
Distributed Shortest Paths Algorithms
(Extended Abstract)

Baruch Awerbuch *
Dept. of Mathematics and Lab. for Computer Science,

M.I.T.,
Cambridge, MA 02139

ARPANET: baruch@theory.lcs.mit .edu

Abstract

This paper is concerned with distributed algorithm for find-
ing shortest paths in an asynchronous communication net-
work. For the problem of Breadth First Search, the best
previously known algorithms required either O(V) time, or
O(E + V .D) communication. We present new algorithm,
which requires O(#+‘) time, and O(E1+C) messages, for
any c > 0. (Here, V is number of nodes, E is number of
edges and D is the diameter.) This constitutes a major
step towards achieving the lower bounds, which are 0(E)
communication and Q(D) time.

For the general (weighted) shortest paths problem, pre-
viously known shortest-paths <algorithms required O(k. V”)
messages and O(V . log, V) time. Our algorithm requires
O(E’+” . log W) messages and O(V’+’ . log W) time.

Our results enable to improve significantly solutions for
other basic network problems (e.g. leader election).

I Introduction

1.1 Model and complexity measures

This paper is concerned with distributed algorithms
in an asynchronous communication network. Those
algorithms may be repeated many times in case that
the network’s topology changes. From the point of
view of network’s performance, it is desirable that the
messages of the control algorithms don’t occupy much
of the network bandwidth, and that such algorithms is

*Supported by Air Force Contract TNDGAFOSR86-0078,
AR0 contract DAAL03-86-K-0171, NSF contract CCR8611442,
and a special grant from IBM.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is be permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.

@ 1989 ACM O-89791-307-8/t19/0005/0490 $1 SO

performed relatively fast. Thus, we will be interested
in minimizing the message exchange, as well as time
of control algorithms. We deal exclusively with worst-
case performance of the algorithm.

Given execution of a protocol in an asynchronous
network, the longest message delay in that execution is
the maximum difference between arrival and transmis-
sion times of a message, in terms of some global clock
(which is not accessible to nodes). Following [Gal82],
normalized time between two events in an execution
is the ratio between the physical time between those
two events in terms of the global clock above, and the
longest message delay in that execution, i.e. physical
time in case that link delays vary between 0 and 1. In
context of asynchronous network, “time” always means
“normalized time”.

The Communication Complexity of ?F, denoted by
c., is the upper bound on the number of messages
sent in any execution of 7~. The Time Complexity off,
denoted by t,, is the upper bound on on normalized
time of any execution of 7r.

1.2 The problems

We consider the problem of finding shortest paths in
the communication graph G(V, E) of the network. In
the “undirected” version of the problem, we are inter-
ested in finding shortest paths in an undirected graph
G, = (V, E, UJ) from all nodes to an a distinguished
nodes s E V, where w is an assignment of non-negative
weights we to edges e E E.

The BFS problem is the special case of shortest
paths, where w(e) = 1, for all e E E. The “di-
rected” version of the problem is defined similarly, ex-
cept that we look for shortest paths in a directed graph
@ = (v, E) which is an orientation of G(V, E), i.e.
(i + j) E i? implies that (i - j) E E.

Those problems appear to be fairly basic in the field
of distributed network protocols. The major applica-
tion for shortest paths tree is that shortest paths tree
w.r.t. a given source node can be used for routing

490

of data from other nodes to the source node, in the
cheapest possible way.

Improving efficiency of distributed Shortest Paths
(BFS) yields improvement in more complex distributed
algorithms, in which Shortest Paths (BFS) appears
to be the bottleneck. Examples of such problems are
given in section 2.

Observe that a shortest paths problem on network
G = (V, E, w) can be reduced to a BFS problem on
an “expanded” network & = (v’, ,6?) where an edge
e is substituted by a path containing w, edges and
We - 1 “dummy nodes”. The difficulty with this re-
duction is that the numbe_r of nodes in the expanded
network is huge, namely IV1 = O(W . V), where W is
the maximal edge weight. Using Gabow’s scaling tech-
nique, one can effectively guarantee W 5 lV[. How-
ever, with Gabow’s technique or without it, in either
case [VI >> IV1 and 121 >>]E]. Thus, existence of a
black bot performing BFS with linear complexity, O(k)
messages, only guarantees O(E . V) messages shortest
paths algorithm, which is far from satisfactory.

2 Contributions of this paper

We present new distributed algorithms for the above
problems with sharply improved bounds on communi-
cation and time.

Our algorithm is based on novel synchronization
technique, which proceeds recursively. Even though
the algorithm is just a composition of very simple mod-
ular blocks, its analysis is non-trivial. To overcome
the difficulties, we introduce novel counting methods,
based on notions of amortized complexities.

2.1 Improvements for BFS

The obvious lower bounds on communication and time
complexities of distributed BFS algorithms are Cl(E)
messages and 0(D) time, where E is the number of
network edges, and D is the diameter, In the syn-
chronozls network, the obvious algorithm meets those
lower bounds. However, the situation is much more
complex in the asynchronous network, where the best
known algorithms exhibit trade-o$in terms of commu-
nication and time complexities.

