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Topics

 Context and Motivation

 Datalog

 Theoretical Foundations of DLP

 Knowledge Representation and Applications

 Computational Issues

 DLP Systems

 ASP Development tools
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MAIN FOCUS:

 Knowledge Representation and Applications

GOAL:

 Getting a Powerful Tool for Solving Problems in a 
Fast and Declarative way
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Disjunctive Logic Programming (DLP)

Disjunctive Datalog

Disjunctive Databases

Answer Set Programming (ASP)
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Roots −−−− declarative programming

 Algorithm = Logic + Control (Kowalski, 1979)

 First-order logic as a programming language

 Expectations, hopes

easy programming, fast prototyping

handle on program verification

advancement of software engineering
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Disjunctive Logic Programming (DLP)

 Simple, yet powerful KR formalism

 Widely used in AI

 Incomplete Knowledge

 Able to represent complex problems not 
(polynomially) translatable to SAT

 A declarative problem specification is 
executable

6



DLP Advantages

 Sound theoretical foundation (Model Theory)

 Nice formal properties (clear semantics)

 Real Declarativeness

Rules Ordering, and Goal Orderings is 
Immaterial!!!

Termination is always guaranteed

 High expressive power (       )ΣP
2
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DLP Revolution

INTELLIGENT PROBLEM SOLVING

COMPLEX DATA/KNOWLEDGE MANIPULATION
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Why is DLP approach “revolutionary” ? :

DLP Declarative Programming 

vs Traditional Procedural Programming

 Traditional PROGRAMMING (OLD):

 Implement an Algorithm to solve the problem

 List commands or steps that need to be carried out 

In order to achieve the results 

 Tell the computer “HOW TO” solve the problem

 DLP DECLARATIVE PROGRAMMING
 Specify the features of the desidered solution

 NO ALGORITHMS

 Simply Provide a “Problem Specification”

DLP Revolution
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Drawbacks

 Computing Answer Sets is rather hard  (      ) 

 Very few solid and efficient implementations

...but this has started to change:
 DLV, Clasp, …

 Cmodels, IDP, …

ΣP
2
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What is DLP Good for? (Applications)

 Artificial Intelligence, Knowledge Representation 

& Reasoning 

 Information Integration, Data cleaning, 

Bioinformatics, ...

 Employed for developing industrial applications
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Applications

 Planning 

 Theory update/revision 

 Preferences

 Diagnosis 

 Learning 

 Description logics and semantic web 

 Probabilistic reasoning 

 Data integration and question answering 

 Multi-agent systems 

 Multi-context systems 

 Natural language processing/understanding 
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Applications

 Argumentation 

 Product configuration 

 Linux package configuration 

 Wire routing 

 Combinatorial auctions 

 Game theory 

 Decision support systems 

 Logic puzzles 

 Bioinformatics 

 Phylogenetics

 Haplotype inference 
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Applications

 System biology 

 Automatic music composition 

 Assisted living 

 Robotics 

 Software engineering 

 Boundend model checking 

 Verification of cryptographic protocols 

 E-tourism 

 Team building 

 Data Cleaning 

 Business Games
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Datalog
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Datalog Syntax: Terms

 Terms are either constants or variables 

 Constants can be either symbolic constants (strings starting 
with some lowercase letter), string constants (quoted strings) 
or integers. 

 Ex.: pippo, “this is a string constant”, 123, … 

 Variables are denoted by strings starting with some uppercase 
letter. 

 Ex.: X, Pippo, THIS_IS_A_VARIABLE, White, …
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Datalog Syntax: Atoms and Literals

 A predicate atom has form p(t1,…, tn), where p is a predicate 
name,   t1,…, tn are terms,  and n≥0 is the arity of the 
predicate atom. A predicate atom p() of arity 0 is likewise 
represented by its predicate name p without parentheses. 

 Ex.: p(X,Y)  - next(1,2)  - q  - i_am_an_atom(1,2,a,B,X)

 An atom can be negated by means of “not”. 

 Ex: not a, not p(X), …

 A literal is an atom or a negated atom. In the first case it is 
said to be positive, while in the second it is said to be 
negative.
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What is Datalog (I)

Datalog is the non-disjunctive fragment of DLP.

A (general) Datalog program is a set of rules of the form
positive body            negative body

Rule:    a :- b1, …, bk , not bk+1, …, not bm (1)

head body

where “a” and each “bi” are atoms. 

