CECW-EE

Technical Letter No. 1110-2-317 ETL 1110-2-317

15 December 1988

Engineering and Design SELECTING REACTION-TYPE HYDRAULIC TURBINES AND PUMP TURBINES AND HYDROELECTRIC GENERATORS AND GENERATOR-MOTORS

Distribution Restriction Statement

Approved for public release; distribution is unlimited.

Report Documentation Page				
Report Date 15 Dec 1988	Report Type N/A	Dates Covered (from to) -		
Title and Subtitle Engineering and Design: Selecting Reaction-Type Hydraulic Turbines and Pump Turbines and Hydroelectric Generators and Generator-Motors		Contract Number		
		ic Grant Number		
		Program Element Number		
Author(s)		Project Number		
		Task Number		
		Work Unit Number		
Performing Organization Name(s) and Address(es) Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000		Performing Organization Report Number		
Sponsoring/Monitoring Agency Name(s) and Address(es)		Sponsor/Monitor's Acronym(s)		
		Sponsor/Monitor's Report Number(s)		
Distribution/Availability Statement Approved for public release, distribution unlimited				
Supplementary Notes				
Abstract				
Subject Terms				
Report Classification unclassified		Classification of this page unclassified		
Classification of Abstract unclassified		Limitation of Abstract UU		
Number of Pages 160				

CORRECTED COPY (February 28, 1990)

DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers Washington, D.C. 20314-1000

CEEC-EE

Engineering Technical Letter No. 1110-2-317 15 December 1988

ETL 1110-2-317

ENGINEERING AND DESIGN SELECTING REACTION-TYPE HYDRAULIC TURBINES AND PUMP TURBINES AND HYDROELECTRIC GENERATORS AND GENERATOR-MOTORS

1. Purpose. This letter provides advance criteria for selection of Reaction-Type Hydraulic Turbines and Pump Turbines and Generators and Generator motors. This criteria is to be used pending incorporation into an Engineering Manual.

2. <u>Applicability</u>. This letter applies to all HQUSACE/OCE elements and field operating activities having civil works hydroelectric design responsibilities.

3. Discussion. Development of this criteria has been in progress for several years and is published to insure that the experience and expertise of the several authors is not lost to the Corps with the retirement of these people. The criteria provides guidance on all of the factors pertaining to the selection, setting, and characteristics which must be understood in design of a conventional hydroelectric generating or pumpturbine plants. Criteria covering unconventional and small hydroelectric plants will be published at a later date. Emphasis is placed on the fact that manufactures recommendation and proposals must be sought and obtained in the equipment selection process, however, guidance contained herein will provide a basis for accepting manufactures recommendation.

FOR THE DIRECTOR OF ENGINEERING AND CONSTRUCTION:

かんっつうつ

HERBERT H. KENNON Chief, Engineering Division Directorate of Engineering and Construction

Encl

This ETL reissued to include previously missing pages (Appendices A-E).

CEEC-EE

DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers Washington D.C. 20314

Engineering and Design

SELECTING REACTION-TYPE HYDRAULIC TURBINES AND PUMP TURBINES and HYDROELECTRIC GENERATORS AND GENERATOR-MOTORS

TABLE OF CONTENTS

SUBJECT	PAGE	
Chapter 1		
PURPOSE	1-1	
APPLICABILITY	1-1	
REFERENCES	1-1	
DISCUSSION	1-1	
PROJECT PLANNING AND FIELD SURVEY STUDIES	1–2	
GENERAL PRINCIPLES	1-2	
SIZE AND NUMBER OF UNITS	1-3	
TYPES OF TURBINES	1-4	
TYPES OF PUMP-TURBINES	1–5	
MODEL TEST	1-5	
EVALUATION OF EFFICIENCY	1–16	

SUBJECT	PAGE
DATA ON UNITS INSTALLED IN CORPS OF ENGINEERS PLANTS	1-7
Chapter 2	
SPECIFIC SPEEDS	2-1
PERIPHERAL COEFFICIENTS	2-2
SEITING OF TURBINE AND PUMP-TURBINE	2-4
CRITICAL SIGMA	2-5
PERFORMANCE CURVES	2-6
MODEL-PROTOTYPE RELATIONSHIPS	2-8
GUARANTEES	2-8
Chapter 3	
GENERAL USE	3-1
SPECIFIC SPEEDS	3-1
DEVELOPMENT OF PROTOTYPE PERFORMANCE CURVES FROM MODEL TESTS	3-2
SETTING OF RUNNER	3-4
SPIRAL CASE AND DRAFT TUBE	3-5
RUNAWAY SPEED	3-6
DRAFT TUBE LINERS	3-7
AIR ADMISSION	3-7
RUNNER SEAL CHAMBER DRAINS	3-7
SAMPLE CALCULATIONS	3-7

.

SUBJECT	PAGE
Chapter 4	
GENERAL USE	4-1
SPECIFIC SPEEDS	4-1
MODEL TEST CURVES	4–2
PRELIMINARY DATA FOR FIXED BLADE TYPE	4-3
PRELIMINARY DATA FOR ADJUSTABLE BLADE TYPE	4–5
SETTING OF RUNNER BLADES	4-6
SEMI-SPIRAL AND SPIRAL CASING, AND DRAFT TUBES	4-7
RUNAWAY SPEED	4-7
DRAFT TUBE LINERS	4-8
AIR ADMISSION	4-9
SLANT AXIS ADJUSTABLE-BLADE TURBINES	4-9
SAMPLE CALCULATIONS	4-10
Chapter 5	
GENERAL	5-1
BASIC CLASSIFICATIONS	5-1
RADIAL FLOW - FRANCIS TYPE	5–1
MIXED FLOW OR DIAGONAL FLOW (DERIAZ)	5-4
AXIAL FLOW - PROPELLER TYPE - FIXED AND ADJUSTABLE BLADE	5-4
SPECIFIC SPEEDS - SINGLE STAGE REVERSIBLE PUMP/TURBINES	5-4

SUBJECT	PAGE
PRELIMINARY DATA FOR FRANCIS PUMP-TURBINES	5-5
SETTING OF PUMP-TURBINE RUNNER - FRANCIS TYPE	5-9
SPIRAL CASING AND DRAFT TUBE - FRANCIS TYPE	5-10
DRAFT TUBE LINERS	5-10
RUNAWAY SPEEDS	5-11
AIR ADMISSION	5-11
RUNNER SEAL CHAMBER DRAINS	5-11
SAMPLE CALCULATIONS	5-11
Chapter 6	
GENERAL	6-1
THE SELECTION AND NUMBER OF UNITS	6-1
GENERATOR RATING	6-2
GENERATOR VOLTAGE AND FREQUENCY	6-2
SPEED	6-2
POWER FACTOR	6-2
FLYWHEEL EFFECT	6-3
GENERATOR MOTOR RATING	6-3
EXCITATION SYSTEMS	6-3
THRUST AND GUIDE BEARINGS	6-4
THRUST BEARING BELOW THE ROTOR	6-5
THRUST BEARING ABOVE THE ROTOR	6-6

SUBJECT	PAGE
THRUST BEARING NOT INCORPORATED IN THE GENERATOR OR GENERATOR-MOTOR	6-6
HIGH PRESSURE OIL SYSTEM	6-7
ELECTRICAL CHARACTERISTICS	6-7
METHODS AVAILABLE FOR STARTING PUMP-TURBINES IN THE PUMPING MODE OF OPERATION	6-10
Appendices	
AFFINITY LAWS, MODEL RELATIONSHIPS AND GENERATOR SPEEDS VERSUS NUMBER OF POLES	A-1
DATA - CORPS OF ENGINEERS PLANTS	B-1
TURBINE SELECTION CHARTS AND DIMENSIONS AND DATA AND DIMENSIONAL RATIOS - D _{TH} = 1.0	C-1
MODEL TEST CURVES FOR $D_{TH} = 12"$ AND $H = 1$ FOOT AND CRITICAL RUNNER SIGMAS	D-1
SAMPLE CALCULATIONS	E-1

CHAPTER 1

INTRODUCTION

1-1. <u>PURPOSE</u>. This manual has been prepared for use in planning and design leading to the selection and preparation of technical specifications for reaction turbines and pump-turbines, generators and generator-motors. The information included in this manual is not intended to eliminate the necessity or desirability of consulting with equipment manufacturers.

1-2. <u>APPLICABILITY</u>. This manual is applicable to all field operating activities having hydroelectric civil works design responsibilities.

1-3. REFERENCES.

