

DIOMEDES WP5 Page 1/48

DIstribution Of Multi-view Entertainment using cont ent aware

DElivery Systems

DIOMEDES

Grant Agreement Number: 247996

D5.3

Server, peer, and user terminal proof of concept pr ototypes

DIOMEDES WP5 Page 2/48

Document description

Name of document Server, peer, and user terminal proof of concept
prototypes

Abstract This report describes fully functional proof of
concept prototypes, for the user terminal, main
server, and the peer (including content
authentication) that meets the specifications
described in D5.1. This report describes software
prototypes for the user terminals, main server,
and the peers that are reported in D5.2.

Document identifier D5.3

Document class Deliverable

Document type PU

Version 1.3

Author(s) E. Dogan, S. Marangoz, O. Solakoglu, H.
Gokmen (ARCELIK), G. Gurler (KOC), P.
Kovacs, K. Lackner (HOL), J. Hasselbach, T.
Korn (IDMT), E. Ekmekcioglu, S. Dogan, S.
Worrall, A. Kondoz (UniS), T. Adari (OPTEC), N.
Just (IRT)

QAT team Y. Lapid (OPTEC), P. Kovacs (HOL)

Date of creation 16 December 2011

Date of last modification 30 January 2012

Status Final

Destination European Commission

WP number WP5

DIOMEDES WP5 Page 3/48

TABLE OF CONTENTS
1 INTRODUCTION .. 7

1.1 Purpose of the document .. 7
1.2 Scope of the work .. 7
1.3 Objectives .. 7
1.4 Structure of the document ... 7

2 SERVER SOFTWARE PROTOTYPE .. 8

2.1 3D Content Server ... 8
2.1.1 Transport Stream Chunker .. 8
2.1.2 MPEG2 Transport Stream Multiplexer ... 9
2.1.3 MPEG2 Transport Stream Playout ... 9

2.2 Access Control and Content Registration Server (Security Server) 9
2.3 P2P Main Seed Server .. 10

3 PEER SOFTWARE PROTOTYPE ... 12

3.1 P2P Software Module .. 12
3.1.1 Download Manager ... 13
3.1.2 Neighbour Manager .. 14
3.1.3 Player Manager ... 14
3.1.4 Report Manager .. 14
3.1.5 Tracker Manager ... 15
3.1.6 Event Scheduler .. 15
3.1.7 Main Listener ... 15

3.2 Authentication + Decryption Module (Security Client) ... 16

4 USER TERMINAL SOFTWARE PROTOTYPE ... 17

4.1 Interaction Device Module ... 17
4.1.1 Software Architecture ... 18
4.1.2 User Controls ... 18

4.1.2.1 Module Execution .. 18
4.1.2.2 Module Parameters ... 19
4.1.2.3 Content Selection... 19
4.1.2.4 Content Upload .. 20
4.1.2.5 Viewpoint ... 20
4.1.2.6 Debug Messages ... 20

4.2 Control Module .. 20
4.3 Adaptation Decision Engine Module ... 22

4.3.1 Message-driven Adaptation Decision Making ... 22
4.3.2 Module Configuration and Features ... 23
4.3.3 Running and Debugging ADEM .. 23

4.4 DVB-T Receiving Module .. 23
4.5 AV Sync. & Demux & Buffer Module ... 24

4.5.1 Overview .. 24
4.5.2 Interfaces .. 25
4.5.3 Building Blocks .. 25

4.6 Audio Cluster ... 27
4.6.1 Hardware Platform .. 27
4.6.2 Software Environment .. 27
4.6.3 Development Encironment .. 27
4.6.4 Internal Audio Cluster Modules (for DIOMEDES terminal use) .. 27

4.7 Video Cluster ... 29
4.7.1 Decoder Control Module .. 29

4.7.1.1 Module Architecture ... 30
4.7.1.2 JSON messages .. 30
4.7.1.3 Module configuration and features .. 30
4.7.1.4 Running and debugging the Decoder Control Module ... 31

4.7.2 ES Demultiplexing Module ... 31
4.7.2.1 Module Architecture ... 31
4.7.2.2 JSON messages .. 32

DIOMEDES WP5 Page 4/48

4.7.2.3 Module configuration and features .. 32
4.7.2.4 Running and debug the Decoder Control Module ... 33
4.7.2.5 Debug Information ... 34

4.7.3 Video Decoder ... 34
4.7.3.1 Module Architecture ... 34
4.7.3.2 Command Line Options .. 35

4.7.4 Video Rendeder .. 35
4.7.4.1 Module Architecture ... 35
4.7.4.2 Command line options .. 36
4.7.4.3 JSON Messages .. 36
4.7.4.4 Keyboard shortcuts .. 37
4.7.4.5 Interfaces Between Video Decoder and Video Renderer .. 37
4.7.4.6 Debugging interface .. 38

5 CONCLUSIONS ... 39

APPENDIX A: CONTROL MODULE – INPUT JSON MESSAGES 40

APPENDIX B: CONTROL MODULE – OUTPUT JSON MESSAGES 41

APPENDIX C: CONTROL MODULE – CONFIGURATION FILE 46

APPENDIX D: ADAPTATION DECISION, DECODER CONTROL MO DULE AND ESDEMUX
– CONFIGURATION FILE 47

DIOMEDES WP5 Page 5/48

LIST OF FIGURES

Figure 1 – Server Overview ... 8

Figure 2 – State Diagram of Thread 1 in Main Seed Server .. 11

Figure 3 – Simplified model for P2P Software .. 13

Figure 4 – Chunk Download Window ... 14

Figure 5 – Download Rate Window .. 15

Figure 6 – User Terminal Overview.. 17

Figure 7 – Interaction Device ... 18

Figure 8 – Interaction Device & Control Module Connection .. 18

Figure 9 – Module Execution ... 19

Figure 10 – Content Selection .. 19

Figure 11 – User Login and Upload Content .. 20

Figure 12 – Listener and Sender Thread block diagram .. 21

Figure 13 – Listener and Sender mechanism .. 22

Figure 14 – Message-driven adaptation decision making mechanism ... 23

Figure 15 – AvSync block diagram... 26

Figure 16 – Main parts of the internal structure of the Audio Cluster ... 29

Figure 17 – Decoder Control Module block diagram .. 30

Figure 18 – EsDemux Module functional diagram ... 32

Figure 19 – Snapshot of EsDemux Module log file .. 34

Figure 20 – Main components of the Video Renderer .. 36

Figure 21 – Debugging screen of the Video Renderer ... 38

DIOMEDES WP5 Page 6/48

LIST OF TABLES

Table 1 – Command Line Options of the Video Decoder ... 35

DIOMEDES WP5 Page 7/48

1 INTRODUCTION

1.1 Purpose of the document

The purpose of this document is to provide description of the software prototypes of all server
modules, peer modules, and user terminal modules within DIOMEDES structure. Module
development platforms, library dependencies, and necessary software tools are specified.
Besides, software block diagrams and structures are described to have a better understanding
about modules.

1.2 Scope of the work

The scope of the work presented in this document is to describe prototypes of the software
needed for the delivery of the media, as detailed in following: the main server software that will
manage the P2P network, the content-aware P2P networking software and media players for
end users.

1.3 Objectives

The objective of this document is to have a clear understanding of modules' software. It
presents detailed interface definitions of sub-systems and system components. All the user
controllable features of modules are presented in the document.

1.4 Structure of the document

Server software prototype is described in Chapter 2. Chapter 3 covers the peer software
prototypes. The user terminal software prototypes descriptions are provided in Chapter 4.
Chapter 5 includes conclusions. Finally, Appendix-A, -B, -C, -D contain Control Module
input/output messages, configuration file of control module, and configuration file of Adaptation
Decision / Decoder Control / Es Demux modules respectively.

DIOMEDES WP5 Page 8/48

2 SERVER SOFTWARE PROTOTYPE

The main server seeds the network with content, thereby closely cooperating with the content
and user registration server. Approved content will be acquired from the encoders through an
IP network or from pre-encoded material saved in a storage system, the stream will be tagged
with metadata, and the content server will send the data to the top level nodes of the P2P
network. The server will also manage the authentication of the users and will control a
database of connected nodes in order to make it possible that network peers can discover
each other.

Server mainly consists of 3D Content Server, Content Registration Server (Security Server),
and P2P Main Seed Server as depicted in Figure 1.

Figure 1 – Server Overview

2.1 3D Content Server

The 3D Content Server generates the broadcast services from available 3D Content. It
multiplexes MPEG2-TS as input for the DVB-T Transmission and the P2P Main Seed Server.
The 3D Content Server consists of the following components.

2.1.1 Transport Stream Chunker

The TsChunker Module receives transport streams either from live input using UDP/IP or from
file input, filters all transport stream packets but those containing audio or video and uploads
the data as chunks to the Access Control and Content Registration module (see 2.2).
Additionally the JSON meta-data file for the processed content is packed into an information
chunk. The chunk size is depending on the GoP for video. For audio there is a size and a time
limit.

The TsChunker Module is a single console application written in C# and uses Json.Net 4.0 r2
library.

DIOMEDES WP5 Page 9/48

Interfacing with other modules

This module is only communicating with the Access Control and Content Registration Module
which provides an interface based on SOAP. For debugging purposes there is also a UDP
output option.

Operation modes

The TsChunker Module can be operated in real-time or faster when reading input transport
stream from file. The module can also be used for PCR-PTS analysis.

Software dependencies

The TsChunker is running on Windows 7 OS and requires .NET 4.0.

