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Overview
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Computing Environment at our Beam Lines
e Need for cross-platform development.
e Need for distributed architecture.
Beam Line Software
e Need for collaborative software.
e Need for high performance software.
Software Development Strategy
e Constraints on our strategy.
e Our current strategy.



User Environment at Beam Line
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Network Architecture of a Beam Line
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Problem 1: Multiple Hardware Hosts
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Problem 2: Multiple, Simultaneous User Interfaces
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Solution: Distributed Control System (DCS) Qp
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DCS Server (DCSS)
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Beam Line Universal -
Integrated Configuration Environment (BLU-ICE)
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BLU-ICE Motor Scan Windows
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BLU-ICE Motor Configuration Windows QD
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Advantages of Writing BLU-ICE in Tcl/Tk
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Command Prompt with Scripting

e Tcl was originally designed to be an embedded scripting language, so it is easy to give the
user a command prompt and a full featured programming language for scripting.

e User can script any operation in BLU-ICE using control structures, variables, procedures,
and even classes.

Platform Independent GUI
e Tcl/Tk runs on any Unix, VMS, Mac, and 32-bit Windows computer.

e Scripts can be distributed without compilation and run on any computer Tcl/Tk has been
installed on.

e Scripts can also be bundled with Tcl/Tk binaries and distributed as a single executable
file. In this case, Tcl/Tk does not have to be installed on the target machine.

Rapid Development

e Tcl/Tk GUIs can be written with only a fraction of the code necessary in typical system
programming languages such as C, C++, or Java.

e GUIs can be quickly written and are easy to maintain in Tcl.

e This characteristic is critical in the rapidly changing environments of our beam lines.
Object Orientation

e The [Incr Tcl] extension to Tcl provides object-oriented features such as classes.

e The [Incr Widgets] extension provides an object oriented framework for building complex
widgets from built-in Tcl widgets.

Extensible in C/C++
e Tclwas designed to be extended readily in C. Extensions can be loaded dynamically.
e High performance code, multiple threads and so on are best implemented in extensions.



Data Collection with the New BLU-ICE D
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DCSS Performance Now Critical
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Cross-Operating System Library (XOS) @Q
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Features
e Supports portable, multithreaded, distributed programs
* Network communication using a much simplified socket object.
* Thread creation and synchronization with mutexes and semaphores.
« Memory mapped files and hash tables.
* Interthread communication using message queues and Win32-style messages.
e Compile-time approach
» Header file xos.h loads appropriate, system-dependent include files.
» Objects hide architectural differences.
Advantages
o Portability
 Compile code on Digital Unix, IRIX, OpenVMS, Windows NT/95.
» Easy to port to new platforms similar to any of the above.
e Reliability
e Simpler APIs leads to more reliable code.
» Less need to study different platforms.
Performance
» Native system calls on each platform for maximum performance
* No runtime overhead for platform independence.



Constraints for Software Development Strategies @Q
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Cross-Platform

Multiple operating systems needed at beam lines; future needs unknown.
Remote users of the collaboratory may have many different operating systems.
Other synchrotron labs and even users’ home labs may use our software.
Must support VMS because other SSRL beam lines use it nearly exclusively.

= Use XOS (Cross-Operating System) Library for low-level software and Tcl/Tk for
GUI components when feasible.

Distributed

e Applications must integrate services provided by different computing platforms.

e User interfaces must be kept separate from other components.

= Use TCP/IP socket interfaces between all application components.
High-Performance Server Processes

e Server software must be extremely fast and take advantage of multiple processors.

= Write multithreaded C++ programs with XOS for portability.
Open Source

e Must be able to distribute all software freely without licensing issues.

e Installation distributions, source code and documentation should be nicely packaged.

e Document well enough that other groups can use and extend our solutions on their own.
Low Maintenance Overhead

e Write packages in layers that mix and match.

e Wrap packages in clean APIs that do not require knowledge of underlying code.

e Avoid requiring complex infrastructures. Make it easy for novice programmers.



