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Outlook

• Brief outlook on the next 3-4 forthcoming lectures.

• Today: Hadoop MapReduce, customizing 
partitioner/grouping/sorting, n-grams in MR, 
PageRank in MR.

• Next week: PIG, HIVE, and optimizing  batches of 
MR jobs. This is the end of MapReduce in this 
lecture.

• Then: NoSQL databases, data replication, CAP 
theorem, eventual consistency, …..
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HADOOP (A MAPREDUCE
IMPLEMENTATION)
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Hadoop MapReduce
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• Apache Hadoop. Open Source MR

• Wide acceptance:

– See http://wiki.apache.org/hadoop/PoweredBy

– Amazon.com, Apple, AOL, eBay, IBM, Google, 
LinkedIn, Last.fm, Microsoft, SAP, Twitter, …



Hadoop Distributed File System 
(HDFS): Basics

 Given file is cut in big pieces (blocks) (e.g., 
64MB)

 Which are then assigned to (different) nodes

block

node
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Rack 2

HDFS Architecture

DataNodes DataNodes

NameNode

Client

Client

read

write

metadata 
ops

replication
of block

Rack 1

source: http://hadoop.apache.org

Metadata (Name, replicas, …)
/home/foo/data, 3, …

block ops
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http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

http://hadoop.apache.org/
http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html


UI to Inspect HDFS Properties
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Replication

• Can specify default replication factor (or per 
directory/file); default is 3.

• “Rackaware” placement of replicas

• Replication is pipelined

– if block is full, NameNode is asked for other 
DataNodes (that can hold replica)

– DataNode is contacted, receives data

– Forwards to third replica, etc.

Distributed Data Management, SoSe 2015, S. Michel 8



A Note on Input Splits

• An Input Split is a chunk of the input data, 
processed by a single map.

• For instance a set of lines of the original big file.

• Size of splits usually like size of file system blocks.

• But does not fit in general precisely with the block 
boundaries. Then, need to read “a bit” across 
boundaries. 

• Luckily, for applications we consider, we “do not 
care” and use available input formats.
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MR job execution in Hadoop
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Map Reduce 
Program

client node

client JVM

Job
run

source: T. White, Hadoop, The Definitive Guide, 3rd edition

This job exec. in Hadoop considers the very early implementation/architecture for 
illustrative purposes.  For details on Hadoop “MapReduce 2” using YARN see here:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html


MR job execution in Hadoop (Cont’d)
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Map Reduce 

client node

client JVM

Job
1: run

jobtracker node

JobTracker

2: get new job ID

4: submit job

Shared 
Filesystem

(e.g., HDFS)

3: copy job
resources

6: retrieve input 
splits

… tasktracker node …

5: init job



MR job execution in Hadoop (Cont’d)
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jobtracker node

JobTracker

Shared 
Filesystem

(e.g., HDFS)

tasktracker node

TaskTracker

child JVM

Map or 
Reduce

Child

10: run

9: launch

7: heartbeat (returns task)

6: retrieve input 
splits 8: retrieve job

resources

5: init job



Job Submission, Initialization, 
Assignment, Execution

• asks for new job id

• checks if input/output directories exist

• computes input splits

• writes everything to HDFS

• submits job to JobTracker

• Retrieves splits (chunks) from HDFS

• Creates for each split a Map task

• TaskTracker is responsible for executing a certain 
assigned task (multiple on one physical machine)
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Example: First Browse HDFS
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Starting the WordCount Job

• Have a ddm15.jar with the WordCount class in a 
package called mapred.

• Input file and output folder specified

• This starts the MapReduce job; you will see 
plenty of output info and updates on 
completion (in Percent).
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Inspect the Results
• We see one file per reducer and a file with 

name _SUCCESS

• Let’s have a look at one of the files
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Alternatively, there are
GUIs ….

If you use the hortonworks
virtual machine, you can 
use it right away

There are also simple Uis
for monitoring 
progress/status in Hadoop
and HDFS directly.
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Stragglers and Speculative Execution

• JobTracker continuously controls progress (see 
Web user interface)

• Stragglers are slow nodes
– have to wait for the slowest one (think: only one out of 

1000 is slow and delays overall response time)

• Speculative execution
– run same task on more nodes if the first instance is 

observed to underperform (after some time)

– wasted resources vs. improved performance
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Failure/Recovery in MR

• Task or Tasktracker failure:
– detected by master through periodic heartbeats

– can also be black listed if too many failures occur

– just restart if dead.

– Jobtracker re-schedules failed task (but not again 
on the same Tasktracker)

• Jobtracker failure:
– unlikely to happen (only one machine) but if: all 

running jobs failed

– improved in Hadoop “2” (YARN)
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… and Specifically in HDFS

• NameNode marks DataNodes without recent 
Heartbeats as dead 

• Replication factor of some blocks can fall below 
their specified value

• The NameNode constantly tracks which blocks 
need to be replicated and initiates replication 
whenever necessary.

• If NameNode crashed: Manual restart/recovery.
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Typical Setup
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Locality

• data-local

• rack-local

• off-rack

map tasks 

node

rack

data center

Map task

HDFS block

source: T. White, Hadoop, The Definitive Guide, 3rd edition
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Cost Model + Configuration for Rack 
Awareness

• Simple cost model applied in Hadoop:
– Same node: 0
– Same rack: 2
– Same data center: 4
– Different data center: 6  

• Hadoop needs help: You have to specify config. (topology)
• Sample configuration:

'13.2.3.4' : '/datacenter1/rack0', 
'13.2.3.5' : '/datacenter1/rack0', 
'13.2.3.6' : '/datacenter1/rack0', 
'10.2.3.4' : '/datacenter2/rack0', 
'10.2.3.4' : '/datacenter2/rack0' 
....
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MapReduce in Amazon AWS

• Amazon offers running MapReduce in the Cloud.

• Called Elastic MapReduce (EMR)

• You can put data in the S3 storage

• And start a MR job by uploading your custom 
.jar file
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CUSTOMIZING 
PARTITIONING/SORTING/GROUPING IN 
HADOOP
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Shuffle and Sort: Overview

• Output of map is partitioned by key as 
standard

• Reducer is guaranteed to get entire partition

• Sorted by key (but not by value within each 
group)

• Output of each reducer is sorted also by this 
key

• Selecting which key to use, hence, affects 
partitions and sort order (see few slides later how to 
customize)

Distributed Data Management, SoSe 2015, S. Michel 27



Shuffle and Sort: Illustration
• Buffer of Map output. Full? Partitioned and sorted -> 

disk (local); thus, multiple “spill files” for each partition.

• Are eventually merged (for each partition)
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map task

map

reduce task

merge

merge

other reducers

other maps

Copy phase

merge 
on local disk

buffer in 
memory

input split partitions

fetch



Shuffle and Sort: Illustration (Cont’d)

reduce task

merge

merge

other reducers
other maps

map task

reducemerge

“Sort” phase Reduce phase

mixture of in-memory 
and on-disk data

output

fetch

merge 
on disk
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• Partitions (with same key) are gathered (from Map 
tasks) and merged.



Secondary Sort

• In MapReduce (Hadoop) tuples/records are 
sorted by key before reaching the reducers.

• For a single key, however, tuples are not sorted 
in any specific order (and this can also vary from 
one execution of the job to another).

• How can we impose a specific order?
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Partitioning, Grouping, Sorting
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1900 35°C
1900 34°C
1900 34°C
...
1901 36°C
1901 35°C

• Consider weather data, temperature (temp) 
for each day. Want: maximum temp per year

• So, want data per year sorted by temp:

• Idea: composite key: (year, temp)

max for year 1900

max for year 1901

example source: T. White, Hadoop, The Definitive Guide, 3rd edition



Partitioning, Grouping, Sorting 
(Cont’d)
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• Obviously, doesn’t work: (1900, 35°C) and 
(1900, 34°C) end up at different partitions

• Solution(?): Write a custom partitioner that 
considers year as partition and sort comparator
for sorting by temperature



Need for Custom Grouping

• With that custom partitioner by year and still 
year and temp as key we get 

• Problem: reducer still consumes groups by key 
(within correct partitions)
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1900 35°C
1900 34°C
1900 34°C
...
1901 36°C
1901 35°C

Partition Group



Custom Grouping

• Solution: Define custom grouping method 
(class) that considers year for grouping
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1900 35°C
1900 34°C
1900 34°C
...
1901 36°C
1901 35°C

Partition Group



Custom Sorting
• Finally, we provide a custom sorting that sorts 

the keys by temperature in descending order (= 
large values first)

• What happens then? Hadoop uses year for 
grouping (as said on previous slide), but which 
temp is used as the key (remember, we still have 
composite keys).

• The first one observed is used as key, i.e., the 
largest (max) temperature is used for the temp.
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Note that this example specifically aims at computing the max using secondary sort. 
How would you implement a job such that the output is sorted by (year,temp) ?



Secondary Sort: Summary
• Recipe to get sorting by value

– Use composite key of natural key and natural value

– Sort comparator has to order by the composite key 
(i.e., both natural key and natural value)

– Partitioner and grouping comparator for the 
composite key should use only the natural key for 
partitioning and grouping.
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job.setMapperClass(…);
job.setPartitionerClass(…);
job.setSortComparatorClass(…);
job.setGroupingComparatorClass(…);
job.setReducerClass(…);

Hint (for Hadoop):



MR/Hadoop Literature

• Read on: hadoop.apache.org, there is also a tutorial

• Hadoop Book: Tom White. Hadoop: The
definitive Guide. O’Reilly.

• Hadoop Illuminated: 
http://hadoopilluminated.com/hadoop_book/

• Websites, e.g., 
http://bradhedlund.com/2011/09/10/understanding-
hadoop-clusters-and-the-network/

• http://lintool.github.io/MapReduceAlgorithms/MapReduce
-book-final.pdf
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(MORE) DATA MANAGEMENT WITH 
MAPREDUCE
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n- Grams
• Statistics about variable-length word 

sequences  (contiguous)
(e.g., lord of the rings, at the end of, …)

have many applications in fields including

– Information Retrieval

– Natural Language Processing

– Digital Humanities

• E.g., http://books.google.com/ngrams/

• A n-gram dataset is also available from there

Distributed Data Management, SoSe 2015, S. Michel 39

thou shalt not

don’t ya

n-gram slides based on a talk by Klaus Berberich



Example: Google Books Ngrams
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n-grams Example

• Document: a x b b a y

• Possible n-grams:

– (a), (x), (b), (y)

– (ax), (xb), (bb), …

– (axb), (xbb),  …

– (axbb), (xbba), (bbay)

– (axbba), (xbbay) 

– (axbbay)
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words



Task: Computing n-grams in MR

• Given a set of documents.

• How can we efficiently compute n-grams, 
that

– occur at least τ times 

– and consist of at most σ words

using MapReduce?  
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Klaus Berberich, Srikanta J. Bedathur: Computing n-gram statistics in MapReduce. EDBT 2013:101-112



Naïve Solution: Simple Counting
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map(did, content):
for k in <1 ... σ >:

for all k-grams in content:
emit(k-gram, did)

reduce(n-gram, list<did>):
if length(list<did>) >=  τ:

emit(n-gram, length(list<did>))

Note: if a k-gram appears 
multiple times in the 
document, it is also 
emitted multiple times.



A Priori Based

• (Famous) A priori Principle*: k-gram can occur 
more than τ times only if its constituent (k-1)-
grams occur at least τ times

(a,b,c) qualified only 

if (b,c), (a,b) and (a), (b), (c)

How to implement?  
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*) Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules 
between Sets of Items in Large Databases. SIGMOD Conference 1993: 207-216



A Priori Based (Cont’d)

• Iterative Implementation:

– First 1-grams that occur τ times

– Then 2-grams that occur τ times

– …

• Needs multiple MapReduce rounds (of full data 
scans)

• Already determined k-grams are kept
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Suffix Based

• Emit only suffixes in map phase

• Each of them represents multiple n-grams 
corresponding to its prefixes 

– For instance, axbbay represents 

• a, ax, axb, axbb, axbba, and axbbay
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map(did, content):

for all suffixes in 

content:

emit(suffix, did)



Suffix Based: Partitioning

partition(suffix, did):

return suffix[0] % m
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• Partition the suffixes by first word

– to ensure all n-grams end up property for 

counting, that is:

• all occurrences of ax have to end up at same 

reducer

• suffix property:  ax is only generated from suffixes 

that start with ax..



Suffix Based: Sorting

• Reducer has to generate n-grams based 

on suffixes

– read prefixes 

– count for each observed prefix its frequency

– optimization: sort suffixes in reverse 

lexicographic order

– then: simple counting using stack
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compare(suffix0, suffix1):

return -strcmp(suffix0, suffix1)

aacd
aaca
aabx
aaba
aab
ax
…..



Discussion

• Let’s assess aforementioned algorithms with 
respect to properties like:

– multiple MapReduce jobs vs. single job

– amount of network traffic

– ease of implementation

Distributed Data Management, SoSe 2015, S. Michel 49



Literature

• Jeffrey Dean und Sanjay Ghemawat. MapReduce: Simplified Data Processing 
on Large Clusters“. Google Labs.

• http://craig-henderson.blogspot.de/2009/11/dewitt-and-stonebrakers-
mapreduce-major.html

• Klaus Berberich, Srikanta J. Bedathur: Computing n-gram statistics in 
MapReduce. EDBT 2013: 101-112

• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules 
between Sets of Items in Large Databases. SIGMOD Conference 1993: 207-
216

• S. Brin & L. Page. The anatomy of a large-scale hypertextual web search 
engine. In WWW Conf. 1998.

• Hadoop Book: Tom White. Hadoop: The definitive Guide. 

O’Reilly, 3rd edition. 

• Publicly available “book”: 
http://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf

Distributed Data Management, SoSe 2015, S. Michel 50

http://craig-henderson.blogspot.de/2009/11/dewitt-and-stonebrakers-mapreduce-major.html
http://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf

