
Distributed Control Systems at SSRL
Constraints for Software Development Strategies

Timothy M. McPhillips
Stanford Synchrotron Radiation Laboratory

Overview

Computing Environment at our Beam Lines
l Need for cross-platform development.
l Need for distributed architecture.

Beam Line Software
l Need for collaborative software.
l Need for high performance software.

Software Development Strategy
l Constraints on our strategy.
l Our current strategy.

User Environment at Beam Line

Network Architecture of a Beam Line

Problem 1: Multiple Hardware Hosts

Problem 2: Multiple, Simultaneous User Interfaces

Solution: Distributed Control System (DCS)

DCS Server (DCSS)

Beam Line Universal -
Integrated Configuration Environment (BLU-ICE)

BLU-ICE Motor Scan Windows

BLU-ICE Motor Configuration Windows

Advantages of Writing BLU-ICE in Tcl/Tk

Command Prompt with Scripting
l Tcl was originally designed to be an embedded scripting language, so it is easy to give the

user a command prompt and a full featured programming language for scripting.
l User can script any operation in BLU-ICE using control structures, variables, procedures,

and even classes.
Platform Independent GUI

l Tcl/Tk runs on any Unix, VMS, Mac, and 32-bit Windows computer.
l Scripts can be distributed without compilation and run on any computer Tcl/Tk has been

installed on.
l Scripts can also be bundled with Tcl/Tk binaries and distributed as a single executable

file. In this case, Tcl/Tk does not have to be installed on the target machine.
Rapid Development

l Tcl/Tk GUIs can be written with only a fraction of the code necessary in typical system
programming languages such as C, C++, or Java.

l GUIs can be quickly written and are easy to maintain in Tcl.
l This characteristic is critical in the rapidly changing environments of our beam lines.

Object Orientation
l The [Incr Tcl] extension to Tcl provides object-oriented features such as classes.
l The [Incr Widgets] extension provides an object oriented framework for building complex

widgets from built-in Tcl widgets.
Extensible in C/C++

l Tcl was designed to be extended readily in C. Extensions can be loaded dynamically.
l High performance code, multiple threads and so on are best implemented in extensions.

Data Collection with the New BLU-ICE

DCSS Performance Now Critical

Cross-Operating System Library (XOS)

Features
l Supports portable, multithreaded, distributed programs

• Network communication using a much simplified socket object.
• Thread creation and synchronization with mutexes and semaphores.
• Memory mapped files and hash tables.
• Interthread communication using message queues and Win32-style messages.

l Compile-time approach
• Header file xos.h loads appropriate, system-dependent include files.
• Objects hide architectural differences.

Advantages
l Portability

• Compile code on Digital Unix, IRIX, OpenVMS, Windows NT/95.
• Easy to port to new platforms similar to any of the above.

l Reliability
• Simpler APIs leads to more reliable code.
• Less need to study different platforms.

: Performance
• Native system calls on each platform for maximum performance
• No runtime overhead for platform independence.

Constraints for Software Development Strategies

Cross-Platform
l Multiple operating systems needed at beam lines; future needs unknown.
l Remote users of the collaboratory may have many different operating systems.
l Other synchrotron labs and even users’ home labs may use our software.
l Must support VMS because other SSRL beam lines use it nearly exclusively.
è Use XOS (Cross-Operating System) Library for low-level software and Tcl/Tk for

GUI components when feasible.
Distributed

l Applications must integrate services provided by different computing platforms.
l User interfaces must be kept separate from other components.
è Use TCP/IP socket interfaces between all application components.

High-Performance Server Processes
l Server software must be extremely fast and take advantage of multiple processors.
è Write multithreaded C++ programs with XOS for portability.

Open Source
l Must be able to distribute all software freely without licensing issues.
l Installation distributions, source code and documentation should be nicely packaged.
l Document well enough that other groups can use and extend our solutions on their own.

Low Maintenance Overhead
l Write packages in layers that mix and match.
l Wrap packages in clean APIs that do not require knowledge of underlying code.
l Avoid requiring complex infrastructures. Make it easy for novice programmers.