Given a rule r of the form (1) above, we denote by:
 H(r): (head of r), the atom “a”
 B(r): (body of r), the set  b1, …, bk , not bk+1, …, not bm of all body 

literals
 B+(r): (positive body),  the set b1, …, bk of positive body literals
 B-(r): (negative body),  the set not bk+1, …, not bm of negative body 

literals
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Positive Datalog

A positive (pure) Datalog rule has the following form:

head  :- atom1, atom2, …., atom,…

where all the atoms are positive (non-negated).

Ex.: britishProduct(X) :- product(X,Y,P), company(P,“UK”,SP).
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Facts
 A ground rule with an empty body is called a fact.
 A fact is therefore a rule with a True body (an empty conjunction 

is true by definition).
 The implication symbol is omitted for facts

parent(eugenio, peppe) :- true.
parent(mario, ciccio) :- true.
equivalently written by

parent(eugenio, peppe).
parent(mario, ciccio).

 Facts must always be true in the program answer!
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What is Datalog (II)

We usually distinguish  EDB predicates and IDB 

predicates
• EDB: predicates appearing only in bodies or in facts. 
EDB’s can be thought of as stored in a database.
• IDB: predicates defined (also) by rules. IDB’s are 
intensionally defined, appear in both bodies and 
heads.

Intuitive meaning of a Datalog program:
• Start with the facts in the EDB and iteratively derive 
facts for IDBs.
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Datalog as a Query Language

Datalog has been originally conceived as a query 
language, in order to overcome some expressive 
limits of SQL and other languages.

Exercise: write an SQL query retrieving all the cities 
reachable by flight from Lamezia Terme, through a 
direct or undirect connection.
Input: A set of direct connections between some 
cities represented by facts for connected(_,_).
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Datalog as a Query Language

Exercise (2): write an SQL query retrieving all 
the cities indirectly reachable by flight from 
Lamezia Terme, with a stop/coincidence in a 
single city.

Exercise (3): write an SQL query retrieving all 
the cities indirectly reachable by flight from 
Lamezia Terme, with exactly 2 
stops/coincidences in other cities.
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Datalog and RECURSION

(original) Exercise: write a query retrieving all the cities 
reachable by flight from Lamezia Terme, through a direct 
or undirect connection. 

A possible Datalog solution.
Input: A set of direct connections between some cities 
represented by facts for connected(_,_).

reaches(lamezia,B) :- connected(lamezia,B).
reaches(lamezia,C) :- reaches(lamezia,B), connected(B,C).
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Suppose we are representing a graph by a 
relation edge(X,Y).

I want to express the query:  Find all nodes 

reachable from the others.

path(X,Y) :- edge(X,Y).

path(X,Y) :- path(X,Z), path(Z,Y).

Transitive Closure
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Recursion (ancestor)

If we want to define the relation of arbitrary ancestors rather 
than grandparents, we make use of recursion:

ancestor(A,B) :- parent(A,B). 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).

An equivalent representation is

ancestor(A,B) :- parent(A,B).
ancestor(A,C) :- ancestor(A,B), parent(B,C).
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Note the Full Declarativeness

The order of rules and of goals is immaterial:
ancestor(A,B) :- parent(A,B). 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).

is fully equivalent to 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).
ancestor(A,B) :- parent(A,B). 

and also to
ancestor(A,C) :- ancestor(B,C), ancestor(A,B).
ancestor(A,B) :- parent(A,B).
NO LOOP!
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Datalog Semantics

Later on, we will give the model-theoretic 
semantics for DLP, and obtain model-theoretic 
semantics of Datalog as a special case.

We next provide the operational semantics of 
Datalog, i.e., we specify the semantics by giving 
a procedural method for its computation.

28



Semantics: Interpretations and Models

Given a Datalog program P, an interpretation I for P is a set 
of ground atoms.

An atom “a” is true w.r.t. I if a ∈ I; it is false otherwise.
A negative literal “not a” is true w.r.t. I if a ∉ I; it is false 
otherwise.

Thus, an interpretation I assigns a meaning to every atom: 
the atoms in I are true, while all the others are false.

