
Distributed Universal Constructions

a guided tour

Michel RAYNAL

Institut Universitaire de France

Academia Europaea

IRISA, Université de Rennes, France

Polytechnic University (PolyU), Hong Kong

Distributed Universal Constructions 1

Never forget

Distributed Universal Constructions 2

Content

• Short historical perspective and a point of view

• From sequential computing to distributed computing

• Distributed universal constructions

• Conclusion

Distributed Universal Constructions 3

Concurrent programming (1)

Concurrent Programming:
Algorithms, Principles
and Foundations

by Michel Raynal

Springer, 531 pages, 2013

ISBN: 978-3-642-32026-2

Distributed Universal Constructions 4

Concurrent programming (2)

• Part 1: Lock-based synchronization
(3 chap., pp. 1-110)

• Part 2: The atomicity concept
(1 chap., pp. 111-132)

• Part 3: Mutex-free synchronization
(5 chap., pp. 133-274)

• Part 4: The transactional memory approach
(1 chap., pp. 275-302)

• Part 5: From safe bits to atomic registers
(3 chap., pp. 303-368)

• Part 6: The computability power of concurrent objects
(4 chap., pp. 369-488)

Distributed Universal Constructions 5

Distributed Message-Passing (1)

Distributed algorithms for
Message-passing systems

by Michel Raynal

Springer, 517 pages, 2013

ISBN 978-3-642-38122-5

Distributed Universal Constructions 6

Distributed Message-Passing (2)

• Part 1: Distributed graph algorithms
(5 chap., pp. 1-118)

• Part 2: Logical time and global states
(4 chap., pp. 119-244)

• Part 3: Mutual exclusion and resource allocation
(2 chap., pp. 244-300)

• Part 4: High level communication abstractions
(2 chap., pp. 301-364)

• Part 5: Detection of properties of distributed executions
(2 chap., pp. 365-423)

• Part 6: Distributed shared memory
(2 chap., pp. 425-470)

Distributed Universal Constructions 7

PART 1

Historical perspective

and ...

a point of view on what is
INFORMATICS

Distributed Universal Constructions 8

From the very beginning (?)

mankind is

Looking for UNIVERSALITY!

Distributed Universal Constructions 9

One upon a time...

Plimpton tablet 322

(1800 BC)

15 lines

Pythagorean triplets

(a2 + b2 = c2)

Sexagesimal base

Algorithms seem to be born with writing...
(only receipes at this time, no formalization, no proofs)

Distributed Universal Constructions 10

a few historical references

• Neugebauer O. E.,
The exact sciences in Antiquity
Princeton University Press (1952); 2nd edition: Brown
University Press (1957), Reprint: Dover publications
(1969)

• Kramer S. N.,
History begins at Sumer: thirty-nine firsts in man’s
recorded history
University of Pennsylvania Press, 416 pages (1956)

• Donald Knuth
Ancient Babylonian Algorithms
Communications of the ACM, 15(7):671-677 (1972)

Distributed Universal Constructions 11

A little bit later...

A great step ahead!

Axioms: Euclid (≃ 300 BC)

“Ruler + compass” constructions

“Ruler + compass” define the
set of allowed operations

We have: algorithms + proofs

Distributed Universal Constructions 12

Example: Bissecting an angle with compass + ruler

B

C

AA

A

C

B B

A

C

D

r1

r1

r1

r1 r2

r2r2

r2

Proof: consists in showing that the triangles ABD and ACD are equal

Distributed Universal Constructions 13

BTW: what about trisecting an angle?

• Is it possible to trisect an angle with compass + ruler?

• One of the hardest pb for Ancient Greeks (squaring the
circle)

• Answer : impossibility proved in 1837 by Wantzel P. L.:

Recherches sur les moyens de reconnâıtre si un problème
de géométrie peut se résoudre avec la règle et le com-
pas, Journal de mathématiques pures et appliquées,
1(2):366-372 (1837)

Plus the fact that π is a transcendent number (F. von
Lindemann 1882)

• Hence ruler + compass operations are not universal for
geometric constructions!

Distributed Universal Constructions 14

Still a little bit later...

M. Ibn Musa Al Khawarizmi

780, Khiva - 850, Bagdad

Contributed to algebra ...

but gave its name to algorithms!

Distributed Universal Constructions 15

A few references

- Kitabu al-mukhtasar fi hisabi
al-jabr wa’l-muqabala

- Kitabu al-jami‘ wa’t-tafriq bi-
hisabi ’l-Hind
(the book of addition and substrac-
tion from Indian calculus)

Distributed Universal Constructions 16

Closer to us

1912-1954
1936

- Turing A. M., On computable numbers with an applica-
tion to the Entscheidungsproblem. Proc. of the London
Mathematical Society, 42:230-265 (1936)

Distributed Universal Constructions 17

Two great colleagues!

1903-1995 1897-1954

Distributed Universal Constructions 18

ALGORITHMICS

The science of operations
Loking for universality!

• Founding result:

⋆ FSA ⊂ Pushdown Automata ⊂ Turing Machines

⋆ Machines to process SYMBOLS

• Church-Turing Thesis: universal machines

• Universality of data representation :

séquences de bits (books, images, files, etc.)

A very nice book by Harel D. and Feldman Y.: Algorithmics: the spirit of computing.
3rd edition Springer, 572 pagers (2012) [First edition: 1992]

Distributed Universal Constructions 19

A unifying view

ALGORITHMICS

INFORMATICS

DIGITAL WORLD

Languages

Systems

Artificial Int.

