools.

Students begin count-
ing by adding ones,
twos and sometimes
halves. Some begin to
connect the problem
with multiplication as a
short way to add.

Solutions may be opti-
mal, though not unique.

MR. K: What about Quad-Square Town? Some of you found different paths for Tri-Square Village.
What do you expect the shortest route for Quad-Square Town will be?
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Plow begins and ends here

STUDENT: I think if we did 4 blocks multiplied by 4 sides multiplied by 2 plow lines, we would get
the answer. That’s 32 for the route because 4 x 2 x 4 = 32.

STUDENT: Wait. That wasn’t right before. You have to subtract when you are in the middle, plowing
2 blocks at the same time, remember? In this problem, that is 8 blocks so 24 is the shortest route.
32 - (4 x 2) = 24.

STUDENT: We looked at the problem this way. There are 6 streets that go north to south, and 6
streets that go east to west. That is 12 streets in all, and they all have to be plowed on both sides.
So that is 12 multiplied by 2, or 24.

MR. K: Those are good explanations of your strategies. Can you find a path that is actually 24
blocks long? Will your answer really work? What are your strategies for finding a route that works?

These were some strategies that were shared after some time to explore the new town’s configura-
tion.

STUDENT: This is what I did—I thought about doing figure eight’s. When I got to a street that had
already been plowed once, I didn’t take that street. But sometimes that left me in a place where I
had to go over a street 3 times in order to get back. Then I got more than 24 blocks.

STUDENT: I tried doing all the inside streets and then going back around the outside.

STUDENT: I tried going to the furthest place and then working my way back so that I wouldn’t get
stuck far from the exit. If I could start and end in different places, it would be easier.

STUDENT: I tried going over every street once. I thought that once I had that path, I could just re-do
it a second time and every street would be plowed twice. But it didn’t work because to get around
once, you have to cover some of the blocks twice.

The students looked over each other’s solutions. They saw that many strategies had drawbacks.
Eventually they found a route that gave them a total of 24 blocks, reinforcing the earlier predic-
tions of some of the students.

Mr. K. then distributed the map for Cobblestone City.

Cobblestone City

Why is this the answer?
In this age of comput-
ers, the “why” is more
important than ever. Is
the answer meaningful?
Will the algorithm mean
that you can actually
find a physically fea-
sible shortest path?

Often students expect a
problem to be more
difficult because it
involves more things, in
this case four blocks
instead of three. Some-
times factors other than
quantity influence the
difficulty, in this case
whether the blocks are
“staggered” or directly
on top of each other.

Mr. K. distributes the
different maps one at a
time so students don’t
become so focused on
finding the “right”
answer that they miss
developing, implement-
ing, and analyzing a
strategy, evaluating
multiple solutions, and
recognizing optimal
solutions.
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Mr. K. wrote these questions on the board:

• How is the layout similar to or different from the other cities?

• Will your answer be similar to the previous maps or different?

• Can you use your previous strategies here?

• What do you think the shortest route is?

• How will you find it?

STUDENT: I think that there are four blocks, so 24 blocks is the shortest route, like the last one.

STUDENT: But the blocks are arranged differently. They’re not touching on as many sides. My predic-
tion is 26. I thought 4 blocks multiplied by 4 sides multiplied by 2 plowings a side. Then I counted
the sides that were connected—3— and since those would be repeats, I subtracted 3 x 2 which is
6. So, 32 subtract 6 is 26.

STUDENT: I also got 26 but I thought about it differently. I thought it looked just like Tri-Square City
but it had an extra block at the bottom. So I plowed Tri-Square City (which was a 20-block route)
and then plowed 3 sides of the extra block twice. 20 plus 6 is 26. And my work matches my predic-
tion, so I know there is a path of 26.

MR. K: That’s an interesting way to add blocks. So you might be able to add blocks in set pat-
terns like modules and know the best route to take without trial and error.

STUDENT: But with a new block in the right place, you might take a different path that is even
shorter.

STUDENT: Do the plows really find the shortest route this way?

MR. K: If they are looking for the shortest route and the problem is not too complicated, it can
be worked out the way you are solving it. Large municipalities will have more than one plow, and
would have to divide the territory into multiple routes, making the problem more complicated.
People who solve those and other routing problems probably use sophisticated computer programs
to help in the analysis. However, you cannot just push a button and come up with the best answer.

STUDENT: I found a problem. I live on a one-way street. What if the plow tries to go in the wrong
direction?

MR. K: People who design the routes have to consider information such as traffic direction,
number of lanes, time restrictions, and divided routes. There are also other considerations such as
making good use of the available workers and avoiding long delays in plowing all streets. (Is it still
snowing or has the snow stopped? How much snow needs to fall before the plows begin?) There is
more to consider than just the efficiency of the plow routes.

STUDENT: It’s interesting to know that math can help people solve problems like this. I think I’d like
to go back and include some one-way streets to see how that might affect our solutions.

Later, with help from their parents, a pair of students visited the Public Works department. The stu-
dents saw a demonstration of the computer program that the department used to map out the
optimal street routes for plowing. They were told, though, that the snow plow drivers often impro-
vised based on weather and parking conditions that were not in the program.

This student is using
another reasoning
method. The student
views Cobblestone City
as an earlier figure to
which a new element
has been attached. The
student solves for the
new town by combining
the new element with
the earlier solution. This
is an example of using
recursion to think
about the problem.

Creating routes for
street sweeping and
sanitation trucks have
different requirements
than for meter readers
and letter carriers who
can walk with or
against traffic.

Real world consider-
ations affect what is an
optimal solution. Once
solutions are proposed,
the problem can be
restated to include
more real world criteria
(e.g., Can a plow make
a u-turn? Do blocks
differ in length?)
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Reality Check: Discrete Mathematics in the Workplace

Winning a game and running a successful business both require the right com-
bination of skill and luck. When you are running a business and using real money, you need to
minimize the role that luck plays. Like playing a game, you must examine the rules and the situa-
tion in order to create a strategy that will work.

Warren B. manages a successful shopping mall, the Galleria in Edina, Minnesota. Many of the situ-
ations he must address to make the mall a success involve using what mathematicians call discrete
mathematics, but Warren calls “careful strategizing.” This is a mathematics of finite solutions,
where he must generate lists of possible alternative approaches to his problems and choose the
best solution. To help make a decision, he uses models and simulations similar to those used in
game theory and risk analysis.

Ten years ago Warren learned that the Mall of America was planning to open not far from his mall.
He decided that he would make a major change in his mall so it would remain successful and
would not be in direct competition with the new mall. He needed to appeal to different customer
needs and to make better use of his property. A major change like this involved many alternative
solutions. Warren needed to consider them all and then to choose one with the greatest return
(profit) for the least risk.

In trying to appeal to a different group of customer, Warren had several options. The mall could be
“downscaled” with discount stores as tenants. But this did not seem to be an appropriate decision
for a property located in an area with high income and employment. Alternatively, he could “up-
scale” his tenant roster. This would require renovating the property. While renovating, it might be
feasible to build more square footage on the same amount of land, and thereby get a higher con-
centration of high-end retailers in one location. This concentration would make his property the
preeminent high-end fashion mall in the Twin Cities—and remain outside the competitive realm of
the Mall of America.

Though renovating and expanding the property would be a good marketing strategy, would it be
economically profitable, as well as physically feasible? To determine its economic viability, Warren
used spreadsheets to develop multiple projections (sensitivity analyses) in which he could adjust
different assumptions, such as lease-up period, rental rate, retail sales, inflation, consumer econom-
ics conditions, and new competition. Each projection could employ varying assumptions. For every
small change in an assumption, Warren wanted to know how much the worth of the property
would change. For example, if rental rates increased by 5%, but expenses increased by 5% also,
how much would his operating income (revenue minus expenses) increase or decrease?

Warren had a general expectation of the level of return (profit on his cash investment) he needed
to justify the risk he perceived he would be taking. Return is a function of the level of risk. To in-
crease his return, he needed to take a greater risk in developing and operating his property. Given
his desired level of return and risk, he selected an appropriate strategy.

Warren did not expect to make up the renovation expenses in the first year. Rather, he financed the
cost with a mortgage and paid for the rest with cash (equity). For example, say the total renovation
cost was $5,000,000 and $1,000,000 was paid in cash with a $4,000,000 mortgage at 10% an-
nual interest rate covering the balance. If the property earned an operating income of $600,000 a
year, he could then pay the $400,000 in interest and have $200,00 as a return (profit) on the cash.

In business, luck is
called risk.

Does a solution exist?
How many solutions are
there? Is there an opti-
mum solution? These
are familiar questions
asked in business and
industry which discrete
math addresses.

Reformulate a complex
question into a simpler
one. Solve that, then
introduce some compli-
cation.

Matrices and computers
let you see many quan-
tities and how changes
will affect those quanti-
ties.

The answer depends, in
part, on the ratio of
revenue to expenses.



D I S C R E T E  M A T H E M A T I C S

13SciMathMN Minnesota K-12 Mathematics Framework

Assumptions

Total Property Size (Sq. Ft.) 450,000
Retail Property (%) 60%
Renovation Cost ($/Sq. Ft.) 110.00$
Expansion Cost ($/Sq. Ft.) 145.00$

Initial Equity ($) 5,000,000$
Mortgage Rate (APR) 12%

Inflation Rate (APR) 5
Rental Rate ($/Sq. Ft.) 115.00$
Base Occupancy Rate (%) 95%

Market Size (Units) 1,000,000
Market Share (%) 12%
Retail Sales ($/Market Unit) 2,000.00$

Economic Conditions

Probability
Depression 5%
Recession 40%
Normal 35%
Boom 15%

Operating Income ($000)Mortgage ($000)

Depression Recession Normal Boom Expected
Value

Operating
Expenses

Projected ROIInterestPrincipalProposed
Expansion

29,981$ 35,673$ 39,468$ 47,058$ 36,640.73$ 30,500.00$ (0.18)7,080$59,000$100,000

30,111$ 35,913$ 40,049$ 46,630$ 36,882.45$ 30,487.50$ (0.11)6,993$58,275$95,000

30,234$ 36,142$ 40,613$ 46,202$ 37,113.62$ 30,475.00$ (0.05)6,906$57,550$90,000

30,349$ 36,361$ 41,160$ 45,775$ 37,334.25$ 30,462.50$ 0.016,819$56,825$85,000

30,458$ 36,570$ 41,690$ 45,347$ 37,544.33$ 30,450.00$ 0.076,732$56,100$80,000

30,558$ 36,768$ 42,202$ 44,919$ 37,743.86$ 30,437.50$ 0.136,645$55,375$75,000

30,652$ 36,956$ 42,697$ 44,491$ 37,932.85$ 30,425.00$ 0.186,558$54,650$70,000

30,738$ 37,134$ 42,287$ 44,063$ 37,800.36$ 30,412.50$ 0.176,471$53,925$65,000

30,816$ 37,301$ 41,876$ 43,636$ 037,663.35$ 30,400.00$ 0.176,384$53,200$60,000

30,888$ 37,458$ 41,466$ 43,208$ ###37,521.84$ 30,387.50$ 0.166,297$52,475$55,000

30,951$ 37,605$ 41,055$ 42,780$ ###37,375.82$ 30,375.00$ 0.156,210$51,750$50,000

31,008$ 37,229$ 40,644$ 42,352$ Factor37,020.36$ 30,362.50$ 0.106,123$51,025$45,000

31,057$ 36,853$ 40,234$ 41,924$ 36,664.53$ 30,350.00$ 0.056,036$50,300$40,000

31,099$ 36,477$ 39,823$ 41,497$ 36,308.33$ 30,337.50$ 0.005,949$49,575$35,000

31,133$ 36,101$ 39,413$ 41,069$ 35,951.76$ 30,325.00$ (0.04)5,862$48,850$30,000

30,809$ 35,725$ 39,002$ 40,641$ 35,577.26$ 30,312.50$ (0.10)5,775$48,125$25,000

30,484$ 35,349$ 38,592$ 40,213$ 35,202.77$ 30,300.00$ (0.15)5,688$47,400$20,000

30,160$ 34,973$ 38,181$ 39,785$ 34,828.27$ 30,287.50$ (0.20)5,601$46,675$15,000

29,836$ 34,597$ 37,771$ 39,358$ 34,453.77$ 30,275.00$ (0.25)5,514$45,950$10,000

29,511$ 34,221$ 37,360$ 38,930$ 15%34,079.27$ 30,262.50$ (0.31)5,427$45,225$5,000

- 29,187$ 33,845$ 36,950$ 38,502$ 33,704.78$ 30,250.00$ (0.36)5,340$44,500$

Example of a spread-
sheet analysis, similar
to those Warren used.
A formula embedded in
a cell of the spread-
sheet expresses
relationships between/
among other cells. Thus
changing one of the
values in a cell changes
values in the cells which
relate to it. The return
on investment (ROI) can
be viewed as it changes
when other factors
change.
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Assumptions are based
on projections, prob-
ability and/or other
industry practices. As-
sumptions, data, and
results need to be
tested for reasonable-
ness in a particular
context.

