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We discuss indirect measurements

of continuum quantities

Example: Radon transform in X-ray tomography

U                                                                     M

(attenuation (noisy sinogram)

coefficient)

M=AU+ε



The continuum measurement model 

must be discretized for practical inversion

We simulate physics by the continuum model

M = AU + E ,

where E is white noise. Here M( · , ω) and
U( · , ω) are random functions defined on Rd.

Data is a realization Mk(ω0) ∈ Rk described by
the practical measurement model

Mk = PkAU + PkE.

Numerical work needs the computational model

Mkn = PkAUn+ PkE ,

where Un = TnU is a discretization of U .



Continuum model for tomography:

M = AU + E



Practical measurement model:

Mk = AkU + Ek = PkAU + PkE



Mkn = PkAUn+ Ek

Computational model:



The finite dimensions n and k 

are independent

The linear projection operator Pk is related to

the measurement device and has k-dimensional

range.

The linear projection operator Tn is related

to the computational discretization of the un-

known and has n-dimensional range.



Inverse problem: given a measurement,

estimate the quantity U

X-ray tomography: Given measurement

,                          

estimate X-ray coefficient U in a two-dimensional slice.

We consider Bayesian estimation of U using a discrete 

conditional mean estimate (and confidence intervals).

Mk(ω0) =



Bayes formula combines measured and 

a priori information

The posterior distribution corresponding to the

finite-dimensional computational model is

πkn(un |mkn) ∼ Πn(un) exp(−
1

2
‖mkn − PkAun‖22),

where the prior distribution Πn assigns high

probability to functions un that are expected

in light of a priori information, and the likeli-

hood distribution

exp(−1
2
‖mkn − PkAun‖22)

measures data misfit.



In this work we estimate U by a discrete

conditional mean estimate

Posterior distribution from computational model:

πkn(un |mkn) =
Πn(un) exp(−12‖mkn − PkAun‖22)

Υkn(mkn)
.

Conditional mean estimate is defined by

u
CM
kn :=

∫

Rn
unπkn(un |mk) dun,

where the realization mk := Mk(ω0) is data

from the practical measurement model.



The conditional mean estimate is often 

computed by Markov chain Monte Carlo 

The samples           are drawn from the posterior distribution

using e.g. Metropolis-Hastings method or Gibbs sampler.

u
CM
kn =

∫

Rn
unπkn(un |mk) dun ≈

1

N

N∑

j=1

u
(j)
n

u
(j)
n



Conditional mean estimates have been 

applied to various inverse problems

Image restoration 
1991 Besag, York & Mollié

Geological prospecting 
1998 Nicholls

2003 Andersen, Brooks & Hansen

Atmospheric and ionospheric remote sensing
1995 Markkanen et al.

1997 Nygrén, Markkanen, Lehtinen

1999 D´Ambrogi, Mäenpää & Markkanen

1999 Tamminen

2004 Haario, Laine, Lehtinen, Saksman & Tamminen

Medical X-ray tomography
1997 Battle, Cunningham & Hanson

2003 Kolehmainen et al.

2003 Siltanen et al.

Electrical impedance imaging
2000 Kaipio, Kolehmainen, Somersalo & Vauhkonen

2001 Andersen, Brooks & Hansen

Personal positioning using cell phone data
2006 Petrovich and Piché



Experimental setting

X-ray source ”Focus”

Practical example: three-dimensional 

dental X-ray imaging



Detector

X-ray source positions



We use total variation prior 

with non-negativity constraint

πkn(un |mkn) =
Πn(un) exp(−12‖mkn − PkAun‖22)

Υkn(mkn)
,

where the prior is given by

Πn(un) = χun≥0 exp


−αn

∑

xℓ,xν neighbors

|un(xℓ)− un(xν)|β


 .



We can compute several kinds 

of estimates from the posterior

MAP                                      Conditional mean



The Bayesian approach allows 

further statistical inference

Posterior variance             90% confidence limits

[Kolehmainen et al. 2003], thanks to Instrumentarium Imaging



Let Yn be the space of piecewise linear

functions on [0,1] with basis {ψnj } defined by

ψnj (
k

n
) = δjk.

We say that Un is total variation prior in Yn if

Un(t, ω) =
n∑

j=1

unj (ω)ψ
n
j (t), ω ∈ Ω,

where Un1 , . . . , U
n
n are random numbers with

probability density function

π(un1, . . . , u
n
n) = cn exp(−αn‖∂tun‖L1(0,1)).

How should αn be chosen for n→∞?