Data bases

Computers

Etc.

applications

Distributed Universal Constructions 20

About informatics (1)

• Main resources:

⋆ up to mid of XX-th century: matter/energy

⋆ from mid of XX-th century: information

⋆ as matter/energy: information can be collected, con-
sumed, transformed, stored, carried, etc.

⋆ differentlty from matter/energy: it does not burn, it
can be copied at “zero cost”

• Looking for universality (just repeating...)

Distributed Universal Constructions 21

About informatics (2)

• Produces a “new” way of thinking (algorithmics-based)

• From putting the world into equations

to putting the world into algorithms

• Informatics is the language of science!

Distributed Universal Constructions 22

PART 2

From sequential computing

to distributed computing

Distributed Universal Constructions 23

The basic unit of sequential computing

out = f(in)f()in

• The notion of a function

• Sequential algorithm

• The notion of computability (Turing machine)

• The notion of impossibility (e.g., halting problem)

• The fundamental hierarchy

FSA ⊂ Pushdown Automata ⊂ Turing Machines

• Church-Turing’s Thesis

Distributed Universal Constructions 24

The case of parallel computing

• We look inside the box implementing f()

⋆ mono-processor

⋆ multiprocessor : to be more efficient

• The problem could ALWAYS be solved by a sequential
algorithm, but can be solved more efficiently with sev-
eral computing entities

• Parallel computing is an “extension” of sequential com-
puting looking for efficiency

• This has a long story and introduced new techniques
and concepts (e.g., task graphs, scheduling, etc.)

Distributed Universal Constructions 25

What is distributed computing?

DC arises when one has to solve a problem in terms of
entities (processes, agents, sensors, peers, actors, nodes,
processors, ...) such that each entity has only a partial
knowledge of the many parameters involved in the problem
that has to be solved

DC is about Mastering UNCERTAINTY

Distributed Universal Constructions 26

The basic unit of distributed computing

T ()

ini outi
pi

Output O ∈ T (I)

[out1, · · · , outn]Input I

[in1, · · · , inn]

T () is a relation

• The notion of a task: from an input vector to an output

• The inputs are DISTRIBUTED
(this is not under the control of the algorithm designer)

• Failures belong to the model (in nearly all cases)

Distributed Universal Constructions 27

The notion of a (distributed) task

• A task T is a triple (I,O,∆)

⋆ I: set of input vectors (of size n)

⋆ O: set of output vectors (of size n)

⋆ ∆: relation from I into O: ∀I ∈ I : ∆(I) ⊆ O

• I[i]: private input of pi

• O[i]: private output of pi

• ∀I ∈ I:
∆(I) defines the set of legal output vectors that can
be decided from the input vector I

Distributed Universal Constructions 28

Examples of tasks

• Binary consensus

⋆ I = {all vectors of 0 and 1}

⋆ O =
{

{0, . . . ,0}, {1, . . . ,1}
}

⋆ Let X0 = {0, . . . ,0} and X0 = {1, . . . ,1}

∗ ∆(X0) = {0, . . . ,0} and ∆(X1) = {1, . . . ,1}

∗ ∆(any vector except XO, X1) = O

• k-set agreement, Renaming, Weak symmetry breaking

• k-Simultaneous consensus, etc.

Distributed Universal Constructions 29

Solving a task

A distributed algorithm A is a set of n local automata
(Turing machines) that cooperate through specific com-
munication objects (e.g., message-passing network, shared
memory, etc.)

An algorithm A solves a task T if in any run

• ∃ I ∈ I such that each pi starts with (proposes) ini = I[i]

• ∃ O ∈ ∆(I) such that O[j] = outj for each process pj
that that computes (decides) an output outj

Distributed Universal Constructions 30

Distributed computing: birth certificates

• L. Lamport, Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565 (1978)

⋆ Partial order on events
⋆ Scalar clocks
⋆ State machine replication

• Fischer M.J., Lynch N.A., and Paterson M.S., Impossi-
bility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374-382 (1985)

⋆ Impossibilty result in asynch. crash-prone systems

⋆ Notion of valence (captures non-determinism)

Distributed Universal Constructions 31

A famous quote ... and its formalization

• “A distributed system is one in which the failure of a
computer you didn’t even know existed can render your
own computer unusable” (L. Lamport)

• Fischer M.J., Lynch N.A., and Paterson M.S.,
Impossibility of distributed consensus with one faulty
process.
Journal of the ACM, 32(2):374-382 (1985)

Reminder: DC is about Mastering UNCERTAINTY!

Distributed Universal Constructions 32

To summarize

• Real-time: masters On-time computing

• Parallelism: provides Efficiency

• Distributed computing:

masters Uncertainty

(We are -more or less- implicitly using a lot of heuristics!)

Fundamental issue:
cope with the non-determinism created by the
environment (asynchrony, failures)

Distributed Universal Constructions 33

PART 3

Universal constructions

in crash-prone shared memory systems

Distributed Universal Constructions 34

Content

• Concurrent objects, failures, asynchrony, progress

• What is a universal construction?

