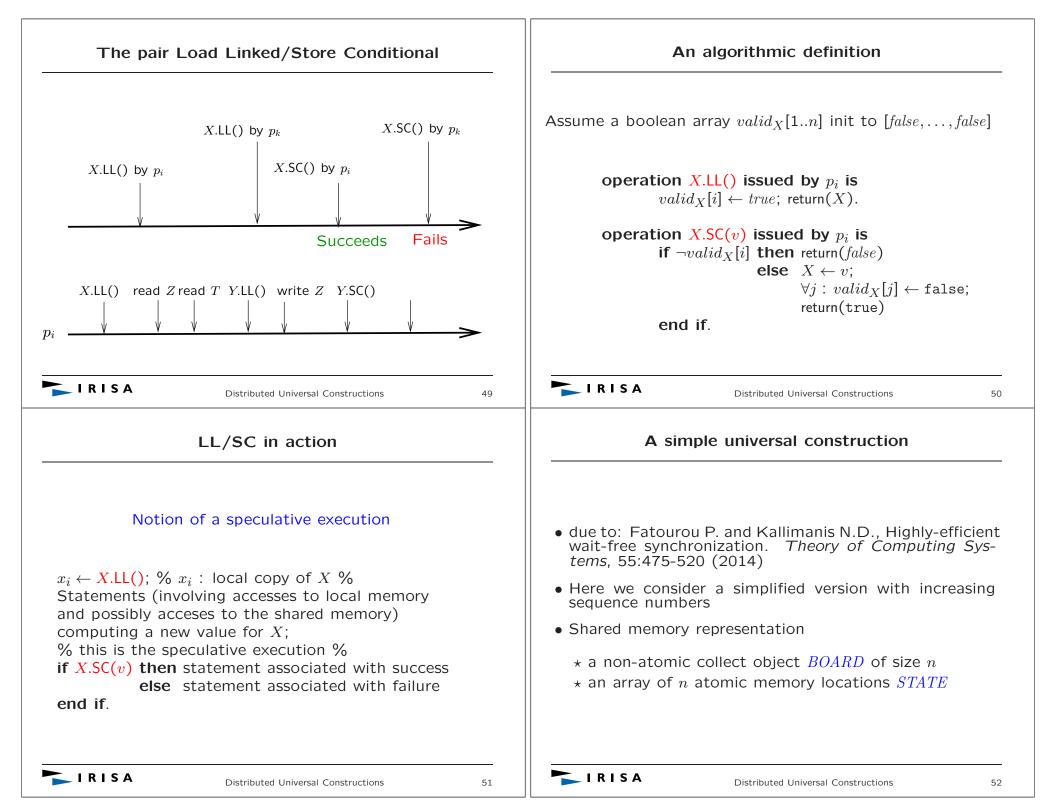
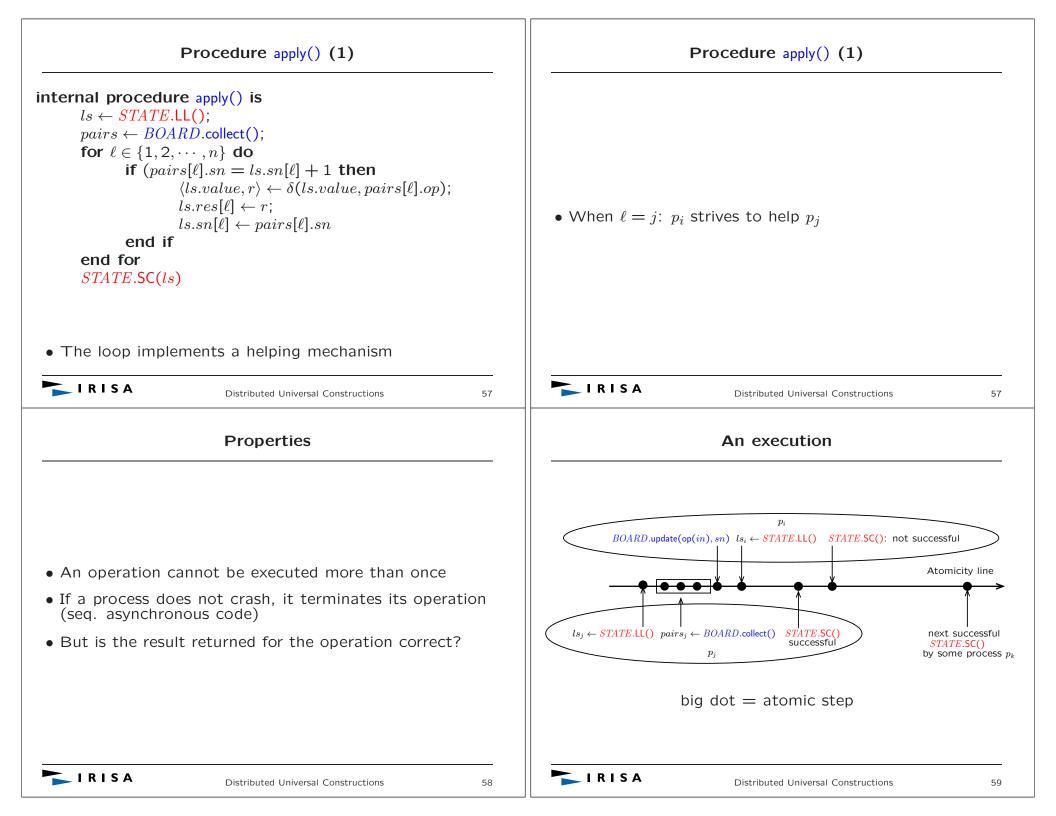

