
Distributed Data Management
Summer Semester 2015

TU Kaiserslautern

Prof. Dr.-Ing. Sebastian Michel

Databases and Information Systems
Group (AG DBIS)

http://dbis.informatik.uni-kl.de/

Distributed Data Management, SoSe 2015, S. Michel 1

Outlook

• Brief outlook on the next 3-4 forthcoming lectures.

• Today: Hadoop MapReduce, customizing
partitioner/grouping/sorting, n-grams in MR,
PageRank in MR.

• Next week: PIG, HIVE, and optimizing batches of
MR jobs. This is the end of MapReduce in this
lecture.

• Then: NoSQL databases, data replication, CAP
theorem, eventual consistency, …..

Distributed Data Management, SoSe 2015, S. Michel 2

HADOOP (A MAPREDUCE
IMPLEMENTATION)

Distributed Data Management, SoSe 2015, S. Michel 3

Hadoop MapReduce

Distributed Data Management, SoSe 2015, S. Michel 4

• Apache Hadoop. Open Source MR

• Wide acceptance:

– See http://wiki.apache.org/hadoop/PoweredBy

– Amazon.com, Apple, AOL, eBay, IBM, Google,
LinkedIn, Last.fm, Microsoft, SAP, Twitter, …

Hadoop Distributed File System
(HDFS): Basics

 Given file is cut in big pieces (blocks) (e.g.,
64MB)

 Which are then assigned to (different) nodes

block

node
Distributed Data Management, SoSe 2015, S. Michel 5

Rack 2

HDFS Architecture

DataNodes DataNodes

NameNode

Client

Client

read

write

metadata
ops

replication
of block

Rack 1

source: http://hadoop.apache.org

Metadata (Name, replicas, …)
/home/foo/data, 3, …

block ops

Distributed Data Management, SoSe 2015, S. Michel 6

http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

http://hadoop.apache.org/
http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

UI to Inspect HDFS Properties

Distributed Data Management, SoSe 2015, S. Michel 7

Replication

• Can specify default replication factor (or per
directory/file); default is 3.

• “Rackaware” placement of replicas

• Replication is pipelined

– if block is full, NameNode is asked for other
DataNodes (that can hold replica)

– DataNode is contacted, receives data

– Forwards to third replica, etc.

Distributed Data Management, SoSe 2015, S. Michel 8

A Note on Input Splits

• An Input Split is a chunk of the input data,
processed by a single map.

• For instance a set of lines of the original big file.

• Size of splits usually like size of file system blocks.

• But does not fit in general precisely with the block
boundaries. Then, need to read “a bit” across
boundaries.

• Luckily, for applications we consider, we “do not
care” and use available input formats.

Distributed Data Management, SoSe 2015, S. Michel 9

MR job execution in Hadoop

Distributed Data Management, SoSe 2015, S. Michel 10

Map Reduce
Program

client node

client JVM

Job
run

source: T. White, Hadoop, The Definitive Guide, 3rd edition

This job exec. in Hadoop considers the very early implementation/architecture for
illustrative purposes. For details on Hadoop “MapReduce 2” using YARN see here:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

MR job execution in Hadoop (Cont’d)

Distributed Data Management, SoSe 2015, S. Michel 11

Map Reduce

client node

client JVM

Job
1: run

jobtracker node

JobTracker

2: get new job ID

4: submit job

Shared
Filesystem

(e.g., HDFS)

3: copy job
resources

6: retrieve input
splits

… tasktracker node …

5: init job

MR job execution in Hadoop (Cont’d)

Distributed Data Management, SoSe 2015, S. Michel 12

jobtracker node

JobTracker

Shared
Filesystem

(e.g., HDFS)

tasktracker node

TaskTracker

child JVM

Map or
Reduce

Child

10: run

9: launch

7: heartbeat (returns task)

6: retrieve input
splits 8: retrieve job

resources

5: init job

Job Submission, Initialization,
Assignment, Execution

• asks for new job id

• checks if input/output directories exist

• computes input splits

• writes everything to HDFS

• submits job to JobTracker

• Retrieves splits (chunks) from HDFS

• Creates for each split a Map task

• TaskTracker is responsible for executing a certain
assigned task (multiple on one physical machine)

Distributed Data Management, SoSe 2015, S. Michel 13

Example: First Browse HDFS

Distributed Data Management, SoSe 2015, S. Michel 14

Starting the WordCount Job

• Have a ddm15.jar with the WordCount class in a
package called mapred.