- a. CE 2201.01 HYDRAULIC TURBINES FRANCIS TYPE
- b. CE 2201.02 HYDRAULIC PUMP TURBINES FRANCIS TYPE
- c. CE 2201.03 HYDRAULIC TURBINES KAPLAN TYPE
- d. CE 2202.01 HYDRAULIC TURBINE DRIVEN ALTERNATING CURRENT GENERATORS

e. ANSI/IEEE Std 421.1-1986, "IEEE Standard Definitions for Excitations Systems for Synchronous Machines," available from IEEE, 345 East 47th St., NY, NY 10017.

1-4. DISCUSSION.

a. Corps of Engineers hydroelectric power plants are part of multi-purpose projects which develop power incidental to their major purposes of flood control and/or navigation. Corps projects may concurrently serve irrigation, recreation and water supply purposes.

b. Hydraulic turbines and pump-turbines are not off-the-shelf items and must be designed to suit the specific range of conditions under which they will operate. Selection of the most suitable hydraulic and electrical equipment requires careful study and investigation.

c. This manual includes procedures to be followed, model test data of reaction turbines and pump-turbines and other material useful in selecting the equipment and preparing the performance data to be included in technical specifications.

1-5. <u>PROJECT PLANNING AND FIELD SURVEY STUDIES</u>. These studies establish the following data:

- a. Power capacity dependable and rated.
- b. Energy output.
- c. Reservoir capacity and headwater curves.
- d. Tailwater and afterbay capacity curves.
- e. Minimum flow requirements.
- f. Other use requirements.
- g. Pumping requirements.
- h. Preliminary selection of type and number of Units.
- i. Heads maximum, minimum and average.
- j. Foundation conditions.
- k. Special conditions under which the plant must operate.

1-6. GENERAL PRINCIPLES.

a. The function of a hydroelectric power plant is the conversion of potential energy (water falling over a distance or head) into mechanical energy (rotation of the turbine or pump-turbine shaft). This shaft in turn is connected to the shaft of a generator or generatormotor to convert mechanical energy into electrical energy.

b. In the pumping mode, the generator-motor drives the pumpturbine to pump water to a higher elevation so that it will be available when needed to operate the pump-turbine in the generating mode to produce electrical energy.

c. The quantity of water available for the production of power in the foot-pound-system is measured in cubic feet per second (cfs) and designated as Q. The vertical distance available is measured in feet and designated as H. The theoretical horsepower available or water horsepower (WHP) due to a quantity of water (Q) falling H feet is WQH foot pounds per second, where W is the specific weight of water in

pounds per cubic feet, and the available water horsepower is:

$$\mathsf{WHP} = \frac{\mathsf{w} \mathsf{Q} \mathsf{H}}{550}$$

d. The amount of power that can be produced under practical working conditions is less than the theoretical amount. This is due to losses in the conveyance of water (including the tailrace), and the losses in the conversion equipment.

e. Conveyance losses show up as the difference between the gross head (H_g) on a plant and the net or effective head (H_g) . For Francis and propeller type turbines, the net head is the difference in level between headwater and tailwater minus all frictional losses and minus the velocity head of the water in the tailrace. Friction losses occur as the water passes through the trash racks, intake, penstock and tunnel including bends, branching pipes, transitions and valves up to the entrance of the spiral case. The power delivered by the turbine to the generator is measured in horsepower (HP).

 $HP = \frac{w Q He Ep}{550}$

where $E_{\rm p}$ is the efficiency of the prototype turbine. The kilowatt output of the generator is 0.746 $E_{\rm G}$ times the horsepower delivered to the generator shaft, where $E_{\rm G}$ is the efficiency of the generator.

f. In pumping, the head is the total head from suction pool to the discharge of the spiral case plus the conveyance losses, except that for Tube or Slant Axis turbines and low head vertical units with short intakes it is the pool-to-pool head.

1-7. SIZE AND NUMBER OF UNITS.

a. The capital cost per kilowatt of a hydroelectric plant of a given total capacity generally decreases as the number of units decreases. A minimum of two units is usually preferred, but in special

cases one unit may be acceptable.

b. Size alone is not a determining factor in selecting the number of units to be installed. The most economical size and number of units can only be determined by a careful analysis of limitations and conditions. The following limitations, requirements and conditions must be carefully considered.

(1) Single unit plants have lower operating and maintenance costs, but service equipment, cranes, etc. will be more expensive.

(2) A new unit of larger size than any other in the system may necessitate additional system capacity.

(3) Character of the load that the plant is expected to supply and the flexibility of operation required.

- (4) Requirement to supply an isolated load.
- (5) Requirement to supply low flow releases.
- (6) The need to install units of unequal size.
- (7) Requirement for future units.

(8) Even or odd number of units. Electrical connections may dictate an even number of units.

- (9) Shipping limitations (one piece runner, etc.).
- (10) Foundation conditions.
- (11) Requirements of the pumping cycle.

1-8. <u>TYPES OF TURBINES</u>. Modern hydraulic turbines may be classified as reaction turbines or impulse turbines.

a. Types of Reaction Turbines include:

- (1) Francis.
- (2) Fixed Blade Propeller.

(3) Adjustable Blade Propeller (Kaplan, Tube or Slant Axis, and Bulb).

- (4) Fixed Blade Mixed Flow.
- (5) Adjustable Blade Mixed Flow (Deriaz).

Water passages are enclosed and completely filled with water. The energy transfer from the water to the turbine runner is due to the pressure and change in direction of the water. Reaction turbines operate at heads up to 1600 feet or more. The setting, while usually vertical, may be horizontal or inclined.

b. Impulse turbines are suitable for operation at heads as high as 6000 feet. The water is open to atmosphere at all points beyond the nozzle and the transfer of energy from the water to the runner is due to the turning of the jet nearly 180 degrees by the buckets which are arranged around the periphery of the runner. The setting may be horizontal or vertical.

1-9. TYPES OF PUMP-TURBINES.

a. Pump-turbines are similar to reaction turbines, except that they operate in one direction of rotation as pumps and in the opposite direction as turbines. They consist of three principal types:

- (1) Radial flow or Francis type.
- (2) Mixed flow or diagonal flow.
- (3) Axial flow or propeller type.

b. The mixed flow and Axial flow types include both fixed-blade and adjustable-blade machines.

1-10. MODEL TEST.

a. Hydraulic turbines and pump-turbines are not off-the-shelf items of equipment. They are designed to suit the head, power and pumping requirements of a particular site.

b. While manufacturers have models developed to cover a range in heads and capacities, modifications to an existing model or development of a new model design may be necessary to determine performance at a specified condition.

c. Model testing is necessary if the state of the art is to

advance. New improved designs which permit more economical speeds, improved efficiencies and settings with relationship to tailwater need to be developed. The Corps of Engineers requires model tests to develop a runner most suitable to the requirements of the project and to confirm that the guaranteed performance will be met. As more model and prototype tests become available, more accurate results of model changes and model development can be predicted.

d. In some cases field tests are not possible to check guaranteed values of performance. In these cases, model tests are accepted as the guaranteed tests.

e. The allowable specific speed for a turbine or pump-turbine under given head conditions is dependent upon the setting with respect to tailwater, atmospheric pressure, water density and the vapor pressure of water. A manufacturer may have a family of curves for heads up to 1500 feet or more (depending on the type of turbine and the setting above or below tailwater). However, prototype tests should be made to validate his design and model tests.

f. The size of the model runner tested may vary with different manufacturers and the test results may be based on inlet, throat or discharge diameters. Corps specifications require the model runner throat diameter to be not less than 10 inches and further requires that the guaranteed model efficiency be based on a model with a runner throat diameter of 12 inches.

g. Efficiency of prototype turbines should be higher than that of models. The amount of increase to be expected will vary depending on the manufacturer and his experience. Therefore, an exact comparison of performance of two models by different manufacturers cannot be made.

1-11. EVALUATION OF EFFICIENCY.

a. The increase in efficiency to be expected from tests of identical models in different laboratories has been known to vary two percent.

b. The surface finish on runner and gates on a model has been known to vary the efficiency by as much as 1/2 percent.

c. Model test values can be repeated closer than 1/4 percent.

d. Manufacturing tolerances may result in a step-up between model and prototype that is different than expected.

e. Two units of the same design and identical within manufacturing tolerances, installed in the same plant have given test results differing by more than the probable error of testing.

f. For many years, european test codes as well as the International Test Code acknowledged the probability of error in instrumentation by a tolerance for output and efficiency of \pm two percent. Guarantees of 92 percent are considered to be met if final computations of field test results showed 90 to 94 percent. The United States Test Code (ASME) does not provide any tolerance on guarantees and this has resulted in the lowering of guaranteed values by american manufacturers. These guaranteed values, depending on the size of the unit, have varied from 90 to 92 percent.

g. In a known case where high efficiencies were guaranteed with large penalties for not meeting guarantees included in the contract, a two percent decrease in efficiency was equivalent to more than half of the contract price.

h. Specifying too high an efficiency can result in excessively high bid prices.

i. Model tests are used as a means of providing the unit best suited for a particular project. The Corps specifies minimum efficiencies to be met for both model and prototype at specified outputs when field tests are to be made and only model efficiencies when field tests are not to be made.

j. Efficiencies are not evaluated in the comparison of bids. However, penalties for failure of the prototype to meet guarantees are included in the specifications.