• Basic asynchronous read/write model

• Warm-up: a simple LL/SC-based universal construction

• Extensions: disjoint parallelism, abortable objects

• From memory operations to agreement objects

• Consensus object and consensus hierarchy

• Universal construction “1 among k” and “ℓ among k”

Distributed Universal Constructions 35

Companion paper

Distributed Universal Constructions: a Guided Tour

by Michel Raynal

Bulletin of the European Association
of Theoretical Computer Science (EATCS)

121(1):64-96 (2017)

Distributed Universal Constructions 36

A citation

“In sequential systems, computability is understood through
the Church-Turing Thesis: anything that can be computed,
can be computed by a Turing Machine.

In distributed systems, where computations require coor-
dination among multiple participants, computability ques-
tions have a different flavor. Here, too, there are many
problems which are not computable, but these limits to
computability reflect the difficulty of making decisions in
the face of ambiguity, and have little to do with the inher-
ent computational power of individual participants.”

- Herlihy M., Rajsbaum S., and Raynal M., Power and limits of distributed computing
shared memory models. Theoretical Computer Science, 509:3-24 (2013)

Distributed Universal Constructions 37

Computation model (base wait-free model)

• Process and failure model:

⋆ A set of n asynchronous processes p1, ..., pn

⋆ “Asynchronous” means each process proceeds at its
own speed, which can be arbitrary and remains always
unknown to the other processes.

⋆ Up to t < n− 1 processes smay crash

⋆ A process that crahes: faulty, otherwise: non-faulty

• Communication model:

⋆ The processes communicate with atomic read/write
registers (memory locations)

⋆ “Atomicity” (or Linearizability) means that the read
and write primitive operations on a register appear as
if they have been executed one after the other

• Notation: CARWn[∅]

Distributed Universal Constructions 38

Linearizabilty (atomicity) and non-determinism

p1

p2

p3

R.read()→ 1 R.read()→ 2

R.write(1) R.write(2)

R.write(3)

Omniscient observer’s time line

Here R = 1 Here R = 3Here R = 2

R.read()→ 3

Possibly different linearizations,
but all respect physical order on operations

Distributed Universal Constructions 39

A remark on the message-passing model

• Message-passing model:

⋆ complete point-to-point network

⋆ no bound on transfer delays (but finite)

⋆ reliable (no loss, creation, duplication, alteration)

• In the presence of up to t failures:

⋆ Crash: the read/write model can be simulated on top
the message-passing model only iff t < n/2

- Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message
passing systems, Journal of the ACM, 42(1):121-132 (1995)

⋆ Byzantine: the read/write model can be simulated
on top the message-passing model only iff t < n/3

- Imbs D., Rajsbaum S., Raynal M., and Stainer J., Reliable shared memory
abstractions on top of asynchronous Byzantine message-passing systems,
Journal of Parallel and Distributed Computing, 93-94:1-9 (2016)

Distributed Universal Constructions 40

Concurrent objects

• Concurrent object: object that can be accessed (pos-
sibly simultaneously) by several processes

• Here: defined by

⋆ a sequential specification

⋆ on total operations

• Remark: not all objects have a seq. specification

• Fundamental problem of shared memory distributed pro-
gramming:

implement high level concurrent objects, where “high
level” means that the object provides the processes with
an abstraction level higher than the atomic hardware-
provided instructions

Distributed Universal Constructions 41

On Progress conditions

• Failure-free model

⋆ Deadlock-freedom
⋆ Starvation-freedom

• Wait-free model

⋆ Locks (mutex) cannot be used!

⋆ three progress conditions

∗ Wait-freedom

∗ Non-blocking

∗ Obstruction-freedom

Distributed Universal Constructions 42

Wait-freedom

• Any operation (on the object that is built) issued by a
process that does not crash terminates (whatever the
behavior of the other processes)

• The strongest progress condition

- Herlihy M.P., Wait-free synchronization. ACM Transac-
tions on Programming Languages and Systems, 13(1):124-
149 (1991)

Distributed Universal Constructions 43

Non-blocking aka Lock-freedom

• At least one process can always progress (all its object
operations terminate)

• Generalized: k-lock-freedom which states that at least
k processes can always make progress

• n-lock-freedon = wait-freedom

- Herlihy M.P. and Wing J.M, Linearizability: a correct-
ness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems, 12(3):463-492
(1990)

Distributed Universal Constructions 44

Obstruction-freedom

• A process that does not crash terminates its operation
if all the other processes hold still long enough

• k-obstruction-freedom states that, if a set of at most
k processes run alone for a sufficiently long period of
time, they will terminate their operations

• Differently from wait-freedom and non-blocking, the
definition of obstruction-freedom depends on concur-
rency pattern

- Herlihy M.P., Luchangco V., and Moir M., Obstruction-
free synchronization: double-ended queues as an example.
Proc. 23th Int’l IEEE Conference on Distributed Comput-
ing Systems (ICDCS’03), IEEE Press, pp. 522-529 (2003)

Distributed Universal Constructions 45

Universal construction

• Let PC be a progress condition

• A PC-compliant universal construction is an algorithm
that, given the sequential specification of an object O
(or a sequential implementation of it), provides a con-
current implementation of O satisfying PC in the the
presence of up (n− 1) process crashes

Sequential specification

of an object Z of object Z

PC-compliant implementation

universal construction
PC-compliant

Distributed Universal Constructions 46

What can be done in pure read/write systems

Let us consider CARWn[∅]

• OB-compliant universal construction: easy

• WF-compliant universal construction: impossible

- Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed con-
sensus with one faulty process. Journal of the ACM, 32(2):374-382 (1985)

- Loui M. and Abu-Amara H., Memory requirements for agreement among un-
reliable asynchronous processes. Advances in Computing Research, 4:163-183,
JAI Press (1987)

• to implement WF-compliant universal constructions
CARWn[∅] must be enriched with hardware operations
providing (strong enough) additional computational power

• in the following: WF-compliant universal constructions

Distributed Universal Constructions 47

Enriching the basic read-write model with LL/SC

• Notation CARW[LL/SC]

• The atomic operations LL and SC

• Let X a memory location and pi the invoking process

⋆ X.LL() returns the current value of X

⋆ X.SC() is a conditional write, returns a Boolean

let pi be the process that issues X.SC(v). This writes
succeeds (the value v is written into X and true is re-
turned) iff X has not been written by an other process
since the last reading of X by pi (X.LL())

⋆ Weak variants exist on some architectures such as
Alpha AXP (ldl l/stl c), IBM PowerPC (lwarx/stwcx)

Distributed Universal Constructions 48

The pair Load Linked/Store Conditional

pi

read T write Zread Z Y.LL()X.LL() Y.SC()

X.LL() by pi

X.LL() by pk

X.SC() by pi

X.SC() by pk

Succeeds Fails

Distributed Universal Constructions 49

An algorithmic definition

Assume a boolean array validX[1..n] init to [false, . . . , false]

operation X.LL() issued by pi is
validX[i]← true; return(X).

operation X.SC(v) issued by pi is
if ¬validX[i] then return(false)

else X ← v;
∀j : validX[j]← false;
return(true)

end if.

Distributed Universal Constructions 50

LL/SC in action

Notion of a speculative execution

xi← X.LL(); % xi : local copy of X %
Statements (involving accesses to local memory
and possibly acceses to the shared memory)
computing a new value for X;
% this is the speculative execution %
if X.SC(v) then statement associated with success

else statement associated with failure
end if.

Distributed Universal Constructions 51

A simple universal construction

• due to: Fatourou P. and Kallimanis N.D., Highly-efficient
wait-free synchronization. Theory of Computing Sys-
tems, 55:475-520 (2014)

• Here we consider a simplified version with increasing
sequence numbers

• Shared memory representation

⋆ a non-atomic collect object BOARD of size n

⋆ an array of n atomic memory locations STATE

Distributed Universal Constructions 52

The collect object

• Array BOARD[1..n] with one entry per process

• provides each pi with two operations: update() and collect()

• BOARD .update(v) by process pi: assigns v to BOARD[i]

• BOARD .collect(): asynchronous scan of the array return-
ing, for each entry j, the value read from BOARD[j]

• collect() is not atomic (⇐ asynchronous scan)

• BOARD[i] contains a pair 〈op, sn〉 where op is the last
operation on O issued by pi and sn is its seq number

Distributed Universal Constructions 53

STATE : the representation of the object O

STATE is a memory location made up of three fields

• STATE .value: current value of O

• STATE .sn[1..n]: array of seq numbers (init. [0, · · · ,0])

STATE .sn[i] = seq number of pi’s last invocation on O

• STATE .res[1..n]: array of result values (init. [⊥, · · · ,⊥])

STATE .res[i] = result of the last operation issued by pi

Local variable sni at every process pi (init 1)

Distributed Universal Constructions 54

The sequential sepcification of the object O

• Defined by a transition function δ()

• inputs:

⋆ s: the current state of O

⋆ op(in): invocation of the operation op(in) on O

• δ(s, op(in)) outputs a pair 〈s′, r〉 such that

⋆ s′ is the state of O after the execution of op(in) on s,

⋆ and r is the result of op(in)

Distributed Universal Constructions 55

Construction: operation invocation

when pi invokes op(in) do
BOARD .update(〈op(in), sni〉);
sni ← sni +1;
apply();
let r = STATE .res[i]; return(r).

Distributed Universal Constructions 56

Procedure apply() (1)

internal procedure apply() is
ls← STATE .LL();
pairs← BOARD .collect();
for ℓ ∈ {1,2, · · · , n} do

if (pairs[ℓ].sn = ls.sn[ℓ] + 1 then
〈ls.value, r〉 ← δ(ls.value, pairs[ℓ].op);
ls.res[ℓ]← r;
ls.sn[ℓ]← pairs[ℓ].sn

end if
end for
STATE .SC(ls)

• The loop implements a helping mechanism

Distributed Universal Constructions 57

Procedure apply() (1)

• When ℓ = j: pi strives to help pj

Distributed Universal Constructions 57

Properties

• An operation cannot be executed more than once

• If a process does not crash, it terminates its operation
(seq. asynchronous code)

• But is the result returned for the operation correct?

Distributed Universal Constructions 58

An execution

successful

pi

pj by some process pk

Atomicity line

next successfulSTATE .SC()lsj ← STATE .LL()

BOARD .update(op(in), sn) STATE .SC(): not successfullsi ← STATE .LL()

pairsj ← BOARD .collect()
STATE .SC()

big dot = atomic step

Distributed Universal Constructions 59

Final algorithm for apply()

internal procedure apply() is
repeat twice

ls← STATE .LL();
pairs← BOARD .collect();
for ℓ ∈ {1,2, · · · , n} do

if (pairs[ℓ].sn = ls.sn[ℓ] + 1 then
〈ls.value, r〉 ← δ(ls.value, pairs[ℓ].op);
ls.res[ℓ]← r;
ls.sn[ℓ]← pairs[ℓ].sn

end if
end for
STATE .SC(ls)

end repeat twice.