2.1.2 MPEG2 Transport Stream Multiplexer

The transport stream multiplexer is a software multiplexer operating in real-time, multiplexing
the content used within DIOMEDES project. Different input and output options are supported.
Within the DIOMEDES project only file input and file output are relevant. The transport
streams generated within the project carry only single program transport streams. They are
then multiplexed for the different delivery channels DVB and P2P and stored as transport
stream files. During the multiplexing process all required service information (SI) are
regenerated.

For further information please see also D5.5 – Report on DVB-T Proof of Concept Work.

The multiplexer is written as native Win32 application using Delphi 2010. It also provides a
simple GUI.

Software dependencies

The module is running on Windows 7 OS with no additional dependencies.

2.1.3 MPEG2 Transport Stream Playout

The DVB-T playout is done using the same software module as the multiplexer. It then uses
file input and modulator output via Dektec DVB-T Modulator. The transport streams are not
changed for playout by the modulator with only one exception which is adding stuffing packets
to achieve the output bitrate required by the targeted modulation.

For further information please see also D5.5.

Software dependencies

The module is running on Windows 7 OS with one dependency which is the Dektec modulator
card DTU-215 with the corresponding drivers installed (Dektec components are not required
when using testing mode).

2.2 Access Control and Content Registration Server (Security Server)

The main functionalities of the Security Server are:

• Access control - in order to avoid unauthorized access to content

• Content registration and authentication - in order to prevent sharing of malware and
unauthorized content

• Content discovery – in order to allow users to discover and select content to be
retrieved via P2P

The Security Server provides a central entry point for new content. It encrypts and digitally
signs the transport stream chunks provided by the 3D Content Server, before forwarding them

DIOMEDES WP5 Page 10/48

to the P2P Main Seed Server. Moreover, this component is responsible for the management of
keys and receivers - including key generation, storage and efficient key distribution using the
available broadcast channels. The Security Server generates so called P2P chunks consisting
of a P2P chunk header and the actual payload. The payload can contain encrypted and signed
A/V data, signed content metadata, or signed key information generated by the Security
Server. For more detailed information including APIs, workflows and the implemented
broadcast encryption scheme, please refer to D5.4 – Security Components Prototypes.

2.3 P2P Main Seed Server

Tasks of Main Seed Server:

1. Receive and store multimedia chunks, info chunk (content metadata) and session key
from the Access Control and Content Registration Server

2. Perform sanity check on received content

3. Act as a tracker server and connect new coming peers to the rest of the swarm

4. Distribute stored data to the peers

In order to perform first three tasks, the main seed server runs two separate threads, each
running in an endless loop (unless the software is terminated). For the final task, the main
seed server uses a web server (e.g., Apache web server).

Thread 1 handles the first and second tasks above. Figure 2 depicts the states of Thread 1
and presents run logic. Thread 1 start is S1 state, waiting for a metadata chunk to initialize a
new session. Following that it expects a key chunk followed by session chunks. Once the
session is over (indicated by a final chunk with payload size 0) it performs content validation. If
validation is successful, it stores the content to the web server, in all unexpected states it
displays a warning and goes back to state 1.

Thread 2 handles new coming peers in a similar fashion. Thread 2 waits on a TCP socket for
incoming connections. Upon reception of connections it launches a sub-thread to handle peer
communication, while it goes back to listening on the TCP socket. After this stage the sub-
thread handles the communication with the peer. It first receives the session-id that the peer
wants to join. Then receives information about the current state of the peer and stores it in its
memory. Once the state of the peer is updated, based on the peer's request, the tracker
server can return a sublist of peers that is available in the network.

The web server provides web seeding service for the P2P Network. If a chunk is not available
in the P2P overlay, then peers can request a chunk via HTTP protocol. One of the goals of
DIOMEDES P2P is to keep the requests from Main Seed Server as low as possible, which is
described in the following.

DIOMEDES WP5 Page 11/48

Figure 2 – State Diagram of Thread 1 in Main Seed Server

DIOMEDES WP5 Page 12/48

3 PEER SOFTWARE PROTOTYPE

This chapter describes a prototype working peer, which contains the content aware P2P
software suite. The P2P software will get the best peers (e.g. peers with the best connection
quality, best content availability) for receiving the necessary data from the network in order to
display the desired video and viewpoint. The peers have to monitor their neighbours in order
to act quickly in cases when the connection is lost with other nodes so the end user does not
notice any interruption in the stream. The peer software also integrates functionalities provided
with respect to content security and authentication.

3.1 P2P Software Module

The P2P software is developed in Java programming language for easy deployment in any
modern operating system. Considering the tasks it has to perform, it is a quite complicated
module. We do not use any external library related to P2P communication and rather
implement our own methods to perform P2P distribution. The reasons for using a new protocol
have been introduced in D4.5 – Report on performance of integrated MD-SMVD and P2P
system.

The tasks of P2P protocol is as follows:

1. Receive chunks from the main seed server and other peers

2. Forward chunks to the Authentication + Decryption Module

3. Perform content retrieval in synchronization with the DVB (if available).

4. Inform neighbours about the availability of chunks (successful download).

5. Forward downloaded chunks to other peers upon request.

6. Receive adaptation decision ranking from Adaptation Decision Engine

7. Perform adaptation based on the state of the network and the state of the video buffer.

In order to perform these tasks in an organized way most of them are performed by separate
threads that are called managers. A manager is a thread that loops until its tasks are over
(e.g., the Player Manager loops until it forwards all chunks to next module). The duration of
each iteration is calculated to understand if a certain task delays a manager. For instance, if
Player Manager cannot forward a chunk to another module within predefined timeout duration
then it displays a warning message indicating that there can be a problem with the connection.

The managers, while specified for different tasks, are also need to be aware of each other. For
example, the Player Manager is responsible for storing the clock updates of the DVB channel
because based on the information the Player Manager can skip outdated chunks and forward
correct data. However, this information is also important for the Download Manager as there is
no gain in downloading a chunk that will not be forwarded to players. For such cases,
managers share a data structure that is called Event Scheduler, which allows managers to
communicate with each other using events as messages. For example, the Player Manager
updates the state of the buffer using BufferUpdateEvent. The Download Manager can use the
BufferUpdateEvent data and its download rate to estimate the next couple of seconds and
perform rate adaptation.

In addition to message exchanges, the Managers share some data structures that provide
information on content (e.g., number of views, PIDs) or the state of the session (e.g., list of
peers that are connected to this node). In order to avoid race conditions, such structures are
modified using locks in a secure way.

Figure 3 presents a simplified overview of the P2P software. In the following sub-sections,
description of the list of manager and its work will be provided.

DIOMEDES WP5 Page 13/48

DIOMEDES CLIENT

P2P Software Module

Main

Listener

Event

Scheduler

Chunk

Scheduler

Chunk

Downloader

Tracker

Manager

Download

Manager

Neighbor

Manager

Player

Manager

Report

Manager

Chunk

Scheduler

Chunk

Scheduler

Peer

Handler

Chunk

Downloader

Chunk

Downloader

Decryption

Module

Feedback

GUI

AV Sync.

Module

Control

Module

Main Seed Server
Other Peers

P2P Data

Structures

Legend

DIOMEDES

Module

Helper

Thread

Manager

Thread

Network

Connection

Method

Call

Event Path

Event

Figure 3 – Simplified model for P2P Software

3.1.1 Download Manager

Download Manager is responsible for downloading chunks from the Internet. For this purpose
it periodically requests new chunks from Chunk Scheduler and assign a Chunk Downloader
thread when a new chunk is available in download window (See D4.5). Download Manager is
responsible for the following tasks.

1. Receiving chunks from the main seed server and other peers

2. Creating a download complete event (intended for Neighbour Manager)

3. Performing adaptation based on the state of the network and the state of the video
buffer.

DIOMEDES WP5 Page 14/48

3.1.2 Neighbour Manager

Neighbour Manager handles the communication with the peers that the node is connected to.
It is the task of Neighbour Manager to listen for incoming chunk requests and reply
accordingly. Moreover, upon reception of ChunkDownloadComplete event, it notifies the
neighbours about the availability of the chunk.

3.1.3 Player Manager

Player Manager is responsible for forwarding downloaded chunks to players (via Decryption
Module) in a sequential order. In addition to that, Player Manager periodically generates
BufferUpdateEvent which is intended for both the Download Manager and Report Manager
objects. If a chunk has to be terminated, this event also notifies that to the those managers.
The Player Manager receives buffer length information from the Main Listener (explained
below) and forwards data only if the player has enough buffer.

3.1.4 Report Manager

Report Manager is responsible for generating and updating a graphical user interface that is
intended purely for feedback purposes. For this reason, the Report Manager almost always
receives all the events that are transmitted throughout the session and keeps record on them.
The Report Manager creates the following graphical interfaces (and soon it is to be extended
to include new ones.)

Two of the most useful feedbacks are presented in Figure 4 and Figure 5. In Figure 4, it is
possible to see the state of the chunks for each stream. Each box represents a chunk and the
colours (including the borders) present the state information of the chunk. A gray border
means that the chunk is outside of the download window whereas a dark border means chunk
has been in a download window. The shading has different meaning. White represents chunks
that are unscheduled yet. So if a chunk has dark borders but white shading, then it is a chunk,
inside downloading window that can be scheduled at any moment. Yellow shading means that
the chunk is currently being downloaded. Light green indicates that chunk is downloaded but
not forwarded to player, whereas dark green is to indicate that chunk is forwarded to player.
Finally, if a chunk has to be discarded because the play-out deadline has passed, then it is
marked as red. In addition to chunks, it is also possible to see the current play-out of the
player (calculated by the PCR clock feedback from the AV Sync. Module).

Figure 4 – Chunk Download Window

(this screen shot is taken from a dummy player with infinite buffer duration)

Similarly, Figure 5 presents the GUI to display the download rate of the P2P client.