1-12. <u>DATA ON UNITS INSTALLED IN CORPS OF ENGINEERS PLANTS</u>. Data on units of equipment installed in Corps of Engineer's Hydroelectric Plants is included in Appendix B. This data will be of assistance in selecting equipment, but it must be recognized that considerable improvement in design and performance has been made on some units in recent years and that foundation conditions may have imposed restrictions on selecting the speed and size of a unit, and the depth of the draft setting.

CHAPTER 2

TURBINE AND PUMP-TURBINE CHARACTERISTICS

2-1. SPECIFIC SPEEDS.

a. The basis for comparison of the characteristics of hydraulic turbines is the specific speed $(N_{\mbox{st}})$. This is defined as the speed in revolutions per minute (N) at which a turbine of homologous design would operate if the runner was reduced in size to that which would develop one horsepower under one foot of head.

b. The specific speed varies directly as the square root of the horsepower (HP) and inversely with five-quarters power of the head (H) in feet.

$$N_{s_t} = \frac{(N) (HP)^{1/2}}{H^{5/4}}$$

c. In the metric system (N_{st}) is the speed of a homologous turbine of a size to develop one metric horsepower under one meter head. The metric specific speed is equal to 4.446 times the specific speed in the foot-pounds system.

d. In general, for a given head and horsepower, the higher the specific speed, the higher the speed of the unit and the lower the overall cost of the installation. But there are limits on the specific speed of a runner for a given head and output. Too high a specific speed would reduce the dimensions of the runner to values that would cause excessively high velocities for the water discharge through the throat of the runner and draft tube. Too high a specific speed could reduce the runner structural dimensions and the rotating parts of the generator to such small dimensions that high stresses would make it uneconomical, if not impracticable, to design. Too low a specific speed would unduly increase the size and cost of the generator in order to maintain the WR² of the unit. Obviously, there are practical limitations to the range in specific speeds for any head.

e. For Francis turbines, the specific speed is indicative of the type and shape of the runner. A low specific speed runner (high head) has an inlet diameter greater than the discharge diameter while the

reverse is true for a high specific speed runner (low head).

f. For propeller turbines, higher specific speeds for higher heads require an increase in the number of blades.

g. Normal N_{st} is defined as the specific speed for best efficiency and rated N_{st} is defined as the specific speed at rated capacity or guaranteed horsepower under the head for which the turbine is designed.

h. Pumping specific speed $(N_{\rm sp})$ is the speed at which the runner would rotate if reduced geometrically to such a size that it would deliver one U.S. gallon per minute under one foot of head.

$$N_{s_p} = \frac{(N) (Q)^{1/2}}{H^{3/4}}$$

2-2. PERIPHERAL COEFFICIENTS (ϕ).

a. The peripheral coefficient, a dimensionless number used for convenience in plotting model performance curves, is the ratio of the peripheral velocity of the runner blades to the spouting velocity of the water.

$$\phi = \frac{\text{Peripheral speed of the runner (fps)}}{\text{Spouting velocity of water (fps)}}$$

At the runner throat:

$$\phi_{\mathsf{TH}} = \frac{\pi \left(\frac{\mathsf{N}}{60}\right) \left(\frac{\mathsf{D}_{\mathsf{TH}}}{12}\right)}{\sqrt{2\mathsf{g}\,\mathsf{He}}} = \frac{\mathsf{N}\,\mathsf{D}_{\mathsf{TH}}}{1838\,\mathsf{H}^{1/2}}$$

where

 ϕ_{TH} = Peripheral coefficient at runner throat

N = Runner speed in revolutions per minute

 D_{TH} = throat diameter of the runner in inches.

Note: While D may denote any representative dimension of the runner such as inlet, throat and discharge diameters, it is Corps practice to use throat diameter.

 $g = Acceleration due to gravity = 32.17 ft./sec^2$

 H_{ρ} = Effective head in feet.

b. The runner speed must be selected to match a synchronous speed for the generator (see Appendix A, Page A-6, "GENERATOR SPEED VS NUMBER OF POLES").

$$N = \frac{120 \text{ Hz}}{n}$$

where Hz = frequency in cycles per second and n = number of poles of the generators.

c. While, in general, higher runner speeds for a specified horsepower at a specified head should result in a lower first cost for a turbine, the speed may be limited by the cavitation tendency of the runner, the drop in peak efficiency over the normal range of operation, vibration, and by mechanical design of the turbine or generator. Higher speeds require a lower setting of the runner with respect to tailwater and are accompanied by increased excavation and structural costs. Higher speeds also reduce the head range under which the turbine will operate satisfactorily.

d. Pump-turbines are more subject to cavitation in the pumping mode than in the generating mode. Therefore, the pumping mode determines the setting of the runners.

2-3. SETTING OF TURBINE AND PUMP-TURBINE.

a. The setting of the turbine or pump-turbine is very important. Too low a setting would result in unnecessary excavation and structure costs. Too high a setting could result in excessive cavitation of the runner buckets or blades with a resulting loss in efficiency and increased operating and maintenance costs.

b. The setting of a turbine or pump-turbine can best be determined by the consideration of the Thoma cavitation coefficient Sigma (σ).

$$\sigma = \frac{H_b - H_v - H_s}{H_e}$$

where ${\rm H}_{\rm b}{\rm =}$ Barometric pressure head at elevation of the runner above mean sea level

H_u= Vapor pressure head in feet at water temperature

 $\rm H_{S}{=}$ For Francis runners is the distance from the lowest point on the runner vanes to tailwater in a vertical shaft unit, and the distance from the highest elevation of the runner band to tailwater for horizontal units.

 $\rm H_{S}^{=}$ For fixed blade and Kaplan runners is the distance from the center line of the blade trunnion to tailwater for vertical units and from the highest elevation of the blades to tailwater for horizontal and inclined units.

 H_s = For diagonal flow runners is the distance from the bottom of the gate to tailwater for vertical units and from the highest elevation of the blades to tailwater for other units.

 $H_{\rm p}{=}~$ Net or Effective head on the turbine in feet.

 H_s may be positive or negative, depending on whether or not the referenced point on the runner is above or below tailwater. When the referenced point is below tailwater, it is negative. If "a" is the distance from the center line of the turbine distributor to the lowest point on the runner vanes for Francis units and to the centerline of the blades for propeller-type runners, then the distance from the centerline

of the distributor to tailwater for H_s positive is $(a + H_s)$, and for H_s negative is $(a - H_s)$.

c. It is customary for manufacturers to add a safety allowance to the cavitation coefficient Sigma (σ) .

$$\sigma = \frac{H_b - H_v - H_s - Safety}{He}$$

2-4. CRITICAL SIGMA (σ_c).

a. Over the years, since facilities for making cavitation tests have been available, there have been several methods proposed and used for determining critical sigma from model tests. There has been no fixed agreement on a standard method of determining critical sigma and in using manufacturers' critical sigma curves. It is important that the method used in determining critical sigma for a particular model be clearly established as a manufacturer may have used a different method of determining critical sigma, depending on the method in use at the time of the test.

b. In some model tests, the cavitation limits were considered to be at the points where power drops off and the discharge increases, thus decreasing the efficiency.

c. In other model tests, critical sigma was considered to be the value obtained at the point of intersection of the constant horizontal HP or Q (pump) curve with the slope of the line under cavitating conditions.

d. The International Code for Model Acceptance Tests of Hydraulic Turbines, IEEE Publication 193, gives the following three definitions of sigma:

(1) σ_0 , the lowest value of sigma for which the efficiency remains unchanged as compared to non-cavitating conditions,

(2) σ_1 , the lowest value of sigma for which a drop of one percent in efficiency is attained compared to a non-cavitating condition, and

(3) σ_s , Standard Sigma, the value sigma at the intersection of the constant efficiency line (non-cavitating) with the strongly dropping straight line along which measuring points align themselves for a high cavitating degree.

e. The Corps of Engineers Specifications defines "the Critical Sigma of the turbine or pump turbine for such desired turbine output or pump capacity and head shall be the sigma corresponding to the tailwater level of such tests which results in a one percent decrease in efficiency or turbine output, or pump power input which ever occurs first." (See CE 2201.01, .02 and .03, paragraph MT-4.5).

f. Because of the shape of some model sigma curves, considerable judgment is necessary in determining critical sigma.

g. Prototype experience is necessary to determine the factor of safety to include with H_s and also how much prewelding of the runner blades can be used as a trade-off against deeper submergence.