The best known algorithm in terms of communica-
tion is due to [AG85]. It requires @(El+‘) messages
and @(V1+‘) time, for all E > 0. [AG85] is “relatively
close” to the lower bound in communication. However,
as advocated by Peleg [Pe187], this algorithm is quite
inefficient in time, in case that D < V. Peleg [Pe187]
points out that the difference between O(V) and O(D)
time can be very significant in many existing networks,

Author Communication Time

[Awe853 E+V.k.D D . log, V
[AG85] E=+’ V1+c

This paper El+’ D’fC

Figure 1: Our BFS algorithms versus existing ones.

Author Communication 1 Time

[Awe851 k . V2 v -log, v

[Fre85] Vii vii

This paper El+’ . log W V’+’ . log W

Figure 2: Our Shortest Paths algorithms versus existing ones.

e.g. the ARPANET [MRR80], where D < V. The
high (R(V)) time overhead is inherent for that method.

The best known algorithm in terms of time is
achieved by applying synchronizer y of [Awe851 to the
obvious synchronous algorithm. This algorithm (sym-
bolically attributed to [Awe85]) requires O(E+V.D.k)
messages and O(logk V . D) time, for any h. It meets
the lower bound in time but is quite inefficient in com-
munication.

The new BFS algorithm requires O(E’+‘) messages
and O(Dl+‘) time, for all E > 0, thus making a step
towards achieving the lower bounds. The following
Figure 1 summarizes results of this paper, comparing
them to existing results.

2.2 Improvements for Shortest Paths

There have been a number of works on shortest paths
in the past [Ga182], [Jaf80]. The best previously known
shortest-paths algorithms is obtained using the SYN-
CHRONIZER of to [Awe85]. It requires O(E . V”) mes-
sages and O(V. log, V) t ime. (This does not count the
preprocessing phase of [Awe85].) For planar graphs
only, the algorithm of Frederickson achieves O(V1i)
message and time.

Using the scaling techniques of Gabow [Gab851 and
the BFS algorithm in this paper, we obtain a new
shortest paths algorithm, which requires O(E1+C .
log W) messages and 0(V’+’ . log W) time.

The following Figure 2 summarizes our improve-
ments over existing algorithms.

2.3 Applications for other problems

Leader Election, Spanning Tree, Global E’unc-
tions: One of the most well-studied problems in the
field of distributed network algorithms is the problem

491

Author C0mln1~cation~)

~;qFJ

Figure 3: Our Leader Election algorithms versus existing ones.

of finding a leader in a network. It is equivalent to
the problem of finding a spanning tree. Leader elec-
tion is an important tool for breaking symmetry in a
distributed system. Construction of a spanning tree
or finding a leader appears as a building block essen-
tially in every complex network protocol, and is closely
related to many problems in distributed computing.
There are many problems which are provably equiv-
alent [Awe87] to the problem of electing a leader, in
terms of the communication and time complexities.
One example of such problems is a class of so-called
“global sensitive” functions [Awe87], e.g. MAXIMUM,
SUM, PARITY, MAJORITY, COUNTING, OR, AND.

The best known leader election algorithms have been
given in [Awe87], [Pel87]. F’eleg [Pe187] advocates for
leader election algorithms w’hose running time depends
only on the diameter of the :network. While Peleg’s
algorithms achieves optimal O(D) time, its communi-
cation complexity is O(E . 0).

Using the new BFS algorithm in this paper, we
can improve significantly time performance of existing
leader election algorithms. We achieve almost linear
(in diameter) time and almost linear communication.
Our improvements are shown in following Figure 3.

Compact Routing Tables: For the purpose of con-
structing compact routing tables, the best current al-
gorithm due to Peleg and Upfal [PUSS] uses network
partition algorithms, which are modifications of the
synchronizer-iniiializalion algorithm of [Awe85]. BFS
is the bottleneck in this algorithm.

2.4 Organization of this paper

In this extended abstract, we only deal with BFS algo-
rithms. We leave the extensions to the Shortest Paths,
Leader Election, etc., for the full paper. Although our
BFS algorithms is in fact very simple, it has a recur-
sive structure, which makes it hard to conceive it as a
whole.

In the following Section 3 we describe the basic tools
used. In Section 4 we outline main ideas behind our
improvement, and provide more details in Sections 5,
6, 7, 8, 9. In Section 10 we analyze complexity of the
algorithm.

3 Basics

3.1 DIJKSTRA algorithm

Let us first outline a simple BFS algorithm, which will
be (symbolically) referred to as the DIJKSTRA Algo-
rithm, because of its similarity with Dijkstra’s shortest
path algorithm and Dijkstra-Sholten distributed termi-
nation detection procedure [DS80].

The algorithm maintains a tree rooted at the source
node. Initially, the tree is empty. Upon termination of
the algorithm, the tree is the desired BFS tree. Thru-
out the algorithm, the tree can only grow, and at any
time it is a sub-tree of the final BFS tree. The algo-
rithm operates in successive iterations, each processing
another BFS layer. At the beginning of a given iter-
ation 1, the tree has been constructed for all nodes in
layers m < 1. Upon the termination of iteration 1, the
tree will be extended by one layer, covering also all
nodes in layer I.

The purpose of the source node is to control these
iterations by means of a synchronization process, per-
formed over the tree. This enables the source node to
detect the time that the tree has been completed up
to distance 1 and thus iteration I+ 1 can be started.

The source node triggers each iteration by broad-
casting message over the tree which is forwarded out
to nodes at layer 1 - 1 in the tree. Upon receipt of
this message, the latter nodes send “exploration” mes-
sages to all neighbors, carrying label I- 1, and trying
to discover nodes at layer 1.

