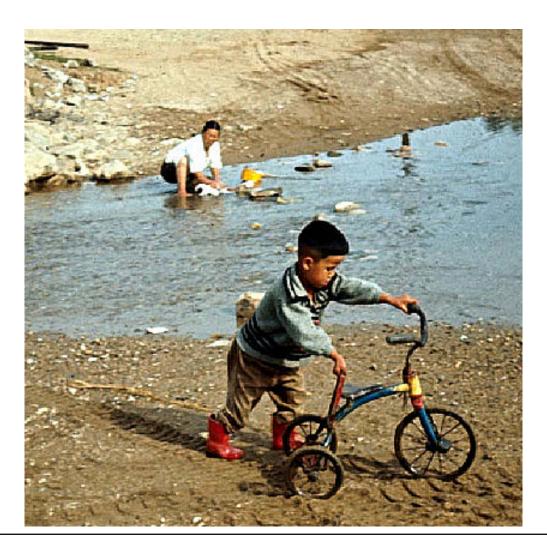
Disinfection of Drinking Water

with

Ultraviolet Light

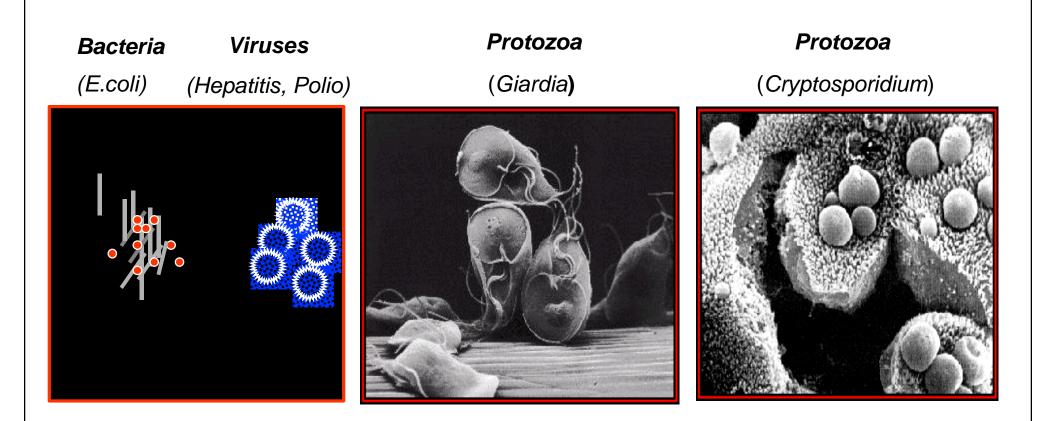
Jackie Leinberger, P.Eng.



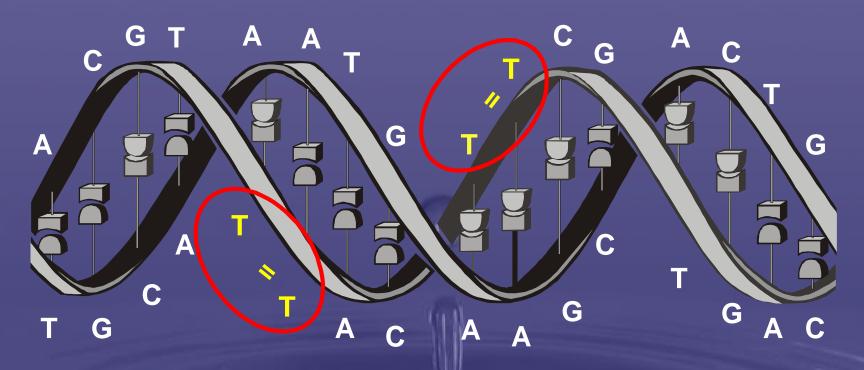
"Millions of people will die each year from dirty water and water-related diseases."