2-5. PERFORMANCE CURVES.

a. Turbine prototype performance curves are plots of efficiency and discharge versus horsepower for various heads and gate openings and are based on laboratory test data of a model homologous to the prototype with regards to runner and water passages.

b. The power is stepped up from the model by the formula:

$$HP_{p} = HP_{m} \left(\frac{D_{p}}{D_{m}}\right)^{2} \left(\frac{H_{p}}{H_{m}}\right)^{3/2}$$

c. The turbine discharge, neglecting any step-up in efficiency, may be calculated by inserting the value of horsepower calculated from the formula under (b) above into the formula for turbine horsepower HP = WQHE_m/550. H is the net or effective head and E_m is the model efficiency.

d. The expected efficiency of the prototype turbine is the model efficiency plus not more than 2/3 of the step-up in efficiency $(\rm E_p-\rm E_m)$ as determined by the Moody formula where $\rm E_m$ is the maximum model turbine efficiency at best speed or phi (Ø). The allowable step-up in

efficiency is added to all efficiency points to obtain the expected prototype corrected efficiencies, (E_c) .

$$E_{p} = 100 - (100 - E_{m}) \left(\frac{D_{m}}{D_{p}}\right)^{1/5}$$
$$E_{c} = E_{m} + \left(\frac{2}{3}\right) (E_{p} - E_{m})$$

e. No step-up in power is permitted by the guide specifications however the corrected efficiency is used in calculating prototype discharges.

$$Q = \frac{550 \text{ HP}}{\text{w} \text{H}_{\text{e}} \text{ E}_{\text{c}}}$$

f. Pumping performance curves are plots of efficiency, head and horsepower versus discharge at various gate openings and are based on laboratory test data for a model homologous to the prototype with regards to runner and water passages. For pumping, unless otherwise stated, the head is the total head from the suction pool to the discharge of the spiral case. The prototype head and discharge capacity values are stepped up from the model by the affinity laws and the capacity values so determined should not be less than the guaranteed values. The pump corrected efficiencies are obtained by adding the allowable step-up in efficiency to all efficiencies points. The expected head-capacity curves are developed using corrected capacity values which are the values stepped up from the model multiplied by the The expected efficiency capacity curves are developed ratio E_{c}/E_{m} . using the corrected efficiency and capacity values and the horsepower values used in developing the expected horsepower-capacity curves are computed using the formula HP = $wQH/550E_{c}$, where Q, H, and E_{c} are taken

2-7

directly from the expected performance curves. The maximum pump input horsepower determined from the curves should not exceed the maximum pump horsepower permitted by the specifications.

2-6. <u>MODEL-PROTOTYPE RELATIONSHIPS</u>. Affinity laws and model to prototype relationships for turbines and pump turbines are included in Appendix A.

2-7. GUARANTEES.

a. When available, previous model tests can be used as the basis for guarantees, the guaranteed efficiency values should be set 1/4 percent less than the indicated model efficiencies. See also Paragraph 1-11.

b. Likewise, horsepower guarantees should be set two percent less than the values shown on the expected Horsepower vs. Efficiency curves for the prototype.

CHAPTER 3

FRANCIS TURBINES

3-1. <u>GENERAL USE</u>. For many years, Francis turbines were used for low heads. Today they are in general use for heads from 75 feet up to 1600 feet while propeller type turbines have replaced Francis type turbines at the lower heads.

3-2. SPECIFIC SPEEDS.

a. Specific speeds for Francis turbines range from 20 to 90 and is obtained by changing the design proportions of the runner. A general discussion of specific speed is presented in 2-1.

b. A low specific speed Francis runner has a larger entrance diameter than discharge diameter. For a specific speed of approximately 42, the inlet diameter is approximately equal to the throat and discharge diameters. For higher specific speeds, the inlet diameter becomes smaller than the throat and discharge diameters. Also the discharge diameter is larger than the throat diameter.

c. The specific speed $(N_{\rm S})$ will remain constant for any other size or head for the same design and the corresponding speed for another homologous runner.

d. Care must be taken when using specific speed values to insure that they are being correctly used. The best efficiency at rated head for a Francis turbine is matched at 85 - 90 percent of the generator KW rating. the normal KW rating of the generator, the horsepower equivalent of which is used in calculating the rated specific speed.

e. In the process of selecting a turbine for a specific installation, the specific speed should also be determined using the lowest head at which the maximum power must be developed (generator KW rating). This will give the highest N_s under which the unit must operate and may dictate the selection of the runner. When the lowest head is appreciably lower than the average operating head and when the power required is exceptionally high in comparison to the requirement under normal head, it may be necessary to install an oversize turbine to meet the low head capacity requirement. In this case the turbine shaft may be sized to meet the generator rating with the provision that the turbine gate openings be restricted, the generator rating would be exceeded. The same head and gate opening restrictions apply to turbines

where increase in heads under flood conditions could cause a turbine output in excess of the generator rating.

f. For many years, hydraulic laboratories did not have the facilities for testing the cavitation characteristics of Francis runners. Therefore the cavitation characteristics were estimated on the basis of experience with installations of similar types. During this period a value of 632 was used for K in $N_s = K/H^{1/2}$. In 1951 the manufacturers of hydraulic turbines recommended a K value of 650 to be used in the above formula on the basis that the vertical Francis-type turbines could usually be set with the centerline of the distributor about eight feet above tailwater at sea level. More recent experience indicates an economic advantage for smaller, higher speed units with deeper settings consistent with a K value of approximately 700. This relationship is shown on Figure 1, Appendix C and is recommended for preliminary studies.

3-3. DEVELOPMENT OF PROTOTYPE PERFORMANCE CURVES FROM MODEL TESTS.

a. Model test curves covering a wide range of specific speeds are shown on Figures F1 through F8 in Section I, Appendix D. This method of representation is commonly referred to as "oak tree" or performance hill. The latter designation derives from the fact that the figure is three-dimensional, as each constant efficiency contour represents a coordinate point in the Z-direction perpendicular to the plane of the paper. All data has been reduced to unit values corresponding with $D_{\rm TH}$ = 12 inches (one foot) and head, H = one foot. The ordinate is unit horsepower, HP₁, and the abscissa is peripheral speed coefficient, $\emptyset_{\rm TH}$. All efficiencies are based on $D_{\rm TH}$ = 12 inches. The indicated specific speed is referred to the point of maximum efficiency. Some cavitation characteristics are shown on Figures S1 through S5, Section IV, Appendix D.

b. The significant characteristics of the eight designs are compared on Figure F9 of Appendix C. A number of other designs have been included to aid in the correlation of the data with respect to specific speed. The curves may be used for preliminary selection of the runner throat diameter, speed, design discharge and runner setting. The curve of critical runner sigma is based on a horsepower that is 15 percent greater than the horsepower at best efficiency. The curve must not be used for off-best phi conditions. For studies requiring more complete information regarding the turbine dimensions and performance, a selection must be made from one of the eight designs.

c. Pertinent dimensions of the turbine parts and water passages,

expressed as a ratio to $\ensuremath{D_{\mathrm{TH}}}$, are shown in Tables 1 and 2, and Figure 4 of Appendix C.

d. The following steps are made to select a turbine:

(1) Given the horsepower corresponding to 85 - 90 percent generator rating at rated head, a preliminary value for N_S can be selected from Figure 1, Appendix C. A design is selected from Figures F1 through F8 with a specific speed which most nearly approximates the preliminary value. The design specific speed is used in the ensuing calculations. Speed N is determined from N = N_S H^{5/4}/HP^{1/2}, but N must be adjusted to a synchronous speed. It is usually necessary to investigate three synchronous speeds in order to arrive at the most overall economic speed.

