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Abstract

This paper is concerned with optimal control problems for the coupled Cahn–
Hilliard/Navier–Stokes system related to ’model H’ of Hohenberg and Halperin
[20]. It proposes a time-discretization allowing suitable energy estimates, that
in particular force the total energy to decrease without control action, and
it considers distributed as well as boundary control of the fluid. For non-
smooth potentials, including the double-obstacle potential contained in the
associated Ginzburg-Landau energy, a regularization procedure based on a
mollified Moreau-Yosida approximation is applied. The resulting regularized
problems are discretized by finite elements and solved via a gradient descent
method. Several numerical examples document the behavior of the algorithm
as well as the controlled Cahn–Hilliard/Navier–Stokes system for boundary
and for distributed control.

1. Introduction

The renowned Cahn-Hilliard equation (CH) [9] is widely used for mod-
eling phase separation and coarsening processes with a diffusive interface in
multiphase systems. Whenever hydrodynamic effects are present, CH has to
be coupled with an equation that describes the motion of the fluid.

The resulting coupled system is used to model polymer blends, proteins
crystallization, cf. [23] and references within, or the solidification of liquid
metal alloys [12]. It is utilized in the simulation of bubble dynamics (as in
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nitrobenzene), in Taylor flows [1, 4] or for pinch-offs of liquid-liquid jets [22].
Moreover, it is applied to describe the effects of surfactants such as colloid
particles at fluid-fluid interfaces in gels and emulsions used in food, pharma-
ceutical, cosmetic, or petroleum industries [2, 5, 26]. Even the simulation of
cooling systems in nuclear power plants or applications in computer graphics
are conducted by using these models [3].

In this paper we consider the following model related to ’model H’ of
Hohenberg and Halperin [20]:

∂tc− 1
Pe

∆w +∇c · v = 0, (1.1)

−w − ε∆c+ Φ′(c) 3 0, (1.2)

∂tv − 1
Re

∆v + (v · ∇)v −Kw∇c+∇π = 0, (1.3)

div v = 0, (1.4)

which models a two-phase flow subject to phase separation. The system
(1.1)–(1.2) is the Cahn–Hilliard (CH) system, and (1.3)–(1.4) is the Navier–
Stokes (NS) system for modeling fluid flow. Here, these equations are as-
sumed to hold in a suitable spatial domain Ω ⊂ RN with N ∈ {1, 2, 3} and
for all times in a given time interval (0, T ) with T > 0. The quantity c is the
concentration of the fluid phase with c = 1 or c = −1 describing the pure
phases, respectively, and c ∈ (−1, 1) an associated mixed state. Hence, c at-
tains values within the interval [−1, 1], only. The related chemical potential
is given by w, the velocity of the fluid is denoted by v and the corresponding
pressure by π. Moreover, the constant 1

Pe
is the mobility coefficient of the

system with Pe being the Péclet number, K measures the strength of the
capillary forces, ε relates to the thickness of the interfacial region and Re is
the Reynolds number. The terms ∇c · v in (1.1) and Kw∇c in (1.3) couple
both systems.

The function Φ in (1.2) is the homogeneous free energy density in the
Ginzburg-Landau energy model associated with the Cahn–Hilliard system.
Whenever it is nonconvex, then a homogeneous mixture of the fluid is in
general not a minimizer of the pertinent free energy functional. As a con-
sequence phase separation can occur. Popular choices of Φ assume the de-
composition of Φ into the smooth nonconvex part −1

2
c2 and a convex, but

possibly nonsmooth part ψ(c), i.e. Φ(c)(x) = ψ(c(x)) − 1
2
c2(x). Within this

family of potentials the double-well potential corresponding to ψ(c) = c4

is smooth and admits the concentration c to attain values outside of the
physically meaningful range [−1, 1]. While the differentiability properties of
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the double-well potential yield mathematical convenience, the possibly un-
physical range of c limits its ability to predict long time behavior of the
phase separation process. On the other hand, the logarithmic potential
ψ(c) = (1 + c) ln(1 + c) + (1 − c) ln(1 − c) forces the concentration to take
values inside (−1, 1) only, rendering the pure phase c = −1 and c = +1 sin-
gular. This potential was already considered in Cahn’s and Hilliard’s original
work [9] and it is used in the Flory-Huggins theory for modeling the phase
separation in polymer solutions. Finally, the double-obstacle potential with
ψ(c) := 0 if |c| ≤ 1 and ψ(c) := +∞ if |c| > 1 ensures the concentration to at-
tain physically meaningful values only and it admits the pure phases c = ±1.
This potential is also used in the context of polymer solutions and it appears
appropriate in cases of deep quenches and rapid wall-hardening, cf. [25]. In
contrast to the double-well and the logarithmic potential that possess differ-
entiability properties and where ψ′(c) (and thus ∂ψ(c) = {ψ′(c)}) is uniquely
given, the derivative of the convex part ψ of the double-obstacle potential has
to be understood in the sense of the (possibly set-valued) subdifferential ∂ψ
for convex functions. Hence, in a pure phase, i.e. either c = 1 or c = −1, ∂ψ
is both multi-valued and unbounded, which clearly complicates the analytic
as well as the numerical treatment of the system (1.1)–(1.4).

In many applications one is interested in influencing the phase separation
process. For instance, in binary alloys one typically tries to avoid or reduce
separation effects since they drastically reduce the durability and the lifetime
of the alloy. In the formation of polymeric membranes by an immersion pre-
cipitation process, where a polymer solution is immersed into a coagulation
bath containing a nonsolvent, the decomposition of the polymeric solution
has to be controlled in such a way that the final polymer has a given poros-
ity pattern. The resulting morphological structure significantly influences
the properties of the polymer membrane [33].

