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Chapter 38
Distribution Analyses

ChoosingAnalyze:Distribution ( Y ) gives you access to a variety ofdistribution
analyses. For nominalY variables, you can generate bar charts, mosaic plots, and
frequency counts tables.

For interval variables, you can generate univariate statistics, such as moments, quan-
tiles, confidence intervals for the mean, standard deviation, and variance, tests for
location, frequency counts, robust measures of the scale, tests for normality, and
trimmed and Winsorized means.

You can use parametric estimation based on normal, lognormal, exponential, or
Weibull distributions to estimate density and cumulative distribution functions and
to generate quantile-quantile plots. You can also generate nonparametric density es-
timates based on normal, triangular, or quadratic kernels.

You can use Kolmogorov statistics to generate confidence bands for the cumulative
distribution and to test the hypothesis that the data are from a completely specified
distribution with known parameters. You can also test the hypothesis that the data are
from a specific family of distributions but with unknown parameters.

Figure 38.1. Distribution Analysis
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Part 3. Introduction

Parametric Distributions

A parametric family of distributions is a collection of distributions with a known form
that is indexed by a set of quantities calledparameters. Methods based on parametric
distributions of normal, lognormal, exponential, and Weibull are available in a distri-
bution analysis. This section describes the details of each of these distributions. Use
of these distributions is described in the sections “Graphs” and “Curves” later in this
chapter.

You can use both the density function and the cumulative distribution function to
identify the distribution. The density function is often more easily interpreted than
the cumulative distribution function.

Normal Distribution

The normal distribution has the probability density function

f(y) =
1p
2��
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for �1 < y <1

where� is the mean and� is the scale parameter.

The cumulative distribution function is
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�
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�

where the function� is the cumulative distribution function of the standard normal
variable:�(z) = 1p

2�
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Lognormal Distribution

The lognormal distribution has the probability density function
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where� is the threshold parameter,� is the scale parameter, and� is the shape pa-
rameter.

The cumulative distribution function is

F (y) = �
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Chapter 38. Parametric Distributions

Exponential Distribution

The exponential distribution has the probability density function

f(y) =
1

�
exp

�
�y � �

�

�
for y > �

where� is the threshold parameter and� is the scale parameter.

The cumulative distribution function is

F (y) = 1� exp

�
�y � �

�

�
for y > �

Weibull Distribution

The Weibull distribution has the probability density function

f(y) =
c

�

�
y � �

�

�c�1
exp

�
�
�
y � �

�

�c�
for y > �; c > 0

where� is the threshold parameter,� is the scale parameter, andc is the shape pa-
rameter.

The cumulative distribution function is

F (y) = 1� exp

�
�
�
y � �

�

�c�
for y > �
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Part 3. Introduction

Variables

To create a distribution analysis, chooseAnalyze:Distribution ( Y ) . If you have al-
ready selected one or more variables, a distribution analysis for each selected variable
appears. If you have not selected any variables, a variables dialog appears.

Figure 38.2. Distribution Variables Dialog

Select at least oneY variable for each distribution analysis.

You can select one or moreGroup variables if you have grouped data. This creates
one distribution analysis for each group.

You can select aLabel variable to label observations in the plots.

You can select aFreq variable. If you select aFreq variable, each observation is
assumed to representn observations, wheren is the value of theFreq variable.

You can select aWeight variable to specify relative weights for each observation in
the analysis. The details of weighted analyses are explained in the individual sections
of this chapter.
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Chapter 38. Method

Method

Observations with missing values for aY variable are not used in the analysis for that
variable. Observations withWeight or Freq values that are missing or that are less
than or equal to zero are not used. Only the integer part ofFreq values is used.

The following notation is used in the rest of this chapter:

� n is the number of nonmissing values.

� yi is theith observed nonmissing value.

� y(i)is theith ordered nonmissing value,y(1)�y(2)� : : :�y(n).
� y is the sample mean,

P
i yi=n.

� d is the variance divisor.

� s2 is the sample variance,
P

i (yi � y)2=d.

� zi is the standardized value,(yi � y)=s.

The summation
P

i represents a summation of
Pn

i=1.

Based on the variance definition, vardef, the variance divisord is computed as

� d = n� 1 for vardef=DF, degrees of freedom

� d = n for vardef=N, number of observations

The skewness is a measure of the tendency of the deviations from the mean to be
larger in one direction than in the other. The sample skewness is calculated as

� g1 = c3n
P

i z
3
i for vardef=DF

� g1 =
1
n

P
i z

3
i for vardef=N

wherec3n = n
(n�2)

1
(n�1) .

The kurtosis is primarily a measure of the heaviness of the tails of a distribution. The
sample kurtosis is calculated as

� g2 = c4n
P

i z
4
i � 3cn for vardef=DF

� g2 =
1
n

P
i z

4
i � 3 for vardef=N

wherec4n = n(n+1)
(n�2)(n�3)

1
(n�1) andcn = (n�1)2

(n�2)(n�3) .
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Part 3. Introduction

When the observations are independently distributed with a common mean and un-
equal variances,�2i = �2=wi, wherewi are individual weights, weighted analyses
may be appropriate. You select aWeight variable to specify relative weights for
each observation in the analysis.

The following notation is used in weighted analyses:

� wi is the weight associated withyi.

� w(i) is the weight associated withy(i).

� w is the average observation weight,
P

i wi=n.

� yw is the weighted sample mean,
P

i wiyi=
P

iwi.

� s2w is the weighted sample variance,
P

iwi(yi � yw)
2=d.

� zwi is the standardized value,(yi � yw)=(sw=
p
wi).

In addition to vardef=DF and vardef=N, the variance divisor is also computed as

� d =
P

iwi � 1 for vardef=WDF, sum of weights minus 1

� d =
P

iwi for vardef=WGT, sum of weights

With V ar(yi) = �2i = �2=wi, V ar(yw) = �2=
P

i wi and the expected value

E

 X
i

wi(yi � yw)
2

!
= E

 X
i

wi(yi � �)2 �
X
i

wi(yw � �)2

!
= (n� 1)�2

y Note: The use of vardef=WDF/WGT may not be appropriate since it is the weighted
average of individual variances,�2i , which have unequal expected values.

For vardef=DF/N, s2w is the variance of observations with unit weight and may not be
informative in the weighted plots of parametric normal distributions. SAS/INSIGHT
software uses the weighted sample variance for an observation with average weight,
s2a = s2w=w, to replaces2w in the plots.

The weighted skewness is computed as

� gw1 = c3n
P

i z
wi
3 = c3n

P
i w

3

2

i (
yi�y
sw

)3 for DF

� gw1 =
1
n

P
i z

wi
3 = 1

n

P
iw

3

2

i (
yi�y
sw

)3 for N

The weighted kurtosis is computed as

� gw2 = c4n
P

i z
wi
4 � 3cn = c4n

P
i w

2
i (

yi�y
sw

)4 � 3cn for DF

� gw2 =
1
n

P
i z

wi
4 � 3 = 1

n

P
i w

2
i (

yi�y
sw

)4 � 3 for N
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Chapter 38. Method

The formulations are invariant under the transformationw�i = cwi; c > 0. The sam-
ple skewness and kurtosis are set to missing if vardef=WDF or vardef=WGT.

To view or change the divisord used in the calculation of variances, or to view or
change the use of observations with missing values, click on theMethod button
from the variables dialog to display the method options dialog.

Figure 38.3. Distribution Method Options Dialog

By default, SAS/INSIGHT software uses vardef=DF, degrees of freedom to com-
pute the variance divisor.

When multipleY variables are analyzed, and someY variables have missing values,
theUse Obs with Missing Values option uses all observations with nonmissing
values for theY variable being analyzed. If the option is turned off, observations with
missing values foranyY variable are not used for any analysis.
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Part 3. Introduction

Output

To view or change the options associated with your distribution analysis, click on the
Output button from the variables dialog. This displays the output options dialog.

Figure 38.4. Distribution Output Options Dialog

The options you set in this dialog determine which tables and graphs appear in
the distribution window. A distribution analysis can include descriptive statistics,
graphs, density estimates, and cumulative distribution function estimates. By default,
SAS/INSIGHT software displays a moments table, a quantiles tables, a box plot, and
a histogram. Individual tables and graphs are described following this section.

You can specify the� coefficient in theParameters:Alpha: entry field. The
100(1 � �)% confidence level is used in the basic confidence intervals and the
trimmed/Winsorized means tables. You can specify�0 in the Parameters: Mu0:
entry field. �0 is used in the tests for location and the trimmed/Winsorized means
tables. You can also specify� in the Parameters: Theta: entry field. The pa-
rameter� is used in the parametric density estimation and cumulative distribution for
lognormal, exponential, and Weibull distributions.

If you select aWeight variable, tables of weighted moments, weighted quan-
tiles, weighted confidence intervals, weighted tests for location, and weighted fre-
quency counts can be generated. Robust measures of scale, tests for normality,
and trimmed/Winsorized means are not computed. Graphs of weighted box plot,
weighted histogram, and weighted normal QQ plot can also be generated.

SAS OnlineDoc: Version 8
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Chapter 38. Output

The Trimmed/Winsorized Means button enables you to view or change
the options associated with trimmed and Winsorized means. Click on
Trimmed/Winsorized Means to display theTrimmed/Winsorized Means
dialog.

Figure 38.5. Trimmed / Winsorized Means Dialog

In the dialog, you choose the number of observations trimmed or Winsorized in each
tail in (1/2)N and the percent of observations trimmed or Winsorized in each tail in
(1/2)Percent. If you specify a percentage, the smallest integer greater than or equal
to np is trimmed or Winsorized.

TheDensity Estimation button enables you to set the options associated with both
parametric density and nonparametric kernel density estimation. Click onDensity
Estimation to display theDensity Estimation dialog.

Figure 38.6. Density Estimation Dialog

If you selectParametric Estimation:Normal , a normal distribution with the
sample mean and standard deviation is created. For the lognormal, exponential,
and Weibull distributions, you specify the threshold parameter� in the Parame-
ters:Theta: entry field in the distribution output options dialog, as shown in Figure
38.4, and have the remaining parameters estimated by the maximum-likelihood esti-
mates.

529
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Part 3. Introduction

If you select aWeight variable, the weighted parametric normal density and
weighted kernel density are generated. The parametric lognormal, exponential, and
Weibull density are not computed.

TheCumulative Distribution button enables you to set the options associated with
cumulative distribution estimation. Click onCumulative Distribution to display
theCumulative Distribution dialog.

Figure 38.7. Cumulative Distribution Dialog

If you selectFit Parametric:Normal , a normal distribution with the sample mean
and standard deviation is created. For the lognormal, exponential, and Weibull dis-
tributions, you specify the threshold parameter� in theParameters:Theta: entry
field in the distribution output options dialog, as shown in Figure 38.4, and have the
remaining parameters estimated by the maximum-likelihood estimates.

If you select aWeight variable, weighted empirical and normal cumulative distri-
bution functions can be generated. The confidence bands, the parametric lognormal,
exponential, and Weibull cumulative distributions, and tests for distribution are not
computed.

Click onOK to close the dialogs and create your distribution analysis.
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Chapter 38. Tables

Tables

You can generate distribution tables by setting the options in the output options dialog
or by choosing from theTables menu.

File Edit Analyze Tables Graphs Curves Vars Help
✔ Moments
✔ Quantiles

Basic Confidence Intervals ➤

Tests for Location...
Frequency Counts
Robust Measures of Scale
Tests for Normality
Trimmed/Winsorized Mean ➤

Figure 38.8. Tables Menu

The tables of robust measures of scale, tests for normality, and trimmed/Winsorized
mean are not created for weighted analyses.

Moments

TheMoments table, as shown in Figure 38.9, includes the following statistics:

� N is the number of nonmissing values,n.

� Sum Wgts is the sum of weights and is equal ton if no Weight variable is
specified.

� Mean is the sample mean,y.