(2) Having selected a speed, a preliminary runner diameter may be determined using the selected design and the relationship of $\emptyset_{TH} = N D_{TH}/1838 H^{1/2}$ and D_{TH} may be adjusted to get \emptyset_{TH} at rated head to be at or near best gate. Also, it may be necessary to change the runner diameter so the HP₁ picked off from the performance hill for the phi values corresponding to other head conditions will give the required prototype horsepower. This may necessitate a change in speed with a corresponding shift away from best phi at rated head conditions. This includes calculating \emptyset_{TH} for the minimum head conditions at which the capacity value of the unit or units is based, and the horsepower output at this head. It may be necessary as stated above to readjust N and D_{TH} to get the necessary HP₁ when stepped up to give the required prototype horsepower at the minimum head condition. See also comments under 3-2(e) regarding the necessity of installing an oversize turbine to meet the low head capacity requirements.

(3) Performance curves may now be developed from the model tests using the appropriate model - prototype relationships included in Appendix A.

e. As previously pointed out, hydraulic turbines are not off-theshelf items of equipment. Model tests previously made and prototypes of models test are indicative of the performance that can be expected and the turbine manufacturer can alter or design a model based on experience to meet the requirements specified for a particular procurement. This accounts for some of the scatter of points shown on Figure F9 of Appendix D.

f. For specific speeds $N_s = 33$ and below, increasing the vent (i.e. opening between buckets) will permit increasing the power and

shifting the point of best efficiency to the right. Decreasing the vent will reduce the power and shift the point of best efficiency to the left. Increases or decrease in vent opening as much as 15 to 20 percent may be made. A small percentage increase in the inlet diameter may also be possible as a means of shifting the point of best efficiency and slightly reducing the power. Increasing the vent openings too much may result in a loss of efficiency.

g. For specific speeds greater than 33, the model may be changed by increasing or decreasing the vent opening up to approximately 10 percent. Small percentage increase and decrease in inlet diameter may be possible for runners with specific speeds at best gate up to N_s of approximately 60. For specific speeds above 60, a small increase in inlet diameter is usually permissible. These are the means by which models can be adjusted to give desired project performance.

h. Increasing the vent openings increases the power of the runner but may result in a drop in efficiency. Too large an increase in vent opening could cause the power and efficiency to drop off too sharply.

i. It should be noted that N_s for best gate is approximately 7-1/2 to 11 percent smaller than N_s for full gate at rated head.

j. The setting for the three synchronous speed runners can now be determined.

3-4. SETTING OF RUNNER.

a. Overall plant efficiency is dependent on the design of the water passages from forebay through the tailrace. However, the turbine manufacturer is only responsible for the design between the turbine casing inlet and the discharge of the draft tube. Therefore the following dimensions are necessary for inclusion in the turbine specifications as limiting dimensions:

(1) Elevation of center-line of distributor.

(2) Maximum elevation of low point of draft tube floor.

(3) Horizontal distance from center-line of unit to the end of the draft tube.

b. The setting of the runner can be established by calculating $\rm H_S$ (the distance from the lowest point on the runner buckets to tailwater corresponding to the Q for the prototype horsepower) and substituting

the value of sigma obtained from the model tests curves for HP_1 corresponding to the prototype horsepower in the formula:

$$H_{c} = H_{b} - H_{v} - safety - \sigma' H$$

Depending on the value of sigma, H_s may be positive or negative. The setting of the bottom of the runner blades may be above or below the elevation of the tailwater corresponding to the discharge Q for the prototype horsepower. The distance ratio from the centerline of the distributor to the bottom of the runner is listed in Tables 1 and 2, Appendix C. This ratio multiplied by the prototype runner diameter, $D_{\rm TH}$, gives the dimension which when added to or subtracted from H_s yields the setting for the centerline of the distributor of the prototype.

c. In determining the setting of the runner, the possibility of lower future tailwater levels due to degradation of the river channel below the dam must be considered. Also, the time required for build-up of tailwater under low load factor operation conditions, if applicable, must be considered. Both factors dictate a lower setting. Foundation conditions at the site may make it economically desirable to set the unit higher by using a lower specific speed runner or to set the unit lower by using a higher specific speed runner. There is also the possibility of an economic "trade-off" between the maximum output of the runner at the lower heads, cost of excavation, a draft tube with a shorter vertical leg, and more stainless steel pre-welding of the runner to reduce pitting of the runner due to the higher setting.

3-5. SPIRAL CASE AND DRAFT TUBE.

a. While the turbine manufacturer is responsible for the design of the water passages from the turbine casing inlet to the discharge of the draft tube, there are limitations which are prudent to impose such as the velocity at inlet to the spiral case, the number and width of draft tube piers, the velocity at discharge of the draft tube and the elevation of the lowest point of the draft tube that will be permitted.

b. The diameter of the inlet to the spiral case may be the same as, or preferably less than, that of the penstock but the velocity at the inlet should not exceed 22 percent of V2gH. If the velocity is higher, a loss in efficiency and power result. There may be instances where it is desired to install, in an existing plant, a larger unit than the structure was designed to accommodate. In this case the increased head loss (H_L) between the net head measurement section and the runner is approximately 2/3 of the increase in velocity head. The reduced

efficiency E and power HP can be calculated by the following:

$$E_{r} = \frac{E (H - H_{L})}{H}$$

$$HP_{r} = HP \left(\frac{H - H_{L}}{H}\right)^{3/2}$$

$$H_{L} = 2/3 \left(\frac{V_{2}^{2}}{2g} - \frac{V_{1}^{2}}{2g}\right) = \frac{Q'^{2}}{3j} \left(\frac{1}{A_{2}^{2}} - \frac{1}{A_{1}^{2}}\right)$$

 V_1 = Velocity at the inlet of the normal casing. V_2 = Velocity of the smaller casing. A_1 = Area of inlet of the normal casing. A_2 = Area of the smaller casing.

c. Deviations from strictly homologous water passages may also affect runaway speed, thrust, critical sigma as well as design of moving parts.

d. While procedures based on model laws and model and prototype tests are necessary to the study and selection of equipment, they need to be augmented by skills and judgment acquired by experience.

3-6. RUNAWAY SPEED.

a. The runaway speed of the prototype turbine is determined from model tests by running the model at various gate opening for the full range of model RPM (N_1) or phi (\emptyset) to maximum RPM or \emptyset at minimum values of efficiency and power and extending the curves to zero. The corresponding value, $\emptyset_{max.}$, is shown on Figures F1 through F8 of Appendix D. Prototype maximum runaway speed is given by the following:

$$N_{max} = \phi_{max} \left(\frac{12}{D_{TH}}\right) \left(\frac{60}{\pi}\right) (2g \text{ H})^{1/2}$$
$$= \frac{1838 \phi_{max} \text{ H}^{1/2}}{D_{TH}}$$

b. It is difficult to design a generator to withstand the highest overspeed conditions. Therefore, it is sometimes necessary to limit the maximum gate opening of the prototype turbine in order to limit the overspeed.

c. While runaway speed is affected by sigma, for all practicable purposes, its effect, on a Francis turbine can be neglected.

d. With medium head Francis turbines the maximum overspeed occurs at full gate but for higher heads where the inlet diameter of the runner is somewhat greater than the discharge diameter, the maximum runaway speed may occur at less than full gate

3-7. <u>DRAFT TUBE LINERS</u>. Draft tube liners should extend a distance equal to at least one discharge diameter of the runner below the point of attachment to the bottom ring.

3-8. AIR ADMISSION.

a. When Francis units are operating at part gate, air must be admitted to the center of the runner cone or hub. An air valve, mechanically connected to the wicket gate mechanism controls the admission of air. If the tailwater can be higher than the elevation of the valve and also, if a tailwater depression system is used, a check valve must be installed. Depending on the specific speed of the turbine and its required submergence, it may be necessary for the runner to have alternate passages to admit air through the runner relief holes and to use a compressed air supply for air admission.

b. For a required horsepower at a given head, higher specific speeds will require deeper settings and increased air admission at part gate opening for stable operation. It will also be necessary in some cases to provide fins in the draft tube to reduce power swings to an acceptable level.

3-9. <u>RUNNER SEAL CHAMBER DRAINS</u>. When runner seal drains are required, the seal chamber pipe drain header should discharge in the vertical leg of the draft tube at a location furthermost away from the draft tube exit.

3-10. <u>SAMPLE CALCULATIONS</u>. The basic calculations for a typical installation are included in Section 1, Appendix E.

