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As the service element of customer experiences
becomes more important, location and convenience
have emerged as major factors in consumer deci-

sions for products and services (e.g., Chan, Padmanabhan,
and Seetharaman 2007; Devlin and Gerrard 2004; Ghosh
and Craig 1986; Mulhern 1997; Thelen and Woodside
1997). As Ghosh and Craig (1983, p. 56) argue,

A good location provides the firm with strategic advan-
tages that competition may find difficult to overcome.
While other marketing mix elements may be easily
changed in response to a changing environment, store
locations represent long-term investments that can be
changed only at a considerable cost.

Over the past decade, retailers have attempted to man-
age their store locations strategically to reach more and
more consumers (Langston, Clarke, and Clarke 1997). As
the number of retail outlets has increased, manufacturers
have responded by modifying their distribution network to
eliminate stockouts, minimize late deliveries, and reduce
supply costs by changing shipping routes, relocating distri-
bution centers, and reconfiguring warehouses (Deveci-
Kocakoc and Sen 2006). Within the marketing discipline,
although research on retail locations has been conducted 

by many scholars (e.g., Ghosh and Craig 1983, 1986; Kuo,
Chi, and Kao 2002; Mahajan, Sharma, and Kerin 1988;
Pinkse, Slade, and Brett 2002), there is a dearth of research
on how manufacturers can design their distribution network
in response to retailer location networks. Korpela and
Lehmusvaara (1999) empirically study retail clients of a
manufacturer and find that factors such as delivery time,
quality, total cost, and ability to meet consumers’ urgent/
special needs are key drivers that affect retailers’ decisions
to carry the manufacturer’s products. These factors should
guide decisions about distribution centers and warehousing
locations.

Rust and colleagues (2004) highlight the importance of
efficiency in marketing systems to make marketing more
financially accountable to top management. Using the non-
linear mixed-integer programming approach, we develop a
distribution network that not only improves efficiency by
minimizing the total distribution costs but also improves
customer service levels. We illustrate our approach in the
context of a global pharmaceutical firm in which the mar-
keting department, responding to the needs of the retailers
and top management, launched an initiative aimed at
reengineering the firm’s distribution network.

The model we propose herein addresses the following
issues: (1) determining the “optimal” number of regional
distribution centers (RDCs) the manufacturing firm should
operate with, (2) identifying where in the United States the
firm should locate these distribution centers, (3) allocating
each of the retailer/customer distribution centers (CDCs) to
an appropriate warehouse, and (4) determining the total
transportation costs and service level for the optimal sce-
nario, as well as other scenarios. A sensitivity analysis
examines the impact of changes in model parameters on the
optimality of the proposed model. Finally, to understand 
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the quality of our methodology, we compare the solution
approach with two other heuristics. This marketing initia-
tive was able to reduce the total distribution costs of the
studied firm (GlaxoSmithKline [GSK]) by $1.99 million
(6%) per year and to increase on-time delivery from
61.41% to 86.2%, an improvement of 40.4%.

Answering the call of Rust and colleagues (2004, p. 84)
that marketing’s contribution should specifically focus on
“core business processes and efficient supply chain pro-
cesses,” we show how to improve the efficiency and effec-
tiveness of distribution systems simultaneously. In doing so,
we show the interdependency of retail strategy and distribu-
tion strategy in terms of location analysis. Despite a large
focus on retail stores’ location selections (e.g., Devlin and
Gerrard 2004; Ghosh and Craig 1986; Mulhern 1997), their
interdependence on the distribution network has not been
examined. Yet successful retailers, such as Wal-Mart and
Target, demonstrate the need for incorporating distribution
strategy for marketing success. Finally, we show how input
from marketing managers can be gainfully used in distribu-
tion design. This not only illustrates the concept of decision
calculus (Chakravarti, Mitchell, and Staelin 1979; Little
2004) but also shows how the decision calculus approach
developed in marketing can be applied more broadly. For
example, we obtained managerial input on problem formu-
lation, along with the various parameters of the distribution
network.

We organize the rest of the article as follows: We begin
with a review of the distribution network design from mar-
keting and operations management literature regarding the
structure of a firm’s supply chain. We provide details of the
generic network design model and its analysis in the “Prob-
lem Formulation and Methodology” section. Then, we
apply the generic model to GSK. We follow this with the
results of the application, conduct a sensitivity analysis of
the recommended solution methodology, and compare the
performance of our approach with other heuristics. Finally,
we provide a summary of findings and note the limitations
of this research.

Literature Review
Motivated by the importance of store location and cus-
tomer convenience as key elements of marketing strategy,
scholars have developed models to guide optimal location
decisions for retailers and service providers (Bucklin 1967;
Cox 1959; Ghosh and McLafferty 1982; Mulhern 1997).
Early models used regression analysis to determine store
locations (Lord and Lynds 1981), while later models also
incorporated insights from game theory and decision 
theory (e.g., Davis 2006; Ghosh and Craig 1983, 1986).
More recently, Chan, Padmanabhan, and Seetharaman
(2007) estimated an econometric model that incorporates
the geographic location of retailers and models the price
competition among them to determine consumer policy
implications. Empirically, models have been developed to
incorporate the spatial variability in customer tastes when
determining store locations (Donthu and Rust 1989; Mittal,
Kamakura, and Govind 2004; Rust and Donthu 1995).
Thus, in marketing, there is a rich tradition of examining

retail locations from the retailer’s or customer’s perspective.
However, the location choices made by manufacturers to
support retailer networks have received relatively little
attention in the marketing literature. Yet it is well known
that manufacturer decisions can have a critical effect on the
marketing success of downstream retailer partners (Iyer and
Bergen 1997; Kadiyali, Chintagunta, and Vilcassim 2000;
Murry and Heide 1998). This is the focus of the current
research.

The field of location analysis has been extensively stud-
ied (for a review, see Brandeau and Chiu 1989; Daskin
1995). The location and allocation decisions in supply chain
network design, including the choice of the number, site,
and capacity of facilities, as well as assigning customers to
these facilities, have significant long-term impacts on the
efficiency of the network. Model formulations and solution
algorithms that address these issues vary widely in terms of
fundamental assumptions, mathematical complexity, and
computational performance. We review key developments
in this literature.

Design of a Distribution Network

Research in location–allocation often focuses on cost reduc-
tion, demand capture, equitable service supply, and fast
response time. Baumol and Wolfe (1958) were the first to
describe a distribution model. Geoffrion and Graves (1974)
proposed a multicommodity supply chain design model to
optimize product flows from plants to RDCs, RDCs to
CDCs, and CDCs to final customers. Work by Brown,
Graves, and Honczarenko (1987), Cohen and Lee (1988),
and Arntzen and colleagues (1995) models the location and
allocation problem as a mixed-integer linear programming
problem and provides an efficient heuristic algorithm to
solve large-scale problems.