TV prior seems to work for tomography.

However, there is a problem.



Total variation prior is not discretization-

invariant! (Lassas & S 2004)

Thin line:

αn ∼ 1.
Thick line:

αn ∼
√
n.



1. Bayesian inversion 2. Discretization-invariance

3. Regularization results 4. Besov space priors

e
−α‖u‖

B1
11





k=8



k=8

n=48



k=8

n=156



k=8

n=440



k=16

n=440



k=24

n=440



This is the central idea of studying

discretization-invariance:

The numbers n and k are independent.

For the Bayesian inversion strategy to work,

the conditional mean estimates must converge 

as n or k or both tend to infinity.









We look for discretization-invariant

choices of prior distributions

Recall the conditional mean estimate:

u
CM
kn :=

∫

Rn
unπkn(un |Mk(ω0)) dun.

Possible problems with using uCMkn :

Problem 1. Estimates uCMkn diverge as n→∞.
Problem 2. Estimates uCMkn diverge as k →∞.
Problem 3. Prior distributions do not express

the same prior information for all n.

Any choice of Tn and Πn that avoids problems

1—3 is called discretization-invariant.



Our results continue the tradition of 

infinite-dimensional statistical inversion

1970 Franklin

1984 Mandelbaum

1989 Lehtinen, Päivärinta and Somersalo

1991 Fitzpatrick

1995 Luschgy

2002 Lasanen

2005 Piiroinen

We achieve discretization invariance for Gaussian 

and some non-Gaussian prior distributions.

Furthermore, we consider realistic measurements.



Why is discretization invariance useful 

for finite-dimensional problems?

Sometimes in Bayesian inversion it is necessary to perform 

computations at two different (finite) resolutions. 

For instance,

• Statistical error modeling of Kaipio and Somersalo

• Delayed acceptance Markov chain Monte Carlo

In such case it is important to transform prior information 

consistently between the two grids.



We use the following diagram of spaces:

Y
A−→ S1 ⊂ S1/2=Z ⊂ S

∈ ∈

U(ω1) E(ω2)

The reconstructor RMkn
(Un| · ) takes the mea-

surement data mk =Mk(ω0) to the mean u
CM
kn .

The infinite-dimensional model M = AU + E
has a reconstructor RM(U | · ) as well.

Our proofs are based on Banach spaces 

and the concept of reconstructor
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The infinite-dimensional limit case 

can be rigorously defined

H−1(T2) A−→ H2(T2) ⊂ L2(T2) ⊂ H−2(T2)

∈ ∈

U(ω1) E(ω2)

Express U as a random Fourier series

and define projections Tn as simple truncations.

We work with the following diagram:

Note: applying the classical smoothness prior results in

realizations of U being continuous with probability zero.

∞∑

j=−∞

∞∑

ℓ=−∞
cjℓ(ω)e

ijθ+iℓψ,



Theorem (Lassas, Saksman and S 2008)

Bayesian inversion using Gaussian smoothness

prior is discretization-invariant:

lim
k,n→∞

u
CM
kn = lim

k,n→∞
RMkn

(Un |Mk(ω0)) = RM(U |M(ω0))



Bayesian inversion with smoothness prior 

is related to Tikhonov regularization

In the Gaussian case, the posterior mean

u
CM
kn =

∫

Rn
un exp(−α‖un‖2H1) exp(−

1

2
‖mk−PkAun‖22) dun

coincides with the MAP estimate

argmax
un

[
exp(−1

2
‖mk − PkAun‖22 − α‖un‖2H1)

]
,

where mk =Mk(ω0) is measurement data.

Consider Tikhonov regularization in the form

u
T
kn = argmin

un

[
1

2
‖mk − PkAun‖22+ α(‖un‖22+ ‖∇un‖22)

]
,

where α > 0 is the regularization parameter. It

follows that uTkn = u
CM
kn = RMkn

(Un |Mk(ω0)).



Much of the above results about 

Gaussian smoothness priors 

are due to Sari Lasanen and Petteri Piiroinen.

The essential new contribution here is

using the more realistic measurement model.
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How to express edge-preserving 

prior information invariantly?

We suggest replacing the problematic formal

total variation density exp(−α‖∇u‖1) by the
formal Besov space density exp(−α‖u‖B111).