The mathematics of
finance is an applica-
tion of iteration. It is a
type of constant
refiguring known as
recursion. The com-
pounding of interest is
one example.

This $200,000 would represent a 20% return on the $1,000,000 cash investment—a fine return if
the risk were not too great. However, if the property earned only $350,000, he would not even
have enough return to pay the mortgage interest and there would be no return on the cash. This
projection of $350,000 would represent a financially unviable strategy.

Before the shovel went into the ground, Warren adjusted most of the variables in his projections
until he felt comfortable with the plan for the property—its size, number of stores, rental rates, ten-
ants and so on. Once the project was underway his flexibility became more limited. Getting his
projections as close to “right” on paper was very important. Of course, there continue to be vari-
ables which he cannot control, like the inflation rate and new competition. Here, he must make
sure that he has built enough “cushion” (or sensitivity) into his projections to accommodate some
variation of expectations in the future.

With satisfactory projections in hand
based upon his experiences and in-
sight, Warren found a building
contractor, a mortgage lender, equity,
tenants and customers to shop in
the mall. Though much can still go
wrong—some within his control and
other events outside his control—
only by doing this careful planning
could he have been able to under-
stand the amount and variability of
his risk and return.

How did Warren learn to make these
kinds of decisions backed by sensi-
tivity analysis and probabilities? In
college, he majored in English and
history. He went into real estate
shortly after college and began read-
ing the Wall Street Journal, Forbes,
reports of the Urban Land Institute
and reports of real estate forecasting

companies. He also reads Women’s Wear Daily, considers future retail trends and looks at neighbor-
ing store development. He talks to tenants and customers and uses good old common sense based
on experience. Warren assembles information from many sources to apply to the property he man-
ages, always with the goal of finding the “best” strategy. He says, “As financing and leasing
options have become more complicated, no longer can this figuring be done on the back of an en-
velope. Computers and spreadsheet programs have made it possible for me to use mathematics. I
need a broad understanding of how the assumptions interact and I need to know if what I get
makes sense.” In his work, Warren makes a positive contribution to the quality of life in the com-
munity, as well as minimizing his risk and maximizing his profit.

(These Reality Checks are included to remind us that it is our responsibility as teachers to prepare stu-
dents for the real world — specifically for life-work.)

Risk analysis aids deci-
sion making in fields
such as insurance,
product liability, and
medical research.
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Fo
cu

s
PRIMARY INTERMEDIATE

Students entering the primary
grades have a natural curiosity
about people and things in their
world. This curiosity leads to
questions about how things fit
together or connect. Primary stu-
dents display their natural need
to organize things. They sort,
compare, and label objects in a
collection according to similari-
ties and differences in a single
attribute. They recognize that
some things change over time,
which leads to an intuitive sense
for prediction.

The focus of instruction at the
primary level is to blend pur-
poseful play with simple
analysis to help students begin
to develop early concepts in
discrete mathematics. Students
should be encouraged to rec-
ognize and work with
repetitive patterns and pro-
cesses involving numbers and
shapes. They should investi-
gate ways of sorting objects/
people into sets according to
attributes and ways of arrang-
ing data into charts and tables.
Students should pursue activi-
ties involving systematic
listing, counting, and arranging
of people/objects in very con-
crete ways.

Students entering the intermedi-
ate grades identify, apply, and
create patterns. They use visual
representations to explore count-
ing arrangements. They can
follow, describe, and create prac-
tical lists of instructions (like how
to make a peanut butter sand-
wich). These students can sort
and classify persons/objects, visu-
ally represent these sorts, and use
all, some, none to describe them.

The focus of instruction at the
intermediate level is on stu-
dents’ systematic reflection on
their work with patterns, sort-
ing, arranging, and graphing.
Intermediate students inter-
pret statements involving the
language all, some, none to de-
termine when such statements
are true and when they are
false. They explore vertex-edge
graphs to depict or describe
mathematical or real-world re-
lationships. They investigate
number sequences related to
patterns in nature. These stu-
dents invent, describe and
discuss simple algorithmic pro-
cedures and evaluate their
efficiency. They begin to ana-
lyze games and problems,
determining and listing all pos-
sible solutions, and should in
simple cases determine and
discuss what is the best solu-
tion to a problem.
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MIDDLE SCHOOL HIGH SCHOOL BEYOND HS STANDARD

Students entering the middle
grades have used visual represen-
tation to explore problems
involving arrangements or sys-
tematic counting. They are
familiar with the notion of con-
nected graphs and recognize
situations in which graphs can be
an appropriate model. They have
explored iterative and recursive
patterns in Logo programming
activities or in following flow
chart directions. These students
can describe algorithms for solv-
ing a variety of problems.

The focus of instruction at the
middle school level is to make
connections between topics in
number, shape, chance, data,
and change and problem solv-
ing situations in discrete
mathematics. Middle school
students devise, describe, and
test algorithms. They apply
number theory and the multi-
plication principle to problems
involving permutations and
combinations. They explore
the properties of vertex-edge
graphs and design them for
specific situations, including
listing all possible outcomes in
a probability experiment.
These students also explore
methods for storing, process-
ing, and communicating
information.

Students entering the high school
grades have applied discrete pro-
cesses in a variety of different
contexts. They are comfortable
using vertex-edge graphs (and
other visual representations),
systematic counting techniques,
and recursive approaches to
model and solve problems.

The focus of instruction at the
high school graduation stan-
dard level is on the application
of discrete mathematics as a
tool to solve practical, real-
world problems. High school
students use vertex-edge
graphs and matrices to repre-
sent and solve problems
involving conflicts, optimiza-
tion, and scheduling. They
apply discrete mathematical
models to solve problems in-
volving the concept of fairness
in matters of social choice and
decision making. These stu-
dents use recursive formulas to
solve problems involving per-
mutations, combinations, and
growth patterns. They use cal-
culators and computers to
solve problems involving itera-
tive and recursive processes.
High school students apply al-
gebraic concepts and skills to
enhance their understanding
of discrete mathematics and to
generalize solution approaches
to discrete problems.

Students working at the high
school graduation standard level
are comfortable representing
and analyzing finite graphs us-
ing matrices. They have
developed and analyzed algo-
rithms using computer methods.
They have investigated combina-
torics, recursion, and sequences
at an appropriate level.

The focus of instruction be-
yond high school graduation
standard level is to represent
and solve more complex prob-
lems using methods of discrete
mathematics. Students doing
advanced work apply discrete
techniques to analyze a variety
of algorithms, including sorting
and backtracking algorithms.
They investigate and solve
problems using linear program-
ming and difference equations.
These students apply the con-
cepts and methods of
computer technology, including
set theory, the rules of logic,
and computer validation to il-
lustrate and apply the major
ideas of discrete mathematics.
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sLEARNING GOAL

Students use discrete

structures to model and

understand mathematical

relationships and solve

problems.

Components

With this learning goal in
mind, Minnesota students
will have the opportunity to:

1 investigate and apply
systematic counting tech-
niques, set relationships, and
principles of logic to repre-
sent, analyze, and solve
problems.

2 use charts, vertex-edge
graphs, and matrices to
model and solve problems.

3 explore, develop, and analyze
algorithmic thinking to
accomplish a task or solve
a problem.

4 analyze, extend, and model
iterative and recursive
patterns.
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Intermediate Level: 3-5Primary Level: K-2➧ MN State Excerpts

Learning Goal:
Use discrete
structures to model
and understand
mathematical
relationships and to
solve problems.
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1
Investigate
and apply
systematic
counting
techniques, set
relationships,
and principles
of logic to
represent,
analyze, and
solve problems.

– use manipulatives, diagrams,
and lists to explore problems
involving counting and arrang-
ing objects
(see Sample Problems P1-1)

– sort and classify objects
(see Sample Problems P1-2)

– understand logical terms such
as and, or, not, some, and all,
and use them correctly
(see Sample Problems P1-3)

– make systematic lists of per-
mutations and combinations
for small sets
(see Sample Problems I 1-1)

– sort and classify objects using
two or more attributes
(see Sample Problems I 1-2)

– express a verbal rule to
describe a given set of
objects; sort objects to
follow a given rule
(see Sample Problems I 1-3)

– use Venn diagrams or other
diagrams to interpret and, or,
and not terminology
(see Sample Problems I 1-4)

Mathematics: Number Sense
– use whole numbers to

represent numbers in
more than one way (e.g.,
manipulatives, pictures,
diagrams, symbols), count
and order

– solve problems and justify
thinking…use concrete objects,
diagrams or maps to solve
simple problems involving
counting, arrangements or
routes

Mathematics: Number Sense
– use lists or diagrams to solve

counting and arrangement
problems

Excerpts from MN Standards
Related to Component #1
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Middle Level: 6-8 Minnesota High School Graduation Standard

Terminology in the field of
discrete mathematics is
not standardized. Some
terms used in this docu-
ment may be referred to
by different names in
other documents. For
example, “vertex-edge
graphs” may be called
“connected graphs” or
“finite graphs” elsewhere.

Sample Problems aligned
with the grid indicators
begin on page 29. A Brief
Glossary for Discrete
Mathematics begins on
page 59.
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– apply the inclusion/exclusion
principle and the pigeonhole
principle to solve sorting prob-
lems
(see Sample Problems B1-1)

– extend knowledge of set
theory to include partitioning
of sets
(see Sample Problems B1-2)

– understand and apply identi-
ties involving binomial coeffi-
cients, e.g.,

– use manipulatives, diagrams, or
systematic lists to develop
counting strategies and apply
them in appropriate situations
(see Sample Problems M1-1)

– interpret set relationships and
notation from real-world con-
texts to represent algebraic
concepts
(see Sample Problems M1-2)

– use concepts of order and rep-
etition to differentiate situa-
tions involving permutations
and combinations or other
techniques of counting
(see Sample Problems H1-1)

– apply permutation and combi-
nation formulas and the multi-
plication principle to solve
multi-step counting problems
(see Sample Problems H1-2)

– explore the combinatorial in-
terpretation of Pascal’s Triangle
(see Sample Problems H1-3)

– explore the pattern of coeffi-
cients in the expansion of bi-
nomials leading to the bino-
mial theorem
(see Sample Problems H1-4)

– interpret logic relationships
represented in algebraic nota-
tion
(see Sample Problems H1-5)

– understand and use condi-
tional logic statements
(see Sample Problems H1-6)

Mathematics:
Patterns & Functions

– recognize, analyze and
generalize patterns found
in…data from lists, graphs and
tables

– translate algebraic expressions
into equivalent forms…in
problem situations

– use properties of mathematics
to informally justify reasoning
in a logical argument

Mathematics: Discrete Mathematics
– solve problems by… permutations, combinations and other

principles of systematic counting

– use properties of mathematics to justify reasoning in a logical
argument

Mathematics: Chance & Data Analysis
– demonstrate understanding of concepts related to uncertainty of

randomness, permutations, combinations

for k such that 0 ≤ k ≤ n
(see Sample Problems B1-3)

– use combinatorial arguments
to justify binomial identities
(see Sample Problems B1-4)

– extend logic to include predi-
cate calculus
(see Sample Problems B1-5)

– develop and interpret truth
tables and computer logic net-
works
(see Sample Problems B1-6)

=n
k

n
n - k












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Intermediate Level: 3-5Primary Level: K-2➧ MN State Excerpts

Learning Goal:
Use discrete
structures to model
and understand
mathematical
relationships and to
solve problems.
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2
Use charts,
vertex-edge
graphs, and
matrices to
model and
solve problems.

