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Abstract 

This paper is concerned with distributed algorithm for find- 
ing shortest paths in an asynchronous communication net- 
work. For the problem of Breadth First Search, the best 
previously known algorithms required either O(V) time, or 
O(E + V .D) communication. We present new algorithm, 
which requires O(#+‘) time, and O(E1+C) messages, for 
any c > 0. (Here, V is number of nodes, E is number of 
edges and D is the diameter.) This constitutes a major 
step towards achieving the lower bounds, which are 0(E) 
communication and Q(D) time. 

For the general (weighted) shortest paths problem, pre- 
viously known shortest-paths <algorithms required O(k. V”) 
messages and O(V . log, V) time. Our algorithm requires 
O(E’+” . log W) messages and O(V’+’ . log W) time. 

Our results enable to improve significantly solutions for 
other basic network problems (e.g. leader election). 

I Introduction 

1.1 Model and complexity measures 

This paper is concerned with distributed algorithms 
in an asynchronous communication network. Those 
algorithms may be repeated many times in case that 
the network’s topology changes. From the point of 
view of network’s performance, it is desirable that the 
messages of the control algorithms don’t occupy much 
of the network bandwidth, and that such algorithms is 
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performed relatively fast. Thus, we will be interested 
in minimizing the message exchange, as well as time 
of control algorithms. We deal exclusively with worst- 
case performance of the algorithm. 

Given execution of a protocol in an asynchronous 
network, the longest message delay in that execution is 
the maximum difference between arrival and transmis- 
sion times of a message, in terms of some global clock 
(which is not accessible to nodes). Following [Gal82], 
normalized time between two events in an execution 
is the ratio between the physical time between those 
two events in terms of the global clock above, and the 
longest message delay in that execution, i.e. physical 
time in case that link delays vary between 0 and 1. In 
context of asynchronous network, “time” always means 
“normalized time”. 

The Communication Complexity of ?F, denoted by 
c., is the upper bound on the number of messages 
sent in any execution of 7~. The Time Complexity off, 
denoted by t,, is the upper bound on on normalized 
time of any execution of 7r. 

1.2 The problems 

We consider the problem of finding shortest paths in 
the communication graph G(V, E) of the network. In 
the “undirected” version of the problem, we are inter- 
ested in finding shortest paths in an undirected graph 
G, = (V, E, UJ) from all nodes to an a distinguished 
nodes s E V, where w is an assignment of non-negative 
weights we to edges e E E. 

The BFS problem is the special case of shortest 
paths, where w(e) = 1, for all e E E. The “di- 
rected” version of the problem is defined similarly, ex- 
cept that we look for shortest paths in a directed graph 
@ = (v, E) which is an orientation of G(V, E), i.e. 
(i + j) E i? implies that (i - j) E E. 

Those problems appear to be fairly basic in the field 
of distributed network protocols. The major applica- 
tion for shortest paths tree is that shortest paths tree 
w.r.t. a given source node can be used for routing 
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of data from other nodes to the source node, in the 
cheapest possible way. 

Improving efficiency of distributed Shortest Paths 
(BFS) yields improvement in more complex distributed 
algorithms, in which Shortest Paths (BFS) appears 
to be the bottleneck. Examples of such problems are 
given in section 2. 

Observe that a shortest paths problem on network 
G = (V, E, w) can be reduced to a BFS problem on 
an “expanded” network & = (v’, ,6?) where an edge 
e is substituted by a path containing w, edges and 
We - 1 “dummy nodes”. The difficulty with this re- 
duction is that the numbe_r of nodes in the expanded 
network is huge, namely IV1 = O(W . V), where W is 
the maximal edge weight. Using Gabow’s scaling tech- 
nique, one can effectively guarantee W 5 lV[. How- 
ever, with Gabow’s technique or without it, in either 
case [VI >> IV1 and 121 >> ]E]. Thus, existence of a 
black bot performing BFS with linear complexity, O(k) 
messages, only guarantees O(E . V) messages shortest 
paths algorithm, which is far from satisfactory. 

2 Contributions of this paper 

We present new distributed algorithms for the above 
problems with sharply improved bounds on communi- 
cation and time. 

Our algorithm is based on novel synchronization 
technique, which proceeds recursively. Even though 
the algorithm is just a composition of very simple mod- 
ular blocks, its analysis is non-trivial. To overcome 
the difficulties, we introduce novel counting methods, 
based on notions of amortized complexities. 

2.1 Improvements for BFS 

The obvious lower bounds on communication and time 
complexities of distributed BFS algorithms are Cl(E) 
messages and 0(D) time, where E is the number of 
network edges, and D is the diameter, In the syn- 
chronozls network, the obvious algorithm meets those 
lower bounds. However, the situation is much more 
complex in the asynchronous network, where the best 
known algorithms exhibit trade-o$in terms of commu- 
nication and time complexities. 

The best known algorithm in terms of communica- 
tion is due to [AG85]. It requires @(El+‘) messages 
and @(V1+‘) time, for all E > 0. [AG85] is “relatively 
close” to the lower bound in communication. However, 
as advocated by Peleg [Pe187], this algorithm is quite 
inefficient in time, in case that D < V. Peleg [Pe187] 
points out that the difference between O(V) and O(D) 
time can be very significant in many existing networks, 

Author Communication Time 

[Awe853 E+V.k.D D . log, V 
[AG85] E=+’ V1+c 

This paper El+’ D’fC 

Figure 1: Our BFS algorithms versus existing ones. 

Author Communication 1 Time 

[Awe851 k . V2 v -log, v 

[Fre85] Vii vii 

This paper El+’ . log W V’+’ . log W 

Figure 2: Our Shortest Paths algorithms versus existing ones. 

e.g. the ARPANET [MRR80], where D < V. The 
high (R(V)) time overhead is inherent for that method. 

The best known algorithm in terms of time is 
achieved by applying synchronizer y of [Awe851 to the 
obvious synchronous algorithm. This algorithm (sym- 
bolically attributed to [Awe85]) requires O(E+V.D.k) 
messages and O(logk V . D) time, for any h. It meets 
the lower bound in time but is quite inefficient in com- 
munication. 

The new BFS algorithm requires O(E’+‘) messages 
and O(Dl+‘) time, for all E > 0, thus making a step 
towards achieving the lower bounds. The following 
Figure 1 summarizes results of this paper, comparing 
them to existing results. 

2.2 Improvements for Shortest Paths 

There have been a number of works on shortest paths 
in the past [Ga182], [Jaf80]. The best previously known 
shortest-paths algorithms is obtained using the SYN- 
CHRONIZER of to [Awe85]. It requires O(E . V”) mes- 
sages and O( V. log, V) t ime. (This does not count the 
preprocessing phase of [Awe85].) For planar graphs 
only, the algorithm of Frederickson achieves O(V1i) 
message and time. 

Using the scaling techniques of Gabow [Gab851 and 
the BFS algorithm in this paper, we obtain a new 
shortest paths algorithm, which requires O(E1+C . 
log W) messages and 0( V’+’ . log W) time. 

The following Figure 2 summarizes our improve- 
ments over existing algorithms. 

2.3 Applications for other problems 

Leader Election, Spanning Tree, Global E’unc- 
tions: One of the most well-studied problems in the 
field of distributed network algorithms is the problem 
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Author C0mln1~cation~) 

~;qFJ 

Figure 3: Our Leader Election algorithms versus existing ones. 

of finding a leader in a network. It is equivalent to 
the problem of finding a spanning tree. Leader elec- 
tion is an important tool for breaking symmetry in a 
distributed system. Construction of a spanning tree 
or finding a leader appears as a building block essen- 
tially in every complex network protocol, and is closely 
related to many problems in distributed computing. 
There are many problems which are provably equiv- 
alent [Awe87] to the problem of electing a leader, in 
terms of the communication and time complexities. 
One example of such problems is a class of so-called 
“global sensitive” functions [Awe87], e.g. MAXIMUM, 
SUM, PARITY, MAJORITY, COUNTING, OR, AND. 

The best known leader election algorithms have been 
given in [Awe87], [Pel87]. F’eleg [Pe187] advocates for 
leader election algorithms w’hose running time depends 
only on the diameter of the :network. While Peleg’s 
algorithms achieves optimal O(D) time, its communi- 
cation complexity is O(E . 0). 

Using the new BFS algorithm in this paper, we 
can improve significantly time performance of existing 
leader election algorithms. We achieve almost linear 
(in diameter) time and almost linear communication. 
Our improvements are shown in following Figure 3. 

Compact Routing Tables: For the purpose of con- 
structing compact routing tables, the best current al- 
gorithm due to Peleg and Upfal [PUSS] uses network 
partition algorithms, which are modifications of the 
synchronizer-iniiializalion algorithm of [Awe85]. BFS 
is the bottleneck in this algorithm. 

2.4 Organization of this paper 

In this extended abstract, we only deal with BFS algo- 
rithms. We leave the extensions to the Shortest Paths, 
Leader Election, etc., for the full paper. Although our 
BFS algorithms is in fact very simple, it has a recur- 
sive structure, which makes it hard to conceive it as a 
whole. 

In the following Section 3 we describe the basic tools 
used. In Section 4 we outline main ideas behind our 
improvement, and provide more details in Sections 5, 
6, 7, 8, 9. In Section 10 we analyze complexity of the 
algorithm. 

3 Basics 

3.1 DIJKSTRA algorithm 

Let us first outline a simple BFS algorithm, which will 
be (symbolically) referred to as the DIJKSTRA Algo- 
rithm, because of its similarity with Dijkstra’s shortest 
path algorithm and Dijkstra-Sholten distributed termi- 
nation detection procedure [DS80]. 

The algorithm maintains a tree rooted at the source 
node. Initially, the tree is empty. Upon termination of 
the algorithm, the tree is the desired BFS tree. Thru- 
out the algorithm, the tree can only grow, and at any 
time it is a sub-tree of the final BFS tree. The algo- 
rithm operates in successive iterations, each processing 
another BFS layer. At the beginning of a given iter- 
ation 1, the tree has been constructed for all nodes in 
layers m < 1. Upon the termination of iteration 1, the 
tree will be extended by one layer, covering also all 
nodes in layer I. 

The purpose of the source node is to control these 
iterations by means of a synchronization process, per- 
formed over the tree. This enables the source node to 
detect the time that the tree has been completed up 
to distance 1 and thus iteration I+ 1 can be started. 

The source node triggers each iteration by broad- 
casting message over the tree which is forwarded out 
to nodes at layer 1 - 1 in the tree. Upon receipt of 
this message, the latter nodes send “exploration” mes- 
sages to all neighbors, carrying label I- 1, and trying 
to discover nodes at layer 1. 

When a node receives exploration message from a 
neighbor, it acts as follows. If this is the first explo- 
ration message that the node has seen, it chooses the 
sender of the message as its parent, sets its distance 
label to be 1 plus distance label of the sender, and 
sends back a “positive” acknowledgment (ack) to the 
sender, indicating that the sender was chosen as a par- 
ent. Upon receipt of subsequent exploration messages, 
the node sends back to sender “negative” ack, indi- 
cating that it already has parent. Upon receiving a 
positive ack, a node adds the sender to its list of chil- 
dren. 

When a node at layer 1 - 1 receives acks to all ex- 
ploration messages it has sent, it sends an ack to its 
parent in the BFS forest, indicating whether any new 
descendants have been discovered. When an internal 
node gets such acks from all children, it sends an ack 
to its parent. Eventually, all the acks are collected by 
the source node. This implies that layer 1 has been 
processed completely. If any nodes have been discov- 
ered at that layer, the next iteration I + 1 is started. 
Otherwise, the algorithm terminates. 

The complexities of this algorithm are O(V - D + E) 
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Figure 4: Strip Method. 

Figure 5: Data structures associated with a cluster. 

messages and O(P) time, where d is the number of 
layer being processed, Indeed, there are D iterations 
and in each of them synchronization is performed over 
BFS tree which requires O(V) messages and O(D) 
time. In addition, one exploration message is sent over 
each edge once in each direction. 

The overhead due to synchronization makes this al- 
gorithm quite inefficient in sparse and long networks, 
where E << V . D. If one considers a network with all 
nodes on a single path of length V- 1, one sees that the 
communication and time complexity are each O(V’). 
Obviously, the performance of the algorithm degrades 
as the number D of layers to be processed increases. 

3.2 Distance reduction paradigm 

It is easy to reduce the problem where big number of 
layers needs to be processed to problem where small 
number of layers needs to be processed. If the net- 
work has diameter D, we can conceptually “cut” the 
network into $ “strips” of length d, and process those 
strips sequentially, like in the following Figure 4. 

Our strategy now is to cut the network into strips of 
size d < D, and process those strips one after another, 
thus extending the BFS tree. We know also which 
edges lead to nodes in previous strip, so that messages 
are not sent along those edges. 

For the purpose of processing the strip, we need to 
create BFS forest rooted at the all nodes on the bor- 
der of the strip. Thus, we have multiple source nodes, 
rather than single source node. 

The most naive reduction from the case of multiple 
sources to the case of single source is to find separately 
shortest paths w.r.t. each one of sources, and then 
“combine” those shortest paths in an obvious manner. 
However, this strategy is of order of magnitude of the 
number of nodes in the cluster. Unfortunately, this 
method may introduce a blow-up factor to the com- 
munication complexity, which grows with the number 

of layers in the strip and the number of sources in the 
strip. Using this technique, with strips of size d = I/%, 
we can achieve O(D1.5) time and O(E . fi) commu- 
nication. This strategy, with some additional improve- 
ments, has been used in [AG87], and in [Fre85]. 

We are looking for more efficient reduction strategy. 
In sequential setting, one can easily reduce the prob- 
lem with multiple sources to the problem with a single 
source, by connecting each one of the sources to some 
auxiliary (“root”) source node via edges of weight 0, 
or simply contract all the sources into a single source. 
In a distributed setting, this method does not work. 

3.3 Source contraction paradigm 

However, whenever we encounter the a multiple- 
sources problem, we will always have available some 
“cover tree”, spanning all those nodes. For example, 
there is a legitimate cover tree spanning a11 the source 
nodes of a strip, namely the (whole) BFS tree span- 
ning all the previous strips. The cover tree can be 
used to synchronize between source nodes, thus effec- 
tively “contracting” them into a single (super-)node, or 
cluster. With each cluster, we associate the following 
distributed data structures: 

l Source nodes of the cluster. 

l Cover tree which spans all the source nodes. 

l BFS forest which spans all the sources. 

We can use those data structures in order to run DI- 
JKSTRA algorithm for the case of multiple sources as 
if it were run in the case of single source. The basic 
idea is that the algorithm proceeds in iterations, con- 
trolled by the “root”. The synchronization over cover 
tree enables the root to detect that all the sources have 
completed their trees up to a certain BFS layer. The 
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root node notifies all the sourc.es about the beginning 
of the iteration by broadcasting message over the cover 
tree. .Upon receiving this messages, each source node 
node runs one iteration of DIJKSTRA algorithm, as de- 
scribed above. When a source node collects all its acks 
to messages over BFS tree rooted at itself, its task is 
complete. The source node will send ack towards the 
root of the cover tree after it has completed its task, 
and after it receives acks from all its children. Nodes 
propagate acks in this manner, until the root node has 
received acks to all the messages that it has sent. Now, 
new iteration can start. 

Clearly, the communication overhead of synchro- 
nization will grow with the sire of the cover tree, while 
time overhead of synchronization will grow with the 
depth of the cover tree, i.e. the length of a longest 
path from a node to the root. We conclude that in 
order for the resulting algorithm is efficient, the size of 
cover tree should not be much bigger than the the strip 
being processed, both in terms of the size and depth. 

Observe that, initially, we have a cover tree for the 
strip, which is the whole BFS tree. It has depth of 
e(D) and size of O(V), i.e. is way too big and too 
long. The natural strategy is to reduce hard problems 
to easy problems. In order to do this, we have to reduce 
the original problem with “biig” cover tree and “big” 
processing length, to “not too many” new problems 
with “big” cover tree and “big” processing length. 

As noticed in [AG85], we can treat separately dif- 
ferent connected components in the strip, since trees 
grown in different components do not interfere with 
each other. Thus, the algorityhm of [AG85] was trying 
to construct a spanning tree cd each connected compo- 
nent of the strip. The difficulty here is that the set of 
nodes belonging to the strip is not known in advance; 
we know where the strip “sta:rts”, but we do not know 
where it “ends”. If one knows in advance where the 
strip “ends”, ‘the problem solved in [AG85] is trivial- 
ized. 

An algorithm proposed in [AG85] enables to con- 
struct recursively spanning trees of each strip. This 
strategy guarantees that cover tree have small num- 
ber of nodes, but, unfortunately, tend to have very big 
depth. The reason for this is that a connected com- 
ponent of a strip of depth cl does not necessarily have 
a spanning tree of depth d. In fact, it might be the 
case that the whole strip is connected, and that any 
tree that will span all the source nodes of the strip will 
have Q(V) depth, causing Q(V) time overhead. Since 
this method inherently requiires Q(V) time overhead, 
it is inadequate for us. It is worth pointing out that 
[AG85] focused only on communication. 

The main contribution of this paper is the reduction 
of the problem with big cover tree to “moderate” num- 

ber of problems with cover trees of “moderate” depth 
and size. 

3.4 Strip Cover 

Definition 3.1 Given a strip with d BFS layers, a strip 
cover is a forest of node-disjoint trees, which span all the 
source nodes in the strip. A collection of clusters induced 
by the cover is a set of subsets of source nodes, each 
subset consisting of the set of all source nodes spanned 
by the same tree of the cover. 

Definition 3.2 For an arbitrary strip cover (forest) de- 
fine the following parameters: 

load f&or: is the maximal number of clusters which are 
within distance d from some node in the strip. 

depth factor. is the maximal depth of a tree in the cover, 
divided by d. 

size: is the number of trees in the cover. 

Our task would have been significantly simplified, 
if, prior to processing this strip, some “oracle” would 
give us a “good” strip cover, for which both load factor 
and depth factor being “small”. We can then process 
the strip “efficiently” by contracting all the sources 
spanned by the same tree into a single cluster, and 
then performing BFS independently from each cluster. 
The intuition here is that load factor is the reason for 
communication blow-up, as it upper-bounds the num- 
ber of different clusters competing for the same node. 
Also, depth factor is the reason for time blow-up, as it 
upper-bounds the size of the trees on which synchro- 
nization is performed. 

By “refining” the cover, i.e. increasing its size, we 
reduce depth factor on expense of increasing load fac- 
tor. For example, the “coarsest” cover (all sources in 
the same tree) may feature depth = V and load = 0. 
On the other extreme, the ‘(finest” cover (all sources in 
different trees) may feature depth = 0 and load = V. 
It is easy to see that we can achieve the following com- 
promise. 

Fact 3.3 There always exists a cover with both load fuc- 

tor and depth factor being at most V*. 

It is not obvious how Fact 3.3 will benefit us, since 
constructing such “good” cover appears to be as hard 
as performing the BFS itself. This difficulty is resolved 
by running, in parallel, approximations for BFS and for 
“good” cover, as shown in the following sub-section. 
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4 Outline of our algorithm 

Our main contribution is a novel algorithm, referred 
to as STRIP-BFS, which processes a strip with d lay- 
ers. We “pretend” to perform BFS independently from 
each source node. Since d << D, then (recursively) we 
assume existence of efficient BFS algorithm that pro- 
cesses distance d w.r.t. single node. However, to save 
communication, we require that after a given node 2, 
enters into X BFS trees, where X is a parameter. Af- 
ter that, it will not enter any additional trees, caus- 
ing those trees to become blocked. This algorithm is 
called MULTI-BFS with parameter X. Observe that 
naive strategy of performing BFS’s independently from 
each source node corresponds to MULTI-BFS with the 
choice of X = 00. The approach used in [AG85] corre- 
sponds to MULTI-BFS with X = 1. 

Clearly, trees that are blocked will not extend to the 
required length. As a result, some nodes will appear in 
“wrong” trees, and we will not be able to reconstruct 
a real shortest-path forest from the collection of indi- 
vidual BFS trees (as in case X = oo). However, the 
information obtained will help us to construct short 
paths between source nodes, that can be used later for 
synchronization between those nodes. Namely, to cor- 
rect the situation, we “contract” blocked source nodes 
into clusters of nodes, each cluster having a relatively 
short cover tree. This tree is obtained by “stitching” 
together BFS trees of the involved source nodes. 

Our algorithm proceeds to find true BFS forest of a 
strip in a number of iterations. The major data struc- 
tures maintained by the the algorithm is the cover of 
the strip, a collection of clusters, induced by that cover. 
Initially, each cluster is a (singleton) source, and all 
cover trees are degenerate trees each containing single 
source. 

Each iteration consists of two phases, “BFS” phase, 
and “Merge” phase. In the “BFS” phase, all clus- 
ters run MULTI-BFS algorithm. Upon termination of 
“BFS” phase, we examine the resulting collection of 
BFS trees, and record in memory all unblocked trees. 
In the “Merge” phase, all clusters whose BFS trees got 
blocked, get merged into bigger clusters. If none are 
left, the main loop of the algorithm terminates. This 
must happen eventually since once clusters will become 
big enough, there will not be enough clusters to cause 
blocking. At this time, we invoke the EXTRACT pro- 
cedure, that extracts the BFS forest of the strip from 
the collections of all BFS forests, that were recorded 
as unblocked during some iteration. 

In order to maintain small communication complex- 
ity, we need to guarantee that number of trees passing 
thru a node is small, which suggests that X should be 
as small as possible. Also, in order to maintain small 

time and communication complexity, the number of 
iterations should be small, suggesting that “Merge” 
phase tries to merge as many clusters as possible. Un- 
fortunately, this policy causes the cover trees of the 
resulting cover to become very big, much bigger than 
d, namely O(V). Th is immediately leads time com- 
plexity to skyrocket up to a(V), as in [AG85]. (The 
number of iterations in [AG85] is only log, V.) 

We present an algorithm, referred to as MERGE algo- 
rithm, whose main idea is to try to combine together 
as many clusters as possible, subject to the restric- 
tion that only the clusters which are close to each 
other, namely within distance O(d), can be combined 
together. 

The crucial parameters for performance of the algo- 
rithm are depth factor and the size of the cover. The 
effect of one application of MERGE algorithm on the 
cover is that 

l site is reduced by at least factor of X. 

l depth is increased by at at most factor of 5. 

This guarantees that the number of iterations is at 
most z, and that all cover trees have small depth, 
namely of depth O(d .5”), where z = logx V. 

The algorithm uses a variation of the deterministic 
symmetry breaking technique of [AGLP88]. This is in 
turn a variation of the Luby’s maximal independent 
set algorithm [Lub86] and Luby’s technique for remov- 
ing randomness from distributed computing [Lub88]. 
This enables to break the symmetry in the network in 
O(dlogV) expected time, where d is the depth of a 
spanning tree. 

Overall, we accomplish a reduction from the problem 
of processing strips of size D to the problem of process- 
ing strips of size d < D. We can continue recursively, 
to reduce the size of the strip to be processed, until we 
end up with a strip containing a single layer, at which 
point it does not matter which algorithm is used. 

The schematic description of all the subroutines is 
given in the following Figure 6. The “main” BFS al- 
gorithm is referred to as MAIN-BFS. It calls, as a sub- 
routine, STRIP-BFS which processes strips of smaller 
size, by calling MULTI-BFS, MERGE, and EXTRACT. 
Finally, MULTI-BFS calls MAIN-BFS. This illustrates 
the fact that our algorithm is recursive. 

In the following sections 5, 6, 7, 8, 9 we describe 
MAIN-BFS, STRIP-BFS, MULTI-BFS, MERGE, and 
EXTRACT algorithms, respectively. 

5 MAIN-BFS algorithm 

Definition 5.1 (Input/Output) Input of MAIN- 
BFS consists of 
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-- 
Strip-BFS 

3 

Figure 6: General Structure. 

Main-Source: the single source node. 

Main-depth: the number of layers to be processed by 

the MAIN-BFS algorithm. 

Strip-depth: is the number of layers in a strip 

Output of MAIN-BFS consists of the tree Main-BFS, 
grown out of Main-Source. 

The algorithm itself is a straightforward implemen- 
tation of the “Distance reduction paradigm” of Section 
3.2. It partitions the network into strips of smaller size 
and processes strips one by one, employing a procedure 
STRIP-BFS which extends E!FS forest for a another 
strip of a length Strip-depth. 

Thruout the algorithm, Sources denotes the sources 
of the current strip (which are the “frontier” of the 
existing BFS tree) and #Strip denotes the number of 
current strip. Once BFS tree cannot expand any more, 
i.e. is stuck in a “dead end” (in which case Sources = 
S), or all the strips have been processed, (in which case 

#Strip = 3-)> the algorithm terminates. 

The declarations ind the code of the algorithm are 
presented in Figures 7, and 8, respectively. 

6 STRIP-BFS algorithm 

Definition 6.1 (Input/Output) Input of STRIP- 
BFS consists of 

Sources: the set of source nodes of the strip 

Main-BFS: the existing BFS bee. 

Variables 
Main-Source: the sources of the strip. (Input variable.) 

Main-BFS: the BFS w.r.t. the source node of the process. 
(Output variable.) 

Main-depth: number of layers to be processed. (Input vari- 
able.) 

Strip-depth: number of layers in a strip. (Input variable.) 

@trip: the number of the strip being processed. 

Sources: sources of a strip. 

Strip-BFS: the BFS forest w.r.t. sources of a strip. 

Procedures 

STRIP-BFS: constructs BFS forest of a strip w.r.t. 
Sources. 

Figure 7: Declarations of the MAWEFS algorithm. 

#Strip +- 1 
SourcestMain-Source 
Hain-BFS+@ 
repeat 

Strip-BFS + STRIP-BFS 
add Strip-BFS to Main-BFS 
@trip + @trip+ 1 

Figure 8: Algorithm MAIN-BFS. 

Output of MAIN-BFS consists of BFS, which is the BFS 
forest of strip, grown out of Sources. 