Concurrent programming (2)	Distributed Message-Passing (1)
 Part 1: Lock-based synchronization (3 chap., pp. 1-110) Part 2: The atomicity concept (1 chap., pp. 111-132) Part 3: Mutex-free synchronization (5 chap., pp. 133-274) Part 4: The transactional memory approach (1 chap., pp. 275-302) Part 5: From safe bits to atomic registers (3 chap., pp. 303-368) Part 6: The computability power of concurrent objects (4 chap., pp. 369-488) 	Mdel Raynal Distributed Algorithms for Algorithms for Message-Passing systems Distributed Algorithms for Message-passing systems by Michel Raynal Springer, 517 pages, 2013 ISBN 978-3-642-38122-5
Distributed Universal Constructions 5	Distributed Universal Constructions 6
Distributed Message-Passing (2)	PART 1
 Part 1: Distributed graph algorithms (5 chap., pp. 1-118) 	
 Part 2: Logical time and global states (4 chap., pp. 119-244) 	
 Part 3: Mutual exclusion and resource allocation (2 chap., pp. 244-300) 	Historical perspective
 Part 4: High level communication abstractions (2 chap., pp. 301-364) 	and a point of view on what is
 Part 5: Detection of properties of distributed executions (2 chap., pp. 365-423) 	INFORMATICS
 Part 6: Distributed shared memory (2 chap., pp. 425-470) 	
Distributed Universal Constructions 7	Distributed Universal Constructions 8

Example: Bissectir	ng an angle with compass + ruler	BTW: wh	at about trisecting an angle?
A	$ \begin{array}{c} r_1 \\ r_1 \\ r_1 \\ c \\ r_1 \\ c \\ r_1 \\ c \\ r_1 \\ c \\ c \\ c \\ \end{array} $	 One of the harder circle) Answer : imposs Recherches sur le de géométrie per pas, <i>Journal de la</i> 1(2):366-372 (18 Plus the fact that Lindemann 1882 	at π is a transcendent number (F. von ?)
Proof: consists in showin	Distributed Universal Constructions 13		Distributed Universal Constructions 14
Still	a little bit later		A few references
риочта со сс сс р	M. Ibn Musa Al Khawarizmi 780, Khiva - 850, Bagdad Contributed to algebra but gave its name to algorithms!	من المستركة	- Kitabu al-mukhtasar fi hisab al-jabr wa'l-muqabala - Kitabu al-jami' wa't-tafriq bi hisabi 'l-Hind (the book of addition and substrac tion from Indian calculus)

About informatics (1)	About informatics (2)
 Main resources: * up to mid of XX-th century: matter/energy * from mid of XX-th century: information * as matter/energy: information can be colled sumed, transformed, stored, carried, etc. * differentlty from matter/energy: it does n can be copied at "zero cost" Looking for universality (just repeating) 	 Produces a "new" way of thinking (algorithmics-based) From putting the world into equations to putting the world into algorithms
Distributed Universal Constructions PART 2	21 IRISA Distributed Universal Constructions 2 The basic unit of sequential computing
	$in \longrightarrow f() \longrightarrow out = f(in)$
	• The notion of a function
From sequential computin	
From sequential computin to distributed computing	g • Sequential algorithm
	g • Sequential algorithm
	gSequential algorithmThe notion of computability (Turing machine)


Examples of tasks	Solving a task
 Binary consensus 	A distributed algorithm A is a set of n local automata (Turing machines) that cooperate through specific com-
* $\mathcal{I} = \{ \text{all vectors of 0 and 1} \}$ * $\mathcal{O} = \{ \{0, \dots, 0\}, \{1, \dots, 1\} \}$	munication objects (e.g., message-passing network, shared memory, etc.)
* Let $X_0 = \{0, \dots, 0\}$ and $X_0 = \{1, \dots, 1\}$ * $\Delta(X_0) = \{0, \dots, 0\}$ and $\Delta(X_1) = \{1, \dots, 1\}$	An algorithm A solves a task T if in any run
* $\Delta(\text{any vector except } X_O, X_1) = O$	• $\exists \ I \in \mathcal{I} \text{ such that each } p_i \text{ starts with (proposes) } in_i = I[i]$
 k-set agreement, Renaming, Weak symmetry breaking k-Simultaneous consensus, etc. 	• $\exists \ O \in \Delta(I)$ such that $O[j] = out_j$ for each process p_j that that computes (decides) an output out_j
Distributed Universal Constructions 29	Distributed Universal Constructions
Distributed computing: birth certificates	A famous quote and its formalization
 L. Lamport, Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565 (1978) * Partial order on events 	 "A distributed system is one in which the failure of a computer you didn't even know existed can render you own computer unusable" (L. Lamport)
 * Scalar clocks * State machine replication 	 Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.
	Journal of the ACM, 32(2):374-382 (1985)
• Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382 (1985)	
bility of distributed consensus with one faulty process.	Reminder: DC is about Mastering UNCERTAINTY!

