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Abstract

Localized, stable nonlinear waves, often referred to as solitons, are of broad interest in mathematics and physics. They
are found in both continuous and discrete media. In this paper, a unified method is presented which is used to describe the
propagation of linearly polarized light as well as two polarization modes in a diffraction-managed nonlinear waveguide array.
In the regime of normal diffraction, both stationary and moving discrete solitons are analyzed using the Fourier transform
method. The numerical results based on a modified Neumann iteration scheme as well as renormalization techniques, indicate
that traveling wave solutions are unlikely to exist. An asymptotic equation is derived from first principles which governs the
propagation of electromagnetic waves in a waveguide array in the presence of both normal and anomalous diffraction. This
is termed diffraction management. The theory is then extended to the vector case of coupled polarization modes.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamics of discrete nonlinear systems dates back to the mid-fifties when Fermi, Pasta and Ulam (FPU) studied
dynamics of nonlinear springs[1]. Apart from the fact that the work of FPU motivated the discovery of solitons,
it also stimulated considerable interest in the study of discrete nonlinear media which possesses self-confined
structures (discrete solitary waves). Such waves are localized modes of nonlinear lattices that form when “discrete
diffraction” is balanced by nonlinearity. In physics a soliton usually denotes a stable localized wave structure, i.e.,
solitary wave. We shall use the term soliton in this broader sense (i.e., they do not necessarily interact elastically).
Discrete solitons have been demonstrated to exist in a wide range of physical systems[2–5]. For example, atomic
chains[6,7] (discrete lattices) with an on-site cubic nonlinearities, molecular crystals[8], biophysical systems[9],
electrical lattices[10], and recently in arrays of coupled nonlinear optical waveguides[11,12]. An array of coupled
optical waveguides is a setting that represents a convenient laboratory for experimental observations.

The first theoretical prediction of discrete solitons in an optical waveguide array was reported by Christodoulides
and Joseph[13]. Later, many theoretical studies of discrete solitons in a waveguide array reported switching, steering
and other collision properties of these solitons[14–19](see also the review papers[20,21]). In all the above cases, the
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localized modes are solutions of the well known discrete nonlinear Schrödinger (DNLS) equation which describes
beam propagation in Kerr nonlinear media (according to coupled mode theory). Discrete bright and dark solitons
have also been found in quadratic media[22], in some cases, their properties differ from their Kerr counterparts
[23].

In fact, the DNLS equation (and its “cousins” such as diffraction-managed discrete nonlinear Schrödinger
(DM-DNLS) or DNLS with a potential such as discrete BEC) is “asymptotically universal”. Namely it is the
discrete equation which emerges from either a weakly nonlinear Helmholtz equation with a suitable “potential” or
a weakly nonlinear continuous NLS equation with a suitable potential where the following terms are in balance:

(i) Slow variation in either distance (waveguide array) or time (for BEC);
(ii) linear terms induced by a potential which can be viewed as asymptotically separated localized potentials

(sometimes called the “tight binding approximation”);
(iii) nonlinearity.

It took almost a decade until self-trapping of light in discrete nonlinear waveguide array was experimentally
observed[11,12]. When a low intensity beam is injected into one or a few waveguides, the propagating field spreads
over the adjacent waveguides hence experiencing discrete diffraction. However, at sufficiently high power, the beam
self-traps to form a localized state (a soliton) in the center waveguides. Subsequently, many interesting properties
of nonlinear lattices and discrete solitons were reported. For example, the experimental observation of linear and
nonlinear Bloch oscillations in: AlGaAs waveguides[24], polymer waveguides[25] and in an array of curved
optical waveguides[26]. Discrete systems have unique properties that are absent in continuous media such as the
possibility of producinganomalous diffraction[27]. Hence, self-focusing and defocusing processes can be achieved
in the same medium (structure) and wavelength. This also leads to the possibility of observing discrete dark solitons
in self-focusing Kerr media[28]. The recent experimental observations of discrete solitons[11] and diffraction
management[27] have motivated further interests in discrete solitons in nonlinear lattices. This includes the newly
proposed model of discrete diffraction-managed nonlinear Schrödinger equation[29,30] whose width and peak
amplitude vary periodically, optical spatial solitons in nonlinear photonic crystals[31–33] and the possibility of
creating discrete solitons in Bose–Einstein condensation[34]. Also, recently, it was shown that discrete solitons in
two-dimensional networks of nonlinear waveguides can be used to realize intelligent functional operations such as
blocking, routing, logic functions and time gating[35–38]. In addition, spatiotemporal discrete solitons have been
recently suggested in nonlinear chains of coupled microcavities embedded in photonic crystal structures[39].

In this paper, we introduce the Fourier transform method to analyze both stationary and moving solitons in
nonlinear lattices. The essence of the method is to transform the DNLS equation governing the solitary wave into
Fourier space, where the wave function is smooth, and then deal with a nonlinear nonlocal integral equation for which
we employ a rapidly convergent numerical scheme to find solutions. A key advantage of the method is to transform a
differential-delay equation into an integral equation for which computational methods are effective. Mathematically,
the method also provides a foundation upon which an analytic theory describing solitons in nonlinear lattices can
be constructed. We shall consider in this paper two important models: the DNLS equation and the DM-DNLS
equation. Applying this method to the first model, shows that approximate traveling solitons possess a nontrivial
nonlinear “chirp”. Moreover, our results (both numerical and analytical) indicate that, unlike the integrable case
[40], a continuous exact traveling wave (TW) solution is unlikely to exist[41]. In the limit of small velocity,
we develop a fully discrete perturbation theory and show that slowly but not uniformly moving discrete solitons
are indeed “chirped”. An asymptotic equation is derived from first principles which governs the propagation of
electromagnetic waves in a waveguide array in the presence of both normal and anomalous diffraction. This is
related to the second model of DM-DNLS equation. The theory is then extended to the vector case of coupled
polarization modes.
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The new results of this paper can be summarized as follows:

• The derivation of the DNLS equation based on asymptotic multiple scale theory starting, e.g., from the Helmholtz
equation.

• The derivation of the scalar DM-DNLS equation from first principles. Using multiple scale asymptotic theory it
is found that the most general equation that governs the dynamics of light propagating in a diffraction-managed
waveguide array is

i
∂En

∂z
+ C(z)En+1 + C∗(z)En−1 + ν|En|2En = 0,

whereEn is the slowly varying envelope of the electric field at siten, ν a constant that measures the nonlinear
refractive index,C(z) a complex periodic function and∗ the complex conjugate.

• The derivation from first principles of the vector DM-DNLS equation which includes self and cross-phase
modulation as well as four-wave mixing (FWM) terms:

i
∂An

∂z
+ kwgAn + C(z)An+1 + C∗(z)An−1 + (|An|2 + b1|Bn|2)An + η1B

2
nA

∗
n = 0,

i
∂Bn

∂z
+ kwgBn + C(z)Bn+1 + C∗(z)Bn−1 + (|Bn|2 + b2|An|2)Bn + η2A

2
nB

∗
n = 0,

whereAn,Bn are the slowly varying envelopes of the two polarization fields at siten,b the cross-phase modulation
coefficient andη the strength of FWM term. We note that even the derivation of the constant diffraction case is
new.

• A numerical scheme based on renormalization of suitable norms to solve the nonlinear integral equation governing
solitons is proposed.

• Based on asymptotic and numerical evidence, we conclude that it is unlikely that auniformly moving TW exists
for the DNLS equation.

• The derivation of a new discrete nonlinear Schrödinger type equation.

The paper is organized as follows. InSection 2we formulate the basic physical model and describe the asymptotic
analysis that leads to the DNLS equation. Linear propagation is discussed in both normal and anomalous regimes.
In Section 3we introduce the discrete Fourier transform method to find soliton solutions and show how one can
obtain approximate TW solutions. Two numerical schemes are introduced. The first is based on modified Neumann
iteration and the second on renormalization. Analytical analysis of TWs based on asymptotic theory is provided in
Section 4which further support our conjecture thatexact TWs may not exist. Next, we set up inSection 5a physical
model that describes the propagation of two interacting optical fields in a nonlinear waveguide array with varying
diffraction. Moreover, the general scalar as well as vector equation governing diffraction management is derived
from first principles based on asymptotic theory.