An interpretation I is a MODEL for a ground program P if, 
for every rule r in P, the H(r) is True w.r.t. I, whenever B(r) is 
true w.r.t. I
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Example: Interpretations

Given the program
a :- b, c.
c :- d.
d.

and the interpretation
I = {c,d}

the atoms c and d are true w.r.t. I, while the atoms a and b
are false w.r.t. I.
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Example: Models

Given the program
r1: a :- b, c.
r2: c :- d.
r3: d.

and the interpretations
I1 = {b,c,d} I2={a,b,c,d} I3={c,d}

we have that I2 and I3 are models, while I1 is not, since the 
body of r1 is true w.r.t. to I1 and the head is false w.r.t. I1.
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Operational Semantics: ground programs
Given a ground positive Datalog program P and an interpretation I, the 
immediate consequences of I are the set of all atoms “a” such that there
exists a rule “r” in P s.t. (1) “a” is the head of “r”, and (2) the body of “r” 

is true w.r.t. I. 

Tp(I) = { a | ∃ r ∈ P s.t. a = H(r) and B(r) ⊆ I }

where H(r) is the head atom, and B(r) is the set of body literals.

Example:
a :- b.     c :- d.     e :- a. I = {b}  Tp(I) = {a}.

THEOREM: On a positive Datalog program P, Tp always has a least
fixpoint coinciding with the least model of P.

Thus: Start with I={facts in the EDB} and iteratively derive facts for IDBs, 
applying Tp operator.
Repeat until the least fixpoint is reached.
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Operational Semantics: general case (non-ground)

What to do when dealing with a non-ground 
program?

Start with the EDB predicates, i.e.: “whatever the 
program dictates”, and with all IDB predicates 
empty. 

Repeatedly examine the bodies of the rules, and 
see what new IDB facts can be discovered taking 
into account the EDB plus all IDB facts derived 
until the previous step.
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Operational Semantics: Seminaive Evaluation

Since the EDB never changes, on each round we get 
new IDB tuples only if we use at least one IDB tuple 
that was obtained on the previous round.

Saves work; lets us avoid rediscovering most known 
facts (a fact could still be derived in a second way…).

Resuming: a new fact can be inferred by a rule in a 
given round only if it uses in the body some fact
discovered on the previous (last) round. But while
evaluating a rule, remember to take into account also
the rest (EDB + all derived IDB).
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Operational Semantics: Derivation

Relation can be expressed intentionally through logical rules.

grandParent(X,Y) :- parent (X,Z), parent(Z,Y).
parent(a,b). parent(b,c).

Semantics: evaluate the rules until the fixpoint is reached:

M= { grandParent(a,c), parent(a,b), parent(b,c) }

Iteration #0: { parent(a,b), parent(b,c) }
Iteration #1: the body of the rule can be instantiated with 

“parent(a,b)”, “parent(b,c)”
thus deriving { grandParent(a,c) }

Iteration #2: nothing new can be derived (it is easy to see that we 
derived only “grandParent(a,c)”, and no rule having “grandParent” 
in the body is present). Nothing changes  we stop.
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Operational Semantics: Ancestor

(i) ancestor(X,Y) :- parent (X,Z), parent(Z,Y).
(ii) ancestor(X,Y) :- parent (X,Z), ancestor(Z,Y).
parent(a,b). parent(b,c). parent(c,d).

M= { parent(a,b), parent(b,c), parent(c,d), ancestor (a,c), 
ancestor(b,d), ancestor(a,d) }

Iteration #0: { parent(a,b), parent(b,c), parent(c,d) }
Iteration #1: { ancestor(a,c), ancestor(b,d) } (from rule (i)) 

- useless to evaluate rule (ii): no facts for “ancestor” are true.

Iteration #2: - useless to evaluate rule (i): body contains only “parent” facts,
and no new were derived at last stage;

- some “ancestor” facts were just derived, and “ancestor” appears 
in the body of rule (ii). 

Thus we derive: { ancestor(a,d) } - Note: this is derived 
exploiting “ancestor(b,d)” but also “parent(a,b)”, which was
derived before last stage.

Iteration #3: nothing changes  we stop.
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Operational Semantics: Transitive Closure 

a

b

c

d e

( i)  path(X,Y) :- edge(X,Y).

(ii)  path(X,Y) :- path(X,Z), path(Z,Y).

edge(a,b). edge (a,c). edge(b,d).

edge(c,d). edge(d,e).

Iteration #0: Edge: { (a,b), (a,c), (b,d), (c,d), (d,e) }
Path:  { }

Iteration #1: Path:  { (a,b), (a,c), (b,d), (c,d), (d,e) }
Iteration #2: Path:  { (a,d), (b,e), (c,e) }
Iteration #3: Path:  { (a,e) }
Iteration #4: Nothing changes  We stop.