The algorithm proceeds in phases, so that at a given 
time all the nodes execute the same phase. The tree 
Main-BFS is used in order to detect termination of the 
previous phase and to trigger the next one. 

Thruout the algorithm, V denotes the current set 
of clusters. After application of MULTI-BFS, the set 
U contains all clusters s E V whose BFS forest is not 
blocked, and the complementary set B = V\U contains 
the blocked clusters. Next, unblocked clusters s E U 
join the set A of all clusters that were unblocked in 
the past, and thus (implicitly) forests Hbf ss join the 
collection MBFTSa of all unblocked BFS forests. 

If no unblocked clusters remain, i.e. B = 0, then 
the following application of MERGE returns I/’ = 

COVIRV = SOURCESv = 0 and the algorithm 
terminates. Otherwise, MERGE merges all remain- 
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Procedures 

MULTI-BFS: Executes procedure MAIN BFS “in parallel” 
at each cluster, allowing node to enter at most X 
forests. 

MERGE: Merges together all blocked clusters. 

EXTRACT: Extracts the “best” BFS forest from collection 
of trees. 

Variables 

Sources: the sources of the strip. (Input variable). 

BFS: The final BFS forest of the strip. (Output variable). 

V: all clusters in current iteration. 

U: clusters that became unblocked in last iteration. 

B: clusters that became blocked in last iteration. 

A: clusters that became unblocked in all previous itera- 
tions. 

SOURCES”: collection of source sets of all clusters. 

MfWSv: collection of BFS forests of all current clusters. 

MB3Sd: collection of all unblocked BFS forests. 

COVER.~: collection of cover trees of all current clusters. 

Figure 9: Declarations of the STRIP-BFS algorithm. 

L 

ing blocked clusters s E fl into bigger clusters. Now 
V, COVERV, SOURCESv denote, respectively, set of 
new clusters, new cover, and new sources. At this 
point, MULTI-BFS is called again. 

The declarations and the code of the algorithm are 
presented in Figures 9, and 10, respectively. 

7 MULTI-BFS algorithm 

7.1 Specifications of MULTI-BFS 

Notation 7.1 We denote by v E MB3Sv the fact 
that a node v is spanned by one of the forests of the 
collection Mf?FSv = {Mbfs,ls E Y}. For each node 
v E V, we define 

l Load, (MB3Sv) is the number of forests in 
Mf?TSv which span V. (Is 0 if v 4 Mf!?FSv.) 

l Distance,(Mbfs,) is the distance between node v 
and the root of a tree in Mbfs,. In case that w # 
MBFS,, Distance, (Mbf sS) = co. 

Definition 7.2 (Input/Output) Input to MULTI- 
BFS consists of 

V: a set of indices. 

V e (91s E Sources} /* initial clusters */ 

A+0 /* no unblocked clusters */ 

Scx?.rR.C&S v + (~1s E Sources} /* initial sources */ 

COVERV * 0 /* initial cover is empty */ 
MB~SA + 0 /* no unblocked BFS forests */ 
repeat /* loop which processes a given strip */ 

MBFSV c MULTI-BFS /* grow BFS forests */ 

U + {sls E V, s unblocked in MBFSv} 
s+v\u /* the rest are blocked clusters / 

A+-AUU /* remember unblocked BFS forests */ 
(V, COV&7Zv, SOZLRCESV) t MERGE 

until V = 0 /* no blocked clusters sources left */ 
BFS + EXTRACT(Mfj3Sd) /* extract true BFS forest */ 
return BFS 

Figure 10: Algorithm STRIP-BFS. 

COVERv = {Cover,Js E V}: a cover of SOURC~SV. 

S~URCESV = {Sources,ls E V}: clusters induced by 
the cover. 

X: collision threshold. 

d: distance threshold. 

Output of MULTI-BFS is a collection of forests 
MB3Sv = {Mbf sJ Is E V} such that 

l Mbfs, is a BFS forest w.r.t. Sources, in the sub- 
graph induced by the nodes of Mbfs,. 

l For any v E V, Load,(MB3&) 5 X. 

l For any v E Mbfs,, Distance, (Hbfs,) < d. 

l For any v E Mbf s,, and any edge (v,u) E E, aI 
least one of the following conditions must hold: 

- uEHbfs,. 

- Distance,(Mbfs,) = d. 

- Load,(Mt33Sv) = X. 

Intuitively, MB3Sv is a collection of BFS trees, 
grown “independently” from each one of the sources 
s E S for d layers, under the constraint a node may 
belong to at most X such trees, and depth of each 
tree is at most d. That is, node that already belongs 
to X trees will not enter additional trees, and nodes 
at depth d cannot have any children. Thus, for each 
edge (V + U) outgoing from a node v E Mbfs,, either 
u E Mbf s, , namely node ‘u is in the same forest, or u has 
not been included because of one of the two reasons. 
First reason is that Distance, (Mbf sS) = d, i.e. v is at 
the “last layer” and thus forest cannot grow from v any 
more. Second reason is that Load,(MBFSv) = X, 
i.e. u is “overloaded” and refuses to enter the forest. 
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7.2 Implementation of MULTI-BFS 
Each cluster runs MAIN-BFS algorithm for the re- 
quired length. To simplify programming of the d- 
gorithm, we initially allow nodes to enter more than 
X forests. However, a node may ,9row at most X 
forests, and blocks additional 13FS processes by refus- 
ing to grow their forests. At the end of the algorithm 
we delete the node from ail those forests, so that, ulti- 
mately, each node belongs to at most X forests. 

Towards that goal, messages of the process 
MAIN-BFS,, which grows BFS forest from a cluster s, 
are tagged with parameter s. Each node stores in List 
identities of all clusters whose forests node belongs to, 
excluding forests blocked by the node. When a node 
receives a message of MAKN-BFS,, it will “refuse” to 
grow this forest in case that IList\ = X and s $ List, 
i.e. it has already grown forests of X clusters other 
than s. 

We achieve the effect of blocking a process by only 
modifying the local input of that process. Namely, 
node pretends that the edge on which the message of 
the process has arrived is the only edge adjacent to that 
node, thus effectively disabling growth of that forest 
thru the node. 

This is implemented as follows. Node maintains vari- 
able Edges, containing the local topology as seen by 
the MAIN-BFS processes running at the node, and 
variable All-Edges, which contains love local topol- 
ogy. Node will distinguish between MAIN-BFS pro- 
cesses which are blocked by t:he node and those which 
are not, by setting appropriately Edges variable prior 
to responding to message of the process. For pro- 
cesses that are noi blocked, node will set Edges := 
All-Edges, i.e. use “true” llocal topology. For pro- 
cesses that are blocked, node will set Edges = e, i.e. 
use “fake” local topology, consisting of the single edge 
e, on which message has arrived. 

The declarations and the code of the algorithm are 
presented in Figures 11 and 112, respectively. 

8 MERGE algorit:hm 

8.1 Specifications of MERGE 

Definition 8.1 (Input/Output) Input of MERGE 
consists of 

V: a set of indices. 

13: a subset of V, containing all indices whose BFS forests 

have been blocked. 

SUURCESV = (s ources,ls E V}: a collection of 

node-disjoint clusters Sourcesi c V. 

Procedures 
MAIN-BFSS: recursive call to MAIN BFS from cluster 1. 

Variables 

All-Edges: the local topology, i.e. set of incident links. 

Edges: the local topology, i.e. set of incident links, as seen 
by the BFS algorithm. Initially, Edges = All-Edges. 

List: the list of all clusters, whose BFS forests currently 
pass thru the cluster. 

Figure 11: Declarations of the MULTI-BFS algorithm 

Message of MAIN-BFS, over edge e 
Edges - All-Edges /* default is true topology */ 

ifs 6 List then /* new BFS process */ 
if Counter < X then /* no need to block */ 

List +- List U s /* participate in 9’s forest */ 

Counter + Counter + 1 /* increment counter */ 

else Edges +- {e} /* block this BFS forest */ 
invoke MAIN-BFS, /* view Edges a$ local topology */ 

Figure 12: Algorithm MULTI-BFS. 

CUVERV = {c over,)s E V}: a forest of node-disjoint 

trees such that Coveri spans Sources;. 

Mi3FSv = (Mbf s, 1s E V}: a collection of 

node-disjoint forests of depth d at most such that 

Mbfs; is forest rooted at the nodes of Sourcesi. 

Output of MERGE consists of 

pi: a new set of indices. 

SUURCES~ = (Sources, lp E VT): new clusters. 

COVZR~ = {Coverp)p E V}: new cover. 

Notation 8.2 For a cover C, we denote by Depth(C), 

Load(C), Size(C) the depth factor, the load factor, and 

the size of C, respectively. 

Definition 8.3 The output of MERGE must satisfy 

U{SourcespIp E T?} = U{Sources, Is c a} (1) 

Depth(COVER~) 5 5 a Depth(COVERv) (2) 

(3) 

(1) means that the new sources consist of all sources 
belonging to clusters blocked in previous iteration. (2) 
means that the depth of new clusters increases by fac- 
tor of 5 at most. (3) means that the number of new 
clusters decreases by factor of X at least. 
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8.2 Implications for STRIP-BFS 

Observe that at each application of MERGE, except, 
perhaps, for the last one, 

Size(COVERv) 1 Load(COVIRv) 2 X (4) 

since otherwise, no blocking occurs and the al- 
gorithm terminates. Since in the first iteration, 
Size(WIV&Rv) 5 V, we deduce that, in STRIP-BFS, 

Corollary 8.4 There are at most logX V iterations. 

Since, at the first iteration, Depth(COVERv) = 1, 
we deduce that, at any iteration, 

Depth(COVERv) 5 d. 5” 5 d. V* (5) 

Thus, thruout all the iterations of STRIP-BFS, the 
cover used is quite “shallow”. This is the key fact for 
upper-bounding the time complexity. 

8.3 Implementation of MERGE 

Notation 8.5 Let the collision graph G(V, I) be undi- 
rected graph where 

E = {(r, s)jr, s E V, 3w E Mbf ss, 3u E Mbf s,, (u, v) E E} 

Namely, this is undirected graph, whose nodes rep- 
resent clusters, and edges represent adjacency of Hbf s 
forests. 

Notation 8.6 Let degreeg(v) and distanceg(u, w) de- 
note the degree of v and the distance between zd and v 
in G. 

Definition 8.7 Given an undirected graph 6 = (V, E), 
a subset R C V of of blockedvertices, we say that a subset 
p C V of vertices is a Small Ruling Sub-Set (SRS) of Z? 
in G if the following conditions hold: 

Vu E B, 3v E 7 such that distancep(u, v) 5 2 (6) 

Iq < PI 1% IV1 
d 

where d = yb{deyreeg(w)} (7) 

For every forest that is blocked, there exists at least 
one edge leading from a node in the forest to a node 
blocking that forest, which participates in at least X 
other forests. Thus, with our particular choice for G 

and Z?, we have d 2 X 2 (T/J-. 
The algorithm itself proceeds as follows. 

l p, new set of indices, is chosen as a Small Ruling 
Subset of a in graph 6. 

l For each cluster s E p, select any node rI E 
Sources, as a representative of s. 

Ccw&R~ = {c overpIp E Is}, new cover, is chosen 
as a BFS forest w.r.t. set of nodes (r,Js E p} 
in the sub-graph induced by nodes spanned by 
MBFS,,. 

SOURCCSt; = {Sources,(p E V}, new collection 
of clusters, is chosen so that each new cluster con- 
tains all sources of blocked clusters that are in the 
same cover tree, namely 

Sourcesp = Coverp n {U{Sources, Is E B}} 

An efficient deterministic algorithm for computing 
SRS distributively has been given in [AGLPW]. 

9 EXTRACT algorithm 

Definition 9.1 (Input/Output) Input of EXTRACT 
is a collection of forests MBFsa = {Mbfs,(s E A} 
w.r.t. a source clusters A. Output of EXTRACT is a 
forest BFS, such that, for each node v, 

Distance, (BFS) = yei Distance, (Mbf ss) (8) 

In other words, given a bunch of (intersecting) 
forests MBFSA, we want to Select a Parent pointer at 
each node, as one of the “best” among Parent pointers 
in those forests. The “quality” is measured in terms of 
the length of the path to a root in the resulting forest. 
This is essentially the most “naive” reduction from the 
multiple sources to the single source, outlined in sub- 
section 3.2. This is (trivially) achieved by selecting, 
for each node, a neighbor q, such that 

Distance(Mbf sq) = 2% Distance(Mbf ss) GO 

and then choosing Q as its parent in the forest BFS. 

10 Complexity 

10.1 Definitions of complexity 

Definition 10.1 (Amortized Complexities) 
We define amortized complexities of any protocol 7 that 
performs BFS for distance di (i.e. can be be applied on 
the i’s level of recursion) as follows. 

ci”: is the amortized communication. This is the maxi- 
mum number of messages sent by the protocol over 
a network edge. 

tl: is the amortized time. This is the -& fraction of the 
time complexity of the protocol. ’ 
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gT: This is the number of time that the protocol needs [AGLP88] Baruch Awerbuch, Andrew Goldberg, Michael 

to synchronize. 

If DIJKSTRA algorithm were applied on i’s level, then 
c j = tj = gj = di, since the algorithm sends di mes- 
sages per edge, runs dz time, and needs to synchronize 
di times. The total complexities of BFS algorithm can 
be bounded as O(E*ck) messages and O(Ddk) time. Jf 
we were simply running DIJKSTRA without any recur- 
sion, we would have had ck = tk = D and thus would 
have obtained O(E. D) bound on number of messages 
and O(D2) bound on time. 

Luby, and Serge Plotkin. Fast deterministic 
distributed maximal independent set algorithm. 
December 1988. Unpublished manuscript. 

[Awe851 Barnch Awerbuch. Complexity of network syn- 
chronization. .J. ACM, 32(4):804-823, October 
1985. 

[Awe871 

In this extended abstract, we will only show the fi- 
nal recurrence for the complexities of the MAIN-BFS 
algorithm on different levels of recursion. They will 
be denoted, respectively, as cyain, fiStriP, gTUit”. Now, 
denote 7i = cyain + tyain + gyain. Define (Y such that 
CY = O(z . X .5” . log V). (HerBe z = log, V.) 

Baruch Awerbuch. Optimal distributed al- 
gorithms for minimum weight spanning tree, 
counting, leader election and related problems. 
In Proceedings of the lgrh Annual A CM Sympo- 
sium on Theory of Computing, pages 230-240, 
ACM, May 1987. 

[DS~O] 

[Fre85] 

Claim 10.2 The amortized complexities yi satisfy 

[Gab851 

Edsger W. Dijkstra and C. S. Scholten. Ter- 
mination detection for diffusing computations. 
Info. Proc. Lett., ll(l):l-4, August 1980. 

Greg N. Frederickson. A single source shortest 
path algorithm for a planar distributed network. 
In Proceedings of 2nd Symp. on Theoretical As- 
pects of Computer Science, January 1985. 

Harold N. Gabow. Scaling algorithms for net- 
work problems. J. Comp. and Syst. Sci., 
31(2):148-168, October 1985. 

Robert G. Gallager. Distributed Minimum Hop 
Algorithms. Technical Report LIDS-P-l 175, 
MIT Lab. for Information and Decision Sys- 
tems, January 1982. 

{ 

log v ifi=O 
Yi+1 5 a-(yj++) ifi>O (10) 

Let us choose X to satisfy 5’ = X, in which case 

X = V*. Solving the recurrence 10.2 yields 

(11) 

Thus, the total communication and time complexi- 
ties of the algorithm denoted by C, T are bounded by 

C 5 -yk . E = Ol(EV*) 

T 2 7k . D = O(:D 1+*, 
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