

Distributed Bio-Oil Reforming

S. Czernik¹, R. French¹, M. M. Penev¹, J. Marda², A. M. Dean²

¹National Renewable Energy Laboratory ²Colorado School of Mines May 12, 2009

Project ID# PDP_15_Czernik

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY, CONFIDENTIAL OR OTHERWISE RESTRICTED INFORMATION

Overview

Т

Μ

Е

Ν

Е

В

A

R

R

E

R

S

- Start date: 2005
- End date: 2012
- Percent complete: 60%

• FY 2005: \$100K

В

U

D

G E

Т

Ρ

A

R

Т

Ν

Е

R

S

- FY 2006: \$300K
- FY 2007: \$350K
- FY 2008: \$700K
- FY 2009: \$0K

Production Barriers

- A. Fuel processor capital
- C. Operation & maintenance
- D. Feedstock issues
- F. Control & safety

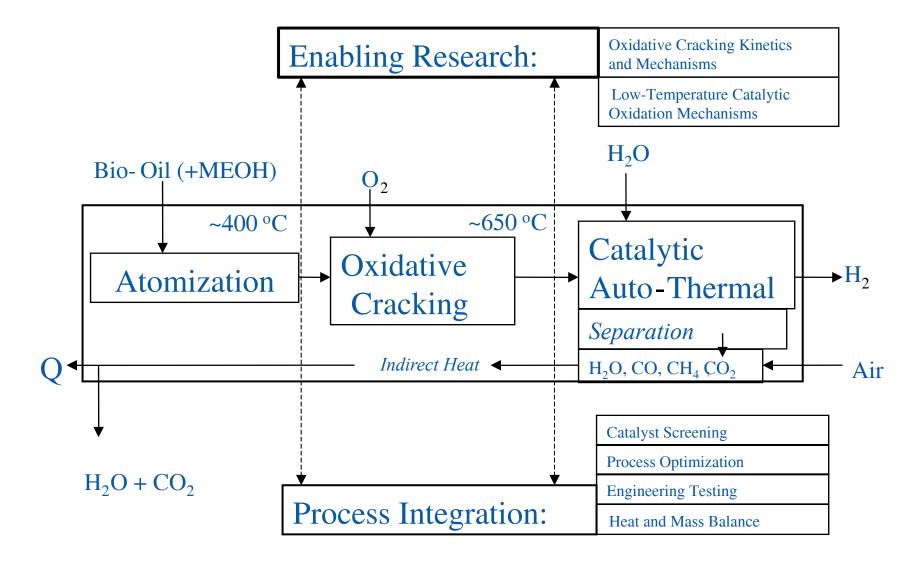
2012 Targets

- \$3.80/gallon gasoline equivalent
- 72% energy efficiency (bio-oil to H2)

- Colorado School of Mines -Oxidative cracking
- University of Minnesota -
- Catalyst Development
- Chevron Feedstock Effects (3 year CRADA)

Biomass fast pyrolysis produces high yields of liquid product, bio-oil, which can be stored and shipped to a site for renewable hydrogen production.

NREL is investigating the low-temperature, partial oxidation, and catalytic autothermal reforming of biooil for this application.


Pyrolysis: $CH_{1.46}O_{0.67} \rightarrow 0.71CH_{1.98}O_{0.76} + 0.21CH_{0.1}O_{0.15} + 0.08CH_{0.44}O_{1.23}$ BiomassBio-Oil (75%)Char (13%)Gas (12%)

Catalytic Steam Reforming of Bio-oil:Bio-oil (74 wt% $CH_{1.28}O_{0.41}$, 26 wt % H_2O)- 90 wt% of feed CH_3OH - 10 wt% of feed H_2O (2 mole ratio steam to carbon)

Overall Reaction: $CH_{2.18}O_{0.78} + 0.51O_2 + 0.19 H_2O \rightarrow CO_2 + 1.28 H_2$

Estimated Practical Yield: 9.3 wt % Energy Efficiency Estimates are in Progress based on Aspen Modeling

Distributed Bio-Oil Reforming Approach

Objectives

Overall

Develop the necessary understanding of the process chemistry, compositional effects, catalyst chemistry, deactivation, and regeneration strategy as a basis for process definition for automated distributed reforming; demonstrate the process

• FY 2009

Improve bio-oil atomization with less MeOH addition,

Demonstrate non-catalytic partial oxidation of bio-oil at bench scale

Demonstrate catalytic conversion of bio-oil to syngas at bench scale

Provide mass balance data for H2A

Technical Accomplishments

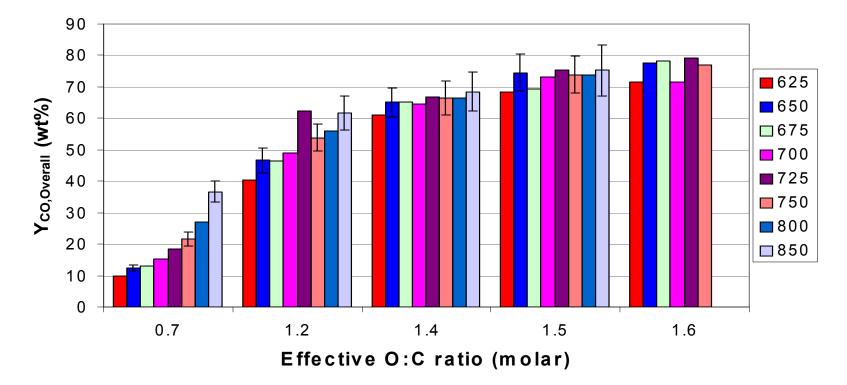
- FY 2006
 - Bio-oil volatilization method developed
 - Oxidative cracking to CO with minimal CO₂
- FY 2007
 - Demonstrated equilibrium catalytic conversion to syngas at low temperature and low H_2O/C
- FY2008
 - Demonstrated catalyst performance
 - Designed and built a bench scale reactor system
- FY2009
 - Demonstrated operation of a bench-scale reactor system using 90 wt% bio-oil/10 wt% methanol mixture

Progress in Process Development

1. Bio-Oil Volatilization

- The new ultrasonic nozzle can produce a fine mist even from high-viscosity liquids.
- Successful tests with 90 wt% bio-oil/10 wt% methanol mixture.
- Promising attempts of feeding neat bio-oil though 10 wt% methanol addition will likely be used to homogenize and stabilize bio-oil.
- Ultrasonic nozzle will likely be replaced by a high-pressure injector in larger-scale units.

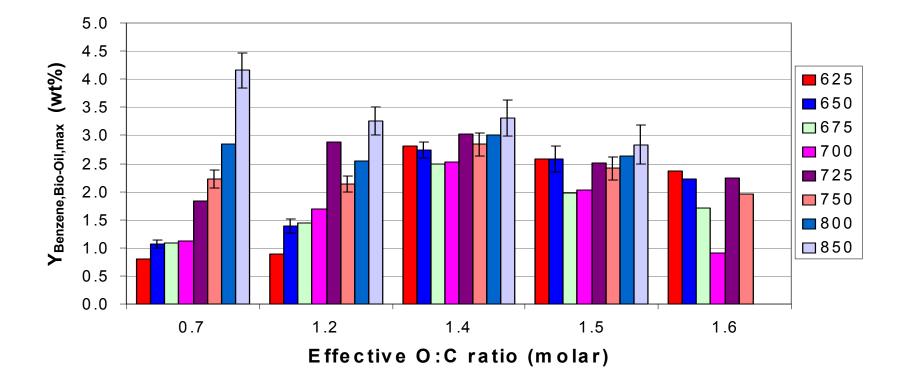
Progress in Process Development 2. Oxidative Cracking


40 35 625 30 YH2, Overall (wt%) 650 25 675 **700** 20 **725** 15 **750** 800 10 850 5 0 0.7 1.2 1.4 1.5 1.6 Effective O:C ratio (molar)

Overall H₂ Yield

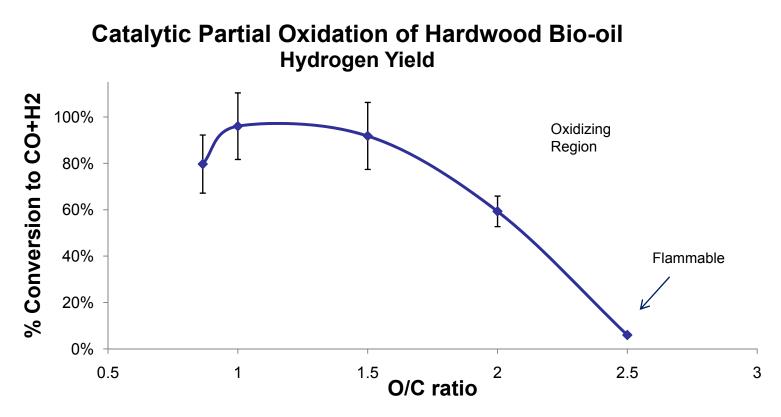
Hydrogen yields are 25-30% of the stoichiometric potential; Those yields will significantly increase after completion of water-gas shift.

Progress in Process Development 2. Oxidative Cracking


Overall CO Yield

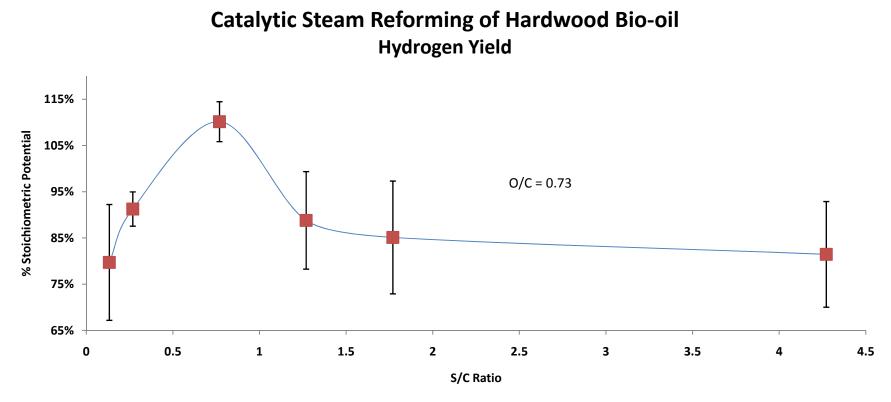
>70% carbon can be converted to CO by non-catalytic POX; O:C ratio has much stronger effect than temperature on CO yields

Progress in Process Development 2. Oxidative Cracking



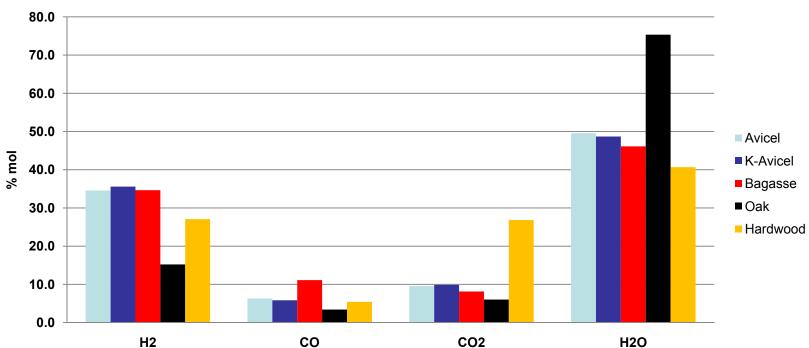
At O:C>1.4 temperature has little effect on benzene (aromatics) formation

Progress in Process Development 3. Catalytic Conversion


University of Minnesota catalyst (Lanny Schmidt's group): 1 wt % Rh and 1 wt % ceria on alumina

1 - 1.5 is the optimal range of O/C for catalytic POX of bio-oil

Progress in Process Development 3. Catalytic Conversion

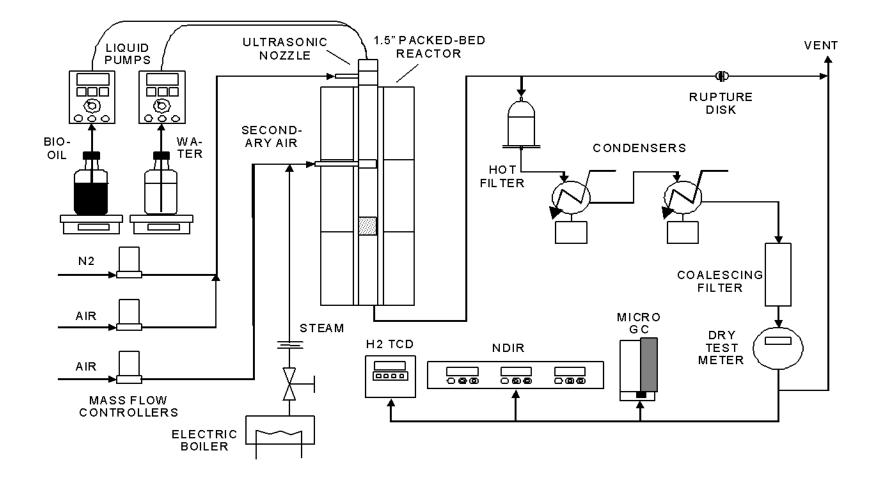

University of Minnesota catalyst (Lanny Schmidt's group): 1 wt % Rh and 1 wt % ceria on alumina