Geoffrion and Powers (1995) examine the evolution of
the strategic distribution system design since 1970. Reviews
of distribution models with emphasis on supply chain mod-
els can also be found in the work of Vidal and Goetschalckx
(1997) and Beamon (1998). In a review, Erenguc, Simpson,
and Vakharia (1999) emphasize the importance of opera-
tional issues, such as lead times in making location/
allocation decisions. Melkote and Daskin’s (2001) model
involves both fixed and arc/variable costs and focuses on
the number, location, capacity, and size of warehouses to be
set up to maximize profits. However, in this model, manu-
facturing facilities are not taken into account. Eskigun and
colleagues (2005) study the distribution management issue
faced by a large-scale automotive firm. Finally, Saourirajan,
Ozsen, and Uzsoy (2007) focus on stochastic issues and
incorporate lead time and safety stock into their model.

The problem we encountered at GSK required address-
ing four main questions: (1) How many distribution centers
should be opened? (2) Where should the distribution centers
be located? (3) What should the capacity of each distribu-
tion center be? and (4) How should customers be allocated
to distribution centers? Table 1 summarizes the literature
that is most relevant to our problem. Our ability to address
all four questions in a unified framework provides an
important contribution to the literature.
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TABLE 1
Distribution Management Literature Most Relevant to the Studied Problem

Method
Questions 
Addressed Technique Strength Weakness

Amiri (2006) 1, 3, 4 Lagrangian heuristic Include plants and
warehouse decision

Single product type

Brown, Graves, and
Honczarenko (1987)

1, 4 Goal decomposition Where and how much to
produce, where to ship

from

Focus on solution time

Eskigun et al. (2005) 1, 3, 4 Lagrangian heuristic Consider lead time,
capacity

Single product type:
vehicle

Jayaraman and Ross
(2003)

1, 3, 4 Mixed-integer
programming, simulated

annealing

Include cross-docking Need to know potential
cross-docks and

warehouses

Melkote and Daskin (2001) 1 Mixed-integer
programming

Consider capacity Demand travels to facilities

Moon and Chaudhry
(1984)

2 Integer programming Introduce various distance-
constrained problem

Focus on location only

Swersey and Thakur
(1995)

1, 3 Integer programming, set
covering problem

Identify location Single stage, no
distribution decision

involved

Notes: The numbers in Column 2 correspond to the following questions: (1) how many distribution centers, (2) where to locate, (3) what capac-
ity, and (4) how to allocate customers.

The Continuous Location Problem

The main distinction between our model and the traditional
supply chain design is that ours is a “continuous model”
rather than a traditional discrete location model. Further-
more, we do not begin with a preset network design. Our
continuous model assumes that facilities (e.g., RDCs) can
be represented by any point in the Euclidean plane, and
travel distances in the mathematical model are calculated by
either the Euclidean metric or the Manhattan metric. Con-
versely, the traditional discrete models, which form the bulk
of prior research, assume that facilities can be located only
at specific and limited numbers of potential sites. Because
of its relevance to our research, we review the continuous
model next.

The core of the continuous location problem rests on the
Weber problem (Wesolowsky 1993). It determines the coor-
dinates of a single facility, such that the sum of the
(weighted) distances wl × dl(x, y) from the facility to the
customer at (al, bl) is minimized—that is, MinΣlwl × dl(x,
y). Among the many measures proposed to determine the
proximity between two points on a plane, the Euclidean dis-
tance is the simplest and easiest to implement (Anderberg
1973; Gower 1985). For a facility at (x, y) and customer l at
(al, bl), the Euclidean distance is computed as dl(x, y) =

The coordinates of the city in which a
customer resides can be uniquely identified by the zip code,
which matches a specific city.

An extension of the problem that allows for multiple
facilities and allocates demands to facilities is the multi-

( ) ( ) .x a y b− + −l l
2 2

source Weber problem (MWP). Locating multiple facilities
simultaneously in a plane to minimize the total transporta-
tion cost and to satisfy the demand for many users is a non-
deterministic polynomial-time hard problem (Klose and
Drexl 2005), and it can be modeled as a nonlinear mixed-
integer program as follows:

subject to for each customer l, where zkl =
{0, 1} and zkl equals 1 if customer l is assigned to facility k,
and x, y are continuous variables.

The main difficulty in solving the MWP arises because
the objective function is not convex (Cooper 1967) and can
have a large number of local minima. Heuristics are needed
to solve large problems and to provide good initial solutions
for exact algorithms. In the MWP, it is assumed that the
number of new facilities to be located (k) is given. In prac-
tice, however, determining the number of facilities is one of
the main questions that needs to be answered. Rosing
(1992) and Du Merle and colleagues (1999) reformulate the
preceding MWP model as a set partitioning problem and
use the column generation approach to solve the linear pro-
gramming relaxed version of the problem. Other variants
and extensions of the MWP can be found in Klamroth
(2001). To date, all continuous location problems discussed
in the literature have been single echelon (i.e., they focus
only on one level of supply and demand). However, multi-
echelon supply chains (i.e., various levels in distribution
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network, including suppliers, manufacturers, distributors,
retailers, and customers) are needed to carry out the goals
of an organization such as GSK. Thus, we develop a model
for multiechelon supply chain network design.

Problem Formulation and
Methodology

A supply chain network should satisfy customers’ demands
simultaneously at a desired service level and at the lowest
possible cost. To do this, we propose a generic modeling
framework that is flexible and general enough to incorpo-
rate various constraints such that important location and
allocation conditions are taken into account. We call our
approach the “continuous supply chain design” (CSCD)
problem. This approach results in a realistic nonlinear
mixed-integer programming model.

The CSCD Model

The following CSCD model is an extension of the MWP to
the multiechelon setting. It focuses on the decisions of loca-
tion and allocation of RDCs. We describe the notation in the
Appendix and formulate the CSCD model as follows:

subject to

(5) ukl ≤ zk ∀l;

(8) ukl, zk = {0, 1} ∀k, l;

(9) sijk, tikl ≥ 0 ∀j, k, l;

(10) xk, yk are continuous variables.

The CSCD is a large-scale nonlinear mixed-integer pro-
gramming model. The objective function, Equation 1, mini-
mizes the cost of transportation between plants and RDCs,
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the cost of shipping between RDCs and CDCs, and the
costs of opening and operating RDCs. Constraints in Equa-
tion 2 are single-sourcing constraints that restrict a cus-
tomer’s demand for any commodity to be served by a single
RDC. Constraints in Equation 3 ensure that all products
shipped to an RDC will be shipped to CDCs. Constraints in
Equation 4 specify the maximum number of RDCs to open.
Constraints in Equation 5 allow CDCs to be assigned to the
opened RDCs only. Constraints in Equation 6 ensure that all
customer demands are satisfied. Constraints in Equation 7
determine the relative size of warehouse k. Constraints in
Equation 8 ensure that ukl and zk are binary. Variables sijk
and tikl are nonnegative, as required in the constraints in
Equation 9. The coordinates (xk, yk) take any positive or
negative number without restriction, as the constraints in
Equation 10 show.

