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Abstract 

A hyperspectral inversion algorithm was used to distinguish between cyanobacteria and algal blooms 

in optically complex inland waters. A framework for the algorithm is presented that incorporates a bio-

optical model, a solution for the radiative transfer equation using the EcoLight-S radiative transfer model, 

and a non-linear optimization procedure. The natural variability in the size of phytoplankton populations 

was simulated using a two-layered sphere model that generated size-specific inherent optical properties 

(IOPs). The algorithm effectively determined the type of high-biomass blooms in terms of the relative 

percentage species composition of cyanobacteria. It also provided statistically significant estimates of 

population size (as estimated by the effective diameter), chlorophyll-a (chl-a) and phycocyanin pigment 

concentrations, the phytoplankton absorption coefficient, and the non-algal absorption coefficient. The 

algorithm framework presented here can in principle be adapted for distinguishing between phytoplankton 

groups using satellite and in situ remotely sensed reflectance. 
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1. Introduction 

The development of a method for remote sensing for distinguishing between blooms of cyanobacteria 

and algae is of considerable importance due to the large potential negative effects that toxin producing 

cyanobacteria may have on the health of humans, animals and aquatic ecosystems (see Matthews et al. 

2012). Hyper- and multi-spectral satellite missions present the opportunity to detect species-specific 

spectral features as postulated in the 1990s by Laurie L. Richardson (Richardson, 1996), and are becoming 

a reality through several planned hyperspectral satellite missions such as Germany’s Environmental 

Mapping and Analysis Program (EnMAP), Italy’s PRecursore IperSpettrale della Missione Applicativa 

(PRISMA), India’s Hyperspectral Imaging Satellite (HySIS), NASA’s Plankton, Aerosol, Cloud and ocean 

Ecosystem (PACE), and ESA’s FLuorescence EXplorer (FLEX).  Studies focused on differentiating 

cyanobacteria using ground or satellite spectral measurements have been limited to empirical methods 

detecting diagnostic spectral features of species such as Microcystis (e.g. Zhou et al. 2018; Matthews and 

Odermatt 2015; Stumpf et al. 2012) and Trichodesmium (e.g. Hu et al. 2010; Dupouy et al. 2011), and the 

retrieval of accessory pigments such as phycocyanin (PC) (e.g. Simis et al. 2005; Hunter et al. 2010). Up 

till the present study, there have been very few approaches using a physically-based inverse modeling 

approach to distinguishing cyanobacteria from algae (e.g., Xi et al., 2015; 2017). However, all the studies 

so far have ignored the natural variability in the spectral inherent optical properties (IOPs), the species 

percentage composition of cyanobacteria to algae, and the phytoplankton population cell-size, which are 

considered important diagnostic drivers of the resulting remote sensing reflectance and are also indicators 

of harmful species. This study addresses some gaps identified by Bracher et al. (2017) related to 

phytoplankton type identification. Firstly, it presents a useful in situ matchup dataset from a selection of 

diverse inland waters; secondly, it presents new measurements of spectral IOPs for two phytoplankton 

groups (including backscattering derived using a two layered sphere model); and thirdly, it implements an 

inversion based on the direct solution of the radiative transfer equation through EcoLight-S (Sequoia 

Scientific, Inc.). It also presents a new framework for an approach that exploits hyperspectral information.  

 

This study tests the hypothesis that cyanobacteria can be systematically differentiated from algae 

using remote sensing reflectance on the basis of diagnostic IOPs resulting from pigmentation, cell size and 

internal structure. It uses the results from an earlier investigation on the effect of intracellular gas vacuoles 

on spectral scattering in cyanobacteria (Matthews and Bernard 2013a). It develops a novel inversion 

algorithm framework based on the equivalent algal populations (EAP) model (Robertson Lain et al. 2014) 
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and the inverse method used in Evers-King et al. (2014) that incorporates a direct solution of the radiative 

transfer equation with EcoLight-S (see also Rehm and Mobley, 2013). The overall aim is to present a novel 

spectral-matching inversion algorithm that accounts for variability in the size and type of cyanobacteria and 

algal populations. 