In this paper we therefore consider an optimal control problem for the
coupled Cahn-Hilliard/Navier-Stokes system where the control u acts either
as a distributed force entering (1.3) as a right hand side or as a boundary
control for the fluid velocity. While boundary control of the fluid can be
realized by various devices, e.g. blowing and suction, a typical distributed
control would rely on electro-magnetic fluids. For reasons of well-posedness
we close the system by appropriate boundary conditions on c, w and v, and
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initial conditions on c and v. Thus, we study the problem

minJ (c, v, u) subject to the semidiscrete CH-NS system with control u,
(P)

where J represents a suitably chosen optimization objective (cost function).
Note that in contrast to other forms of controlling this system like reced-

ing horizon or instantaneous control techniques [21, 10, 19], where optimiza-
tion of the corresponding control actions is only considered within one time
step or over a small time horizon, we consider an optimal control problem
over the whole time interval. Hence, the entire semi-discrete version of CH-
NS is taken as a constraint system in the minimization context leading to an
optimal balance with respect to the cost function between control costs and
e.g. closeness to a desired profile. Upon analyzing stationarity conditions for
(P), the discretization process is completed by applying the finite element
method in space.

We note that the derivation of stationarity conditions for (P) is a del-
icate matter. This is in particular true when Φ involves the nonsmooth
double-obstacle potential. In fact, in the latter case, (1.2) is equivalent to
a variational inequality which is known to represent a degenerate constraint
[7, 17, 18] in (P). As a consequence, one cannot apply the Karush–Kuhn–
Tucker theory [34] for deriving stationarity conditions. In order to overcome
this difficulty, in [18] a technique utilizing a mollified Moreau–Yosida ap-
proximation of Ψ is applied. Upon passage to the limit with the involved
smoothing parameters a so-called C-stationarity system is obtained. On the
numerical level this proof technique requires the solution of a sequence of
nonlinear programs in Banach space where the limit process with respect to
the smoothing parameters is based on a path-following scheme. While [18]
merely contains theoretical results for boundary control problems only, the
present work extends the scope of [18] to distributed control problems and, in
particular, it offers a discretization and gradient-based solution scheme along
with a report on various test cases involving the double-obstacle potential.

Let us further mention that the literature on the optimal control of the
coupled semidiscrete CH-NS system is, to the best of our knowledge, essen-
tially void apart from the analytic result given in [18]. Instantaneous control
of the semidiscrete CH-NS system has been considered in [19] and optimal
control problems in one dimension for the viscous as well as for the convective
Cahn-Hilliard equation has been studied in [31] and [32]. For the sole Cahn-
Hilliard or the Allen-Cahn equation optimal control problems were studied
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from an analytic perspective in [15, 29, 30, 17, 14].
The rest of this paper is organized as follows: In section 2 we present

a semi-discrete version of (1.1)–(1.4) and related optimal control problems
with boundary or distributed control, respectively. Moreover, corresponding
first order optimality conditions are given for smooth potentials ψ. Section 3
presents a mollified Yosida approximation that we apply to the subdiffer-
ential of ψ in order to find a stationarity condition for the original optimal
control problem with the double-obstacle potential upon passage to the limit
with the smoothing parameters in the mollified Yosida approximation. The
resulting, smooth auxiliary problems can be solved by a gradient descent
method and a path-following scheme which yields C-stationary points for
the optimal control problem in the limit. An outline of the algorithm and its
numerical realization is presented is given. The utilized finite element spaces
are introduced in section 4. Various examples showing the behavior of the
algorithm for boundary as well as for distributed control are contained in
section 5. Section 6 summarizes the present work and the appendix provides
our expansion of the Armijo line search algorithm.

2. Optimal control problem for the time-discretization

For its numerical realization, we discretize the above system (1.1)–(1.4)
in time by using a semi-implicit Euler scheme. For this purpose, we fix a
final time T > 0, a number of time steps M ∈ N and the corresponding
time step size τ := T/M . The value of the concentration at time ti = iτ, i ∈
{0, ...,M}, is denoted by ci and c = (c0, ..., cM) is the vector of concentrations
at the discrete times ti, i = 0, ...,M . We proceed analogously with other
time-dependent quantities.

The time-discrete Cahn-Hilliard/Navier-Stokes system is given by

1

τ
(ci+1 − ci)− 1

Pe
∆wi+1 +∇ci · vi+1 = C1

i (in Ω), (2.1)

−wi+1 − ε∆ci+1 − ci + ∂ψ(ci+1) 3 C2
i (in Ω), (2.2)

1

τ
(vi+1 − vi)− 1

Re
∆vi+1 + (vi · ∇)vi+1

−Kwi+1∇ci +∇πi = η(1)u
(1)
i , (in Ω), (2.3)∫

Ω
ci = 0,

∫
Ω
wi = 0, div vi = 0 (in Ω), (2.4)

∇ci · ~n = 0, ∇wi · ~n = 0, vi = η(2)u
(2)
i (on ∂Ω), (2.5)

c0 = ca, v0 = va (in Ω). (2.6)
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Here, the convex part of the homogeneous free energy density is given by a
proper, convex and lower-semicontinuous functional ψ : R → R, and Ci =
(Ci

0, ..., C
i
M) ∈ RM+1 for i ∈ {1, 2} denotes the tuple of constant functions on

Ω with possibly different values on each time slice. The reason for using these
constants is the following. By condition (2.4) we enforce ci and wi to have
vanishing mean values, respectively. For w this provides no restriction and is
used in order to obtain a unique w (note here that a shift wi 7→ wi+C does not
change the dynamics of the system in the sense that K(wi+1 +C)∇ci+∇πi =
Kwi+1∇ci+∇(πi+Cci) would only replace the pressure πi by πi+Cci). For
c, on the other hand, ∇ci · vi+1 can only be expected to have mean value 0 if
civi+1 has no normal contribution on the boundary. Indeed, one has∫

Ω

K∇ci · vi+1 = K

∫
∂Ω

civi+1 · ~n−K
∫

Ω

ci div vi+1 = K

∫
∂Ω

civi+1 · ~n

for smooth ci and vi+1. While the mean-value property is problematic in the
boundary control case, it is satisfied in the case of distributed control. For
boundary control problems of the fluid we simplify our model by projecting
the concentration onto the space of functions with zero mean value. Hence,
we impose the conditions (2.4) and introduce in equation (2.1) the correction
term C1

i which corresponds to the mean value of ∇ci ·vi+1. As a consequence,
we obtain

∫
Ω
ci+1 = 0. In order to keep these corrections small, for boundary

control we only use examples with one pure phase in a boundary layer as
initial data. In this case, ∇ci can be expected to be small, if not zero.