Note: number of iterations depends on the data. Cannot be 
anticipated by only looking at the rules!
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Negated Atoms

We may put “not” in front of an atom, to negate its meaning. 

Of course, programs having at least one rule in which negation 
appears aren’t said to be positive anymore.

Example: Think of arc(X,Y) as arcs in a graph. 
s(X,Y) singles out the pairs of nodes <a,b> which are not 
symmetric, i.e., there is an arc from a to b, but no arc from b 
to a.

s(X,Y) :- arc(X,Y), not arc(Y,X).
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Safety
A rule r is safe if  

 each variable in the head, and
 each variable in a negative literal, and
 each variable in a comparison operator (<,<=, etc.)

also appears in a standard positive literal. In other words, all 
variables must appear at least once in the positive body.

Only safe rules are allowed.

Ex.: The following rules are unsafe:
� s(X) :- a.
� s(Y) :- b(Y), not r(X).
� s(X) :- not r(X).
� s(Y) :- b(Y), X<Y.

In each case, an infinity of x’s can satisfy the rule, even if “r” is a 
finite relation.
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Problems with Negation and Recursion

Example: 
IDB: p(X) :- q(X), not p(X).
EDB: q(1). q(2).

Iteration #0: q = {(1), (2)}, p = { }
Iteration #1: q = {(1), (2)}, p = {(1), (2)}
Iteration #2: q = {(1), (2)}, p = { }
Iteration #3: q = {(1), (2)}, p = {(1), (2)} 
etc., etc. …
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Recursion + Negation

“Naïve” evaluation doesn’t work when 
there are negative literals.

In fact, negation wrapped in a recursion 
makes no sense in general.

Even when recursion and negation are 
separate, we can have ambiguity about 
the correct IDB relations.
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Stratified Negation

Stratification is a constraint usually placed 
on Datalog with recursion and negation.

It rules out negation wrapped inside 
recursion.

Gives the sensible IDB relations when 
negation and recursion are separate.
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To formalize strata use the labeled dependency 
graph:
 Nodes = IDB predicates.
 Arc b -> a if predicate a depends on b (i.e., b

appears in the body of a rule where a appears in 
the head), but label this arc “–” if the occurrence 
of b is negated.

A Datalog program is stratified if NO CYCLE of the 
labeled dependency graph contains an arc labeled 
“-”.

Stratified Negation: Definition
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Example: unstratified program

p(X) :- q(X), not p(X).

- p

Unstratified: there is a cycle with a “-” arc.
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Example: stratified program

EDB = source(X), target(X), arc(X,Y).

Define “targets not reached from any source”:

reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X).

noReach(X) :- target(X), not reach(X).
NoReach

Reach

-

Stratum 0:
No “–” arcs on
any path in

Stratum 1:
some “-” arc 
incoming from 
Stratum 0
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Minimal Models

As already said, when there is no 
negation, a Datalog program has a 
unique minimal (thus minimum) model 
(one that does not contain any other 
model).

But with negation, there can be several 
minimal models.
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a :- not b.

Models: {a} {b}

Both are minimals. But stratification allows us to 
single out model {a}, which is indeed the 
(unique) answer set.

Example: Multiple Models (1)
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DEFINITION: Given a strongly-connected 
component C of the dependency graph of a 
given program P, the subprogram subP(C) is 
the set of rules with an head predicate 
belonging to C.

Subprograms
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Evaluation of Stratified Programs 1

When the Datalog program is stratified, we can 
evaluate IDB predicates of the lowest-stratum-first. 

Once evaluated, treat them as EDB for higher strata.

METHOD: Evaluate bottom-up the subprograms of 
the components of the dependency graph.

NOTE: The evaluation of a single subprogram is 
carried out by the (semi)NAÏVE method.
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Evaluation of Stratified Programs 2

INPUT: EDB F, IDB P

 Compute the labeled dependency graph DG of P;

 Build a topological ordering C1,...,Cn of the 
components of DG;

 M= F;

 For i=1 To n Do

 M = SemiNaive( M U subP(Ci) )

 % compute the least fixpoint of Tp on 

( M U subP(Ci) )

 OUTPUT M; 
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Stratified Model: example

a :- not b.

b :- d.

Two components: {a} and {b}. 
subP({b}) = {b :- d.} subP({a}) = {a :- not b.}

- {b} is at the lowest stratum -> start evaluating subP({b}).

- The answer set of subP({b}) is AS(subP({b})) = {}.  

 “{}” is the input for subP({a}). 