– explore the use of diagrams
and simple charts to represent
all possible outcomes of an
event or experiment
(see Sample Problems P2-1)

– use maps and vertex-edge
graphs to study simple routing
and tracing problems
(see Sample Problems P2-2)

– use diagrams, vertex-edge
graphs, and simple charts to
represent all possible out-
comes of an event or experi-
ment
(see Sample Problems I 2-1)

– use tree diagrams to represent
steps in a decision or choices
in a problem situation
(see Sample Problems I 2-2)

– use a vertex-edge graph to in-
terpret relationships between
or among objects (e.g., per-
sons, events, locations)
(see Sample Problems I 2-3)

– explore the conditions for the
traceability of a vertex-edge
graph
(see Sample Problems I 2-4)

Inquiry: Data Categorization,
Classification & Recording

– display gathered information
using the appropriate format
(e.g., graphs, diagram, maps)

Mathematics: Number Sense
– solve problems and justify

thinking…organize data using
pictures and charts; use
concrete objects, diagrams or
maps to solve simple problems
involving counting,
arrangements or routes

Mathematics: Number Sense
– represent real-life situations

mathematically

– use lists or diagrams to solve
counting and arrangement
problems

Mathematics:
Chance & Data Handling

– conduct experiments involving
uncertainty; list possible
outcomes

Excerpts from MN Standards
Related to Component #2
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D I S C R E T E  M A T H E M A T I C S

Middle Level: 6-8 Minnesota High School Graduation Standard

Terminology in the field of
discrete mathematics is
not standardized. Some
terms used in this docu-
ment may be referred to
by different names in
other documents. For
example, “vertex-edge
graphs” may be called
“connected graphs” or
“finite graphs” elsewhere.

Sample Problems aligned
with the grid indicators
begin on page 29. A Brief
Glossary for Discrete
Mathematics begins on
page 59.
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Mathematics: Discrete Mathematics

– describe the difference between discrete and continuous models of
data

– translate between real world situations and discrete mathematical
models using vertex-edge graphs, matrices, verbal descriptions, and
sequences

– analyze and solve problems by building discrete mathematical
models, developing and comparing algorithms or sequences of
procedures, and determining whether solutions exist, the number of
possible solutions, and the best solutions

– extend tree diagrams to repre-
sent factors of a number and
outcomes in a probability ex-
periment
(see Sample Problems M2-1)

– use a systematic approach to
identify, represent, and record
all possible paths or outcomes
in an experiment
(see Sample Problems M2-2)

– design vertex-edge graphs to
represent relationships be-
tween or among objects
(see Sample Problems M2-3)

– investigate some classical
graph theory problems (for ex-
ample: highway inspector prob-
lem, garbage collection prob-
lem, traveling salesperson
problem)
(see Sample Problems M2-4)

– use vertex-edge graphs to
solve discrete optimization
problems (e.g., critical path
problems)
(see Sample Problems H2-1)

– use matrices to represent con-
nectivity or adjacency in ver-
tex-edge graphs
(see Sample Problems H2-2)

– operate on matrices to obtain
information about a vertex-
edge graph and the situation
it models
(see Sample Problems H2-3)

– use a systematic approach to
identify, represent, and record
all possible paths or outcomes
in complex experiments
(see Sample Problems H2-4)

– apply graph theory to solve
complex problems
(see Sample Problems B2-1)

Mathematics:
Shape, Space & Measurement

– use vertex-edge graphs to
solve problems
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Learning Goal:
Use discrete
structures to model
and understand
mathematical
relationships and to
solve problems.
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3
Explore,
develop, and
analyze
algorithmic
thinking to
accomplish a
task or solve a
problem.

– follow a simple set of direc-
tions to accomplish a task
(see Sample Problems P3-1)

– develop and communicate di-
rections for a simple task ver-
bally and in writing
(see Sample Problems P3-2)

– develop and communicate di-
rections for solving a problem
involving computation
(see Sample Problems P3-3)

– compare and evaluate multiple
solution strategies
(see Sample Problems P3-4)

– develop lists, illustrations, or
flow charts to describe a se-
quence of events
(see Sample Problems I 3-1)

– invent algorithms to accom-
plish a task or solve a problem
involving computation; de-
scribe how they work and
evaluate which are most useful
(see Sample Problems I 3-2)

– follow a flow chart to accom-
plish a task
(see Sample Problems I 3-3)

Mathematics: Number Sense
– solve problems and justify

thinking by selecting
appropriate numbers and
representations…generate
multiple solutions

Mathematics: Shape, Space &
Measurement

– demonstrate an understanding
of patterns…represent spatial
patterns pictorially, numer-
ically, or both

Mathematics: Number Sense
– generate and describe more

than one method to solve
problems

Mathematics: Shape, Space &
Measurement

– use maps or graphs to deter-
mine the most efficient routes

Excerpts from MN Standards
Related to Component #3
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Middle Level: 6-8 Minnesota High School Graduation Standard

Terminology in the field of
discrete mathematics is
not standardized. Some
terms used in this docu-
ment may be referred to
by different names in
other documents. For
example, “vertex-edge
graphs” may be called
“connected graphs” or
“finite graphs” elsewhere.

Sample Problems aligned
with the grid indicators
begin on page 29. A Brief
Glossary for Discrete
Mathematics begins on
page 59.
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– use manipulatives, drawings, or
descriptions to demonstrate
algorithmic thinking
(see Sample Problems M3-1)

– explain the output of an algo-
rithm described by a flow chart
(see Sample Problems M3-2)

– create, communicate, and de-
fend a strategy for winning a
game
(see Sample Problems M3-3)

– create and communicate algo-
rithms to solve problems
(see Sample Problems M3-4)

– investigate algorithms related
to problems in graph theory
(e.g., planning and scheduling
problems)
(see Sample Problems H3-1)

– investigate algorithmic think-
ing to solve problems involving
social choice and decision
making (e.g., weighted voting,
fair division, apportionment)
(see Sample Problems H3-2)

– investigate applications of in-
formation coding in real world
contexts (e.g., bar codes, zip
codes)
(see Sample Problems H3-3)

– develop algorithms for solving
mathematical puzzles
(see Sample Problems H3-4)

– explore and analyze a variety
of algorithms (e.g., simple sort-
ing algorithms, data coding,
backtracking)
(see Sample Problems B3-1)

– translate algorithms into
simple calculator or computer
programs to investigate the in-
teraction of variables
(see Sample Problems B3-2)

Mathematics: Number Sense
– analyze and justify operations

and methods used and evalu-
ate the reasonableness of com-
puted results to problems with
proposed solutions

Mathematics:
Patterns & Functions

– represent and interpret cause
and effect relationships
using…verbal descriptions

– use properties of mathematics
to informally justify reasoning
in a logical argument

Mathematics: Discrete Mathematics
– analyze and solve problems by building discrete mathematical

models, developing and comparing algorithms or sequences of
procedures, and determining whether solutions exist, the number of
possible solutions, and the best solutions
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Learning Goal:
Use discrete
structures to model
and understand
mathematical
relationships and to
solve problems.
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4
Analyze,
extend, and
model iterative
and recursive
patterns.

– explore simple patterns and
sequences
(see Sample Problems P4-1)

– recognize patterns and symme-
tries in designs and artwork
(see Sample Problems P4-2)

– represent iterative patterns in
words, pictures, and numbers
(see Sample Problems I 4-1)

Mathematics: Number Sense
– use whole numbers to…

describe and extend patterns

– solve problems and justify
thinking…use operations,
patterns and estimation

Mathematics:
Shape, Space & Measurement

– demonstrate an understanding
of patterns…identify and/or
create symmetrical patterns

Mathematics: Number Sense
– represent patterns using

words, pictures and numbers

Mathematics:
Chance & Data Handling

– describe patterns, trends or
relationships in data displayed
in graphs, tables or charts

Mathematics:
Shape, Space & Measurement

– extend or create geometric
patterns to solve problems

Excerpts from MN Standards
Related to Component #4
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Middle Level: 6-8 Minnesota High School Graduation Standard

Terminology in the field of
discrete mathematics is
not standardized. Some
terms used in this docu-
ment may be referred to
by different names in
other documents. For
example, “vertex-edge
graphs” may be called
“connected graphs” or
“finite graphs” elsewhere.

Sample Problems aligned
with the grid indicators
begin on page 29. A Brief
Glossary for Discrete
Mathematics begins on
page 59.

27SciMathMN Minnesota K-12 Mathematics Framework

– explore patterns in more com-
plex geometric and numerical
problems (e.g., Fibonacci se-
quence, Pascal’s triangle)
(see Sample Problems M4-1)

– examine patterns in an itera-
tion to predict successive terms
and long-range trends
(see Sample Problems M4-2)

– employ recursion in counting
contexts (e.g., moves in Tower
of Hanoi puzzle)
(see Sample Problems M4-3)

– apply inductive reasoning to
determine the formula for a
general term in a sequence
(see Sample Problems H4-1)

– compute the first few terms
of a recursively-defined se-
quence
(see Sample Problems H4-2)

– use mathematical induction to
construct a proof
(see Sample Problems B4-1)

– write computer code to gener-
ate the first few terms of a re-
cursively-defined sequence
(see Sample Problems B4-2)

Mathematics:
Patterns & Functions

– recognize, analyze and
generalize patterns found in
linear and non-linear
phenomena…sequences

– connect verbal, symbolic and
graphical representations…in
problem situations

Mathematics: Discrete Mathematics
– analyze and model iterative and recursive patterns
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Primary Sample Problems

Tom has three different shirts (red, green, and blue) and two different pairs of pants (black, tan).
How many different outfits can he make?

[Have identical pictures of Tom so the children can color the different outfits or have actual paper
cut outs of shirts and pants for students to physically manipulate as they explore this problem.]

How many possible outfits are there when Tom wears black pants?

 Grid Alignment

P1-1

use manipulatives,
diagrams, and lists to
explore problems
involving counting and
arranging objects

P2-1

explore the use of
diagrams and simple
charts to represent all
possible outcomes of
an event or experiment

P2-2

use maps and vertex-
edge graphs to study
simple routing and
tracing problems

Later, to explore two attributes, students can discuss an appropriate way to express the sorting of
two intersecting sets:

I have two coins in my pocket. How much money might I have? A chart might begin:

[Have actual money available for
students to use to solve this problem.]

How would you get from your home to your grandparents’ house? What is the shortest route?

set of toy cars set of red toys

1 5 10 25 AMOUNT

 x x 2¢

  x   x 6¢

  x x 11¢

P1-2

sort and classify objects

Use yarn or plastic hoops to sort buttons by one characteristic (color, size, texture, number of holes,
etc.)

P1-3

understand logical
terms such as and, or,
not, some and all, and
use them correctly.

Create projects that allow for discussion of the data using the words and, or, not, all, some, none.
For example, have every child contribute his/her right shoe. Ask them how they might sort them:
color, type of shoe (tennis, sneaker, boot, etc.), type of fastener (laces, Velcro, buckle), color of sole.
The discussion would yield statements such as: “These shoes have rubber or leather soles,” and
“Some of the shoes are brown,” and “None of the shoes are yellow.”

You need to go to the doctor and stop at school. What is the shortest distance if you are at home
and want to return home?

grandparents

grocery store

post office
church

doctor

gas
station

school

1

2

3

2

2

2

3
2

1
home

3

2

fire station

Sample Problems
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On the map shown below, where will you be if you start at point P, move two spaces east, then
four spaces north

P3-1

follow a simple set of
directions or simple
flow chart to accom-
plish a task

West East

North

South

P

Give directions for making your favorite kind of sandwich.

Draw a map for getting to a location in the school if you start at the classroom door.

Explain to someone how to find the total of 36¢ and 45¢.

Candy mints cost 4 cents apiece, bubble gum cost 5 cents, and suckers cost 6 cents. Explain how
you would determine how much three mints, two bubble gums, and three suckers would cost.

Play the “Guess My Pattern” game. Think of a “rule” that will establish a pattern, such as a se-
quence of girl, boy, girl, boy, girl, boy…Have four children that fit the pattern stand in a row. Add
children to the line and indicate whether or not they fit the pattern. If they do, they stay; if not, they
sit down. Have children try to guess the pattern, but not to divulge it till after everyone has had a
chance to think about it. Rules might involve length of hair, color of shirt, etc.

Students take a “pattern walk” through the school, searching for patterns in the bricks, the play
equipment, the shapes in the classrooms, the pattern of numbering classrooms, patterns of place-
ment and design of classrooms, patterns in the floors and ceilings, etc.; the purpose is to create an
awareness of all the patterns and symmetries which surround them daily.

Carla and Deng solved the candy problem above (P3-3) differently. Here is their work. Explain what
each student was thinking. Which strategy would you have used? Why? Can you find another way
to solve it?

Carla

4¢ + 4¢ + 4¢ + 5¢ + 5¢ + 6¢ + 6¢ + 6¢ = 40¢

Deng

4¢ + 6¢ = 10¢

3 tens = 30¢

5¢ + 5¢ = 10¢

30¢ + 10¢ = 40¢

P3-2

develop and communi-
cate directions for a
simple task verbally and
in writing

P3-3

develop and communi-
cate directions for
solving a problem
involving computation

P3-4

compare and evaluate
multiple solution
strategies

P4-2

recognize patterns and
symmetries in designs
and artwork

P4-1

explore simple patterns
and sequences
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Intermediate Sample Problems

A pizza parlor offers six toppings: sausage, anchovies, onions, olives, mushrooms, and tomatoes.
Make a list of all the different pizzas having two different toppings.

