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Introduction

Goal: Convert boundary integral equation (BIE) into a discrete equation
Jr k(x,y)o(y)ds(y) = f(x),xel = Ao =f

Central task: How to numerically evaluate an integral such as

= Jr k( y)ds(y)

while most of the kernel functions k(x,y) have singularities as y — x
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Parameterization of curves

Suppose our contour [ can be parameterized using a piecewise smooth
periodic function

G:/ > R?
In other words, ' = {G(t) : t € I}, then the BIE can be written as

u(x) = [, k(x, G(1))o(G(1))|G'(t)|dt
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Parameterization of curves

Example of the behavior of the function ¢(t) = k(x, G(t))|G'(t)|:
@ The single-layer kernel: ki(x,y) = —% log |x —y|

@ The double-layer kernel: ka(x,y) = %

Remark: the double-layer kernel happens to be smooth when the contour
is smooth.

G(t) = (G1(t), Ga(t))

Gy(8)61 (1) — Gi(8) G5 (¢)

lim ko(G(1), G(t)) = 47|G/(1)[3
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Parameterization of curves
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The trapezoidal rule

Suppose G : [0, T] — R? , T = {G(t) : t € [0, T]}

Given a positive integer N, pick N equispaced nodes {t,-},Nzl e [0, T],
where t; = ih for h= T /N. Then apply the trapezoidal rule to
parameterized BIE to obtain the approximation:

N

u(x) ~ h)_ k(x,G(t:))o(G(1:))|G'(t:)|

i=1

Notice that since the integrand is periodic, all nodes have the same
quadrature weight h
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The trapezoidal rule

Set x; = G(t;) , w; = h|G'(¢;)]

N
= u(x) ~ Z k(x,x;)a(x;)w,-

y

y=1f(x)

0‘= X% X X

@ When x €T, u(x) is C* periodic, so the error of the trapezoidal rule
is o(N—P) for any positive integer p. In fact, |error| < ezaﬁ’\:’l

@ When x €I, the double-layer kernel is still smooth, so the error
converges superpolynomially fast to zero while a weakly singular
(integrable singularity) kernel converges to zero slowly. For example,
the singular kernel, with a logarithmic singularity, converges as
O(hlog(1/h))
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Panel-based quadrature rules

For a contour that is only piecewise smooth, it may lose smoothness at the
corners. Then we need to split the contour I' into disjoint pieces:

Mr=rulU---Ulpy
For each I'; we introduce a local parameter map:

G_, : [07 1] — Fj

o ou(x) = Z/r'k(x,y)a(y )ds(y Z/ (x, G;(£))o(G;(1))|G}(1)| dt
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Panel-based quadrature rules

When x is away from the contour, each integrand is smooth. By the
Gauss—Legendre quadrature rule, if we place p Legendre nodes on [0,1],
then the quadrature has N = mp total points, which leads to the

approximation
N

u(x) & > k(x, x)o(x;)wi
i=1
For the above figure, the quadrature error goes to zero as O((1/m)2P~1).
Panel-based quadratures offer more flexibility than a global quadrature
such as the trapezoidal rule. They also adapt much more easily to 3D
problems.
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Nystrom discretization

Suppose we are given an BIE such as:
botx) + [ K(ey)oly)ds(y) = (). x € T
r
Use an quadrature scheme on the domain I, defined by nodes {x;}., c T
and corresponding weights {w,-}f\’zl, to construct an linear system that

relates a given data vector f = {£;}/,, where f; = f(x;), to an unknown
solution vector o = {o;}_;, where o; =~ o(x;)

bo(xi) + /r k(xi, ) (y)d5(y) = F(x),i = 1,2, -, N
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Nystrom discretization

For a smooth function o on I, the matrix A is constructed such that,
N
/ k(xi,y)o(y)ds(y) = > AP, j)o(x;)

r =

So we obtain a square linear system that relates o to f:

N
boi+ Y A(ij)oj=f,i=1,2,--- N
j=1

= bo+ Ao =f

Once o has been found, o(x) for general x € ' may be constructed by
interpolation through the vector o
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Nystrom discretization

For a smooth kernel k, such as the double-layer function, matrix A can be
chosen via the quadrature scheme:

A(’v./) = k(X,‘,Xj)Wj

and the error converges to zero of the same rate as the quadrature scheme.
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Domains with corners

Consider a contour that is only piecewise smooth, with the pieces joined

together to form a corner, then the function o will lack regularity at the
corner.
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Figure 12.3. A contour T with a corner. (a) The original Gaussian grid before refinement;
red nodes are in T'y and blue nodes are in I'a. (b) The locally refined grid. (c) The grid after local

Refinement: Partition ' =1 UTl> where '; is a small piece containing the
corner. And then recursively cut the panel nearest the corner in half. Once

the innermost panel is small enough that its contribution can be ignored,
stop the refinement.
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Weighted norms

© Selection of nodes in Nystrom discretization : accuracy of computing
integral vs optimal collocation points.

@ With clusters of discretization points around singularities, is the
discrete system as well conditioned as the continuous integral
equation?

To solve BIE: Our paraphernalia - quadrature nodes {x,-},’-\’:1 , Weights

{w;}N; and [; g(x)ds(x) ~ élzlw,-g(x,-) holds.

We associate for a given function g defined on ' with a vector g € RV as:
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Weighted norms

We observe:

N

gz = wilg(x) / 1g(y) 2ds(y) = gl 2.

i=1

The idea: Weight the elements of the discretizing matrix A of our integral
operator to get more faithful approximation.

Ex: As {quadrature errors — 0} — { spectral norm ~ norm of op.}

AGi.j) = w2 k(xi, %) w2,
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Weighted norms

If f = Ag and f(x) = [ k(x,y)g(y)ds(y), then:
N

N
112 = 3" w3 k) 2w ()

i=1 j=1

~§jw,( | ki y)en)es(y)

- Z wil £ (i) P = 1 F12qr-
i=1
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Modified trapezoidal quadrature rules for singular kernels

Evaluate accurately:

[Kol(x) = /r k(xy)(y)ds(y); x € T

where, the kernel k(x,y) is singular |x-y| — 0.
The basic idea: Ex: take a smooth I', with a log singularity kernel:
k(x,y) = log |x-y|a(x,y) + b(x,y), a and b are smooth and periodic. We
have:

@ Equispaced nodes {x,-},N:1 in parameter domain [0, T].

Q@ x; = G(t) = G(jh)

© Grid spacing h = T/N & t; = jh are the nodes in parameter space.
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Modified trapezoidal quadrature rules for singular kernels

To evaluate:

where f has log singularity:

7(t) = log (sin () )o(t) + w(t); t € (0, T)

¢ & 1) are smooth, periodic and we would need
#(0) = ¢(T)&@'(0) = ¢/(T).... Now use trapezoidal rule:

N-1
INP(F) = hf(t)
j=1

Note: Error |Iy/(f) — I(f)| can’t converge faster than O(h)
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Modified trapezoidal quadrature rules for singular kernels

For higher accuracy, similar to boundary corrections in Gregory rules we
amend say 4 weights, 2 on either sides. Here, Kapur and Rokhlin method
(SIAM Journal on Numerical Analysis 34 (1997)), giving the choice of 7
and 7, let's us write:

N-1

IND(F) = mb(F(t0) + F(Tu-r)) +mh(F(82) + F(Tw-2)) + D hf(1)
j=1
= Iy (f)

such that,
KF@(F) = 1(F)] = O(K?) = h— 0
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Modified trapezoidal quadrature rules for singular kernels

Higher order m-point K&R corrections:

1R Zn h(F(t)) + F(taj)) + Z hf(t)

-~

correction terms _ INTrap(f)
gives an accuracy of :
N F(E) = 1(F)| = O(h™) — h =0

Note: K&R is slightly numerically unstable. n's alter in signs and grow
larger with higher order corrections becomes ill-conditioned. Works well for
m < 6 and not to be used for m > 10.
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Modified trapezoidal quadrature rules for singular kernels

Now using K&R to the above integral equation, placing a node xy at
ty = T:

[Kol(x) = / k(xy)(y)ds(y)

r
~ ) nih(k(xn, G())IG (1)l (x)) + kO, G(tn—))IG' (tn—j) o (xn—;))+
j=1

correction terms

+ Z hk(xn, G(t)))|G' ().