Chairman of the World Commission on Water for the 21st Century

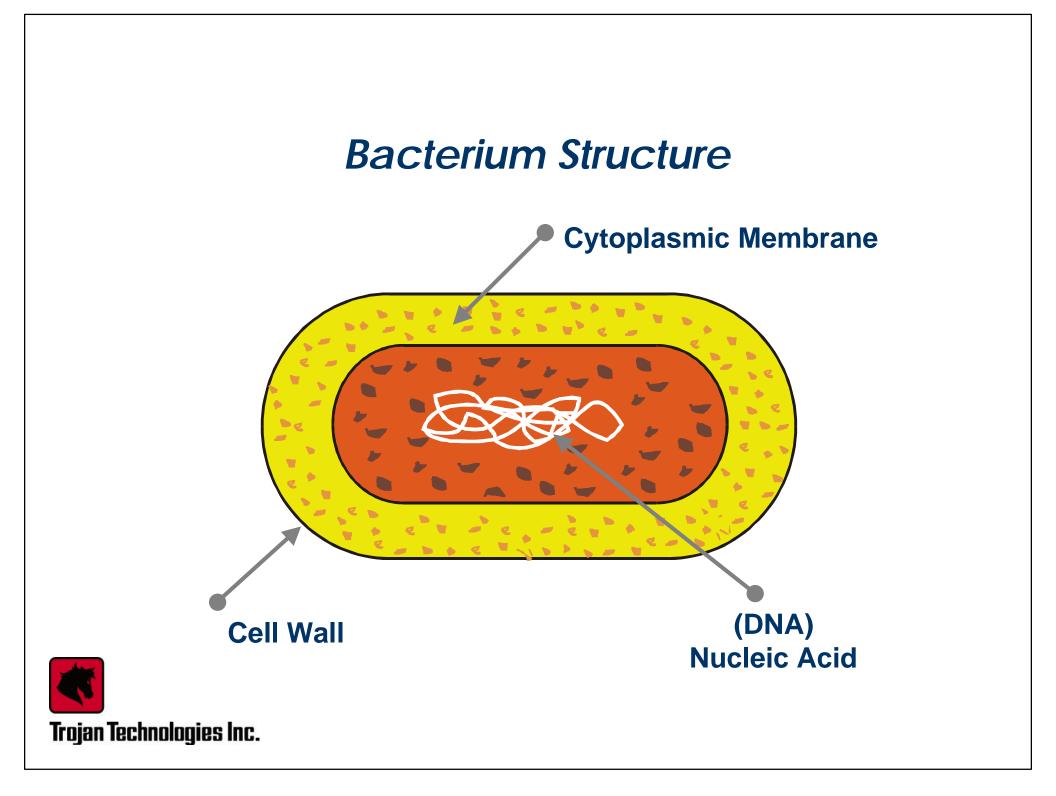
"Water, this most precious commodity, is in peril in virtually all parts of the globe."