 

2. Materials and Methods 

2.1. Description of sample sites and water types 

The details of the sampling areas and the methods used to determine the bio-geochemical parameters 

and absorption coefficients are provided in Matthews and Bernard (2013b). Briefly, measurements were 

made in three mid-latitude African freshwater reservoirs: Loskop Dam (LK, 25.42 S, 29.35 E), 

Hartbeespoort Dam (HB, 25.74 S, 27.86 E), and Theewaterskloof Dam (TW, 34.03 S, 19.26 E). Each of 

the systems had differing phytoplankton populations: LK was dominated by the large celled dinoflagellate 

Ceratium hirundinella (equivalent spherical diameter (ESD) = 40 μm) with a wide range of biomass (chl-

a of 0.5 to 500 mg m-3); HB was dominated by a mono-specific Microcystis aeruginosa cyanobacteria 

bloom (ESD = 5 μm) with chl-a up to 13 000 mg m-3; and TW had a mixed phytoplankton population co-

dominated by the large dinoflagellate Sphaerodinium fimbriatum (ESD = 40 μm) and the filamentous 

vacuolate cyanophyte Anabaena ucrainica (ESD = 16 μm) and various diatom species. Therefore, the data 

can be summarised as being derived from a) a large-celled dinoflagellate bloom, b) a small-celled gas-

vacuolate cyanobacteria bloom, and c) a mixed bloom of large-celled dinoflagellates and intermediate-

celled gas vacuolated cyanobacteria. For the purposes of analysis, the data were grouped into the following 

cases based on OECD trophic classes: oligotrophic (chl-a < 10 mg m-3, oligo); meso-eutrophic 

dinoflagellate-dominant (chl-a 10 to 30 mg m-3, meso_dino); meso-eutrophic mixed (meso_mixed); hyper-

eutrophic dinoflagellate-dominant (chl-a > 30 mg m-3, dino); and hyper-eutrophic cyanobacteria-dominant 

(cyano). 

2.2. Remote sensing reflectance  

A total of 63 remote sensing reflectance (Rrs) spectra from the three systems were used in the 

algorithm evaluation (Fig. 1). Rrs was measured using an ASD FieldSpec™ 3 Portable Spectroradiometer 

(ASD Inc., Bolder, CO) using the protocols outlined in Mueller et al. (2003). Measurements were only 

performed under mostly clear sky conditions (cloud cover < 20%) since cloud cover is known to impart 

large errors from shadows and other effects (Mobley 1999; Doxaran et al. 2004). Ten radiance spectra were 

collected in sequence for a SpectralonTM plaque, sky and water targets in order to minimise the effects of 

wind and waves and temporal variability in surface reflectance. Measurements were performed between 9 

am and 12 pm using a viewing zenith angle of θ = 40° away from the sun azimuthally at ϕ = 135°. Care 
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was taken to ensure that the plaque was free from shadow or reflectance effects from any source. Sky 

radiance was measured using the same viewing angle to the zenith. The measurement procedure was 

performed three times in sequence with dark readings taken between each sequence. The mean of the 

radiance spectra for each target was then computed, taking care to exclude contaminated or outlying spectra 

by visual inspection. Rrs was then calculated using the mean spectrum for each target according to Mobley 

(1999):  

𝑅𝑟𝑠 = (𝐿𝑡 − 𝜌𝐿𝑠)/(
𝜋

𝑅𝑔
𝐿𝑔)                      (1) 

where Lt is the water surface radiance, Ls is the sky radiance, ρ is the proportionality factor for the 

sky radiance to the reflected sky radiance on the water surface,  is 3.14, Lg is the radiance measured from 

the SpectralonTM plaque, and Rg is the SpectralonTM bi-directional reflectance function. The SpectralonTM 

plaque was assumed to be Lambertian and a perfect reflector (Rg =0.99). Since the wind speed of all 

measurements was less than 5 m s-1 a value for ρ of 0.025 was used (see Fig. 9 in Mobley, 1999).  

2.3. Phytoplankton Type and Size 

Two estimates of the phytoplankton population size were determined, namely the effective diameter 

(Deff) and the equivalent spherical diameter (ESD). Phytoplankton identification and counts were performed 

by microscopy. These were used to calculate ESD using literature estimates of cell volumes for individual 

species mainly from Reynolds (2006). Particle size distributions (PSDs) were determined using a 

Multisizer-4TM particle analyzer (BeckmanCoulter®). The 140 μm aperture allowed measurements of 

particles between 2.8 and 84 μm. Samples were kept cool and in the dark until analysis which was 

performed on the same day as collection. Fresh water samples were diluted using Isoflow solution 

(BeckmanCoulter®), after which 20 ml was counted maintaining a concentration of between 2.5 and 10% 

with correction for particle coincidence. Blank particle counts were measured using freshly 0.2 μm filtered 

and sample water that was diluted identically. PSDs were corrected by subtracting the mean blank particle 

counts that were scaled for dilution. PSDs in cells per liter were median filtered to reduce spiking and 

interpolated onto linear spaced bins of 1 μm diameter through calculation of the spectral density.  