The following figure shows a number triangle. What is the largest sum of numbers on a path that
starts at the top and ends somewhere on the base? Each step can go either diagonally down to the
left or diagonally down to the right.

 Grid Alignment

I 1-1

make systematic lists of
permutations and
combinations for small
sets

7
3 8

8 1 0
2 7 4 4

4 5 2 6 5

(7 to 1
illegal)

(4 to 4
illegal)

7
3 8

8 1 0
2 7 4 4

4 5 2 6 5

7
3 8

8 1 0
2 7 4 4

4 5 2 6 5
The sum is 28.

Have each student indicate whether they like three items: e.g., broccoli, carrots, and potatoes.
Clarify that students can like more than one of the items. Compile the results and indicate the
numbers in each part of a 3-attribute Venn diagram. Write about the results.

I 1-2

sort and classify objects
using two or more
attributes

Broccoli

Carrots

Potatoes

Have students write a “clue card” for a given object in a set. Test the clues by seeing if other stu-
dents can use them to identify the same object. “My mystery shape has five faces and five vertices.
Four of the faces are triangles and one is a square. Which is my object? What is its name?”

I 1-3

express a verbal rule to
describe a given set of
objects; sort objects to
follow a given rule

I 1-4

use Venn diagrams or
other diagrams to
interpret and, or, and
not terminology

The following Venn diagram shows the number of students who enjoy various combinations of sau-
sage, mushrooms, and pineapple.

T/F Questions:

•  All students who like sausage also like mushrooms
or␣ pineapple.

•  At least one student likes mushrooms, but neither
sausage nor pineapple.

•  At least one student likes all three.

Other questions:

How many students like sausage and mushrooms, but not
pineapple?

How many students like only pineapple, only sausage, or
only mushrooms?

Pineapple Mushrooms

2 3

7

10

5 4

8

Sausage
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Extend this tree diagram to represent and analyze the outcomes if a coin is flipped three times. In
how many outcomes are at least two heads obtained?

I 2-1

use diagrams, vertex-
edge graphs, and
simple charts to repre-
sent all possible out-
comes of an event or
experiment

Abby and Michael play the following game. Before them is a pile of five pennies. Abby begins, and
can take either one or two pennies. Michael follows and can take either one or two pennies from
those that remain. They alternate turns until there are no coins left. The winner is the player who
takes the last coin. Draw a tree diagram to represent the game possibilities and determine who
wins in each case. Generalize by repeating for 6 pennies or using different rules for removing pen-
nies.

I 2-2

use tree diagrams to
represent steps in a
decision or choices in a
problem situation

Mr. Butler bought four different kinds of fish—guppies (G), mollies (M), swordfish (S), and gold
rams (R). Some of the fish can live in the same tank, but others cannot. The vertices on the vertex-
edge graph represent the type of fish. An edge connecting two vertices means those two fish types
can live in the same tank. Answer the questions by using the information in the graph.

T/F Questions:

• All the fish could be put in the same tank.

• Swordfish can be placed in the same tank as mollies.

• Guppies can share a tank with any other fish.

Other Questions:

If you have three tanks, can you house all the fish? Explain. If there is more than one possible
placement of fish in the tanks, list the possibilities.

If you have two tanks, can you house all the fish? Explain. If there is more than one possible place-
ment of fish in the tanks, list the possibilities.

[You might use paper cutouts representing the fish and drawings of tanks on paper to help stu-
dents solve these problems.]

I 2-3

use a vertex-edge graph
to interpret relation-
ships between or
among objects (e.g.,
persons, events, loca-
tions)

flip #1

H T

H

flip #2 flip #3flip #1

T T

H

flip #2 flip #3

G

M

R

S
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State whether you can trace (or draw) each graph below without lifting your pencil and without re-
peating any edge.

I 2-4

explore the conditions
for the traceability of a
vertex-edge graph

Draw some of your own and see if you can find a rule about when it will be possible to trace a
graph. Does it make a difference if you must return to where you started?

Work in your small group to write a flow chart or list to describe organizing a checkers tournament
that has 16 participants for your school. The flowchart should account for the possibility of a draw.

Teachers: Select a cartoon strip from the newspaper. Cut the frames apart and mix them up. Have
students arrange the frames in order to make a reasonable story. Have them explain the reasons
for the order they chose. Ask whether there is more than one reasonable order. A variation of this is
to have the students draw a panel cartoon or story of their own, cut the frames apart, and ex-
change them with another student to reorganize.

I 3-1

develop lists, illustra-
tions, or flow charts to
describe a sequence of
events

Working in groups, students create and explain a fair way of sharing a bagful of similar candies or
cookies. For example, if the bag has 30 brownies and there are 20 children, then they might sug-
gest that each child gets one whole brownie and that the teacher divides each of the remaining
brownies in half. Or they might suggest that each pair of children figure out how to share one
brownie. What if there were 30 hard candies instead of brownies? What if there were 25 brownies?
What if there were 15 brownies and 15 chocolate chip cookies? The purpose of the activity is for stu-
dents to brainstorm possible solutions in the situations where there may be no solution that
everyone perceives as fair.
–adapted from New Jersey Mathematics Curriculum Framework, 1996, p. 459

You are given two rulers, but with no marks on either one. One ruler has a length of 5 units and
the other a length of 8 units. Explain how you can mark off a length of 1 unit using these two rul-
ers. If one ruler has a length of 6 units and another 16 units, what is the smallest unit that can be
marked off using only these two rulers?

I 3-2

invent algorithms to
accomplish a task or
solve a problem involv-
ing computation;
describe how they work
and evaluate which are
most useful
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Explain how you will build the tenth structure in the pattern.

Follow the directions in the flowchart:

Think of a number

Double it

Add 8

Multiply by 5

Subtract 30

Double the result

Subtract 20

Multiply by 5

➡
➡

➡
➡

➡
➡

➡

Make a table comparing Start numbers with their End numbers. What pattern do you see? Explain
your pattern.

Show what the next three tile structures will look like.

I 3-3

follow a flow chart to
accomplish a task

I 4-1

represent iterative
patterns in words,
pictures, and numbers

thirdsecondfirst
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 Grid Alignment

M1-2

interpret set relation-
ships and notation from
real-world contexts to
represent algebraic
concepts

M1-1

use manipulatives,
diagrams, or systematic
lists to develop count-
ing strategies and apply
them in appropriate
situations

Middle School Sample Problems

Sequences of zeroes and ones are used to represent messages in computer code. A bit string of
length 4 is a sequence of four characters (bits) each of which is 0 or 1.
How many such bit strings are there?
How many of these begin and end in 1?
How many contain exactly one 1?

During the winter months, Mrs. G’s comfort zone is between temperatures of 68°F to 75°F. Mr. G is
comfortable at temperatures of 65°F to 70°F.

a) Write each person’s comfort zone as an inequality.

b) Write the set of temperatures for which both Mr. and Mrs. G. are comfortable.

c) How is the set in part (b) related to the sets in part (a)

The spinner shown has 6 congruent regions. Use a tree diagram to help you list all the outcomes
that can occur, if you spin twice.

Fifty-five delegates to a convention must vote on their choice of five candidates A, B, C, D, E. The
following chart shows how many prefer particular rankings. (These rankings were agreed on in
party caucuses.)

a) Who wins the election if everyone votes for her/his favorite candidate?

b) Who wins if everyone votes for her/his preferred candidate, and a runoff election is held be-
tween the top two finishers?

c) Who wins if everyone votes for her/his preferred candidate, but the candidate with the fewest
votes is eliminated and another election is held? The candidate with the lowest total is eliminated
each time until only one candidate remains.

d) Can some candidates beat all the others in a two-way race?

M2-1

extend tree diagrams to
represent factors of a
number and outcomes
in a probability experi-
ment

M2-2

use a systematic
approach to identify,
represent, and record
all possible paths or
outcomes in an experi-
ment

6

1

2

3

4

5

Number of Delegates

18 12 10 9 4 2

First Choice A B C D E E

Second Choice D E B C B C

Third Choice E D E E D D

Fourth Choice C C D B C B

Fifth Choice B A A A A A
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Five girls played in a round-robin tennis tournament, with every girl playing every other girl. The re-
sults were the following: Adria beat Diana; Bobbi beat Adria, Chandra, and Diana; Chandra beat
Adria, Ellen, and Diana; Diana beat Ellen; Ellen beat Adria and Bobbi. Represent the tournament re-
sults with a graph, by letting the vertices be the players and drawing an arrow from one player to a
second player if the first player beat the second. Who is the dominant player? Explain your answer.

M2-3

design vertex-edge
graphs to represent
relationships between
or among objects

Shown below are graph models for two sections of a town. Street corners are represented by the
vertices with parking meters placed along the sidewalks (edges).

M2-4

investigate some
classical graph theory
problems (for example:
highway inspector
problem, garbage
collection problem,
traveling salesperson
problem)

a) Why would it be helpful for a parking control officer to know if these graphs had Euler circuits?

b) Does each graph have an Euler circuit? Explain.

A B C

F E D

H G

A B C

F E

D

H G

M3-1

use manipulatives,
drawings, or descrip-
tions to demonstrate
algorithmic thinking

M3-2

explain the output of an
algorithm described by
a flow chart

When Sam sees a problem like:  2/3 x 6, he thinks about function machines like the ones below. The
(x 2) function machine followed by the (÷3) function machine can be used to transform 6 into 4.

Draw the multiplication and division function machines that Sam could use to transform:

6

12

Rule

x 2

in

out

12

4

Rule

÷ 3

in

out

1) 15 ➝ 10
2) 4 ➝ 6
3) 9 ➝ 12

What fraction multiplication problem is represented by each drawing?

Explain the output for a given positive integer n.

What is the printed output when the input is 1? 2? 3? 4? 5? n?

Set n = m - 2 Print m2Is m ≥ 2?

Set m = n - 2

Input n

YES NO
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1  3  3  1

1  2  1

1  1

M3-3

create, communicate,
and defend a strategy
for winning a game

M3-4

create and communi-
cate algorithms to
solve problems

M4-1

explore patterns in
more complex
geometric and
numerical problems
(e.g., Fibonacci
sequence, Pascal’s
triangle)

Play the “Guess My Number” game. I have a number between 1 and 1000, and you are to guess it
by asking 10 or fewer questions of the form:

Is it more than _____?

Is it less than _____?

Is it equal to _____?

Describe a strategy that will allow you to always guess the number with 10 or fewer questions.
How many questions are needed if the number is between 1000 and 2000? How many questions
are needed if the number is between 1 and 2000?

Each student ranked four soft drinks A, B, C, and D by writing a 1 next to his/her favorite, a 2 by
his/her next favorite and so on. Here is the summary of preferences for the 26 class members.

Develop an algorithm for determining a class ranking of the four soft drinks.

How would you handle ties?

—adapted from Crisler, N., Fisher, P., & Froelich, G., 1994, pp. 1-8.

— A — B — C — D
— B — C — B — B
— C — D — D — C
— D — A — A — A
8 5 6 7

Indicates 7 people liked
D best, then B, C third,
and A fourth

VOTES

➝

Generate the possibilities of coin tossing experiments. The lists will look like this for 1, 2, and 3
coins.

Now replace each H with a zero and each T with a one. How do the results relate to binary num-
bers? Use this pattern to predict the results of tossing 4, 5, and 6 coins.

Extension: Tabulate the occurrences of H in decreasing order.
Thus, 1 coin becomes
1 Head once
0 Heads once

2 coins gives
2 Heads once
1 Head twice
0 Heads once

3 coins gives
3 Heads once
2 Heads three times
1 Head three times
0 Heads once

For 1 coin: For 2 coins: For 3 coins:

1. H 1. HH 1. HHH

2. T 2. HT 2. HHT

3. TH 3. HTH

4. TT 4. HTT

5. THH

6. THT

7. TTH

8. TTT

How are the results related to Pascal’s triangle?

➝ ➝ ➝
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Think of a number with two or more digits. Add the digits. If the sum is more than 9, add the digits
of the resulting number. Repeat this until the sum of the digits is less than or equal to 9. Then go
back and divide your original number by 9. What is the remainder?

For example, if your number is 42,317 then add all the digits: 4 + 2 + 3 + 1 + 7 = 17 and then
1 + 7 = 8. Now divide 42,317 by 9. What is the remainder?

Try this with several different numbers. Make a conjecture based on several trials of this procedure.

Common throughout India and Asian countries, this puzzle consists of three pegs and several disks
of gradually increasing diameters with holes in their centers. The disks are stacked from largest on
the bottom to smallest on top as shown below. If the disks are moved one at a time to another peg
and if a larger disk cannot be placed on a smaller disk, what is the fewest number of moves
needed to move the entire stack of disks to another peg, so that they are arranged from largest on
the bottom to smallest on top? Explore the minimum number of moves needed to transfer various
stacks from 1 to 5 disks tall.