CHAPTER 4

PROPELLER TURBINES

4-1. GENERAL USE.

a. Propeller type units, operating at higher speeds and at heads less than 100 feet, have generally replaced Francis turbines. Fixed blade units generally operate over a head range of 6 to 120 feet while adjustable blade units operate up to 250 feet. They have fewer blades than the Francis runner has buckets and consequently do not require as close a spacing of trash rack bars.

b. Fixed blade propeller units are best suited to a narrow range of outputs due to peaked efficiency curves. Kaplan units have adjustable blades which can operate under reduced heads while maintaining good power outputs, have high part gate and overgate efficiencies and can be made responsive to changes in wicket gate opening.

c. Fixed blade propeller units are appropriate where operation will be at or near constant load with small variations in heads. Capital cost will be 25 percent less than adjustable blade units for operation under the same conditions.

d. While adjustable blade units meeting the same conditions could be of smaller diameter and possibly operate at a higher speed, they also have higher runaway speeds and require a lower setting or submergence of the blades.

4-2. SPECIFIC SPEEDS.

a. A general discussion of specific speed is presented in paragraph 2-1. The usual range in specific speeds is from 82 to 205 for fixed blade propeller type units and 90 to 220 for the adjustable blade propeller type (Kaplan). The number of blades will vary from four to eight depending on the range in head, specific speed, and setting.

b. Care must be taken when using specific speed values to insure that they are being correctly used. The best efficiency horsepower at rated head for a fixed blade propeller turbine is matched to 90 - 95 percent of the generator KW rating. The horsepower equivalent of the KW rating is used in calculating the rated specific speed, the blade angle or tilt of the blades being selected to best suit the project

requirements. The rated output of a Kaplan turbine is usually matched with the KW rating of the generator at rated head near full gate horsepower at maximum blade angle. The horsepower equivalent of the rating is used in calculating the rated specific speed.

c. A number of existing propeller turbine installations have been examined to develop some general rules for the preliminary selection of specific speed with respect to head. This information has been summarized in the form, $N_s = K/H^{1/2}$, and is presented on Figure 3 of Appendix C. The normal range in heads and associated K values for four, five and six blade runners shown on the curve sheets are recommended for use in determining the first value of N_s . A preliminary value for speed (N) is then calculated from the formula:

$$N = \frac{N_s H^{5/4}}{HP^{1/2}}$$

4-3. MODEL TEST CURVES.

a. Typical performance hill curves developed from model tests, covering both fixed and adjustable blade propeller turbines are shown in Appendix D, Section III. These curves follow the same format as that adopted for the Francis turbine designs (refer to paragraph 3-3a). Pertinent dimensions of the turbine parts and water passages, expressed as a ratio to $D_{\rm TH}$ are shown in Tables 4 and 5, and Figure 5 of Appendix C.

b. In the fixed blade design the inclination of the blades or blade angle dictates the capacity of the unit. However, increases in the blade angle are accompanied by reduction in the peak efficiency. This generally dictates a compromise depending upon the requirements of the project. Model test curves for an adjustable blade turbine having the same number of blades and approximately the same pitch ratio can be helpful in evaluating the effect of change in blade angle on performance, bearing in mind that the smaller hub diameter of the fixed blade turbine will result in some increases in power and efficiency over an adjustable blade turbine of the same runner diameter and number of blades. The pitch ratio is the ratio of the blade length to blade pitch (L/T). This ratio is generally referred to the blade periphery where the blade pitch is equal to the circumference generated by the blade tip divided by the number of blades. Critical sigma can be greatly affected by blade design and blade area, and ample blade area is necessary to keep sigmas within acceptable limits.

4-4. PRELIMINARY DATA FOR FIXED BLADE TYPE.

a. The fixed blade hill curves shown in Appendix D are based on designs that were developed to satisfy specific requirements. Their respective specific speeds at the point of maximum efficiency are: 141 (Figure FB1, Appendix D.) 119 (Figure FB2) and 106 (Figure FB3). Referring to Figure 3 of Appendix C it may be noted that these designs are ideally suited for heads of 32, 57 and 88 feet, respectively. They may be used for other rated head conditions with the precaution that the calculated speeds and runner throat diameters will be at variance with normal Corps practice. In the lower head range this error tends to produce larger, slower speed units, whereas, in the upper head range it tends to produce smaller, higher speed units.

b. If the user is chiefly interested in the size and speed of the unit, the following approximation will produce results more consistent with normal Corps practice. For rated conditions, compute the speed using the method presented in paragraph 4-2c. The peripheral speed coefficient can be estimated from the relationship:

$$\phi_{\rm TH} = 0.089 \ {\rm N_s}^{0.58}$$

The runner throat diameter is calculated through the equation:

$$D_{\rm TH} = \frac{1838 \,\phi_{\rm TH} \, {\rm H}^{1/2}}{{\rm N}}$$

c. The following procedure is used to compute prototype data from the hill curves in Appendix D.

(1) Pick off HP₁ at desired ϕ_{TH} and efficiency. This point will generally coincide with the maximum efficiency. Determine D_{TH} from the equation:

$$HF = HP_{1} \left(\frac{D_{TH}}{12}\right)^{2} H^{3/2}$$
$$D_{TH} = \frac{12}{H^{3/4}} \left(\frac{HP}{HP_{1}}\right)^{1/2}$$

(2) Calculate N from the equation:

$$N = \frac{1838 \phi_{TH} H^{1/2}}{D_{TH}}$$

- (3) N must be adjusted to the nearest synchronous speed.
- (4) Readjust ϕ_{TH} and repeat steps (1) (3), if required.

(5) Check performance required at other heads. Computed performance full gate horsepowers should be at least 2 percent higher than the required horsepower to allow for governing and variations such as manufacturing tolerances.

(6) The next step is to determine the setting by computing HP_1 for the required horsepowers, picking off from the sigma curves the corresponding value of critical sigma and solving for H_s in the formula:

$$\sigma_{\rm c} = \frac{{\rm H}_{\rm b} - {\rm H}_{\rm v} - {\rm H}_{\rm s} - {\rm Safety}}{{\rm H}}$$

(7) Usually it is necessary to investigate three synchronous speeds in order to arrive at the most overall economic speed.

4-5. PRELIMINARY DATA FOR ADJUSTABLE BLADE TYPE.

a. The adjustable blade hill diagrams shown in Appendix D are also based on designs that were developed to satisfy specific requirements. The precautions noted in paragraph 4-4a, also apply to these curves. One requirement that generally dictates this type of unit is a widely varying head. In most of these cases the maximum capacity of the units is required at a rated head considerably lower than maximum head. For this reason the rated ϕ_{TH} is picked to the right of optimum ϕ_{TH} . Since most designs are capable of sustaining good efficiencies up to about 32 degrees blade angle, the rated conditions are generally associated with the on-cam performance at this blade angle. However, other over-riding requirements such as restricted submergence or efficiency may dictate that the rated conditions be referred to other blade angles. As the associated point for rated conditions is moved to the right away from optimum \emptyset_{TH} the on-cam HP₁ for fixed blade angles increases, which provides for a smaller, higher speed unit. This advantage is generally offset by slightly reduced efficiency and higher critical sigma.

b. The method described in paragraph 4-4b may be used for approximating the speed and runner throat diameter for the adjustable type by using the following empirical relationship for $\emptyset_{\rm TH}$:

$$\phi_{\rm TH} = 0.049 \ {\rm N_s}^{0.695}$$

c. The step by step procedure for computing prototype data through the hill curves in Appendix D is identical to the procedure described in paragraph 4-4c (1)-(7) with the following exceptions. A preliminary value of HP₁ may be obtained at the intersection of 32 degree blade angle curve and the following $\emptyset_{\rm TH}$ values: 2.1(4 blades), 1.7(5 blades) and 1.5(6 blades). The prototype horsepower to be associated with this value of HP₁ will generally correspond to the generator rating. These rules may be varied to suit the specific requirements of the user.

d. Foundation conditions may determine the setting, and require modifications in speed, diameter and vertical height of the draft tube.

e. The selection of the appropriate adjustable blade turbine is more complex than for other turbines and requires much more work in arriving at a satisfactory solution. The range in operating heads may require the preliminary selected value of $\emptyset_{\rm TH}$ to be increased. The requirement for a higher efficiency at generator rating may require the selected $\emptyset_{\rm TH}$ to be decreased, while an acceptable lower efficiency would

permit the $\phi_{\rm TH}$ to be increased. The horsepower requirements at minimum head may require a change in speed, runner throat diameter and $\phi_{\rm TH}$. The value of critical sigma may require a change in HP₁ which would affect the runner diameter and require a change in speed and/or $\phi_{\rm TH}$. The effect of all these ramifications on the cost of the turbine, generator and powerhouse structure must be fully considered in making the final selection.