Trap Rule
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Modified trapezoidal quadrature rules for singular kernels

Now move the node to an interior point, i.e. xy — X;j, hence,
(t =0) — tj, equivalent transformation is t' = t — t; (A cyclic shift of
quadrature weights.) Now take an N x N matrix A of Nystrém
discretization and apply K&R:

© Diagonal elements set to 0 (blue).

@ m closest elements around the diagonal are modified (red).

© Other elements remain un-modified (black).
If we define a "distance to the diagonal” as I(i,j) = |mod(i — j, N)|,
where mod(i — j, N) is an integer between —N /2 and N/2.

0 1 2 3 2 1]
101232
L _[210123
321012
232101
1 2321 0
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Modified trapezoidal quadrature rules for singular kernels

0 i=j
A(i,J) = § 1+ miphk((ig))IG ()] 107,)) € {1, 2., m}
hk((xi, x;))|G' ()| I(i,j) > m

Figure: N =15 and m=2
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Modified trapezoidal quadrature rules for singular kernels

K&R is numerically unstable for higher m. However once can look at
Alpert Quadrature method (numerically more stable for higher m, than
K&R):

18P (F) = an (F(h&;) + (T — he;) —i—th(tJ

Jj=1 j=1
correcti‘o,n terms — Il;ll—rap(f-)
New nodes that {{;}7; ¢ {xJ 1- Only k is singular but global o is

smooth. So these new nodes effect some local interpolation for higher
accuracy. (S.Hao et al., Advances in Computational Mathematics 40
(2014), 245-272.)
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Modified panel-based quadrature rules for singular kernels

Let us consider the standard BIE with a weakly singular kernel:
ao(x) + [ kx y)o()ds(y) = f(x)x € T
r

k(x,y) is smooth except x # y and k(x,y) ~ log |x —y| as y — x. Here,
we use a panel based quadrature rule: We place p Gauss-Legendre nodes
in a m panels, i.e N = mp. Now setting collocation points we get:

ao(x;) + /r k(xi,y)o(y)ds(y) = f(x;),xel;i=1,2,3..N

Our aim is to obtain an N x N matrix A such that:

N

S A f)o(x) ~ /r K(xi, y)o(y)ds(y)

Jj=1
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Modified panel-based quadrature rules for singular kernels

Note: The solution to ¢ is smooth though k is not.
Now to determine elements of A, first let us one index i and build the row
A(i, ;), i.e. evaluate integral op at x = x;. For this we split contour into 3

parts:
= rself U rnear U rfar
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Modified panel-based quadrature rules for singular kernels

/ k(x:,y)o(y)ds(y) = / k(x,y)o(y)ds(y)+

r [ serr

+/nea, kxi.y)oly)ds(y) +/r k(xi,y)o(y)ds(y)

far

O [, : Integrand is smooth and matrix entries determined analytically
by A(i,j) = k(xi, x;)w;.

@ [ .r : Integrand has singularity within panel and matrix entries
determined numerically.

© [ ear : Integrand is smooth but Gauss quadrature not accurate due to
large derivative magnitudes, hence computed numerically.

Thus the matrix A is decomposed as:

A — A(far) + A(near) + A(self)
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Modified panel-based quadrature rules for singular kernels

A = Alfar) + (A '+A(sclf))

B
l%%%%%%@

To determine AC¢): We first choose a panel T and then index it on
domain and range as (/,I';). We can find that and numerically estimate:

1
A7 ) = /O K(x1, G (£)) ) (1)|GL (1)) dit

where (i,j) € I, G; is parameter with respect to ['; and /i is interpolating
Legendre polynomial on [0, 1] around x;. We can use local refinement in
each panel too. A" is found analogously.
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Extension to 3D

@ Though conceptually similar, extending from R? — R3 practically is
harder.

@ Ex: Replace the domain [0,1] in panel based method to a triangular
domain T, then use local maps G; to make them curved triangles to
wrap a surface I' € R3.

© Such wraps may not be "watertight”.

@ 3D will have far more points for a given discretization order than the
[0, 1] case.

@ Weakly singular easier than more singular kernels for R3 case. So
usually one uses simple triangulations on surface with piecewise linear
approximations, rather than higher order discretizations.
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Extension to 3D

inimal Surface

Figure: Minimal surface triangulation (arXiv:2007.06723v1)
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