Learn how to solve this puzzle and then describe a solution in terms of recursion.

(See also Sample Activity for Middle School)

M4-2

examine patterns in an
iteration to predict
successive terms and
long-range trends

M4-3

employ recursion in
counting contexts (e.g.,
moves in Tower of
Hanoi puzzle)
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   Grid Alignment

H1-1

use concepts of order
and repetition to
differentiate situations
involving permutations
and combinations or
other techniques of
counting

High School (Graduation Standard Level) Sample Problems

A committee of three is to be formed from among four men (Adam, Dan, Eric, Fong) and four
women (Becca, Cat, Gena, and Heather).

In how many ways can this be done:

a) if Becca is on the committee?

b) if Cat and Dan are not on the committee?

c) if the committee has exactly 2 men on it and Becca is not on it?

d) if Adam and Becca refuse to serve on it together?

Recently the phone company had to divide the Twin Cities area into more area codes. This has hap-
pened recently in many larger cities. If an area code cannot begin with zero, how many area codes
are possible? Determine the largest number of different phone numbers that can be served using
one area code if the following rules are given for selecting numbers:

a) Numbers have 7 digits (in addition to the area code).

b) Numbers cannot begin with 0 or 1.

c) Numbers cannot begin with 555.

H1-2

apply permutation and
combination formulas
and the multiplication
principle to solve multi-
step counting problems

Use Pascal’s triangle to explore the identityH1-3

explore the combinato-
rial interpretation of
Pascal’s Triangle

H1-4

explore the pattern of
coefficients in the
expansion of binomials
leading to the binomial
theorem

H1-5

interpret logic relation-
ships represented in
algebraic notation

H1-6

understand and use
conditional logic
statements

Evaluate (x+y)n for integral values of n ≥ 0. Look at the coefficients of the resulting values to find a
pattern. Try to predict the coefficients of any power of (x+y).

Rewrite the following formal statements into equivalent sentences that a sixth grader could under-
stand.

a) For all real numbers x, x2 ≥ 0.

b) For all real numbers x, x2 ≠ -1.

c) There exists an integer m, such that m2 = m.

d) There exists a rational number p/a which solves 2x2 + 7x - 30 = 0

A teacher makes this promise at the beginning of the course: “If a student’s test scores total more
than 700, then that student will get an A for the course.” At the end of the course, John, who is a
student enrolled in this course, has test scores which total 685. The teacher gives John an A. Has
the teacher kept the promise? Explain.

where 1≤ k ≤ n=
n

k - 1












+
n

k

n + 1

k





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Determine the six largest cities in Minnesota. (If you live in one of the six largest cities, find and use
the seventh-largest city also.) Consult a road atlas or other source to construct a graph that repre-
sents the road distance from your hometown to these six cities. Pick the minimum tour route to
visit each city and return home.

H2-1

use vertex-edge graphs
to solve discrete
optimization problems
(e.g., critical path
problems)

H2-2

use matrices to repre-
sent connectivity or
adjacency in vertex-
edge graphs

H2-3

operate on matrices to
obtain information
about a vertex-edge
graph and the situation
it models

H2-4

use a systematic
approach to identify,
represent, and record
all possible paths or
outcomes in complex
experiments

H3-1

investigate algorithms
related to problems in
graph theory (e.g.,
planning and schedul-
ing problems)

–based on COMAP, For All Practical Purposes, 1997, p. 74.

The graph represents five cities in the county: Ada, Beaumont, Canby, Danube, and Elgin. An edge
between any two vertices indicates the cities are connected by a paved road. Use an adjacency ma-
trix to represent the same information.

Set up and use the adjacency matrix for this graph and find the number of walks of length 3 from
V1 to V3.

DE

A

B

C

V2

V1 V3

Two teams are playing each other in a tournament. A team is declared the winner if it wins three
games in a row or a total of 4 games. Determine how many outcomes there are for the tourna-
ment. List the outcomes.

Three college roommates together decided to cook a special dinner for their friends. They broke
down the project into five component activities with time estimates as follows:

K clean house 30 minutes

D decide on menu 15 minutes

P purchase food 60 minutes

C cook food 50 minutes

S set table 10 minutes

F place prepared food on table 4 minutes

Decide on a reasonable activity analysis for this job. You may decide which activities precede others
but be prepared to justify your choices. Determine the optimal scheduling and the minimum time
corresponding to the optimal scheduling.
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Six supervisors in Nassau County, NY were given weighted votes to compensate for the unequal
populations in their counties. A simple majority of 16 votes is needed to pass a measure. Find all
the minimal winning coalitions given the following table and the county charter provision which
says support must include supervisors from at least two different municipalities. (Hempstead 1 and
2 are parts of the same municipality.)

H3-2

investigate algorithmic
thinking to solve
problems involving
social choice and
decision making (e.g.,
weighted voting, fair
division, apportion-
ment)

Weighted Voting, Nassau County Board of Supervisors, 1958

Municipality Number of Votes

Hempstead 1 9

Hempstead 2 9

North Hempstead 7

Oyster Bay 3

Glen Cove 1

Long Beach 1

Total 30

A check digit is the last digit entered in a data code. Companies use check digits for error detec-
tion. In the case of United Parcel Service (UPS), it is the remainder when the number (without the
check digit) is divided by 7. Evaluate the accuracy for a package identified by the UPS number
873345672.

–Source: COMAP, For All Practical Purposes, 1997, p. 373

H3-3

investigate applications
of information coding in
real world contexts
(e.g., bar codes, zip
codes)

H3-4

develop algorithms for
solving mathematical
puzzles

H4-2

compute the first few
terms of a recursively-
defined sequence

Find all the ways in which six queens can be placed on a 6 by 6 chessboard so that none can at-
tack any other.

A sequence of positive integers is defined as follows:

Are there infinitely many odd numbers in this sequence? Are there infinitely many even numbers?
Note: x is called the floor function which is a function ƒ defined on the real numbers such that
ƒ␣ (x) is the greatest integer less than or equal to x. It is also called the greatest integer function
frequently represented on a calculator as INT (x). For example, in our sequence if n = 1,

–adapted from: COMAP, For All Practical Purposes, 1997, p. 445

1 + 2 + 1 = 22

1 + 2 + 3 + 2 + 1 = 32

1 + 2 + 3 + 4 + 3 + 2 + 1 = 42

Extend the sequence of pictures to help you decide the sum of 1 + 2 + 3 +
4 + 5 + 4 + 3 + 2 + 1. Generalize your result to find a formula for 1 + 2 +
3 +…+ n +…+ 3 + 2 + 1

–adapted from Nelson, Proof Without Words, p. 74.

H4-1

apply inductive reason-
ing to determine the
formula for a general
term in a sequence

a1 = 2,  an+1 =    3    an               n = 1,2,3 . . .
2

a2 =   3 (2)   = 3 and if n = 2, a3 =   3(3)   =    9      =    4.5     =  4.
2 2 2
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   Grid Alignment

B1-1

apply the inclusion/
exclusion principle and
the pigeonhole principle
to solve sorting prob-
lems

B1-2

extend knowledge of
set theory to include
partitioning of sets

B1-3

understand and apply
identities involving
binomial coefficients

B1-4

use combinatorial
arguments to justify
binomial identities

B1-5

extend logic to include
predicate calculus

Beyond Graduation Standard Level Sample Problems

a) Show that, given any three integers, at least two of them must have the property that their sum
is even.

b) For n such that n ∈ integers, 1≤ n ≤ ∞, how many integers between 0 and 2n must you pick in
order to be certain that at least one of them is odd?

Suppose a public opinion poll found that from a sample of 1200 adults:

• 675 are married,

• 682 are from 20 to 30 years old,

• 684 are female,

• 195 are married and are from 20 to 30 years old,

• 467 are married females,

• 318 are females from 20 to 30 years old, and

• 165 are married females from 20 to 30 years old.

a) How many married males were from 20 to 30 years old?

b) How many unmarried males were questioned?

Use algebra to verify:

Let S = {1, 2, 3,…, n} and 1≤ k ≤ n.

a) How many subsets of size k can be formed from S?

b) How many subsets of size k can be formed from S that do not contain the element 3?

c) How many subsets of size k can be formed from S that contain the element 3?

d) Explain how the results of (a), (b), and (c) show that

Give the contrapositive, converse, and inverse of each of the following statements in colloquial
language.

a) b)

where 1≤ k ≤ n

=
n

k




 n - 1

k




 n - 1

k - 1






+

=
n

k




 n - 1

k




 n - 1

k - 1






+

A

a)

b)

c)

d)

real numbers x, if x > 2, then x 2 > 4.

real numbers x, if x(x +1) > 0, then x > 0 or x < -1.
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B1-6

develop and interpret
truth tables and com-
puter logic networks

In order to print, a particular computer printer requires the “out of paper” switch not to be on and
the “data ready” switch to be on. There is also a “manual paper feed” switch which overrides
these. We can use a logic network to represent this information: p: Paper is out. d: Data is ready to
print. m: Manual feed is being used. Write a logic proposition that describes when the printer will
be activated. Draw the related logic network.

(based on Wiitala, 1987, p.123)

Suppose a zoo wishes to provide enclosed areas to accommodate 10 species of animals. Animals
that are natural enemies cannot be in the same enclosure, and the X’s in the following table indi-
cate such incompatibilities. No entry in a box means the two species are compatible and can live in
the same enclosure. What is the minimum number of different enclosures required to house these
animals, and how should the animals be grouped in this minimum arrangement?

1 2 3 4 5 6 7 8 9 10

1 X

2 X

3 X X

4 X X

5 X X

6 X X

7 X X X

8 X X

9 X X

10 X X X

Given an even number of boxes (2n) in a line, side by side: two adjacent boxes are empty, and the
other boxes contain (n – 1) symbols “A” and (n – 1) symbols “B”. For example, for n = 5

p

d

m

B2-1

apply graph theory to
solve complex problems

B3-1

explore and analyze a
variety of algorithms
(e.g., simple sorting
algorithms, data coding,
backtracking)

∨Answer: When (~p ∨ d) m is true, the printer will be activated. The circuit looks like this:

The contents of any two adjacent nonempty boxes can be moved into the two empty ones, preserv-
ing their order. Can you obtain a configuration where all A’s are placed to the left of all B’s, no
matter where the empty boxes are initially located? If so, describe an algorithm for doing this, and
describe those cases where it cannot be done, if there are any.

A B B A A B A B
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Write a program for your graphing calculator (or set up a spreadsheet on the computer) to evaluate
earning compound interest at 7% per year on a given amount of money m over various periods of
time. Analyze various amounts over different time periods using your program (spreadsheet).

When Sonja deposits a series of equal annual payments in an account, she is creating an annuity. If
she deposits $100 each year in an account that offers 9% yearly interest, what is the value of the
annuity after a certain number of years? Develop a recursive definition for A(n), the amount in the
annuity at the beginning of year n, and use a spreadsheet to gain information about the annuity.

Somewhere around 100 A.D., Nicholas of Gerasa presented the following visual evidence that the
sum of the first n consecutive odd integers is equal to n2.

Write a program that uses the recursive formula to produce the sequence

2, 4, 8, 16,…

Write a program that uses the recursive formula to produce the Fibonacci sequence.

1 + 3 + 5 +…+ (2n-1) = n2

Use the Principle of Mathematical Induction to construct a formal proof that
1 + 3 + 5 + 7 +…+ (2n-1) = n2.

– adapted from Nelson, Proof Without Words, p. 71.

B3-2

translate algorithms
into simple calculator or
computer programs to
investigate the interac-
tion of variables

B4-1

use mathematical
induction to construct a
proof

B4-2

write computer code to
generate the first few
terms of a recursively-
defined sequence
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Sample Activity:
Primary

The house number has three different digits.

The digits used are 2, 5 and 8.

What could the house number be? List all the possible answers.

Give the students multiple copies of the house. Have them list the numbers they can think of. After
a few minutes, have students share their numbers, taking turns giving one of their solutions while
the teacher lists them on the board or overhead. When they have run out of different numbers, ask
“Do we have them all? How do you know?” If all six were not listed, have them work in partners
to get all the numbers.

When students have identified all the combinations possible and have discussed how they know
they have identified all possible house numbers, give them the street (drawn on a piece of paper
for each pair of students). Ask them to place their houses along the street in the way they would be
organized on real streets.

Adapted with

permission from:

Cook, M. “Ideas for

teachers.” Arithmetic

Teacher, 36(5). © 1989

by the National Council

of Teachers of

Mathematics, 19-24.