PSDs were partitioned into algal and non-algal components using a numerical technique (cf. Bernard 

et al. 2001). The detrital distribution was estimated as a Jungian distribution with slope of -4 and scaled to 

the minimum volume of the PSD between 1 and 7 μm. The detrital distribution was then subtracted from 

the PSD to give the estimated phytoplankton size distribution. The effective radius (Reff) and variance (Veff) 

of the phytoplankton size distributions were calculated as follows (Hansen and Travis, 1974): 

𝑟𝑒𝑓𝑓 =
∫ 𝜋𝑟3𝐹(𝑟)𝑑(𝑟)

∫ 𝜋𝑟2𝐹(𝑟)𝑑(𝑟)
=

1

𝐺
∫ 𝜋𝑟3𝐹(𝑟)𝑑(𝑟)          (5) 
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𝑣𝑒𝑓𝑓 =
1

𝐺𝑟𝑒𝑓𝑓
2 ∫(𝑟 − 𝑟𝑒𝑓𝑓)2𝜋𝑟2𝐹(𝑟)𝑑(𝑟)             (6) 

where r is the particle radius in m, F(r) is the number of particles per unit volume (cells per m3), and 

d(r) is the difference between the size bins in meters. The effective diameter or Deff (= 2Reff) was used to 

describe a mean particle size.  

2.4. Phytoplankton IOPs 

The IOPs for cyanobacteria and dinoflagellates were measured (see Matthews &Bernard, 2013b), 

and the size-specific absorptions and backscattering coefficients were generated using a two-layered sphere 

model (see Matthews and Bernard, 2013a for details). For cyanobacteria the model was configured with an 

internal gas vacuole occupying 50% of the cell volume, surrounded by a chromatoplasm. For dinoflagellates 

the model consisted of an internal cytoplasm surrounded by a chloroplast layer. The complex refractive 

indices (m), consisting of the imaginary (n’) and real (n) components for the absorbing layers, were derived 

from measurements of the particle size distribution (PSD) and absorption of natural populations of M. 

aeruginosa and C. hirundinella (see Fig. 2). 

Using the refractive index data, the two-layer model was run for hypothetical populations of cells 

characterized by cell size. For the purposes of this study, standard size distributions with Deff ranging from 

1 to 50 μm with a 1 μm resolution were used (Bernard et al. 2001, 2007), with the value of Veff set to 0.6. 

The population of cells had diameters ranging from 1 to 100 μm at a 1 μm size interval. The intracellular 

chlorophyll concentration (ci) was used to normalise the PSD and volume coefficients to produce chl-a 

specific IOPs. The value of ci for Microcystis sp. cyanobacteria was 2.1 kg m-3 (Zhou et al. 2012) and 3.2 

kg m-3 for C. hirundinella calculated from experimental data. 

The output of the two layered model was the size-and-chl-a-specific IOPs for the hypothetical 

cyanobacteria and dinoflagellate populations (Fig. 3). The phytoplankton IOPs were therefore characterized 

in terms of both size (Deff) and concentration of chl-a (C) in mg m-3. 

2.5. Algorithm framework 

 The algorithm uses an implicit spectral matching approach consisting of three components: a bio-

optical model for estimating the IOPs; a radiative transfer model for calculating Rrs; and a non-linear 

optimization algorithm for matching the estimated and observed Rrs (Fig. 4). 

2.6. Bio optical model 

Water constituents were partitioned into living phytoplankton (ϕ), chromophoric dissolved organic 

matter here referred to as gelbstoff (g), and non-algal particles (NAP) which includes minerals and detritus 

(also referred to as d), not neglecting water itself (w). The IOPs of other water constituents such as bubbles, 

viruses, bacteria and very small particles e.g. colloids, are not explicitly determined for this study, but may 
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also be significant contributors to the total IOPs (e.g. Stramski et al. 2004). The four-component bio-optical 

model was used to calculate the total volume coefficients according to: 

 

𝑎𝑡 =  𝑎𝜙   +  𝑎𝑔𝑑 + 𝑎𝑤        (2) 

𝑏𝑡 =  𝑏𝜙   +  𝑏𝑛𝑎𝑝 + 𝑏𝑤          (3) 

𝑏𝑏𝑡 =  𝑏𝑏𝜙   +  𝑏𝑏𝑛𝑎𝑝 +  𝑏𝑏𝑤         (4) 

where a, b and bb, are the absorption, scattering and backscattering volume coefficients, respectively. 