In dimension d = 2 the diagram of spaces is

B−211 (T
2)

A−→ B211(T
2) ⊂ B−2∞∞(T2)

∈ ∈

U(ω1) E(ω2)



Wavelet transform divides a function into 

details at different scales



We introduce a convenient renumbering 

of the basis functions

ψ3,k(x1)φ3,k(x2)

φ3,k(x1)ψ3,k(x2) ψ3,k(x1)ψ3,k(x2)

ψ2,k(x1)

φ2,k(x2)

f(x) =
∞∑

ℓ=1

cℓψℓ(x)

ψ2,k(x1)

ψ2,k(x2)

φ2,k(x1)

ψ2,k(x2)



Besov space norms can be written 

in terms of wavelet coefficients

The function

f(x) =
∞∑

ℓ=1

cℓψℓ(x)

belongs to Bs
pq(T

d) if and only if

2js2
dj(12−

1
p)



2(j+1)d−1∑

ℓ=2jd

|cℓ|p



1/p

∈ ℓq(N).

In particular, f ∈ B111(T
2) if and only if

∞∑

ℓ=1

|cℓ| <∞.



Computation of the CM estimate reduces 

to sampling from well-known densities

B111(T
2) prior: write U in wavelet basis as

U =
∞∑

ℓ=1

Xℓψℓ

with each Xℓ distributed independently ∼ exp(−|x|).

Posterior distribution of Un takes the following

form in terms of wavelet coefficients x1, . . . , xn:

C exp



−1
2
‖Mk(ω0)−A

n∑

ℓ=1

xℓψℓ‖2L2(T2)2 − α
n∑

ℓ=1

|xℓ|




Direct and inverse wavelet transforms are easy

and quick to compute.



Theorem (Lassas, Saksman and S 2008)

Bayesian inversion using B111(T
2) Besov prior

is discretization-invariant. More precisely:

Assume that A : D′(T2)→ C∞(T2) is a bounded
linear operator. Let t < t̃ < −1, r > r1 > 1 and

τ > 0. Assume that m =M(ω0) ∈ B
−r1
11 (T

2).

Then

‖RMkn
(Un|mk)−RM(U |m)‖Bt

11(T
2) ≤ C[k−τ + n−(t̃−t)/2].



We look for discretization-invariant

choices of prior distributions

Recall the conditional mean estimate:

u
CM
kn :=

∫

Rn
unπkn(un |Mk(ω0)) dun.

Possible problems with using uCMkn :

Problem 1. Estimates uCMkn diverge as n→∞.
Problem 2. Estimates uCMkn diverge as k →∞.
Problem 3. Prior distributions do not express

the same prior information for all n.

Any choice of Tn and Πn that avoids problems

1—3 is called discretization-invariant.



We show some Besov prior computations 

to give a flavor of how they work.

However, the following examples are 

maximum a posteriori estimates only.

Computation of conditional mean estimates

is a work in progress.



Limited angle tomography results 

for X-ray mammography

[Rantala et al. 2006]

Thanks to GE Healthcare

Tomosynthesis

Besov prior



Local tomography results 

for dental X-ray imaging

Λ-tomography MAP with B
1/2
3/2,3/2

prior

[Niinimäki, S and Kolehmainen 2007]

Thanks to Palodex Group



Empirical Bayes methodology for 

specifying Besov prior parameters

[Vänskä, Lassas and S 2008]

Thanks to Palodex Group



References

Siltanen et al. 2003
Statistical inversion for X-ray tomography with few radiographs 1: General theory, 
Phys Med Biol 48 pp 1437-1463

Kolehmainen et al. 2003 
Statistical inversion for X-ray tomography with few radiographs 2: 
Application to dental radiology, 
Phys Med Biol 48  pp 1465-1490

Lassas and Siltanen 2004
Can one use total variation prior for edge-preserving Bayesian inversion?
Inverse Problems 20, pp. 1537-1563

Kolehmainen et al. 2006
Parallelized Bayesian inversion for 3-D dental X-ray imaging
IEEE Transactions on Medical Imaging 25(2), pp. 218-228. 

Rantala et al. 2006
Wavelet-based reconstruction for limited angle X-ray tomography
IEEE Transactions on Medical Imaging 25(2), pp. 210-217

Niinimäki, Siltanen and Kolehmainen 2007
Bayesian multiresolution method for local tomography in dental X-ray imaging.
Physics in Medicine and Biology 52, pp. 6663-6678.

Vänskä, Lassas and Siltanen
Statistical X-ray tomography using empirical Besov priors.
To appear in International Journal of Tomography & Statistics.

Lassas, Saksman and Siltanen (submitted)
Discretization invariant Bayesian inversion and Besov space priors



You can download the references at

www.siltanen-research.net