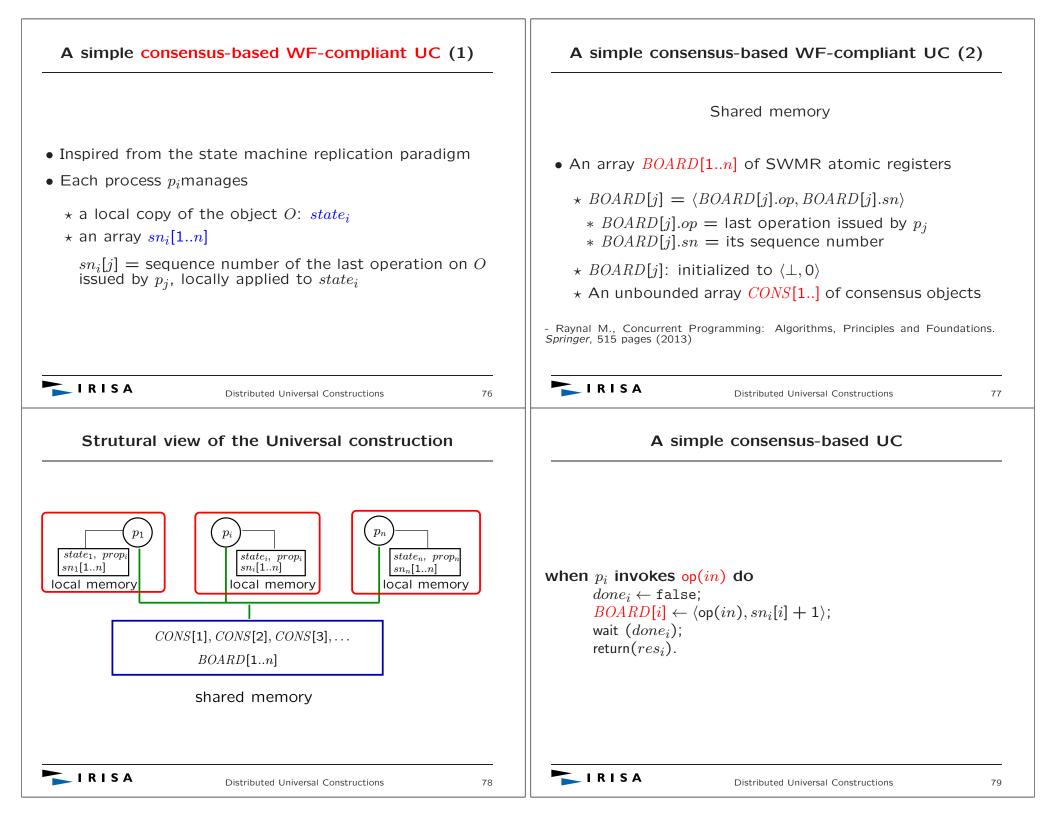
	To summarize	PART 3	
ParallelismDistributedn	masters On-time computing : provides Efficiency I computing: masters Uncertainty -more or less- implicitly using a lot of heuristics!)	Universal construction in crash-prone shared memor	
	ssue: non-determinism created by the synchrony, failures) Distributed Universal Constructions 33 Content	Distributed Universal Construction	ons 34
 What is a unive Basic asynchro Warm-up: a sir Extensions: dis From memory 	ects, failures, asynchrony, progress ersal construction? nous read/write model nple LL/SC-based universal construction joint parallelism, abortable objects operations to agreement objects ect and consensus hierarchy	Distributed Universal Constructions: a (by Michel Raynal Bulletin of the European Associa of Theoretical Computer Science (E 121(1):64-96 (2017)	ation
-	ruction "1 among k " and " ℓ among k "		


	Computation model (base wait-free model)
	 Process and failure model:
In sequential systems, computability is understood through ne Church-Turing Thesis: anything that can be computed, an be computed by a Turing Machine.	 * A set of n asynchronous processes p₁,, p_n * "Asynchronous" means each process proceeds at its own speed, which can be arbitrary and remains always unknown to the other processes. * Up to t < n - 1 processes smay crash
n distributed systems, where computations require coor- ination among multiple participants, computability ques-	* A process that crahes: faulty, otherwise: non-faulty
ons have a different flavor. Here, too, there are many roblems which are not computable, but these limits to	Communication model:
omputability reflect the difficulty of making decisions in ne face of ambiguity, and have little to do with the inher- nt computational power of individual participants."	 The processes communicate with atomic read/write registers (memory locations)
Herlihy M., Rajsbaum S., and Raynal M., Power and limits of distributed computing ared memory models. <i>Theoretical Computer Science</i> , 509:3-24 (2013)	 * "Atomicity" (or Linearizability) means that the read and write primitive operations on a register appear as if they have been executed one after the other
	• Notation: $CARW_n[\emptyset]$
Linearizabilty (atomicity) and non-determinism	A remark on the message-passing model
Linearizability (atomicity) and non-determinism $R.read() \rightarrow 1$ $R.read() \rightarrow 2$	A remark on the message-passing model
Linearizability (atomicity) and non-determinism $p_1 \xrightarrow{R.read() \rightarrow 1} \xrightarrow{R.read() \rightarrow 2}$	A remark on the message-passing model Message-passing model:
Linearizability (atomicity) and non-determinism $R.read() \rightarrow 1$ $R.read() \rightarrow 2$	A remark on the message-passing model Message-passing model: t complete point-to-point network
Linearizability (atomicity) and non-determinism $p_1 \xrightarrow{R.read() \rightarrow 1}_{R.write(1)} \xrightarrow{R.read() \rightarrow 2}_{R.write(2)}$	A remark on the message-passing model Message-passing model: * complete point-to-point network * no bound on transfer delays (but finite)
Linearizability (atomicity) and non-determinism $p_1 \xrightarrow{R.read() \rightarrow 1} \xrightarrow{R.read() \rightarrow 2} \xrightarrow{p_1} \xrightarrow{R.write(1)} \xrightarrow{R.write(2)} \xrightarrow{R.read() \rightarrow 3} \xrightarrow{R.read() \rightarrow 3}$	A remark on the message-passing model • Message-passing model: * complete point-to-point network * no bound on transfer delays (but finite) * reliable (no loss, creation, duplication, alteration) • In the presence of up to t failures: * Crash: the read/write model can be simulated on top the message-passing model only iff $t < n/2$
Linearizability (atomicity) and non-determinism $p_1 \xrightarrow{R.read() \rightarrow 1} \xrightarrow{R.read() \rightarrow 2} p_2 \xrightarrow{R.write(1)} \xrightarrow{R.write(2)} \xrightarrow{R.write(3)} \xrightarrow{R.read() \rightarrow 3}$	A remark on the message-passing model • Message-passing model: * complete point-to-point network * no bound on transfer delays (but finite) * reliable (no loss, creation, duplication, alteration) • In the presence of up to t failures: * Crash: the read/write model can be simulated on top the message-passing model only iff $t < n/2$ - Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message
Linearizability (atomicity) and non-determinism $p_1 \xrightarrow{R.read() \rightarrow 1} \xrightarrow{R.read() \rightarrow 2} \xrightarrow{p_1} \xrightarrow{R.write(1)} \xrightarrow{R.write(2)} \xrightarrow{R.read() \rightarrow 3} \xrightarrow{R.read() \rightarrow 3} \xrightarrow{Omniscient observer's time line}$	
Linearizabilty (atomicity) and non-determinism $p_{1} \xrightarrow{R.read() \rightarrow 1} \xrightarrow{R.read() \rightarrow 2} \xrightarrow{R.write(1)} \xrightarrow{R.write(2)} \xrightarrow{R.write(3)} \xrightarrow{R.read() \rightarrow 3} \xrightarrow{R.read() \rightarrow 3} \xrightarrow{R.write(3)} \xrightarrow{R.read() \rightarrow 3} R.read() \rightarrow 3$	A remark on the message-passing model • Message-passing model: * complete point-to-point network * no bound on transfer delays (but finite) * reliable (no loss, creation, duplication, alteration) • In the presence of up to t failures: * Crash: the read/write model can be simulated on top the message-passing model only iff $t < n/2$ - Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing systems, <i>Journal of the ACM</i> , 42(1):121-132 (1995) * Byzantine: the read/write model can be simulated