80-90% of stoichiometric yield of hydrogen was produced by catalytic steam reforming of bio-oil for the whole S/C range

Progress in Process Development 3. Catalytic Conversion

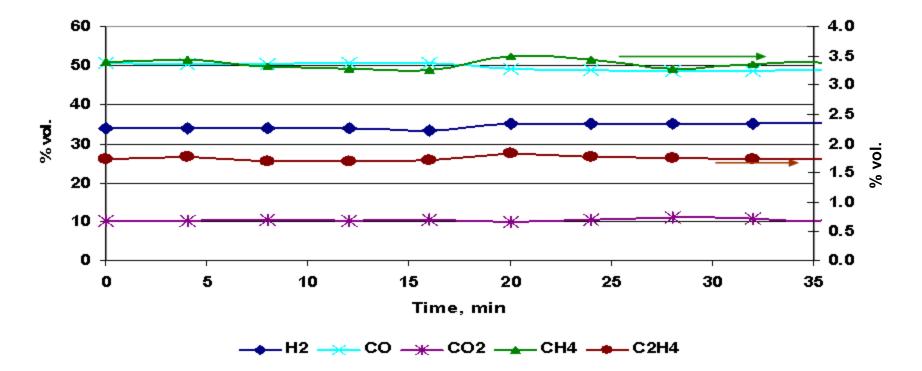
Product Gas Composition from Different Feedstocks

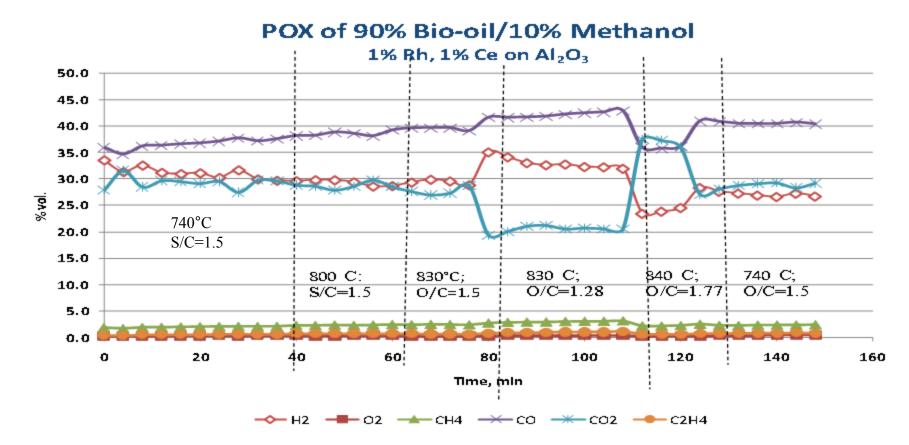
Syn-gas Composition 650 C; O/C=1.3; S/C=2.5


Progress in Process Development 4. Bench-scale Reactor

- Built out of quartz:
 d = 30 mm; h = 450 mm
- Connected to the feeding and condensation systems
- Feed rate 1-2 g/min 90 wt% bio-oil/10 wt% methanol solution
- On-line product gas composition monitoring
- 1-4 hour runs
- Detailed product analysis
- Improved mass balance