Cost: ≤ 2n (seq.) shared memory accesses

Distributed Universal Constructions 60

Linearization points of the operations

• Let SC[1], SC[2], ..., SC[x], ... be the sequence of the
successful invocations of STATE .SC()

• As STATE .SC() is atomic, this sequence is well-defined

• Starting from SC[1], each SC[x] applies at least one
operation on the object O

• The operations applied to O by each SC[x] are totally
ordered

• Let seq[x] be the corresponding sequence

• The sequence of operations applied to O is then seq[1],
seq[2], ..., seq[x], etc.

Distributed Universal Constructions 61

Exercise: build an atomic collect object

• Consider an atomic object X with two operations

⋆ X.add(v) adds v to X

⋆ X.read() returns the value of X

• D = value domain of the entries of the collect object

• d = number of bits needed to represent a value of D

• X = atomic register of nd bits (n chunks of d bits)

Distributed Universal Constructions 62

Internal representation of X with nd bits

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

nd d 1

n i 1

(n− 1)d+1

d bits d bits d bits

id (i− 1)d+1

Distributed Universal Constructions 63

The operations of the atomic collect objects

v′ = previous value written by pi, init 0

operation update(v) by pi is
〈bd, · · · , b1〉 ← binary encoding of (v − v′);
val← 〈0, · · · ,0, bd, · · · , b1,0, · · · ,0〉

with 〈bd, · · · , b1〉 in position [id...(i− 1)d+1];
X.add(val); v′← val;
return.

operation collect() is
v ← X.read();
decompose v according to the n-chunk encoding;
return (corresponding array r[1..n]).

Exercise: replace add() by xor()

Distributed Universal Constructions 64

The case of large objects

A large object is an object whose internal state cannot be
copied in one atomic step (machine instruction)

• A large object is fragmented into blocks

• Pointers linking blocks: speculative execution with point-
ers manipulated with LL/SC

- Herlihy M.P., A methodology for implementing highly concurrent data objects.
ACM Trans. on Programming Languages and Systems, 15(5):745-770 (1993)

• Long array fragmented into blocks: implemented with
LargeLL and LargeSC operations (built from LL/SC-
based algorithm)

- Anderson J. and Moir M., Universal constructions for large objects. IEEE
Transactions on Parallel and Distributed Systems, 10(12):1317-1332 (1999)

Distributed Universal Constructions 65

Extension 1: disjoint-access parallelism (1)

• A universal construction is disjoint-access parallel if two
processes that access distinct parts of an object O do
not access common base objects or common memory
location which constitute O’s internal representation

• As an example, let us consider a queue Q.
When |Q| ≥ 3, a disjoint-access parallelism implementa-
tion allows a process executing enqueue(v) and a process
executing dequeue() to progress without interfering

• Is it possible to design a disjoint-access parallelism WF-
compliant universal construction?

- Ellen F., Fatourou P., Kosmas E., Milani A., and Travers C., Universal constructions
that ensure disjoint-access parallelism and wait-freedom. Distributed Computing,
29:251-277 (2016)

Distributed Universal Constructions 66

Example

Disjoint-access parallelism is a property of the implementation

enqueue(v) dequeue()

Distributed Universal Constructions 67

Extension 1: disjoint-access parallelism (2)

• General impossibility result:
Disjoint-access parallelism and wait-freedom are mutu-
ally exclusive when designing a universal construction

• Specific possibility result:
Possible for the object class containing all the objects
O for which, in any sequential execution, each opera-
tion accesses a bounded number of base objects used
to represent O
This class includes bounded trees, stacks and queues
whose internal representations are list-based

Distributed Universal Constructions 68

Extension 2: abortable objects, definition

An abortable object is defined by a sequential specification
and such that

• When executed in a concurrency-free context, an oper-
ation takes effect, i.e., modifies the state of the object
and returns a result as defined by its sequential specifi-
cation

• When executed in a concurreny context, an operation
either takes effect and returns a result as defined by its
sequential specification, or returns the default value ⊥
(abort)

An operation returning ⊥ has no effect on the state of
the object

The operations of an abortable object always terminate

Distributed Universal Constructions 69

WF-compliant universal const. for Abort. Objects

• Successful speculative execution returns a value

• Unuccessful speculative execution returns ⊥ (occurs only
in a concurrency pattern)

when pi invokes op(in) do
ls← STATE .LL();
〈new state, r〉 ← δ(ls, op(in));
done← STATE .SC(new state);
if (done) then return(r) else return(⊥) end if.

• No helping mechanism is needed

Distributed Universal Constructions 70

k-abortable objects

• An operation is allowed to abort only if it is concurrent
with operations issued by k distinct processes and none
of them returns ⊥ (abort)

• This means that the k operations that entail the abort
of another operation must succeed

• n-abortability is ⊥-free wait-freedom

• A (non-trivial) WF-compliant universal contruction for
k-abortable objects exists in CARWn[LL/SC]

- Ben-David N., Cheng Chan D.Y., Hadzilacos V. and Toueg S., k-Abortable ob-
jects: progress under high contention. Proc. 30th Int’l Symposium on Distributed
Computing (DISC’16), Springer LNCS 9888, pp. 298-312 (2016)

Distributed Universal Constructions 71

Universal constructions

From operations on memory locations

to agreement objects

Distributed Universal Constructions 72

Hardware-provided uniform operations

• The previous universal constructions are based on hardware-
provided atomic operations such as LL/SC

• These hardware-provided atomic operations are uniform
in the sense they can be applied to any memory location

• Memory locations are not “objects” in the classical sense
(e.g. a push() operation on a stack is meaningless on a
set).

Distributed Universal Constructions 73

A few important questions

• Can we design WF-compliant universal constructions
with hardware atomic operations such as Test&Set or
Fetch&Add?

• Are all hardware atomic operations “equal” wrt WF-
compliant universal constructions?

• Is it possible to generalize the concept of a universal
construction to the coordinated construction of several
objects with different progress conditions?

Distributed Universal Constructions 74

A fundamental object: Consensus

• A single operation denoted propose() that

⋆ a process can invoke only once

⋆ has an input parameter (proposed value) and a result
(decided value)

• Consensus is defined by the following three properties:

⋆ Validity. A decided value is a proposed value

⋆ Agreement.
No two processes decide different values

⋆ Termination.
If a correct process invokes propose(), it decides

Distributed Universal Constructions 75

A simple consensus-based WF-compliant UC (1)

• Inspired from the state machine replication paradigm

• Each process pimanages

⋆ a local copy of the object O: statei

⋆ an array sni[1..n]

sni[j] = sequence number of the last operation on O
issued by pj, locally applied to statei

Distributed Universal Constructions 76

A simple consensus-based WF-compliant UC (2)

Shared memory

• An array BOARD[1..n] of SWMR atomic registers

⋆ BOARD[j] = 〈BOARD[j].op,BOARD[j].sn〉

∗ BOARD[j].op = last operation issued by pj
∗ BOARD[j].sn = its sequence number

⋆ BOARD[j]: initialized to 〈⊥,0〉

⋆ An unbounded array CONS [1..] of consensus objects

- Raynal M., Concurrent Programming: Algorithms, Principles and Foundations.
Springer, 515 pages (2013)

Distributed Universal Constructions 77

Strutural view of the Universal construction

pi pnp1

CONS [1],CONS [2],CONS [3], . . .

BOARD[1..n]

snn[1..n]sni[1..n]sn1[1..n]

shared memory

state1, propi statei, propi staten, propn

local memory local memory local memory

Distributed Universal Constructions 78

A simple consensus-based UC

when pi invokes op(in) do
donei← false;
BOARD[i]← 〈op(in), sni[i] + 1〉;
wait (donei);
return(resi).

Distributed Universal Constructions 79

Underlying local task T (1)

while (true) do
propi ← ǫ; % empty list %
for j ∈ {1, . . . , n} do

if (BOARD[j].sn > sni[j]) then
append (BOARD[j].op, j) to propi

end if
end for;
if (propi 6= ǫ) then see NEXT SLIDE end if

end while.

Distributed Universal Constructions 80

Underlying local task T (2)

ki← ki +1;
listi ← CONS [ki].propose(propi);
for r = 1 to |listi| do
〈statei, resi〉 ← δ(statei, listi[r].op);
let j = listi[r].proc; sni[j]← sni[j] + 1;
if (i = j) then donei← true end if

end for.

Simple sequence of consensus instances to agree on the
same sequence of operations applied to the object O

Distributed Universal Constructions 81

Bounded WF vs Unbounded WF

• Bounded-wait-freedom:
the number of steps (accesses to the shared memory)
executed before an operation terminates is bounded

• Unbounded-wait-freedom:
the number of steps (accesses to the shared memory)
executed before an operation terminates is finite (not
bounded)

• This construction ensures that the operations issued by
the processes are wait-free, but does not guarantee that
they are bounded-wait-free (processes have to catch up)

• There are bounded WF universal constructions

Distributed Universal Constructions 82

A bounded WF universal construction

The object representation is in the shared memory

sn

invoc

state

resp

next

1 2 x ℓ− 1 ℓ

anchor

⊥

s0

⊥ res1

s1

resx

sx

resℓ

sℓ

op′() op′′′()op′′()

• A list of objects modifications + a helping mechanism

• Next pointers: consensus objects allowing the processes
to agree on the sequence of operations applied to the
object

- Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149 (1991)

Distributed Universal Constructions 83

Consensus number

• Let us consider an object of type T (defined by a se-
quential specification)

• The consensus number of an object of type T is the
greatest integer n such that it is possible to implement
a consensus object in a system of n processes, with any
number of atomic read/write registers and objects of
type T

• The consensus number is +∞ if there is no largest n

Distributed Universal Constructions 84

The consensus hierarchy

• The consensus number of read/write registers is 1

It follows that all objects that can be built from read/write
registers only (i.e., in CARWn[∅] without enrichment
with additional operations) have consensus number 1

• The consensus number of hardware operations such as
Test&Set, Fetch&Add, Swap, and a few others, is 2

• Let a k-window read/write register be a register that
stores only the sequence of the last k values which have
been written, and whose read operation returns this se-
quence of at most k values. The consensus number of
a k-window is k

• Finally, the consensus number of Compare&Swap, LL/SC,
and a few others, is +∞

Distributed Universal Constructions 85

Universality of consensus

• Consensus objects are universal in the sense they allow
to WF-implement any object defined by a sequential
specification in CARWn[∅]

• Any hardware-provided operation h op whose consensus
number is n is universal in CARWn[∅]

This means that any object defined by a sequential spec-
ification can be WF-implemented in CARWn[h op]

Distributed Universal Constructions 86

Universal constructions

Consensus from several operations
on memory locations

Distributed Universal Constructions 87

The problem

• The previous hierarchy considers consensus built from
read/write registers and objects of a given type T only

• What can be done with when several hardware op-
erations, which access the same memory location, are
given?

- Ellen F., Gelashvili G., Shavit N. and Zhu L., A complexity-based hierarchy for mul-
tiprocessor synchronization (Extended abstract). Proc. 35th ACM Symposium on
Principles of Distributed Computing (PODC’16), ACM Press, pp. 289-298 (2016)

Distributed Universal Constructions 88

Illustration

• System model CARWn[Test&Set, Fetch&Add2]

⋆ Test&Set returns the value in the memory location,
and sets it to 1 if it contained 0

⋆ Fetch&Add2 returns the value in the memory loca-
tion and increases it by 2 (preserves parity: invari-
ant)

• Test&Set and Fetch&Add2 have consensus number 2

• Which power has CARWn[Test&Set, Fetch&Add2]?

Distributed Universal Constructions 89

Binary consensus object for any n

A single memory location X, initialized to 0

operation propose(v) is
if (v = 0)

then x← X.fetch&add2();
if (x is odd) then return(1) else return(0) end if

else x← X.test&set();
if (x is odd) ∨ (x = 0)

then return(1) else return(0)
end if

end if.

• Decision is sealed by the first atomic operation executed

• If the first operation executed is

⋆ fetch&add2(): X becomes and remains even forever (decision 0)

⋆ test&set(): X becomes and remains odd forever (decision 1)

Distributed Universal Constructions 90

Power number of an object type T

• Definition:
The power number of an object type T (PN(T)) is the
largest integer k such that it is possible to implement a
k-obstruction-free consensus object for any number of
processes, using any number of atomic read/write regis-
ters, and any number of objects of type T (the registers
and the objects of type T being wait-free)
If there is no such largest k, PN(T) = +∞

• We have CN(T) = PN(T)

• Establish a strong relation linking wait-freedom and k-
obstruction-freedom (progress conditions)

- Taubenfeld G., On the computational power of shared objects. Proc. 13th Int’l
Conference on Principles of Distributed Systems (OPODIS’09), Springer LNCS 5923,
pp. 270-284 (2009)

Distributed Universal Constructions 91

Universal constructions

“1 among k” and “ℓ among k”

Distributed Universal Constructions 92

Aim

• Consider k objects (state machines, seq. specification)

• Design a WF-compliant universal construction such that

⋆ at least one object progresses forever

⋆ at least ℓ objects progress forever

- Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int’l Conference
on Concurrency Theory (CONCUR’11), Springer LNCS 6901, pp. 17-27 (2011)

- Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica,
76(2):502-535 (2016)

Distributed Universal Constructions 93

Another agreement object: k-set agreement

k-SA is consensus where up to k values can be decided

• Validity. A decided value is a proposed value

• Agreement.
At most k different values are decided

• Termination.
If a correct process invokes propose(), it decides a value

- Chaudhuri S., More choices allow more faults: set consensus problems in totally
asynchronous systems. Information and Computation, 105(1):132-158 (1993)

Distributed Universal Constructions 94

Yet another agreement object: k-simultaneous cons.

propose() takes as input parameter a vector of size k, whose
each entry contains a value, and returns a pair 〈x, v〉

• Validity.
A decided pair 〈x, v〉 is such that v was proposed by
a process in the entry x of its input vector parameter

• Agreement.
If 〈x, v〉 and 〈y, w〉 decided, we have (x = y)⇒ (v = w)

• Termination.
If a correct process invokes propose(), it decides

- Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers C., The k-simultaneous
consensus problem. Distributed Computing, 22(3):185-195 (2010)

Distributed Universal Constructions 95

k-set agreement vs k-SC

• In read/write systems: They are equivalent

- Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers C., The k-simultaneous
consensus problem. Distributed Computing, 22(3):185-195 (2010)

• In message-passing systems:
k-SC is strictly stronger than k-set agreement

- Bouzid Z. and Travers C., Simultaneous consensus is harder than set agree-
ment in message-passing. Proc. ICDCS’13, IEEE Press, pp. 611-620 (2013)

- Raynal M. and Stainer J., Simultaneous consensus vs set agreement: a message-
passing-sensitive hierarchy of agreement problems. Proc. SIROCCO’13, Springer
LNCS 8179, pp. 298-309 (2013)

Distributed Universal Constructions 96

Guerraoui-Gafni’s question

• Their question: Is 1 a special value? (wrt k ∈ [2..n])

• k-set agreement:

⋆ Allows up to k different values to be decided

⋆ 1-set agreement is consensus

• What they do:

⋆ They consider the implementation of k objects (each
defined by a seq. specification) instead of only one,
and “replace” consensus by (k-simultaneous consen-
sus (= k-set agreement) objects

⋆ They provide a non-blocking universal construction in
which at least one object progresses forever

Distributed Universal Constructions 97

Underlying basic object: adopt-commit (1)

• One-shot object

• A single operation denoted propose(), which

⋆ takes a value v as input parameter

⋆ and returns a pair 〈tag, v′〉

Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony. Proc.
17th ACM Symposium on Principles of Distributed Computing (PODC), ACM Press,
pp. 143-152 (1998)