In this paper we consider either the case of Dirichlet boundary control
(which corresponds to η(1) = 0) or the case of distributed control acting as an
additional force on the fluid entering the system as a right hand side in the
balance of momentum (in this case set η(2) = 0). Of course, also a combined
control action consisting of both types of controls could be studied using the
techniques discussed in the present paper.
For the concentration c and the chemical potential w, Neumann boundary
conditions are imposed by (2.5). The conditions (2.4) forces both quantities
to preserve a vanishing mean value and the velocity to be divergence-free.
Note that in our examples below we normally assume initial values for the
concentration which do not meet this mean value condition. Hence, we shift
the whole problem via ĉ := c − c with c := 1

|Ω|

∫
Ω
c and use ĉ instead of c.

The shifted concentration ĉ satisfies the mean value condition in (2.4). As a
consequence, the interval [−1, 1] is shifted to [−1− c, 1− c] and the potential
ψ has to be adapted accordingly.
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Apart from the additional right hand side in (2.3) corresponding to the
distributed control, this setting was used in [18] in order to prove the existence
of optimal boundary controls and to derive stationarity conditions.

We note that the above discretization scheme allows to derive energy
estimates for the total energy of the system in each time step. In particu-
lar, in the case that no control action is applied, the total energy decreases
monotonically. This was a key property in the proof of existence of optimal
controls; see [18] for details. Also note that in discretization schemes, as for
instance the one used in [16] where the Cahn-Hilliard and the Navier-Stokes
part decouple from each other, such energy estimates cannot be expected to
hold true.

Here we exemplarily study the following cost functional on H1(Ω)×U (1)×
U (2) given by

J (c, u(1), u(2)) :=
M∑
i=0

λi‖ci − c∗i ‖2
L2 + η(1)‖u(1)

i ‖2
L2 + η(2)‖u(2)

i ‖2
H1/2 (2.7)

for closed subspaces U (1) of H1
σ(Ω) := {v ∈ H1(Ω;RN) | div v = 0} and U (2)

of U := {Tr v | v ∈ H1(Ω;RN), div v = 0} which itself is a closed subspace of
H1/2(∂Ω;RN). Here and below Tr denotes the trace-operator. We note that,
of course, other objectives are conceivable. We equip the space H1/2(∂Ω;RN)
with the norm ‖u‖H1/2 := {inf ||v||H1(Ω;RN ) | v ∈ H1(Ω;RN), Tr v = u}
and H1(Ω;RN) with the standard norm ‖v‖H1 := (

∑N
n=1 ‖vn‖2

H1)1/2 for
v = (v1, ..., vN) ∈ H1(Ω;RN), ‖v‖H1 := (‖v‖2

L2 +‖ |∇v| ‖2
L2)1/2 for v ∈ H1(Ω)

with the Euclidian norm | . | : RN → R. The corresponding optimal control
problem (Pψ) depending on the choice of the potential ψ is then given by

min
{
J (c, u(1), u(2)) | (c, w, v, u(1), u(2)) ∈(

H1(Ω)×H1(Ω)×H1(Ω;RN)× U (1) × U (2)
)M+1

satisfies (2.1)–(2.5) in the weak sense
}
.

In particular we are interested in the case ψ = ϕ(0) of the double-obstacle
potential, i.e.

ϕ(0) : R→ R, ϕ(0)(r) :=

{
0 if |r| ≤ 1,

∞ otherwise.
(2.8)

For (Pψ) the existence of a minimizer together with first order optimality
conditions respectively stationarity conditions were established in [18] in the
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case of boundary control.
Using the arguments of [18] and proceeding in a similar way for the prob-
lem setting including distributed control, the gradient of the reduced cost
functional Ĵ (u(1), u(2)) := J (c(u(1), u(2)), u(1), u(2)) for a solution (c, w, v, u)
of (2.1)–(2.5) and for a smooth potential ψ can be written, with the help of
J , the duality mapping of [(U (1) × U (2))]M+1, as

J−1Ĵ ′(u(1), u(2)) = (η(1)u(1) − z(1), η(2)u(2) − z(2))

with (z(1), z(2)) ∈ (U (1) × U (2))M+1 given by z
(i)
0 = 0 for i = 1, 2 and

−1

τ
(pi+1 − pi) + (−ε∆ +DA(ci+1))∗(− 1

Pe
∆pi −K∇ci · qi)

−(− 1
Pe

∆pi+1 −K∇ci+1 · qi+1)

− div(pi+1vi+2) +K div(wi+2qi+1) = C3
i + λiJW0(ci − c∗i ), (2.9)

−1

τ
(qi+1 − qi)− 1

Re
∆∗qi + b1(vi+2, qi+1) + b2(vi, qi)

+pi∇ci = −∇π2
i , (2.10)∫

Ω
pi = 0, div qi = 0, (2.11)

−J−1
U(1)I

∗
U(1)→V−1

qi = z
(1)
i+1, (2.12)

H
[
− 1

τ
(qi+1 − qi)− 1

Re
∆qi + b1(vi+2, qi+1)

+b2(vi, qi) + pi∇ci
]

= z
(2)
i+1. (2.13)

Here, A := ∂ψ, IU(1)→V−1
is the canonical injection of U (1) into V−1 and

H : (H1(Ω;RN))∗ → U (2) denotes the composition H = PU(2) ◦ Tr ◦PZ ◦ J−1
H1

consisting of the orthogonal projection PU(2) of U onto U (2), the orthogonal
projection PZ of H1(Ω;RN) onto Z := {z ∈ H1(Ω;RN) | div z = 0, (z|v)H1 =
0 ∀v ∈ H1