  

The total phytoplankton coefficients were calculated as an admixture of the cyanobacteria and 

dinoflagellates types. The phytoplankton admixture coefficient, T, varying between 0 and 1, represented 

the relative contributions of cyanobacteria and dinoflagellates to the overall phytoplankton population (1 = 

100% cyanobacteria, 0 = 100% dinoflagellates). The concentration of C was used to calculate the total 

phytoplankton IOPs: 

 

𝑖𝜙   =  𝐶 × [𝑇𝑖𝜙𝑐
∗  (𝐷𝑒𝑓𝑓𝑐) + (1 − 𝑇)𝑖𝜙𝑑

∗ (𝐷𝑒𝑓𝑓𝑑)]         (7) 

 

where i is a, b or bb at the relevant effective diameter, and c and d represent cyanobacteria or 

dinoflagellates, respectively. The size parameters (Deff) for dinoflagellates and cyanobacteria were allowed 

to vary independently of each other. Gelbstoff and detrital (including minerals) absorption (agd) were 

coupled because of their similar spectral shapes:  

 

𝑎𝑔𝑑 = 𝑎𝑔𝑑(442)𝑒−𝑆(𝜆−442)         (8) 

 

where S is the slope coefficient where the mean value of 0.013 for the study areas was used (see 

Matthews and Bernard 2013b). 

 

An independent non-algal particle (back)scattering coefficient was used as it accounted for other 

particles (e.g. very small particles, bubbles and bacteria), and because there was variability in the mass-

specific tripton coefficients between the study areas (see Matthews and Bernard 2013b). A power-law 

function has been determined to provide a close fit with measurements of the particulate backscattering in 

coastal and inland waters (e.g. Sun et al. 2009; Snyder et al. 2008): 

 

𝑏𝑏𝑛𝑎𝑝  =  𝑏𝑏𝑛𝑎𝑝(560) × (𝜆/560)𝛾          (9) 
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where γ is the slope coefficient, the value of which typically ranges from 0 to -2 nm-1 with a mean 

near -1 nm-1 (ibid.). A spectrally flat γ (= 0 nm-1) was used as it was found to increase the sensitivity to 

phytoplankton related spectral features. 

 

Based on a review of studies performed in complex waters, from sediment-dominated coastal waters 

to turbid eutrophic lakes, the value of the backscattering ratio, 𝑏̃𝑏𝑝, ranges from approx. 0.5 to 7% (Snyder 

et al. 2008; Sun et al. 2009; McKee et al. 2009; O'Donnell et al. 2010; Neukermans et al. 2012). The cited 

studies refer to the bulk particulate matter (back)scattering and not non-algal particle backscattering as used 

here (Equation 9). A spectral dependency of 𝑏̃𝑏𝑝 has been noted by some authors (Snyder et al. 2008; 

McKee et al. 2009) although this is somewhat disputed (Whitmire et al. 2007). In productive turbid waters, 

𝑏̃𝑏𝑝 has been reported as being inversely proportional to the inorganic or mineral component of suspended 

matter, and poorly correlated with chl-a (Sun et al. 2009), typically varying between 1 and 2%. As 

phytoplankton scatter poorly in comparison with minerals, bnap is likely to differ little from bp, except in 

highly productive waters. It is also probable that bnap that excludes the phytoplankton component has less 

spectral dependence than bp. Therefore, a spectrally flat 𝑏̃𝑏𝑝 with values ranging from 1 to 5% was assessed 

in the calculation of bnap: 

 

𝑏𝑛𝑎𝑝  =  
1

𝑏̃𝑏𝑛𝑎𝑝
× 𝑏𝑏𝑛𝑎𝑝         (10) 

where 𝑏̃𝑏𝑛𝑎𝑝is the ratio bbnap:bnap. 

 

Phycocyanin (PC) is commonly used as an indicator pigment for cyanobacteria blooms, and various 

algorithms have been developed for its detection (e.g. Simis et al. 2005; Hunter et al. 2010). PC was 

retrieved from 𝑎𝜙(𝜆) . The absorption by PC at 620 nm, apc(620), was calculated as 𝑎𝜙(620) −

0.24 × 𝑎𝜙(665) after Simis et al. (2005). PC was then retrieved using the relationship determined in 

Matthews and Bernard (2013b): 

 

𝑃𝐶 = (𝑎𝑝𝑐(620) 0.0146⁄ )1.076    (11) 

2.7. Radiative transfer model 

EcoLight-S is a radiative transfer model that solves the radiative transfer equation with very fast run 

times. The use of EcoLight-S avoids the assumptions and uncertainties associated with reflectance 

approximations and the associated bi-directional function (f/Q), which up to the present has not been 
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adequately characterised in high-biomass, turbid and optically complex waters (Lee et al. 2011; Chami et 

al. 2006). In highly scattering waters, the single scattering approximation breaks down, resulting in large 

changes in the radiance distribution and the f/Q factor (Piskozub and McKee 2011; Aurin and Dierssen 

2012). 