When a node receives exploration message from a
neighbor, it acts as follows. If this is the first explo-
ration message that the node has seen, it chooses the
sender of the message as its parent, sets its distance
label to be 1 plus distance label of the sender, and
sends back a “positive” acknowledgment (ack) to the
sender, indicating that the sender was chosen as a par-
ent. Upon receipt of subsequent exploration messages,
the node sends back to sender “negative” ack, indi-
cating that it already has parent. Upon receiving a
positive ack, a node adds the sender to its list of chil-
dren.

When a node at layer 1 - 1 receives acks to all ex-
ploration messages it has sent, it sends an ack to its
parent in the BFS forest, indicating whether any new
descendants have been discovered. When an internal
node gets such acks from all children, it sends an ack
to its parent. Eventually, all the acks are collected by
the source node. This implies that layer 1 has been
processed completely. If any nodes have been discov-
ered at that layer, the next iteration I + 1 is started.
Otherwise, the algorithm terminates.

The complexities of this algorithm are O(V - D + E)

492

Strip,Sources
Sources

Leade

Figure 4: Strip Method.

Figure 5: Data structures associated with a cluster.

messages and O(P) time, where d is the number of
layer being processed, Indeed, there are D iterations
and in each of them synchronization is performed over
BFS tree which requires O(V) messages and O(D)
time. In addition, one exploration message is sent over
each edge once in each direction.

The overhead due to synchronization makes this al-
gorithm quite inefficient in sparse and long networks,
where E << V . D. If one considers a network with all
nodes on a single path of length V- 1, one sees that the
communication and time complexity are each O(V’).
Obviously, the performance of the algorithm degrades
as the number D of layers to be processed increases.

3.2 Distance reduction paradigm

It is easy to reduce the problem where big number of
layers needs to be processed to problem where small
number of layers needs to be processed. If the net-
work has diameter D, we can conceptually “cut” the
network into $ “strips” of length d, and process those
strips sequentially, like in the following Figure 4.

Our strategy now is to cut the network into strips of
size d < D, and process those strips one after another,
thus extending the BFS tree. We know also which
edges lead to nodes in previous strip, so that messages
are not sent along those edges.

For the purpose of processing the strip, we need to
create BFS forest rooted at the all nodes on the bor-
der of the strip. Thus, we have multiple source nodes,
rather than single source node.

The most naive reduction from the case of multiple
sources to the case of single source is to find separately
shortest paths w.r.t. each one of sources, and then
“combine” those shortest paths in an obvious manner.
However, this strategy is of order of magnitude of the
number of nodes in the cluster. Unfortunately, this
method may introduce a blow-up factor to the com-
munication complexity, which grows with the number

of layers in the strip and the number of sources in the
strip. Using this technique, with strips of size d = I/%,
we can achieve O(D1.5) time and O(E . fi) commu-
nication. This strategy, with some additional improve-
ments, has been used in [AG87], and in [Fre85].

We are looking for more efficient reduction strategy.
In sequential setting, one can easily reduce the prob-
lem with multiple sources to the problem with a single
source, by connecting each one of the sources to some
auxiliary (“root”) source node via edges of weight 0,
or simply contract all the sources into a single source.
In a distributed setting, this method does not work.

3.3 Source contraction paradigm

However, whenever we encounter the a multiple-
sources problem, we will always have available some
“cover tree”, spanning all those nodes. For example,
there is a legitimate cover tree spanning a11 the source
nodes of a strip, namely the (whole) BFS tree span-
ning all the previous strips. The cover tree can be
used to synchronize between source nodes, thus effec-
tively “contracting” them into a single (super-)node, or
cluster. With each cluster, we associate the following
distributed data structures:

l Source nodes of the cluster.

l Cover tree which spans all the source nodes.

l BFS forest which spans all the sources.

We can use those data structures in order to run DI-
JKSTRA algorithm for the case of multiple sources as
if it were run in the case of single source. The basic
idea is that the algorithm proceeds in iterations, con-
trolled by the “root”. The synchronization over cover
tree enables the root to detect that all the sources have
completed their trees up to a certain BFS layer. The

493

root node notifies all the sourc.es about the beginning
of the iteration by broadcasting message over the cover
tree. .Upon receiving this messages, each source node
node runs one iteration of DIJKSTRA algorithm, as de-
scribed above. When a source node collects all its acks
to messages over BFS tree rooted at itself, its task is
complete. The source node will send ack towards the
root of the cover tree after it has completed its task,
and after it receives acks from all its children. Nodes
propagate acks in this manner, until the root node has
received acks to all the messages that it has sent. Now,
new iteration can start.

Clearly, the communication overhead of synchro-
nization will grow with the sire of the cover tree, while
time overhead of synchronization will grow with the
depth of the cover tree, i.e. the length of a longest
path from a node to the root. We conclude that in
order for the resulting algorithm is efficient, the size of
cover tree should not be much bigger than the the strip
being processed, both in terms of the size and depth.

Observe that, initially, we have a cover tree for the
strip, which is the whole BFS tree. It has depth of
e(D) and size of O(V), i.e. is way too big and too
long. The natural strategy is to reduce hard problems
to easy problems. In order to do this, we have to reduce
the original problem with “biig” cover tree and “big”
processing length, to “not too many” new problems
with “big” cover tree and “big” processing length.