The CSCD model simultaneously identifies the appro-
priate sites for RDCs, allocates each CDC to a specific
RDC, determines the ideal number of RDCs, determines 
the size of each RDC, and minimizes the total distribution
network costs. In addition to the multiechelon continuous
nature, the proposed CSCD model differs considerably
from the traditional location and allocation models in sev-
eral ways. First, information about warehouse capacity
(size) is not required, which is different from previous mod-
els in the literature (e.g., Amiri 2006; Brown, Graves, and
Honczarenko 1987; Eskigun et al. 2005; Jayaraman and
Ross 2003; Melkote and Daskin 2001). Note that the size of
an RDC is proportional to the total demand assigned to that
specific site, and the costs of the RDCs are estimated on the
basis of size. In other words, both the size and the location
of any RDC depend on the solution of the model and are not
provided as parameters. Managerially, this implies that the
leasing and operating costs depend on the size of the RDCs
opened. Second, no potential RDC locations need to be
identified before solving the model, which is different from
most of the location selection models in the literature (e.g.,
Moon and Chaudhry 1984; Swersey and Thakur 1995).
Third, prior models have used constant shipping costs to
compute the total transportation costs (e.g., Amiri 2006;
Elhedhli and Goffin 2005; Erlenkotter 1978; Shen 2005). In
this study, transportation cost (parameters g and h in the
CSCD model) is a function of the diesel price, distance,
weight, line-haul costs, and fuel surcharge, as we discuss in
the subsequent subsections. Incorporating these factors
makes the model more realistic because these are issues that
management must address on a day-to-day basis.

The complexity involved in making the problem formu-
lation more realistic implies that the problem also becomes
more difficult to solve optimally. To the best of our knowl-
edge, the CSCD model in this study is the first to integrate a
continuous location problem and a comprehensive multi-
echelon supply chain network design problem, both of
which are classified as nondeterministic polynomial-time
hard problems. Problems in this category cannot be opti-
mally solved in a reasonable amount of time (polynomial
time), often taking days, weeks, and more, depending on
the scale of the problem. As a consequence, exact optimal
solution methods are restricted to small-scale problems, and



150 / Journal of Marketing, March 2009

such problems often end up being unrealistic. Thus, effec-
tive heuristic algorithms are developed to provide near-
optimal solutions within minutes. Next, we describe how
we solve the CSCD problem using a heuristic.

Solution Approach

Many heuristics of different accuracy and speed have been
suggested to solve the location and allocation problem.
Most problems are solved by modern heuristic procedures,
which do not guarantee an optimal solution. Our goal is not
to pursue the exact mathematical optimum but rather to
solve the problem efficiently and realistically. In other
words, we want an algorithm that can generate a relatively
good solution within a reasonable amount of time (i.e., min-
utes or hours, not months or years). The genetic algorithm
in Evolutionary Solver can serve such a purpose. The Evo-
lutionary Solver (Ashlock 2005) is a Microsoft Excel add-in
tool found in Premium Solver (Frontline Systems 2007).

The genetic algorithm approach, introduced by Holland
(1975), is a global search heuristic procedure that incorpo-
rates processes inspired by evolution ideas in biology, such
as initiation, selection, reproduction (crossover and muta-
tion), and termination (see Figure 1). A series of steps are
used to solve the CSCD model. First, the genetic algorithm
starts by randomly generating a large set of candidates to

form initial solutions, called a “population,” and then evalu-
ates the fitness (quality) of each individual candidate (i.e.,
solution) in the population. Whether an individual solution
is fit depends on whether it can satisfy all constraints and
the solution quality. Second, the genetic algorithm selects
two best-ranking individual solutions to reproduce through
crossover and mutation (genetic operations) and to give
birth to offspring (i.e., pairs of the existing population to
create offspring for the next generation). Third, the genetic
algorithm evaluates the fitness of each offspring, replacing
the worst-ranked part of population with the best offspring.
Therefore, the population evolves and becomes more fit.
Fourth, the genetic algorithm occasionally makes a random
change by substituting a member in the population by a ran-
dom value. Such a mutation can create offspring that are far
removed from the rest of the population to avoid being
stuck at a local optimum. Fifth, the genetic algorithm con-
tinues creating new generations until no improvements
occur in several successive generations. The algorithm ter-
minates, and the best result found becomes the solution.

In applying the genetic algorithm in Evolutionary
Solver, we use large values in maximum subproblems and
maximum feasible solutions to extend the search. Increas-
ing the population size and/or mutation rate helps improve
with searches that were trapped in local optimum. Con-

FIGURE 1
The Flowchart of Genetic Algorithm
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FIGURE 2
Distribution Network of GSK

versely, decreasing the tolerance and/or increasing the
maximum time without improvement allows for a longer
search and a chance to improve results. All these are critical
user inputs to the software program to help detect a better
solution.

Although the genetic algorithm does not guarantee an
optimal solution, Wen and Iwamura (2008) find that it is
likely for the genetic algorithm to end up with a solution
that is close to optimal. To improve the chance of obtaining
the best solution, a standard optimization model can be run,
starting with the final solution obtained by the Evolutionary
Solver, to seek an opportunity for enhancing the solution
quality.

Applying the CSCD Model to GSK
A real-life case study at GSK provides the setting for imple-
menting our model. The CSCD model has successfully han-
dled the problem, and the company’s marketing and logis-
tics department recognizes the validity of the results.
Because of confidentiality concerns, some numerical results
reported here are disguised.

The Distribution Network of GSK

GlaxoSmithKline’s supply chain network consists of sup-
pliers, manufacturers, warehouses, and retail distribution
channels, which are synchronized to acquire raw materials,
produce finished goods, and distribute products to ware-
houses and retailers. Currently, most products are produced
by four manufacturing plants in the United States and more
than 30 contractors around the world. They manufacture 60
brands and more than 1200 different items, representing
approximately 4 billion packs per year. Together with two
copacking facilities, they form the supplier network of the
company’s consumer health care products. The firm has
four RDCs in the United States to ship its products to more
than 400 retail accounts, each of which has multiple CDCs.
In all, there are 25,000 “ship-to” locations (i.e., retail
stores). Annually, more than 80,000 customer orders are
handled, and 20 million cases of products are shipped. Fig-
ure 2 provides the direction of the inventory flow. The loca-
tions of current manufacturing plants and RDCs appear in
Figure 3.

As Figure 3 shows, GSK currently has four RDCs
located in Fountain Inn, S.C.; Memphis, Tenn.; Hanover,
Penn.; and Fresno, Calif. These RDCs receive inbound
shipments from manufacturing facilities located in Aiken,
S.C.; Clifton, N.J.; Memphis, Tenn.; and St. Louis; Mo. No
products are stored in the manufacturing facilities. If an
RDC is short of a product, another RDC is allowed to share
inventory and ship to the RDC in need. However, manage-
ment has deemed that such an activity wastes resources and
thus is strongly discouraged. Therefore, interwarehouse
shipping is avoided and should not be considered in our
model.

After an RDC receives products, it ships them to the
corresponding CDCs. When the CDC receives the products,
the customer takes possession and title of the goods. These
CDCs are spread around the United States, with more
CDCs on the East Coast than the West Coast. The existing

distribution network of GSK has been employed for more
than a decade and is a result of incremental changes as the
company has grown. A major opportunity for improvement
of the distribution network arose when the current leases on
some RDCs were due for expiration and renewal. The firm
had the option either to renew some of the leases or to look
for alternative sites if necessary. In addition, management
was concerned with the rising costs of fuel, a key cost fac-
tor. During the second half of 2005, diesel prices rose
46.5%, from an average of $2.15 to $3.15 per gallon, and
they reached $3.80 in March 2007. The executives man-
dated that any distribution network design include the costs
of energy as a key decision factor. In other words, the firm
wanted to relocate its RDCs such that a potential change in
the environment, such as customer demand and diesel
prices, would have the smallest possible impact on the dis-
tribution costs.

Determining the Number, Sites, and Capacities of
the RDCs

We obtain the model solution with the Evolutionary Solver,
which determines the geographical coordinates of RDCs,
which are then converted into zip codes and used to identify
the corresponding cities. Specifically, the CSCD model
determined that the optimal warehouse (RDC) coordinates
were (33.5, –96.9), (37.1, –118.6), (33.4, –83.8), (41.6,
–87.9), and (40.2, –76.3). These coordinates corresponded
to zip codes 76233, 93513, 31085, 60441, and 17545, repre-
senting five cities: Collinsville, Tex. (RDC 1); Big Pine,
Calif. (RDC 2); Shady Dale, Ga. (RDC 3); Lockport, Ill.
(RDC 4); and Manheim, Penn. (RDC 5). The model also
assigned each CDC to one of these RDC locations to mini-
mize the total costs. Many of GSK’s retailers have multiple
CDCs that are geographically dispersed throughout the
United States; therefore, different CDCs for the same
retailer (e.g., Wal-Mart) can be served by different RDCs.

We summarize the solution to GSK’s RDC location and
allocation problem in Table 2 and map this onto U.S. cities
in Figure 4. In Table 2, the percentages show the relative
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FIGURE 3
RDCs and Manufacturing Plants for GSK
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TABLE 2
The Results of Applying the CSCD Model to the

GSK Data

Chosen City, State
Zip 

Code
Relative Size of

Warehouse Capacity

Collinsville, Tex. 76233 21%
Big Pine, Calif. 93513 21%
Shady Dale, Ga. 31085 24%
Lockport, Ill. 60441 19%
Manheim, Penn. 17545 16%

size of each warehouse. Each value is derived from Equa-
tion 7. Figure 4, Panel A, shows the CDCs that are to be
served by each proposed RDC on a U.S. map. Circles of the
same shade are CDC locations that are assigned to the same
RDC. Figure 4, Panel B, shows the old and new RDCs.

Deriving the Unit Transportation Costs on the
Basis of the Cost Structure of Freight

To understand the cost structure of freight for this firm, it is
important to distinguish between full-truckload (TL) and
less-than-truckload (LTL) shipping. By TL, we refer to
shipments of a full truckload to obtain economies of scale,
and by LTL we refer to the shipments with a relatively
small freight that does not fill the truck. Truck drivers are
expected to transport freight at an average rate of 47 miles
per hour (this factors in traffic jams and queues at intersec-
tions) all the way to destination. The advantage of TL carri-
ers is that the freight is never handled en route, giving a
more predictable delivery time, whereas an LTL shipment
may be transported on several different trailers to achieve
higher volume efficiency. The main advantage of LTL ship-
ment is that it is much cheaper than TL. Many, if not all,
carriers view themselves as either primarily LTL or primar-
ily TL carriers. GlaxoSmithKline’s manufacturers use TL to
ship from plants to RDCs to ensure efficiency and use LTL
to ship from RDCs to CDCs to customize clients’ needs.

Thus far, researchers (e.g., Amiri 2006; Elhedhli and
Goffin 2005; Shen 2005) working on location and alloca-
tion problems have used average unit shipping costs to
compute the total transportation costs. However, in reality,
freight costs differ significantly between TL and LTL ship-
ments. Equations 11–15 distinguish the TL and LTL costs
and identify the underlying transportation cost structure for
GSK.

When the quantities are shipped as containerized in
truckloads or when the transportation cost structure charges
a truckload minimum for partial quantities, product distri-
bution cost mainly becomes a function of the distance trav-
eled. However, under a partial-load price structure, it is
common to express the pricing in terms of load distances,
such as ton–mile, where a ton–mile is the amount of trans-
portation activity to move a ton of material over a distance
of one mile. To keep our model general, we express the
transportation activity in load distances because the pure
distance-based approach is a special case of the general
model when the minimum charged quantities are in
truckloads.

For both TL and LTL types of transport, fuel surcharge
and line-haul charges are the two main costs. The total
freight cost can be formulated as follows:

(11) Total transportation cost = Demurrage + Line-haul cost

+ Fuel surcharge.

All the information needed for Equation 11 is obtained by
GSK in advance. Plugging these data into Equation 11 gives
the LTL and TL freight costs, which correspond to g and h
in the CSCD model. The demurrage in Equation 11 is the
cost imposed as compensation for the detention of a carrier
taking longer than the normal time needed to load and
unload a truck. Line-haul costs are basic charges for long-
distance moves, which are usually calculated on the basis of
mileage and weight of the shipment. Fuel surcharge is an
additional per-shipment fee that carriers impose when fuel
prices are above predefined levels.

Using the historical shipment data provided by GSK
and the characteristics of customer orders, we express line-
haul costs as regression models (see Equations 12 and 13).
For the LTL regression equation, the independent variables,
distance (p < .0001) and weight (p < .0001), were both sta-
tistically significant. The model was adequate with a high
R-square value (98.2%). Conversely, for the TL regression
equation, only distance was significant (p < .0001), and the
model was able to account for a high portion of variation
(R2 = 91.3%).