- The answer set of subP({a}) U {} is AS(subP({a})) = {a}, 
which is the (unique) answer set of the original program.

a

b

-
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Example: Stratified Evaluation (2-1)
IDB: reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X).

noReach(X) :- target(X), not reach(X).

EDB: node(1). node(2). node(3). node(4). 

arc(1,2), arc(3,4). arc(4,3)

source(1), target(2), target(3).

-

reach

noReach

Stratum 0

Stratum 1

We have two components: 
C1 = {reach}  C2 = {noReach}

And the related subprograms are:
subP({reach}) = {  reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X). }
subP({noReach}) = {  noReach(X) :- target(X), not reach(X). }

C1 is at a lower stratum w.r.t. C2, thus the subprogram of C1 has to 
be computed first.
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Example: Stratified Evaluation (2-2)
IDB: reach(X) :- source(X).

reach(X) :- reach(Y), arc(Y,X).

noReach(X) :- target(X), not reach(X).

EDB: node(1). node(2). node(3). node(4). 

arc(1,2), arc(3,4). arc(4,3)

source(1), target(2), target(3).

Answer Set of subP(C1) U EDB
Iteration #0: facts = { source(1), target(2), target(3),... }
Iteration #1: { reach(1) }
Iteration #2: { reach(2) }
Iteration #3: { }  we stop.

Evaluating through strata 

Answer Set: { reach(1), reach(2), noReach(3), + facts }.

-

reach

noReach

Stratum 0

Stratum 1

M(subP(C1)) = 
{ reach(1), reach(2) + facts }

Answer Set of subP(C2) U M(subP(C1))
Iteration #0: M(subP(C1) = { reach(1), reach(2) + facts }
Iteration #1: { noReach(3) }
Iteration #2: { }  we stop.

M(subP(C2)) = 
{ noReach(3), reach(1), reach(2) + facts }
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Disjunctive logic programming

Disjunctive Datalog

Answer Set Programming
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Foundations of DLP: 

Syntax and Semantics

a bit boring, but needed....

getFunTomorrow :- resistToday.
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(Extended) Disjunctive Logic Programming

Datalog extended with

 full negation (even unstratified)

 disjunction

 integrity constraints

 weak constraints

 aggregate functions

 function symbols, sets, and lists
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Disjunctive Logic Programming

SYNTAX
Rule: a1 | … | an :- b1, …, bk , not bk+1 , …, not bm

Constraints: :- b1 , …, bk , not bk+1 , …, not bm

Program: A finite Set P of  rules and constraints.

- ai bi are atoms

- variables are allowed in atoms’ arguments

mother(P,S) | father(P,S) :- parent(P,S).
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Example Disjunction

In a blood group knowledge base one may express that the genotype 

of a parent P of a person C is either T1 or T2, if C is heterozygot with 

types T1 and T2:

genotype(P,T1) | genotype(P,T2) :-

parent(P,C), heterozygot(C,T1,T2).

In general, programs which contain disjunction can have more than 

one model.
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Arithmetic Built-ins

Fibonacci

fib0(1,1).
fib0(2,1).
fib(N,X) :- fib0(N,X).
fib(N,X) :- fib(N1,Y1), fib(N2,Y2), 

+(N2,2,N), +(N1,1,N), +(Y1,Y2,X).

Unbound builtins

less(X,Y) :- #int(X), #int(Y), X < Y.
num(X) :- *(X,1,X), #int(X).

Note that an upper bound for integers has to be specified.
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Default Negation

Often, it is desirable to express negation in the following 
sense: “ If we do not have evidence that X holds, 
conclude Y.” This is expressed by default negation (the 
operator not).

For example, an agent could act according to the 
following rule: 

“At a railroad crossing, cross the rails if no train 
approaches” 

cross_railroad(A) :- crossing(A), not train_approaches(A).
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Strong Negation

However, in this example default negation is not really the right notion of 

negation.

It is possible that a train approaches, but that we don.t have any evidence 

for it (e.g. we do not hear the train). Rather, it would be desirable to 

definitely know that no train approaches.

This concept is called strong negation:

cross_railroad(A) :- crossing(A), -train_approaches(A).

The use of strong negation can lead to inconsistencies:

a. -a.
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Informal Semantics

Rule:    a1 | … | an :- b1, …, bk , not bk+1 , …, not bm

If all the b1 …bk are true and all the bk+1 … bm are false, then at least one among a1 
…an is true.

isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).

attendsDLP(john).