Create a House Number

Have the student pairs compare their order with students next to them. Discuss the placement of
each house and the reason for placement as a class, having each group place a house in its correct
spot on the board or wall chart. (Or you might have each group assemble their street and post
these.) Use the suggested teacher questions in the “About This Activity” section to discuss patterns.

A new town rule allows houses to have two digits alike. What new house numbers does this add to
our group? Have students make a list and place them on the street. Discuss the changes this makes
in the street.
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These activities

reinforce many of

the key ideas in the

K-12 Components at

the primary level,

especially:

• use manipulatives,
diagrams and lists to
explore problems
involving counting and
arranging objects

• understand logical
terms such as and, or,
not, some and all, and
use them correctly

• explore the use of
diagrams and simple
charts to represent all
possible outcomes of an
event or experiment

• compare and evaluate
multiple solution
strategies

• discover simple patterns
and sequences

About this Activity

• This activity is appropriate for the end of first grade or for second grade.

• The essence of this activity is not the manipulation of the numbers; it is knowing when you have
all the house numbers and communicating how you know.

• Have the students predict how many house numbers they think can be made with the three
digits before they begin to make their lists.

• Help students build an organized list of their combinations.

Teacher questions might include:

• How would you order the houses if they were all placed on a street?

• Would all the houses be on the same block? Would all the houses be on the same side of the
street?

• How would you decide where to place the houses?

• What would happen if you could use a digit twice? Three times? How many more house numbers
do you think you would get? Make a list to check your guess.

Where do we go from here?

Organize a new set (e.g. 1, 3, 6) which has two odd digits and one even digit. Students list the
possible house numbers and place them on a street. Compare this street with the original street.
How many house numbers could be made if some or all the digits could be the same?

Suppose one digit is added to the original group to give the set 3, 2, 5 and 8. Estimate how
many house numbers would be possible. Make all the possible house numbers.

Form all possible house numbers given these rules to follow:

a) the digits 0-9 can be selected,

b) no house number begins with 0,

c) the house number has three different digits, and

d) the sum of the digits in the house number is 6.

Suggested Teaching Resources

Burns, M. (1992). About teaching mathematics, a K-8 resource. Sausalito, CA: Marilyn Burns Educational
Associates.

Burns, M. (1992). “A three hat day.” Math and literature (K-3). Sausalito, CA: Math Solutions Publications.

Cook, M. (1989). “Ideas for teachers.” Arithmetic Teacher, 36(5).

Merriam, E. & Karlin, B. (1993). Twelve ways to get to eleven. New York, NY: Simon & Schuster.
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Sample Activity:
Intermediate

If students are not already familiar with the directed graph notation, the teacher should introduce it
(without the terminology “directed graph”) as a means of displaying information about four stu-
dents in a Tic-Tac-Toe tournament. In the tournament each pair of players plays one game. On the
digraph, an edge connects two players who have played a game and the arrow indicates the win-
ner.

The Checkers Tournament

Adapted with

permission from:

Mathematical Science

Education Board

(1993). Measuring up:

Prototypes for

mathematics assessment.

National Academy

Press, p. 31-41.

The teacher should explain the situation and ask questions such as:

Which students has Linda played? (Lourdes, Ed, and Bob.)

Which games did she win? (Lourdes and Ed)

Which games did she lose? (Bob)

Find two students who have not yet played each other. (Lourdes and Ed; Ed and Bob)

Who has played the fewest games? (Ed has played only one game.)

The teacher should pass out copies of the student sheet and read through the introduction and
question 1 to be sure everyone has an understanding of the meaning of the dots and arrows.

Student Sheet

Six children are in a checkers tournament.
The figure below shows the results of the games played so far.

1. What information is shown by the graph?

2. How many games have been played by the children so far?

3. Make a table showing the current standings of the six children.

4. The tournaments will be over when everybody has played everybody else exactly once.
Tell how many more games need to be played to finish the tournament. Explain your reasoning.

5. Dana and Liu have not played yet. Explain who you think will win when they play and
your reasons.

Linda

Bob

Lourdes

Ed

Linda Lourdes
indicates Linda won
over Lourdes.

Robin Alex

Dana

Tanisha

Liu

Josẽ
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About this Activity

This task assumes children have had prior experience in translating information from one form to
another.

• This task was chosen for its richness in the use of vertex-edge graphs to represent a game situa-
tion.

• The teacher needs to explain that, in the picture, an arrow like that below means that Linda won
the game against Ed. Here the arrow points from the winner to the loser.

One possible way to assess this activity would be to use a rubric where the characteristics are:

High response: understands various components of the graph; all answers are correct; all argu-
ments are justified.

Medium response: may make some incorrect conclusions; does not present a complete argument;
may have difficulty connecting the directed graph notation with the standings table.

Low response: little awareness of the relationships between the directed graph and the games
played; answers may be incorrect; arguments lack justification.

Where do we go from here?

Several variations of this problem can be explored. One can add players, add or change the direc-
tions of the arrows, and ask other kinds of questions - for example, If there were 7 players, how
many games would be needed if everyone played everyone else exactly once?

One can extend the setting to relations that are transitive - for example, an arrow pointing from A
to B means that A is taller than B. This relation, unlike the one in this task, is transitive, and so one
can infer that if there are arrows from A to B and from B to C, then there must be an arrow from A
to C.

Set up a tournament in the classroom or keep track of the results of a neighborhood sports league.
Challenge the students to use a directed graph to summarize the results. What information is not
included in a directed graph?

Recommended Teaching Resources

Erickson, T. (1986). Off & running: The computer offline activities book. University of California, Berkeley, CA: EQUALS,
Lawrence Hall of Science.

Fraser, S., Stenmark, J., Downie, D., Joseph, H., Kaseberg, A., Campbell, C., Gilliland, K., & Thompson, V. (1982).
SPACES: Solving problems of access to careers in engineering and science. Palo Alto, CA: Dale Seymour Publications.

Kenney, M. (Ed.). (1991). Discrete mathematics across the curriculum K - 12: 1991 yearbook. Reston, VA: NCTM.

Maletsky, E. (Ed.). (1987). Teaching with Student math notes (pp. 63-68). Reston, VA: NCTM.

Mathematical Sciences Education Board (MSEB). (1993). Measuring up: Prototypes for mathematics assessment.

These activities

reinforce the

following key idea in

the K-12 Components

at the intermediate

level:

• use vertex-edge graphs
to interpret relation-
ships between or
among objects (e.g.,
persons, events, loca-
tions)

Linda
Ed
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Sample Activity
Middle School

Adapted with

permission from:

Phillips, E., Gardella, T.,

Kelly, C., & Stewart, J.

(1991). Patterns and

functions: Curriculum

and evaluation standards

for school mathematics

addenda series, grades 5-

8. National Council of

Teachers of

Mathematics, p. 11.

The Tower of Hanoi

This puzzle consists of three pegs and several disks of graduated size with holes in their centers.
The disks are stacked from largest on the bottom to smallest on top as shown. If the disks are
moved one at a time to another peg and if a larger disk cannot be placed on a smaller disk, what is
the fewest numbers of moves needed to move the disks from one peg to another peg, so that they
are arranged from largest on the bottom to smallest on top? Explore the minimum number of
moves needed to transfer stacks from 1 to 5 disks tall.

Have students make a table with class data. A possible table is:

No. of disks No. of moves Recursive pattern

1 1

2 3 = 2(1) + 1 = 3

3 7 = 2(3) + 1 = 7

4 15 = 2(7) + 1 = 15

5 31 = 2(15) + 1 = 31

Have students graph their results and predict what will happen with 6 disks and beyond. Then have
them try the puzzle with six or more disks.

Students can be guided to view the task recursively, that is, to express the number of moves
needed to solve the puzzle with one more disk in terms of the number of moves needed for the
puzzle with the current number of disks. If one disk is added to the pile, the number of moves
needed to transfer the new pile is equal to twice the number of moves needed to transfer the pre-
vious pile plus 1. One more disk on a pile means you have to do the moves for the former pile
twice to be ready to put the new disk on top. With help they can discover and use the recursive
pattern shown at the right of the table above to predict required moves for other numbers of disks.

As students develop an understanding of the recursive pattern, encourage them to look at the
table they made to find another pattern, an inductive process. Using their past experience with
finding powers of 2, help them see the relationship between their chart and the “Powers of 2”
chart. (Adding a new column which lists Powers of 2 to the table the students made above may
help.)

No. of disks Powers of 2 No. of moves

1 21 =2 1 21 -1 = 1

2 22 =4 3 22 -1 = 3

3 23 =8 7 23 -1 = 7

4 24 =16 15 24 -1 = 15

5 25 =32 31 25 -1 = 31
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About this Activity

• The Tower of Hanoi problem is believed to originate in the great temple at Benares, India. The
story claims there are three diamond needles and sixty-four golden disks, graduated in size, near
the temple. The temple monks are to move the disks with the same rules as in the game. When
all disks have been transferred, the world will come to an end. If the monks start at the begin-
ning of time and make one move per second, how close are we to having the world end? This
provides an opportunity to estimate. (There are 264-1 = 18 446 744 073 709 551 615 moves
which is about 5.8 X 1013 years.)

Where do we go from here?

• With graphing calculators, students can plot the number of disks against the number of moves
and find a curve of best fit. Use calculators to do such things as predict the number of moves
required to move 10 disks or to compute how many disks there are if 1023 moves are required.

• If you color code disks from smallest to largest as red, green, blue, yellow, orange, you can high-
light the relationship between the moves in this problem to the binary code. The chart below
shows the first 7 moves. Encourage students to use the code to work the puzzle with increasing
number of pegs.

These activities

reinforce many of

the key ideas in the

K-12 Components at

the middle school

level, especially:

• create, communicate,
and defend a strategy
for winning a game

 • explore patterns in
more complex geomet-
ric and numerical
problems (e.g., Fi-
bonacci sequence,
Pascal’s triangle)

• employ recursion in
counting contexts (e.g.,
moves in Tower of
Hanoi puzzle)

largest smallest

Move # orange yellow blue green red description of move

0 0 0 0 0 0 start

1 0 0 0 0 1 move red

2 0 0 0 1 0 move green

3 0 0 0 1 1 move red onto green

4 0 0 1 0 0 move blue

5 0 0 1 0 1 move red not on blue

6 0 0 1 1 0 move green to blue

7 0 0 1 1 1 red to green on blue

Recommended Teaching Resources

Chavey, D. (1987). Drawing pictures with one line, module #21. Lexington, MA: COMAP.

Jacobs, H.R. (1995). Mathematics: A human endeavor. New York, NY: W.H. Freeman & Co.

Maletsky, E. (Ed.). (1987). Teaching with Student math notes (pp. 1-6, 13-18). Reston, VA: NCTM.

Phillips, E., Gardella, T., Kelly, C., & Stewart, J. (1991). Patterns and functions: Curriculum and evaluation standards for
school mathematics addenda series, grades 5-8. Reston, VA: NCTM.

Seymour, D. (1986). Visual patterns in Pascal’s triangle. Palo Alto, CA: Dale Seymour Publications.
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Sample Activity
High School

The bank in a small midwestern town has the capacity of providing four tellers to work simulta-
neously. Customers enter a queue and are served by the first available teller. Data was collected on
a Friday that was a pay day for many of the companies and businesses in town. A certain number
of one-minute intervals were sampled. In each interval, the number of customers who entered the
line during that interval was counted. The following table shows the proportion of sampled inter-
vals for which a given number, k, of customers entered the line.

Adapted with

permission from:

Sloyer, C., Copes, W.,

Sacco, W., & Stark, R.

(1987). Queues, will this

wait never end!

Chicago, IL: Janson

Publications, Inc.

Wait for Me!

This table is interpreted in the following way: For 10% of the one-minute intervals sampled, no
customers arrived; for 22% of the one-minute intervals sampled, exactly one customer arrived, and
so on.

1. Determine the average number of arrivals for the sampled intervals. (2.58 arrivals per minute)

2. Based on the data collected, estimate the average number of arrivals per minute during the day.

The following table contains data on customer service times. The first row gives service times j
(rounded up to the nearest 30 seconds) and the second row is the relative frequency of j.

Service times (seconds)

j 30 60 90 120 150 180 210 240

Fj 0.24 0.30  0.17 0.12 0.03 0.09 0.01 0.04

Relative frequency of j

3. Determine the average service time. (87.3 seconds)

Use a random number generator to simulate the number of arrivals for each minute of a 30 minute
period. Use a random number generator to simulate the amount of service time required for each
arrival. We have now defined the “workload” which the bank will face during one possible 30
minute interval.