0 (Ω;RN), div v = 0} and the inverse of JH1 . Here, for a Hilbert
space X, the operator JX denotes the canonical isomorphism from X onto
X∗ given by the Riesz-representation theorem [27]. By ( . | . )H1 we denote
the inner product of H1(Ω;RN), and b1 and b2 are related to the convective
part of the NS equation by

〈b1(y2, y3), y1〉 := 〈b2(y1, y3), y2〉 :=

∫
Ω

y3(x)(y1(x) · ∇)y2(x) dx.
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with 〈., .〉 denoting the duality pairing between H1
σ(Ω)∗ and H1

σ(Ω). For
an operator S, S∗ denotes its adjoint. Moreover, since (p, q) take values
((p0, ..., pM−1), (q0, ..., qM−1)) we use the convention (pM , qM) = 0 which was
already used in the system (2.9)–(2.13). As a consequence of this convention,
we do not have to denote the final time conditions on (p, q) explicitly. We
further note that the notation of the reduced cost functional alluded to above
corresponds to the situation where c (and w) is no longer considered an
independent variable, but rather it is viewed as a function of u(1) and u(2),
i.e., c = c(u(1), u(2)) where c and u(1), u(2) are linked by solving (2.1)–(2.6).

It is possible to rewrite (2.9) in a fashion more similar to (2.1)–(2.2). In
fact, we introduce another variable r which satisfies

∫
Ω
r = 0 as well as the

system

−1

τ
(pi+1 − pi) + (−ε∆ +DA(ci+1))∗ri

−I∗(− 1
Pe

∆pi+1 −K∇ci+1 · qi+1)

− div(pi+1vi+2) +K div(wi+2qi+1) = C3
i + λiJW0(ci − c∗i ),

−ri + (− 1
Pe

∆pi −K∇ci · qi) = 0.

3. Yosida approximation and gradient method

3.1. Sequential Yosida approximation

In order to derive first order optimality conditions for characterizing solu-
tions of (Pψ) in the case where ψ = ϕ(0), in [18] we replaced the potential ϕ(0)

by a mollified Moreau-Yosida approximation. For this purpose, let ρ ∈ C1(R)
denote a fixed mollifier with supp ρ ⊂ [−1, 1],

∫
R ρ = 1 and 0 ≤ ρ ≤ 1 almost

everywhere (a.e.) on R and let ε : R+ → R+ be a function with ε(α) > 0

for α > 0 and ε(α)
α
→ 0 as α→ 0. We consider the Yosida approximation βα

(with parameter α > 0) of β := ∂ϕ(0) (for the general definition of the Yosida
approximation we refer to [6]) and define

ρ(ε)(s) :=
1

ε
ρ
(s
ε

)
, β̃α := βα ∗ ρε(α), γα(s) :=

∫ s

0

βα, ϕα(c) :=

∫
Ω

γα ◦ c,

where ’∗’ denotes the usual convolution operator and ’◦’ represents compo-
sition. Here, β̃α is the mollification of the Yosida approximation βα by a
dilation of the convolution kernel ρ. Further, ϕα is a regularization of the
potential ϕ(0) which is very similar to the Moreau-Yosida approximation but
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it enjoys higher regularity. For αn > 0 we write ϕ(n) := ϕαn and A(n) := ∂ϕ(n)

for ease of notation.
Let (αn)n∈N, αn > 0 for all n ∈ N, denote a subsequence of reals with

αn→ 0. In order to solve the optimization problem (Pψ), we make use of the
fact that a sequence of optimal controls for the problems (Pϕ(n)) converges

weakly in (H1(W1)× U (1) × U (2))M+1 to a solution of (Pψ) with even strong
convergence in the first component; for a proof in the boundary control case
we refer to [18, Theorem 3.6].

For the numerical solution of (Pψ) we therefore fix such a sequence (αn)n∈N
and solve the sequence of problems (Pϕ(n))n∈N. In the present work, each
(Pϕ(n)) is solved by a steepest descent method, which is initialized by an

(approximate) stationary point of (P(n−1)
ϕ ) for n ≥ 1. The entire process is

initialized by picking some u(0) ∈ (U (1) × U (2))M+1.

3.2. Steepest descent method with expansive line search

Algorithmically, the steepest descent direction for the reduced objective
Ĵ (u)|u=u(n,k) , where u(n,k), k ∈ N, denotes an actual approximation of u(n),
a stationary point of (Pϕ(n)), is computed as follows: Given u(n,k) ∈ (U (1) ×
U (2))M+1 one solves the primal system (2.1)–(2.6), which yields
(c(n,k+1), w(n,k+1), v(n,k+1)). With this information at hand, the adjoint system
(2.9)–(2.13) is solved yielding (p(n,k+1), q(n,k+1)). Upon applying the Riesz-
representation theorem [27], the gradient-based descent direction is given by

d(n,k) = −J−1Ĵ ′(u(n,k)) = (η(1)u(1) − z(1), η(2)u(2) − z(2))

with z(1) and z(2) as given in (2.12) and (2.13) and with J denoting the
duality mapping of [(U (1) × U (2))]M+1. In order to avoid the implementa-
tion of the H1/2(Ω;RN)-norm, we represent functions in U as their norm-
minimal continuation into the space H1

σ(Ω), which we equip with the norm
induced by H1(Ω;RN). Then the equations (2.12) and (2.13) for z(1) and
z(2), respectively, involve the applications of J−1

H1(Ω;RN) for every ti, i =
1, ...,M . Since the norm of H1(Ω;RN) involves gradient terms, the com-
putation of J−1

H1(Ω;RN) requires to solve a Dirichlet problem. In fact, for
u(2) ∈ H1/2(Ω;RN) one needs to solve the following problem

û(2) = argmin{||u′||H1(Ω;RN ) : u′ ∈ U (1), Tru′ = u(2)}.