DIOMEDES WP5 Page 15/48

Figure 5 – Download Rate Window

3.1.5 Tracker Manager

The Tracker Manager is responsible for connecting to tracker server (main seed server) and
providing information about the state of the peer. Moreover, if the peer's number of neighbours
is low, then it tries to receive new list of peers.

3.1.6 Event Scheduler

As stated above, the Event Scheduler is responsible for receiving incoming events and
forwarding them to related managers. Based on the request of managers, Event Scheduler
can also delay the event and dispatch it when the time comes. This has been commonly used
for handling temporary events such as the following.

The Chunk Scheduler object is responsible for two actions. First, it tries to indentify the best
chunk to download (if available) and then it points the peer that the download request can be
dispatched. However, if a peer has low upload capacity, then Chunk Scheduler does not want
to use that peer in future chunk requests (at least for a while). In that case, the Chunk
Scheduler dispatches removePeerDenyDownloadRequestEvent that is to be executed one
minute later and then marks the peer with DenyDownloadRequest flag. With this flag on, that
peer cannot be selected as candidate. When one minute duration elapses, the Event
Scheduler dispatches the removePeerDenyDownloadRequestEvent and the flag is removed
from that peer to give it another chance. (If it fails again, then the duration of deny is
increased.)

In order to perform these tasks, Event Scheduler has a short queue to store events. Within
that queue, Event Scheduler (for each ~5-10 milliseconds) checks for the first event to see if
the dispatch deadline has came or not. If the time has come, it removes the event and
dispatches it, otherwise does not perform any action for that iteration.

3.1.7 Main Listener

Main listener is the main thread that listens on the JSON-RPC messages from the port that is
dedicated for P2P software. Based on the messages that are forwarded via the Control
Module the system can do one of the following:

i) Create a new session: Initializes all managers, creates folders to download chunks,
receives session key from the main seed server, forwards the key to the Decryption
Module and stores the session to a list

ii) Creates a PlayerClockUpdateEvent that is to be parsed by both Download Manager
and Player Manager.

iii) Creates a BufferStatusUpdateEvent that is to update the number of bytes available in

DIOMEDES WP5 Page 16/48

player's buffer. (again parsed by Player Manager).

iv) Close a session: Stop all managers, clean events in the Event Scheduler, close all
peer's connections, send a disconnect message to tracker server and remove the
session from list.

3.2 Authentication + Decryption Module (Security Cl ient)

The Security Client decrypts P2P chunks received from the P2P Client and validates the
integrity and authenticity of the chunks. In case of validation failure, e.g. due to transmission
error or manipulation, it notifies the P2P Client to recover data and/or to prevent further
sharing of corrupted data. Finally it sends the decrypted and validated MPEG2-TS packets to
the AV-Sync Module.

The main functionalities of this module are:

• to authenticate data coming from the P2P Software Module and to provide feedback in
case of failed authentication

• to decrypt data coming from the P2P Client

• to split the decrypted P2P chunks into MPEG2-TS packets, suitable for further
processing

• to manage related key information (for both content decryption and authentication)

For more detailed information including APIs, workflows and the implemented broadcast
encryption scheme, please refer to D5.4 “Security Components Prototypes”.

DIOMEDES WP5 Page 17/48

4 USER TERMINAL SOFTWARE PROTOTYPE

User terminal performs synchronization of the DVB-T and P2P distributed content. Besides, it
contains Video and Audio Clusters to decode and render the delivered 3D media. The
prototype of user terminal is illustrated in Figure 6.

Figure 6 – User Terminal Overview

4.1 Interaction Device Module

Interaction device is the face of the system to the user. It provides a graphical interface to the
user for controlling user terminal modules.

A GUI (graphical user interface) has been designed for interaction Device Module. A snapshot
of GUI is presented in Figure 7.

DIOMEDES WP5 Page 18/48

Figure 7 – Interaction Device

4.1.1 Software Architecture

Interaction Device (GUI) is implemented in “C++ CLI” programming language. It is designed to
co-operate with the Control Module. These two modules (Interaction Device and Control
Module) are combined in the same MS Visual Studio solution and the objects are linked to
generate one executable file. This structure is illustrated in Figure 8.

Figure 8 – Interaction Device & Control Module Connection

4.1.2 User Controls

Interaction Device consists of six groupboxes: Module execution, Module Parameters, Content
Selection, Content Upload, Viewpoint, and Debug Messages.

4.1.2.1 Module Execution

This groupbox contains start/stop buttons for each user terminal modules. User can start/stop
modules by clicking these buttons. There is a separate button to start all the modules at one
click.

Path of modules executables are read from configuration file (see

DIOMEDES WP5 Page 19/48

APPENDIX C: Control Module – Configuration File).

A coloured box exists near start/stop buttons to indicate module status. If the module is
started, this box becomes green. Otherwise, the box turns into red.

Figure 9 is a snapshot of a running system.

Figure 9 – Module Execution

4.1.2.2 Module Parameters

Module parameters are presented to user in “Module Parameters” tab (see Figure 7).

4.1.2.3 Content Selection

User has to start with content selection to initiate the system. By clicking “Show Contents”
button, all the contents are retrieved from server and available contents are listed on
Interaction Device. After selecting desired content, by clicking activate button to make system
ready for content playbacking.

Figure 10 – Content Selection

DIOMEDES WP5 Page 20/48

4.1.2.4 Content Upload

In order to upload content to the Security Client Module, user shall login to system. This
groupbox allows passing authentication information (ID, and password) to Security Client
module. If user successfully logins to the system (authentication is done in Security Client
Module and response is returned via Control Module), upload content menu appears. The
user should select desired content via browse button and should specify a short description of
the seleced content. After that, user clicks “Upload Content” and initiates uploading the
content.

Figure 11 – User Login and Upload Content

4.1.2.5 Viewpoint

For free-viewpoint viewing feature, the interaction device facilitates a slide-bar to acquire the
user's selection of the desired viewpoint / viewing angle in the units the Audio & Video
Clusters can interpret as can be seen on Figure 7.

Minimum and maximum values are content specific and are obtained from content metadata.

4.1.2.6 Debug Messages

For debugging purposes, all the incoming and outgoing JSON messages from/to Control
Module are printed on the “Debug Messages” textbox (see Figure 7).

4.2 Control Module

Control Module is the linkage between Interaction Device Module and all other user terminal
modules (see Figure 6). It sends control commands, receives system status, and delivers user
preferences and dynamic parameter changes. All these operations are transmitted through
JSON messages as stated in D5.1. For complete set of incoming/outgoing JSON messages
see APPENDIX A, and APPENDIX B.

Control Module is implemented in C++ programming language. Externally, it uses json-cpp
and jsonrpc-cpp libraries (see Figure 8).

Control Module communicates with all the other modules inside user terminal in asynchronous
way. Therefore there is too much communication overhead on Control Module. To overcome
these kinds of potential communication problems, multithread server structure is used. Serving
each request and forwarding them to the related modules controlled by different threads. So,
sending and receiving messages are independent process.

There are two main processes in Control Module which could be named “Receiving” and
“Sending”, and they are controlled by “Listener” and “Sender” threads concurrently. This
mechanism is illustrated in Figure 12.

DIOMEDES WP5 Page 21/48

Figure 12 – Listener and Sender Thread block diagram

Listener Thread:

This thread is basicly a port listener process which listens to the Control Module port and
catches incoming JSON messages that are sent from the other modules. Then, it forwards
them into Control Module main system. After that, JSON message is parsed and become
ready to be processed by Control Module system.

Sender Thread:

Sending mechanism is used to send JSON messages to other modules over Control Module.
Sender thread gets JSON message and sends it to related target module without affecting
other part of the Control Module system.

All incoming JSON messages shall be caught without missing any message and after
implementing necessary operation in Control Module side, they shall be either routed correctly
to the related modules or actions will be taken according to incoming message in Control
Module side.

Because of using two different threads (for receiving and sending messages), there shall be
communication interface between these processes. The bridge between two processes is
provided by using “Queue” data structure. The logic behind the “Queue” structure can be
described FIFO (First In First Out). First incoming messages will be processed firstly. Incoming
message is being caught by Listener Thread and is inserted to the “Queue”. After inserting
coming message into “Queue”, listener thread’s work finishes.

After inserting message into “Queue”, Sender Thread realizes that “Queue” is not empty and
there is a message to send. Then, sending mechanism will send message according to the
parameters which are included in the message itself.

DIOMEDES WP5 Page 22/48

Remove Message from

Queue

Prepare

 Message

to send

Parse Message

Listerner

Thread

Sender

Thread

Incoming Message

Get Message

Insert Message

Get Message

Queue
Port Listening

Message
Send Message

To Related Module

Other

Modules

 Figure 13 – Listener and Sender mechanism

4.3 Adaptation Decision Engine Module

Adaptation Decision Engine Module (ADEM) is a module for deciding the media stream
priorities, which are used by the P2P Module and Video Cluster for performing their respective
content adaptation operations. Based on the initial content metadata, KPI metadata and
context changes information received from the Control Module, the ADEM makes adaptation
decisions and feeds back the decisions in JSON messages to the Control Module.

ADEM is implemented in C++ and uses JSON-cpp and JSONRPC-cpp static libraries. Multi-
threads technique is also used in message processing and exchanging in order to improve
processing efficiency and potential communication blocking problems.

4.3.1 Message-driven Adaptation Decision Making

Upon receiving any messages listed as following from the Control Module, the ADEM will run
the adaption algorithm and prioritise the media stream list.

