Distributed Pervasive Systems CS677 Guest Lecture

Tian Guo

Lecture 26, page 1

Outline

- Distributed Pervasive Systems
 - Popular Application domains
 - Sensor nodes and networks

- Energy in Distributed Systems (Green Computing)
 - Data Center Energy Consumption
 - Smart Building Case Study

Pervasive Computing

- Computing becomes pervasive or ubiquitous
- Rise of "devices"
- Computing everywhere
 - smart cities, smart homes, smart highways, smart classroom, ...

Rise of Pervasive Computing

- Internet of things
 - ability to network devices and have them communicate
- Sensor networks
 - Large networks of sensors
- Driven by miniaturization of computing
 - Tiny sensors with computing and communication capability

Example Applications

• Smart home

Computer Science

Personal Health Monitoring

• Sensors to monitor fitness, diabetes, blood pressure, detect falls

Google tests prototype of diabetestracking 'smart' contact lens

Typical Smart Apps

- Personal device to mobile phone to the cloud
 - Upload data to cloud via a mobile device (or directly)
 - Low-power communication to phone
 - Cloud provides analytics and provides feedback to phone
- Environmental sensors to internet to the cloud
 - Internet-enabled sensors
 - direct upload to servers / cloud
 - Cloud provides analytics and provides dashboard

Sensor Platform

- Smart devices are a sensor node
- Resource-constrained distributed system
- Typical Sensor platform
 - Low-power radios for communication
 - 10-200kbit/sec
 - Small CPUs
 - E.g. 8bit, 4k RAM.
 - Flash storage
 - Sensors
 - Battery driven or self-powered

Low Power Radios

- ISM band 430, 900, or 2400 MHz
- Varying modulation and protocol:
 - Custom (FSK?) Mica2, 20 kbit/s
 - Bluetooth \sim 1 Mbit/sec
 - Zigbee (802.15.4) ~200kbit/sec
 - Z-wave ~ 40kbit/sec
- Short range
 - Typically <100 meters</p>
- Low power. E.g. Chipcon CC2420:
 - 9-17 mA transmit (depending on output level)
 - 19 mA receive
- Listening can take more energy than transmitting

Small CPUs

- Example: Atmel AVR
 - 8 bit
 - 4 KB RAM
 - 128 KB code flash
 - ~2 MIPS @ 8MHz
 - ~8 mA
- Example: TI MSP430
 - 16 bit (sort of)
 - 10 KB RAM
 - 48 KB code flash
 - 2 mA

Higher-powered processors: ARM7 (Yale XYZ platform) 32 bit, 50 MHz, >>1MB RAM ARM9 (StarGate, others) 32 bit, 400 MHz, >>16MB RAM

Flash Storage

Removable NANI flash media

- Raw flash
- Small (serial NOR), very low power (NAND)
- Page-at-a-time write
- No overwrite without erasing
- Divided into pages and erase blocks
- Typical values: 512B pages,
 32 pages in erase block

Disk-like interface 512B re-writable blocks Very convenient Higher power consumption

• Garbage collection needed to gather free pages for erasing

Battery Power

- Example: Mica2 "mote"
- Total battery capacity: 2500mAH (2 AA cells)
- System consumption: 25 mA (CPU and radio on)
- Lifetime: 100 hours (4 days)
- •
- Alternatives:
 - Bigger batteries
 - Duty cycling
 - Solar/wind/… ("energy harvesting")

Self-harvesting Sensors

Harvest energy from environment to power themselves
 – tiny solar panels, use vibration, airflow, or wireless energy

Sensors

- Temperature
- Humidity
- Magnetometer
- Vibration
- Acoustic
- Light
- Motion (e.g. passive IR)
- Imaging (cameras)
- Ultrasonic ranging
- GPS
- Lots of others...

Typical Design Issues

- Single node
 - Battery power or how to harvest energy to maximize lifetime
- Inside a network of sensors
 - Data aggregation
 - Duty cycling
 - Localization, Synchronization
 - Routing
- Once data is brought out of the network (server-side processing)
 - "Big data" analytics
 - Derive insights
 - Make recommendations, send alerts
 - Provide active control

Green Computing

- Greening of computing
 - Sustainable IT
 - How to design energy-efficient hardware, software and systems?
- Computing for Greening
 - Use of IT to make physical infrastructure efficient?
 - Homes, offices, buildings, transportation

Some History

- Energy-efficient mobile devices a long standing problem
 Motivation: better battery life, not green
- Recent growth of data centers
 - More energy-efficient server design
 - Motivation: lower electricity bills
 - Green systems, lower carbon footprint
- Apply "Greening" to other systems
 - IT for Greening

Computing and Power Consumption

- Energy to Compute
 - 20% power usage in office buildings
 - 50%-80% at a large college
 - 3% of our carbon footprint and growing
- Data centers are a large fraction of the IT carbon footprint
 - PCs, mobile devices also a significant part

What is a data center?