Concurrent objects	On Progress conditions
 Concurrent object: object that can be accessed (pos- sibly simultaneously) by several processes 	• Failure-free model
 Here: defined by * a sequential specification * on total operations 	 * Deadlock-freedom * Starvation-freedom • Wait-free model
 Remark: not all objects have a seq. specification Fundamental problem of shared memory distributed programming: implement high level concurrent objects, where "high level" means that the object provides the processes with an abstraction level higher than the atomic hardware-provided instructions 	 * Locks (mutex) cannot be used! * three progress conditions * Wait-freedom * Non-blocking * Obstruction-freedom
Distributed Universal Constructions 41	Distributed Universal Constructions 42
Wait-freedom	Non-blocking aka Lock-freedom
 Any operation (on the object that is built) issued by a process that does not crash terminates (whatever the behavior of the other processes) The strongest progress condition Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124-149 (1991) 	 At least one process can always progress (all its object operations terminate) Generalized: k-lock-freedom which states that at least k processes can always make progress n-lock-freedon = wait-freedom Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492 (1990)
Distributed Universal Constructions 43	Distributed Universal Constructions 44

Obstruction-freedom	Universal construction
 A process that does not crash terminates its operation if all the other processes hold still long enough <i>k-obstruction-freedom</i> states that, if a set of at most <i>k</i> processes run alone for a sufficiently long period of time, they will terminate their operations Differently from wait-freedom and non-blocking, the definition of obstruction-freedom depends on concurrency pattern 	 Let PC be a progress condition A PC-compliant universal construction is an algorithm that, given the sequential specification of an object O (or a sequential implementation of it), provides a concurrent implementation of O satisfying PC in the the presence of up (n - 1) process crashes
Herlihy M.P., Luchangco V., and Moir M., Obstruction- ee synchronization: double-ended queues as an example. Proc. 23th Int'l IEEE Conference on Distributed Comput- ing Systems (ICDCS'03), IEEE Press, pp. 522-529 (2003)	$\begin{array}{c c} & & \\ \hline \\ \hline$
IRISA Distributed Universal Constructions 45 What can be done in pure read/write systems	Enriching the basic read-write model with LL/SC

The collect object	STATE: the representation of the object O
 Array BOARD[1n] with one entry per process provides each p_i with two operations: update() and collect() BOARD.update(v) by process p_i: assigns v to BOARD[i] BOARD.collect(): asynchronous scan of the array returning, for each entry j, the value read from BOARD[j] collect() is not atomic (⇐ asynchronous scan) BOARD[i] contains a pair ⟨op, sn⟩ where op is the last operation on O issued by p_i and sn is its seq number 	STATE is a memory location made up of three fields • STATE.value: current value of O • STATE.sn[1n]: array of seq numbers (init. $[0, \dots, 0]$) STATE.sn[i] = seq number of p_i 's last invocation on O • STATE.res[1n]: array of result values (init. $[\bot, \dots, \bot]$) STATE.res[i] = result of the last operation issued by p_i Local variable sn_i at every process p_i (init 1)
Distributed Universal Constructions 53 The sequential sepcification of the object O	Construction: operation invocation
 Defined by a transition function δ() inputs: s: the current state of O op(in): invocation of the operation op(in) on O δ(s, op(in)) outputs a pair ⟨s', r⟩ such that s' is the state of O after the execution of op(in) on s, and r is the result of op(in) 	when p_i invokes op(in) do $BOARD.update(\langle op(in), sn_i \rangle);$ $sn_i \leftarrow sn_i + 1;$ apply(); let $r = STATE.res[i];$ return(r).