Then, û(2) represents the norm-minimal extension of u(2) to H1
σ(Ω). The

steepest descent direction d(n,k) is then used in an Armijo-type line search
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with expansion (see Algorithm 1 in the appendix) in order to find a suitable
step length s(n,k) > 0 along d(n,k). The next control iterate is then given by

u(n,k+1) := u(n,k) + s(n,k)d(n,k)

and this process is repeated. We expand the standard Armijo line search (see
e.g. [8]) in order to reduce the number of evaluations of the reduced objective
since each evaluation corresponds to solving the entire primal system. For
this purpose we initialize the line search parameter s by the value s(n,k−1)

computed in the previous application of the line search algorithm. Then, the
line search algorithm tests and, if necessary, replaces s by wcs for a constant
factor wc < 1 until the Armijo rule is fulfilled or s becomes smaller than the
lower limit smin > 0. In the latter case the line search algorithm stops with a
failure. In order to also allow increases of the step size, the algorithm checks
whether the Armijo rule is satisfied for wes, with some fixed we > 1, in case
the last zz applications of the line search procedure terminated successfully
with the respective initial step size. This expansion is applied for at most zm
consecutive steps.

We continue the gradient descent method as long as the decrease of the
values of the objective is sufficiently large or there are still sufficient large
changes in the primal variables. More precisely, if in a number zs of consec-
utive gradient steps the new value J of the objective does not drop below
(1−θn)Jold with Jold denoting the value of the objective after the application
of the previous descent step, and the changes ||c−cold||L2 and ||v−vold||L2 are
smaller then ϑn||cold|| and ϑn||vold||, respectively, then we stop the gradient
descent algorithm and proceed to the next Yosida parameter αn+1. Here,
ϑn, θn > 0 denote parameters which depend on n.

3.3. Newton’s method for the primal system

The primal system is solved iteratively forward in time by using Newton’s
method. The latter converges at a local superlinear convergence rate. The
adjoint system is linear and can be solved directly and iteratively backward in
time. We note that the arguments given in [18] provide sufficient conditions
for the existence of solutions to the respective system.

Next we exemplarily set-up the primal system as it is solved by Newton’s
method. Given (ci, wi, vi) ∈ H1(Ω) × H1(Ω) × H1

σ(Ω) at t = ti, the tuple
(c̃, w̃, ṽ) = (ci+1, wi+1, vi+1) is computed such that

F (c̃, w̃, ṽ) = 0. (3.1)
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For all (zc, zw, zv) ∈ H1(Ω)×H1(Ω)×H1
σ(Ω) with

∫
Ω
zc =

∫
Ω
zw = 0, zv|∂Ω =

0 the variational form of (3.1) reads

〈F (c̃, w̃, ṽ), (zc, zw, zv)〉 =

 (c̃− ci + τ∇ci · ṽ | zc) + τ 1
Pe

(∇w̃ | ∇zc)
(−w̃ − ci + ψ′(c̃) | zw) + ε(∇c̃ | ∇zw)

(ṽ − vi + (vi · ∇)ṽ −Kw̃∇ci) | zv) + 1
Re

(∇ṽ | ∇zv)


with (f | g) :=

∫
Ω
fg. Then, given some (c̃(0), w̃(0), ṽ(0)) ∈ H1(Ω) ×H1(Ω) ×

H1
σ(Ω) and setting l := 0, the Newton iterations take the form

(c̃(l+1), w̃(l+1), ṽ(l+1)) = (c̃(l), w̃(l), ṽ(l)) + d(l),

for d satisfying
〈
DF (c̃(l), w̃(l), ṽ(l))d, z

〉
= −

〈
F (c̃(l), w̃(l), ṽ(l)), z

〉
for all z =

(zc, zw, zv) ∈ H1(Ω)×H1(Ω)×H1
σ(Ω) with

∫
Ω
zc =

∫
Ω
zw = 0, zv|∂Ω = 0.

4. Finite element approximation

For the numerical realization of the aforementioned gradient descent pro-
cedure, the systems (2.1)–(2.6) and (2.9)–(2.13) are discretized in space. For
this purpose let T denote a shape regular simplicial triangulation of Ω with
Ω =

⋃
T∈T T . The corresponding set of faces of the elements in T is denoted

by E . We consider the following finite element spaces:

W T := {w ∈ C0(Ω) | w|T ∈ P1(T ) ∀T ∈ T },
V T := {v ∈ L∞(Ω) | v|T ∈ P1(T ), v|T1(Em) = v|T2(Em)

∀T, T1, T2 ∈ T , E = T1 ∩ T2 ∈ E},

where Em denotes the midpoint of a face E ∈ E and P1(T ) is the space of
affine functions on T . We use the space W T of P1-finite elements for the
discretization of c, w and p and the LBB-stable Crouzeix-Raviart element
space V T (see [11]) for v and q.

The spatial discretization of (2.1)–(2.6) leads to finding (c, w, v) ∈ (W T ×
W T×V T )M+1 such that

∫
Ω
c =

∫
Ω
w = 0, div v = 0, vi+1|∂Ω = η(2)u

(2)
i+1, c0 =

ca, v0 = va and

(
1

τ
(ci+1 − ci) +∇ci · vi+1 | zc) + 1

Pe
(∇wi+1 | ∇zc) = 0,

(−wi+1 − ci + πT ∂ψ(ci+1) | zw) + ε(∇ci+1 | ∇zw) = 0,

(
1

τ
(vi+1 − vi) + (vi · ∇)vi+1 −Kwi+1∇ci | zv) + 1

Re
(∇vi+1 | ∇zv) = η(1)(u(1) | zv)

12



for all (zc, zw, zv) ∈ (W T ×W T ×V T )M with div zv = 0 and
∫

Ω
zc =

∫
Ω
zw = 0.

Here, πT : C(Ω) → W T denotes the Lagrange interpolation operator [13].
Differential operators on vector fields in V T are understood in the element-
wise sense, i.e., (div v)|T = div(v|T ) a.e. and for all T ∈ T , for instance.
For the adjoint system we proceed similarly and use the spatially discretized
version

(−1

τ
(pi+1 − pi) +K∇ci+1 · qi+1 − div(pi+1vi+2)

+K div(wi+2qi+1) | zc) + (ε∇ri − 1
Pe
∇pi+1 | ∇zp)

+(ri |DA(ci+1)zp) = (λi(ci − cei) | zp),

(−ri −K∇ci · qi | zr) + 1
Pe

(∇pi | ∇zr) = 0,

(−1

τ
(qi+1 − qi) + b1(vi+2, qi+1) + b2(vi, qi) + pi∇ci | zq)

+ 1
Re

(∇qi | ∇zq) = 0,

∫
Ω
p = 0,

∫
Ω
r = 0, div q = 0,

−J−1
U(1)I

∗
U(1)→V−1

q = z1,

H
[
− 1

τ
(qi+1 − qi)− 1

Re
∆qi + b1(vi+2, qi+1)

+b2(vi, qi) + pi∇ci
]

= z2.

We emphasis that the above discretization yields the exact gradient of
the optimal control problem for the spatially discretized semidiscrete CH-NS
system.

As mentioned above, we avoid the implementation of the H1/2(Ω;RN)
norm by representing functions in U as their norm-minimal continuation into
the space H1

σ(Ω), where the latter space is equipped with the induced norm
of H1(Ω;RN). This extension operator will be denoted by F : U → H1

σ(Ω).
Moreover, we reformulate (2.3) by replacing v by ṽ + Fu and obtain

1

τ
(ṽi+1 − ṽi)− 1

Re
∆ṽi+1 + (ṽi + Fui · ∇)ṽi+1 −Kwi+1∇ci +∇π

= η(1)u(1) −
[
F 1

τ
(ui+1 − ui)− 1

Re
∆ui+1 + (ṽi + Fui · ∇)Fui+1

]
,(4.1)

where ṽ satisfies homogeneous Dirichlet boundary conditions.
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In order to solve a single time step of either the adjoint system or the
linearized primal system, where the latter corresponds to computing one
Newton step, the solution to a linear problem of the form

zTM1x = zTf ∀z : M2z = 0, M2x = 0 (4.2)

has to be calculated. Here, x = (ci, wi, ṽi) with ṽi = vi − Fui or x =
(pi, ri, qi), respectively. M1 denotes the system matrix and f the right hand
side incorporating values of the state or the adjoint at former times. The
matrix M2 corresponds to the discretization of the mapping (zc, zw, zv) 7→
(
∫

Ω
zc,
∫

Ω
zw, div zv, zv|∂Ω), which assembles the mean-value conditions on c, w

and p, r, respectively, the incompressibility of v, respectively q, the boundary
conditions on ṽ, respectively q, as well as on the corresponding test functions.
In order to solve (4.2), note that this problem can be rewritten as a saddle
point system, which we solve in exchange(

M1 MT
2

M2 0

)(
z
λ

)
=

(
f
0

)
. (4.3)

Our implementation uses MATLAB and a direct solver to compute the
solution to (4.3). This equation corresponds to solving one time step of
the dual system (2.9)–(2.13) or to solving the linearization of the primal
system (2.1)–(2.3) in Newton’s method. Of course, a suitable preconditioned
iterative solver using the Krylov-subspace method could be applied as well to
solve (4.3). In order to reduce the computational effort for the direct solver,
we use the null space method (see e.g. [24]). For this purpose, note that in
two dimensions a spanning system for all divergence-free vector fields v ∈ V T
is given by the curls of the nodal basis functions joined by the set vE ∈ V T
for E ∈ E where vE(Em) is tangential to E and of unit length, and it satisfies
vE(E ′m) = 0 for E 6= E ′ ∈ E (cf. [28]).

5. Numerical results

This section reports on the numerical results which we obtained from our
algorithm for solving several test problems including boundary or distributed
controls. Here as well as in many applications one is interested in tracking a
desired concentration profile c∗M at final time. Our objective in (2.7), however,
includes a desired trajectory, where each L2-distance to c∗i is weighted by
λi ≥ 0. Clearly, for properly chosen (c∗i )

M
i=0 and λi > 0 this may help the
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control action to reach cM close to c∗M . In (2.7) the time instances, where
a desired concentration is prescribed, coincide with (ti)

M
i=0. Of course, it is

conceivable to select desired concentration profiles at different times.
In our numerical tests we select c∗i = c∗M for all i = 0, ...,M − 1 as well as

a sequence ((λ
(n)
i )M−1

i=0 )n∈N which decreases in each component as the Yosida
parameter αn tends to 0.

We first present two examples of boundary control and then test cases
for distributed control. The ability to steer the phase concentration in the
semidiscrete CH-NS system to a desired profile at final time is more challeng-
ing (if possible at all) for boundary control when compared to distributed
control actions. Topological changes resulting from boundary control, like
the splitting of regions of pure phases, seem possible only if the given phase
configuration is energetically highly unfavorable. On the other hand, for the
distributed control a wide range of target profiles including many relevant
ones for applications, are reachable. Examples for such phase patterns can
be observed in subsection 5.3 and 5.4 below.

Unless otherwise specified the following parameters are used: As the do-
main we choose Ω = (0, 1)2 with a uniform triangulation of mesh width
h = 1/128. We use T = 0.2 for the time horizon, and the time interval [0, T ]
is divided into M = 30 subintervals.

The gradient descent method is performed for a fixed number nmax of
different Yosida parameters. For the examples of subsections 5.1, 5.2 and
5.4 below we use nmax = 5, for the one of subsection 5.3 we use nmax = 4.
As initial Yosida parameter α1 we choose α1 = 10−3 for the examples of
subsections 5.1, 5.2 and 5.3 and α1 = 10−2 in subsection 5.4. The other values

of αn are given by α1(10−6

α1
)

n−1
nmax−1 for n = 2, ..., nmax. Then αnmax = 10−6 and

the values of α form a geometric sequence. For the constants entering the
semidiscrete CH-NS system we set Pe = 10, K = 2, ε = 6 · 10−4, and
Re = 200.