Two (minimal) models, encoding two plausible scenarios:

M1: {attendsDLP(john), isInterestedinDLP(john) }

M2: {attendsDLP(john), isCurious(john) }
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Disjunction

is minimal

a | b | c  { a }, { b }, { c }

actually subset minimal

a | b.
a | c.

 {a}, {b,c}

but not exclusive

a | b.
a | c.
b | c.

 {a,b}, {a,c}, {b,c}
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Informal Semantics

Constraints:    :- b1 , …, bk , not bk+1 , …, not bm

Discard interpretations which verify the condition

:- hatesDLP(john), isInterestedinDLP(john).

hatesDLP(john).

isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).

attendsDLP(john).

first scenario ({attendsDLP(john), isInterested(john) }) is discarded.

only one plausible scenario:

M: { attendsDLP(john), hatesDLP(john), isCurious(john) }
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Integrity Constraints

When encoding a problem, its solutions are given by the models of the 

resulting program. Rules usually construct these models. Integrity 

constraints can be used to discard models.

:- L1, … , Ln.

means: discard models in which L1, … , Ln are simultaneously true. 

a | b.
a | c.
b | c.

:- a.  {b, c}

 {a,b}, {a,c}, {b,c}
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(Formal) Semantics: Program Instantiation

Herbrand Universe, UP= Set of constants occurring in program P

Herbrand Base, BP= Set of ground atoms constructible from UP and Pred.

Ground instance of a Rule R:  Replace each variable in R by a constant in UP

Instantiation ground(P) of a program P: Set of the ground instances of its rules.

Example: isInterestedinDLP(X) | isCurious(X) :- attendsDLP(X).

attendsDLP(john).

attendsDLP(mary).

UP={ john, mary }

isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).

isInterestedinDLP(mary) | isCurious(mary) :- attendsDLP(mary).

attendsDLP(john).

attendsDLP(mary).

A program with variables is just a shorthand for its ground instantiation!
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Interpretations and Models

Interpretation I of a program P:

set of ground atoms of P.

Atom q is true in I if q belongs to I; otherwise it is false.

Literal not q is true in I if q is false in I; otherwise it is false.

Interpretation I is a MODEL for a ground program P if, for every 
R in P, the head of R is True in I, whenever the body of R is 
true in I
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Semantics for Positive Programs

We assume now that Programs are ground

(just replace P by ground(P)) and Positive (not -
free)

I is an answer set for a positive program P if it is 
a minimal model (w.r.t. set inclusion) for P

-> Bodies of constraint must be false.
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Example (Answer set for a positive program)

isInterestedinDLP(john) | isCurious(john) :- attendsDLP(john).

isInterestedinDLP(mary) | isCurious(mary) :- attendsDLP(mary).

attendsDLP(john).

attendsDLP(mary).

I1 = { attendsDLP(john) } (not a model)

I2 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary), 
isCurious(mary), attendsDLP(mary) } (model, non minimal)

I3 = { isCurious(john),  attendsDLP(john), isInterestedinDLP(mary), 
attendsDLP(mary) } (answer set)

I4={ isInterestedinDLP(john), attendsDLP(john), isInterestedinDLP(mary), 
attendsDLP(mary) } (answer set)

I5 = { isCurious(john),  attendsDLP(john), isCurious(mary), attendsDLP(mary) } 
(answer set)

I6={ isInterestedinDLP(john), attendsDLP(john), isCurious(mary), 
attendsDLP(mary) } (answer set)
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Example (Answer set for a positive program)
Let us ADD:

:- hatesDLP(john), isInterestedinDLP(john).
hatesDLP(john).

( same interpretations as before + hatesDLP(john) ) 

I1 = { attendsDLP(john), hatesDLP(john) } (not a model)

I2 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary), isCurious(mary), 
attendsDLP(mary), hatesDLP(john) } (model, non minimal)

I3 = { isCurious(john),  attendsDLP(john), isInterestedinDLP(mary), attendsDLP(mary) , 
hatesDLP(john) } (answer set)

I4={ isInterestedinDLP(john), attendsDLP(john), isInterestedinDLP(mary), attendsDLP(mary), 
hatesDLP(john) } (not a model)!!!