 

The inputs to EcoLight-S are the total absorption, scattering and backscattering volume coefficients 

(at, bt, bbt). Fluorescence is not calculated by EcoLight-S. The required incident downwelling irradiance 

(Ed) was computed using the Radtran Sky irradiance model (Gregg and Carder 1990). Atmospheric 

pressure, total precipitable water vapour column in cm (WV), and aerosol optical thickness (AOT) 

(Microtops II sun photometer) were measured co-incident to Rrs and used as input. Horizontal visibility was 

calculated from AOT at 550 nm according to 3.9449 =  (𝐴𝑂𝑇(550) –  0.08498) (Retalis et al. 2010). 

Relative humidity was estimated from WV according to 18𝑊𝑉 +  40 (calculated using data in Raj et al. 

2004). Cloud cover was estimated in % as observed in situ, and a continental aerosol model was used. 

 

In EcoLight-S the IOPs are assumed to be constant within homogeneous layers. In this study, a 

homogeneous optically-deep water profile was used with no bottom reflectance. Although the vertical 

profile of the IOPs significantly changes Rrs (e.g. Kutser et al. 2008), the turbid waters under investigation 

in this study have very shallow optical depths. On average Secchi disk depth was less than 2 m (maximum 

of approx. 8 m for a few clear water samples). A spectrally variant Fournier and Forand (1994) phase 

function dependent on the value of bb:b and shown to provide improved optical closure in optically complex 

waters was used (e.g., Mobley et al. 2002; Tzortziou et al. 2006; Gallegos et al. 2008).  

2.8. Non-linear optimization technique 

A Nelder-Mead (1965) downhill simplex algorithm was used to fit the measured Rrs spectrum 

between 400 and 800 nm, using the Euclidian distance and a wavelength weighting function, f(λ): 

 

𝑑(𝑥, 𝑦) = ∑ 𝑓(𝜆𝑖) × (|𝑥𝑖 − 𝑦𝑖|)2𝑁
𝑖=1          (12) 

where x and y are the measured and modelled spectra, and f(λ) is a spectral function used to assign a 

reduced weight (1%) to wavelengths in the chl-a fluorescence domain (680 to 695 nm). The complex 

fluorescence effects at high concentrations are thereby not taken into account by the algorithm. The simplex 

algorithm iterates until the estimated variables change by less than the tolerance level, which was 1×10-6, 

or the maximum number of iterations is reached. 

 

Six unknowns were solved for: chl-a, the admixture coefficient (T), Deff for cyanobacteria and 
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dinoflagellates, bbnap(560) and agd(442). Various initial values for each of the unknowns were tested (Table 

1). The initial value for chl-a was estimated using an empirically-derived relationship between chl-a and 

the Rrs(710):Rrs(665) reflectance ratio (R):  

 

𝐶ℎ𝑙 = −6.1𝑅2  +  91.3𝑅 − 47.7.          (13) 

 

The starting value of T was determined using a binary flag based on spectral features (Eq. 4 in Matthews et 

al. 2012) and the initial chl-a estimate (Table 2). The initial values for the effective diameters for 

cyanobacteria and dinoflagellates were 5 and 31 μm simulating a small and large species, respectively. The 

initial value of agd(440) was 2.5 m-1 and ranged between 0.2 to 6.0 m-1.  

 

The non-parametric (Spearman’s rank) coefficient of determination (R2) and log-scaled root mean 

square error (log-RMSE) was used to assess the performance of the algorithm estimates, as the data were 

non-normally distributed and varied on a log scale: 

 

log-RMSE = √∑ [log(𝑥𝑖̂)−log(𝑥𝑖)]2𝑁
𝑖=1

𝑁−2
          (16) 

where x is the measured value, 𝑥̂ is the estimated value of the unknown, and N is the sample size.  

3. Results 

3.1. Retrieval of phytoplankton type and size 

In general, there was a close agreement between the measured and modeled reflectance across the 

cases (Fig. 5 and 6). Spectral fitting was most challenging in mineral rich (4A) and very clear waters (4D) 

(note the order of magnitude difference in spectral reflectance). In general, good fitting in low-to-mid 

biomass waters did not depend on accurate determination of type. For hyper-eutrophic cyanobacteria-

dominant and dinoflagellate-dominant cases, where type (T) was correctly determined, good fitting was 

obtained even at extreme biomass levels (5C). However, where type was inconclusive, the fitting was 

correspondingly poor (5D). 

By comparing the values of the estimated type parameter and the water classes, it was determined 

that in general the algorithm correctly differentiated between cyanobacteria and dinoflagellate blooms (Fig. 

7C, Table 3). The average type parameter for cyanobacteria-dominant waters was 0.93, while that for 

dinoflagellate-dominant waters was 0.11. Oligotrophic and mixed waters had a median value near 0.5, 

indicating dominance by neither type. Successful type detection was largely determined by the algorithm’s 

ability to fit spectral features in the 500 to 650 nm spectral range (Fig 6D). The linear correlation coefficient 
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between measured and modelled Rrs was typically larger than 0.8, except at wavelengths < 450 nm (possibly 

caused by residual sun glint), at the narrow chl-a fluorescence band near 685 nm, and at the fluorescence-

related 761 nm feature caused by fill-in effects of Telluric lines noticeable in dinoflagellate-dominant cases 

(Lu et al. 2016).  

The algorithm effectively determined the size of the small-celled and large-celled blooms (Fig. 7A, 

B). Deff for the large-celled dinoflagellate bloom was estimated as ranging between 20 and 42 μm, while 

that for the small-celled cyanobacteria bloom ranged from two to 15 μm. There was a tendency to 

overestimate the size in oligo-mesotrophic cases (Table 3). Fitting was significantly better for hyper-

eutrophic cases than oligo-mesotrophic cases likely caused by the spatial distribution of the data (Table 4). 

Deff was smaller than ESD due to the inclusion of smaller particles by the coulter-counter measurement 

technique and was not available for some samples. 

3.2. Retrieval of pigment concentrations and absorption coefficients  

The algorithm provided fair estimates of chl-a, PC and 𝑎𝜙, but poor estimates for 𝑎𝑔𝑑 (Fig 8, Table 

4).  The extreme range of concentrations makes statistical evaluation more challenging. Chl-a tended to be 

overestimated in mesotrophic cases and underestimated in hyper-eutrophic cases. The extreme 

concentration range (from 0.5 to 10 000 mg m-3) likely reduced the overall log-RMSE which was 1.09 (R2 

= 0.64). PC was more challenging to determine than chl-a as indicated by the higher log-RMSE value of 

1.22 (R2 = 0.35). PC was only estimated for cases where cyanobacteria were present or dominant, resulting 

in a smaller sample size. The determination of 𝑎𝜙 was slightly better in oligo-mesotrophic cases (log-

RMSE = 1.0, R2 = 0.82) than in hyper-eutrophic cases (log-RMSE = 1.09, R2 = 0.41).  

The retrieval of 𝑎𝑔𝑑was satisfactory, albeit consistently underestimated, in oligo-mesotrophic cases 

(log-RMSE = 0.89, R2 = 0.66). By contrast there was no significant correlation in hyper-eutrophic cases: it 

is most likely impossible to separate absorption from dissolved substances from that of phytoplankton in 

extreme bloom conditions.  

The log-RMSE values in this study are noticeably high when compared to other published studies 

(e.g. IOCCG, 2006). However, other similar published studies do not handle similar extreme bloom 

conditions and pigment concentrations over five orders of magnitude. Further, the focus of the present study 

is to develop an approach for bloom discrimination, while accurate determination of pigment concentrations 

and IOPs are of secondary importance.  

4. Discussion 

4.1. The bio-optical basis for distinguishing cyanobacteria from algae 

In this study, cyanobacteria and algal blooms were accurately distinguished on the basis of their 
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spectral reflectance using a non-linear spectral inversion algorithm based on a four-component bio-optical 

model. This is possible because of cellular-level differences in size, pigmentation, and internal structure 

between cyanobacteria and algae, briefly discussed here.  

The large C. hirundinella cells (mean diameter 40 μm) had considerably larger absorption efficiency 

relative to the smaller cyanobacteria cells. The increased pigment packaging resulted in a considerably 

smaller mean value of 𝑎𝜙
∗ (675) of 0.0089 m2 mg-1 in contrast to that of 0.023 m2 mg-3 for cyanobacteria. 