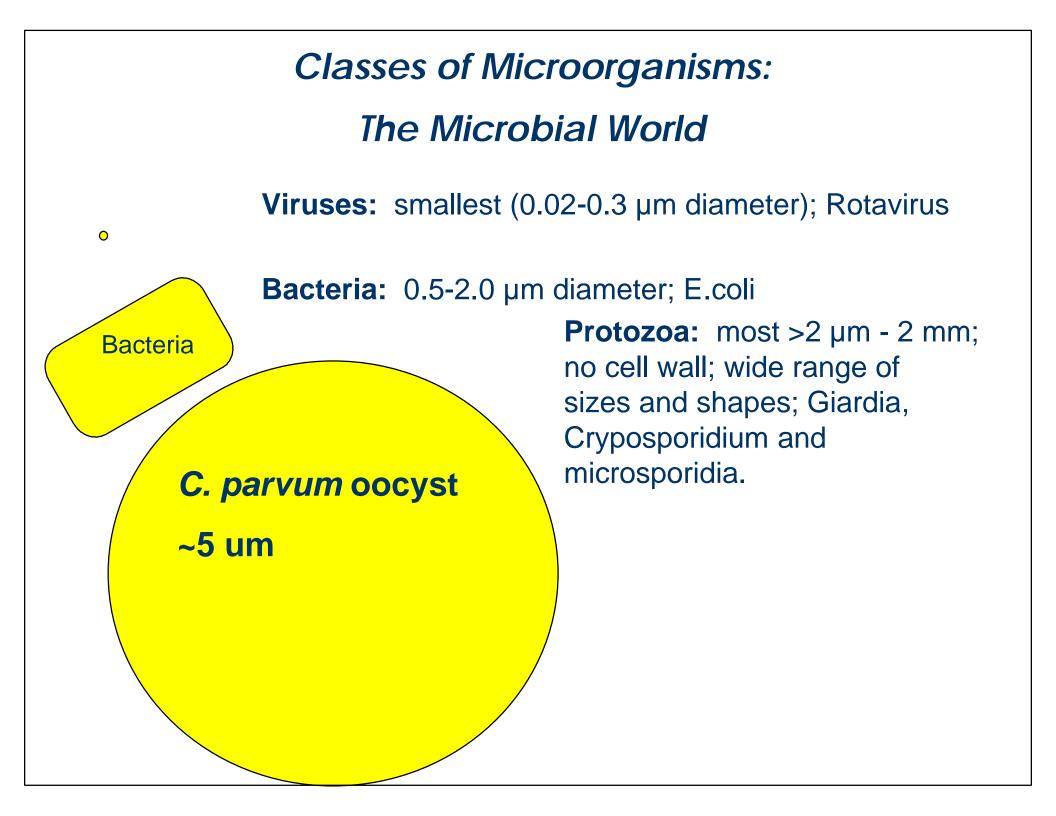

Marq De Villiers

Pathogenic bacteria, viruses and protozoa in un-disinfected water and wastewater represent potential risks to Public Health



UV Disinfection Theory




How UV Works

DNA

UV light alters DNA destroying harmful bacteria and virus es

UV Disinfection Effectiveness

vegetative bacteria

viruses / spores

Most resistant

Least resistant

Trojan Technologies Inc.

UV is effective for Cryptosporidium and Giardia control

UV Dose

UV Dose = UV Intensity x Exposure Time

(Units are measured in mJ/cm²)

Microbe inactivation is directly related to UV Dose

UV Inactivation of Pathogens

Pathogen	Average	Average UV Dose (mJ/cm ²) Required to Inactivate				
	1log	2log	3log	4log		
Cryptosporidium parvum	3.0	4.9	6.4	7.9		
Giardia lamblia cysts	NA	<5	<10	<10		
Giardia muris cysts	1.2	4.7	NA	NA		
Vibrio cholerae	0.8	1.4	2.2	2.9		
Shigella dysenteriae	0.5	1.2	2.0	3.0		
Escherichia coli O157:H7	1.5	2.8	4.1	5.6		
Salmonella typhi	1.8-2.7	4.1-4.8	5.5-6.4	7.1-8.2		
Shigella sonnei	3.2	4.9	6.5	8.2		
Salmonella enteritidis	5	7	9	10		
Legionella pneumophila	3.1	5	6.9	9.4		
Hepatitis A virus	4.1-5.5	8.2-14	12-22	16-30		
Poliovirus Type 1	4-6	8.7-14	14-23	21-30		
Coxsackie B5 virus	6.9	14	22	30		
Rotavirus SA11	7.1-9.1	15-19	23-26	31-36		
NA – Data Not Available						

Data summarized from the US EPA Workshop on UV Disinfection of Drinking Water, April 28-29, 1999, Arlington, VA

Advantages of UV Disinfection

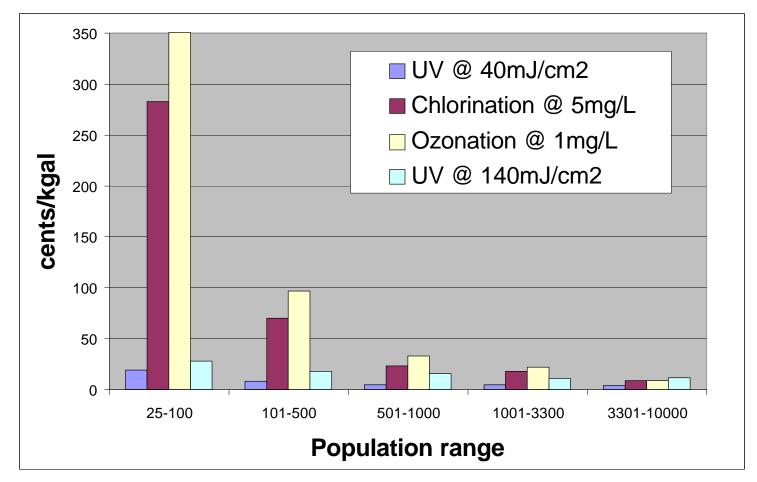
- Highly effective on broad range of pathogens, including: E. coli, Giardia, Cryptosporidium
- Forms no harmful disinfection by-products (eg. Trihalomethanes)
- Inactivation independent of pH and temperature
- No unpleasant taste or odor
- No transportation, storage or handling of chemicals