• Input file and output folder specified

• This starts the MapReduce job; you will see
plenty of output info and updates on
completion (in Percent).

Distributed Data Management, SoSe 2015, S. Michel 15

Inspect the Results
• We see one file per reducer and a file with

name _SUCCESS

• Let’s have a look at one of the files

Distributed Data Management, SoSe 2015, S. Michel 16

Distributed Data Management, SoSe 2015, S. Michel 17

Alternatively, there are
GUIs ….

If you use the hortonworks
virtual machine, you can
use it right away

There are also simple Uis
for monitoring
progress/status in Hadoop
and HDFS directly.

Distributed Data Management, SoSe 2015, S. Michel 18

Stragglers and Speculative Execution

• JobTracker continuously controls progress (see
Web user interface)

• Stragglers are slow nodes
– have to wait for the slowest one (think: only one out of

1000 is slow and delays overall response time)

• Speculative execution
– run same task on more nodes if the first instance is

observed to underperform (after some time)

– wasted resources vs. improved performance

Distributed Data Management, SoSe 2015, S. Michel 19

Failure/Recovery in MR

• Task or Tasktracker failure:
– detected by master through periodic heartbeats

– can also be black listed if too many failures occur

– just restart if dead.

– Jobtracker re-schedules failed task (but not again
on the same Tasktracker)

• Jobtracker failure:
– unlikely to happen (only one machine) but if: all

running jobs failed

– improved in Hadoop “2” (YARN)

Distributed Data Management, SoSe 2015, S. Michel 20

… and Specifically in HDFS

• NameNode marks DataNodes without recent
Heartbeats as dead

• Replication factor of some blocks can fall below
their specified value

• The NameNode constantly tracks which blocks
need to be replicated and initiates replication
whenever necessary.

• If NameNode crashed: Manual restart/recovery.

Distributed Data Management, SoSe 2015, S. Michel 21

Typical Setup

Distributed Data Management, SoSe 2015, S. Michel 22

Node 1

Disks

Node 2

Disks

Node 3

Disks

Node 4

Disks

Node 5

Disks

Node 6

Disks

Rack 1 Rack 2

Switch

so
u

rc
e:

 T
. W

h
it

e,
 H

a
d

o
o

p
, T

h
e

D
ef

in
it

iv
e

G
u

id
e,

 3
rd

ed
it

io
n

Locality

• data-local

• rack-local

• off-rack

map tasks

node

rack

data center

Map task

HDFS block

source: T. White, Hadoop, The Definitive Guide, 3rd edition
Distributed Data Management, SoSe 2015, S. Michel 23

Cost Model + Configuration for Rack
Awareness

• Simple cost model applied in Hadoop:
– Same node: 0
– Same rack: 2
– Same data center: 4
– Different data center: 6

• Hadoop needs help: You have to specify config. (topology)
• Sample configuration:

'13.2.3.4' : '/datacenter1/rack0',
'13.2.3.5' : '/datacenter1/rack0',
'13.2.3.6' : '/datacenter1/rack0',
'10.2.3.4' : '/datacenter2/rack0',
'10.2.3.4' : '/datacenter2/rack0'
....

Distributed Data Management, SoSe 2015, S. Michel 24

MapReduce in Amazon AWS

• Amazon offers running MapReduce in the Cloud.

• Called Elastic MapReduce (EMR)

• You can put data in the S3 storage

• And start a MR job by uploading your custom
.jar file

Distributed Data Management, SoSe 2015, S. Michel 25

CUSTOMIZING
PARTITIONING/SORTING/GROUPING IN
HADOOP

Distributed Data Management, SoSe 2015, S. Michel 26

Shuffle and Sort: Overview

• Output of map is partitioned by key as
standard

• Reducer is guaranteed to get entire partition

• Sorted by key (but not by value within each
group)

• Output of each reducer is sorted also by this
key

• Selecting which key to use, hence, affects
partitions and sort order (see few slides later how to
customize)

Distributed Data Management, SoSe 2015, S. Michel 27

Shuffle and Sort: Illustration
• Buffer of Map output. Full? Partitioned and sorted ->

disk (local); thus, multiple “spill files” for each partition.

• Are eventually merged (for each partition)

Distributed Data Management, SoSe 2015, S. Michel 28

map task

map

reduce task

merge

merge

other reducers

other maps

Copy phase

merge
on local disk

buffer in
memory

input split partitions

fetch

Shuffle and Sort: Illustration (Cont’d)

reduce task

merge

merge

other reducers
other maps

map task

reducemerge

“Sort” phase Reduce phase

mixture of in-memory
and on-disk data

output

fetch

merge
on disk

Distributed Data Management, SoSe 2015, S. Michel 29

• Partitions (with same key) are gathered (from Map
tasks) and merged.

Secondary Sort

• In MapReduce (Hadoop) tuples/records are
sorted by key before reaching the reducers.

• For a single key, however, tuples are not sorted
in any specific order (and this can also vary from
one execution of the job to another).

• How can we impose a specific order?

Distributed Data Management, SoSe 2015, S. Michel 30

Partitioning, Grouping, Sorting

Distributed Data Management, SoSe 2015, S. Michel 31

1900 35°C
1900 34°C
1900 34°C
...
1901 36°C
1901 35°C

• Consider weather data, temperature (temp)
for each day. Want: maximum temp per year

• So, want data per year sorted by temp:

• Idea: composite key: (year, temp)

max for year 1900

max for year 1901

example source: T. White, Hadoop, The Definitive Guide, 3rd edition

Partitioning, Grouping, Sorting
(Cont’d)

Distributed Data Management, SoSe 2015, S. Michel 32

• Obviously, doesn’t work: (1900, 35°C) and
(1900, 34°C) end up at different partitions

• Solution(?): Write a custom partitioner that
considers year as partition and sort comparator
for sorting by temperature

Need for Custom Grouping

• With that custom partitioner by year and still
year and temp as key we get

• Problem: reducer still consumes groups by key
(within correct partitions)

Distributed Data Management, SoSe 2015, S. Michel 33

1900 35°C
1900 34°C
1900 34°C
...
1901 36°C
1901 35°C

Partition Group

Custom Grouping

• Solution: Define custom grouping method
(class) that considers year for grouping

Distributed Data Management, SoSe 2015, S. Michel 34

1900 35°C
1900 34°C
1900 34°C
...
1901 36°C
1901 35°C

Partition Group

Custom Sorting
• Finally, we provide a custom sorting that sorts

the keys by temperature in descending order (=
large values first)

• What happens then? Hadoop uses year for
grouping (as said on previous slide), but which
temp is used as the key (remember, we still have
composite keys).

• The first one observed is used as key, i.e., the
largest (max) temperature is used for the temp.

Distributed Data Management, SoSe 2015, S. Michel 35

Note that this example specifically aims at computing the max using secondary sort.
How would you implement a job such that the output is sorted by (year,temp) ?

Secondary Sort: Summary
• Recipe to get sorting by value

– Use composite key of natural key and natural value

– Sort comparator has to order by the composite key
(i.e., both natural key and natural value)

– Partitioner and grouping comparator for the
composite key should use only the natural key for
partitioning and grouping.

Distributed Data Management, SoSe 2015, S. Michel 36

job.setMapperClass(…);
job.setPartitionerClass(…);
job.setSortComparatorClass(…);
job.setGroupingComparatorClass(…);
job.setReducerClass(…);

Hint (for Hadoop):

MR/Hadoop Literature

• Read on: hadoop.apache.org, there is also a tutorial

• Hadoop Book: Tom White. Hadoop: The
definitive Guide. O’Reilly.

• Hadoop Illuminated:
http://hadoopilluminated.com/hadoop_book/

• Websites, e.g.,
http://bradhedlund.com/2011/09/10/understanding-
hadoop-clusters-and-the-network/

• http://lintool.github.io/MapReduceAlgorithms/MapReduce
-book-final.pdf

Distributed Data Management, SoSe 2015, S. Michel 37

(MORE) DATA MANAGEMENT WITH
MAPREDUCE

Distributed Data Management, SoSe 2015, S. Michel 38

n- Grams
• Statistics about variable-length word

sequences (contiguous)
(e.g., lord of the rings, at the end of, …)

have many applications in fields including

– Information Retrieval

– Natural Language Processing

– Digital Humanities

• E.g., http://books.google.com/ngrams/

• A n-gram dataset is also available from there

Distributed Data Management, SoSe 2015, S. Michel 39

thou shalt not

don’t ya

n-gram slides based on a talk by Klaus Berberich

Example: Google Books Ngrams

Distributed Data Management, SoSe 2015, S. Michel 40

n-grams Example

• Document: a x b b a y

• Possible n-grams:

– (a), (x), (b), (y)

– (ax), (xb), (bb), …

– (axb), (xbb), …

– (axbb), (xbba), (bbay)

– (axbba), (xbbay)

– (axbbay)

Distributed Data Management, SoSe 2015, S. Michel 41

words

Task: Computing n-grams in MR

• Given a set of documents.

• How can we efficiently compute n-grams,
that

– occur at least τ times

– and consist of at most σ words

using MapReduce?

Distributed Data Management, SoSe 2015, S. Michel 42

Klaus Berberich, Srikanta J. Bedathur: Computing n-gram statistics in MapReduce. EDBT 2013:101-112

Naïve Solution: Simple Counting

Distributed Data Management, SoSe 2015, S. Michel 43

map(did, content):
for k in <1 ... σ >:

for all k-grams in content:
emit(k-gram, did)

reduce(n-gram, list<did>):
if length(list<did>) >= τ:

emit(n-gram, length(list<did>))

Note: if a k-gram appears
multiple times in the
document, it is also
emitted multiple times.

A Priori Based

• (Famous) A priori Principle*: k-gram can occur
more than τ times only if its constituent (k-1)-
grams occur at least τ times

(a,b,c) qualified only

if (b,c), (a,b) and (a), (b), (c)

How to implement?

Distributed Data Management, SoSe 2015, S. Michel 44

*) Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules
between Sets of Items in Large Databases. SIGMOD Conference 1993: 207-216

A Priori Based (Cont’d)

• Iterative Implementation:

– First 1-grams that occur τ times

– Then 2-grams that occur τ times

– …

• Needs multiple MapReduce rounds (of full data
scans)

• Already determined k-grams are kept

Distributed Data Management, SoSe 2015, S. Michel 45

Suffix Based

• Emit only suffixes in map phase

• Each of them represents multiple n-grams
corresponding to its prefixes

– For instance, axbbay represents

• a, ax, axb, axbb, axbba, and axbbay

Distributed Data Management, SoSe 2015, S. Michel 46

map(did, content):

for all suffixes in

content:

emit(suffix, did)

Suffix Based: Partitioning

partition(suffix, did):

return suffix[0] % m

Distributed Data Management, SoSe 2015, S. Michel 47

• Partition the suffixes by first word

– to ensure all n-grams end up property for

counting, that is:

• all occurrences of ax have to end up at same

reducer

• suffix property: ax is only generated from suffixes

that start with ax..

Suffix Based: Sorting

• Reducer has to generate n-grams based

on suffixes

– read prefixes

– count for each observed prefix its frequency

– optimization: sort suffixes in reverse

lexicographic order

– then: simple counting using stack

Distributed Data Management, SoSe 2015, S. Michel 48

compare(suffix0, suffix1):

return -strcmp(suffix0, suffix1)

aacd
aaca
aabx
aaba
aab
ax
…..

Discussion

• Let’s assess aforementioned algorithms with
respect to properties like:

– multiple MapReduce jobs vs. single job

– amount of network traffic

– ease of implementation

Distributed Data Management, SoSe 2015, S. Michel 49

Literature

• Jeffrey Dean und Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters“. Google Labs.

• http://craig-henderson.blogspot.de/2009/11/dewitt-and-stonebrakers-
mapreduce-major.html

• Klaus Berberich, Srikanta J. Bedathur: Computing n-gram statistics in
MapReduce. EDBT 2013: 101-112

• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules
between Sets of Items in Large Databases. SIGMOD Conference 1993: 207-
216

• S. Brin & L. Page. The anatomy of a large-scale hypertextual web search
engine. In WWW Conf. 1998.

• Hadoop Book: Tom White. Hadoop: The definitive Guide.

O’Reilly, 3rd edition.

• Publicly available “book”:
http://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf

Distributed Data Management, SoSe 2015, S. Michel 50

http://craig-henderson.blogspot.de/2009/11/dewitt-and-stonebrakers-mapreduce-major.html
http://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf