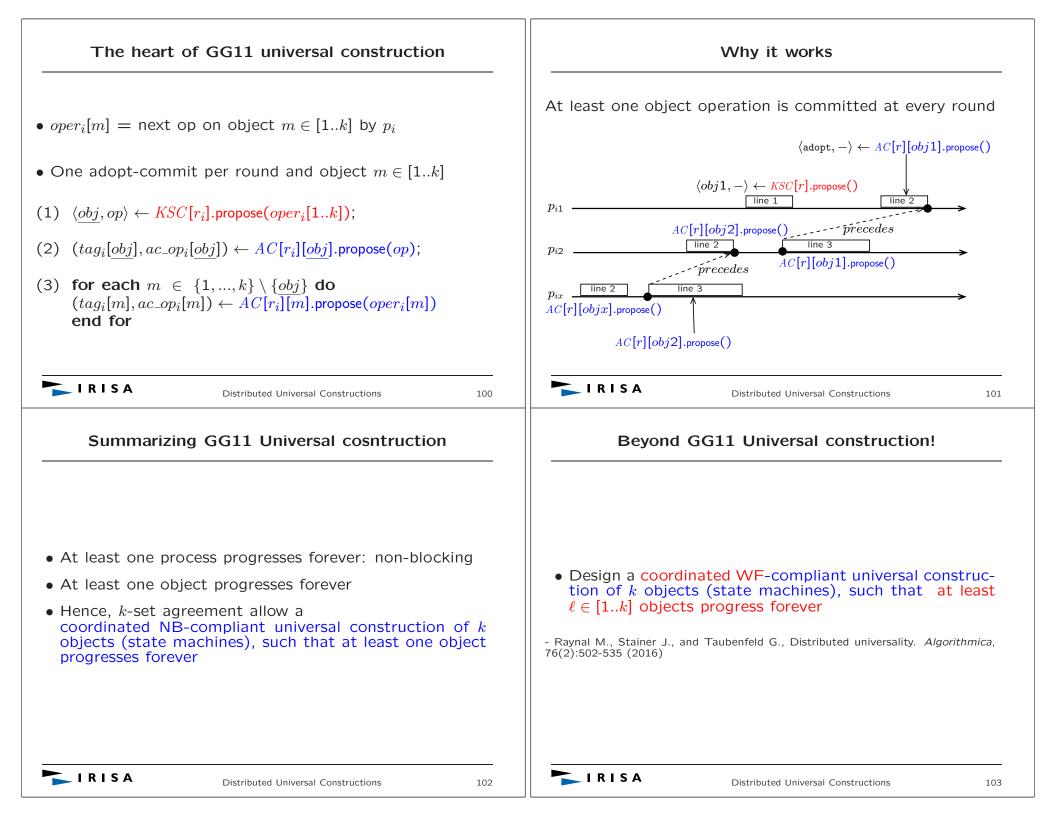


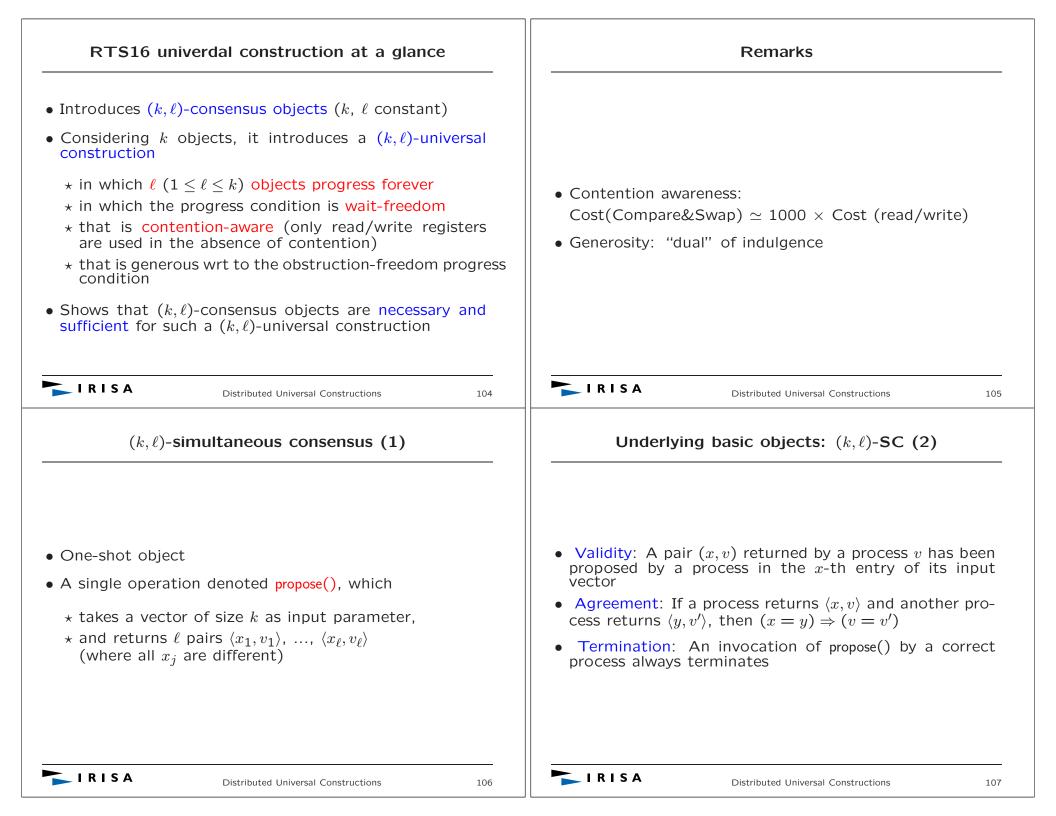
Final algorithm for apply()	Linearization points of the operations
nternal procedure apply() is repeat twice $ls \leftarrow STATE.LL();$	 Let SC[1], SC[2],, SC[x], be the sequence of the successful invocations of STATE.SC()
$pairs \leftarrow BOARD.collect();$ for $\ell \in \{1, 2, \dots, n\}$ do if $(pairs[\ell].sn = ls.sn[\ell] + 1$ then $\langle ls.value, r \rangle \leftarrow \delta(ls.value, pairs[\ell].op);$ $ls.res[\ell] \leftarrow r;$ $ls.sn[\ell] \leftarrow pairs[\ell].sn$ end if end for	 As <i>STATE</i>.SC() is atomic, this sequence is well-defined Starting from <i>SC</i>[1], each SC[<i>x</i>] applies at least one operation on the object <i>O</i> The operations applied to <i>O</i> by each SC[<i>x</i>] are totally ordered Let seq[<i>x</i>] be the corresponding sequence
STATE.SC(ls) end repeat twice.	 Let seq[x] be the corresponding sequence The sequence of operations applied to O is then seq[1], seq[2],, seq[x], etc.
Cost: $\leq 2n$ (seq.) shared memory accessesIRISADistributed Universal Constructions60Exercise: build an atomic collect object	IRISA Distributed Universal Constructions Internal representation of X with nd bits
• Consider an atomic object X with two operations $\star X.add(v)$ adds v to X	
 * X.read() returns the value of X D = value domain of the entries of the collect object 	$nd (n-1)d+1 \uparrow \uparrow d 1$

The operations of the atomic collect objects	The case of large objects
$v' = previous value written by p_i, init 0$	
operation $update(v)$ by p_i is	A large object is an object whose internal state cannot be copied in one atomic step (machine instruction)
$\langle b_d, \cdots, b_1 \rangle \leftarrow$ binary encoding of $(v - v')$; $val \leftarrow \langle 0, \cdots, 0, b_d, \cdots, b_1, 0, \cdots, 0 \rangle$	• A large object is fragmented into blocks
with $\langle b_d, \cdots, b_1 \rangle$ in position $[id(i-1)d+1]$; X.add(val); $v' \leftarrow val$;	 Pointers linking blocks: speculative execution with point- ers manipulated with LL/SC
return.	- Herlihy M.P., A methodology for implementing highly concurrent data objects. ACM Trans. on Programming Languages and Systems, 15(5):745-770 (1993)
operation collect() is $v \leftarrow X.read();$ decompose v according to the <i>n</i> -chunk encoding;	 Long array fragmented into blocks: implemented with LargeLL and LargeSC operations (built from LL/SC- based algorithm)
return (corresponding array $r[1n]$).	- Anderson J. and Moir M., Universal constructions for large objects. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 10(12):1317-1332 (1999)
Exercise: replace add() by xor()	
Distributed Universal Constructions 64	IRISA Distributed Universal Constructions 65
Extension 1: disjoint-access parallelism (1)	Example
 A universal construction is disjoint-access parallel if two processes that access distinct parts of an object O do not access common base objects or common memory location which constitute O's internal representation As an example, let us consider a queue Q. 	Disjoint-access parallelism is a property of the implementation
When $ Q \ge 3$, a disjoint-access parallelism implementa- tion allows a process executing enqueue(v) and a process executing dequeue() to progress without interfering	enqueue(v) dequeue()
 Is it possible to design a disjoint-access parallelism WF- compliant universal construction? 	
- Ellen F., Fatourou P., Kosmas E., Milani A., and Travers C., Universal constructions that ensure disjoint-access parallelism and wait-freedom. <i>Distributed Computing</i> , 29:251-277 (2016)	
Distributed Universal Constructions 66	Distributed Universal Constructions 67

Extension 1: disjoint-access parallelism (2)	Extension 2: abortable objects, definition
 General impossibility result: Disjoint-access parallelism and wait-freedom are mutually exclusive when designing a universal construction Specific possibility result: Possible for the object class containing all the objects <i>O</i> for which, in any sequential execution, each operation accesses a bounded number of base objects used to represent <i>O</i> This class includes bounded trees, stacks and queues whose internal representations are list-based 	 An abortable object is defined by a sequential specification and such that When executed in a concurrency-free context, an operation takes effect, i.e., modifies the state of the object and returns a result as defined by its sequential specification When executed in a concurreny context, an operation either takes effect and returns a result as defined by its sequential specification, or returns the default value ⊥ (abort) An operation returning ⊥ has no effect on the state of the object
Distributed Universal Constructions 68	IRISA Distributed Universal Constructions 69
WF-compliant universal const. for Abort. Objects	k-abortable objects
 Successful speculative execution returns a value Unuccessful speculative execution returns ⊥ (occurs only in a concurrency pattern) when p_i invokes op(in) do <pre></pre>	 An operation is allowed to abort only if it is concurrent with operations issued by k distinct processes and none of them returns ⊥ (abort) This means that the k operations that entail the abort of another operation must succeed n-abortability is ⊥-free wait-freedom A (non-trivial) WF-compliant universal contruction for k-abortable objects exists in CARWn[LL/SC] Ben-David N., Cheng Chan D.Y., Hadzilacos V. and Toueg S., k-Abortable objects: progress under high contention. Proc. 30th Int'l Symposium on Distributed Computing (DISC'16), Springer LNCS 9888, pp. 298-312 (2016)

	Hardware-provided uniform operations
Universal constructions From operations on memory locations to agreement objects	 The previous universal constructions are based on hardwar provided atomic operations such as LL/SC These hardware-provided atomic operations are uniform in the sense they can be applied to any memory location Memory locations are not "objects" in the classical sense (e.g. a push() operation on a stack is meaningless on a set).
Distributed Universal Constructions 72	A fundamental object: Consensus
	• A single operation denoted propose() that
 Can we design WF-compliant universal constructions with hardware atomic operations such as Test&Set or Fetch&Add? Are all hardware atomic operations "equal" wrt WF-compliant universal constructions? Is it possible to generalize the concept of a universal construction to the coordinated construction of several objects with different progress conditions? 	 * a process can invoke only once * has an input parameter (proposed value) and a result (decided value) Consensus is defined by the following three properties: * Validity. A decided value is a proposed value * Agreement. No two processes decide different values
	 Termination. If a correct process invokes propose(), it decides


Underlying local task T (1)	Underlying local task T (2)
while (true) do $prop_i \leftarrow \epsilon$; % empty list % for $j \in \{1,, n\}$ do if $(BOARD[j].sn > sn_i[j])$ then append $(BOARD[j].op, j)$ to $prop_i$ end if end for; if $(prop_i \neq \epsilon)$ then see NEXT SLIDE end if end while.	$\begin{array}{l} k_i \leftarrow k_i + 1;\\ list_i \leftarrow CONS[k_i].\text{propose}(prop_i);\\ \textbf{for } r = 1 \textbf{ to } list_i \textbf{ do}\\ \langle state_i, res_i \rangle \leftarrow \delta(state_i, list_i[r].op);\\ \textbf{let } j = list_i[r].proc; \ sn_i[j] \leftarrow sn_i[j] + 1;\\ \textbf{if } (i = j) \textbf{ then } done_i \leftarrow \textbf{true end if}\\ \textbf{end for.} \end{array}$ Simple sequence of consensus instances to agree on the same sequence of operations applied to the object O
Distributed Universal Constructions 80 Bounded WF vs Unbounded WF	A bounded WF universal constructions
 Bounded-wait-freedom: the number of steps (accesses to the shared memory) executed before an operation terminates is bounded Unbounded-wait-freedom: the number of steps (accesses to the shared memory) executed before an operation terminates is finite (not bounded) This construction ensures that the operations issued by the processes are wait-free, but does not guarantee that they are bounded-wait-free (processes have to catch up) 	The object representation is in the shared memory anchor $ \begin{array}{c} anchor \\ sn \\ invoc \\ state \\ resp \\ next \end{array} $ $ \begin{array}{c} 2 \\ op'() \\ s1 \\ res_1 \\ \hline \end{array} $ $ \begin{array}{c} 2 \\ op''() \\ s_1 \\ \hline \hline \end{array} $ $ \begin{array}{c} 2 \\ op''() \\ s_1 \\ \hline \hline \end{array} $ $ \begin{array}{c} 2 \\ op''() \\ \hline s_1 \\ \hline \hline \end{array} $ $ \begin{array}{c} 2 \\ op''() \\ \hline s_1 \\ \hline \hline \hline \end{array} $ $ \begin{array}{c} 2 \\ op''() \\ \hline \hline s_1 \\ \hline \hline \hline \hline \hline \end{array} $ $ \begin{array}{c} 2 \\ op''() \\ \hline \hline s_2 \\ \hline \hline \hline \hline \hline \hline \hline \end{array} $ $ \begin{array}{c} 4 \\ \hline \hline$
• There are bounded WF universal constructions	 to agree on the sequence of operations applied to the object Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124-149 (1991)
Distributed Universal Constructions 82	Distributed Universal Constructions


Consensus number	The consensus hierarchy
Let us consider an object of type T (defined by a sequential specification) The consensus number of an object of type T is the greatest integer n such that it is possible to implement a consensus object in a system of n processes, with any number of atomic read/write registers and objects of type T The consensus number is $+\infty$ if there is no largest n	 The consensus number of read/write registers is 1 It follows that all objects that can be built from read/write registers only (i.e., in CARW_n[Ø] without enrichment with additional operations) have consensus number 1 The consensus number of hardware operations such as Test&Set, Fetch&Add, Swap, and a few others, is 2 Let a <i>k</i>-window read/write register be a register that stores only the sequence of the last <i>k</i> values which have been written, and whose read operation returns this sequence of at most <i>k</i> values. The consensus number of a <i>k</i>-window is <i>k</i> Finally, the consensus number of Compare&Swap, LL/SC and a few others, is +∞
Distributed Universal Constructions 84 Universality of consensus	Distributed Universal Constructions 85
 Consensus objects are universal in the sense they allow to WF-implement any object defined by a sequential specification in CARWn[Ø] Any hardware-provided operation h_op whose consensus number is n is universal in CARWn[Ø] This means that any object defined by a sequential specification can be WF-implemented in CARWn[h_op] 	Universal constructions Consensus from several operations on memory locations