4-6. SETTING OF RUNNER BLADES.

a. Overall plant efficiency is dependent on all portions of the water passages from forebay through the tailrace. The turbine manufacturer is generally responsible for design from the turbine casing inlet to the discharge of the draft tube subject to such limiting dimensions imposed by other considerations and made part of the turbine specifications.

b. The model test information included in Appendix C includes the principal model dimensions of the semi-spiral or spiral casing, draft tube and runner dimensions.

c. The following dimensions are necessary for inclusion in the turbine specifications as limiting dimensions:

(1) Elevation of the center line of distributor.

(2) Elevation of the low point of draft tube floor.

(3) Horizontal distance from center line of unit to end of the draft tube.

(4) Limiting dimensions and elevations of water passages.

d. The formula shown in 4-4 c. (6) is used to calculate the setting of the runner blades. The datum for defining H_S is described in 2-3 b. The value of critical sigma, σ_C , is obtained from the model test curves at the HP₁ corresponding to the rated output. Depending on the value of sigma, H_S may be negative or positive, although it is usually negative for propeller units. Refer to paragraph 2-3.

e. A safety factor must be added to the calculated values of $\rm H_S$ as previously discussed under Paragraph 2-3 c., and

 $H_s = H_b - H_v - \sigma_c H - Safety$

f. When using manufacturer's model curves, the manufacturer's safety factor should be carefully considered in determining the setting of the runner. One manufacturer recommends a safety factor equal to 0.2 D_{TH} + 0.7 H, where D_{TH} and H are in feet. This safety factor does not take into consideration the pre-welding of stainless steel on the low pressure side of the blades to mitigate the removal of metal from the surface of the blade by cavitation. Considerable judgment is required in determining the setting of a turbine with consideration for the number of units to be installed, the method of operation and tailwater elevations for initial and ultimate conditions.

4-7. SEMI-SPIRAL AND SPIRAL CASING, AND DRAFT TUBES.

a. The turbine manufacturer is responsible for the design of the water passages from the entrance to the turbine casing inlet to the discharge of the draft tube. Design conditions and limitations, such as velocity at the inlet of the semi-spiral casing, velocity at the discharge of the draft tube and setting the width of the semi-spiral casing should be set by the Corps. These conditions may also include the exit dimensions of the draft tube including the width and number of piers, and lower than normal distances from the center line of the distributor to the bottom of the draft tube and from the center line of the distributor to the roof of the semi-spiral casing.

b. Deviations from strictly homologous water passages may also affect runaway speed, thrust, critical sigma as well as design of moving parts.

c. Procedures based on model laws and model and prototype tests are necessary to the study and selection of equipment, however, they need to be augmented by skills and judgment acquired by experience.

d. For comments regarding spiral casing see paragraph 3-5.

4-8. RUNAWAY SPEED.

a. The runaway speed of the prototype turbine is determined from model tests by running the model at the various gate openings and blade angles for the full range of model RPM (N_1) or ${\it \varnothing}_{TH}$ to maximum RPM or ${\it \varnothing}_{TH}$ at minimum values of efficiency and power and extending the curves to zero.

b. As runaway speed is affected by sigma it is also necessary to run sigma versus runaway N or $\beta_{\rm TH}$ for a range of gate openings and blade angles.

c. Prototype maximum runaway speed is given by the following:

(1)
$$N_{max} = \frac{1838 \phi_{TH} H^{1/2}}{D_{TH}}, \phi_{TH} = max value$$

or

(2)
$$N_{max} = N_1 \left(\frac{D_m}{D_{TH}}\right) H^{1/2}$$
, $N_1 = max$ value

d. Restricting minimum blade angle and/or maximum gate opening is a means by which runaway speed can be reduced.

e. When the blade angle is restricted, the turbine will operate at reduced efficiency throughout the lower range of output.

f. When the blade angle is restricted, the outer edge or tip of the blade is required to be machined to the contours of the discharge ring with the blades locked in a position corresponding to the minimum angular position of from 14 to 20 degrees with 16.5 degrees being the usual minimum angular position specified. While restricting the blade reduces the flexibility of operation and the efficiency of the turbine at horsepowers below the blade angle restriction, it decreases the maximum runaway speed and improves the efficiencies at and above the blade angle restriction with the greatest increase being in the range of the lower heads. Restricting the blade angle has made it possible to design generators for installations where otherwise it would be impracticable to design generators to withstand the higher overspeeds. When units with restricted blade angles are operated as "spinning reserve" or motoring as synchronous condensers, the energy taken from the system is greater than it would be if the blade angle were not restricted; however, the economics are invariably in favor of restricting the blade angle.

4-9. DRAFT TUBE LINERS.

Draft tube liners should extend a distance equal to at least one discharge diameter of the runner below the point of attachment to the bottom ring.

4-10. AIR ADMISSION.

a. Fixed blade turbines require the installation of air valves

connected to the wicket gate mechanism to control the air which must be admitted to the center of the runner cone or hub, the same as for Francis units. A check valve must be installed if the tailwater will be higher than the elevation of the valve or if a tailwater depression system is used.

b. Adjustable blade turbines require large automatic air inlet valves, fitted with dash pots to open on sudden load rejection in order to break the water column upon the gate closure. The air valve must also act as a check valve to prevent the outflow of air or water.

4-11. SLANT AXIS ADJUSTABLE-BLADE TURBINES.

a. The Corps of Engineers has used axial-flow adjustable-blade turbines of the slant (inclined) axis type in three low head projects. Engineering studies indicated a considerable savings in the first cost of these projects. Due to problems with these units, operation and maintenance costs have been high. Also, considerable down time has resulted from turbine problems. For these reasons, consideration of slant axis units should be limited to sites where small units are required and there is an economic advantage.

b. The first installations designed by the Corps of Engineers were for the Ozark and Webber's Falls Projects, both on the Arkansas River. (Rated head - 21 feet. Head range 17 to 34 feet). Each turbine was set at an angle of 12 degrees to the horizontal and drives through a 33,800 horsepower speed increaser a 20,000 KW generator. The size of the turbine was limited by the horsepower of the speed increaser.

c. Subsequent progress in design has permitted a direct connection between turbine and generator, thereby eliminating the need for a speed increaser. This design has been adopted for the Harry S. Truman Project (Kaysinger Bluff) pump turbines which have their shafts inclined at an angle of 24 degrees. Each unit is rated 42,400 horsepower when operating as a turbine at a net head of 42.5 feet and the range in heads is from 41 feet to 79 feet. These are adjustable five blade units and are capable of operating as a pump at a range in pumping heads from 44 to 55 feet. The size of the pump-turbine was limited by the physical size of the generator-motor that could be installed, maintaining the required concrete dimension between the generator housing and the top of the draft tube.

4-12. <u>SAMPLE CALCULATIONS</u>. The basic calculations for typical installations are included in Appendix E.

CHAPTER 5

PUMP TURBINES

5-1. GENERAL.

a. Pump turbines are dual purpose machines. They operate as a pump in one direction and a turbine in the reverse direction.

b. A pump will perform in reverse rotation as a good turbine. However, a turbine does not generally operate in the reverse rotation as a good pump. Consequently, the design of a pump-turbine impeller follows more closely pump design practice than turbine design practice.

c. There is a dependent relationship between the two modes of operation and a compromise can be made to favor one mode of operation over the other.

5-2. BASIC CLASSIFICATIONS.

There are three basic classifications of pump-turbines:

1. Radial flow - Francis type

2. Mixed flow or diagonal type - Fixed blade and adjustable blade (Deriaz)

3. Axial flow or propeller type - Fixed blade and adjustable blade (Kaplan)

5-3. RADIAL FLOW - FRANCIS TYPE.

a. Francis type pump-turbines have been installed for heads of 75 to 1500 feet.

b. The design of the impeller is basically that of a pump impeller rather than that of a turbine runner. The impeller has fewer and longer blades than does a turbine runner with a view to effecting an efficient deceleration of flow in the water passages. The overall diameter of a pump-turbine runner is of the order of 1.4 times larger than the conventional Francis turbine runner. This is due to the requirements for a larger discharge diameter than eye (throat) diameter in the pumping mode. A lower runaway speed results, due to to the choking action of the impeller on the flow at higher speeds. This characteristic affects the cost of the water passages and the cost of

the rotating parts of the pump-turbine and motor-generator.

c. As the unit is designed as a pump, it may be preferable to establish the pumping capacity for a specific total head which fixes within narrow limits the turbine capacity. This is particularly true for a combined installation of pump-turbines and turbines. Following the selection of the pumping capacity of the pump-turbine unit to fit the desired program of operation, the turbine capabilities in the generating mode is determined and the rating of the conventional units fixed to give the desired generating capacity for the several specified head conditions.