� Sum is the variable sum,
P

i yi.

� Std Dev is the standard deviation,s.

� Variance is the variance,s2.

� Skewness is the sample skewness,g1.

� Kurtosis is the sample kurtosis,g2.

� USS is the uncorrected sum of squares,
P

i y
2
i .

� CSS is the sum of squares corrected for the mean,
P

i (yi � y)2.

� CV is the percent coefficient of variation,100s=y.

� Std Mean is the standard error of the mean,s=
p
n. The value is set to missing

if vardef6=DF.
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Part 3. Introduction

Figure 38.9. Moments and Quantiles Tables

For weighted analyses, theWeighted Moments table includes the following statis-
tics:

� N is the number of nonmissing values,n.

� Sum Wgts is the sum of weights,
P

iwi.

� Mean is the weighted sample mean,yw.

� Sum is the weighted variable sum,
P

i wiyi.

� Std Dev is the weighted standard deviation,sw.

� Variance is the weighted variance,s2w.

� Skewness is the weighted sample skewness,gw1.

� Kurtosis is the weighted sample kurtosis,gw2.

� USS is the uncorrected weighted sum of squares,
P

iwiy
2
i .

� CSS is the weighted sum of squares corrected for the mean,
P

iwi(yi � yw)
2:

� CV is the percent coefficient of variation,100sw=yw .

� Std Mean is the standard error of the weighted mean,sw=
P

iwi.

The value is set to missing if vardef6=DF.
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Chapter 38. Tables

Quantiles

It is often convenient to subdivide the area under a density curve so that the area to
the left of the dividing value is some specified fraction of the total unit area. For a
given value ofp between 0 and 1, thepth quantile (or100pth percentile) is the value
such that the area to the left of it isp.

Thepth quantile is computed from the empirical distribution function with averaging:

y =

8<
:

1
2(y(i) + y(i+1)) if f = 0

y(i+1) if f > 0

wherei is the integer part andf is the fractional part ofnp = i+ f .

If you specify aWeight variable, thepth quantile is computed as

y =

8><
>:

1
2(y(i) + y(i+1)) if

Pi
j=1w(j) = p

Pn
j=1w(j)

y(i+1) if
Pi

j=1w(j) < p
Pn

j=1w(j) <
Pi+1

j=1w(j)

When each observation has an identical weight, the weighted quantiles are identical
to the unweighted quantiles.

TheQuantiles table, as shown in Figure 38.9, includes the following statistics:

� 100% Max is the maximum,y(n).

� 75% Q3 is the upper quartile (the 75th percentile).

� 50% Med is the median.

� 25% Q1 is the lower quartile (the 25th percentile).

� 0% Min is the minimum,y(1).

� 99%, 97.5%, 95%, 90%, 10%, 5%, 2.5%, and1% give the corresponding
percentiles.

� Range is the range,y(n) � y(1).

� Q3-Q1, the interquartile range, is the difference between the upper and lower
quartiles.

� Mode is the most frequently occurring value. When there is more than one
mode, the lowest mode is displayed. When all the distinct values have fre-
quency one, the value is set to missing.
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Part 3. Introduction

Basic Confidence Intervals

Assuming that the population is normally distributed, theConfidence Intervals
table gives confidence intervals for the mean, standard deviation, and variance at the
confidence coefficient specified. You specify the confidence intervals either in the
distribution output options dialog or from theTables menu.

File Edit Analyze Tables Graphs Curves Vars Help
✔ Moments
✔ Quantiles

Basic Confidence Intervals ➤

Tests for Location...
Frequency Counts
Robust Measures of Scale
Tests for Normality
Trimmed/Winsorized Mean ➤

99%
98%
95%
90%
80%
Other...

Figure 38.10. Basic Confidence Intervals Menu

The100(1 � �)% confidence interval for the mean has upper and lower limits

y�t(1��=2)
sp
n

wheret(1��=2) is the(1 � �=2) critical value of the Student’st statistic withn � 1
degrees of freedom.

For weighted analyses, the limits are

yw�t(1��=2)
swpP

iwi

For large values ofn, t(1��=2) acts asz(1��=2), the (1 � �=2) critical value of the
standard normal distribution.

The100(1� �)% confidence interval for the standard deviation has upper and lower
limits

s

s
n� 1

c�=2
and s

s
n� 1

c(1��=2)

wherec�=2 andc(1��=2) are the�=2 and(1 � �=2) critical values of the chi-square
distribution withn� 1 degrees of freedom.

For weighted analyses, the limits are

sw

s
n� 1

c�=2
and sw

s
n� 1

c(1��=2)
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Chapter 38. Tables

The 100(1 � �)% confidence interval for the variance has upper and lower limits
equal to the squares of the corresponding upper and lower limits for the standard
deviation.

Figure 38.11 shows a table of the 95% confidence intervals for the mean, standard
deviation, and variance.

Figure 38.11. Basic Confidence Intervals and Tests for Location Tables

y Note: The confidence intervals are set to missing if vardef6=DF.

Tests for Location

The location tests include the Student’st, sign, and signed rank tests of the hypothesis
that the mean/median is equal to a given value� against the two-sided alternative that
the mean/median is not equal to�. The Student’st test is appropriate when the data
are from an approximately normal population; otherwise, nonparametric tests such
as the sign or signed rank test should be used.

TheStudent’s t gives a Student’st statistic

t =
y � �0
s =
p
n
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Part 3. Introduction

For weighted analyses, thet statistic is computed as

t =
yw � �0

sw =
pP

iwi

Assuming that the null hypothesis (H0: mean =�) is true and the population is nor-
mally distributed, thet statistic has a Student’st distribution withn � 1 degrees of
freedom. Thep-value is the probability of obtaining a Student’st statistic greater in
absolute value than the absolute value of the observed statistict.

y Note: Thet statistic andp-value are set to missing if vardef6=DF.

TheSign statistic is

M =
1

2
(n+ � n�)

wheren+ is the number of observations with values greater than�, andn� is the
number of observations with values less than�.