The small cell size and intracellular gas vacuole structure used to model cyanobacteria resulted in 𝑏𝑏𝜙
∗ (510) 

values more than two orders of magnitude higher for cyanobacteria (5.5 × 10-3 m-1) than for the 

dinoflagellates (8 × 10-5 m-1). Rrs spectra measured for cyanobacteria blooms had considerably larger 

magnitude than those measured for dinoflagellate blooms of similar biomass. Rrs(560) values ranged from 

0.013 to 0.048 sr-1 for cyanobacteria, an order of magnitude larger than those for the dinoflagellate bloom 

that ranged from 0.003 to 0.011 sr-1. The larger magnitude can also be attributed to the tendency of 

cyanobacteria to be vertically stratified in the upper surface layers (Kutser et al. 2008).  

Diagnostic phycocyanin and phycoerethrin pigments present in cyanobacteria resulted in marked 

troughs in Rrs between 600 and 650 nm, and a shift in the green peak to wavelengths less than 550 nm. By 

contrast, dinoflagellate blooms were characterized by strong absorption from peridian carotenoid and 

diadinoxanthin and diatoxanthin xanthophylls (Schluter et al. 2006; Richardson 1996) resulting in 

characteristic absorption troughs in the 440 to 550 nm region, and a green-peak near 560 nm. Diagnostic 

spectral features in Rrs that can be used to discriminate cyanobacteria from algae are changes in the position 

of the green peak towards lower wavelengths near 550 nm, the presence of a peak near 650 nm from 

proximal PC and chl-a absorption bands, and a noticeable lack of chl-a fluorescence related features near 

685 nm (see Seppälä et al. 2007). 

5. Conclusion and recommendations 

 The study has demonstrated how a hyperspectral inversion algorithm incorporating a radiative 

transfer model can be used to differentiate between cyanobacteria and algal blooms in inland waters, in 

waters with an extreme range of phytoplankton biomass. This study demonstrated how a modified EAP 

algorithm framework (see Evers-King et al. 2014, Robertson Lain et al. 2014) can be used to differentiate 

phytoplankton groups on the basis of type-specific IOPs (in this case cyanobacteria and dinoflagellates). It 

is the first study to demonstrate how cyanobacteria may be distinguished from eukaryotic algae using an 

algorithm incorporating a direct solution to the radiative transfer equation through EcoLight-S.   

The algorithm can likely be adapted to distinguish between other phytoplankton groups (e.g. diatoms 

or cryptophytes) to enable more general application, and in principle be used to resolve phytoplankton 

groups (and possibly size) from satellite-based sensors. This is, however, dependent upon the availability 
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of appropriate hyper or multi-spectral resolution instruments (such as EnMAP or FLEX) with adequate 

signal to noise ratios, and accurate estimation of the water-leaving reflectance through atmospheric 

correction applied to these instruments. 
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Fig. 1 Rrs measured in cyanobacteria-dominant waters (Hartbeespoort) (A), dinoflagellate-dominant waters 

(Loskop) (B), and mixed waters (Theewaterskloof) (C). The measured distributions of chl-a (D), 𝑎𝜙(442) 

g

d

Hartbeespoort

Loskop



 

 

13 

(E), ad(442) (F) and  ag(442) (G). Rrs spectra from (A) and (B) are overlaid in (C) for comparison of shape 

and magnitude. 

 

 

Fig 2. Properties of  M. aeruginosa (cyanobacteria) and C. hirundinella (dinoflagellate) used in the two-

layered model simulations. (A) Measured chl-a specific absorption coefficients; (B) the chl-a specific 

phytoplankton volume distribution (𝑉𝑐ℎ𝑙
∗ ); (C) imaginary refractive index for cyanobacteria chromatoplasm 

(𝑛’chrom) for cell with 50% gas vacuole volume, and dinoflagellate chloroplast (𝑛’chlor) with 30% cell volume, 

(D) real refractive index (n) for cyanobacteria chromatoplasm and dinoflagellate chloroplast layers. 
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Fig. 3. Chl-a specific volume coefficients modelled using a two-layered sphere for cyanobacteria and 

dinoflagellates populations with Deff from 1 to 50 μm. 
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Fig. 4. Framework for the radiative transfer inversion algorithm. Light grey shading represents variables 

solved for iteratively, and darker grey shading represents outputs. The bold text and arrows represent the 

iterative process followed by the algorithm. tol. = tolerance. See text for abbreviations.  
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Fig. 5. Examples of spectral fitting in a mixed medium-biomass bloom (A1), mesotrophic dinoflagellate-

dominant bloom (B1), and oligotrophic clear waters (C1, D1). Rows 2-3 show corresponding modelled a 

and bb coefficients. The titles show the estimated concentration of chl-a (mg m-3) = C, Deff (μm) = d, and 

type =T as % cyanobacteria. 
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Fig. 6. As for Fig. 4 except for high-biomass cyanobacteria bloom (A), high-biomass dinoflagellate bloom 