I5 = { isCurious(john),  attendsDLP(john), isCurious(mary), attendsDLP(mary), 
hatesDLP(john) } (answer set)

I6={ isInterestedinDLP(john), attendsDLP(john), isCurious(mary), attendsDLP(mary),  
hatesDLP(john) } (not a model)!!!
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Semantics for Programs with Negation

Consider general programs (with NOT)

The reduct or of a program P w.r.t. an interpretation I is the 
positive program PI, obtained from P by

 deleting all rules with a negative literal false in I;
 deleting the negative literals from the bodies of the remaining 

rules.

An answer set of a program P is an interpretation I such that I is 
an answer set of PI.

Answer Sets are also called Stable Models.
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Example (Answer set for a general program)

P: a :- d, not b.
b :- not d.
d.

I = { a, d }

PI : a :- d.
d.

I is an answer set of PI and therefore it is an answer set of P.
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Answer sets and minimality

An answer set is always a minimal model (also with negation).
In presence of negation minimal models are not necessarily answer sets
P: a :- not b.

Minimal Models: I1 = { a }
I2 = { b }

Reducts:
PI1 :    a.
PI2 : {}

I1 is an answer set of PI1 while I2 is not an answer set of PI2 (it is not minimal, 
since empty set is a model of PI2). 

PI1 is the only answer set of P.
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Datalog Semantics: a special case

The semantics of Datalog is the same as for DLP (Datalog 
programs are DLP programs).

Since Datalog programs have a simpler form, we can have for 
Datalog the following characterization: 

 the answer  set of a positive datalog program is the least 
model of P 

(i.e. the unique minimal model of P).

Why does this work?

THEOREM: A positive Datalog program has always a (unique) 
minimal model.

PROOF: The intersection of two models is guaranteed to be 
still a model; thus, only one minimal model exists.
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Part II

A (Declarative) Methodology for Programming 

in DLP
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DLP – How To Program?

Idea: encode a search problem P by a DLP program LP. 

The answer sets of LP correspond  one-to-one to the 
solutions of  P .

Rudiments of methodology

• Generate-and-test programming:

- Generate (possible structures)

- Weed out (unwanted ones) 

by adding constraints (“Killing” clauses)

• Separate data from program
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“Guess and Check” Programming 

Answer Set Programming (ASP)

• A disjunctive rule “guesses” a solution candidate.

• Integrity constraints check its admissibility.

From another perspective:

• The disjunctive rule defines the search space.

• Integrity constraints prune illegal branches.
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3-colorability

Input: a Map represented by state(_) and border(_,_).
Problem: assign one color out of 3 colors to each state 

such that two neighbouring states have always different 
colors.

Solution:

col(X,red) | col(X,green) | col(X,blue) :-state(X).} Guess

:- border(X,Y), col(X,C), col(Y,C). } Check
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Hamiltonian Path (HP) (1)

Input: A directed graph represented by node(_) and arc(_,_),        
and a starting node start(_).

Problem: Find a path beginning at the starting node which     

contains all nodes of  the graph. 
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Hamiltonian Path (HP) (2)

inPath(X,Y) | outPath(X,Y) :- arc(X,Y). Guess

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1.          Check

:- node(X), not reached(X).
:- inPath(X,Y), start(Y). % a path, not a cycle

reached(X) :- start(X). Auxiliary Predicate

reached(X) :- reached(Y), inPath(Y,X).
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Strategic Companies(1)

Input: There are various products, each one is produced

by several companies.

Problem: We now have to sell some companies.

What are the minimal sets of strategic companies,

such that all products can still be produced? 

A company also belong to the set, if all its

controlling companies belong to it.

strategic(Y) |  strategic(Z) :- produced_by(X, Y, Z). Guess

strategic(W) :- controlled_by(W, X, Y, Z), Constraints

strategic(X), strategic(Y), strategic(Z).
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Strategic Companies - Example

pasta

wine

tomatoes

barilla

frutto

saiwa

budweiser

heineken

panino bread

beer

barilla

frutto

saiwa

budweiser

heineken
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Complexity Remark

The complexity is in NP, if the checking part does 

not “interfere” with the guess.

“Interference” is needed to represent        problems.

83



Testing and Debugging with GC

Develop DLP programs incrementally:
 Design the Data Model

 The way the data are represented (i.e., design predicates 
and facts representing the input)

 Design the Guess module G first
 test that the answer sets of G (+the input facts) correctly 

define the search space

 Then the Check module C
 verify that the answer sets of G U C are the admissible 

problem solutions

Use small but meaningful problem test-instances!
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Satisfiability

 Boolean, or propositional, satisfiability (abbreviated 

SAT) is the problem of determining if there exists an 

interpretation that satisfies a given Boolean formula.