Assuming that the null hypothesis (H0: median =�0) is true, thep-value for the
observed statisticM is

ProbfjMj >= jMjg = (
1

2
)nt�1

min(n+;n�)X
i=0

�
nt
i

�

wherent = n+ + n� is the number ofyi values not equal to�0.

TheSigned Rank test assumes that the distribution is symmetric. The signed rank
statistic is computed asS = �r+i � nt(nt + 1)=4 wherer+i is the rank ofjyi � �0j
after discardingyi values equal to�0, and the sum is calculated for values ofyi > �0.
Average ranks are used for tied values.

Thep-value is the probability of obtaining a signed rank statistic greater in absolute
value than the absolute value of the observed statisticS. If nt <= 20, thep-value
of the statisticS is computed from the exact distribution ofS. Whennt > 20, the
significance level ofS is computed by treating

p
nt � 1

Sp
ntV � S2

as a Student’st variate withnt � 1 degrees of freedom, whereV is computed as

V =
1

24
fnt(nt + 1)(2nt + 1)� 1

2

nX
j=1

tj(tj + 1)(tj � 1)g:

The sum is calculated over groups tied in absolute value, andtj is the number of tied
values in thejth group (Iman 1974, Lehmann 1975).
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Chapter 38. Tables

You can specify location tests either in the distribution output options dialog or in
the Location Tests dialog after choosingTables:Tests for Location from the
menu.

Figure 38.12. Location Tests Dialog

In the dialog, you can specify the parameter�0. Figure 38.11 shows a table of the
three location tests for�0 = 60. Here,Num Obs != Mu0 is the number of ob-
servations with values not equal to�0, and Num Obs > Mu0 is the number of
observations with values greater than�0.

For weighted analyses, the sign and signed rank tests are not generated.

Frequency Counts

The Frequency Counts table, a portion of which is shown in Figure 38.13, in-
cludes the variable values, counts, percentages, and cumulative percentages. You can
generate frequency tables for both interval and nominal variables.

If you specify aWeight variable, the table also includes the weighted counts. These
weighted counts are used to compute the percentages and cumulative percentages.

Figure 38.13. Frequency Counts Table
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Part 3. Introduction

Robust Measures of Scale

The sample standard deviation is a commonly used estimator of the population scale.
However, it is sensitive to outliers and may not remain bounded when a single data
point is replaced by an arbitrary number. With robust scale estimators, the estimates
remain bounded even when a portion of the data points are replaced by arbitrary
numbers.

A simple robust scale estimator is the interquartile range, which is the difference be-
tween the upper and lower quartiles. For a normal population, the standard deviation
� can be estimated by dividing the interquartile range by 1.34898.

Gini’s mean difference is also a robust estimator of the standard deviation�. It is
computed as

G =
1�
n
2

�X
i<j

jyi � yjj

If the observations are from a normal distribution, then
p
�G=2 is an unbiased esti-

mator of the standard deviation�.

A very robust scale estimator is the median absolute deviation (MAD) about the me-
dian (Hampel 1974).

MAD = medi(jyi � medj(yj)j)

where the inner median,medj(yj), is the median of then observations and the outer
median,medi, is the median of then absolute values of the deviations about the
median.

For a normal distribution, 1.4826MAD can be used to estimate the standard deviation
�.

TheMAD statistic has low efficiency for normal distributions and it may not be ap-
propriate for symmetric distributions. Rousseeuw and Croux (1993) proposed two
new statistics as alternatives to theMAD statistic,Sn andQn.

Sn = 1:1926medi(medj(jyi � yj j))

where the outer median,medi, is the median of then medians of

fjyi � yjj; j = 1; 2; ::; ng:

To reduce small-sample bias,csnSn is used to estimate the standard deviation�,
wherecsn is a correction factor (Croux and Rousseeuw 1992).
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The second statistic is computed as

Qn = 2:2219fjyi � yj j; i < jg(k)

wherek =
�
h
2

�
, h = [n=2] + 1 and [n=2] is the integer part ofn=2. That is,Qn is

2.2219 times thekth order statistic of the
�n
2

�
distances between data points.

The bias-corrected statisticcqnQn is used to estimate the standard deviation�, where
cqnis the correction factor.

A Robust Measures of Scale table includes the interquartile range, Gini’s mean
difference,MAD, Sn, andQn, with their corresponding estimates of�, as shown in
Figure 38.14.

Figure 38.14. Robust Measures of Scale and Tests for Normality
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Tests for Normality

SAS/INSIGHT software provides tests for the null hypothesis that the input data val-
ues are a random sample from a normal distribution. These test statistics include the
Shapiro-Wilk statistic (W) and statistics based on the empirical distribution function:
the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling statistics.

The Shapiro-Wilk statistic is the ratio of the best estimator of the variance (based on
the square of a linear combination of the order statistics) to the usual corrected sum
of squares estimator of the variance. W must be greater than zero and less than or
equal to one, with small values of W leading to rejection of the null hypothesis of
normality. Note that the distribution of W is highly skewed. Seemingly large values
of W (such as 0.90) may be considered small and lead to the rejection of the null
hypothesis.

The W statistic is computed when the sample size is less than or equal to 2000. When
the sample size is greater than three, the coefficients for computing the linear combi-
nation of the order statistics are approximated by the method of Royston (1992).

With a sample size of three, the probability distribution of W is known and is used to
determine the significance level. When the sample size is greater than three, simula-
tion results are used to obtain the approximate normalizing transformation (Royston
1992)

Zn =

8>><
>>:

(� log( � log(1�Wn))� �)=� if 4 � n � 11

(log(1�Wn)� �)=� if 12 � n � 2000

where, �, and� are functions ofn, obtained from simulation results, andZn is a
standard normal variate with large values indicating departure from normality.

The Kolmogorov statistic assesses the discrepancy between the empirical distribution
and the estimated hypothesized distribution. For a test of normality, the hypothesized
distribution is a normal distribution function with parameters� and� estimated by
the sample mean and standard deviation. The probability of a larger test statistic is
obtained by linear interpolation within the range of simulated critical values given by
Stephens (1974).
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The Cramer-von Mises statistic (W 2) is defined as

W 2 = n

Z 1

�1
(Fn(x)� F (x))2dF (x)

and it is computed as

W 2 =

nX
i=1

�
U(i) �

2i� 1

2n

�2

+
1

12n

whereU(i) = F (y(i)) is the cumulative distribution function value at y(i), theith or-
dered value. The probability of a larger test statistic is obtained by linear interpolation
within the range of simulated critical values given by Stephens (1974).

The Anderson-Darling statistic (A2) is defined as

A2 = n

Z 1

�1
(Fn(x)� F (x))2fF (x)(1 � F (x))g�1dF (x)

and it is computed as

A2 = �n� 1

n

nX
i=1

f(2i� 1)(log(U(i) + log(1� U(n+1�i)))g

The probability of a larger test statistic is obtained by linear interpolation within the
range of simulated critical values in D’Agostino and Stephens (1986).

A Tests for Normality table includes the Shapiro-Wilk, Kolmogorov, Cramer-von
Mises, and Anderson-Darling test statistics, with their correspondingp-values, as
shown in Figure 38.14.
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Trimmed and Winsorized Means

When outliers are present in the data, trimmed and Winsorized means are robust es-
timators of the population mean that are relatively insensitive to the outlying values.
Therefore, trimming and Winsorization are methods for reducing the effects of ex-
treme values in the sample.

Thek-times trimmed mean is calculated as

ytk =
1

n� 2k

n�kX
i=k+1

y(i)

The trimmed mean is computed after thek smallest andk largest observations are
deleted from the sample. In other words, the observations are trimmed at each end.

Thek-times Winsorized mean is calculated as

ywk =
1

n
f(k + 1)y(k+1) +

n�k�1X
i=k+2

y(i) + (k + 1)y(n�k)g

The Winsorized mean is computed after thek smallest observations are replaced by
the(k + 1)st smallest observation, and thek largest observations are replaced by the
(k+1)st largest observation. In other words, the observations are Winsorized at each
end.

For a symmetric distribution, the symmetrically trimmed or Winsorized mean is an
unbiased estimate of the population mean. But the trimmed or Winsorized mean does
not have a normal distribution even if the data are from a normal population.

The Winsorized sum of squared deviations is defined as

s2wk = (k + 1)(y(k+1) � ywk)
2 +

n�k�1X
i=k+2

(y(i) � ywk)
2 + (k + 1)(y(n�k) � ywk)

2

A robust estimate of the variance of the trimmed meanytk can be based on the
Winsorized sum of squared deviations (Tukey and McLaughlin 1963). The result-
ing trimmedt test is given by

ttk =
ytk

STDERR(ytk)

whereSTDERR(ytk) is the standard error ofytk:

STDERR(ytk) =
swkp

(n� 2k)(n� 2k� 1)

A Winsorizedt test is given by

twk =
ywk

STDERR(ywk)

whereSTDERR(ywk) is the standard error ofywk:

STDERR(ywk) =
n� 1

n� 2k� 1

swkp
n(n� 1)
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When the data are from a symmetric distribution, the distribution of the trimmed
t statisticttk or the Winsorizedt statistictwk can be approximated by a Student’s
t distribution withn� 2k � 1 degrees of freedom (Tukey and McLaughlin 1963,
Dixon and Tukey 1968).

You can specify the number or percentage of observations to be trimmed or Win-
sorized from each end either by using theTrimmed/Winsorized Means op-
tions dialog or by using theTrimmed/Winsorized Means dialog after choosing
Tables:Trimmed/Winsorized Mean:(1/2)N or Tables:Trimmed/Winsorized
Mean:(1/2)Percent from the menus.

Figure 38.15. (1/2)N Menu

Figure 38.16. (1/2)Percent Menu

If you specify a percentage,100p%, 0 < p < 1, the smallest integer greater than or
equal tonp is trimmed or Winsorized from each end.
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The Trimmed Mean and Winsorized Mean tables, as shown in Figure 38.17,
contain the following statistics:

� (1/2)Percent is the percentage of observations trimmed or Winsorized at each
end.

� (1/2)N is the number of observations trimmed or Winsorized at each end.

� Mean is the trimmed or Winsorized mean.

� Std Mean is the standard error of the trimmed or Winsorized mean.

� DF is the degrees of freedom used in the Student’st test for the trimmed or
Winsorized mean.

� Confidence Interval includesLevel (%) : the confidence level,LCL : lower
confidence limit, andUCL: upper confidence limit.

� t for H0: Mean=Mu0 includesMu0: the location parameter�0, t Stat : the
trimmed or Winsorizedt statistic for testing the hypothesis that the population
mean is�0, andp-value : the approximatep-value of the trimmed or Win-
sorizedt statistic.

Figure 38.17. Trimmed Means and Winsorized Means Tables
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Graphs

You can generate a histogram, a box plot, or a quantile-quantile plot in the distribution
output options dialog or from theGraphs menu.

File Edit Analyze Tables Graphs Curves Vars Help

✔ Box Plot/Mosaic Plot
✔ Histogram/Bar Chart

QQ Plot...

Figure 38.18. Graphs Menu

If you select aWeight variable, a weighted box plot/mosaic plot, a weighted his-
togram/bar chart, and a weighted normal QQ plot can be generated.

Box Plot/Mosaic Plot

The box plot is a stylized representation of the distribution of a variable, and it is
shown in Figure 38.19. You can also display mosaic plots for nominal variables, as
shown in Figure 38.37.

In a box plot, the sample mean and sample standard deviation computed with
vardef=DF are used in the construction of the mean diamond, as shown in Figure
38.19.

If you select aWeight variable, a weighted box plot based on weighted quantiles is
created. The weighted sample mean and the weighted sample standard deviation of
an observation with average weight for vardef=DF is used in the construction of the
mean diamond.

� Related Reading:Box Plots, Chapter 33.

Histogram/Bar Chart

The histogram is the most widely used density estimator, and it is shown in Figure
38.19. You can also display bar charts for nominal variables, as shown in Figure
38.37.

� Related Reading:Bar Charts, Chapter 32.
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Figure 38.19. Box Plot and Histogram

QQ Plot

A quantile-quantile plot(QQ plot) compares ordered values of a variable with quan-
tiles of a specific theoretical distribution. If the data are from the theoretical distri-
bution, the points on the QQ plot lie approximately on a straight line. The normal,
lognormal, exponential, and Weibull distributions can be used in the plot.

You can specify the type of QQ plot from theQQ Plot dialog after choosing
Graphs:QQ Plot from the menu.
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Figure 38.20. QQ Plot Dialog

In the dialog, you must specify a shape parameter for the lognormal or Weibull dis-
tribution. The normal QQ plot can also be generated with the graphs options dialog.
As described later in this chapter, you can also add a reference line to the QQ plot
from theCurves menu.

The following expression is used in the discussion that follows:

vi =
i� 0:375

n+ 0:25
for i = 1; 2; : : : ; n

wheren is the number of nonmissing observations.

For the normal distribution, theith ordered observation is plotted against the normal
quantile��1(vi), where��1 is the inverse standard cumulative normal distribution.
If the data are normally distributed with mean� and standard deviation�, the points
on the plot should lie approximately on a straight line with intercept� and slope
�. The normal quantiles are stored in variables namedN–name for each variable,
wherename is theY variable name.

For the lognormal distribution, theith ordered observation is plotted against the log-
normal quantileexp

�
���1(vi)

�
for a given shape parameter�. If the data are log-

normally distributed with parameters�, �, and�, the points on the plot should lie
approximately on a straight line with intercept� and slopeexp(�). The lognormal
quantiles are stored in variables namedL–name for each variable, wherename is
theY variable name.

For the exponential distribution, theith ordered observation is plotted against the
exponential quantile�log(1� vi). If the data are exponentially distributed with pa-
rameters� and�, the points on the plot should lie approximately on a straight line
with intercept� and slope�. The exponential quantiles are stored in variables named
E–name for each variable, wherename is theY variable name.

For the Weibull distribution, theith ordered observation is plotted against the Weibull
quantile(�log(1� vi))

1

c for a given shape parameterc. If the data are from a Weibull
distribution with parameters�, �, andc, the points on the plot should lie approx-
imately on a straight line with intercept� and slope�. The Weibull quantiles are
stored in variables namedW–name for each variable, wherename is theY vari-
able name.
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A normal QQ plot is shown in Figure 38.21. You can also add a reference line to
the QQ plot from theCurves menu. You specify the intercept and slope for the
reference line from theCurves menu.

Figure 38.21. Normal QQ Plot

Further information on interpreting quantile-quantile plots can be found in Chambers
et al. (1983).

If you select aWeight variable, a weighted normal QQ plot can be generated. Log-
normal, exponential, and Weibull QQ plots are not computed.

For a weighted normal QQ plot, theith ordered observation is plotted against the
normal quantile��1(vi), where

vi =
(
Pi

j=1w(j))(1 � 0:375=i)

W (1 + 0:25=n)

When each observation has an identical weight,w(j) = w0, the formulation reduces
to the usual expression in the unweighted normal probability plot

vi =
i� 0:375

n+ 0:25

If the data are normally distributed with mean� and standard deviation� and if
each observation has approximately the same weight (w0), then, as in the unweighted
normal QQ plot, the points on the plot should lie approximately on a straight line
with intercept� and slope� for vardef=WDF/WGT and with slope�=

p
w0 for

vardef=DF/N.
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Curves

Density estimationis the construction of an estimate of the density function from
the observed data. The methods provided for univariate density estimation include
parametric estimators and kernel estimators.

Cumulative distribution analyses include the empirical and the parametric cumula-
tive distribution function. The empirical distribution function is a nonparametric es-
timator of the cumulative distribution function. You can fit parametric distribution
functions if the data are from a known family of distributions, such as the normal,
lognormal, exponential, or Weibull.

You can use the Kolmogorov statistic to construct a confidence band for the unknown
distribution function. The statistic also tests the hypotheses that the data are from
a completely specified distribution or from a specified family of distributions with
unknown parameters.

You can generate density estimates and cumulative distribution analysis in the output
options dialog, as described previously in the section “Output,” or by choosing from
the Curves menu, as shown in Figure 38.22. You can also generate QQ reference
lines from theCurves menu.

File Edit Analyze Tables Graphs Curves Vars Help

Parametric Density...
Kernel Density...
Empirical CDF
CDF Confidence Band ➤

Parametric CDF...
Test for a Specific Distribution...
Test for Distribution...
QQ Ref Line...

Figure 38.22. Curves Menu

If you select aWeight variable, curves of parametric weighted normal density,
weighted kernel density, weighted empirical CDF, parametric weighted normal CDF,
and weighted QQ reference line (based on weighted least squares) can be generated.
CDF confidence band, test for a specific distribution, and test for distribution are not
computed.

549
SAS OnlineDoc: Version 8



Part 3. Introduction

Parametric Density

Parametric density estimationassumes that the data are from a known family of dis-
tributions, such as the normal, lognormal, exponential, and Weibull. After choosing
Curves:Parametric Density from the menu, you specify the family of distribu-
tions in theParametric Density Estimation dialog, as shown in Figure 38.23.

Figure 38.23. Parametric Density Dialog

The default uses a normal distribution with the sample mean and standard deviation
as estimates for� and�. You can also specify your own� and� parameters for the
normal distribution by choosingMethod:Specification in the dialog.

For the lognormal, exponential, and Weibull distributions, you can specify your
own threshold parameter� in the Parameter:MLE, Theta entry field and have
the remaining parameters estimated by the maximum-likelihood estimates (MLE) by
choosingMethod:Sample Estimates/MLE . Otherwise, you can specify all the
parameters in theSpecification fields and chooseMethod:Specification in the
dialog.

If you select a Weight variable, only normal density can be created. For
Method:Sample Estimates/MLE , yw and sw are used to display the den-
sity with vardef=WDF/WGT; yw and sa are used with vardef=DF/N. For
Method:Specification , the values in the entry fieldsMean/Theta and Sigma
are used to display the density with vardef=WDF/WGT; the values ofMean/Theta
andSigma /

p
w are used with vardef=DF/N.
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Figure 38.24 displays a normal density estimate with� = 58:4333 (the sample mean)
and� = 8:2807 (the sample standard deviation). It also displays a lognormal density
estimate with� = 30 and with� and� estimated by the MLE.

Figure 38.24. Parametric Density Estimation

TheMode is the point with the largest estimated density. Use sliders in the table to
change the density estimate. When MLE is used for the lognormal, exponential, and
Weibull distributions, changing the value of� in theMean/Theta slider also causes
the remaining parameters to be estimated by the MLE for the new�.
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Kernel Density

Kernel density estimationprovides normal, triangular, and quadratic kernel density
estimators. The general form of a kernel estimator is

f̂�(y) =
1

n�

nX
i=1

K0

�
y � yi
�

�

whereK0 is a kernel function and� is the bandwidth.

Some symmetric probability density functions commonly used as kernel functions
are

� Normal K0(t) =
1p
2�

exp
��t2=2� for �1 < t <1

� Triangular K0(t) =

8<
: 1� jtj

0

for jtj � 1

otherwise

� Quadratic K0(t) =

8<
:

3
4(1� t2)

0

for jtj � 1

otherwise

Both theory and practice suggest that the choice of a kernel function is not crucial
to the statistical performance of the method (Epanechnikov 1969). With a specific
kernel function, the value of� determines the degree of averaging in the estimate of
the density function and is called asmoothing parameter. You select a bandwidth�
for each kernel estimator by specifyingc in the formula

� = n�
1

5Qc

whereQ is the sample interquartile range of theY variable. This formulation makes
c independent of the units ofY.

For a specific kernel function, the discrepancy between the density estimatorf̂�(y)
and the true densityf(y) can be measured by the mean integrated square error

MISE(�) =

Z
y
fE(f̂�(y))� f(y)g2dy +

Z
y
Var(f̂�(y)) dy

which is the sum of the integrated square bias and the integrated variance.

An approximate mean integrated square error based on the bandwidth� is

AMISE(�) =
1

4
�4(

Z
t
t2K(t)dt)2

Z
y
(f 00(y))2 dy +

1

n�

Z
t
K(t)2dt
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If f(y) is assumed normal, then a bandwidth based on the sample mean and variance
can be computed to minimize AMISE. The resulting bandwidth for a specific kernel is
used when the associated kernel function is selected in the density estimation options
dialog. This is equivalent to choosingMISE from the normal, triangular, or quadratic
kernel menus. Iff(y) is not roughly normal, this choice may not be appropriate.

SAS/INSIGHT software divides the range of the data into 128 evenly spaced inter-
vals, then approximates the data on this grid and uses the fast Fourier transformation
(Silverman 1986) to estimate the density.

If you select aWeight variable, the kernel estimator is modified to include the indi-
vidual observation weights.

f̂�(y) =
1P
iwi�

nX
i=1

wiK0

�
y � yi
�

�

You can specify the kernel function in the density estimation options dialog or from
the Curves menu. When you specify the kernel function in the density estimation
options dialog,AMISE is used. After choosingCurves:Kernel Density from the
menu, you can specify the kernel function and use eitherAMISE or a specified C
value in theKernel Density Estimation dialog.

Figure 38.25. Kernel Density Dialog

The default uses a normal kernel density with ac value that minimizes the AMISE.
Figure 38.26 displays normal kernel estimates withc = 0.7852 (the AMISE value)
andc = 0.25. Small values ofc (and hence small values of the smoothing parameter
�) provide jagged estimates as the curve more closely follows the data points. Large
values ofc provide smoother estimates. TheMode is the point with the largest
estimated density. Use the slider to change the smoothing parameter,c.
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Figure 38.26. Kernel Density Estimation

Empirical CDF

Theempirical distribution functionof a sample,Fn(y), is the proportion of observa-
tions less than or equal toy.

Fn(y) =
1

n

nX
i=1

I(yi�y)

wheren is the number of observations, andI(yi � y) is an indicator function with
value 1 ifyi � y and with value 0 otherwise.

The Kolmogorov statisticD is a measure of the discrepancy between the empirical
distribution and the hypothesized distribution.

D = MaxyjFn(y)� F(y)j
whereF (y) is the hypothesized cumulative distribution function. The statistic is the
maximum vertical distance between the two distribution functions. The Kolmogorov
statistic can be used to construct a confidence band for the unknown distribution
function, to test for a hypothesized completely known distribution, and to test for a
specific family of distributions with unknown parameters.

If you select aWeight variable, the weighted empirical distribution function is the
proportion of observation weights for observations less than or equal toy.

Fw(y) =
1P
iwi

nX
i=1

wiI(yi�y)
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CDF Confidence Band

Theconfidence bandgives a confidence region for the population distribution. The
critical values given by Feller (1948) for the completely specified hypothesized distri-
bution are used to generate the confidence band. All parameters in the hypothesized
distribution are known. The null hypothesis that the population distribution is equal
to a given completely specified distribution is rejected if the hypothesized distribution
falls outside the confidence band at any point.

You specify the confidence coefficient in the cumulative distribution options dialog
or by choosingCurves:CDF Confidence Band .

File Edit Analyze Tables Graphs Curves Vars Help

Parametric Density...
Kernel Density...
Empirical CDF
CDF Confidence Band ➤

Parametric CDF...
Test for a Specific Distribution...
Test for Distribution...
QQ Ref Line...

99%
98%
95%
90%
80%
Other...

Figure 38.27. CDF Confidence Band Menu
Figure 38.28 displays an empirical distribution function and a 95% confidence band
for the cumulative distribution function. Use theCoefficient slider to change the
coefficient for the confidence band.

Figure 38.28. CDF Confidence Band
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Parametric CDF

You can fit the normal, lognormal, exponential, and Weibull distributions to your
data. You specify the family of distributions either in the cumulative distribution
options dialog or from theParametric CDF Estimation dialog after choosing
Curves:Parametric CDF from the menu.

Figure 38.29. Parametric CDF Dialog

For the normal distribution, you can specify your own� and � parameters from
the Fit Parametric menu. Otherwise, you can use the sample mean and stan-
dard deviation as estimates for� and� by selectingFit Parametric:Normal in
the cumulative distribution options dialog or by choosingDistribution:Normal and
Method:Sample Estimates/MLE in theParametric CDF Estimation dialog.

For the lognormal, exponential, and Weibull distributions, you can specify your own
threshold parameter� and have the remaining parameters estimated by the maximum-
likelihood method, or you can specify all the distribution parameters in theParamet-
ric CDF Estimation dialog. Otherwise, you can have the threshold parameter set
to 0 and the remaining parameters estimated by the maximum-likelihood method.
To do this, selectLognormal , Exponential , or Weibull in the Cumulative Distri-
bution Output dialog or chooseMethod:Sample Estimates/MLE andParame-
ter:MLE, Theta:0 in theParametric CDF Estimation dialog.

If you select a Weight variable, only normal CDF can be created. For
Method:Sample Estimates/MLE , yw and sw are used to display the cu-
mulative distribution function with vardef=WDF/WGT; yw and sa are used
with vardef=DF/N. For Method:Specification , the values in the entry fields
Mean/Theta and Sigma are used to display the cumulative distribution function
with vardef=WDF/WGT; the values ofMean/Theta andSigma /

p
w are used with

vardef=DF/N.
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Figure 38.30 displays a normal distribution function with� = 58.4333 (the sample
mean) and� = 8.2807 (the sample standard deviation); it also displays a lognormal
distribution function with� = 30 and� and� estimated by the MLE.

Figure 38.30. Parametric CDF

Use sliders to change the CDF estimate. When MLE is used for the lognormal, ex-
ponential, and Weibull distributions, changing the value of� in the slider also causes
the remaining parameters to be estimated by the MLE for the new�.
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Test for a Specific Distribution

You can test whether the data are from a specific distribution with known parameters
by using the Kolmogorov statistic. The probability of a larger Kolmogorov statistic is
given in Feller (1948). After choosingCurves:Test for a Specific Distribution
from the menu, you can specify the distribution and its parameters in theTest for a
Specific Distribution dialog.

Figure 38.31. Test for a Specific Distribution Dialog

The default tests that the data are from a normal distribution with� = 0 and� = 1.
Figure 38.32 shows a test for a specified normal distribution (� = 60, � = 10).
Use sliders to change the distribution parameters and have the test results updated
accordingly.

Figure 38.32. Test for a Specific Distribution
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Test for Distribution

You can test that the data are from a specific family of distributions, such as the nor-
mal, lognormal, exponential, or Weibull distributions. You do not need to specify
the distribution parameters except the threshold parameters for the lognormal, expo-
nential, and Weibull distributions. The Kolmogorov statistic assesses the discrepancy
between the empirical distribution and the estimated hypothesized distributionF .

For a test of normality, the hypothesized distribution is a normal distribution function
with parameters� and� estimated by the sample mean and standard deviation. The
probability of a larger test statistic is obtained by linear interpolation within the range
of simulated critical values given by Stephens (1974).

For a test of whether the data are from a lognormal distribution, the hypothesized
distribution is a lognormal distribution function with a given parameter� and param-
eters� and� estimated from the sample after the logarithmic transformation of the
data,log(y� �). The sample mean and standard deviation of the transformed sample
are used as the parameter estimates. The test is therefore equivalent to the test of
normality on the transformed sample.

For a test of exponentiality, the hypothesized distribution is an exponential distribu-
tion function with a given parameter� and a parameter� estimated byy � �. The
probability of a larger test statistic is obtained by linear interpolation within the range
of simulated critical values given by Stephens (1974).

For a test of whether the data are from a Weibull distribution, the hypothesized dis-
tribution is a Weibull distribution function with a given parameter� and parameters
c and� estimated by the maximum-likelihood method. The probability of a larger
test statistic is obtained by linear interpolation within the range of simulated critical
values given by Chandra, Singpurwalla, and Stephens (1981).

You specify the distribution in the cumulative distribution options dialog or in the
Test for Distribution dialog after choosingCurves:Test for Distribution from
the menu, as shown in Figure 38.33. You can also specify a threshold parameter other
than zero for lognormal, exponential, and Weibull distributions.

Figure 38.33. Test for Distribution Dialog
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The default tests that the data are from a normal distribution. A test for normality
and a test for lognormal distribution with� = 30 are given in Figure 38.34. You
can use theMean/Theta slider to adjust the threshold parameter,�, for lognormal,
exponential, and Weibull distributions.

Figure 38.34. Tests for Distribution
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QQ Ref Line

After choosingCurves:QQ Ref Line , you can use theQQ Ref Line dialog to add
distribution reference lines to QQ plots.

Figure 38.35. QQ Ref Line Dialog
The default adds a least squares regression line. You can also specify your own
reference line by choosingMethod:Specification and specifying both the intercept
and slope.

If you select aWeight variable, you can add a weighted least squares regression
line to the normal QQ plot. If the data are normally distributed with mean� and
standard deviation� and if each observation has approximately the same weight (w0),
then the least squares regression line has approximately intercept� and slope� for
vardef=WDF/WEIGHT and slope�=

p
w0 for vardef=DF/N.

A normal QQ plot with a least squares reference line is shown in Figure 38.36. Use
the sliders to change the intercept and slope of the reference line.

Figure 38.36. Normal QQ Plot with a Reference Line
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Analysis for Nominal Variables

You can generate a frequency table, display a bar chart, and display a mosaic plot for
each nominal variable in the distribution analysis, as shown in Figure 38.37.

Figure 38.37. Nominal Variable Output

� Related Reading:Bar Charts, Chapter 32.

� Related Reading:Mosaic Plots, Chapter 33.
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