Progress in Process Development

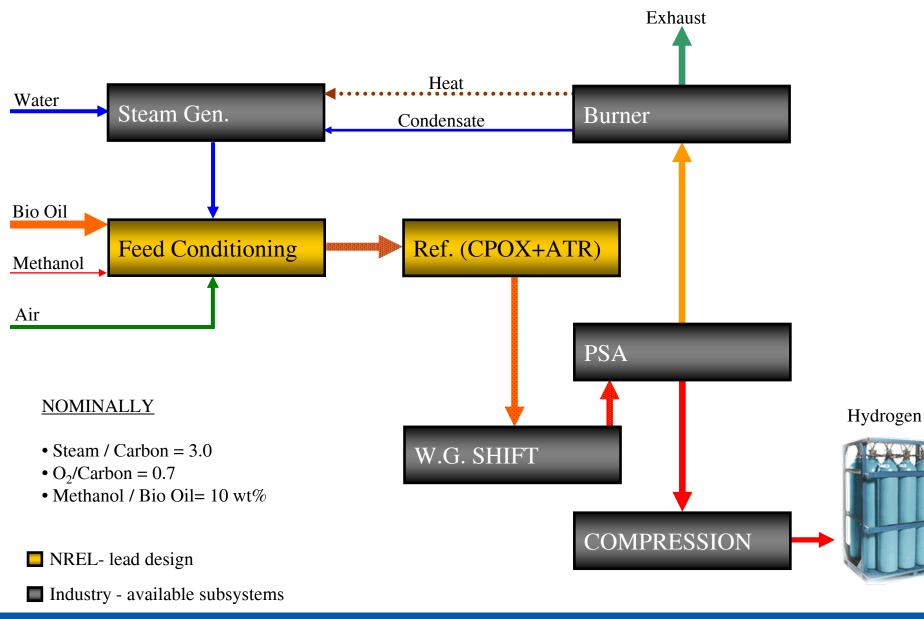

4. Bench Scale Reactor System


Progress in Process Development 4. Bench Scale Reactor System

Gas Composition from POX of Bio-oil/Methanol

POX of Bio-oil/Methanol Mixture t = 730C, O:C = 1.5

Gas Composition from Catalytic POX of Bio-oil/Methanol at different process conditions


Hydrogen Cost

1500 kg/day station used for H2A analysis.

Capital Costs \$1,660,000 (\$2.03/gge).

Total cost of delivered hydrogen **\$4.48/gge** \$2.59/gge for the production \$1.88/gge for compression, distribution, and dispensing.

Process Subsystems Outline

Summary

- Bench-scale reactor system tests of non-catalytic and catalytic partial oxidation of bio-oil were performed using 90 wt% biooil/10 wt% methanol mixtures
- Carbon-to-gas conversion at bench-scale was slightly less than that achieved in micro scale system
- Rhodium catalyst enhanced bio-oil to syngas conversion by POX with and without added steam
- Bio-oils from herbaceous feedstock were more difficult to process and left more deposits than wood bio-oils
- Experimental results from bench-scale system will be used as to validate ASPEN simulations based on micro-scale data.

Project Timeline

ID	Task Name	2005	2006	2007	2008	2009	2010	2011	2012
1	Bio-Oil Volatilization								
2	Processing Options			արի հեր					
3	Modification and Characterization				-				
4	Injector Development								
5	Coking Studies								
6	Go / No Go on Bio-Oil performance			5/3	1				
7	Oxidative Cracking					~			
8	Proof of Concept								
9	Reduce Catalyst Loading by 50%		6/3	0					
10	Partial Oxidation Database								
11	Modeling and Optimization								
12	Jon Marda Thesis					12/31			
13	Catalytic Auto-Thermal Reforming								
14	Catalyst Screening								
15	Catalyst Process optimization								
16	Demonstrate catalyst performance consistent with \$3.80/gge				5/30)			
17	Catalyst Mechanistic Studies								
18	Integrated Separation								
19	Concept Evaluation				ц.				
20	Materials Evaluation								
21	Integrated Laboratory System Experiment								
22	Go / No Go on Conceptual Design						۴ 🗹	/31	
23	Systems Engineering								\sim
24	Oxygen, Steam and Heat Integration								
25	Engineering Design and Construction								
26	Prototype System Developed							5/31	
27	Heat and Mass Balances								
28	Process Upsets								
29	Long Duration Runs								
30	Demonstrate Distributed Hydrogen Production from								9
	Bio-Oil for \$3.8/gge								
31	Safety Analysis								
32	Review and Analysis of Pressure, O2, H2								
33	Systems Integration							1	

Future Work

- FY 2009: Produce process performance data as a function of process conditions (temperature, catalyst, O/C, S/C) using the bench-scale system
 - Integrated laboratory experiment
 - Optimization work
 - Long-term catalyst performance test
 - Assess the impact of the bench-scale results on the process design and on hydrogen production cost
- FY 2010: "Go/no-go" on conceptual design
- FY 2011: Prototype system
- FY 2012: Long duration runs to validate the process