4. Examine the capability of the bank to process the workload if two tellers are available.

5. Examine the capability of the bank to process the workload if three tellers are available.

6. Examine the capability of the bank to process the workload if four tellers are available.

Number of arrivals

k 0 1 2 3 4 5 6 7

Fk 0.10 0.22 0.16 0.31 0.08 0.03 0.06 0.04

Relative frequency of k in the sample of one-minute intervals.
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About this Activity

• Note that the first table is in minutes, the second in seconds.

• When simulation is used, many replications are made. Mathematicians are more comfortable with
the results if they involve many replications. The variability of the results can be analyzed and
certain quantities can be estimated, such as the probability that the average waiting time exceeds
a certain value. The computer is a perfect tool for doing these repetitive calculations.

• A table of random numbers or the random number function on a graphing calculator can be used
to simulate the number of arrivals and the service times.

• A discussion of what is a reasonable amount of time for customers to wait can be centered around
exercise 3. No customer should wait over ______ minutes.

• What is the average wait time in exercises 4 - 6?

• Since the addition of more tellers reduces customer wait time, why wouldn’t the bank just always
keep the maximum number of tellers on duty?

Where do we go from here?

We have modeled a very realistic situation by making assumptions to simplify the problem. Gener-
ally, banks have busy periods. How could we adjust the simulation to reflect both busy and slack
periods? How could the simulation be adjusted to simulate an entire day at the bank and then how
could it be adjusted to simulate several days, taking into account some days may be busier than
others? How would knowing about slack and busy periods influence staffing schedules?

Examine two queuing methods. In the first, the line forms at each window. In the second method,
there is a single queue and tellers serve customers from the head of the line. Given identical service
and arrival patterns, is one system better than another? What other factors should be taken into
account?

Recommended Teaching Resources

Consortium for Mathematics and Its Applications (COMAP). (1997). For all practical purposes: Introduction to contem-
porary mathematics (4th edition). New York, NY: W.H. Freeman & Company.

Gnanadesikan, M., Schaeffer, R.L., & Swift, J. (1987). The art and technique of simulation: Quantitative literacy series.
Palo Alto, CA: Dale Seymour Publications.

Maletsky, E. (Ed.). (1987). Teaching with Student math notes (pp. 1-6, 13-18). Reston, VA: NCTM.

Meiring, S.P., Rubenstein, R.N., Schultz, J.E., deLange, J., & Chambers, D.L. (1992). A core curriculum: Making math-
ematics count for everyone: Curriculum and evaluation standards for school mathematics addenda series, grades 9-12:.
Reston, VA: NCTM.

Sloyer, C., Copes, W., Sacco, W., & Stark, R. (1987). Queues, will this wait never end! Chicago, IL: Janson
Publications, Inc.

High School Mathematics and Its Applications Project (HiMAP) has developed modules which can be used to
integrate discrete topics into an existing curriculum. This is a project of the Consortium for Mathematics and Its
Applications (COMAP): Lexington, MA 1-800-772-6627.

An excellent Internet resource is the CHANCE database: http://www.geom.umn.edu/docs/education/chance/

This activity

reinforces many of

the key ideas in the

K-12 Components at

the High School

Graduation Standard

Level:

• use concepts of order
and repetition to
differentiate situations
involving permutations
and combinations or
other techniques of
counting

• investigate algorithmic
thinking to solve
problems involving
social choice and
decision making (e.g.,
weighted voting, fair
division, apportion-
ment)
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Sample Activity:
Beyond High
School

Consider this social security number: 189-31-9431. What information about the holder can be de-
duced from the number? Only that the holder obtained it in Pennsylvania. An Illinois driver’s license
number is 1225-1637-2133. What information about the holder can be deduced from this num-
ber? This time we can determine the date of birth, gender, and much about the person’s name.

These two examples illustrate the extremes in coding personal data. The social security number has
no personal data encoded in the number. It is entirely determined by the place and time it is issued,
not the individual to whom it is assigned. In contrast, in some states the driver’s license numbers
are entirely determined by personal information about the holders. It is no coincidence that the un-
sophisticated social security numbering scheme predates computers. Agencies that have large data
bases that include personal information such as names, gender, and dates of birth find it conve-
nient to encode these data into identification numbers. Coding license numbers solely from
personal data enables automobile insurers, government entities, and law enforcement agencies to
determine the personal data from the number.

Many states encode the surname, first name, middle initial, date of birth, and gender by quite so-
phisticated schemes. In one scheme the first four characters of the license number are obtained by
applying the Soundex Coding System to the surname as follows:

1. Delete all occurrences of h and w. (For example, Schworer becomes Scorer and Hughgill becomes
uggill.)

2. Assign numbers to the remaining letters as follows:

a,e,i,o,u,y  ➞ 0 b,f,p,v ➞ 1 c,g,j,k,q,s,x,z ➞ 2

 d,t ➞ 3 l ➞ 4 m,n ➞ 5

r ➞ 6

3. If two or more letters with the same numerical value are adjacent, omit all but the first. (For
example, Scorer becomes Sorer and uggill becomes ugil.)

4. Delete the first character of the original name if still present. (Sorer becomes orer.)

5. Delete all occurrences of a,e,i,o,u, and y.

6. Retain only the first three digits corresponding to the remaining letters: append trailing zeros if
fewer than three letters remain; precede the three digits by the first letter of the surname.

What are possible advantages of this system?

There are many schemes for encoding the date of birth and the gender in driver’s license numbers.
For example, the last five digits of Illinois and Florida driver’s license numbers capture the year and
date of birth as well as the gender. In Illinois, each day of the year is assigned a three-digit number
in sequence beginning with 001 for January 1. However, each month is assumed to have 31 days.
Thus, March 1 is given the number 063 since both January and February are assumed to have 31
days. These numbers are then used to identify the month and day of birth of male drivers. For fe-
males, the scheme is identical except 600 is added to the number. The last two digits of the year of
birth, separated by a dash, are listed in the fifth and fourth positions from the end of the driver’s
license number. In Florida, the scheme is the same except each month is assumed to have 40 days
and 500 is added for women.

Adapted with

permission from:

Garfunkel, S. (1997). For

all practical purposes:

Introduction to

contemporary

mathematics, fourth

edition. New York, NY:

W.H. Freeman &

Company. pp. 365-378.

Encoding Personal Data
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• What would be the Illinois driver’s license of a man born October 13, 1940? of a woman born that
day? What would the licenses be in Florida?

• Using variables m for month and b for birth date, have students write formulas to determine the
last five digits of Florida male and female driver’s licenses.

• Have students work backwards to determine the dates of birth of people whose Florida Driver’s
licenses end in 42218 and 53953.

• Have students create a computer program to “issue” driver’s licenses according to a devised algo-
rithm.

About this Activity

• The information given is from the “Coding Information “ part of the For All Practical Purposes text.
The part adapted here is selected to give an introductory look at an area of discrete mathematics.

• Social security numbers issued in Minnesota begin with the first three digits lying between 468 and
477. For a table showing which digits correspond with which states, see p. 367 of For All Practical
Purposes.

• The Soundex Coding System is an error-correcting scheme. It is designed so that alternative
spellings and likely misspellings of a name result in the correct coding of the name. For example,
have the students use the Soundex Coding System to encode Erickson, Ericksen, Eriksen, Ericson,
and Ericsen. Under this type of encoding the computer searches the data bank for records encoded
E-625 despite which variation of spelling is entered.

• Advanced students should complete one or more of the explorations below.

Where do we go from here?

Examine the New York Driver’s License numbering system described on page 368 of For All Practical
Purposes. Determine driver’s license numbers for the members of your study group (family, etc.)

Examine the state of Utah method and the Canadian province of Quebec method of issuing driver’s
license numbers. Evaluate and compare both methods described on page 376 of For All Practical
Purposes.

Prepare a report on coded information in your location. Possibilities include student ID numbers or
bar codes used by the school and city library.

Imagine you are employed by a small company that doesn’t have identification numbers for em-
ployees. Prepare a report for your boss discussing various methods and make a recommendation.

Recommended Teaching Resources

Consortium for Mathematics and Its Applications (COMAP). (1997). For all practical purposes: Introduction to contem-
porary mathematics (4th edition). New York, NY: W.H. Freeman & Company.

Gallian, J. (1992). “Assigning driver’s license numbers.” Mathematics Magazine, 64, 13-22.

Malkevitch, J., Froehlich, G., & Froehlich, D. (1991). Codes galore, module #18. Lexington, MA: COMAP.

Roughton, K. & Tyckosen, D.A. (1985, June). “Browsing with sound: Sound-based codes and automated authority
control.” Information Technology and Libraries, 130-136.

This activity

reinforces the

following key idea in

the K-12 Components

at the High School

Beyond Graduation

Standard Level:

• explore and analyze a
variety of algorithms
(e.g., simple sorting
algorithms, data coding,
backtracking).
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Glossary

This glossary is an attempt to clarify the meaning of terms used in this document. A combination of
formal definitions, contextual situations, and sample problems has been provided with that goal in
mind. Terminology in the field of discrete mathematics is not standardized. Some terms used in this
document may be referred to by different names in other documents. For example, “vertex-edge
graphs” may be called “connected graphs” or “finite graphs” elsewhere.

A symbolic notation for the connectedness of the vertices of a graph. A one is placed in row i, col-
umn j provided that there is an edge connecting vertex i with vertex j. For example, some
group-behavior studies show who influences who in a social setting. The directed graph shown
shows a set of such influences for a given set of individuals.

A Brief Glossary for
Discrete Mathematics

adjacency
matrix

The adjacency matrix for this graph is represented below.

E M L K A

Eduardo 0 1 0 0 0

Mai 0 0 1 0 0

Lani 0 0 0 0 1

Kari 0 1 1 0 1

Al 1 0 1 0 0

Eduardo

Mai

Lani

Al

Kari

An explicit list of directions for carrying out a procedure. Designing and applying algorithms is an
important method for solving problems.

A systematic method involving thinking backward through an enumeration process to list out all
possible cases in a complicated graph analysis problem.

Consider the example of a maze where at each node you can continue by going down the left,
right, or center paths. When you reach a dead end, the backtracking method can be used. By al-
ways choosing left until you reach a dead end, you can retreat one step. If you went left, try the
center path; if you had followed center, try the right path. But if you went right, retreat another
step. Continue in this manner until the path through the maze is found.

A path in a vertex-edge graph that begins and ends with the same vertex.

Let S be a set. A combination of S of size k is an unordered selection of k elements of S (a subset of
S of size k). For example, there are four combinations of size 3 taken from the set {a,b,c,d}: {a,b,c},
{a,b,d}, {a,c,d}, {b,c,d}.

Note: {a,b,c} = {b,a,c}

algorithm

backtracking

circuit

combination
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Let A be a subset of U. The complement of A (denoted A) is the set of all elements x in U that are
not in A. In the diagram below the complement of A is shaded:

complement
(of a set)

conditional If p and q are statements, the statement “if p then q” is called a conditional statement. The state-
ment p is called the antecedent (hypothesis), and the statement q is called the conclusion. The
conditional “if p then q” is symbolized “p → q”. For example, “If it is Tuesday, then I have Math
Club.”

If p and q are statements, the conjunction of p and q is the statement “p and q.” The conjunction
of p and q is symbolized as “p   q.”

For example, p = “It is Tuesday.” and q = “I have Math Club today.”

p   q is “ It is Tuesday and I have Math Club today.”

Two vertices u and v in a graph are connected if there is a path in the graph from one to the other.
The whole graph is connected if every pair of vertices is connected.

The contrapositive of the conditional statement “if p then q” is the statement “if not q, then not
p.” Symbolically, the contrapositive of p → q is ~q → ~p. The conditional and the contrapositive
are equivalent statements (one is true if and only if the other is true). For example, the statement is
“If it is Tuesday, then I have Math Club today.” The contrapositive is “If I do not have Math Club to-
day, then it is not Tuesday.”

The converse of the conditional statement “if p then q” is the statement “if q then p.”
For example, the statement is “If it is Tuesday, then I have Math Club.” The converse is “If I have
Math Club, then it is Tuesday.”

The path in a weighted graph that is the longest in terms of the variable under investigation (e.g.
distance, time, cost).

Let A and B be subsets of a set U. The difference of B minus A (denoted B – A) is the set of all ele-
ments that are in B and not in A.
For example, let U be the set of all fruit, A ={apple, grape, pear}, B ={apple, banana, pear, kiwi};
then B – A = {banana, kiwi}

A vertex-edge graph in which each edge has been given a direction. Directed graphs are also
known as digraphs. These directions may be used to depict routes, one-way streets, power rela-
tionships, etc.

conjunction

connected graph

contrapositive

converse

critical path

A
U

u v

u

t

v

difference (of
two sets)

directed graph

∨

∨
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If p and q are statements, the disjunction of p and q is the statement “p or q” denoted “p ∨ q”.
Unless otherwise stated, it is inclusive which means “either p or q or both.” For example, p = “It is
Tuesday.” and q = “I have Math Club today.”  p ∨ q is “Either it is Tuesday or I have Math Club to-
day or it is both Tuesday and Math Club day.”