Advantages of UV Disinfection cont.

- Easily installed within existing water treatment facilities
- Low capital and operating costs
- Effective as a stand-alone or part of a multi-barrier treatment strategy
- Simple to operate
- Minimal hazard risk for operators

Other Disinfection Methods

Chlorine

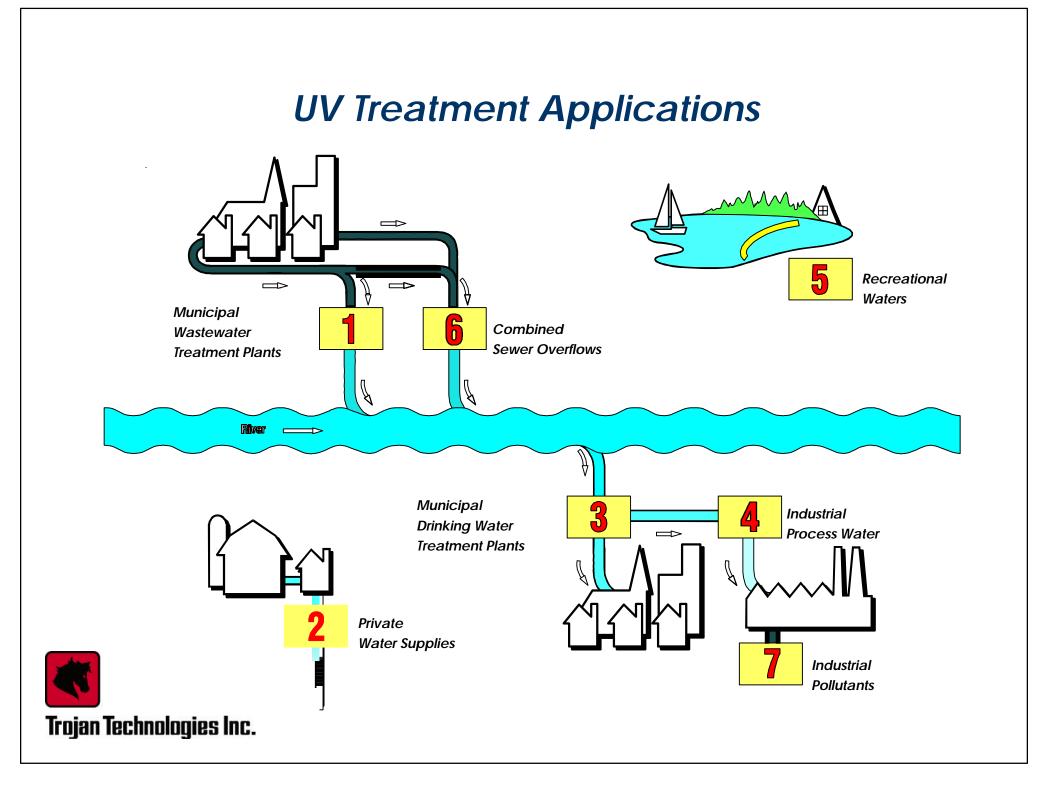

- Applied as gas or liquid, residual in distribution system
- Dangerous to store, handle, transport
- Forms toxic by-products (Tri-halo-methanes)

• Ozone

- Applied as gas, short-term residual in distribution system
- More common in Europe, much more expensive than chlorine or UV
- Membrane Filtration
 - Physical separation process
 - Much more expensive (capital and operating cost)
 - No Residual in distribution system

