SRS U N

Distributed Control Systems at SSRL

Constraints for Software Development Strategies

Timothy M. McPhillips
Stanford Synchrotron Radiation Laboratory

Overview

Sairf L

Computing Environment at our Beam Lines
e Need for cross-platform development.
e Need for distributed architecture.
Beam Line Software
e Need for collaborative software.
e Need for high performance software.
Software Development Strategy
e Constraints on our strategy.
e Our current strategy.

User Environment at Beam Line

SRS U N

Display 1 Display 2
(20 ') (24")

Display 4

24"

&

Backup Backup
Devices Devices

Network Architecture of a Beam Line

Sairf L

Central SSRL Network]47

DEL:
UNIX

{ Private Network]

'y Y 'y

Detector / VMS NT

_ _ Experimental
(Beamllne Optics Hardware

O v
[T

Problem 1: Multiple Hardware Hosts

Sairf L

VYMS NT
Computer Computer

[AL

CAMAC
Crate

| Ll

SSRL -
Standard ustom
Control
Control il
Electronics ectronics

H—_-—gm

Beamline
Optics

Experimental
Apparatus

Problem 2: Multiple, Simultaneous User Interfaces

SRS U N

CCD Data —» CCD Detector
Collection Software
Goniometer
Beamline Configuration [/<
Soffware ’;\\ = Fast Shutter
lon Chambers
Beamline Monitoring
Software 5| Beamiine Optics

Solution: Distributed Control System (DCS) Qp

SRS U N

CCD Data Beamline Beamline
Collection GUI Configuration GUI Monitoring Program
\ + /
-
Beamline
Server (DCSS)

((CS Hardware J [DCS Hardware J (DCS Hardware J

Server Server (DHS) Server (DHS)

OpenVMS Windows NT Linux

DCS Server (DCSS)

==
Beamline Database ;
({Memory Mapped File) -
CCD Data [
Collection GUI - 7(Socket ;;-i—..s Incoming Client Thread
A
Beamli / ("
eamime .
i —
\ A
Beamline Ul i 7 - PP—
Monitoring GUI * ? Socket = = GUIClient Thread
f A

,L B
Gl Hardware Server \47-7’ Socket = .:-
Y Y J

DCS Hardware | _ ol Bsakat f— N ETE—
Server (DHS) i ?4;."'_ .
e

DCS Beamline Server Process (DCSS)

(Broadcast Thread Jﬁ—ﬂ:-'f-: hﬂgﬂﬂm‘ In <——:

Beam Line Universal -
Integrated Configuration Environment (BLU-ICE)

mitror_sit_upper =]/l = s el foun i

r Mirmor

-

11 Mar 1993 11:30.07 mowve table_vart v G.05 mm

11 har 1995 11:30:07 NOTE: Motor table_vert is currently at =12 702800 min.

11 har 1993 11:30.07 MOTE: Mowve of motor tabla_wart to - 12.652B00 mm started.
11 bar 1993 11:30:08 MOTE: Mowe of motor table_wert completed narmally.

11 Mar 1993 11:30.12 mpwve table_vert by —L05 mm

11 bar 1293 11;30:12 MOTE: Motor table_vert Is currentiy at - 12 852080 mim,

17 ar 1293 11:30:12 MOTE: Move of motar table_wert to - 12.702880 mm started,
11 bar 1293 11;30:74 MOTE: Move of motor teble_wert completed narmally,

11 bar 1999 171:43:07 configure mirror_shit_upper

BLU-ICE Motor Scan Windows

T
—| Beamline 9-2 Configuration [0]
File Component Shutter Network Wiew Options Window Help
Selected Motor Move byl Move to | Setto | Scan
mirror_pitch ~| 0331 v|| deg |=| Abort Configure
-| Mirror x|
 mirror_vert
3.000 mm
;I Define Scan mirror_slit_upper + 3675 steps
2.998 mm - _ - -
File Options 473 steps | _ I m'r;"arag'zce';*
+ ¢
 Scan Axes / 237 steps
Axis Points Start End Step ity
mirror_pitch ;l 11 0.255| 0.355 0.01
(none) B mirror_slit lower —
—Detectors ~Repeat—— ’7 File Options Mode Cursor1 Cursor? Show ﬁl i ﬁlﬁlﬁl
Signal: i0 hd Number of scan: bls2_optics_035 11 Mar 1999 12:25:24
Reference: (none) ;l Delay between scans
5100
~Timing —Files
Integration time: 0.1 sec Filename root: b192_o
totor settling time: 0.0 sec Scan Mumber: 98
i Filters - Scan
A HA 1 AlLlG
1 Se -1 Al_32 u COverlay plots Starl
1 AL8 1 Al6G4

11 Mar 1999 12:27:54 NOTE: Connecting to server bl921 on port 3175...
11 Mar 1999 12:28:00 define_scan
11 Mar 1999 12:29:34 select_motor slit_1_vert gap

mirror_pitch (deg)

BLU-ICE Motor Configuration Windows QD

SUAL

[3..':

detector_piten = ||

B

Advantages of Writing BLU-ICE in Tcl/Tk

Sairf L

Command Prompt with Scripting

e Tcl was originally designed to be an embedded scripting language, so it is easy to give the
user a command prompt and a full featured programming language for scripting.

e User can script any operation in BLU-ICE using control structures, variables, procedures,
and even classes.

Platform Independent GUI
e Tcl/Tk runs on any Unix, VMS, Mac, and 32-bit Windows computer.

e Scripts can be distributed without compilation and run on any computer Tcl/Tk has been
installed on.

e Scripts can also be bundled with Tcl/Tk binaries and distributed as a single executable
file. In this case, Tcl/Tk does not have to be installed on the target machine.

Rapid Development

e Tcl/Tk GUIs can be written with only a fraction of the code necessary in typical system
programming languages such as C, C++, or Java.

e GUIs can be quickly written and are easy to maintain in Tcl.

e This characteristic is critical in the rapidly changing environments of our beam lines.
Object Orientation

e The [Incr Tcl] extension to Tcl provides object-oriented features such as classes.

e The [Incr Widgets] extension provides an object oriented framework for building complex
widgets from built-in Tcl widgets.

Extensible in C/C++
e Tclwas designed to be extended readily in C. Extensions can be loaded dynamically.
e High performance code, multiple threads and so on are best implemented in extensions.

Data Collection with the New BLU-ICE D

fdataitim

O Jdatatin
I
Ceni v
]

]

oot | 150

Energy:|16000.03 eV Metwork: | hMaster Shutter: | Closed 01:21:41 PM

DCSS Performance Now Critical

SRS U N

Beamline Database 'f_
BLU-ICE (Memory Mapped File) :|
Data Collector
/ Socket ,'=/-. ;;,*’ Socket Client Thread
o
-

/ _ B / Diffraction Image

Socket > Socket ‘4—— Serving Thread J

Data Collector [‘Data Collection

CCD Detector Thread g ‘Command Queue fiy
Control Program e
r— . Detector Control |_ out Detector Command

= Thread * : Queue
e

a2
/ i Transformation : ,
Socket /= Socket /— Thread ;l Out Image Read Queue i =

!

o
@
5
:
a

Server (DHS)

Out Broadcast Queve In

F]

DCS Beamline Server Process (DCSS)

Cross-Operating System Library (XOS) @Q

Sairf L

Features
e Supports portable, multithreaded, distributed programs
* Network communication using a much simplified socket object.
* Thread creation and synchronization with mutexes and semaphores.
« Memory mapped files and hash tables.
* Interthread communication using message queues and Win32-style messages.
e Compile-time approach
» Header file xos.h loads appropriate, system-dependent include files.
» Objects hide architectural differences.
Advantages
o Portability
 Compile code on Digital Unix, IRIX, OpenVMS, Windows NT/95.
» Easy to port to new platforms similar to any of the above.
e Reliability
e Simpler APIs leads to more reliable code.
» Less need to study different platforms.
Performance
» Native system calls on each platform for maximum performance
* No runtime overhead for platform independence.

Constraints for Software Development Strategies @Q

Sairf L

Cross-Platform

Multiple operating systems needed at beam lines; future needs unknown.
Remote users of the collaboratory may have many different operating systems.
Other synchrotron labs and even users’ home labs may use our software.
Must support VMS because other SSRL beam lines use it nearly exclusively.

= Use XOS (Cross-Operating System) Library for low-level software and Tcl/Tk for
GUI components when feasible.

Distributed

e Applications must integrate services provided by different computing platforms.

e User interfaces must be kept separate from other components.

= Use TCP/IP socket interfaces between all application components.
High-Performance Server Processes

e Server software must be extremely fast and take advantage of multiple processors.

= Write multithreaded C++ programs with XOS for portability.
Open Source

e Must be able to distribute all software freely without licensing issues.

e Installation distributions, source code and documentation should be nicely packaged.

e Document well enough that other groups can use and extend our solutions on their own.
Low Maintenance Overhead

e Write packages in layers that mix and match.

e Wrap packages in clean APIs that do not require knowledge of underlying code.

e Avoid requiring complex infrastructures. Make it easy for novice programmers.