• Content Metadata message

• Video KPI Metadata message

• User Requested View message

• DVB Availability message

The adaptation decision is a View Priority list message, which is sent to the Control Module
for further forwarding to other concerned modules. All messages are defined in D5.1 and the
adaptation decision algorithm is described in D3.5.

The main adaptation process is run in a thread which is responsible to queue and parse all
received messages. If a new adaptation decision, which is a View Priority list JSON message,
is made, the main thread will create and fire a new thread to send out this message. In this
way, the main thread will not be blocked by other unexpected events out of the control of the
ADEM. This process is illustrated in Figure 14.

DIOMEDES WP5 Page 23/48

Figure 14 – Message-driven adaptation decision making mechanism

4.3.2 Module Configuration and Features

The ADEM IP address and JSON RPC server TCP port number can be configured in the
“DiomedesConfig.ini” file. This configuration file is in a JSON message format so that all
parameters are easily readable. If the ADEM is running on the same computer as the Control
Module, its IP address should be set to the local host address, i.e “127.0.0.1”. The JSON RPC
server TCP port is set to 8000.

The configuration file should be put in the same directory as the ADEM executable file.

4.3.3 Running and Debugging ADEM

The ADEM is run without any command options. For example:

• start the ADEM with all the debug information displayed on the standard console or
screen

“adaptDecisionEngine.exe”

• start the ADEM with all the debug information redirected to a log file named “logfile.txt”

“adaptDecisionEngine.exe > logfile.txt”

• start the ADEM and all the debug information is redirected the NUL device, which
means no debug information is recorded in anyway.

“adaptDecisionEngine.exe > NUL”

The debug information includes all messages the ADEM transmitted and received from the
Control Module. This is useful in the debug and integration with other modules.

4.4 DVB-T Receiving Module

The DVB-T Receiving Module uses a Dektec DVB-T Demodulator card to receive the
modulated DVB-T signal and sends the contained transport stream via UDP/IP protocol to the
AV-Sync Module.

This module is entirely written in C++ language. It uses the following C++ libraries: the Dektec
API, Boost 1.46.1, JsonCpp 0.6.0 and JsonRpc-Cpp 0.3.

DIOMEDES WP5 Page 24/48

Interfacing with other modules

This module communicates via JSON-RPC only with the Control Module. It receives control
messages and sends notifications. The communication is handled synchronously, strictly
sequentially to prevent inconsistent system state.

The output MPEG2 transport stream data is streamed to the AV-Sync Module at constant
bitrate. The output bitrate is directly derived from the input bitrate based on the demodulator
hardware clock.

Operation modes

The DVB-T Receiver Module can be used in two ways. The normal operation mode is using
the demodulator card and transmitting the received stream via UDP/IP. The test mode can be
used if no real demodulator hardware is present. In this mode a transport stream file is
streamed with the bitrate detected from the present timestamps. This is useful for testing other
module (chains) without setting up the real DVB transmission chain.

Software architecture

The software consists of two components: The logic responsible for handling the transport
stream reception, processing and output is implemented in a dynamic link library (DLL). The
JSON communication is implemented in an executable (EXE) that makes use of the DLL.

Transport stream processing library

The implementation for processing the transport streams is multithreaded. The basic
processing is done using two threads: one for data input and one for data output. Additionally
there is one thread for monitoring the received signal. During the reception of the transport
stream it is also parsed. This parsing is done to detect if the stream is 2D or 3D stereo and to
extract the content reference (for the P2P system). Parsing is done according to the so called
lazy initialisation scheme to keep computational cost minimal. This means it is only done when
really necessary and only required information is parsed. To achieve a DVB standard
compliant output stream the hardware clock of the demodulator card is used for the correct
timing of the output thread. The packets are time-stamped by the demodulator card on arrival
and transmitted according to this time information plus an adjustable processing delay
(depending on the incoming bit-rate, typically < 1 frame).

JSON communication interface

The communication messages and notifications between the DVB-T Receiver Module and the
Control Module are handled in a console application. The application invokes the functions of
the transport stream processing library according to JSON-RPC messages received from the
Control Module. This is done strictly sequentially to prevent inconsistent system states caused
by conflicting commands. Notification events raised by the transport stream processing library
are translated into JSON-RPC notifications and sent to the Control Module. Please refer to
Appendix A and B for further information regarding the available messages and notifications.

Software dependencies

The module is running on Windows 7 OS with two dependencies. The first dependency is
Visual C++ 2010 Runtime and the second dependency is the Dektec demodulator card DTA-
2135 with the corresponding drivers installed (Dektec components are not required when
using testing mode).

4.5 AV Sync. & Demux & Buffer Module

4.5.1 Overview

The Av Sync & Demux & Buffer Module is responsible for:

� Demultiplexing the transport stream arriving from DVB-T and P2P paths to separate

DIOMEDES WP5 Page 25/48

buffers of video and audio.

� Buffering audio streams and video-layer streams (layers for the video-viewpoints).

� Holding several seconds of data (transport packets) before streaming it to the
relevant cluster.

� Synchronising the audio and the video, the streams of the video views, the streams
arriving from DVB-T and P2P.

� Sending the synchronised streams to the Video Cluster & Audio Cluster some
frames before the indicated presentation time in order to allow the decoders enough
time to decode and wait till it is time to send the frame for rendering.

The module is implemented in C++ for real-time performance.
The configuration interface uses JSON-RPC over TCP and implemented using JSON-cpp and
JSONRPC-cpp static libraries.
The module is built as a process, as decided in the DIOMEDES architecture, to allow maximal
decoupling between modules and to in order to be able to execute them on different
machines.

4.5.2 Interfaces

These are the input and output interfaces:

Inputs:

� From P2P: multiple single-program transport streams. For each video view: base-
layer stream, enhancement-layer stream, and depth-map stream. In addition there
are 1 or more audio streams. In case of network congestions, the enhancement-
layer and the depth-map may not be available.

� From DVB-T: single-program transport stream, containing:

o Single\two video PIDs carrying single\stereoscopic view

o Audio PIDs

o PCR information (separate PID or carried with the video)

Outputs:

� Multiple single-program transport streams with PID per video stream (base,
enhancement, depth) + PCR PID will be sent to the Video Cluster.

� Audio TS stream + PCR PID will be sent to the Audio Cluster.

� Optional: PCR clock (with the TS wrapping) will be sent to both clusters using
UDP/IP Multicast. Motivation: to compensate for a possible difference in the update-
time of the Video and Audio Clusters.

4.5.3 Building Blocks

DIOMEDES WP5 Page 26/48

Figure 15 – AvSync block diagram

These are the building blocks of the AvSync and their roles:

� Network Handler : gets input of UDP packets that compose TS streams from the
DVB-T and P2P (arriving from other modules). All the TS packets that we get are
complete 188 TS packets (7 TS packets in one UDP). Port configuration is static and
can be changed in a configuration file. All P2P streams arrive to the same input port.
The output if passed to the Demux blocks.

� Demux : gets the input stream from the DVB-T. It auto-detects the streams according
to the PAT \ PMT. It separates the stream to video and audio packets and to
different PIDs and sends the TS packets to the relevant buffer (buffer per PID). New
PMT is generated, containing all the streams from both DVB-T and from P2P.
The DVB-T PCR is passed as a reference PCR to the PCR PLL.

� Demux Fixed PID : same as the Demux, but without auto-detection, since P2P
streams does not contain PMT. It uses the content-metadata message to know what
PIDs to demultiplex to the video or to the audio buffers. It gets the input streams
from the P2P.

� Buffers: support thread protected data container for input and output of TS packets.
Control buffer levels and send notifications about the buffer state and about passing
thresholds of overflow \ underflow. Uses flow-control to decide when to output data.

� Buffer Manager: container of all the buffers. Decides to initially start the process of
sending data when buffers have enough data. Add PAT\PMT packets to the buffers
in order to send them to the clusters. Send clear command to the buffer when loop is
detected. Scan all buffers for debugging purposes.

� Flow Control: contained in every buffer. It gets data from the buffer about input and
output of packets and about the timing info (PCR and DTS), and decides when it is
time to send out data from the buffer.

� Sync & Transmit : periodically sends the relevant data from the buffers to the
clusters. Data is polled out according to the PCR time. It also sends the generated
PCR PID packets used for synchronisation in the clusters.

� PCR PLL : creates PCR from the internal clock. The PCR is fixed according to the
reference PCR that arrives with the DVB-T stream. It also detects PCR loops and

DIOMEDES WP5 Page 27/48

handles them.
� TS Generator : generates the PCR TS packets and PMT packets.

� Configuration : contains JSON Listener to get configuration updates (e.g. the
content metadata) and JSON Sender to send module status that is required by other
modules (e.g. buffer state and the current PCR). In addition, there are other
configuration settings in a configuration file (e.g. buffer size in seconds, destination
of Audio & Video Clusters).

4.6 Audio Cluster

The Audio Cluster Module receives the audio transport streams and adaptation control data
from the terminal Control Module. The transport stream is decoded and used for
synchronisation to the transmitted timestamps. The audio rendering modules drive the
loudspeaker system used for reproduction of the programme’s audio scenes. The Audio
Cluster prototypes run on Linux based PC systems that are equipped with the necessary
audio interface hardware modules. Several different PC systems were used during
development, driving loudspeaker systems of different complexity (loudspeaker number). The
following sections describe the demonstrator prototype that is used as the final instance of the
Audio Cluster.

4.6.1 Hardware Platform

- PC Intel Core 2 Quad Q9550, 2.8 GHz (Mini-PC)

- RAM 4GB

- Audio interface: RME HDESP MADI (64 channels I/O)

4.6.2 Software Environment

- Operating System: Linux 2.6 with X11 / KDE User Interface

- All Audio Cluster software modules run within a modular multi-threading software
framework

- XML configuration file determines running modules, their parameters and
interconnections

4.6.3 Development Encironment

- GCC (GNU Compiler Collection), C++ compiler

4.6.4 Internal Audio Cluster Modules (for DIOMEDES terminal use)

The following modules have been implemented for the DIOMEDES architecture.

i) MPEG-2 Transport Stream Decoder Module

- listens on UDP port for incoming TS packets

- conducts audio & scene decoding, clock recovery and audio sample rate
conversion.

- performs priority decision (channel adaptation) in the case of multiple
incoming streams

- supports DIOMEDES object based audio scene format

- supports established audio stream formats: MPEG-1 Layer 2, MPEG-1 Layer

DIOMEDES WP5 Page 28/48

3, AC-3

ii) Audio Scene Scaling Module

- performs scene adaptation to different reproduction system layouts and
viewpoint changes

- scaling parameters can be controlled by external modules via OSC control
protocol

iii) JSON-RPC Module

- JSON-RPC parsing of viewpoint messages

- Controls the Audio Scene Scaling Module sending OSC messages

iv) Driving Coefficient Calculation Module

- different variants, including Wave field synthesis, low resolution rendering, 3D
rendering

- implementation options for dedicated scene adaptation processing related to
display/listener setups

- receives object/scene description data

- based on configuration data set describing the reproduction system
(loudspeaker setup)

- sends driving coefficients to external modules

v) Dynamic Filtering Module

- performs frequency response compensation based on incoming driving
coefficients, depends on current object/scene description

- performs real-time FIR filter design (computational expensive)

- conducts fast multichannel-convolution

vi) “Convolver” Module

- performs matrix signal processing: interpolated level and delay line matrix

- generation of loudspeaker signals by processing the incoming audio object’s
signals

vii) Object Based Scene Coder Module

- not used in DIOMEDES terminal but during audio stream generation

- realtime coding of object based audio scenes based on incoming audio signal
and scene description streams

These modules are arranged in a processing graph with the following functional structure:

DIOMEDES WP5 Page 29/48

Figure 16 – Main parts of the internal structure of the Audio Cluster

(from D2.3: Final reference system architecture)

For detailed information about the Spatial Audio Decoder Module and coding format, please
refer to D4.4 – Report on the developed audio and video codecs.

For detailed information about the rendering and coefficient calculation modules, please refer
to D3.5.

The JSON viewpoint control message format is shown in Appendix: “Output JSON Messages”

Within the DIOMEDES architecture, the JSON Module and MPEG-2 TS (Spatial Audio)
Decoder Module are the only interfaces to the other DIOMEDES clusters.

The Audio Cluster’s software framework is started as a command line executable.

4.7 Video Cluster

4.7.1 Decoder Control Module

The Decoder Control Module is responsible for controlling different functional modules within
the Video Cluster. Besides, it interfaces with the Control Module for user interaction. It accepts
user commands from the Control Module to start, stop and reset the video decoders, to
instruct the EsDemux Module to demultiplex ES streams and to send to specified decoders,
and also to set the Video Renderer channels and models for rendering the video streams
properly. All communications with other modules, namely the Control Module, the EsDemux
Module, the Video Decoders and the Video Renderer, are in JSON messages with JSON RPC
protocol. The module itself is implemented in C++.

To start the Video Cluster, the Control Module will first try to initialise the Video Cluster with an
initialisation message. Upon receiving this message, the decoder Control Module sends the
channel configuration and rendering model messages to the Video Renderer. It also use the
initialisation information (video stream PIDs) to instruct the EsDemux Module to demultiplex
the incoming video streams and where the streams are sent to. When a Video Cluster “start”
command is received, the Video Decoder will start the Video Decoders with a “StartDecoder”
message. Information such as on which UDP port the decoder should expect stream data, and
what data exchanging mode the Renderer is using, etc., are included in the message.

As KPI metadata is embedded in the video streams, the Video Decoders will have to decode
the KPI metadata and send them to the decoder Control Module in the format of JSON
message. The KPI metadata is needed for the ADEM to make adaptation decisions.
Therefore, the Decoder Control Module is obliged to forward all KPI metadata messages to
the Control Module and from there the messages are further forwarded to the ADEM.

User requested views from the Control Module will affect the work of Video Cluster, because
the requested views could be different with the previous one. In this case, the requested views
will be forwarded to the Renderer.

DIOMEDES WP5 Page 30/48

4.7.1.1 Module Architecture

The high-level architecture of the decoder Control Module is illustrated in Figure 17.

Init Msg
Start/Stop/Reset

User Req. View

KP
I M
sg
0

KP
I M
sg
N

Sta
rt/S

top
/Re

st 0

KP
I M
sg
1Sta

rt/S
top
/Re

st 1

Sta
rt/S

top
/Re

st N

Dem
ux
PID

s M
sg

Channel Config
Renderer Mode

Figure 17 – Decoder Control Module block diagram

For more information about the message exchanges between the related modules, please
refer to deliverable D5.1.

4.7.1.2 JSON messages

The Decoder Control Module accepts the following messages:

• Video decoder initialisation message from Control Module,

• Video decoder start, stop and reset messages from Control Module,

• User requested viewpoint from Control Module,

• KPI metadata messages from Video Decoders.

The Decoder Control Module sends out the following messages to other modules:

• Video decoder start, stop and reset messages to all Video Decoders,

• User requested viewpoint message to the Video Renderer,

• KPI metadata messages to the Control Module,

• Channel input configuration message to the Video Renderer,

• Output configuration message to the Video Renderer,

• User requested PIDs message to the EsDemux Module

All messages are defined in deliverable D5.1 and D3.5.

4.7.1.3 Module configuration and features

The Decoder Control Module IP address and the JSON RPC server TCP port number can be
configured in the “DiomedesConfig.ini” file. This configuration file is in a JSON message
format so that all parameters are easily readable. If the Decoder Control Module is running on
the same computer as the Control Module and the Video Decoder, its IP address should be
set to the local host address, i.e “127.0.0.1”. Otherwise it should be set to the network
interface’s IP address from which the JSON messages are transmitted and received. The
JSON RPC server TCP port is set to 8002.

DIOMEDES WP5 Page 31/48

The configuration file should be put in the same directory as the Decoder Control Module
executable file.

Other parameters which are used by the Decoder Control Module are also defined in the
configuration file. They are the Control Module IP and JSON port, EsDemux IP and JSON
port, Video Decoder IP and JSON port, Video Renderer IP and JSON port, respectively.

The current version of decoder control has features which can be enabled or disabled
according to the system configuration and other modules’ capabilities. The following features
are supported:

• JSON_TO_VDECODER: a switch to enable/disable the Decoder Control Module to
send JSON messages to the Video Decoders.

• JSON_TO_RENDERER: a switch to enable/disable the Decoder Control Module to
send JSON messages to the Video Renderer.

• STATIC_PID: a switch to enable/disable the Decoder Control Module to use a pre-
configured view PID list or use the PID information from Control Module JSON
messages.

All these features make the Decoder Control Module very flexible to different system and
module configurations. It has been proved very useful during the development of Video
Cluster and system integration.

4.7.1.4 Running and debugging the Decoder Control M odule

To run the Decoder Control Module, users need to run the following command lines:

• To see all debug information on the standard console or screen

decoderControl.exe

• To redirect all debug information to a file named logfile.txt

decoderControl.exe > logfile.txt

• To conceal all debug information, i.e. to redirect the debug information to a NULL
device and make no output

decoderControl.exe > NULL

The debug information includes all received JSON messages, transmitted JSON messages,
message parsing information, running status of the JSON RPC server, and general module
status report. It is very comprehensive for running the module. Users can rely on this
information to assist running the module smoothly.

4.7.2 ES Demultiplexing Module

The ES demultiplexing (EsDemux) Module is responsible for demultiplexing video transport
streams for the Video Cluster. It receives TS video stream from the AvSync Module and
demultiplex it into different video elementary streams according to the user’s requested view
PIDs. The demultiplexed streams are then transmitted to different Video Decoders in a way
such that the video base layer and depth map will use two consecutive decoders. The video
enhancement layer data will be transmitted to the same decoder as its base layer. Besides
this, the EsDemux also gets the PCR clock reference information from the TS stream and
send the PCR to the Video Renderer in a JSON message.

4.7.2.1 Module Architecture

EsDemux Module is comprised of three sub-modules, the JSON RPC server sub-module, the
TsNetwork sub-module and the Ts2Pes sub-module. These sub-modules are run concurrently

DIOMEDES WP5 Page 32/48

in different threads. The JSON RPC server sub-module is responsible for processing the
JSON messages from Decoder Control Module and extracting the PID information for
demultiplexing.

The TsNetwork sub-module, which is run from a different thread, receives all TS packets from
the AvSync and puts them into a circular buffer. When sufficient TS packets are accumulated
in the circular buffer and not demultilexed, the circular buffer will be full. In this case, newly
arrived packet will overwrite and replace the most obsoleted packet. A circular buffer is
adequate for this purpose, because if the video data in the buffer is too old, there is no need to
keep and demultiplex it in a live streaming scenario.

The Ts2Pes demultiplexing sub-module is invoked in another concurrent thread by the main
EsDemux Module whenever a user-requested-view PID message is received from the
Decoder Control Module. It reads data packets from the circular buffer, demultiplexs the
packets according to the requested PIDs, and transmits the demultiplexed video data – base
layer, enhancement layer and/or depth map – to the designated Video Decoders.

The architecture of the EsDemux Module is shown in Figure 18.

CircularBuffer

JSON RPC

Server

Ts2Pes

Thread

TS D
ata

Tx Buffer

PES Data

Data to Decoder 0

Data to Decoder 1

Data to Decoder 2

Data to Decoder N

Create Thread Ts2Pes
Create TsNetwork Thread

JSON Msg from

DecoderControl

PCR Msg to Renderer

EsDemux Module

Figure 18 – EsDemux Module functional diagram

4.7.2.2 JSON messages

The main thread which runs the JSON RPC server in the EsDemux Module accepts
demultiplexing instructions, which is a user-requested-PIDs JSON message, from the Decoder
Control Module only. The message includes information such as which PIDs needs to be
demultiplexed from the incoming video transport stream from AvSync. During the stream
demultiplexing, the PCR information is also extracted from a default PID, which is dedicated to
PCR transmission. The PCR information is wrapped into a JSON message and sent to the
Video Renderer. Therefore, the EsDemux deals with two JSON messages as following.

• User requested view PIDs message from Decoder Control Module,

• PCR – program clock reference – message to Video Renderer.

The details of these messages are defined in deliverable D5.1.

4.7.2.3 Module configuration and features

The EsDemux Module IP address and JSON RPC server TCP port number can be configured
in the “DiomedesConfig.ini” file. This configuration file is in a JSON message format so that all

DIOMEDES WP5 Page 33/48

parameters are easily readable. If the EsDemux Module is running on the same computer as
the the Video Decoder, its IP address should be set to the local host address, i.e “127.0.0.1”.
Otherwise it should be set to the network interface’s IP address from which the JSON
messages are expected to be transmitted and received. The EsDemux Module’s JSON RPC
server TCP port is set to 8001. The EsDemux uses UDP port 8009 to receive all the TS
stream packets.

The configuration file should be put in the same directory as the EsDemux Module executable
file.

Some other parameters which are used by the EsDemux Module are also defined in the
configuration file. They are the Decoder Control Module IP and JSON port, Video Decoder’s
base IP, JSON port and data port, Video Renderer IP and JSON port, respectively. Note that
for all Video Decoders, only the base IP and JSON/data port of the first Video Decoder are
defined, because it is decided that in Diomedes Video Decoders use consecutive IPs and
TCP/UDP port number.

The current version of EsDemux Module has features which can be enabled or disabled
according to the system configuration and other modules’ capabilities. The following features
are supported:

• JSON_TO_VDECODER: a switch to enable/disable the EsDemux Module to send
JSON messages to Video Decoders.

• JSON_TO_RENDERER: a switch to enable/disable the EsDemux Module to send
PCR JSON messages to the Video Renderer.

• STATIC_PID: a switch to enable/disable the EsDemux Module to use a pre-configured
view PID list or use the PID information from Decoder Control Module.

All these features make the EsDemux Module very flexible to different system and module
configurations. It has been proved very useful during the development of Video Cluster and
the in integration.

4.7.2.4 Running and debug the Decoder Control Modul e

To run the EsDemux Module, users need to run the following command lines:

• To see all debug information on the standard console or screen

esDemux.exe

• To redirect all debug information to a file named logfile.txt

esDemux.exe > logfile.txt

• To conceal all debug information, i.e. to redirect the debug information to a NULL
device and make no output

esDemux.exe > NULL

The Ts2Pes sub-module can be used independently for demultiplexing TS streams. To use it
independently, users need to run the following command lines:

 TStoPES.exe –v –pid <number_of_PIDs> [b|e|d] <PID#1> p <UDP_port#1> …

 [b|e|d] <PID#N> p <UDP_port#N>

The TStoPES.exe command line options are explained as following:

• -v: verbose on

• -pid <number_of_PIDs>: enter total number of PID in the stream, e.g. -pid 3

• [b|e|d] <PID#x]: indicate what type of video data in stream PID#x. Note that If there is
enhancement layer for a specified base layer, the enhancement layer PID should be

DIOMEDES WP5 Page 34/48

after the base layer PID immediately, e.g. “ b 4113 e 4114” where the base layer is
PID 4113 and enhancement layer is PID 4114.

“b”: base layer,

“e”: enhancement layer,

“d”: depth map

• p <UDP_port#N>: to send the video packets to UDP port #N. The Video Decoder
should listen on this port for receiving video stream.

For example, if view #1 includes base layer PID 4113 and enhancement layer PID 4114, view
#2 includes only base layer PID 4115, and the view data are sent to UDP port 4000 and 4001
respectively, the command line to demultiplex this stream would be as following:

 TStoPES.exe –v –pid 3 b 4113 e 4114 p 4000 b 4115 p 4001

Without redirect the output of the Ts2Pes module, it will output all the debug information to the
standard console. Users can redirect the debug output information to a file or to the NULL
device to improve the performance.

4.7.2.5 Debug Information

The EsDemux Module outputs rich debug information including all JSON messages it
processed and the details of all video packets it parsed. The debug information is writen to a
local file “logFile.txt”. Figure 19 is a snapshot of the output of the log file.

Figure 19 – Snapshot of EsDemux Module log file

The Ts2Pes module also write all demultiplexed streams into a local file named as
“xxxx_correct.264”, where “xxxx” is the PID number of the stream, This file can be used to
compare with the data received by Video Decoders for verification.

4.7.3 Video Decoder

4.7.3.1 Module Architecture

Video decoder has three responsibilities:

1. Receiving elementary with stream with PTS timestamp and KPI messages from the
ES Demux Module.

DIOMEDES WP5 Page 35/48

2. Forwarding raw images to the Video Renderer with PTS information

3. Forwarding KPI messages to the Adaptation Decision Engine Module

The NAL Units are stored in a queue that is shared with the networking and decoding
threads. As new NAL Units arrive from the UDP socket, the decoding thread starts to
generate raw images. These images are forwarded to the Video Renderer. While storing
the NAL Units, the networking thread also extracts the KPI information and forwards it to
the Adaptation Decision Engine Module.

4.7.3.2 Command Line Options

The command line options when running the executable are as follows:

-forwardWithTCP
TCP port number to send raw images (if not

set, send by shared memory)

-h264 input filename for local test

-layer layer number to decode

-o name of the output yuv file to store

-rendererIP IP address of the Video Renderer

-rendererPort port to Video Renderer for JSON messages

-udp UDP port number

-viewID view ID of the incoming stream

Table 1 – Command Line Options of the Video Decoder

4.7.4 Video Rendeder

The Video Renderer is the component at the end of the Video Cluster, directly connected to
the viewer’s 3D display. Because user controls are implemented in different modules, the
module is implemented as a C++/OpenGL command line executable. It communicates with
other modules via command line options, network connections, and shared memory
connections, while the output of the module appears on the DVI/HDMI connection of the
renderer PC.

The rendering / view generation algorithms used in the Video Renderer are described in detail
in Deliverable D3.5 – Report on 3D Video/Audio rendering and content adaptation, and thus
omitted from this document.

4.7.4.1 Module Architecture

The high-level architecture of the module is illustrated on the following block diagram.

DIOMEDES WP5 Page 36/48

Figure 20 – Main components of the Video Renderer

4.7.4.2 Command line options

In early versions of the Renderer, data sources, rendering modes and the layout of the output
screen have been defined on the command line. Example:

diomedesRenderer null null 1280 0 1920 1080 sbs

(for running the Renderer in stereo side-by-side mode on the secondary monitor, full HD
resolution, with 2 shared memory inputs from the decoder)

 Today there are only two command line options, as all of parameters can be changed on the
fly via JSON messages. These two parameters are: port number and verbosity level. Port
number is the port on wich all of the communication will go through. Verbosity mode can be a
number from 0 to 6, determining the level of filtering applied to error/warning/informational
messages on the console output. Default values are available for both, so the executable can
be run without any parameters. Examples:

“diomedesRenderer 12345 5” starts the Video Renderer listening on the 12345 port on all of
the available network adapters with printing almost everything on the output.

“diomedesRenderer 12345” starts the Video Renderer listening the same mode, but with
minimal verbosity.

“diomedesRenderer” or double click starts the Video Renderer to listen on the default
DIOMEDES-reserved port: 8086, and minimal output.

4.7.4.3 JSON Messages

The JSON messages accepted by the Video Renderer are the following:

• PCR sync message (34)

DIOMEDES WP5 Page 37/48

• Channel init message (40 init)

• Frame arrive message (40)

• Channel close message (40 close)

• Input configuration message (50)

o All of the available views listed

o Description of cameras, if P2P alive

• Output configuration message (51)

o Display type and window position

o List of requested Direct displayed and generated views

• Viewpoint modification message (52)

o Requested view ID only, all other necessary parameters are automatically
calculated from this number, based on the input View IDs and input camera
descriptions configured in [50]

For more detailed information about the content of these messages, please refer to D3.5 -
Report on 3D Video/Audio rendering and content adaptation.

4.7.4.4 Keyboard shortcuts

Shortcuts are available to test the chain without some modules, or the Video Renderer
standalone, they are mostly used for debugging, and not necessary in normal use cases, as
the user interacts with the system via a dedicated user interface.

• SPACE – play / pause timer, if no sync signal available

• 1 – switch OFF / ON synchronisation to the internal clock

• 5 – Show first and second views of last configuration colour coded (RED-CYAN)
5-9 does not modify window size or position, 5-8 does not modify requested output
views (even if MVD-DBR)

• 6 – Show first and second views of last configuration side by side

• 7 – Show first and second views of last configuration line interleaved

• 8 – Show first view of last configuration alone

• 9 – Show all of the available input views in multi view side by side mode ordered by
channel ID

• u – Displays debug info on the screen about generated views

• I – Displays Input debug info on the screen

• o – Displays render mode on the screen

• p – Displays PCR and timer status on the screen

• f – Forced re-decode for incoming YUV raw data for measuring FPS, with paused
clock, this mode is equivalent with infinite input bandwidth

4.7.4.5 Interfaces Between Video Decoder and Video Renderer

Shared memory and TCP connections are implemented. On a local computer it is
recommended to use shared memory, to avoid the operating system’s TCP handing overhead.

DIOMEDES WP5 Page 38/48

These two modes can be freely combined.

4.7.4.6 Debugging interface

The Video Renderer has been equipped with a debugging interface to ease finding errors
during integration. This interface shows the properties of the incoming streams, buffers,
Channel and View IDs, timer status, rendering performance, output mode description, and
internal state of MVD-DBR config, camera information, requested viewpoints or direct IDs, and
any other information, that can be configured with the JSON interfaces.

Figure 21 – Debugging screen of the Video Renderer

DIOMEDES WP5 Page 39/48

5 CONCLUSIONS

This deliverable describes the software prototypes of all modules (on the server and on the
user terminal side) within DIOMEDES system. Modules are described in software point of
view: building blocks and mechanisms are defined, block diagrams are illustrated, execution
steps are specified, command line options (if available) are described .

The input of this deliverable comes mainly from deliverables D2.1 – User Requirements and
Initial reference system architecture report and D5.2 – Report on proof of concept prototypes.
More detailed information for all components can be found in the related deliverables.

DIOMEDES WP5 Page 40/48

APPENDIX A: CONTROL MODULE – INPUT JSON MESSAGES

Control Module - Input Messages

Parameter
Description

Source
Module JSON Message

JSON
Message

Period

Final Comment &
Rationale

AV Sync
PCR

AV
Sync&De
mux&Buff
er Module

{ "id":0, "jsonrpc":"2.0",
"method":"AvSync_PCR", "params": {
"connNumber":27, "PCR": 1234 } }

every second

AV Sync
Buffer Status

AV
Sync&De
mux&Buff
er Module

{ "id":0, "jsonrpc":"2.0",
"method":"BufferState", "params": {
"connNumber":27, "PID": 4113,
"Fullness": 82, "FreeKB": 4500, "State":
"Overrun" } }

every half a
second

Availability of
DVB Input

DVB-T2
Rx
Module

{ "id":0, "jsonrpc":"2.0",
"method":"AvailabilityOfDVB", "params":
{ "connNumber":5, "DVBStatus": 1 } }

when DVB
status changes

“0” means not available,
“1” means available

Mode of
DVB Input

DVB-T2
Rx
Module

{ "id":0, "jsonrpc":"2.0",
"method":"ModeOfDVB", "params": {
"connNumber":5, "DVBMode": 0 } }

when DVB
mode changes

 “0” means single view,
“1” means stereo. It is
known by the system
that if mono-view is

streamed over DVB-T,
this is always the left

view of the stereo-pair

KPI
metadata for
QoE (e.g.,
depth
perception
KPI, image
quality KPI)

Decoder
Control
Module

{
"id": 3901, "jsonrpc": "2.0", "method":
"VideoKPI", "params": { "ConnNumber":
39, "PID": [4113, 4114], "image_quality":
[35, 36], "depth_perception": [63, 64] } }

one GOP (~
around half a

second)

KPI metadata is
prepared offline for the
encoded media, and
video related KPI is
carried in the
compressed bit-stream.
Therefore, KPI values
are recovered in the
video decoder module.

View Priority
List (Ranking
List)

Adapt.
Decision
Engine
Module

{
 "id" : 601, "jsonrpc": "2.0", "method" :
"ViewPriority", "params" : {
 "ConnNumber" : 6,
 "Layer Priority Order" : ["b", "d", "b",
"d", "b", "d", "e", "e", "e"],
 "PID Priority Order" : [4118, 4220,
4115, 4117, 4221, 4223, 4119, 4116,
4222],
 "Priority Order" : [1, 2, 3, 3, 4, 4, 5,
6, 7],
 "View Priority Order" : [1, 0, 2] }
}

whenever
ranking is
changed

DIOMEDES WP5 Page 41/48

APPENDIX B: CONTROL MODULE – OUTPUT JSON MESSAGES

Control Module - Output Messages

Parameter
Description

Destinati
on

Module
JSON Message

JSON
Message

Period

Final Comment &
Rationale

DVB Start
DVB
Receiver
Module

{ "id":0, "jsonrpc":"2.0",
"method":"DVBRxStart", "params": {
"connNumber":7 } }

when user
clicks the

"Start" button
on "DVB-T Rx"

tab on
Interaction

Device

DVB Stop
DVB
Receiver
Module

{ "id":0, "jsonrpc":"2.0",
"method":"DVBRxStop", "params": {
"connNumber":7 } }

when user
clicks the

"Stop" button
on "DVB-T Rx"

tab on
Interaction

Device

DVB Switch
Channel

DVB
Receiver
Module

{ "id":0, "jsonrpc":"2.0",
"method":"DVBRxTune", "params": {
"connNumber":7, "channel":"2" } }

when user
clicks the

"Switch" button
on "DVB-T Rx"

tab on
Interaction

Device

DVB Get
SNR

DVB
Receiver
Module

{ "id":0, "jsonrpc":"2.0",
"method":"DVBRxGetSnr", "params": {
"connNumber":7 } }

return message is:
{ "id":0, "jsonrpc":"2.0", "result":-20 }

when user
clicks the

"Update" button
on "DVB-T Rx"

tab on
Interaction

Device

SNR value is get from
return message.

PCR P2P Client
Module

{ "id":0, "jsonrpc":"2.0",
"method":"AvSync_PCR", "params": {
"connNumber":8, "PCR": 1234 } }

every second

AV Sync
Buffer Status

P2P Client
Module

{ "id":0, "jsonrpc":"2.0",
"method":"BufferState", "params": {
"connNumber":8, "PID": 4113,
"Fullness": 82, "FreeKB": 4500, "State":
"Overrun" } }

every half a
second

DIOMEDES WP5 Page 42/48

Select
Content

P2P Client
Module

{ "id":0, "jsonrpc":"2.0",
"method":"NotifyContentID", "params":
{
 "connNumber":8, "ContentID":
"2F2CCCEB-62DA-451F-9CAF-
495DE9429F54", "MainSeedServerIp":
"10.134.70.68" }
}

return message is:
{ "id":0, "jsonrpc":"2.0", "result":"true",
 "params":{
 "Title": "Fancy Band in Surrey",
 "GUID": "2F2CCCEB-62DA-451F-
9CAF-495DE9429F54",
 "SceneType": "Entertainment",
 "SceneSubType": "Music/Concert",
 "NumberOfViewpoints": 2,
 "ViewIDs": [0, 1],
 "LocationsFromOrigin": [0, 5.375],
 "layerPIDs": [4113, 4114, 4115];
 "PIDtypes": ["b", "e", "b"],
 "VideoPIDsource": ["p2p", "p2p",
"dvb"],
 "AudioNumberOfTracks": 2,
 "AudioStreamType": ["5.1", "5.1"],
 "AudioPIDs": [4352, 4353],
 "AudioPIDsource": ["dvb", "p2p",
"p2p"],
 "CameraParam":
 [{"Intrinsic": [906.529, 0, 624.000, 0,
906.529, 344.000, 0, 0, 1], "Extrinsic": [1,
0, 0, 0.2, 0, 1, 0, -0.0157962, 0, 0, 1, -
0.0334732], "Near": 3857.570, "Far":
10072.544]},
 {"Intrinsic": [906.529, 0, 624.000, 0,
906.529, 344.000, 0, 0, 1], "Extrinsic": [1,
0, 0, 0.4, 0, 1, 0, -0.0157962, 0, 0, 1, -
0.0334732], "Near": 3857.570, "Far":
10072.544]}],
 }
}

When user
selects the

content.

Content Metadata is
passed to Control
Module in return
message.

View Priority
List (Ranking
List)

P2P Client
Module

{
 "id" : 601, "jsonrpc": "2.0", "method" :
"ViewPriority", "params" : {
 "ConnNumber" : 8,
 "Layer Priority Order" : ["b", "d", "b",
"d", "b", "d", "e", "e", "e"],
 "PID Priority Order" : [4118, 4220,
4115, 4117, 4221, 4223, 4119, 4116,
4222],
 "Priority Order" : [1, 2, 3, 3, 4, 4, 5,
6, 7],
 "View Priority Order" : [1, 0, 2] }
}

whenever
ranking
changes

DIOMEDES WP5 Page 43/48

Metadata
Parameters

Adapt.
Decision
Engine
Module,
AV
Sync&De
mux&Buff
er Module

{
 "id": 3000,
 "jsonrpc": "2.0",
 "method": "ContentMetadata",
 "params":{
 "Title": "Fancy Band in Surrey",
 "GUID": "2F2CCCEB-62DA-451F-
9CAF-495DE9429F54",
 "SceneType": "Entertainment",
 "SceneSubType": "Music/Concert",
 "NumberOfViewpoints": 2,
 "ViewIDs": [0, 1],
 "LocationsFromOrigin": [0, 5.375],
 "layerPIDs": [4113, 4114, 4115];
 "PIDtypes": ["b", "e", "b"],
 "VideoPIDsource": ["p2p", "p2p",
"dvb"],
 "AudioNumberOfTracks": 2,
 "AudioStreamType": ["5.1", "5.1"],
 "AudioPIDs": [4352, 4353],
 "AudioPIDsource": ["dvb", "p2p",
"p2p"],
 "CameraParam":
 [{"Intrinsic": [906.529, 0, 624.000, 0,
906.529, 344.000, 0, 0, 1], "Extrinsic": [1,
0, 0, 0.2, 0, 1, 0, -0.0157962, 0, 0, 1, -
0.0334732], "Near": 3857.570, "Far":
10072.544]},
 {"Intrinsic": [906.529, 0, 624.000, 0,
906.529, 344.000, 0, 0, 1], "Extrinsic": [1,
0, 0, 0.4, 0, 1, 0, -0.0157962, 0, 0, 1, -
0.0334732], "Near": 3857.570, "Far":
10072.544]}],
 }
}

When user
selects the

content.

"CameraDistance": in
centi-meter, is the
physical distance of
each camera to the left-
most camera. The
distance of the left-most
camera is always 0.

"viewIDs": Specific
refers to the direction:
we define it from “Right-
to-Left” order.

"AssociatedPIDs",
"PIDtypes": The order of
PIDs is correspondent to
the list order of view IDs.
Base layer PID is
followed immediately by
ehancement layer PID if
available, and then the
depth view PID if
available. In the above
json message, for
example, view ID 1 is
associated with three
PIDs 4115, 4116 and
4117, and the pid types
are "b", "e" and "d" for
base, enhancement and
depth layers
respectively.

Availability of
DVB Input

Adapt.
Decision
Engine
Module

AV
Sync&De
mux&Buff
er Module

{ "id":0, "jsonrpc":"2.0",
"method":"AvailabilityOfDVB", "params":
{ "connNumber":5, "DVBStatus": 1 } }

when DVB
status changes

 “0” means not available,
“1” means available

Mode of
DVB Input

Adapt.
Decision
Engine
Module

{ "id":0, "jsonrpc":"2.0",
"method":"ModeOfDVB", "params": {
"connNumber":5, "DVBMode": 0 } }

when DVB
mode changes

“0” means single view,
“1” means stereo. It is
known by the system
that if mono-view is

streamed over DVB-T,
this is always the left

view of the stereo-pair

KPI
metadata for
QoE (e.g.,
depth
perception
KPI, image
quality KPI)

Adapt.
Decision
Engine
Module

{ "id": 3901, "jsonrpc": "2.0", "method":
"VideoKPI", "params": { "ConnNumber":
5, "PID": [4113, 4114], "image_quality":
[35, 36], "depth_perception": [63, 64] } }

one GOP (~
around half a

second)

KPI metadata is
prepared offline for the
encoded media, and
video related KPI is
carried in the
compressed bit-stream.
Therefore, KPI values
are recovered in the
video decoder module.

DIOMEDES WP5 Page 44/48

User
Requested
ViewID

Adapt.
Decision
Engine
Module
Decoder
Control
Module

{ "id" : 501, "jsonrpc" : "2.0", "method" :
"UserRequestedViewID", "params" : {
"ConnNumber" : 5, "RequestedViewID":
1.3 } }

when user
changes

viewpoint on
Interaction

Device

User ogin Security
Client

{"id":1,"jsonrpc":"2.0","method":"UserLog
in",
"params":{"ConnNumber":30,"login":"asd
","password":"qwe"}}

when user
clicks the "User
Login" button
on Interaction
Device

This message will be
sent to Security Client
Module. Result is sent
back to Control Module
in return message.

Get Content
List

Security
Client

{ "id":2, "jsonrpc":"2.0",
"method":"GetAvailableContent",
"params": {"ConnNumber":30} }

return message is:
{ "id":0, "jsonrpc":"2.0",
"result":[5,[["1","info for 1"],["2","info for
2"],["3","info for 3"],["4","info for
4"],["5","info for 5"]]] }

when user
clicks the
"Show
Contents"
button on
Interaction
Device

This message will be
sent to Security Client
Module. Contents is sent
back to Control Module
in return message.

Initialize
Video
Cluster

Decoder
Control
Module

{ "id": 3000, "jsonrpc": "2.0",
"method": "InitDecoder", "params":
 {
 "ConnNumber": 30,
 "Number of incoming views": 3,
 "Arriving viewIDs": [0, 2, 4],
 "depth available?": [1, 1, 1],
 "layers for views": [0, 0, 0],
 "Associated PIDs": [4113, 4114,
4115, 4116, 4117, 4118],
 "Render mode": "stereo",
 "WindowPos": [1024,0,1024,768],
 "StereoMode": "sbs",
 "DisplayModel": "HV80C-20050001",
 "CameraParam":
 [{ "Intrinsic": [906.529, 0, 624.000,
0, 906.529, 344.000, 0, 0, 1], "Extrinsic":
[1, 0, 0, 0.2, 0, 1, 0, -0.0157962, 0, 0, 1,
-0.0334732], "Near": 3857.570, "Far":
10072.544 },
 { "Intrinsic": [906.529, 0, 624.000,
0, 906.529, 344.000, 0, 0, 1], "Extrinsic":
[1, 0, 0, 0.6, 0, 1, 0, -0.0157962, 0, 0, 1,
-0.0334732], "Near": 3857.570, "Far":
10072.544 },
 { "Intrinsic": [906.529, 0, 624.000,
0, 906.529, 344.000, 0, 0, 1], "Extrinsic":
[1, 0, 0, 1.0, 0, 1, 0, -0.0157962, 0, 0, 1,
-0.0334732], "Near": 3857.570, "Far":
10072.544 }],
 }
}

 - when user
clicks the
"Initialize
Cluster" button
on Interaction
Device
 - when user
selects a new
content via
Interaction
Device

Start Video
Cluster

Decoder
Control
Module

{"id": 1, "jsonrpc": "2.0", "method":
"StartDecoder", "params":
{"ConnNumber": 30}}

when user
clicks the "Start
Cluster" button
on Interaction
Device

DIOMEDES WP5 Page 45/48

Stop Video
Cluster

Decoder
Control
Module

{"id": 1, "jsonrpc": "2.0", "method":
"StopDecoder", "params":
{"ConnNumber": 30}}

when user
clicks the "Stop
Cluster" button
on Interaction
Device

Reset Video
Cluster

Decoder
Control
Module

{"id": 1, "jsonrpc": "2.0", "method":
"ResetDecoder", "params":
{"ConnNumber": 30}}

when user
clicks the
"Reset Cluster"
button on
Interaction
Device

DIOMEDES WP5 Page 46/48

APPENDIX C: CONTROL MODULE – CONFIGURATION FILE

/* Paths of Modules Executables*/

PATH_DVBTR = ..\DVB_Rx Version_0.9.1_ 2011-10-25\DVBTransceiverApp.exe

PATH_AVS_DEM_BUF = ..\AVSync_Release_0.9_27092011\AvSync_Demux_Buffer.exe

PATH_ADEM = ..\ADEM_Release8_21102011\adaptDecisionEngine.exe

PATH_P2P_CLIENT = ..\P2P\p2p.bat

PATH_AUTH_DEC = ..\SecurityClient-adm-0.9.5\security_client.bat

/*end*/

/* IP Adresses of Modules */

IP_DVBTR = 127.0.0.1

IP_ADEM = 127.0.0.1

IP_P2PCLIENT = 127.0.0.1

IP_BUFFERMODULE = 127.0.0.1

IP_AUTHDECMODULE = 127.0.0.1

IP_DECODERCONTROL = 127.0.0.1

IP_AUDIOCLUSTER = 127.0.0.1

IP_MAIN_SEED_SERVER = 192.168.10.66

/* end*/

/* Ports of Modules */

PORT_JSON_DVBTRMODULE = 8088

PORT_JSON_ADEM = 8000

PORT_JSON_P2PCLIENT = 2001

PORT_JSON_BUFFER = 5000

PORT_JSON_AUTHDECMODULE = 4445

PORT_JSON_DECODERCONTROL = 8002

PORT_JSON_AUDIOCLUSTER = 9020

/* end*/

DIOMEDES WP5 Page 47/48

APPENDIX D: ADAPTATION DECISION, DECODER CONTROL MO DULE
AND ESDEMUX – CONFIGURATION FILE
{

 "IP":

 {

 "DECODER_CTR" : "127.0.0.1",

 "ADAPT_ENGINE" : "127.0.0.1",

 "ESDEMUX" : "127.0.0.1",

 "DECODER" : ["127.0.0.1", "127.0.0.1", "127.0.0.1",

 "127.0.0.1", "127.0.0.1", "127.0.0.1"],

 "RENDERER" : ["127.0.0.1"],

 "CONTROL_MOD" : "127.0.0.1"

 },

 "JSON_PORT":

 {

 "ADAPT_ENGINE" : 8000,

 "ESDEMUX" : 8001,

 "DECODER_CTR" : 8002,

 "CONTROL_MOD" : 8080,

 "RENDERER" : 8086,

 "VIDEO_DECODER" : 4010

 },

 "TS_INPUT_PORT":

 {

 "ESDEMUX" : 8009,

 "VIDEO_DECODER" : 4000

 },

 "VIEWLIST":

 {

 "VIEWIDs" : [0, 1],

 "PIDs" : [4115, 4113, 4114],

 "LAYERs" : ["b", "b", "e"],

 "PORTs" : [4000, 4001]

 },

 "MODULE_FEATURES":

 {

 "DECODER_CTR" :

DIOMEDES WP5 Page 48/48

 {

 "JSON_TO_VDECODER" : 0,

 "JSON_TO_RENDERER" : 0,

 "STATIC_PID" : 0

 },

 "ESDEMUX":

 {

 "JSON_TO_VDECODER" : 0,

 "JSON_TO_RENDERER" : 0,

 "STATIC_PID" : 1

 },

 "RENDERER":

 {

 "Render mode": "stereo",

 "view output": "real",

 "output format": "side-by-side",

"holovisio model": 0

 }

 }

}