(B), floating cyanobacterial scum (C), and high-biomass dinoflagellate bloom (D). 
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Fig. 7. Modelled (y axis) versus measured (x axis) size parameters Deff and ESD (A - B), histograms where 

N is the number of spectra binned by percent cyanobacteria (C), and the wavelength-specific correlation 

coefficients (D). 
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Fig. 8. Modelled (y-axis) versus measured chl-a (A), PC (B), 𝑎𝜙(440) (C) and agd(440) (D). Note log scale 

axes.  
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Table 1. Experiment testing different sets of initial conditions and resulting change from the default or 

optimal initial conditions.  

Initial conditions Constants Change 

C T agd(440) bbnap(560) Deffc Deffd γ 1/𝑏̃bnap  

mg m-3 % m-1 m-1 μm μm nm-1 m  

Empirical Flag 2,5 0,1 5 31 0 50 Default / Optimal 

10 50 2,5 0,1 5 31 0 50 Large 

100 50 2,5 0,1 5 31 0 50 Small 

empirical 95 2,5 0,1 5 31 0 50 Large 

empirical 5 2,5 0,1 5 31 0 50 Large 

empirical 50 0.5 0,1 5 31 0 50 Medium 

empirical 50 4,0 0,1 5 31 0 50 Medium 

empirical 50 2,5 0,001 5 31 0 50 Large 

empirical 50 2,5 0,01 5 31 0 50 Large 

empirical 50 2,5 0,5 5 31 0 50 Large 

empirical 50 2,5 0,1 5 31 -0,5 50 Large 

empirical 50 2,5 0,1 5 31 -1.2 50 Large 

empirical 50 2,5 0,1 5 31 0 10 Medium 

empirical 50 2,5 0,1 5 31 0 100 Small 

 

 

 

 

Table 2. Conditions for determining the starting value of the admixture coefficient T. 

C (mg m-3) Cyanobacteria flag T 

> 20 True 0.9 

> 20 False 0.1 

< 20 True or False 0.5 
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Table 3. Mean estimated and measured size parameters (m) and type in percent cyanobacteria. 

 Measured Modelled 

Case Deff ESD 𝐷̅eff T 

Oligo 9 27 23 0.44 

Meso_dino 18 32 27 0.32 

Meso_mixe

d 

10 17 
32 0.22 

Dino 30 32 24 0.11 

Cyano 5 5 5 0.93 
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Table 4. log-RMSE and non-parametric Spearman’s rank regression results arranged by water type. ESD = 

equivalent spherical diameter, PC= phycocyanin.  

 Statistic Deff ESD C PC aϕ(440) agd(440) 

Case  μm μm mg m-3 mg m-3 m-1 m-1 

Oligo-mesotrophic 

log-RMSE 1.09 0.40 0.99 0.41 1.00 0.89 

R2 0.02 0.23 0.67 0.95 0.82 0.66 

p 0.69 0.01 0.00 0.00 0.00 0.00 

Slope (m) 0.40 0.60 2.63 1.82 1.07 0.46 

Intercept (c) 22.34 6.94 -2.45 -5.44 -0.07 0.03 

N 10 30 33 5 34 34 

Hyper-eutrophic 

log-RMSE 0.44 0.44 1.27 1.43 1.09 1.66 

R2 0.83 0.88 0.59 0.31 0.41 0.12 

p 0.00 0.00 0.00 0.03 0.00 0.08 

Slope (m) 0.73 0.69 0.38 0.34 0.37 0.27 

Intercept (c) 1.44 1.42 84.56 1062.86 10.42 0.17 

N 24 25 23 15 25 25 

Combined 

log-RMSE 0.66 0.41 1.09 1.22 1.02 1.25 

R2 0.30 0.67 0.64 0.35 0.46 0.29 

p 0.00 0.00 0.00 0.01 0.00 0.00 

Slope (m) 0.62 0.74 0.39 0.36 0.39 0.34 

Intercept (c) 7.94 2.04 41.89 739.55 4.01 0.12 

N 34 55 56 20 59 59 
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