(12) LTL: Line-haul = $12.79 + .06 (Distance)

+ .056 (Weight), and

(13) TL: Line-haul = $399.48 + 1.0268 (Distance).

In these equations, we do not include additional variables,
such as size, type, and volume of customer order, because
we found them to be insignificant in determining the line-
haul costs. In both equations, distance is statistically signifi-
cant, but weight is significant only in the LTL situation. We
expect weight to be insignificant in the TL equation because
the truck is always full, and in general, fully loaded trucks
weigh similarly in this case.

In addition to line-haul costs, carriers also impose a fuel
surcharge cost. Using the Department of Energy’s Diesel
Fuel Index, we estimate the fuel surcharge costs for LTL
and TL in Equations 14 and 15:

(14) LTL: Fuel surcharge = ({[.3(Diesel price – 1.15)/.05] 

+ .7}/100) × Line-haul cost, and

(15) TL: Fuel surcharge = (.2 × Diesel price – .2298) 

× Miles traveled.

Equation 14 shows that fuel surcharge is the product of the
surcharge rate and the line-haul cost for LTL shipment. The
surcharge rate in Equation 14 ({[.3(Diesel price – 1.15)/
.05] + .7}/100) reflects that for each $.05 increase over
$1.15 in the diesel price, the fuel surcharge will increase by
.3% of the line-haul cost. In the calculation, this is rounded
down for convenience. For TL, the diesel price and miles
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FIGURE 4
Number and Sites of RDCs and Allocation of CDCs to RDCs

A: The Five RDC Locations and the Allocation of CDCs to RDCsa
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FIGURE 4
Continued

B: Previous RDC Locations and the New Five-RDC Solution Locationsb

aSmall circular dots represent existing CDC locations in the United States, and stars with city names and state represent the proposed new five RDC locations.
bRelative capacities of the plants are as follows: Collinsville, Tex. (21%); Big Pine, Calif. (21%); Shady Dale, Ga. (24%); Lockport, Ill. (19%); and Manheim, Penn. (16%).
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traveled define the fuel surcharge; again, weight is not an
important factor.

The parameters estimated in Equations 11–15 help man-
agement better understand the relationship among the com-
ponents of transportation cost. GlaxoSmithKline can plug
in these components and quickly and approximately esti-
mate the transportation costs for each of the items it ships
annually.

The cost function of RDCs is a function of the size of
the warehouse: 676 × (100 × Size)1⁄2, which suggests that
there are economies of scale. If we combine the transporta-
tion costs of Equation 11 with warehouse cost function, the
total distribution network costs for CSCD can be derived.

Total Distribution Network Costs and Service
Level

Although having fewer RDCs lowers the fixed and operat-
ing costs associated with the warehouse management, it
increases both the inbound and the outbound transportation
costs as a result of longer delivery distance. Because they
are likely to be inversely related, it is important to balance
warehouse costs and transportation costs. We use the firm’s
shipping data, fuel price prevailing during the data period,
warehouse leasing and operating costs, and TL and LTL
cost equations to compute the total costs of the distribution
network. The percentages of customers who can be served
within 100-, 250-, 500-, and 1000-miles radius are also
computed.

Table 3, Panel A, summarizes the annual distribution
costs for the firm. For the current four-RDC system, the TL
transportation cost is $12.27 million (9.14 + 1.87 + 1.26),
and that of the LTL is $5.98 million (5.44 + .41 + .13).
Together, the transportation cost is $18.25 million. When
the warehouse costs are taken into consideration ($15.41
million), the current annual distribution network cost is
$33.66 million.

The unit transportation costs, g and h, in Equation 1 are
$1.36 and $1.70, respectively. We derive parameters g and h
as follows: We obtain the value for g by dividing the total
TL shipping cost by the weighted miles traveled. Similarly,
dividing the total LTL shipping cost by the total LTL
weighted miles traveled gives the cost h in the CSCD
model. As we discussed previously, GSK’s actual trans-
portation cost is $18.25 million, which includes $5.98 mil-
lion for the TL shipping and $12.27 million for LTL ship-
ping. Dividing the $5.98 million TL shipping cost by the TL
weighted miles of 4,399,253 gives a value of $1.36 for g.
Similarly, we obtain h by dividing the $12.27 LTL cost by
7, 217,000 mile–ton traveled for LTL shipping.

Because both g and h are linearly related to weighted
travel distance in Equation 1, they imply that traveling one
mile–ton distance by TL will increase the overall trans-
portation costs by $1.36. Conversely, a mile–ton of LTL
travel will increase the LTL transportation costs by $1.70.
Recall that TL is used to go from plants to RDCs, and LTL
is used to go from RDCs to retailers’ CDCs.

Table 3, Panel A, shows that the total transportation
costs vary with the total number of warehouses and that
there is a trade-off between warehouse expenditure and

1Within-one-day deliveries correspond to deliveries within a
500-mile radius.

transport spending. For example, with only two RDCs, the
transportation costs are higher ($22.25 million), though the
warehouse costs are lower ($12.32 million). The five-RDC
distribution network represents the optimal balance because
the total cost decreases from the two-RCD solution and
reaches a minimum at five RDCs, beyond which it increases
again. Under the five-RDC system, the transportation cost is
estimated to be $14.99 million annually, a savings of $3.26
million (17.9%) from the current four-RDC network sys-
tem. However, by adding one more RDC, an incremental
warehouse cost of $1.27 million ($16.68 – $15.41 million)
will be incurred. Combining the transportation and ware-
house costs, we obtain a total cost of $31.67 million with
the five-RDC solution, rather than the current cost of
$33.66 million. Thus, this new network design saves a total
of $1.99 million (or 6%) in distribution costs per year. In
addition, as we explain next, there are also savings and
benefits emanating from improved delivery time.

Improving Customer Service by Shortening
Delivery Radius and Time

The percentage of orders that can be delivered to the
required CDC location within one day is an important met-
ric of customer responsiveness and customer service for the
firm. However, according to transportation law, truckers in
the United States can only drive a maximum of 11 hours
(11 hours × 47 miles/hour = 517 miles/day ≈ 500 miles)
after 10 consecutive hours off duty. When the driving dis-
tance exceeds 500 miles, it takes more than one day to
deliver the products, which is undesirable. As such, a desir-
able distribution network design would be one in which the
majority of the CDCs are within 500 miles of their serving
RDCs.

Table 3, Panel B, shows that with the five-RDC plan, the
company can ship 86.2% of customer orders within one
day.1 Compared with the current service level of 61.41%
one-day deliveries, it represents a 40.4% improvement. This
improvement is primarily what makes the five-RDC design
attractive to GSK. Furthermore, with the proposed five-
RDC option, only 2.2% of the orders will take longer than
two days (more than 1000 miles distance) to deliver. For
small orders that take longer than one day, the company
may opt to expedite through one-day air service if needed.

In summary, the proposed five-RDC distribution net-
work system not only decreases the total cost by 6% but
also improves the one-day delivery rate by 40.4%. As we
expected, management at GSK was keen to adopt the pro-
posed system. However, we still need to investigate whether
the proposed five-RDC solution remains optimal under dif-
ferent environments (e.g., changes in fuel price, demand
quantity, RDC costs, number and locations of customers,
and required service level). We answer these questions by
conducting sensitivity analysis.
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TABLE 3
Total Distribution Costs and the Service Level

A: The Total Distribution Costs for K = 2, 3, …,10 Warehousesa

LTL TL

Transpor-
tation Cost

Warehouse
Fixed and
Operating

Costs Total Costs Line-Haul Fuel Demurrage
Total Cost

for LTL Line-Haul Fuel Demurrage
Total Cost

for TL

($) ($) ($) ($) ($) ($) ($) ($) ($) ($) ($)

Current 4-RDC 
system 9.14 1.87 1.26 12.27 5.44 .41 .13 5.98 18.25 15.41 33.66

2 RDC 11.23 2.34 1.26 14.83 6.81 .48 .13 7.42 22.25 12.32 34.57
3 RDC 10.07 2.17 1.26 13.50 5.75 .45 .13 6.33 19.83 13.99 33.82
4 RDC 8.94 1.86 1.26 12.06 4.74 .41 .13 5.28 17.34 15.41 32.75
5 RDC 7.90 1.68 1.26 10.84 3.68 .34 .13 4.15 14.99 16.68 31.67
6 RDC 6.99 1.52 1.26 9.77 3.31 .31 .13 3.75 13.52 18.67 32.19
7 RDC 6.78 1.36 1.26 9.40 2.87 .27 .13 3.27 12.67 19.95 32.62
8 RDC 6.63 1.34 1.26 9.23 2.65 .23 .13 3.01 12.24 21.26 33.50
9 RDC 6.43 1.34 1.26 9.03 2.28 .20 .13 2.61 11.64 22.33 33.97

10 RDC 6.20 1.34 1.26 8.80 2.01 .19 .13 2.33 11.13 23.38 34.51

Percentage of Customer Orders Served for Each 
CDC–RDC Distance Range Under Each Scenario (%) Total Percentage 

of Customers
Served in One 

Day (%)

Total Percentage 
of Customers

Served in More
Than One Day (%)

Less Than 100
Miles 100–250 Miles 250–500 Miles 500–1000 Miles

More Than 1000
Miles

Existing 4-RDC
system 3.18 23.26 34.97 33.68 4.91 61.41 38.59

2 RDC 0.10 6.70 41.00 47.30 4.90 47.80 52.20
3 RDC 0.60 14.60 42.10 37.90 5.00 57.30 42.70
4 RDC 3.40 18.10 42.50 31.70 4.30 64.00 36.00
5 RDC 8.80 27.70 49.70 11.60 2.20 86.20 13.80
6 RDC 10.30 37.30 41.10 9.40 1.90 88.70 11.30
7 RDC 13.50 40.20 38.20 6.90 1.20 91.90 8.10
8 RDC 17.70 39.10 31.40 5.10 .80 88.20 11.80
9 RDC 21.30 40.30 35.40 2.90 .10 97.00 3.00

10 RDC 24.20 43.40 32.00 .40 .00 99.60 .40
aAll dollar figures are in millions. We calculated all figures for 12 months. We assumed diesel price to be $2.3. The best solution (the 5-RDC scenario) appears in bold.
bCustomers that are within 500 miles radius can be served in one day. Diesel price per gallon is assumed to be $2.3. The best solution (the 5-RDC scenario) is given in bold.

B: The Percentage of Customer Orders That Are Served by Warehouses Located Within Specific Radiusb
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Sensitivity Analysis and Heuristics
Comparison

A major obstacle in the design of a supply chain network is
the uncertainty underlying the supply chain parameters. The
stochastic nature of distribution networks makes most tradi-
tional analytical models either overly simplistic or unsolv-
able. Solvable models may not be robust and may become
invalid under different business environments. The sensitiv-
ity analyses we perform examine the capability and robust-
ness of the proposed model in handling variability.

Sensitivity analysis examines how the results of a model
vary with changes in model inputs (Meepetchdee and Shah
2007). A model is said to be sensitive to an input if chang-
ing an input variable changes the model output (i.e., the
optimal solution).

Changes in Fuel Price

To understand the impact of fuel price uncertainty on the
efficiency of the distribution network, we conducted a sen-
sitivity analysis with respect to various levels of fuel prices.
Figure 5 shows the results of such an analysis. Because
diesel price directly influences the fuel surcharge, we com-
puted the combined fuel surcharges for both LTL and TL in
the sensitivity analysis.

Table 4 and Figure 5 show that the total fuel surcharge
is inversely proportional to the total number of RDCs.
When fuel price is low, the difference in total fuel surcharge
costs does not differ significantly; however, the difference
increases with a rise in fuel price. To mitigate the negative
impact of increasing fuel price, it is desirable to adopt more
warehouses. However, recall that warehouse opening and
operating expenses are high, and they constitute a signifi-
cant portion of the overall distribution network costs. Thus,
the savings in fuel costs from having more RDCs may be
offset by additional warehouse costs. A desirable decision
hinges on balancing the transportation costs and the ware-
house expenses. When both costs are taken into considera-
tion, the CSCD model recommends the five-RDC solution
when fuel prices fall in the range of ($2.3, $5), a highly
likely event. When fuel cost is less than $2.3, the four-RDC
solution reaches the lowest total cost. If the fuel cost is
within the range of ($5, $6), the six-RDC solution is the
choice. A price of $6 or above makes the seven-RDC solu-
tion the best option.

Changes in Demand Level

To examine the impact of demand changes in CDCs on
model performance, we generate random demand by using
current demand × α, where α is a random number uni-
formly distributed between .5 and 1.5 (i.e., α ~ U[.5, 1.5]).
When α is close to 1, it indicates a small variation. When
α = .5, it implies that the demand is only half the original
demand quantity. Conversely, when α = 1.5, it shows that
the demand has increased 50% from the previous amount.
We found that for .80 ≤ α ≤ 1.15, a range in which demand
is likely to change between a 20% decrease and a 15%
increase, which is a likely fluctuation GSK may come

FIGURE 5
The Impact of Changes in Diesel Price on the

Total Fuel Costs Under Various Scenarios

TABLE 4
Total Fuel Surcharge at Different Diesel Price Levels Under Different Scenarios

Total Diesel Price GSK Incurs ($)

Fuel Cost ($) 2.0 2.3 2.5 3 4 5 7

Existing 4-RDC System 1,958 2,282 2,498 2,907 4,621 5,955 9,182
2 RDC 2,586 2,820 2,976 3,646 5,619 7,593 11,539
3 RDC 2,320 2,620 2,820 3,393 5,228 7,063 10,734
4 RDC 1,922 2,276 2,512 2,844 4,383 5,921 8,999
5 RDC 1,844 1,970 2,054 2,346 3,616 4,885 7,425
6 RDC 1,765 1,904 2,003 2,204 3,213 4,215 6,588
7 RDC 1,702 1,856 1,907 2,089 2,987 4,022 5,672
8 RDC 1,658 1,741 1,875 1,992 2,645 3,854 4,531
9 RDC 1,604 1,698 1,765 1,854 2,330 3,481 3,458

10 RDC 1,587 1,630 1,689 1,794 2,050 2,963 3,216

Notes: All numbers are derived from Equations 14 and 15. The final decision on the number of RDCs to employ must include these numbers
and the RDC costs.
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across, the five-RDC solution remains the best. When
1.15 < α ≤ 1.30 (demand is increased by 15%–30%), the
six-RDC solution gives the lowest cost solution. When
1.3 < α ≤ 1.5 (demand is increased by 30%–50%), the
seven-RDC solution is the best. Conversely, we found that
when customer demand is reduced by 20%–50% (i.e., .50 ≤
α < .80), the four-RDC solution minimizes the overall
costs.

Changes in Warehouse Costs

To examine whether the five-RDC solution remains valid
when warehouse costs change, we varied the RDC costs
function [β × (100 × Size)1⁄2] by changing the coefficient β
from the original value (676) to values within the range
(500, 900) in increments of 50. We found that under a small
change (i.e., when 600 ≤ β ≤ 800), the five-RDC solution is
still optimal. When β < 600, the six-RDC solution is the
best solution. When warehouse costs increase significantly
(i.e., β > 800), the four-RDC solution is optimal. Because
RDC costs do not typically change drastically over time and
often fall within the range of 600 ≤ β ≤ 800, the five-RDC
decision still remains the best option.

Changes in the Number and Location of CDCs

We also examined the impact of changes in the number and
location of CDCs. We found that when the number of CDC
locations varies within ±9% of the existing CDC locations
or when the location coordinates vary within ±13% of the
existing CDC locations, the five-RDC decision remains
optimal.

The preceding discussion shows that the five-RDC solu-
tion recommended by the CSCD model is robust and
remains the best choice under realistic and reasonable situa-
tions. For general tests of different problems combining
multiple factor changes simultaneously, we conduct the
experiments reported next.

Changes in Service Level

A practical and valuable question is how many RDCs
would be optimal for 100% delivery of customer service
within one day given the nonlinear mixed-integer model.
Recall that one-day delivery is important given the con-
straint from regulators that drivers can travel no more than
500 miles in a given day. The problem can be modeled by
adding a constraint such that all the CDCs will be within a
distance of 500 miles of their served RDCs (i.e., dl[xk, yk] ≤
500 miles). We incorporate this constraint into the original
CSCD model and solve the model again using Evolutionary
Solver.

The results show that for GSK, ten warehouses would
be needed to achieve a 100% service level (i.e., delivery to
all customers within one day). In reality, however, GSK is
not interested in a 100% delivery within one day because of
excessive costs. As with most firms, GSK would use air
freight to expedite some shipments, even though expediting
increases the transportation costs. This is still much more
economical than opening extra warehouses. Management at
GSK regarded opening another five RDCs to achieve an
improvement of 13.8% in one-day delivery as not justifi-

able. However, in other situations (e.g., emergency medical
supplies) and for other firms, the trade-off between service
improvement and extra RDCs may be worthwhile.

Comparing the Performance of Different
Heuristics for CSCD Problem

Except for some small problems, there is no guarantee that
the theoretically optimal solutions (cost levels) will be
obtained in real life because of the stochastic nature of the
distribution networks. Managers are often faced with the
need to find high-quality solutions to difficult problems,
such as CSCD. Although preferred because of their combi-
natorial nature, larger-scale problems often cannot be
solved optimally within a reasonable time, as we mentioned
previously. Thus, managers regularly turn to heuristics such
as the genetic algorithm to search for solutions. The genetic
algorithm–based Evolutionary Solver is a heuristic
approach in which an optimal solution is not guaranteed.
This is the undesired consequence of most heuristic search
approaches, though many researchers have reported that
intelligent heuristics find extremely good solutions (Eiben
and Smith 2007; Menon 2004).

To examine the effectiveness of the genetic algorithm,
we conducted an empirical comparison of the genetic algo-
rithm with two other heuristics. The first is the simulated
annealing heuristic, which is a randomized local search
method that approximately solves an optimization problem.
Simulated annealing navigates the search space by explor-
ing the performance of the neighbors of the current solu-
tion. A superior neighbor is always accepted. An inferior
neighbor is stochastically accepted on the basis of the dif-
ference in quality and a temperature parameter. The temper-
ature parameter is modified as the algorithm progresses to
alter the nature of the search. Jayaraman and Ross (2003)
study the applicability of simulated annealing and suggest
that simulated annealing is an effective and useful solution
approach to complex problems involved in supply chain
management.

The second is the relocation search method proposed by
Brimberg and colleagues (2000). It constructs its neighbor-
hood as the set of points obtained by a given number of
facility relocations. Instead of visiting all points in the inter-
change neighborhood, a strategy referred to as drop-and-
adds is used. Brimberg and colleagues use drop-and-adds to
determine which facility to drop first and where the best site
is to reinsert it next. The steps are as follows: (1) find an ini-
tial solution, (2) drop a facility according to the least useful
strategy, (3) reinsert the RDC at an unoccupied customer
location according to the most useful strategy, and (4) use
Cooper’s (1964) algorithm and the modified set of RDCs to
find a local minimum. If it improves, save the new currently
best solution and return to the second step; otherwise, stop.

To compare the performance of the three heuristics, we
test assorted problems by varying the parameters of the
CSCD. First, we generate the unit fuel price from uniform
distribution (i.e., U[$2.3, $5]) to provide inputs for deriving
the unit transportation cost of g and h in the objective func-
tion of CSCD. Note that g is the unit cost of shipping from
plants to RDCs, and h is the unit cost of shipping from
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RDCs to CDCs. Second, demands are generated from
another uniform distribution multiplied by the demand (i.e.,
U[.8, 1.15] × current demand), and the fixed cost of RDCs
is generated from β × (100 × Size)1⁄2, where β ~ U[600, 800].
Finally, we vary the number of customers within ±9% of the
existing customer number, and the location coordinates vary
within ±13% of the existing CDC locations. Overall, 500
problems are generated. For each problem, five random ini-
tial solutions are compared. The best of the five results is
chosen as the solution for the specific problem. We repeated
this procedure for each of the 500 problems under each of
the three heuristics.

An example of the five solutions generated for 1 of the
500 problems appears in Figure 6. We observe similar out-
comes and patterns in the remaining problems. Therefore,
we conclude that costs and one-day 500-mile delivery per-
formance are not significantly different among the three
heuristics. No one single algorithm dominates another one.
The genetic algorithm, simulated annealing, and relocation
search heuristics all perform comparably. However, the
genetic algorithm heuristic can be solved in Excel using the
Evolutionary Solver add-in. Thus, we consider it easy and
straightforward for management implementation.

Discussion
Marketing scholars have long understood the importance of
location analysis in determining the marketing success of
firms. While researchers in marketing have focused on retail
locations (Chan, Padmanabhan, and Seetharaman 2007;
Ghosh and Craig 1983; Rust and Donthu 1995), location
analysis of manufacturing and distribution systems has been
assumed to be the domain of operations research. Yet it has
become increasingly clear that companies striving to
achieve marketing success in their retail operations must
incorporate strategic supply chain planning—distribution
networks—into their decisions. In addition to mitigating the
deleterious impact on customers from outcomes such as

stockouts (Anderson, Fitzsimons, and Simester 2006), such
an approach can enhance the productivity and profitability
of both the retailer and the manufacturer (Rust et al. 2004).
To this end, this article has proposed a continuous, uncapac-
itated, deterministic supply chain network model. An opti-
mal distribution network model, such as the CSCD, can
substantially reduce distribution expenditure while enhanc-
ing service levels through continuous supply and reduced
stockouts. Traditional distribution network models try to
minimize total distribution cost on the basis of a few prede-
fined alternative locations. In this study, different from tra-
ditional models, we are not given candidate locations; the
entire U.S. map provides near-infinite potential warehouse
locations. By incorporating key information into the distri-
bution system, including zip codes, fuel price, and TL and
LTL freight structures, and by converting mileage to carrier
time in transit, we can comprehensively examine and com-
pare all cities in the United States.

Our proposed approach has been implemented by GSK,
a major pharmaceutical firm, in conjunction with the mar-
keting department. GlaxoSmithKline views its distribution
network as a key element of its marketing strategy. Using a
decision calculus approach (Little 2004), GSK can redesign
the distribution network to reduce distribution costs while
significantly increasing the one-day service level. Locating
the five RDCs in the recommended locations (Collinsville,
Tex.; Big Pine, Calif.; Shady Dale, Ga.; Lockport, Ill.; and
Manheim, Penn.) offers GSK the opportunity to attain the
most economical network design, while providing an 86.2%
next-day service level to its customers. In addition, 97.8%
of all customer orders will be complete and delivered within
two days. Currently, GSK is in the process of implementing
these changes in its distribution networks.

The managerial implications of this study, beyond GSK,
are threefold. First, distribution networks play an important
role in simultaneously enhancing effectiveness and effi-
ciency of marketing systems in general. Instead of taking a
narrow view of marketing to exclude distribution and man-
ufacturing, a more integrative and comprehensive view is
warranted. An optimal distribution network is likely to
improve the service levels, which will result in reducing
delivery time and increasing customer satisfaction. To the
extent that distribution costs constitute a large part of the
total marketing costs for an organization, an updated net-
work design can result in dollar savings and increased cus-
tomer service. Second, and more important, distribution
systems—if correctly designed—can not only offset mar-
keting costs but also enable marketing expenditures to have
a stronger effect on revenues generated from customers
(e.g., by mitigating stockout costs). This is consistent with
the achievement of a dual emphasis with marketing (Rust,
Moorman, and Dickson 2002). The dual emphasis of this
study is on achieving a lower total cost while increasing the
customer service level and with an efficiency orientation
advocated by leading researchers (Rust et al. 2004). Third,
the results show the importance of using decision calculus
to implement marketing strategy from the “inside out.” In
other words, managerial inputs about key decision variables
can be used to design a system from the inside to obtain
superior customer service and customer satisfaction. Such

FIGURE 6
Performance Comparison of Different Heuristics
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an approach can be used by market-oriented firms even in
the absence of direct customer inputs.

In terms of limitations, we acknowledge that different
firms may have different constraints in their network design
other than those addressed in our model. In addition,
although inventory holding and backlogging costs were
beyond the scope of this article under the assumptions of a
deterministic model and a single period, they can be incor-
porated into the model for a more precise estimation of the
distribution costs. Variants of this approach can be devel-
oped to suit the specific needs of a given firm. However, we
hope that such developments will not only lead to additional
theoretical insights about the importance of distribution net-
work design but also spur research in marketing to enable a
more thorough investigation of supply chain issues.

Appendix
List of Indexes, Parameters, and

Variables in the CSCD Model

Indexes
i: Product type, where I is the total number of product types a

company must transport (i = 1, 2, …, I).
j: Plant number, where J is the total number of plants existing

in the supply chain (j = 1, 2, …, J).
k: RDC (warehouse) number, where K is the maximum num-

ber of RDCs that can be opened, which can be specified by
management or set to a very large number by default. The
optimal number of RDCs obtained will be equal to or less
than the K value specified (k = 1, 2, …, K).

l: CDC number where L is the total number of CDCs to be
allocated in the supply chain problem (l = 1, 2, …, L).

Parameters
F(wk): Cost function of opening and operating RDC k. It is

a function of warehouse size.
g: Unit transportation cost from plant j to RDC k per

weighted distance. The cost g can be derived from
Equations 10, 12, and 14.

h: Unit transportation cost from RDC k to CDC l per
weighted distance. The cost h can be derived from
Equations 10, 11, and 13.

(aj, bj): Location coordinates of plant j.
(al′, bl′): Location coordinates of CDC l.

Dil: Demand for product i by CDC l.

Variables
(xk, yk): coordinates of RDC k.

dj(xk, yk): Distance from plant j to RDC k. dj(xk, yk) =

dl(xk, yk): Distance from RDC k to CDC l. dl(xk, yk) =

ukl: Binary variable that takes the value of 1 if RDC k
serves CDC l.

zk: Binary variable that takes the value of 1 if RDC k
is opened.

sijk: Amount of product i shipped from plant j to RDC
k.

tikl: Amount of product i shipped from RDC k to CDC
l.

wk: Relative size of RDC k.

( ) ( ) .x a y bk k− + −l l′ ′2 2

( ) ( ) .x a y bk j k j− + −2 2
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