Total Cost of UV vs O₃ and Cl UV Light Disinfection Technology in Drinking Water Application - An Overview, EPA 811-R-96-002

Upcoming Regulations


Status of Regulations

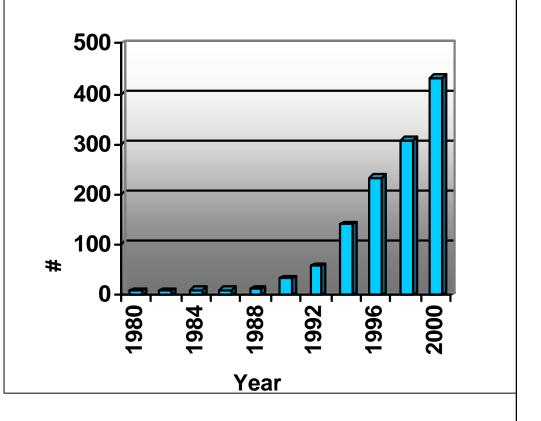
- US EPA <u>Draft</u> Disinfection Guidance Manual was issued October 2001
- Technical review and comments are being collected
- Manual is to support two upcoming regulations:
 - 1. DBPR
 - 2. LTSESWTR
- Both rules are considering UV disinfection for Crypto and Giardia removal credits
- Plants have successfully obtained approval to use UV disinfection as an Add-on to existing disinfection technologies thus providing a multi-barrier strategy

UV Disinfection Applications

Trojan's UV Disinfection Technologies

Municipal Wastewater Disinfection

- Used in primary, secondary or tertiary treatment
- 2,600 systems installed worldwide, serving over 20 million people
 - 11% in Canada
 - 75% in USA
 - 14% rest of world



Global Disinfection Strategies for Drinking Water

UV Disinfection in Europe

- UV is "proven" technology in European drinking water treatment
- Widely used since 1980
- Approx. 200 Trojan municipal drinking water installations in
 Europe (Milan Italy, Toulouse France, Antwerp Belgium, Middelburg The Netherlands, Motala Sweden, Hatfield UK)

Global Disinfection Strategies for Drinking Water

Under the U.S. Safe Drinking Water Act, the US EPA is developing regulations for improved disinfection while reducing disinfection by-products

- 1. Protection against chlorine-resistant bacteria (Cryptosporidium, Giardia etc.)
- 2. Reduction in cancer-causing disinfection byproducts created from chemical disinfection
- 3. Development of multi-barrier disinfection strategy for public drinking water supplies

Adding UV to existing infrastructure responds ideally to all three objectives

Trojan's full range of products to treat private and public water supplies

Applications

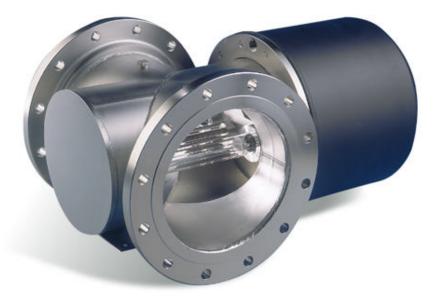
Residential & Commercial Applications

Residential & Commercial UV Systems

- Over 130,000 systems sold used in rural homes & cottages, farms, camps, labs, restaurants, nursing homes
- New product launched in March, 2000
- Reliable, low cost solution for private water supplies

Small Municipal Drinking Water UV Systems

- For communities with 300 to 8,000 people
- Ideal as stand-alone system or part of a multi-barrier treatment strategy
- Easily installed in existing water treatment facilities
- Available with fully-automated selfcleaning system
- Remote monitoring via modem
 interface
- Very low capital and operating costs



Larger Municipal Drinking Water UV Systems

- For communities with > 8,000 people
- Ideal as part of a multi-barrier treatment strategy
- Easily installed in existing water treatment facilities
- Available with fullyautomated self-cleaning system
- Very low capital and operating costs

Trojan Municipal Drinking Water Systems

 Currently 627 municipal drinking water systems operate in Ontario serving 82% of the population

(Source: Drinking Water in Ontario - MOE, 2000)

 Many will upgrade to include a multi-barrier disinfection strategy over next 2 years