2. Waveguide array

As mentioned above, an array of coupled optical waveguides is a setting that represents a convenient laboratory
for experimental observations and theoretical predictions. Such system (seeFig. 1) is typically composed of three
layers of AlGaAs material: a substrate with refractive indexn0, a core with higher index(n1) and surface with
index n0. By etching the surface of the waveguide, one forms a periodic structure which is called a waveguide
array. Self-trapping of light in the “y” (i.e., vertical) direction is possible (even in the linear regime) by virtue of
the principle of total internal reflection. On the other hand, the beam will diffract in the “x”-direction unless it is
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Fig. 1. AlGaAs waveguide structure. It is composed of three layers of AlGaAs material: a substrate with refractive index n0, a core with higher
index (n1) and surface with index n0. By etching the surface of the waveguide, one forms a periodic structure which is called a waveguide array.

balanced by nonlinearity. In the following we describe the propagation of light in such a periodic structure both in
the linear and nonlinear regimes.

2.1. Linear and nonlinear propagation

If the full width at half maximum (FWHM), τ, of the optical field is small compared to the distance, d, between
adjacent waveguides, then the propagating beams across each single waveguide do not “ feel” each other. Therefore,
the amplitude of each beam evolves independently according to the linear wave equation:

d2ψ0

dx2
+ [k2

0f
2
0 (x) − λ2

0]ψ0 = 0, (2.1)

where k0 is the wavenumber of the optical field in vacuum, f 2
0 the refractive index of a single waveguide and

λ0 the lowest eigenvalue (propagation constant) that corresponds to the ground state ψ0 (a bell shape eigenfunc-
tion). In this respect we have assumed that a single waveguide supports only a single mode. The more intricate
situation of multimode waveguide is also possible in which case λ0 → λj and ψ0 → ψj where j is the number
of modes occupied by a single waveguide. On the other hand when τ is on the order of d or larger, then there
is a significant overlap between modes of adjacent waveguide (see Fig. 2). In either case, the beam’s amplitude
is not constant in z anymore. Moreover, when the intensity of the incident beam is sufficiently high then the
refractive index of the medium will depend on the intensity which for Kerr media is proportional to the inten-
sity. In this case, the evolution of the total field’s amplitude � follows from Maxwell equations (see details in
Section 5.3):(

∂2

∂z2
+ ∂2

∂x2

)
� + (k2

0f
2(x) + δ|�|2)� = 0, (2.2)

where f 2(x) represents the refractive index of the entire structure and δ a small parameter to be determined later.
If the overlap between adjacent modes is “small” , which is valid in the regime µ ≡ τ/d 	 1, we expect the
power exchange to be slow. By introducing a slow scale Z = εz (ε is a small parameter to be determined later) we
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Fig. 2. Cross-section of the waveguide array and mode overlap.

approximate the solution to Eq. (2.2) as a multiscale perturbation series:

� =
+∞∑

m=−∞
Em(Z)ψm(x) exp(−iλ0z). (2.3)

In this notation, ψm(x) = ψ0(x − md) and f 2
m(x) = f 2

0 (x − md). Substituting the ansatz (2.3) into Eq. (2.2), we
find

+∞∑
m=−∞


− 2iελ0ψm

∂Em

∂Z
+ ε2ψm

∂2Em

∂Z2
+
(

d2ψm

dx2
+ k2

0f
2ψm − λ2

0ψm

)
Em

+ δ
∑
m′,m′′

EmEm′E∗
m′′ψmψm′ψ∗

m′′


 e−iλ0z = 0. (2.4)

Using Eq. (2.1) in the above equation, multiplying Eq. (2.4) by ψ∗
n exp(iλ0z) and integrating over x yields the

following:

+∞∑
m=−∞


(−2iελ0

∂Em

∂Z
+ ε2 ∂

2Em

∂Z2

)∫ +∞

−∞
dxψmψ∗

n + k2
0Em

∫ +∞

−∞
dx�f 2

mψmψ∗
n

+ δ
∑
m′,m′′

EmEm′E∗
m′′

∫ +∞

−∞
dxψ∗

nψmψm′ψ∗
m′′


 = 0. (2.5)

Here, �f 2
m ≡ f 2 − f 2

m which measures the deviation of the total refractive index from each individual waveguide.
As mentioned earlier, the overlap integral between adjacent waveguides is an important measure in determining the
dynamic evolution of the modes. With this in mind we shall assume that the overlap integrals appearing in Eq. (2.5)
can be approximated by∫

dxψmψ∗
m+N = aNεN,

∫
dx�f 2

m|ψm|2 = c0ε,

∫
dx�f 2

mψ∗
mψm±1 = c1ε. (2.6)

In order to understand the idea behind this scaling, we will assume that the mode at waveguide m can be modeled
by

ψm(x) = sech κ(x − md ), (2.7)
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where κ = 1/τ and τ is the FWHM. The reason for this choice is only to simplify the analysis. In fact, the real
modes of a step index waveguide has exponential behavior which is close to a sech-like mode. Other choices of
eigenfunctions with different exponential decays are possible, e.g., ψm(x) = exp[−(x − md)2/τ2] but the basic
ordering mechanism remains the same. A straightforward calculation shows that∫ +∞

−∞
dxψmψ∗

n = c e−|n−m|/µ (2.8)

with c being a constant of order 1. Since µ 	 1, then the choice ε = exp(−1/µ) provides a measure for the order of
magnitude for the overlap integral. Restricting the sum in Eq. (2.5) to nearest neighbors, i.e., m = n, n ± 1 (which
contribute to the order ε equation) and assuming that the only order 1 contribution comes from the nonlinear term
is when m = n = m′ = m′′ and that∫ +∞

−∞
dx |ψn|4 = gnl,

we find that to O(ε) the nonlinear evolution of En is given by

−2iλ0a0
∂En

∂Z
+ k2

0c0En + k2
0c1(En+1 + En−1) + gnl|En|2En = 0, (2.9)

where we have taken δ = ε to ensure maximal balance. By defining a new variables z̃ = Z/(2λ0a0), k2
0c1 = C,

En = Ẽ∗
n exp(−ik2

0c0z̃) we find that Ẽn satisfies (dropping the tilde)

i
∂En

∂z
+ C(En+1 + En−1) + gnl|En|2En = 0. (2.10)

To put the DNLS equation in dimensionless form, we define

En =
√
P∗φn exp(2iCz), z′ = z

znl
(2.11)

with P∗ and znl being the characteristic power and znl the nonlinear length scale. Then φn satisfies

i
dφn

dz
+ 1

h2
(φn+1 + φn−1 − 2φn) + |φn|2φn = 0 (2.12)

with znlC = 1/h2 and znl = 1/(gnlP∗). In the DNLS equation there are two important length scales: the diffrac-
tion and nonlinear length scales, respectively, defined by LD ∼ 1/C and znl = 1/(gnlP∗). Solitons which are
self-confined and invariant structures are expected to form when LD ∼ znl.

2.2. New discrete nonlinear Schrödinger type equation

We begin as before with the nonlinear Helmholtz equation with modulated Kerr coefficient:(
∂2

∂z2
+ ∂2

∂x2

)
� + (k2

0f
2(x) + δ(x)|�|2)� = 0, (2.13)

where f 2(x) is defined before, and δ(x) measures the local change of nonlinear refractive index along the transverse
direction. Importantly, note that as compared to Eq. (2.2), we now assume the nonlinear coefficient to be a spatially
dependent function. Moreover, we shall assume here, that the nonlinear index change δ(x) is an odd function
relative to each waveguide (i.e., δ(x) → δ(x − nd) = −δ(−x + nd )). Following the reasoning outlined before, we
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approximate the solution to Eq. (2.13) via a multiscale perturbation series given in Eq. (2.3). In this case, the linear
part remains the same but the nonlinear contribution changes to

N =
+∞∑

m=−∞

∑
m′,m′′

EmEm′E∗
m′′δ(x)ψmψm′ψ∗

m′′ e−iλ0z. (2.14)

Multiplying Eq. (2.14) by ψ∗
n exp(iλ0z) and integrating over x yields the following:

I =
∫ +∞

−∞
dxNψ∗

n exp(iλ0z) =
+∞∑

m=−∞

∑
m′,m′′

EmEm′E∗
m′′

∫ +∞

−∞
dx δ(x)ψ∗

nψmψm′ψ∗
m′′ . (2.15)

Since δ(x) is an odd function then there is no on-site contribution, i.e.:

Im=m′=m′′=n = |En|2En

∫ +∞

−∞
dx δ(x)|ψn|4 = 0.

Therefore, the leading order contribution comes by setting m = n ± 1,m′ = m′′ = n; m = m′′ = n,m′ = n ± 1;
m = m′ = n,m′′ = n ± 1. The nonlinearity in each of the cases is

Im=n±1,m′=m′′=n = Im=m′′=n,m′=n±1 = ±|En|2En±1

∫ +∞

−∞
dx δ(x)ψ∗

n|ψn|2ψn±1,

Im=m′=n,m′′=n±1 = ±E2
nE

∗
n±1

∫ +∞

−∞
dx δ(x)|ψn|2ψnψ

∗
n±1.