The problem	Illustration
 The previous hierarchy considers consensus built from read/write registers and objects of a given type <i>T</i> only What can be done with when several hardware operations, which access the same memory location, are given? Ellen F., Gelashvili G., Shavit N. and Zhu L., A complexity-based hierarchy for multiprocessor synchronization (Extended abstract). <i>Proc. 35th ACM Symposium on Principles of Distributed Computing (PODC'16)</i>, ACM Press, pp. 289-298 (2016) 	 System model CARW_n[Test&Set, Fetch&Add2] * Test&Set returns the value in the memory location, and sets it to 1 if it contained 0 * Fetch&Add2 returns the value in the memory location and increases it by 2 (preserves parity: invariant) Test&Set and Fetch&Add2 have consensus number 2 Which power has CARW_n[Test&Set, Fetch&Add2]?
Distributed Universal Constructions 88 Binary consensus object for any <i>n</i>	IRISA Distributed Universal Constructions 89 Power number of an object type T
A single memory location X, initialized to 0 operation propose(v) is if $(v = 0)$ then $x \leftarrow X$.fetch&add2(); if $(x \text{ is odd})$ then return(1) else return(0) end if else $x \leftarrow X$.test&set(); if $(x \text{ is odd}) \lor (x = 0)$ then return(1) else return(0) and if	 Definition: The power number of an object type T (PN(T)) is the largest integer k such that it is possible to implement a k-obstruction-free consensus object for any number of processes, using any number of atomic read/write registers, and any number of objects of type T (the registers and the objects of type T being wait-free) If there is no such largest k, PN(T) = +∞ We have CN(T) = PN(T)
 end if end if. Decision is sealed by the first atomic operation executed If the first operation executed is fetch&add2(): X becomes and remains even forever (decision 0) test&set(): X becomes and remains odd forever (decision 1) 	 Establish a strong relation linking wait-freedom and k-obstruction-freedom (progress conditions) Taubenfeld G., On the computational power of shared objects. Proc. 13th Int'l Conference on Principles of Distributed Systems (OPODIS'09), Springer LNCS 5923, pp. 270-284 (2009)
Distributed Universal Constructions 90	Distributed Universal Constructions 91

	Aim
Universal constructions "1 among k " and " ℓ among k "	 Consider k objects (state machines, seq. specification) Design a WF-compliant universal construction such that at least one object progresses forever at least l objects progress forever Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int'l Conference on Concurrency Theory (CONCUR'11), Springer LNCS 6901, pp. 17-27 (2011) Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica, 76(2):502-535 (2016)
Distributed Universal Constructions 92 Another agreement object: k-set agreement	Yet another agreement object: k-simultaneous constructions
-SA is consensus where up to k values can be decided	propose() takes as input parameter a vector of size k , whose each entry contains a value, and returns a pair $\langle x, v \rangle$
 Validity. A decided value is a proposed value Agreement. At most k different values are decided Termination. If a correct process invokes propose(), it decides a value Chaudhuri S., More choices allow more faults: set consensus problems in totally synchronous systems. <i>Information and Computation</i>, 105(1):132-158 (1993) 	 Validity. A decided pair ⟨x, v⟩ is such that v was proposed by a process in the entry x of its input vector parameter Agreement. If ⟨x, v⟩ and ⟨y, w⟩ decided, we have (x = y) ⇒ (v = w) Termination. If a correct process invokes propose(), it decides Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers C., The k-simultaneous

k-set agreement vs k-SC	Guerraoui-Gafni's question
 In read/write systems: They are equivalent Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers C., The k-simultaneous consensus problem. <i>Distributed Computing</i>, 22(3):185-195 (2010) In message-passing systems: k-SC is strictly stronger than k-set agreement Bouzid Z. and Travers C., Simultaneous consensus is harder than set agreement in message-passing. <i>Proc. ICDCS'13</i>, IEEE Press, pp. 611-620 (2013) Raynal M. and Stainer J., Simultaneous consensus vs set agreement: a message-passing-sensitive hierarchy of agreement problems. <i>Proc. SIROCCO'13</i>, Springer LNCS 8179, pp. 298-309 (2013) 	 Their question: Is 1 a special value? (wrt k ∈ [2n]) k-set agreement: Allows up to k different values to be decided 1-set agreement is consensus What they do: They consider the implementation of k objects (each defined by a seq. specification) instead of only one, and "replace" consensus by (k-simultaneous consensus (= k-set agreement) objects They provide a non-blocking universal construction in which at least one object progresses forever
Distributed Universal Constructions 96 Underlying basic object: adopt-commit (1)	Distributed Universal Constructions Underlying basic object: adopt-commit (2)
 One-shot object A single operation denoted propose(), which takes a value v as input parameter and returns a pair (tag, v') 5afni E., Round-by-round fault detectors: unifying synchrony and asynchrony. Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC), ACM Press, pp. 143-152 (1998) 	 Validity: Result domain: Any returned pair (tag, v) is such that (a) v has been proposed by a process and (b) tag ∈ {commit, adopt} No-conflicting values: If a process p_i invokes propose(v) and returns before any other process p_j has invoked propose(v') with v' ≠ v, then only the pair (commit, v) can be returned Agreement: If a process returns (commit, v), only the pairs (commit, v) or (adopt, v) can be returned Termination: The invocation of propose() by a correct process always terminates Can be implemented in CARWn[Ø]

The (k, ℓ) -universal construction (1)	The (k, ℓ) -universal construction (2)
 First a non-blocking (k, 1)-universal construction is built It relies on copies of the views (histories) of each object by each process The consistency of these views is ensured thanks to (k, 1)-simultaneous consensus objects Each view is a full object history (seq. of operations) This facilitates the statement and the proof universal construction The full objects history can be eliminated, and replaced by registers containing the state of each object 	 Then, one step after the other, the algorithm is enriched to satisfy contention-awareness to ensure wait-freedom of each object operation Finally the (k, 1)-simultaneous consensus objects are replaced by (k, l)-simultaneous consensus objects to obtain a wait-free, contention aware, (k, l)-universal construction
Distributed Universal Constructions 108	Distributed Universal Constructions 109
 Remarks When k = l = 1, the universal construction obtained is the first contention-aware (1, 1)-universal construction is the first contention-aware (k, 1)-universal construction 	Conclusion

 Quest for distributed universal constructions is at the heart of distributed computability Understand distributed computability is mainly concerned by mastering uncertainty (non-determinism) created by the environment(mainly asynchrony, failures, and concurrency) This quest is far from being finished Still remain to have a deeper understanding of the relations between shared memory systems, message-passing communication abstractions, and agreement objects 	"Bolchoïe spassibo" for your attention
Distributed Universal Constructions 112	Distributed Universal Constructions 113