Application to Newfoundland Communities

- Use as additional treatment step in existing water treatment systems
 - Add UV at stage water enters distribution
- Use as stand-alone treatment at well-head
 - Insert into pipeline where no treatment currently being provided
- Use at point-of-use on private wells
 - Small scale units available for use in private homes
- Install at schools, day-care centres, retirement centres and community centers to protect most vulnerable members of society

Typical Smaller Community UV Systems Costs

Community		With Re	mote	Estimated
Size	UV System*	Monito	ring	Installation Cost
25	\$800	-	\$30	00
50	\$1,000	-	\$30	00
75	\$1,200	-	\$	500
300	\$8,500	\$13,000	\$2,0	00
1,000	\$12,500	\$17,000	\$3,0	00
2,000	\$20,500	\$25,000	\$4,5	00
5,000	\$37,500	\$42,000	\$8,0	00
8,000	\$48,000	\$52,500	\$10,0	00

* Complete with fully automated self-cleaning system

UV Disinfection Equipment

Project: System: Flow Rate: Service: Fern Resort UV04AS20 110 US GPM Disinfection

Project: System: Flow Rate: Service: South Berwick, Maine UV8012L with Chemical Cleaning System 160 GPM Disinfect Ground Water in a Pumphouse

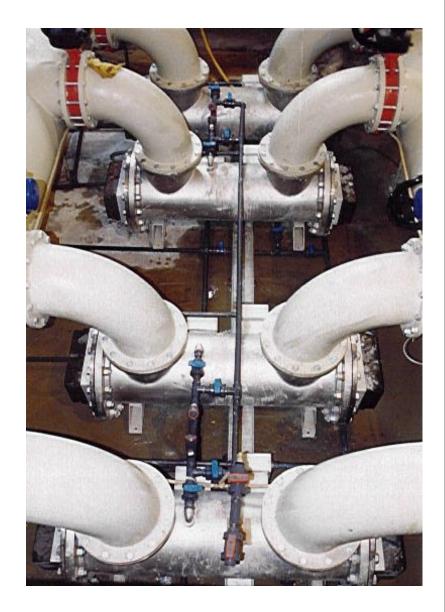
Project:Huybergen, NetherlandsSystem:UV02M25Flow Rate:815 GPMService:Disinfect Filtered Ground Water

Project: Regional Municipality of Waterloo, Ontario System: UV01M20 Flow Rate: 225 GPM Service: Disinfect Ground Water

Project: System: Service:

Indianapolis, Indiana UV02M30 Flow Rate: 750 GPM **Disinfection of Ground Water**

Project: Ontario, NY System: UVSWIFT-12 Flow Rate: 3 MGD Service: Primary disinfection (treating surface water from Lake Ontario)



Tivoli Fountains, Italy – 12 MGD UV8000 System

AWWARF 2593: Inactivation of Pathogens by Innovative UV Technologies, Salt Lake City, UT

Trojan Technologies Inc.

Trojan Technologies Inc.

- Founded in 1977, in London, Ontario
- The design, manufacture and sale of UV based disinfection technologies for residential & commercial drinking water, municipal drinking water, industrial process water and wastewater markets globally.
- Singular focus on environmentally responsible disinfection technologies
- 300 dedicated professionals on staff
- Offices in Canada, USA, the UK, the Netherlands, Norway, Spain, Germany

Trojan Technologies Inc.

Expertise:

- \$6 million invested in R&D in 2001
- Invested over \$30 million in R&D since inception
- Trojan is largest private funder of UV disinfection research in the world.
- R&D and engineering expertise: 110 university & college graduates
- 16 PhD's; 10 Masters'; 50 electrical & mechanical engineers
- Over 500 person-years of UV disinfection experience

Trojan Research & Partnerships

R&D in Drinking Water Treatment

 Cryptosporidium & Giardia research at McGill, Duke, UNC.

(Recent outbreaks in North Battleford,, Collingwood, Waterloo)

 Continuous improvement in Reactor design,UV efficiency, lamp technology

Technical advisory role to regulators

Trojan currently serves on US EPA advisory committee on municipal drinking water disinfection strategies

Questions