- Facility for housing a large number of servers and data storage
- Google data center (Dalles, OR)
 - 12 football fields in size
 - Compare to box stores!
 - 100 MW of power
 - Enough for a small city
 - $\sim 100 K$ servers

Each data center is 11.5 times the size of a football field

Energy Bill of a Google Data center

- Assume 100,000 servers
- Monthly cost of 1 server
 - 500W server
 - Cost=(Watts X Hours / 1000) * cost per KWH
 - Always-on server monthly cost = \$50
- Monthly bill for 100K servers = \$5M
- What about cost of cooling?
 - Use PUE (power usage efficiency)
 - PUE =2 => cost doubles
 - Google PUE of 1.2 => 20% extra on 5M (~ \$6M)

How to design green data centers?

- A green data center will
 - Reduce the cost of running servers
 - Cut cooling costs
 - Employ green best practices for infrastructure

Reducing server energy cost

- Buy / design energy-efficient servers
 - Better hardware, better power supplies
 - DC is more energy-efficient than AC
- Manage your servers better!
 - Intelligent power management
 - Turn off servers when not in use
 - Virtualization => can move apps around

Reducing cooling costs

- Better air conditioning
 - Thermal engineering / better airflow
 - Move work to cooler regions
- Newer cooling
 - Naturally cooled data centers
 - Underground bunkers

Invest in Iceland Agency

Computer Science

Lecture 26, page 23

Desktop Power management

- Large companies => 50K desktops or more
 - Always on: no one switches them off at night
 - Night IT tasks: backups, patches etc
- Better desktop power management
 - Automatic sleep policies
 - Automatic / easy wakeups [see Usenix 2010]

IT for Greening

- Case Study: Smart Buildings
- Buildings as an example of a distributed system
 - Distributed pervasive system
 - Sensors monitor energy, occupancy, temperature etc
 - Analyze data
 - Exercise control
 - Switch of lights or turn down heat in unoccupied zones
 - Use renewables to reduce carbon footprint
- How can we use IT to make building green?
 - Use sensors, smart software, smart appliances, smart meters

Approach

Potential Solution

- Monitor and profile usage
 - Power supply/demand profile
- Increase Efficiency
 - Turn on/off systems automatically
 - Consolidate computers
 - Tune various subsystems
- Use Alternative Energy Sources
 - Tune systems to variable energy supplies

Outlet level Building Monitoring

- Designed sensors for power outlet monitoring
 Based on the Kill-A-Watt design
- Modified sensor with low-power wireless radio
 - Transmits data to strategically placed receivers
 - Use plug computers for receivers

Fine-grained Building Monitoring

- Advantages
 - Accurate, fine-grain data
 - Cheap money-wise to build
 - Able to put them everywhere
- Disadvantage
 - Expensive time-wise to build

Lecture 26, page 29

Meter level Monitoring

• Install on main panel

Lecture 26, page 30

Analyzing the data

- Energy monitors / sensors provide real-time usage data
 - Smart meters:
 - Building monitoring systems (BMS) data from office / commercial buildings
- Modeling, Analytics and Prediction
 - Use statistical techniques, machine learning and modeling to gain deep insights
 - Which homes have inefficient furnaces, heaters, dryers? Are you wasting energy in your home?
 - Is an office building's air condition schedule aligned with occupancy patterns?
 - When will the aggregate load or transmission load peak?

Deployments in Western MA

Use Renewables

- Rooftop Solar, Solar Thermal (to heat water)
- Design predictive analytics to model and forecast energy generation from renewables
 - Use machine learning and NWS weather forecasts to predict solar and wind generation
- Benefits: Better forecasts of near-term generation; "Sunny load" scheduling

People: Feedback and Incentives

- How to exploit big data to motivate consumers to be more energy efficient?
 - What incentives work across different demographics?
 - Deployments + user studies
- Big data methods can reveal insights into usage patterns, waste, efficiency opportunities
 - Smart phone as an engagement tool to deliver big data insights to endusers
 - Provide highly personalized recommendations, solicit user inputs, motivate users

Summary

- Pervasive computing
 - Application example
 - Sensor node and platform design
- Greening of computing
 - Design of energy-efficient hardware & software
- Computing for greening
 - Use of IT for monitoring
 - Use of intelligent software for power management
 - Forecasting for renewable energy harvesting