As noticed in [AG85], we can treat separately dif-
ferent connected components in the strip, since trees
grown in different components do not interfere with
each other. Thus, the algorityhm of [AG85] was trying
to construct a spanning tree cd each connected compo-
nent of the strip. The difficulty here is that the set of
nodes belonging to the strip is not known in advance;
we know where the strip “sta:rts”, but we do not know
where it “ends”. If one knows in advance where the
strip “ends”, ‘the problem solved in [AG85] is trivial-
ized.

An algorithm proposed in [AG85] enables to con-
struct recursively spanning trees of each strip. This
strategy guarantees that cover tree have small num-
ber of nodes, but, unfortunately, tend to have very big
depth. The reason for this is that a connected com-
ponent of a strip of depth cl does not necessarily have
a spanning tree of depth d. In fact, it might be the
case that the whole strip is connected, and that any
tree that will span all the source nodes of the strip will
have Q(V) depth, causing Q(V) time overhead. Since
this method inherently requiires Q(V) time overhead,
it is inadequate for us. It is worth pointing out that
[AG85] focused only on communication.

The main contribution of this paper is the reduction
of the problem with big cover tree to “moderate” num-

ber of problems with cover trees of “moderate” depth
and size.

3.4 Strip Cover

Definition 3.1 Given a strip with d BFS layers, a strip
cover is a forest of node-disjoint trees, which span all the
source nodes in the strip. A collection of clusters induced
by the cover is a set of subsets of source nodes, each
subset consisting of the set of all source nodes spanned
by the same tree of the cover.

Definition 3.2 For an arbitrary strip cover (forest) de-
fine the following parameters:

load f&or: is the maximal number of clusters which are
within distance d from some node in the strip.

depth factor. is the maximal depth of a tree in the cover,
divided by d.

size: is the number of trees in the cover.

Our task would have been significantly simplified,
if, prior to processing this strip, some “oracle” would
give us a “good” strip cover, for which both load factor
and depth factor being “small”. We can then process
the strip “efficiently” by contracting all the sources
spanned by the same tree into a single cluster, and
then performing BFS independently from each cluster.
The intuition here is that load factor is the reason for
communication blow-up, as it upper-bounds the num-
ber of different clusters competing for the same node.
Also, depth factor is the reason for time blow-up, as it
upper-bounds the size of the trees on which synchro-
nization is performed.

By “refining” the cover, i.e. increasing its size, we
reduce depth factor on expense of increasing load fac-
tor. For example, the “coarsest” cover (all sources in
the same tree) may feature depth = V and load = 0.
On the other extreme, the ‘(finest” cover (all sources in
different trees) may feature depth = 0 and load = V.
It is easy to see that we can achieve the following com-
promise.

Fact 3.3 There always exists a cover with both load fuc-

tor and depth factor being at most V*.

It is not obvious how Fact 3.3 will benefit us, since
constructing such “good” cover appears to be as hard
as performing the BFS itself. This difficulty is resolved
by running, in parallel, approximations for BFS and for
“good” cover, as shown in the following sub-section.

494

4 Outline of our algorithm

Our main contribution is a novel algorithm, referred
to as STRIP-BFS, which processes a strip with d lay-
ers. We “pretend” to perform BFS independently from
each source node. Since d << D, then (recursively) we
assume existence of efficient BFS algorithm that pro-
cesses distance d w.r.t. single node. However, to save
communication, we require that after a given node 2,
enters into X BFS trees, where X is a parameter. Af-
ter that, it will not enter any additional trees, caus-
ing those trees to become blocked. This algorithm is
called MULTI-BFS with parameter X. Observe that
naive strategy of performing BFS’s independently from
each source node corresponds to MULTI-BFS with the
choice of X = 00. The approach used in [AG85] corre-
sponds to MULTI-BFS with X = 1.

Clearly, trees that are blocked will not extend to the
required length. As a result, some nodes will appear in
“wrong” trees, and we will not be able to reconstruct
a real shortest-path forest from the collection of indi-
vidual BFS trees (as in case X = oo). However, the
information obtained will help us to construct short
paths between source nodes, that can be used later for
synchronization between those nodes. Namely, to cor-
rect the situation, we “contract” blocked source nodes
into clusters of nodes, each cluster having a relatively
short cover tree. This tree is obtained by “stitching”
together BFS trees of the involved source nodes.

Our algorithm proceeds to find true BFS forest of a
strip in a number of iterations. The major data struc-
tures maintained by the the algorithm is the cover of
the strip, a collection of clusters, induced by that cover.
Initially, each cluster is a (singleton) source, and all
cover trees are degenerate trees each containing single
source.

Each iteration consists of two phases, “BFS” phase,
and “Merge” phase. In the “BFS” phase, all clus-
ters run MULTI-BFS algorithm. Upon termination of
“BFS” phase, we examine the resulting collection of
BFS trees, and record in memory all unblocked trees.
In the “Merge” phase, all clusters whose BFS trees got
blocked, get merged into bigger clusters. If none are
left, the main loop of the algorithm terminates. This
must happen eventually since once clusters will become
big enough, there will not be enough clusters to cause
blocking. At this time, we invoke the EXTRACT pro-
cedure, that extracts the BFS forest of the strip from
the collections of all BFS forests, that were recorded
as unblocked during some iteration.