Furthermore, for the extended Armijo line search algorithm (Algorithm 1
in the appendix) we use the parameters wc = 1/3, we = 2, zz = 3, zm = 4
and ν = 10−2 for boundary control and ν = 10−3 for distributed control, re-
spectively. As criterion for stopping with failure we set smin = 10−7. Finally,
we stop our Newton iteration as soon as the residual drops below 10−9 in
the respective norm. For stopping the gradient descent method we choose

the parameters zs = 7, θn = 10−4 · 0.1
n−1

nmax−1 and ϑn = 10−3 · 0.1
n−1

nmax−1 for
n = 1, ..., nmax. Then θnmax = 10−5, ϑnmax = 10−4 and θ and ϑ form geometric
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sequences.

5.1. Disk to a ring segment

Our first example of boundary control is the deformation of a disk into
a sector of a ring (i.e, we start with a configuration where we have the pure
phase c = 1 in the given disk and c = −1 outside). Figure 1 shows the
evolution of the concentration under the applied control, where the initial
data containing pure phases only is included in the upper left corner. The
desired profile is depicted in the bottom right corner of Figure 1. The action
of the control on the boundary is indicated by the vector field on the boundary
of the respective box. The length of an arrow indicates the intensity of the
control action, and the direction of the control field is given by the orientation
of the arrow. Moreover, interfacial regions are displayed in green color.

The aim of this example was the deformation of a stable disk-shaped
region into some region which is neither circular nor convex anymore. The
figure shows that the algorithm was capable to find a numerical locally op-
timal control inducing a phase concentration which is rather close to the
desired profile. This is apparently achieved by first shifting the disk to the
target location and then stretching it by pulling the ends apart (outflow at
the lower corners) as well as pushing the middle part upwards due to an
inflow from the middle portion of the bottom boundary. Note that the final
configuration is unstable, in the sense that the ring segment would again de-
form into a circular region if the system could evolve naturally, i.e. without
a control action.

The following Table 1 provides the iteration numbers for each run with
different parameter settings (Yosida parameter and coefficients in the cost
functional). It includes the Yosida parameter, the number of gradient steps
in the corresponding setting, the average number of line search steps per
gradient iterations and the average number of Newton steps used in order to
solve the primal system in a single time step.

The results show that the number of line search steps per gradient step is
around 2 and that the largest average numbers of Newton steps per time step
occurs in the first and the last time step and lies between 6 and 7. The related
values of the cost functional are depicted in Figure 2. It can be observed that
the graph is piecewise continuous with each piece belonging to one choice of
the Yosida parameter. One further observes that each branch is monoton-
ically decreasing over the iterations (horizontal axis). Moreover, the (final)
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t = 0 t = 4 t = 8

t = 12 t = 16 t = 20

t = 24 t = 28 c∗M

Figure 1: Evolution of the concentration with boundary control to deform a disk into a
ring segment (row-wise and from left to right). First and last image are the initial and,
respectively, the desired concentrations.

values of the cost functional increase from one branch to the next. This indi-
cates that approximating the original problem and the involved variational
inequality makes it more difficult for the control action to steer the system
towards the desired state. The rather significant increase of the objective
value at the beginning of the branch starting at around iteration 190 can be
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Yosida-parameter grad. steps line search steps Newton steps ø Newton/t

1.00000e-03 119 185 32615 6.08
1.77828e-04 27 56 4964 3.06
3.16228e-05 23 38 3209 2.91
5.62341e-06 14 22 2663 4.17
1.00000e-06 42 85 17320 7.03

Table 1: Iteration numbers for the example ”Disk to a ring segment”, cf. Figure 1.

attributed to the fact that the numerical solution for the previous α-value
does not provide a sufficiently good initial value for the Yosida parameter
associated with the branch starting at approximately iteration 190.

Figure 2: Values of the cost functional after each gradient step (for example 5.1). Each
branch corresponds to a specific Yosida parameter αn.

5.2. Ring to disks

The second example consists of deforming a ring region into four sepa-
rate disks by using optimal boundary control. The evolution of the phase
field and the corresponding control obtained by our algorithm is shown in
Figure 3. The control appears to be almost constant in time and with an
inflow perpendicular to the boundary at the middle of the faces of Ω and an
outflow at the corners. Moreover, the control action drives the concentration
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very close to the desired profile, which is depicted in the bottom right plot
of Figure 3. The resulting disk-like regions deviate only slightly from the
desired shapes and show the expected diffuse interface indicated in green.

t = 0 t = 4 t = 8

t = 12 t = 16 t = 20

t = 24 t = 28 c∗M

Figure 3: Evolution of the concentration with boundary control in order to transform a
ring (first image) into four disks.

Note that the starting configuration possesses a large surface area com-
pared to the area of the region itself and is therefore energetically unfavorable.
This instability is the main reason for the success of the control action in this
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example. Once initiated by the control, the phase separation process helps
in splitting up the ring and drives the evolution forward to the desired disks.

The qualitative behavior of the values of the cost functional is similar to
the one in the first test example. The iteration numbers of the algorithm
given in Table 2 show that the number of gradient steps decreases with
decreasing Yosida parameter. Moreover, the average numbers of Newton
iterations for solving the primal systems in the individual time steps, first
decrease with decreasing Yosida parameter. But for our smallest choice of
the Yosida parameter we notice a significant increase in Newton steps. This
behavior can be attributed to the fact that the limit problem is nonsmooth,
which causes an increase in curvature of the mollified Yosida approximation,
thus reducing the radius for fast local convergence of Newton’s method.

Yosida-parameter grad. steps line search steps Newton steps ø Newton/t

1.00000e-03 18 35 5626 5.54
1.77828e-04 16 34 3810 3.86
3.16228e-05 11 27 2838 3.62
5.62341e-06 9 15 2130 4.90
1.00000e-06 7 13 3788 10.05

Table 2: Iteration numbers for the example ”Ring to disks”, cf. Figure 3.

5.3. Grid pattern of disks

Our first example involving distributed control concerns the deformation
of a disk-shaped region into a grid pattern of smaller disks. The evolution
of the concentration (phase field) and the applied control are given in Fig-
ure 4. In order to depict the force field given by u in the domain Ω we use a
representation where different colors indicate different directions. The corre-
spondence between a color and a direction is shown in Figure 5. Moreover,
the modulus (length) of the vector field is encoded in the intensity of the
colors where intense colors belong to large moduli and pale colors to small
moduli, respectively.