Distributed Universal Constructions 98

Underlying basic object: adopt-commit (2)

• Validity:
⋆ Result domain: Any returned pair (tag, v) is such
that (a) v has been proposed by a process and (b)
tag ∈ {commit, adopt}

⋆ No-conflicting values: If a process pi invokes propose(v)
and returns before any other process pj has invoked

propose(v′) with v′ 6= v, then only the pair 〈commit, v〉
can be returned

• Agreement: If a process returns 〈commit, v〉, only the
pairs 〈commit, v〉 or 〈adopt, v〉 can be returned

• Termination:

The invocation of propose() by a correct process always
terminates

Can be implemented in CARWn[∅]

Distributed Universal Constructions 99

The heart of GG11 universal construction

• operi[m] = next op on object m ∈ [1..k] by pi

• One adopt-commit per round and object m ∈ [1..k]

(1) 〈obj, op〉 ← KSC [ri].propose(operi[1..k]);

(2) (tagi[obj], ac opi[obj])← AC [ri][obj].propose(op);

(3) for each m ∈ {1, ..., k} \ {obj} do
(tagi[m], ac opi[m])← AC [ri][m].propose(operi[m])
end for

Distributed Universal Constructions 100

Why it works

At least one object operation is committed at every round

pix

pi2

pi1

precedes

line 1 line 2

line 2 line 3

line 2 line 3

〈adopt,−〉 ← AC [r][obj1].propose()

〈obj1,−〉 ← KSC [r].propose()

AC [r][obj2].propose() precedes

AC [r][obj1].propose()

AC [r][objx].propose()

AC [r][obj2].propose()

Distributed Universal Constructions 101

Summarizing GG11 Universal cosntruction

• At least one process progresses forever: non-blocking

• At least one object progresses forever

• Hence, k-set agreement allow a
coordinated NB-compliant universal construction of k
objects (state machines), such that at least one object
progresses forever

Distributed Universal Constructions 102

Beyond GG11 Universal construction!

• Design a coordinated WF-compliant universal construc-
tion of k objects (state machines), such that at least
ℓ ∈ [1..k] objects progress forever

- Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica,
76(2):502-535 (2016)

Distributed Universal Constructions 103

RTS16 univerdal construction at a glance

• Introduces (k, ℓ)-consensus objects (k, ℓ constant)

• Considering k objects, it introduces a (k, ℓ)-universal
construction

⋆ in which ℓ (1 ≤ ℓ ≤ k) objects progress forever

⋆ in which the progress condition is wait-freedom

⋆ that is contention-aware (only read/write registers
are used in the absence of contention)

⋆ that is generous wrt to the obstruction-freedom progress
condition

• Shows that (k, ℓ)-consensus objects are necessary and
sufficient for such a (k, ℓ)-universal construction

Distributed Universal Constructions 104

Remarks

• Contention awareness:

Cost(Compare&Swap) ≃ 1000 × Cost (read/write)

• Generosity: “dual” of indulgence

Distributed Universal Constructions 105

(k, ℓ)-simultaneous consensus (1)

• One-shot object

• A single operation denoted propose(), which

⋆ takes a vector of size k as input parameter,

⋆ and returns ℓ pairs 〈x1, v1〉, ..., 〈xℓ, vℓ〉
(where all xj are different)

Distributed Universal Constructions 106

Underlying basic objects: (k, ℓ)-SC (2)

• Validity: A pair (x, v) returned by a process v has been
proposed by a process in the x-th entry of its input
vector

• Agreement: If a process returns 〈x, v〉 and another pro-
cess returns 〈y, v′〉, then (x = y)⇒ (v = v′)

• Termination: An invocation of propose() by a correct
process always terminates

Distributed Universal Constructions 107

The (k, ℓ)-universal construction (1)

• First a non-blocking (k,1)-universal construction is built

⋆ It relies on copies of the views (histories) of each
object by each process

⋆ The consistency of these views is ensured thanks to
(k,1)-simultaneous consensus objects

⋆ Each view is a full object history (seq. of operations)

⋆ This facilitates the statement and the proof universal
construction

⋆ The full objects history can be eliminated, and re-
placed by registers containing the state of each ob-
ject

Distributed Universal Constructions 108

The (k, ℓ)-universal construction (2)

• Then, one step after the other, the algorithm is enriched

⋆ to satisfy contention-awareness

⋆ to ensure wait-freedom of each object operation

• Finally the (k,1)-simultaneous consensus objects are re-
placed by (k, ℓ)-simultaneous consensus objects to ob-
tain a wait-free, contention aware, (k, ℓ)-universal con-
struction

Distributed Universal Constructions 109

Remarks

• When k = ℓ = 1, the universal construction obtained is
the first contention-aware (1,1)-universal construction

• More generally, when ℓ = 1, the resulting construction is
the first contention-aware (k,1)-universal construction

Distributed Universal Constructions 110

Conclusion

Distributed Universal Constructions 111

• Quest for distributed universal constructions is at the
heart of distributed computability

• Understand distributed computability is mainly concerned
by mastering uncertainty (non-determinism) created by
the environment(mainly asynchrony, failures, and con-
currency)

• This quest is far from being finished...

• Still remain to have a deeper understanding of the rela-
tions between shared memory systems, message-passing
communication abstractions, and agreement objects

Distributed Universal Constructions 112

“Bolchöıe spassibo” for your attention

Distributed Universal Constructions 113