In order to maintain small communication complex-
ity, we need to guarantee that number of trees passing
thru a node is small, which suggests that X should be
as small as possible. Also, in order to maintain small

time and communication complexity, the number of
iterations should be small, suggesting that “Merge”
phase tries to merge as many clusters as possible. Un-
fortunately, this policy causes the cover trees of the
resulting cover to become very big, much bigger than
d, namely O(V). Th is immediately leads time com-
plexity to skyrocket up to a(V), as in [AG85]. (The
number of iterations in [AG85] is only log, V.)

We present an algorithm, referred to as MERGE algo-
rithm, whose main idea is to try to combine together
as many clusters as possible, subject to the restric-
tion that only the clusters which are close to each
other, namely within distance O(d), can be combined
together.

The crucial parameters for performance of the algo-
rithm are depth factor and the size of the cover. The
effect of one application of MERGE algorithm on the
cover is that

l site is reduced by at least factor of X.

l depth is increased by at at most factor of 5.

This guarantees that the number of iterations is at
most z, and that all cover trees have small depth,
namely of depth O(d .5”), where z = logx V.

The algorithm uses a variation of the deterministic
symmetry breaking technique of [AGLP88]. This is in
turn a variation of the Luby’s maximal independent
set algorithm [Lub86] and Luby’s technique for remov-
ing randomness from distributed computing [Lub88].
This enables to break the symmetry in the network in
O(dlogV) expected time, where d is the depth of a
spanning tree.

Overall, we accomplish a reduction from the problem
of processing strips of size D to the problem of process-
ing strips of size d < D. We can continue recursively,
to reduce the size of the strip to be processed, until we
end up with a strip containing a single layer, at which
point it does not matter which algorithm is used.

The schematic description of all the subroutines is
given in the following Figure 6. The “main” BFS al-
gorithm is referred to as MAIN-BFS. It calls, as a sub-
routine, STRIP-BFS which processes strips of smaller
size, by calling MULTI-BFS, MERGE, and EXTRACT.
Finally, MULTI-BFS calls MAIN-BFS. This illustrates
the fact that our algorithm is recursive.

In the following sections 5, 6, 7, 8, 9 we describe
MAIN-BFS, STRIP-BFS, MULTI-BFS, MERGE, and
EXTRACT algorithms, respectively.

5 MAIN-BFS algorithm

Definition 5.1 (Input/Output) Input of MAIN-
BFS consists of

495

--
Strip-BFS

3

Figure 6: General Structure.

Main-Source: the single source node.

Main-depth: the number of layers to be processed by

the MAIN-BFS algorithm.

Strip-depth: is the number of layers in a strip

Output of MAIN-BFS consists of the tree Main-BFS,
grown out of Main-Source.

The algorithm itself is a straightforward implemen-
tation of the “Distance reduction paradigm” of Section
3.2. It partitions the network into strips of smaller size
and processes strips one by one, employing a procedure
STRIP-BFS which extends E!FS forest for a another
strip of a length Strip-depth.

Thruout the algorithm, Sources denotes the sources
of the current strip (which are the “frontier” of the
existing BFS tree) and #Strip denotes the number of
current strip. Once BFS tree cannot expand any more,
i.e. is stuck in a “dead end” (in which case Sources =
S), or all the strips have been processed, (in which case

#Strip = 3-)> the algorithm terminates.

The declarations ind the code of the algorithm are
presented in Figures 7, and 8, respectively.

6 STRIP-BFS algorithm

Definition 6.1 (Input/Output) Input of STRIP-
BFS consists of

Sources: the set of source nodes of the strip

Main-BFS: the existing BFS bee.

Variables
Main-Source: the sources of the strip. (Input variable.)

Main-BFS: the BFS w.r.t. the source node of the process.
(Output variable.)

Main-depth: number of layers to be processed. (Input vari-
able.)

Strip-depth: number of layers in a strip. (Input variable.)

@trip: the number of the strip being processed.

Sources: sources of a strip.

Strip-BFS: the BFS forest w.r.t. sources of a strip.

Procedures

STRIP-BFS: constructs BFS forest of a strip w.r.t.
Sources.

Figure 7: Declarations of the MAWEFS algorithm.

#Strip +- 1
SourcestMain-Source
Hain-BFS+@
repeat

Strip-BFS + STRIP-BFS
add Strip-BFS to Main-BFS
@trip + @trip+ 1

Figure 8: Algorithm MAIN-BFS.

Output of MAIN-BFS consists of BFS, which is the BFS
forest of strip, grown out of Sources.

The algorithm proceeds in phases, so that at a given
time all the nodes execute the same phase. The tree
Main-BFS is used in order to detect termination of the
previous phase and to trigger the next one.

Thruout the algorithm, V denotes the current set
of clusters. After application of MULTI-BFS, the set
U contains all clusters s E V whose BFS forest is not
blocked, and the complementary set B = V\U contains
the blocked clusters. Next, unblocked clusters s E U
join the set A of all clusters that were unblocked in
the past, and thus (implicitly) forests Hbf ss join the
collection MBFTSa of all unblocked BFS forests.

If no unblocked clusters remain, i.e. B = 0, then
the following application of MERGE returns I/’ =

COVIRV = SOURCESv = 0 and the algorithm
terminates. Otherwise, MERGE merges all remain-

496

Procedures

MULTI-BFS: Executes procedure MAIN BFS “in parallel”
at each cluster, allowing node to enter at most X
forests.