 Conjunctive Normal form (CNF): a formula is a 

conjunction of clauses, where a clause is a disjunction 

of  boolean variables.

 3-SAT: only 3-CNF formulas (i.e. exactly three 

variables for each clause)

 Problem: Find satisfying truth assignments of Φ (if any). 85



SAT: example

(d1 v -d2 v -d3) ∧ (-d1 v d2 v d3)

 Satisfying assignments:

{ d1, d2,  d3} 
{ d1, -d2,  d3} 
{ d1, d2, -d3} 
{-d1, -d2, d3} 
{-d1, -d2, -d3}  
{-d1, d2, -d3} 

 Non Satisfying assignments:

{ d1, -d2, -d3} 
{-d1, d2, d3} 
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SAT: ASP encoding
Add a guessing rule for each propositional variable

∀ di  di | ndi.

Add a constraint for each clause, complementing the 

variables

∀ di1 v di2 v di3  :- Li1, Li2, Li3

where Lij = a if dij = -a, and Lij = not a if dij = a
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Example: SAT  ASP

Formula

(d1 v -d2 v -d3) ∧ (-d1 v d2 v d3)

ASP encoding:

 d1 | nd1.         :- not d1, d2, d3.

 d2 | nd2.         :- d1, not d2, not d3.

 d3 | nd3. 

Answer Sets

{  d1, d2, nd3}      {nd1, nd2, nd3}

{nd1, d2, nd3}      {nd1, nd2, d3}

{  d1, nd2, d3}      {  d1, d2, d3}
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Part III

Computational Issues
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Computational Issues

Tackle high complexity by isolating simpler sub-
tasks

Problem: The complexity of DLP is very high 

(ΣP
2 and even ∆P

3), how to deal with that?

Tool: An in-depth Complexity Analysis
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Main Decision Problems

[Cautious Reasoning]

Given a DLP program P, and a ground atom A, 

is A true in ALL answer sets of P?

[Brave Reasoning]
Given a DLP program P, and a ground atom A, 

is A true in SOME answer sets of P?
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A relevant subproblem

[Answer Set Checking]

Given a DLP program P and an interpretation M, 
is M an answer set of Rules(P)?
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Syntactic restrictions 

on DLP programs

 Head-Cycle Free Property 
[Ben-Eliyahu, Dechter]

 Stratification
[Apt, Blair, Walker]

Level Mapping: a function || || from ground (classical) 
literals of the Herbrand Base BP of P to positive 
integers.
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Stratified Programs

P is (locally) stratified if there is a level mapping  
|| ||s of P such that for every rule r of P

 For any l in Body+(r), and for any l' in Head(r),  
|| l ||s <= || l’ ||s ;

 For any not l in Body-(r), and for any l' in 
Head(r),  || l ||s < || l’ ||s

Forbid recursion through negation.
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Example: A stratified program

P1: p(a) | p(c) :- not q(a).

p(b) :- not q(b).

P1 is stratified:

||p(a)||s = 2,  ||p(b)||s = 2, ||p(c)||s = 2

||q(a)||s = 1,  ||q(b)||s = 1
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Example: An unstratified program

P2: p(a) | p(c) :- not q(b).

q(b) :- not p(a)

P2 is not stratified,

No stratified level mapping exists, 

as there is recursion through negation!
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Stratification Theorem

 If a program P is stratified and V-free, then P has at 
most one answer set.

 If, in addition, P does not contain strong negation and 
integrity constraint, then P has precisely one answer 
set.

 Under the above conditions, the answer set of P is 
polynomial-time computable.
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Complexity of Answer-Set Checking

{} nots not

{} P P P

V coNP coNP coNP
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Complexity of Brave Reasoning

{} nots not

{} P P NP

V ΣP
2 ΣP

2 ΣP
2

Completeness under Logspace reductions 99



Intuitive Explanation
Three main sources of complexity:

1. the exponential number of answer set 
“candidates”

2. the difficulty of checking whether a candidate 
M is an answer set of Rules(P) (the minimality
of M can be disproved by exponentially many 
subsets of M)

3. the difficulty of determining the optimality of 
the answer set w.r.t. the violation of the weak 
constraints

The absence of source 1 eliminates both source 2 and source 3
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Complexity of Cautious Reasoning

{} nots not

{} P P coNP

V coNP ΠP
2 ΠP

2

Note that < V, {} > is “only” coNP-complete!
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