The linear portion follows the same derivation as in Section 2.1 and we shall assume that the waveguide function
f 2(x) is O(ε), and Z = ε2z, δ(x) = O(ε). Combining all the linear and nonlinear terms, we find

−2iλ0a0ε
2 ∂En

∂Z
+ k2

0c0εEn + k2
0c1ε

2(En+1 + En−1) + 2Q1ε
2|En|2(En+1 − En−1)

+Q2ε
2E2

n(E
∗
n+1 − E∗

n−1) = 0, (2.16)

where

a0 =
∫ +∞

−∞
dx |ψn(x)|2, c0ε =

∫ +∞

−∞
dx (f 2 − f 2

n )|ψn(x)|2,

c1ε
2 =

∫ +∞

−∞
dx (f 2 − f 2

n+1)ψn(x)ψn+1(x), Q1ε
2 =

∫ +∞

−∞
dx δ(x)|ψn(x)|2ψ∗

n(x)ψn+1(x),

Q2ε
2 =

∫ +∞

−∞
dx δ(x)|ψn(x)|2ψn(x)ψ

∗
n+1(x).

By defining new variables z̃ = Z/(2λ0a0), k2
0c1 = C, En = Ẽ∗

n exp(−ik2
0c0z̃/ε), we find that Ẽn satisfies

i
∂Ẽn

∂z
+ C(Ẽn+1 + Ẽn−1) + 2Q1|Ẽn|2(Ẽn+1 − Ẽn−1) + Q2Ẽ

2
n(Ẽ

∗
n+1 − Ẽ∗

n−1) = 0. (2.17)

2.3. Diffraction properties of a waveguide array

In this section we consider the basic properties of discrete diffraction of a linear array of waveguides emphasizing
the recent discovery of anomalous diffraction [11]. However, we consider first propagation of light in bulk linear
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and homogeneous media which is governed by the linear Helmholtz equation:

∇2E + k2E = 0, ∇2 = ∂2

∂x2
+ ∂2

∂z2
, (2.18)

where E is the amplitude of the electric field. If we assume a solution of the form E = a exp[i(kzz + kxx)] then
we find kz = √

k2 − k2
x . In the paraxial approximation (kx/k 	 1), the diffraction relation reads kz ≈ k − k2

x/2k.
Then the group velocity is defined by ∂kz/∂kx ≈ −kx/k which says that each transverse component kx travels at
different rates hence beam will diffract. A measure for the rate of diffraction is ∂2kz/∂k

2
x which for plane waves

is ≈−1/k < 0. Since all plane waves have this definite negative sign for diffraction, it is referred to as normal
diffraction regime. Note that this is exactly the opposite from dispersion in which the normal regime is positive.
Next, we discuss linear propagation of light in a waveguide array. As mentioned in Section 2.1, the dynamics of
the beam’s amplitude En(z) at waveguide number n follows Eq. (2.10). In this case, when an extended state or cw
mode of the form

En(z) = A exp[i(kzz − nkxd)] (2.19)

is inserted into Eq. (2.10) it yields the following diffraction relation:

kz = 2C cos (kxd). (2.20)

In close analogy to the definition of dispersion, discrete diffraction is given by k′′
z = −2Cd2 cos (kxd). Since

the diffraction relation is periodic in Fourier space, we shall restrict the discussion for wavenumbers in the in-
terval |kxd| ≤ π. In that region, the diffraction is normal for wavenumbers kx satisfying −π/2 < kxd ≤
π/2 (k′′

z < 0) and is anomalous in the range π/2 < |kxd| ≤ π. Moreover, contrary to the bulk case, diffrac-
tion can even vanish when kxd = ±π/2. In practice, the sign and value of the diffraction can be controlled and
manipulated by launching light at a particular angle γ or equivalently by tilting the waveguide array. The rela-
tion between kx, kz and the tilt angle is given by sin γ = kx/k. This in turn allows the possibility of achieving
a “self-defocusing” (with positive Kerr coefficient) regime which leads to the formation of discrete dark soli-
tons [28]. To understand more about diffraction management we consider three typical cases for which light
enters the central waveguide array at different angles, say, kxd = 0, π/2 and π. When kxd = 0 then light tun-
nels between adjacent waveguides giving rise to discrete diffraction. The phase front in this case has a concave
(negative) curvature. On the other hand, if kxd = π, then diffusion of light still occurs but this time the phase
front has convex (positive) curvature. Finally, at kxd = π/2 the diffraction vanishes (even though light can cou-
ple to different waveguides) and in the absence of any higher order diffraction the phase front looks almost flat
(see Fig. 3).

3. Stationary and moving solitons: Fourier transform method

In this section, we introduce a new method to obtain both stationary and moving solitons for the DNLS equation.
The essence of the method is to transform the DNLS equation governing the solitary wave into Fourier space, where
the wave function is smooth, and then deal with a nonlinear nonlocal integral equation for which we employ a rapidly
convergent numerical scheme to find solutions. A key advantage of the method is to transform a differential-delay
equation into an integral equation for which computational methods are effective (see also Refs. [42,43]). Math-
ematically, the method also provides a foundation upon which an analytic theory describing solitons in nonlinear
lattices can be constructed. Moreover, the method is applicable to continuous problems.
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Fig. 3. Diffraction relation (top left) showing three typical examples of diffraction scenarios: (A) Normal in which the phase front is concave;
(B) vanishing diffraction in which the phase front is almost flat; (C) anomalous diffraction with convex phase front.

3.1. Stationary solutions

We look for a stationary solution to Eq. (2.12) in the form

φn = Fn exp(iωz) (3.1)

with Fn being real valued function and ω a real eigenvalue. Then Fn satisfies

−ωFn + 1

h2
(Fn+1 + Fn−1 − 2Fn) + F3

n = 0. (3.2)

Eq. (3.2) can be solved using Newton iteration scheme by which one gives initial values for F0 and F1 and then
iterate. However, our aim here is to provide a different approach based on the Fourier transform method in which a
discrete equation is transformed into an integral equation. To this end, we use the transform defined by

û(w, t) =
+∞∑

n=−∞
unw

−n (3.3)

with the inverse transform given as

un(t) = 1

2πi

∮
C0

û(w, t)wn−1 dw, (3.4)

where w is a complex number and C0 the unit circle. If we let w = eiqh then Eq. (3.4) coincides with the discrete
Fourier transform

û(q) =
+∞∑

m=−∞
um e−iqmh, um = h

2π

∫ π/h

−π/h

û(q) eiqmh dq. (3.5)

Applying the discrete Fourier transform in Eq. (3.2) leads to the following nonlinear integral equation:

F̂ (q) = h2

4π2Ω(q)

∫∫
D2

dq1 dq2F̂ (q1)F̂ (q2)F̂ (q − q1 − q2) ≡ Kω[F̂ (q)], (3.6)



M.J. Ablowitz, Z.H. Musslimani / Physica D 184 (2003) 276–303 285

where D
2 = D × D and D = [−π/h, π/h]. Here, Ω(q) = ω + 2(1 − cos (hq))/h2 corresponds to the fre-

quency of the linear excitations. The important conclusion is that the soliton can be viewed as a fixed point of an
infinite-dimensional nonlinear functional. To numerically find the fixed point, one might start with an initial guess
for F̂ (q) and iterate Eq. (3.6) using

F̂n+1(q) = Kω[F̂n(q)], n ≥ 0. (3.7)

However, if the norm of F̂ (q) is “ large” then the iteration based on Eq. (3.7) will diverge while it will converge
to zero for small norm. This is because the right hand side of Eq. (3.7) has degree 3 whereas the left hand side is
suggested of degree 1. To overcome this difficulty, we employ instead, a modified Neumann iteration scheme and
consider a new equation

F̂n+1(q) =
(

〈F̂n, F̂n〉
〈F̂n,Kω〉

)3/2

Kω[F̂n(q)], n ≥ 0, (3.8)

where the inner product 〈·〉 is defined by

〈f̂ , ĝ〉 ≡
∫
D

f̂ (q)ĝ(q) dq. (3.9)

The factor 3/2 is chosen to make the right hand side of Eq. (3.8) of degree 0 which yields convergence of the scheme
[42,43]. When Fm is real and even, it implies that F̂ (q) is also real. Clearly when F̂n(q) → F̂s(q) as n → ∞ then
〈F̂n, F̂n〉/〈F̂n,Kω〉 → 1 and in turn F̂s(q) will be the solution to Eq. (3.6). Fig. 4 shows a typical solution to (3.6)
both in the Fourier domain (Fig. 4a) and in physical space (Fig. 4b) for different values of lattice spacing h. The
proposed scheme converges linearly as can be seen in Fig. 5 where the relative error between successive iterations
EF

n defined by

EF
n = log |En − En−1| (3.10)

is plotted for different values of lattice spacing h and typical parameter value ω = 1. In order to shed more light on
the property of the solution, we will consider for comparison the IDNLS given by [40]

i
∂un

∂t
+ 1

h2
(un+1 + un−1 − 2un) + |un|2(un+1 + un−1) = 0, (3.11)
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Fig. 4. Mode profiles obtained with ω = 1 in Fourier space (a), for h = 0.5 (solid), h = 1 (dashed) and h = 1 (dashed-dotted) for the integrable
case. (b) Soliton shape in physical space for h = 0.5 (solid), h = 1 (dashed) and for the integrable case at h = 1 (dashed-dotted).
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Fig. 5. Plot of the relative error EF
n between successive iterations for h = 0.5 (solid) and h = 1 (dashed) with ω = 1.

which possesses an exact TW solution of the form

un(t) = sin (h)

h
sech(nh − Vt) exp[−i(βnh − ωt)], (3.12)

ω = 2

h2
[ cos (βh) cos (h) − 1], V = − 2

h2
sin (βh) sin (h). (3.13)

Consider first the case when the soliton is stationary (V = 0). The method of discrete Fourier transform rapidly
converges when applied to Eq. (3.11) and agrees with Eq. (3.12) (see Fig. 4). What is also remarkable about
the solution (3.12) is that it forms a continuous function, i.e., the solution is not only defined at the grid pints
n = 0,±1,±2, . . . but also it can be defined off the grid points (e.g., n = 1.234). This suggests that Eq. (3.11)
can be embedded in a larger class of differential-delay equations in which the discrete variable n can be consid-
ered as a continuous variable without affecting the solution. With this extension in mind, we could search for a
stationary solutions for Eq. (3.11) (with n ≡ ξ being a continuous variable) by applying the continuous Fourier
transform:

û(q) =
∫ +∞

−∞
u(ξ) e−iqξ dξ, u(ξ) = 1

2π

∫ +∞

−∞
û(q) eiqξ dq, (3.14)

which can be obtained from Eq. (3.5) by taking the limit h → 0 with fixed nh = ξ. The important question we ask
is: does a continuous stationary solution exist for the DNLS equation as well? To partially answer this question we
applied the continuous Fourier transform in Eq. (3.2) (to find stationary solution). The only change from Eq. (3.6)
is that D

2 → R
2. We found that the numerical scheme based on (3.8) does not converge which indicates that a

continuous stationary localized solution to the DNLS may not exist. On the other hand we did find numerically that
a continuous Fourier transform solution to Eq. (3.11) converged rapidly. As we will see later, this will have a direct
impact on the TW problem.

3.2. Remarks

Below we make some comments on the proposed scheme for discrete systems outlining its usefulness.

• The numerical scheme based on Eq. (3.8) can be replaced by one in which the convergent factors belong to L1:

‖F̂‖1 ≡
∫
D

F̂ (q) dq. (3.15)
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In this case, the iteration scheme takes the form

F̂n+1(q) =
(

‖F̂n‖1

‖Kω‖1

)3/2

Kω[F̂n(q)], n ≥ 0. (3.16)

• Finding stationary solutions for multidimensional continuous partial differential equations (PDEs) using the
above scheme is straightforward.

• Applying the Fourier transform technique to higher order continuous or discrete systems only results in a modi-
fication of the linear dispersion relation from, e.g., cos (qh) → cos (qh) + cos (2qh).

• The proposed technique is natural for diffraction-managed systems in which an infinite-dimensional nonlinear
integral equation must be solved. Applying direct methods such as Newton iteration would be difficult on such
diffraction-managed equations.

3.3. Numerical iteration based on energy renormalization

We next highlight a different approach based on energy renormalization to solve Eq. (3.6). As we have seen
before, one reason why simple iteration scheme does not converge is because the right and left hand side of (3.6)
have different homogeneity. An alternative method is to renormalize the wave function F̂ (q) at each iteration stage
by its L∞ (maximum) or L2 norm, respectively, defined by

‖F̂‖∞ ≡ max
q∈D

|F̂ (q)|, (3.17)

‖F̂‖2 ≡
(∫
D

|F̂ (q)|2 dq

)1/2

. (3.18)

In this case the beam amplitude remains always finite. For discrete problems, the choice of the maximum norm is
particularly natural since the problem is restricted to a finite domain in q space. To implement this scheme, we start
with a localized guess, F̂0(q) and compute its norm ‖F̂0‖ (by ‖ · ‖ we mean either ‖ · ‖∞ or ‖ · ‖2). We then define
the renormalized function F̂0(q) = F̂0(q)/‖F̂0‖. Then from Eq. (3.6) we compute F̂1(q) and, in general, the mth
iteration takes the form

F̂m+1(q) = h2

4π2Ω(q)

∫∫
D2

dq1 dq2F̂m(q1)F̂m(q2)F̂m(q − q1 − q2), (3.19)

F̂m(q) = F̂m(q)

‖F̂m‖
. (3.20)

Note that as m → ∞ the scheme based on Eq. (3.20) converges, i.e.:

lim
m→∞ ‖F̂m − F̂s‖ = 0, (3.21)

where F̂s and F̂s = ‖F̂s‖F̂s is the exact solution to Eq. (3.20). Importantly, Eq. (3.6) admits the following scaling
property: if F̂ (q) = κF̂ ′(q) then F̂ ′(q) = κ

2Kω[F̂ ′(q)] is also a solution. In light of this scaling property we find
that F̂s and F̂s are also solutions to Eq. (3.6). We have compared the solution obtained by this method with the
previous technique and with the IDNLS solution and found excellent agreement.

3.4. Do discrete TWs exist or not?

Finding analytical TW solutions for a continuous PDE and for differential-delay equations in particular, is a
challenging problem. For some PDEs, TWs can be readily obtained by making use of either Galilean or Lorentz
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invariance. However, for general discrete systems, such a symmetry does not exist. An additional source of difficulty
that arises when dealing with differential-delay systems is the lack of quadrature. In this section, we describe a
method to obtain TW solutions for discrete systems which is applicable to many discrete models such as FPU
lattice, sine-Gordon to name a few. However, here we will focus our attention to TW of the DNLS model. Unlike
the IDNLS in which exact continuous traveling solitons are known, there are no known explicit solutions for DNLS
solitons. Previous studies of TWs for the DNLS equation employed various techniques and ansatz [44–46]. One
method is to write the DNLS as a perturbed IDNLS [47] and use perturbation theory, based on inverse scattering,
to gain some insight to the solution. However, this method is limited to moderately confined wave functions and
cannot be used as a constructive method. Another technique is to use the “exact” stationary solutions discussed in
Section 3.2 and, based on what we know from continuous NLS theory, employ a linear phase tilt:

φn = Fn exp(iβnh) (3.22)

with Fn being the stationary solution found before and β the beam “velocity” or phase tilt. However, by doing so,
we do not obtain a uniformly moving solitary wave (as can be seen in Fig. 6 where the top of the beam oscillates).
This is even more clear when we zoom in on small amplitude where radiation modes are seen to be emitted during
propagation (see Fig. 7). Our analysis, which is based on the discrete Fourier methods, reveals another fundamental
distinction from the IDNLS traveling solitons: there are approximate TW solutions which are “multimode” discrete
solitons, i.e., a single mode (sech-like shape) does not propagate without significant radiation [48]. In fact the modes
we found are characterized by having a nonlinear “chirp” . To formulate the analysis, we look for traveling localized
modes in the form

φn(z) = u(ξ) exp[−i(βnh − ωz)], ξ = nh − Vz (3.23)

with V and ω being the soliton velocity and wavenumber shift, respectively. Assuming u is complex, i.e., u(ξ) =
F(ξ) + iG(ξ) (with F , G being real), then Eq. (2.12) takes the form

V
dG

dξ
+D1F +D2G + (F2 + G2)F = ωF, −V

dF

dξ
+D1G −D2F + (F2 + G2)G = ωG, (3.24)

Fig. 6. Evolution of the stationary solution in physical domain for ω = 1 and h = 0.5 obtained by direct numerical simulation by employing a
linear phase tilt (or velocity) with β = 0.5.
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Fig. 7. The same as in Fig. 6 but zoomed to small amplitude. Radiation modes are clearly seen which leads to a nonuniform moving beam.

where the linear operators D1 and D2 are defined by

D1f ≡ 1

h2
[ cos (βh)(E+ + E−)f − 2f ], D2g ≡ sin (βh)

h2
(E+ − E−)g (3.25)

with E±S(ξ) ≡ S(ξ ±h). To find the mode shapes and soliton velocity, we proceed as before by taking the discrete
Fourier transform of Eq. (3.24) which yields the following iteration scheme:

F̂n+1(q) = Ω2(q)

Ω1(q)
G̃n(q) +

(
α1

β1

)3/2

Q1[F̂n, G̃n], G̃n+1(q) = Ω2(q)

Ω1(q)
F̂n(q) +

(
α2

β2

)3/2

Q2[F̂n, G̃n],

(3.26)

where F̂ (q) and Ĝ(q) ≡ −iG̃(q) are the Fourier transforms of F(ξ) and G(ξ), respectively, and

Q1[F̂ , G̃] = h2

4π2Ω1(q)
(F̂ ∗ F̂ ∗ F̂ − G̃ ∗ G̃ ∗ F̂ ), Q2[F̂ , G̃] = h2

4π2Ω1(q)
(F̂ ∗ F̂ ∗ G̃ − G̃ ∗ G̃ ∗ G̃),

(3.27)

where ∗ denotes a convolution:

f ∗ g =
∫
D

f(k)g(q − k) dk.

The convergence factors αj and βj , j = 1, 2 are given by

α1 =
〈
F̂n, F̂n − Ω2G̃n

Ω1

〉
, α2 =

〈
G̃n, G̃n − Ω2F̂n

Ω1

〉
, β1 = 〈F̂n,Q1〉, β2 = 〈G̃n,Q2〉

with

Ω1(q) = ω + 2

h2
[1 − cos (hq) cos (βh)], Ω2(q) = 2

h2
sin (hq) sin (βh) + Vq. (3.28)
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Fig. 8. Mode shapes in physical space for ω = 1 and β = 0.5. Solid line corresponds to h = 0.5 and velocity V = −0.25 whereas dashed line
for h = 1 and V = −0.155.

The next stage would be to iterate Eq. (3.26). However, Eq. (3.26) form a system of two equations with three
unknowns, F̂ , G̃ and V . Therefore, we need to add an extra condition to match the number of variables with the
number of equations. By doing so, we proceed as follows. For a given set of parameters h, ω and β > 0, the
mode shapes and soliton velocity are found by iterating Eq. (3.26) with an initial guess, e.g., F̂0(q) = sech(q),
G̃0(q) = sech(q) tanh (q) and V = V∗ < 0. The iterations are carried out until the condition |Ej| ≡ |αj − βj| < ε

(j = 1, 2) is satisfied with ε > 0 being a prescribed tolerance. However, unlike the stationary case, here, the soliton
velocity is still to be determined. For any choice of V∗ < 0 if |Ej| </ ε, we seek a different value of V∗ at which Ej
changes sign. Then, we use the bisection method to change V∗ in order to locate the correct velocity V and modes
F̂ , G̃ for each ω, β and h. Typical soliton modes are shown in Fig. 8.

At this stage it is useful to make some further comments on the Fourier transform. Since ξ is a continuous variable
it implies that Eq. (3.24) are continuous equations in ξ. Therefore it seems natural to use the continuous Fourier
transform rather than discrete. However, when we apply the continuous Fourier transform in Eq. (3.24), we find that
the numerical scheme based on Eq. (3.26) with π/h → ∞ does not converge to a solution. This is a strong indication
that, as opposed to the integrable case, a true continuous stationary or TW solutions to the DNLS model does not
exist. By continuous solution we mean a solution that can be defined off the lattice points which is necessary when
discussing TWs on lattices. In fact, the perturbation analysis presented below supports this observation as it fails to
give consistent results off the grid points. To support these founding, let us take the continuous limit on the DNLS
which yields

i
∂φ

∂z
+ φxx + α4φxxxx + |φ|2φ = 0, (3.29)

where α4 = h2/12. Importantly, it was shown in [49] that Eq. (3.29) with α4 > 0 lacks exact soliton solutions
whereas it possess closed form solution for α4 < 0 [50]. Moreover, in this case the asymptotic behavior of the
solution to Eq. (3.29) in the limit 0 < α4 	 1 is [49]

φ ∼ sech(ξ) + O(e−Υ/|h|)P(ξ, z),

with ξ = x− Vz and Υ being a positive constant with P(ξ, z) being a concrete function of both ξ and z (see Eq. (16)
of Ref. [49]). This means that for h = 0.1 (as an example), the nonstationary correction to the exact solution (when
α4 = 0) is exponentially small and cannot be captured in numerical simulations. These results differ from those of
[51,52] in which a “continuous” traveling solitary waves were reported using Fourier series expansions with finite
period L while assuming convergence as L → ∞.
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Fig. 9. Evolution of a moderately localized soliton in physical domain for β = 0.5, V = −0.25, ω = 1 and h = 0.5 obtained by direct numerical
simulation.

Fig. 10. Evolution of a strongly localized soliton in physical domain for β = 0.5, V = −0.2, ω = 2 and h = 0.5 obtained by direct numerical
simulation.

Although Eq. (3.26) can be solved numerically with high accuracy, the resulting solutions are only obtained at
the discrete locations ξ = nh, while all real values of ξ are called upon in a TW solution. So the question we want to
ask is: what happen to the modes found above when they propagate across the arrays? To answer this question, we
simulated Eq. (2.12) using φn(z = 0) = u(nh) e−iβnh as an initial condition with u(nh) = FTW(nh) + iGTW(nh)
being the solutions obtained from (3.26). When a moderately localized mode1 is launched, the beam moved across the

1 Moderate localization obtains when the FWHM of the intensity is 4–6 lattice sites; strong localization occurs when FWHM = 1–3 lattice
sites.
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Fig. 11. Evolution of a strongly localized soliton in physical domain for large distance. Contrary to Fig. 10, in which the beam travels for short
distance, here after some distance, the beam starts to decelerate. Parameters are: β = 0.5, V = −0.2, ω = 2 and h = 0.5.

waveguides undistorted (Fig. 9) over 100 normalized z-units. This corresponds, according to the experimental data
reported in [11], to 120 mm (recall that the waveguides used in [11] were 6 mm in length). On the other hand, strongly
localized modes travel essentially undistorted for shorter distances (around 20 normalized z-units, see Fig. 10)
which corresponds to 24 mm. Noticeably, during propagation there was a change of 0.0133%/mm(0.245%/mm) in
the soliton velocity for moderately (strongly) localized modes in which case strongly localized mode slows down
and eventually relaxes to a stationary state (see Fig. 11). This behavior depends crucially on the initial amplitude.
Higher amplitude solitons are less “mobile” than lower amplitude beams. The discrete Fourier transform yields a
useful, but nonuniform TW solution.

4. Asymptotic theory for discrete TWs

4.1. Perturbation expansion around stationary solutions

We have seen in Section 3.4, that TWs with nonuniform speed can be numerically constructed by means of the
Fourier iteration method. These solutions can move over short distances without drastic change in their shape or
speed. However, strongly localized modes will immediately start decelerating and emitting radiation. Our conclusion
from Section 3.4 was that uniform TWs for the DNLS equation are unlikely to exist. To give further support to
this belief, we consider the case in which the solitons move slowly. We develop a fully discrete perturbation theory
for finite amplitudes. It is important to note that our perturbative approach is fundamentally different than the
perturbation methods based on inverse scattering theory (cf. [47]). We begin by taking β = εβ1 + O(ε2), ε 	 1,
and expand the soliton velocity, frequency and the wave functions in a power series in ε:

F = F0 + εF1 + ε2F2 + O(ε3), G = εG1 + ε2G2 + O(ε3), (4.1)

V = εV1 + ε2V2 + O(ε3), ω = ωs + εω1 + ε2ω2 + O(ε3). (4.2)
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Substituting Eqs. (4.1) and (4.2) into Eq. (3.26), we find that to leading order (ε0), F0 satisfies the stationary equation
and is even in ξ:

L1F0(ξ) = 0. (4.3)

The order ε equations for F1 and G1 are given by

L1F1 = ω1F0, (4.4)

L2G1 = V1
dF0

dξ
+ β1

h
(E+ − E−)F0 (4.5)

and the order ε2 system is

L2G2 = ω1G1 + V1
dF1

dξ
+ V2

dF0

dξ
− 2F0F1G1 + β1

h
(E+ − E−)F1, (4.6)

L1F2 = ω1F1 + ω2F0 − V1
dG1

dξ
− F0G

2
1 − 3F0F

2
1 + β2

1

2
(E+ + E−)F0 − β1

h
(E+ − E−)G1, (4.7)

where the linear operators L1 and L2 are defined by

L1S ≡ −ωsS+ 1

h2
(E+ + E− − 2)S+ 3F2

0S, L2S ≡ −ωsS+ 1

h2
(E+ + E− − 2)S+ F2

0S. (4.8)

Next we solve the system of equations at each order in ε. By taking ω1∂/∂ωs in Eq. (4.3) we find that solution to F1

is given by

F1 = ω1
∂F0

∂ωs

+ c1
∂F0

∂ξ
. (4.9)

To solve equation in (4.5), we make the ansatz:

G1 = V1A + β1ξF0 + c2F0, (4.10)

where c1 and c2 are arbitrary constants and A satisfies

L2A = ∂F0

∂ξ
, (4.11)

which can be solved either numerically by Fourier transform method or by reduction of order method. Note that
A(ξ) is an anti-symmetric function.

4.2. Solvability conditions at O(ε)

The velocity V1(β1) and frequency shift ω1, are determined by a solvability condition at order ε2 which is
the discrete analog of Green’s identity. We start first with the order ε equations. Let W(ξ) be a solution to the
homogeneous equation, L1W(ξ) = 0. Multiplying Eq. (4.4) by W(ξ) and subtracting F1(ξ)L1W(ξ) = 0 we find

∆ξ[Y(ξ)] = h2ω1W(ξ)F0(ξ), (4.12)

where Y(ξ) = W(ξ − h)F1(ξ) − F(ξ − h)W(ξ) and ∆ξ is defined by ∆ξ[S(ξ)] = S(ξ + h) − S(ξ). An important
identity which will be used frequently is the discrete analog of Green’s identity

+∞∑
@=−∞

[S(ξ + @h) − S(ξ + (@ − 1)h)] = 0
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with @ ∈ Z. Since W = dF0/dξ, summing over all integers in Eq. (4.12) and using the discrete Green’s identity we
find

ω1

+∞∑
@=−∞

(
F0

dF0

dξ

)∣∣∣∣
ξ+@h

= 0. (4.13)

Importantly, if ξ is not restricted to the grid points then the sum in Eq. (4.13) is generally not zero. We shall consider
the case in which ξ ∈ Z otherwise, as we will see below, no TW solution is obtained. With this assumption in mind,
the solvability condition at order ε is satisfied and at this stage ω1 is an arbitrary constant. Similarly, we find that
the solvability condition for Eq. (4.5) reads

+∞∑
@=−∞

F0(ξ + @h)


V1

dF0

dξ

∣∣∣∣∣∣
ξ+@h

+ β1

h
(F0(ξ + (@ + 1)h) − F0(ξ + (@ − 1)h))


 = 0. (4.14)

As before, if we are off the grid points then the sum in (4.14) does not necessarily vanish and as a result the velocity
will depend on ξ. Therefore, we restrict the sum to the lattice points which is consistent with the discrete Fourier
transform.

4.3. Solvability conditions at O(ε2)

Next we consider the solvability conditions to the O(ε2) equations which will determine the velocity V1 and
frequency ω1. The solvability conditions for Eqs. (4.6) and (4.7), respectively, read

+∞∑
@=−∞

F0(ξ + @h)

[
V1

dF1

dξ

∣∣∣∣
ξ+@h

+ V2
dF0

dξ

∣∣∣∣∣
ξ+@h

+ β1

h
(F1(ξ + (@ + 1)h) − F1(ξ + (@ − 1)h))

+ω1G1(ξ + @h) − 2F0(ξ + @h)F1(ξ + @h)G1(ξ + @h)

]
= 0, (4.15)

+∞∑
@=−∞

F0(ξ + @h)

[
ω1F1(ξ + @h) + ω2F0(ξ + @h) − V1

dG1

dξ

∣∣∣∣
ξ+@h

− F0(ξ + @h)G2
1(ξ + @h)

−3F0(ξ + @h)F2
1 (ξ + @h) + β2

1

2
(F0(ξ + (@ + 1)h) + F0(ξ + (@ − 1)h))

−β1

h
(G1(ξ + (@ + 1)h) − G1(ξ + (@ − 1)h))

]
= 0. (4.16)

Substituting the expressions for F1 and G1 [see Eqs. (4.9) and (4.10)] in Eqs. (4.15) and (4.16) and using the fact
that the function A(ξ) is anti-symmetric we find

[
A11 A12

A21 A22

][
c1

c2

]
= 0, (4.17)
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where

A11 = V1

+∞∑
@=−∞

F0(ξ + @h)


d2F0

dξ2

∣∣∣∣∣∣
ξ+@h

+ β1

h


dF0

dξ

∣∣∣∣∣∣
ξ+(@+1)h

− dF0

dξ

∣∣∣∣
ξ+(@−1)h






− 2V1

+∞∑
@=−∞

A(ξ + @h)F2
0 (ξ + @h)

dF0

dξ

∣∣∣∣
ξ+@h

− 2β1

+∞∑
@=−∞

(ξ + @h)F3
0 (ξ + @h)

dF0

dξ

∣∣∣∣
ξ+@h

,

A12 = ω1

+∞∑
@=−∞

F2
0 (ξ + @h) − 2ω1

+∞∑
@=−∞

F3
0 (ξ + @h)

dF0

dωs

(ξ + @h),

A21 = ω1

+∞∑
@=−∞

(
dF0

dξ

)2
∣∣∣∣∣
ξ+@h

− 6ω1

+∞∑
@=−∞

(
dF0

dξ

)2
∣∣∣∣∣
ξ+@h

F0(ξ + @h)
dF0

dωs

(ξ + @h),

A22 = −
+∞∑

@=−∞

dF0

dξ

∣∣∣∣
ξ+@h

[2β1(ξ + @h)F3
0 (ξ + @h) + 2V1A(ξ + @h)F2

0 (ξ + @h)]

− β1

h

+∞∑
@=−∞

dF0

dξ

∣∣∣∣
ξ+@h

(F0(ξ + (@ + 1)h) − F0(ξ + (@ − 1)h)) − V1

+∞∑
@=−∞

(
dF0

dξ

)2
∣∣∣∣∣
ξ+@h

.

The dependence of the velocity on β1 will be determined by requiring that the determinant of the matrix
equation (4.17) vanish. By restricting the sum to the lattice points, ξ = ξ@ ≡ @h, which is consistent with the
discrete Fourier transform we find that the results are consistent if ω1 = 0 in which case the velocity is given by

V1 = −a1

a2
β1, a1(h) =

∑
@∈Z

dF0

dξ

∣∣∣∣
ξ@

[
2ξlF

3
0 (ξl) + 1

h
(E+ − E−)F0(ξl)

]
,

a2(h) =
∑
@∈Z

dF0

dξ

∣∣∣∣
ξ@


2A(ξ@)F

2
0 (ξ@) + dF0

dξ

∣∣∣∣∣∣
ξ@


 . (4.18)

We compared these semi-analytical results with direct numerical simulation for the fully discrete case and found a
good agreement for distances z of order 1. However, for longer distances, the theory needs to be modified. Moreover,
in the limit h → 0 we retrieve the known result V1 = −2β1, G1(ξ) → 0.

5. Nonlinear diffraction management

5.1. Heuristic approach

Let us begin the analysis by considering an infinite array of weakly coupled optical waveguides with equal
separation d. We have seen that the equation which governs the evolution of a singly polarized beam in a nonlinear
waveguide array follows the discrete NLS equation. A natural generalization to two interacting electric fields E

(1)
n

and E
(2)
n , is given by [13,29,30,53,54]

dE(j)
n

dz
= iC(E

(j)

n+1 + E
(j)

n−1) + ik(j)w E(j)
n + i(�En)jE

(j)
n , j = 1, 2, (5.1)

where � is a 2 × 2 matrix with κjj and κjl, j �= l the self and cross-phase modulation coefficients, respectively, that

result from the nonlinear index change, En = (|E(1)
n |2, |E(2)

n |2)T, C a coupling constant, z the propagation distance
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and k
(1,2)
w the propagation constants of the waveguides. When a cw modes of the form

E(1,2)
n (z) = A1,2 exp[i(kzz − nkxd )] (5.2)

is inserted into the linearized version of Eq. (5.1) it yields

kz = k(1,2)w + 2C cos (kxd ), k′′
z = −2Cd2 cos (kxd ), (5.3)

where, as mentioned earlier, discrete diffraction is given by k′′
z . An important consequence of Eq. (5.3) is that k′′

z can
have a negative sign if π/2 < |kxd| ≤ π, hence, a light beam can experience anomalous diffraction. Experimentally,
the sign and local value of the diffraction can be controlled and manipulated by launching light at a particular angle
with respect to the normal to the waveguides or equivalently by tilting the waveguide array. To build a nonlinear
model of diffraction management, we use a cascade of different segments of the waveguide, each piece being tilted
by an angle zero and γw, respectively. The actual physical angle γw (the waveguide tilt angle) is related to the
wavenumber kx by the relation [27] sin γw = kx/k where k = 2πn0/λ0 (λ0 = 1.53 �m is the central wavelength
in vacuum and we take n0 = 3.3 to be the linear refractive index). In this way, we generate a waveguide array with
alternating diffraction. Next, we define the dimensionless amplitudes U

(j)
n (U(1)

n ≡ Un,U
(2)
n ≡ Vn) by

E(j)
n =

√
P∗U(j)

n ei(k(j)w +2C)z, z′ = z

z∗
, (5.4)

where P∗ = max(|Un|2max, |Vn|2max) is the characteristic power and z∗ the nonlinear length scale. Substituting these
quantities into Eq. (5.1) yields the following (dropping the prime) diffraction-managed vector DNLS equations
[29,30]:

i
dUn

dz
+ D(z/zw)

2h2
(Un+1 + Un−1 − 2Un) + (|Un|2 + η|Vn|2)Un = 0,

i
dVn

dz
+ D(z/zw)

2h2
(Vn+1 + Vn−1 − 2Vn) + (η|Un|2 + |Vn|2)Vn = 0, (5.5)

whereη = κ12/κ11 (we take κ11 = κ22, κ12 = κ21) and z∗ = 1/(κ11P∗). We choose z∗C cos (kxd) = D(z/zw)/(2h2)

where D(z/zw) is a piecewise constant periodic function that measures the local value of diffraction. Here zw ≡
2L/z∗ with L being the physical length of each waveguide segment (see Fig. 12(a) for schematic representation).
Eq. (5.5) describe the dynamical evolution of coupled beams in a Kerr medium with varying diffraction. When
the “effective” nonlinearity balances the average diffraction then bright vector discrete solitons can form. The
dependence of the coupling constant C on the waveguide width (@) and separation (d) is given by (for AlGaAs
waveguide) C = (0.00984/@) exp(−0.22d) (see Eq. 13.8-10, pp. 523 of Ref. [55]). Therefore, the coupling constant
C that corresponds to the experimental data reported in [28] (for 2.5 �m waveguide separation and width) is found

2L

(a)

∆ 2

∆(ζ)

θ 2 1−θ 2

ζ

∆1

(b)

Fig. 12. Schematic presentation of the waveguide array (a) and the diffraction map (b).
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to be C = 2.27 mm−1. For typical power P∗ ≈ 300 W; typical nonlinear Kerr coefficient κ11 = 3.6 m−1 W−1 and
typical waveguide length L ≈ 100 �m we find z∗ ≈ 1 mm and zw ≈ 0.2, which suggests the use of asymptotic
theory based on small zw. Such asymptotic analysis was developed in [29,30] for both the scalar and vector cases
where the diffraction function D = δ1 +∆/zw with ∆ being a piecewise constant function (see Fig. 12(b)). Model
(5.5) admits stationary soliton solution even when zw is of order 1.

5.2. Asymptotic theory for diffraction management

5.2.1. Renormalization
We have seen in the preceding section how can we build, based on physical heuristic arguments, a model that

incorporate both normal and anomalous diffraction. The key idea in formulating a model of diffraction management,
is to use a cascade of different segments of waveguide, each piece being tilted by an angle zero and γ , respectively.
Here, we give a derivation of the model, in the scalar case, based on asymptotic theory. Two approaches are given.
The first is based on perturbation expansion using a renormalized eigen-mode of each single waveguide, whereas
in the second we expand around eigenfunction of an untilted waveguide. It is clear from Fig. 12(a) that each single
waveguide is not stationary. As a result, the evolution of the beam’s amplitude is governed by(

∂2

∂z2
+ ∂2

∂x2

)
� + k2

0f
2(X)� = 0, X = x − α

ε

∫ Z

0
D(Z′) dZ′, (5.6)

whereas before, Z = εz; α is a small parameter to be determined later and D(Z) a piecewise constant periodic
function that measures the local value of diffraction. When the waveguides are well separated then the dynamics of
each mode ψm in waveguide f 2

m is decoupled and is given by

(α2D2(Z) + 1)
d2ψm

dX2
+ (k2

0f
2
m(X) − λ2

0)ψm = 0. (5.7)

However when the waveguides are at close proximity, we approximate the solution to Eq. (5.6) as a multiscale
perturbation series:

� =
+∞∑

m=−∞
Em(Z)ψm(X) e−iλ0z. (5.8)

Substituting the ansatz (5.8) into Eq. (5.6), we find

+∞∑
m=−∞

[
−2iελ0ψm

∂Em

∂Z
+ ε2ψm

∂2Em

∂Z2
+
(
(α2D2 + 1)

d2ψm

dX2
+ k2

0f
2ψm − λ2

0ψm

)
Em

+ 2iαλ0DEm

dψm

dX
− 2αεD

∂Em

∂Z

dψm

dX
− αεEm

dD
dZ

dψm

dX

]
e−iλ0z = 0. (5.9)

Using Eq. (5.7) in the above equation, multiplying Eq. (5.9) by ψ∗
n exp(iλ0z) and integrating over X yields the

following:

+∞∑
m=−∞

[(
−2iελ0

∂Em

∂Z
+ ε2 ∂

2Em

∂Z2

)∫ +∞

−∞
dXψmψ∗

n + k2
0Em

∫ +∞

−∞
dX�f 2

mψmψ∗
n

+ 2iαλ0DEm

∫ +∞

−∞
dX

dψm

dX
ψ∗

n − εα

(
2D

∂Em

∂Z
+ Em

dD
dZ

)∫ +∞

−∞
dX

dψm

dX
ψ∗

n

]
= 0. (5.10)
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Similar to the arguments we presented before, we shall assume that the overlap integrals follow the scaling given
in Eq. (2.6) and that α = O(µ). In close analogy to the calculations given before, we find that for a sech-like mode
(Eq. (2.7)) profile we have

∫ +∞

−∞
dX

dψm

dX
ψ∗

n = b

µ
e−|n−m|/µ, (5.11)

where b is a constant. Restricting the sum in Eq. (5.10) to the nearest neighbors, i.e., m = n, n ± 1 and by defining
z̃ = Z/(2λca0), k2

0c1 = C1, 2λcbD = D̃; En = Ẽ∗
n exp(−ik2

0c0z̃) we find that En satisfies (dropping the tilde)

i
∂En

∂z
+ C1(En+1 + En−1) + iD(z)(En+1 − En−1) = 0. (5.12)

The constant diffraction case, i.e., Eq. (2.10) is recovered when D = 0. Eq. (5.12) is the general dynamical equation
that governs the evolution of optical beam in a diffraction-managed linear waveguide array. However, when the
intensity of the incident beam is sufficiently high then the refractive index of the medium will depend on the
intensity which for Kerr media is proportional to the intensity. Therefore, by following the same procedure outlined
in Section 2.1 we find that the general evolution equation for the optical field in a diffraction-managed nonlinear
waveguide array is governed by

i
∂En

∂z
+ C1(En+1 + En−1) + iD(z)(En+1 − En−1) + gnl|En|2En = 0. (5.12)

In the case of strong diffraction for which max |D(z)| � |C1| (recall that D(z) is a piecewise constant function) and
by defining En = En exp(−iπn/2), Eq. (5.12) reduces to

i
∂En

∂z
+ D(z)(En+1 + En−1) + gnl|En|2En = 0. (5.13)

5.2.2. Direct approach
In this section, we give a different approach to derive a model for diffraction management. We approximate the

solution to Eq. (5.6) again as a multiscale perturbation series:

� =
+∞∑

m=−∞
Em(Z)ψm(X) ei[ϕm(z)−λ0z], (5.14)

where the the phase ϕm(z) will be chosen later. Substituting the ansatz (5.14) into Eq. (5.6), we find

+∞∑
m=−∞

ei[ϕm(z)−λ0z]

[
Em

d2ψm

dX2
(1 + α2D2) + k2

0f
2Emψm + 2i

(
dϕm

dz
− λ0

)(
ε
∂Em

∂Z
ψm − αD

dψm

dX
Em

)

−
(

dϕm

dz
− λ0

)2

Emψm − 2αεD
∂Em

∂Z

dψm

dX
− αεEm

dD
dZ

dψm

dX
+ i

d2ϕm

dz2
Emψm + ε2 ∂Em

∂Z
ψm

]
= 0.

(5.15)

Using Eq. (2.1) and multiplying Eq. (5.15) by ψ∗
n exp[−iϕn(z)] and integrating over −∞ < X < ∞ yields the

following equation (ignoring the order ε2 term):
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+∞∑
m=−∞

ei[ϕm(z)−ϕn(z)]

{
Em

∫
dXψmψ∗

n

[
α2D2(λ2

0 − k2
0f

2
m) + k2

0�f 2
m −

(
dϕm

dz

)2

+ 2λ0
dϕm

dz
+ i

d2ϕm

dz2

]

−α

[
Em

(
2i

(
dϕm

dz
− λ0

)
D + dD

dZ

)
+ 2εD

∂Em

∂Z

]

×
∫

dX
dψm

dX
ψ∗

n + 2iε

(
dϕm

dz
− λ0

)
∂Em

∂Z

∫
dXψmψ∗

n

}
= 0.

Until now the phase factor ϕm is arbitrary. Therefore, we shall choose the phase in such a way that

α2D2
∫ +∞

−∞
dX(λ2

0 − k2
0f

2
m)|ψm|2 =

[(
dϕm

dz

)2

− 2λ0
dϕm

dz

]∫ +∞

−∞
dX |ψm|2. (5.16)

Eq. (5.16) implies that

dϕm

dz
= O(α2),

(
dϕm

dz

)2

= O(α4),
d2ϕm

dz2
= O(αε). (5.17)

The localized nature of the waveguides indicates that ϕm is independent of m, i.e., it is the same for all waveguides.
With this scaling in mind and by taking as before α = O(µ), we recover Eq. (5.12).

5.3. Asymptotic theory for vector diffraction management

In this section we present a derivation of the vector DM-DNLS equation starting from the nonlinear vector
Helmholtz equations which is obtained from Maxwell’s equations. The propagation of an intense laser beam in a
Kerr medium is described by the vector Helmholtz equations:(

∂2

∂x2
+ ∂2

∂z2

)
E + δ∇(∇ · PNL) + k2

0f
2(x)E + δPNL = 0. (5.18)

The nonlinear polarization PNL can be expressed in terms of the electric field as

PNL = (E · E∗)E + γ(E · E)E∗, (5.19)

where γ is a constant related to the third order nonlinear susceptibility [56]. Since we are interested in interac-
tion between two coupled laser beams, we shall assume that each one is initially linearly polarized and mutually
orthogonal, i.e.:

E(x, z) = E1(x, z)x̂ + E2(x, z)ŷ + E3(x, z)ŷ. (5.20)

In this case, the nonlinear polarization takes the form

PNL = P
(1)
NLx̂ + P

(2)
NL ŷ + P

(3)
NL ẑ, (5.21)

where

P
(1)
NL = ((1 + γ)|E1|2 + |E2|2)E1 + γE2

2E
∗
1 + γE2

3E
∗
1, (5.22)

P
(2)
NL = (|E1|2 + (1 + γ)|E2|2)E2 + γE2

1E
∗
2 + γE2

3E
∗
2, (5.23)

P
(3)
NL = (|E1|2 + |E2|2 + (1 + γ)|E3|2)E3 + γE2

1E
∗
3 + γE2

2E
∗
3. (5.24)
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Substituting the expression for E in Eq. (5.18) and taking into account the nonlinear polarization, leads to the
coupled system:(

∂2

∂x2
+ ∂2

∂z2

)
E1 + δ

∂2P
(1)
NL

∂x2
+ k2

0f
2(x)E1 + δP

(1)
NL = 0, (5.25)

(
∂2

∂x2
+ ∂2

∂z2

)
E2 + k2

0f
2(x)E2 + δP

(2)
NL = 0, (5.26)

(
∂2

∂x2
+ ∂2

∂z2

)
E3 + δ

∂2P
(1)
NL

∂x∂z
+ δ

∂2P
(3)
NL

∂z2
+ k2

0f
2(x)E3 + δP

(3)
NL = 0. (5.27)

In this work, we are interested in interaction of two mutually orthogonal beams. However, if we initially assume that
E3 = 0, then the source term ∂2P

(1)
NL/∂x∂z appearing in Eq. (5.27) will eventually generate a nonzero E3 component.

In fact, this additional term (due to nonlinear polarization) is of order δ. Hence, we are justified in neglecting E3 as
compared to E1 and E2. Next we follow the same expansion as mentioned earlier and let

E1 =
+∞∑

m=−∞
Am(Z)ψm(X) e−iλ0z, E2 =

+∞∑
m=−∞

Bm(Z)ψm(X) e−iλ0z, (5.28)

where X has been defined in Eq. (5.6). The expansion of the linear terms is already given in (5.12) with the addition
of on-site terms kwgAn and kwgBn. Therefore, we focus the attention below solely on the nonlinear terms and in

particular give an estimate on the order of magnitude of ∂2P
(1)
NL/∂x

2. Substituting the ansatz (5.28) into Eqs. (5.25)
and (5.26); multiplying by ψ∗

n exp(iλ0z) and integrating over X yields the following result for the nonlinear terms:∫ +∞

−∞
dXP(1)

NLψ
∗
n eiλ0z = (1 + γ)

∑
m,m′,m′′

AmAm′A∗
m′′

∫ +∞

−∞
dXψmψm′ψ∗

m′′ψ∗
n

+
∑
j,j′,j′′

BjB
∗
j′Aj′′

∫ +∞

−∞
dXψjψj′ψ∗

j′′ψ∗
n + γ

∑
l,l′,l′′

BlBl′A
∗
l′′

∫ +∞

−∞
dXψlψl′ψ

∗
l′′ψ

∗
n.

(5.29)

∫ +∞

−∞
dXP(2)

NLψ
∗
n eiλ0z =

∑
m,m′,m′′

AmA∗
m′Bm′′

∫ +∞

−∞
dXψmψm′ψ∗

m′′ψ∗
n + (1 + γ)

∑
j,j′,j′′

BjBj′B∗
j′′

×
∫ +∞

−∞
dXψjψj′ψ∗

j′′ψ∗
n + γ

∑
l,l′,l′′

AlAl′B
∗
l′′

∫ +∞

−∞
dXψlψl′ψ

∗
l′′ψ

∗
n. (5.30)

Due to the assumption of widely separated waveguides, the only order 1 contribution comes from the nonlinear
term when m = m′ = m′′ = n. We therefore find that to O(ε) the nonlinear evolution of An and Bn is given by
(taking δ = ε)

i
∂An

∂z
+ kwgAn + C(z)An+1 + C∗(z)An−1 + (ã1|An|2 + b̃1|Bn|2)An + η̃1B

2
nA

∗
n = 0, (5.31)

i
∂Bn

∂z
+ kwgBn + C(z)Bn+1 + C∗(z)Bn−1 + (ã2|Bn|2 + b̃2|An|2)Bn + η̃2A

2
nB

∗
n = 0, (5.32)

where the coefficients ã1, ã2, b̃1, b̃2, η̃1, η̃2 are given by

ã1 = (1 + γ)ηnl + γnl, b̃1 = ηnl + γnl, ã2 = (1 + γ)ηnl, b̃2 = ηnl, η̃1 = γηnl + γnl, η̃2 = γηnl,
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and ∫ +∞

−∞
dX |ψn|4 = ηnl,

∫ +∞

−∞
dX

∂2

∂X2
(|ψn|2ψn)ψ

∗
n = γnl.

By rescaling the field amplitudes, i.e., An = Ãn/
√
ã1, Bn = B̃n/

√
ã2 we find the system (dropping the tilde):

i
∂An

∂z
+ kwgAn + C(z)An+1 + C∗(z)An−1 + (|An|2 + b1|Bn|2)An + η1B

2
nA

∗
n = 0,

i
∂Bn

∂z
+ kwgBn + C(z)Bn+1 + C∗(z)Bn−1 + (|Bn|2 + b2|An|2)Bn + η2A

2
nB

∗
n = 0,

with b1 = b̃1/ã2, b2 = b̃2/ã1, η1 = η̃1/ã2, η2 = η̃2/ã1 (see also Section 1).

6. Conclusions

Localized, stable nonlinear waves, often referred to as solitons, are of broad interest in mathematics and physics.
They are found in both continuous and discrete media. In this paper, a unified method is presented which is used to
obtain soliton solutions to discrete problems. In recent experiments, discrete solitons were observed in an optical
waveguide array. The fundamental governing system is the scalar DNLS equation. A suitable modification of this
system describes diffraction-managed solitons.

In this paper we have derived and investigated scalar and vector discrete diffraction-managed systems. The
proposed vector model describes propagation of two polarization modes interacting in a waveguide array with Kerr
nonlinearity in the presence of varying diffraction. The coupling of the two fields is described via a cross-phase
modulation coefficient. In the regime of normal diffraction, both stationary and moving discrete solitons are analyzed
using the Fourier transform method. The results indicate that a continuous stationary solution and a TW solutions
with uniform velocity are unlikely to exist. In the presence of both normal and anomalous diffraction a model is
developed from first principles that governs the propagation of two polarization modes interacting in a nonlinear
waveguide array via cross-phase modulation coupling.
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