MERGE: Merges together all blocked clusters.

EXTRACT: Extracts the “best” BFS forest from collection
of trees.

Variables

Sources: the sources of the strip. (Input variable).

BFS: The final BFS forest of the strip. (Output variable).

V: all clusters in current iteration.

U: clusters that became unblocked in last iteration.

B: clusters that became blocked in last iteration.

A: clusters that became unblocked in all previous itera-
tions.

SOURCES”: collection of source sets of all clusters.

MfWSv: collection of BFS forests of all current clusters.

MB3Sd: collection of all unblocked BFS forests.

COVER.~: collection of cover trees of all current clusters.

Figure 9: Declarations of the STRIP-BFS algorithm.

L

ing blocked clusters s E fl into bigger clusters. Now
V, COVERV, SOURCESv denote, respectively, set of
new clusters, new cover, and new sources. At this
point, MULTI-BFS is called again.

The declarations and the code of the algorithm are
presented in Figures 9, and 10, respectively.

7 MULTI-BFS algorithm

7.1 Specifications of MULTI-BFS

Notation 7.1 We denote by v E MB3Sv the fact
that a node v is spanned by one of the forests of the
collection Mf?FSv = {Mbfs,ls E Y}. For each node
v E V, we define

l Load, (MB3Sv) is the number of forests in
Mf?TSv which span V. (Is 0 if v 4 Mf!?FSv.)

l Distance,(Mbfs,) is the distance between node v
and the root of a tree in Mbfs,. In case that w #
MBFS,, Distance, (Mbf sS) = co.

Definition 7.2 (Input/Output) Input to MULTI-
BFS consists of

V: a set of indices.

V e (91s E Sources} /* initial clusters */

A+0 /* no unblocked clusters */

Scx?.rR.C&S v + (~1s E Sources} /* initial sources */

COVERV * 0 /* initial cover is empty */
MB~SA + 0 /* no unblocked BFS forests */
repeat /* loop which processes a given strip */

MBFSV c MULTI-BFS /* grow BFS forests */

U + {sls E V, s unblocked in MBFSv}
s+v\u /* the rest are blocked clusters /

A+-AUU /* remember unblocked BFS forests */
(V, COV&7Zv, SOZLRCESV) t MERGE

until V = 0 /* no blocked clusters sources left */
BFS + EXTRACT(Mfj3Sd) /* extract true BFS forest */
return BFS

Figure 10: Algorithm STRIP-BFS.

COVERv = {Cover,Js E V}: a cover of SOURC~SV.

S~URCESV = {Sources,ls E V}: clusters induced by
the cover.

X: collision threshold.

d: distance threshold.

Output of MULTI-BFS is a collection of forests
MB3Sv = {Mbf sJ Is E V} such that

l Mbfs, is a BFS forest w.r.t. Sources, in the sub-
graph induced by the nodes of Mbfs,.

l For any v E V, Load,(MB3&) 5 X.

l For any v E Mbfs,, Distance, (Hbfs,) < d.

l For any v E Mbf s,, and any edge (v,u) E E, aI
least one of the following conditions must hold:

- uEHbfs,.

- Distance,(Mbfs,) = d.

- Load,(Mt33Sv) = X.

Intuitively, MB3Sv is a collection of BFS trees,
grown “independently” from each one of the sources
s E S for d layers, under the constraint a node may
belong to at most X such trees, and depth of each
tree is at most d. That is, node that already belongs
to X trees will not enter additional trees, and nodes
at depth d cannot have any children. Thus, for each
edge (V + U) outgoing from a node v E Mbfs,, either
u E Mbf s, , namely node ‘u is in the same forest, or u has
not been included because of one of the two reasons.
First reason is that Distance, (Mbf sS) = d, i.e. v is at
the “last layer” and thus forest cannot grow from v any
more. Second reason is that Load,(MBFSv) = X,
i.e. u is “overloaded” and refuses to enter the forest.

497

7.2 Implementation of MULTI-BFS
Each cluster runs MAIN-BFS algorithm for the re-
quired length. To simplify programming of the d-
gorithm, we initially allow nodes to enter more than
X forests. However, a node may ,9row at most X
forests, and blocks additional 13FS processes by refus-
ing to grow their forests. At the end of the algorithm
we delete the node from ail those forests, so that, ulti-
mately, each node belongs to at most X forests.

Towards that goal, messages of the process
MAIN-BFS,, which grows BFS forest from a cluster s,
are tagged with parameter s. Each node stores in List
identities of all clusters whose forests node belongs to,
excluding forests blocked by the node. When a node
receives a message of MAKN-BFS,, it will “refuse” to
grow this forest in case that IList\ = X and s $ List,
i.e. it has already grown forests of X clusters other
than s.

We achieve the effect of blocking a process by only
modifying the local input of that process. Namely,
node pretends that the edge on which the message of
the process has arrived is the only edge adjacent to that
node, thus effectively disabling growth of that forest
thru the node.

This is implemented as follows. Node maintains vari-
able Edges, containing the local topology as seen by
the MAIN-BFS processes running at the node, and
variable All-Edges, which contains love local topol-
ogy. Node will distinguish between MAIN-BFS pro-
cesses which are blocked by t:he node and those which
are not, by setting appropriately Edges variable prior
to responding to message of the process. For pro-
cesses that are noi blocked, node will set Edges :=
All-Edges, i.e. use “true” llocal topology. For pro-
cesses that are blocked, node will set Edges = e, i.e.
use “fake” local topology, consisting of the single edge
e, on which message has arrived.