A path which contains each and every edge of a connected graph exactly once. When an Euler path
starts and ends at the same vertex, it is called an Euler circuit.

The sequence 1, 1, 2, 3, 5, 8, 13…in which each successive term is the sum of the preceding two
terms. This sequence may be seen in the grouping of black and white keys on the piano and in
many naturally occurring objects. The golden pincushion of a daisy consists of tiny little flowers ar-
ranged in two sets of curved lines which spiral out from the center, 21 spiraling clockwise and 34
counterclockwise. The spiraling of the knobbles of pineapples, scales of pine cones, and plant
leaves around a stem are among other natural objects demonstrating parts of the Fibonacci se-
quence. For more examples of the Fibonacci sequence in nature, see the following website:
www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

A diagram that illustrates graphically the sequence of operations to be performed in executing an
algorithm or to assist in algorithmic thinking.

(See multiplication principle.)

disjunction

Euler path

Fibonacci
sequence

flow chart

graph
(vertex-edge
graph)

graph theory

Hamiltonian
path

highway
inspector
problem

inclusion/
exclusion
principle

The theoretical study of vertex-edge graphs.

In a vertex-edge graph, a path that contains each vertex exactly once. If the path returns to the
starting vertex it is called a Hamiltonian circuit.

A classic problem in discrete mathematics in which a thrifty highway inspector has the problem of
finding a route that takes her/him over each section of the highway exactly once.

If S is a finite set, let n(S) denote the number of elements in S. If A and B are finite sets, the inclu-
sion/exclusion principle states that n(A∪B) = n(A) + n(B) - n(A∩B).

For three finite sets, A, B, and C, the principle states that n(A∪B∪C) =

[n(A) + n(B) + n(C)] - [n(A∩B) + n(A∩C) + n(B∩C)] + n(A∩B∩C).
[# in all sets combined] - [# in all pairwise intersections] + [# in intersection of all 3]

The general formula for four or more sets follows a similar pattern of overcounting and
undercounting.

A

B

C

D

E

fundamental
counting
principle

A mathematical structure consisting of vertices and edges in which some pairs of vertices are con-
nected by edges. For example, let the set of vertices be {A, B, C, D, E} and the set of edges be
{{A,B}, {A,C}, {A,D}, {B,C}}; then the graph is:
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The process of making generalizations from several known cases. An important problem-solving
skill is the “discovery of a pattern,” a skill which requires inductive reasoning.

Let A and B be subsets of a set G. The intersection of A and B, denoted A ∩ B is the set of elements
x in G such that x is in A and x is in B. For example, let G be the set of all fruit, A = {apple, grape,
pear}, B = {apple, banana, kiwi, pear}; then A ∩ B = {apple, pear}

Repetition. Iteration involves performing an algorithmic process over and over again, each time us-
ing the result of the previous step as the starting point of the new step. The Koch snowflake is an
iterative process, as is the compounding of interest on a bank account.

Let S1 be an equilateral triangle, and define Sn + 1 in terms of Sn as follows. Replace the middle
third of each edge of Sn by the two outward-directed edges of an equilateral triangle erected on
the deleted middle. The first three figures in this sequence are shown below:

inductive
reasoning

intersection
(of two sets)

iteration

Koch snowflake

The Koch snowflake is the figure toward which the sequence converges.

A statement is a sentence that is either true or false. Statements can be combined by logical
connectives to form other statements. The most common logical connectives are not, and, or,
if…then, and if and only if.

A type of mathematical proof that uses the following reasoning: suppose P(n) is a statement that
depends on positive integer n, and let m be a positive integer.

If (i) (Basis step ) P(m) is true; and

(ii) (Inductive step) for all positive integers k ≥ m, P(k+1) is true if P(k) is true;

Then P(n) is true for all positive integers n ≥ m.

For a proof by induction, we must show the two steps to be true. First, we verify that a statement
holds for the least positive integer m. Then for the inductive step, we assume k is a positive integer
greater than or equal to m and that the statement holds for k. Using this assumption, we show the
statement is true for the next positive integer k+1. With this completed, we can conclude that the
statement holds for all positive integers n ≥ m.

If X can be done in n1 different ways, and independently, Y can be done in n2 different ways, then X
and Y together can be done in n1 n2 (“n1 multiplied by n2”) different ways.

To find the number of ways of making several decisions in succession, multiply the number of
choices that can be made in each decision. In a series of choices, if the first step can be done in n1
ways, the second in n2 ways, the third in n3 ways, and the last decision in nk ways, then the number
of possible ways of making the choices is

n1 • n2 • n3 •…• nk

(The multiplication principle is sometimes referred to as the Fundamental Counting Principle.)

logical
connectives

mathematical
induction

multiplication
principle
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If p is a statement, the negation of p is the statement “not p.” The negation of p is symbolized by
“~p.” For example, p = “Math Club meets today.” The negation of p is “Math Club does not meet
today.”

(See graph.)

The problem of finding a solution, among all solutions, that optimizes some feature. Sometimes one
seeks a “largest,” sometimes a “smallest,” or sometimes a “best” solution based on a variable in
the problem.

One of the possible results of a probability experiment. For instance, if we toss a coin, there are
two outcomes: heads or tails. If we toss a die, there are six outcomes: 1, 2, 3, 4, 5, or 6.

Let S be a set. A collection of nonempty subsets P1, P2,…, Pk of S is called a partition of S if the
subsets are pairwise disjoint (for each possible pair, their intersection is the empty set) and when
you join them all together, you get the set S (P1 ∪…∪Pk = S). For example, {1}, {2,3}, {4,5,6} is a
partition of {1, 2, 3, 4, 5, 6}.

A walk from one vertex to another in which no edge is repeated.

negation

optimization
problem

outcome

partition of a
set

path

permutation

pigeonhole
principle

predicate
calculus

A path from A to C could be e
1
 e

2
 or e

5
 e

4
 e

6
 e

1
 e

2
, but not e

6
 e

4
 e

5
 e

6
 e

3
 which repeats one edge.

Let S be a set. A permutation of S is an ordered arrangement of the elements of S. For example,
there are six permutations of the set of letters {a, b, c}: {a,b,c}, {a,c,b}, {b,a,c}, {b,c,a}, {c,a,b}, and
{c,b,a}.

If n + 1 objects are placed in n pigeonholes, at least one of the pigeonholes must contain at least
two objects.

The pigeonhole principle is an important way of showing that there is at least one solution. The
pigeonhole principle can be used to solve problems like the following: A drawer contains unsorted
black, blue, brown, and red socks. If I pull socks from the drawer in the dark, how many socks must
I pull to be certain I have a matching pair?

The logic of ordinary compound statements (statements built from other statements by means of
logical connectives) plus statements that include the quantifiers     (for all) and    (there exists). For
example, in the predicate calculus the negation of “All grass is green” is “Some grass is not
green.”

The determination of a succession of elements by an operation on one or more preceding elements,
according to some prescribed rule involving only a finite number of steps. For example, if the initial
condition of a recurrence relation specifies the first term is one and each succeeding term is twice
the previous term, then the sequence is 1, 2, 4, 8, 16 and so on. Expressed recursively, if x1 = 1,
then xn = 2(xn-1) for n ≥ 2.

recursion

e1
A

B

C

D

E

e2

e3e4

e5
e6

A E
network
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Problems that involve finding paths or circuits in a vertex-edge graph. Examples are the traveling
salesperson problem and the highway inspector problem.

2, 4, 6, 8, 10…is a sequence. The numbers are the terms of the sequence and often referred to as
the first term, second term, third term, and so on. In a sequence a function (rule or formula) maps
each integer greater than or equal to a fixed integer to a term in the sequence. In the example of
even numbers, the function “2 times the term number” gives the value of the term. Sometimes se-
quences are finite and sometimes they are infinite. We speak of a sequence a1, a2, a3,…., an,…and
mean that a1 is the first term of the sequence, a2 is the second term of the sequence, and so forth.

The sum of the consecutive terms of a sequence. The finite sequence 2,4,6,8 is related to the series
2 + 4 + 6 + 8 which has a sum of 20.

The notion of a set is fundamental throughout mathematics: sets of blocks, sets of numbers, sets of
functions, and so forth. Set theory addresses such topics as how sets can be combined to make
other sets (union, intersection, complement) and relationships that exist between these operations.

The problem of finding a minimal weight path from any vertex to any other vertex in a vertex-edge
graph.

An algorithm that sorts a list of elements such as numbers, letters, words, or objects, into a prede-
termined order (for example, alphabetizing a list of names or arranging a list of integers in
descending order.)

A spanning tree of a vertex-edge graph is a tree formed by using edges and all the vertices of the
graph.

A D

B C

G
E

F

1

3
2

16

154
11

7
5

10

6
12

A D

B C

G
E

F

1

3
2

16

154
11

7
5

10

6
12

Graph M

Graph M

routing
problems

sequence

series

set theory

shortest path
problem

sorting
algorithm

spanning tree

A spanning tree of least or minimal weight (or value) is called a minimum spanning tree

spanning tree

minimum spanning tree
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The classic discrete mathematics problem of finding a route that will allow a salesperson to visit
each town in a territory exactly once. The salesperson would like to find the circuit which minimizes
his/her total mileage.

A connected vertex-edge graph which contains no circuits (i.e. no path begins and ends with the
same vertex).

Examples:

traveling
salesperson
problem

tree

tree diagram A tree diagram is used to represent the outcomes of a sequence of events whose outcomes at each
stage may influence future outcomes.

For example, the Elmdale Soccer Club has boys and girls from about 500 families. When a game is
canceled, the club president calls two families who in turn call two families, each of whom calls
two more families and so on. This is called a telephone calling tree and can be represented by a
tree diagram that starts like this:

Each vertex is a person called, who in turn calls two more people. Each edge represents a call. To
find how many people have been called, we could count the vertices.

Let A and B be subsets of a set G. The union of A and B, denoted by A U B, is the set of all elements
x in G such that x is in A or x is in B (or both).

For example, let G be the set of all fruit, A ={apple, grape, pear}, B = {apple, banana, kiwi, pear} so
A U B = {apple, banana, grape, kiwi, pear}

A pictorial method for visualizing abstract sets and their relationships. The figure below is a Venn
diagram for three sets A, B, and C.

If U is the set of all students who are sophomores in high school this year and A is the set of stu-
dents who are have studied French, B is the set of students who have studied Spanish, and C is the
set of students who have studied German, then the students that are in U outside of any circles
can be described as students who have not studied French, Spanish, or German.

union
(of two sets)

Venn diagram

A B

C

U
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(See graph)

A vertex-edge graph that has a number called a weight assigned to each of its edges. The total
weight of the graph is the sum of the weights of all of its edges. The numbers in the graph below
show the distances between cities.

vertex-edge
graph

weighted graph

winning
coalition

A coalition of voters in favor of a measure is a winning coalition if the sum of its weights equals or
exceeds the quota q. For example: There are 24 votes at a stockholders’ meeting and a quota of 13
or more votes is needed to pass a resolution. Ms. A controls 7 votes, Mr. B controls 3 votes, Mrs. C
controls 4 votes. Together they control 7+3+4 = 14 votes, so they can pass the resolution by all
voting in favor. Ms. A, Mr. B, and Mrs. C form a winning coalition in this case.

San Francisco
New York

Los Angeles
Paris

Chicago

New Orleans

347

1783

1858

1673

1171

4788

4133
3622

713

2451
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Chance Database

http://www.geom.umn.edu/locate/chance
Abstracts and full text articles in the news, a handbook for teaching a chance course and other teaching resources.

DIMACS

Center for Discrete Mathematics and Theoretical Computer Science - A National Science Foundation Science and
Technology Center
http://dimacs.rutgers.edu
Publications and resources for discrete mathematics and computer science, links to other sites, New Jersey State
Frameworks, public events, education and research programs, scientific achievements

Eisenhower National Clearinghouse (ENC)

http://www.enc.org
Resources for mathematics and science education, reform ideas, news items, search functions, links to other sites

Geometry Center

http://www.geom.umn.edu
Current projects, Web and Java applications, multimedia documents, software, video productions, geometry reference
archives, course materials, workshops, awards gallery

Math Archives

http://archives.math.utk.edu/topics/discreteMath.html
Constructive Theory of Discrete Mathematics, counting problems, Discrete Applied Mathematics (journal), Discrete
Mathematics (journal), links to other sites
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