In Figure 4 it can be seen that the control enjoys a rich spatial structure
that changes over time and which drives the phase field quite close to the
desired state. But since the circular regions of the target profile are very close
to each other, the control found by the algorithm is not capable of completely
separating the different interfaces from each other and a blending of regions
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occurs. Nevertheless, the results of this rather challenging example show the
potential of distributed control once the technical realization of the control
action can be guaranteed.

t = 0 t = 6 t = 12 t = 16

t = 20 t = 24 t = 28 c∗M

Figure 4: Evolution of the concentration (first and third row) and the corresponding
distributed control (second and forth row) to reach a grid of smaller disks from a large
disk. The directions of the vector field of the control is represented in a color scheme
explained in Figure 5.

Table 3 provides the iteration numbers for this example. Here, the average
number of line search steps per gradient step is below 3 and the average
number of Newton iterations used in order to solve one time step of the
primal system does not exceed 4.4.

The right plot in Figure 5 presents the evolution of the objective values
along the iterations. In the branch belonging to the initial Yosida parameter
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Yosida-parameter grad. steps line search steps Newton steps ø Newton/t

1.00000e-03 341 608 77428 4.39
1.00000e-04 39 87 6807 2.70
1.00000e-05 42 104 8670 2.87
1.00000e-06 24 63 6402 3.50

Table 3: Iteration numbers for the example ”Grid pattern of disks”, cf. Figure 4.

Figure 5: Correspondence between colors and directions (left) and the valued of the cost
functional after each gradient step of example 5.3 (right).

a seesaw between iterations with steep descent and iterations with only small
descent can be observed. For all of the other parameters the evolution of the
cost functional is almost flat indicating that the numerically optimal control
found for a large Yosida parameters is numerically almost optimal for smaller
parameters as well.

5.4. Grid pattern of finger-like regions

A second example of optimal distributed control of the semidiscrete CH-
NS system is shown in Figure 6. Here, the aim is to deform the initial
profile of the concentration – again a disk-shaped region – into a pattern of
horizontally aligned finger-like regions. The figure shows that the force field
given by the control pushes the inner fluid (red) outside along the desired
finger pattern. whereas the outer fluid (blue) is pushed vertically to the
middle along the desired vacancies between the fingers. This behavior is
exactly as one would expect from the optimal control in order to approach
the desired profile: distribute both fluids spatially with minimal effort and
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then extend the regions occupied by both fluids in those directions that match
the desired profile.

t = 0 t = 6 t = 12 t = 16

t = 20 t = 24 t = 28 c∗M

Figure 6: Evolution of the concentration (first and third row) and the corresponding
distributed control (second and forth row) to obtain finger-like regions out a disk.

In this example and apart from the inevitable formation of an interfacial
region the final concentration almost perfectly fits the desired profile. Since
the finger-like regions of the given target are sufficiently separated from each
other blending of interfacial regions, as it occurred in the previous example,
does not occur.

Table 4 provides the information on the iterations for this example.
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Yosida-parameter grad. steps line searches Newton steps ø Newton/t

1.00000e-02 701 961 158925 5.70
1.00000e-03 19 27 3235 4.13
1.00000e-04 53 110 9829 3.08
1.00000e-05 20 36 3565 3.41
1.00000e-06 11 16 2841 6.12

Table 4: Iteration numbers for the example ”Grid pattern of finger-like regions”, cf. Fig-
ure 6.

6. Conclusions

This paper presented optimal control problems for a time discretized two-
phase flow model. The governing state equations consisted of a coupled
Cahn–Hilliard/Navier–Stokes system and we considered boundary as well as
distributed control of the Navier–Stokes part. First order optimality condi-
tions were given. An algorithmic scheme was presented which is based on
a sequence of Yosida-type approximations of the original problem linked via
a path-following method. Upon spatial discretization the individual Yosida
regularized problems were solved using a gradient descent method and an
extended Armijo line search. We concluded our discussion with reports on
the behavior of our algorithm for several numerical test cases.

Acknowledgments

The authors gratefully acknowledge support by DFG Research Center
MATHEON under project C28 ”Optimal control of phase separation phe-
nomena” and by DFG SPP 1506 ”Transport Processes at Fluidic Interfaces”.
M.H. further acknowledges support through FWF under START-program
Y305-N18 ”Interfaces and Free Boundaries”.

24



Algorithm 1: Armijo line search with expansion

Input: d(n,k)(= −J−1Ĵ ′(u(n,k))), s(n,k−1), z ∈ N.
Parameters: ν ∈ (0, 1), wc ∈ (0, 1), we > 1, zz, zm ∈ N, smin > 0.

step 0. Set s(n,k,l) := s(n,k−1), z(l) := z, ze := 0.

step 1. If Ĵ (u(n,k) + s(n,k,l)d(n,k)) ≤
Ĵ (u(n,k)) + νs(n,k,l)〈Ĵ ′(u(n,k)), d(n,k)〉, then
if ze = 0 then continue with step 2.
else continue with step 5.
end

else
if ze = 0 then continue with step 3.
else continue with step 6.
end

end

step 2. Set z(l) := z(l) + 1.
if z(l) ≥ zz then continue with step 4.
else

stop with s(n,k) := s(n,k,l), z := z(l)

end

step 3. Set s(n,k,l+1) := wcs
(n,k,l), l := l + 1, z(l) := 0.

if s(n,k,l) < smin then stop with failure,
else return to step 1.
end

step 4. Set s(n,k,l+1) := wes
(n,k,l), l := l + 1, z(l) := 0,

ze := ze + 1 and return to step 1.
step 5. If ze < zm then return to step 4

else
stop with s(n,k) := s(n,k,l), z := z(l)

end

step 6. Stop with s(n,k) := w−1
a s(n,k,l), z := z(l).
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