The declarations and the code of the algorithm are
presented in Figures 11 and 112, respectively.

8 MERGE algorit:hm

8.1 Specifications of MERGE

Definition 8.1 (Input/Output) Input of MERGE
consists of

V: a set of indices.

13: a subset of V, containing all indices whose BFS forests

have been blocked.

SUURCESV = (s ources,ls E V}: a collection of

node-disjoint clusters Sourcesi c V.

Procedures
MAIN-BFSS: recursive call to MAIN BFS from cluster 1.

Variables

All-Edges: the local topology, i.e. set of incident links.

Edges: the local topology, i.e. set of incident links, as seen
by the BFS algorithm. Initially, Edges = All-Edges.

List: the list of all clusters, whose BFS forests currently
pass thru the cluster.

Figure 11: Declarations of the MULTI-BFS algorithm

Message of MAIN-BFS, over edge e
Edges - All-Edges /* default is true topology */

ifs 6 List then /* new BFS process */
if Counter < X then /* no need to block */

List +- List U s /* participate in 9’s forest */

Counter + Counter + 1 /* increment counter */

else Edges +- {e} /* block this BFS forest */
invoke MAIN-BFS, /* view Edges a$ local topology */

Figure 12: Algorithm MULTI-BFS.

CUVERV = {c over,)s E V}: a forest of node-disjoint

trees such that Coveri spans Sources;.

Mi3FSv = (Mbf s, 1s E V}: a collection of

node-disjoint forests of depth d at most such that

Mbfs; is forest rooted at the nodes of Sourcesi.

Output of MERGE consists of

pi: a new set of indices.

SUURCES~ = (Sources, lp E VT): new clusters.

COVZR~ = {Coverp)p E V}: new cover.

Notation 8.2 For a cover C, we denote by Depth(C),

Load(C), Size(C) the depth factor, the load factor, and

the size of C, respectively.

Definition 8.3 The output of MERGE must satisfy

U{SourcespIp E T?} = U{Sources, Is c a} (1)

Depth(COVER~) 5 5 a Depth(COVERv) (2)

(3)

(1) means that the new sources consist of all sources
belonging to clusters blocked in previous iteration. (2)
means that the depth of new clusters increases by fac-
tor of 5 at most. (3) means that the number of new
clusters decreases by factor of X at least.

498

8.2 Implications for STRIP-BFS

Observe that at each application of MERGE, except,
perhaps, for the last one,

Size(COVERv) 1 Load(COVIRv) 2 X (4)

since otherwise, no blocking occurs and the al-
gorithm terminates. Since in the first iteration,
Size(WIV&Rv) 5 V, we deduce that, in STRIP-BFS,

Corollary 8.4 There are at most logX V iterations.

Since, at the first iteration, Depth(COVERv) = 1,
we deduce that, at any iteration,

Depth(COVERv) 5 d. 5” 5 d. V* (5)

Thus, thruout all the iterations of STRIP-BFS, the
cover used is quite “shallow”. This is the key fact for
upper-bounding the time complexity.

8.3 Implementation of MERGE

Notation 8.5 Let the collision graph G(V, I) be undi-
rected graph where

E = {(r, s)jr, s E V, 3w E Mbf ss, 3u E Mbf s,, (u, v) E E}

Namely, this is undirected graph, whose nodes rep-
resent clusters, and edges represent adjacency of Hbf s
forests.

Notation 8.6 Let degreeg(v) and distanceg(u, w) de-
note the degree of v and the distance between zd and v
in G.

Definition 8.7 Given an undirected graph 6 = (V, E),
a subset R C V of of blockedvertices, we say that a subset
p C V of vertices is a Small Ruling Sub-Set (SRS) of Z?
in G if the following conditions hold:

Vu E B, 3v E 7 such that distancep(u, v) 5 2 (6)

Iq < PI 1% IV1
d

where d = yb{deyreeg(w)} (7)

For every forest that is blocked, there exists at least
one edge leading from a node in the forest to a node
blocking that forest, which participates in at least X
other forests. Thus, with our particular choice for G

and Z?, we have d 2 X 2 (T/J-.
The algorithm itself proceeds as follows.

l p, new set of indices, is chosen as a Small Ruling
Subset of a in graph 6.

l For each cluster s E p, select any node rI E
Sources, as a representative of s.

Ccw&R~ = {c overpIp E Is}, new cover, is chosen
as a BFS forest w.r.t. set of nodes (r,Js E p}
in the sub-graph induced by nodes spanned by
MBFS,,.

SOURCCSt; = {Sources,(p E V}, new collection
of clusters, is chosen so that each new cluster con-
tains all sources of blocked clusters that are in the
same cover tree, namely

Sourcesp = Coverp n {U{Sources, Is E B}}

An efficient deterministic algorithm for computing
SRS distributively has been given in [AGLPW].

9 EXTRACT algorithm

Definition 9.1 (Input/Output) Input of EXTRACT
is a collection of forests MBFsa = {Mbfs,(s E A}
w.r.t. a source clusters A. Output of EXTRACT is a
forest BFS, such that, for each node v,

Distance, (BFS) = yei Distance, (Mbf ss) (8)

In other words, given a bunch of (intersecting)
forests MBFSA, we want to Select a Parent pointer at
each node, as one of the “best” among Parent pointers
in those forests. The “quality” is measured in terms of
the length of the path to a root in the resulting forest.
This is essentially the most “naive” reduction from the
multiple sources to the single source, outlined in sub-
section 3.2. This is (trivially) achieved by selecting,
for each node, a neighbor q, such that

Distance(Mbf sq) = 2% Distance(Mbf ss) GO

and then choosing Q as its parent in the forest BFS.

10 Complexity

10.1 Definitions of complexity

Definition 10.1 (Amortized Complexities)
We define amortized complexities of any protocol 7 that
performs BFS for distance di (i.e. can be be applied on
the i’s level of recursion) as follows.

ci”: is the amortized communication. This is the maxi-
mum number of messages sent by the protocol over
a network edge.

tl: is the amortized time. This is the -& fraction of the
time complexity of the protocol. ’

499

gT: This is the number of time that the protocol needs [AGLP88] Baruch Awerbuch, Andrew Goldberg, Michael

to synchronize.

If DIJKSTRA algorithm were applied on i’s level, then
c j = tj = gj = di, since the algorithm sends di mes-
sages per edge, runs dz time, and needs to synchronize
di times. The total complexities of BFS algorithm can
be bounded as O(E*ck) messages and O(Ddk) time. Jf
we were simply running DIJKSTRA without any recur-
sion, we would have had ck = tk = D and thus would
have obtained O(E. D) bound on number of messages
and O(D2) bound on time.

Luby, and Serge Plotkin. Fast deterministic
distributed maximal independent set algorithm.
December 1988. Unpublished manuscript.

[Awe851 Barnch Awerbuch. Complexity of network syn-
chronization. .J. ACM, 32(4):804-823, October
1985.

[Awe871

In this extended abstract, we will only show the fi-
nal recurrence for the complexities of the MAIN-BFS
algorithm on different levels of recursion. They will
be denoted, respectively, as cyain, fiStriP, gTUit”. Now,
denote 7i = cyain + tyain + gyain. Define (Y such that
CY = O(z . X .5” . log V). (HerBe z = log, V.)

Baruch Awerbuch. Optimal distributed al-
gorithms for minimum weight spanning tree,
counting, leader election and related problems.
In Proceedings of the lgrh Annual A CM Sympo-
sium on Theory of Computing, pages 230-240,
ACM, May 1987.

[DS~O]

[Fre85]

Claim 10.2 The amortized complexities yi satisfy

[Gab851

Edsger W. Dijkstra and C. S. Scholten. Ter-
mination detection for diffusing computations.
Info. Proc. Lett., ll(l):l-4, August 1980.

Greg N. Frederickson. A single source shortest
path algorithm for a planar distributed network.
In Proceedings of 2nd Symp. on Theoretical As-
pects of Computer Science, January 1985.

Harold N. Gabow. Scaling algorithms for net-
work problems. J. Comp. and Syst. Sci.,
31(2):148-168, October 1985.

Robert G. Gallager. Distributed Minimum Hop
Algorithms. Technical Report LIDS-P-l 175,
MIT Lab. for Information and Decision Sys-
tems, January 1982.

{

log v ifi=O
Yi+1 5 a-(yj++) ifi>O (10)

Let us choose X to satisfy 5’ = X, in which case

X = V*. Solving the recurrence 10.2 yields

(11)

Thus, the total communication and time complexi-
ties of the algorithm denoted by C, T are bounded by

C 5 -yk . E = Ol(EV*)

T 2 7k . D = O(:D 1+*,

Acknowledgments

(12)

(13)

The author is very grateful to David PeIeg for his crucial
contributions to this work. David has encouraged the au-
thor to work on the problem, and contributed major ideas
to the MEI~CE algorithm in this paper. Thanks are also
due to David Shmoys for pointing author’s attention to
Gabaw’s work on scaling.

References

[AG85] Baruch Awerbuch and Robert G. Gallager. Dis-
tributed bfs algorit’hms. In 26’h Annual Sym-
posium on Foundaibions of Computer Science,
IEEE, October 198!j.

[AG87] Baruch Awerbuch and Robert G. Gallager. A
new distributed algorithm to find breadth first
search trees. IEEE Trans. Info. Theory, IT-
33(3):315-322, May 1987.

[GaI82]

[Jaf80]

[Lub86]

[Lub88]

[MRR80]

[Pe187]

[PUS81

Jeffrey Jaffe. Using signalling messages instead
of clocks. 1980. Unpublished manuscript.

Michael Luby. A simple parallel algorithm for
the maximal independent set problem. SIAM
J. Comput., 15(4):1036-1053, November 1986.

Michael Luby. Removing randomness in par-
allel computation without a processor penalty.
In 2gth Annual Symposium on Foundations of
Computer Science, Comp. Sot. of the IEEE,
IEEE, 1988.

John M. McQuillan, Ira Richer, and Eric C.
Rosen. The new routing algorithm for the
ARPANET. IEEE Trans. Comm., 28(5):711-
719, May 1980.

David P&g. Fast leader elections algorithms.
1987. unpublished manuscript.

David Peleg and Eli UpfaI. A tradeoff between
size and efficiency for routing tables. In Pro-
ceedings of the 20th Annual A CM Symposium
on Theory of Computing, pages 43-52, ACM,
May 1988.

500