d. If the installation is strictly a pump-storage scheme, then the selection of the unit would begin with the determination of the required generating capacity at minimum head and the number of units to provide this capacity. Establishing the generating capacity for a given type and specific speed determines within a narrow range the pumping capacity. Establishing the pumping capacity for a specified total head also establishes within narrow limits the generating capacity for the corresponding turbine.

e. It is customary to guarantee the discharge in the pumping mode of a pump-turbine only at rated head or near best efficiency.

f. Only if a suitable runner is available from existing tests is it practicable to specify very closely the requirements for both the pumping and generating cycles.

g. Economics generally favors the higher capacity units unless an excessive number of runner splits is required by machining or shipping limitations. The design of split runners becomes more difficult with higher specific speeds. Runaway speed for higher capacity units is a larger percentage of synchronous speed and the centrifugal force makes the design of the splits more difficult as the additional metal increases the centrifugal force and the stress level.

h. Head losses through the draft tube of a pump-turbine decrease the net available suction head and increase the runner's sensitivity to cavitation. Therefore, pump-turbine runners must be set deeper than turbine runners. In order to reduce the size and cost of pump-turbines, higher specific speeds are utilized for pump-turbines relatively to turbines and consequently require deeper settings. The unit is more subject to cavitation in the pumping mode than in the generating mode. Therefore, the pumping mode determines the setting of the runner. i. While in general higher specific speeds for pump turbines may appear to be desirable for economic reasons; efficiency, cavitation characteristics, mechanical and hydraulic design must be evaluated to determine the most favorable specific speed. Cavitation increases with higher specific speeds. The use of metals more resistant to cavitation damage may allow the acceptance of higher cavitation levels.

j. Transient Behavior. A transient in hydro-power is the history of what occurs between two states of equilibrium. A study must be made of the transient condition in order to determine the minimum (WK²) flywheel effect for the rotating parts of the entire unit. The study should include a power failure in the pumping mode and load rejection in the generating mode. The Corps has a computer program which should be utilized when making these studies.

k. Four Quadrant Synoptic Curves.

(1) The necessary information to analyze transient behavior is provided by model tests made of the model runner and furnished as Four Quadrant Synoptic Curves which show the possible combinations of Unit Discharge (Q_{11}) : under one foot of head and one foot eye diameter runner versus Shaft Speed (N_{11}) , under one foot of head for one foot eye diameter in both pumping and turbine directions and Torque (T_{11}) , under one foot of head for one foot eye diameter versus Discharge (Q_{11}) , under one foot eye diameter versus Discharge (Q_{11}) , under one foot head for one foot eye diameter for both pumping and turbine directions.

(2) These curves are prepared from test information obtained from all gate openings in the complete turbine and pump performance curves, plus information from two additional tests. The first one of these tests is identical to a normal pump test except that the sense of rotation of the impeller and of the torque applied to the shaft are opposite to that for a normal pump test with measurements being taken the same as during normal pump tests. The second test involves rotating the impeller in the normal pump direction with water being pumped through the model in the normal turbine direction by service pumps. (During the test the head, discharge, speed, and torque are measured for various gate openings and shaft speeds.)

(3) The Four Quadrant Synoptic Curves may also be supplied showing the relationship of horsepower and discharge to phi (\emptyset) for the various gate openings. The curves show the possible combination of head, discharge, torque or power in the following modes of operation:

(a) Pumping operation

(b) Dissipation of energy with rotation in the pumping direction and flow in the generating direction.

(c) Turbine operation

(d) Dissipation of energy with rotation in the generating direction and flow in the pumping direction.

5-4. MIXED FLOW OR DIAGONAL FLOW (DERIAZ).

a. The mixed flow or diagonal flow type pump-turbines are used in the medium head range up to more than 250 feet.

b. While the mixed flow adjustable blade machine (Deriaz) previously manufactured by the English Electric Company are presently manufactured and preferred for use in Japan, the less costly Francis mixed flow types are preferred in the U.S.A.

5-5. AXIAL FLOW - PROPELLER TYPE - FIXED AND ADJUSTABLE BLADE.

a. Alternates for use in the low head range, below 75 feet, are the axial flow machines arranged with the shaft vertically, horizontally or inclined.

b. The Corps of Engineers Harry S. Truman (Kaysinger Bluff) project has the largest capacity slant axis axial flow pump storage machines under construction as of 1 January 1981.

5-6. SPECIFIC SPEEDS - SINGLE STAGE REVERSIBLE PUMP/TURBINES.

a. The turbine specific speed (N_{st}) of a pump turbine in the generating mode is defined as the speed in revolutions per minute (N) at which a pump turbine of homologous design would operate if the runner was reduced in size to that which would develop one horsepower under 1 foot of head.

b. The turbine specific speed is expressed as follows:

$$N_{s_t} = \frac{N H P^{1/2}}{H^{5/4}}$$

c. The turbine specific speed is somewhat higher than for a conventional turbine, being in the range of K from 800 to 1250, where K = N_{st} H 1/2. The range of K for a conventional Francis turbine is 700 to 850, based on N_{st} at best efficiency.

d. The pump specific speed $(N_{\rm SP})$ of a pump turbine in the pumping mode is defined as the speed in revolutions per minute (N) at which the pump turbine runner of homologous design would operate if the runner were reduced geometrically to such a size that it would deliver one U.S. gallon per minute under one foot of head.

e. The pump specific speed is expressed as follows:

$$N_{s_p} = \frac{N Q^{1/2}}{H^{3/4}}$$
$$Q = gpm$$

f. A recommended relationship for selecting pump specific speeds for a range of pumping heads is shown on Figure 2, Appendix C.

g. In selecting the specific speed consideration must be given not only to pump-turbine and generator motor costs, powerhouse and auxiliary equipment costs, but to efficiency in both modes of operation, cavitation characteristics, mechanical, hydraulic design features and to any restrictions imposed by foundation and site conditions.

5-7. PRELIMINARY DATA FOR FRANCIS PUMP-TURBINES.

a. Model performance data for pump-turbines is shown in Appendix D. This data is based on model tests covering low, intermediate and high specific speed designs. The original test data has been reduced to the more convenient form shown on Figures PT1, PT2 and PT3, which are based on $D_{\rm TH}$ = 12" and H = 1 foot. The performance for the generating mode is presented in the same format as that adopted in the other Sections covering the conventional Francis and propeller turbine designs. The discharge, efficiency and critical sigma curves for the pumping mode represent the envelope performance for best efficiency from a number of

fixed wicket gate tests. The curve of pumping specific speeds is derived from the other data. Pertinent dimensions of the pump-turbine and associated water passages, expressed as ratios to $D_{\rm TH}$, are shown in Table 3 and Figure 4 of Appendix C.

b. Information established by the Project Planning and Field Survey Studies is listed in paragraph 1-5. For the pumping cycle this information includes the pumping requirements and maximum, minimum and average heads.

c. The results of planning studies will generally dictate the rated pumping conditions. This information should include the rated gpm discharge and the associated rated dynamic head. An appropriate specific speed for the rated head is obtained from Figure 2, Appendix C. A preliminary value for speed (N), is then calculated from the formula:

$$N = \frac{N_{s_p} H^{3/4}}{Q^{1/2}}$$

The calculated value is rounded to the nearest synchronous speed.

d. If the user is chiefly interested in the size of the prototype unit, the following empirical relationship may be used to approximate a value for $\emptyset_{\rm TH}$.

$$\phi_{\mathsf{TH}} = 0.0015 \; \mathsf{N_s}^{0.785}$$

e. The runner throat diameter is calculated as follows:

$$\mathsf{D}_{\mathsf{TH}} = \frac{1838 \ \phi_{\mathsf{TH}} \ \mathsf{H}^{1/2}}{\mathsf{N}}$$

f. The following procedure is used to calculate prototype pumping performance from the model performance curves:

(1) From Figure 2 pick off the value of $N_{\rm Sp}$ corresponding with the rated dynamic head.

(2) Inspect the model performance curves, noting the specific speed range of each, and select the design that best suits the value of N_{sp} .

(3) From the selected curves, note the value of Q_1 for maximum pumping efficiency. Also note that this value is in cfs units. The prototype runner throat diameter (eye diameter for pump impeller) is calculated from the following relationship, where the subscript 1 refers to the model and subscript 2 refers to the prototype:

$$\frac{\mathsf{Q}_2}{\mathsf{Q}_1} = \left(\frac{\mathsf{D}_2}{\mathsf{D}_1}\right)^2 \left(\frac{\mathsf{H}_2}{\mathsf{H}_1}\right)^{1/2}$$

 $D_1 = 12$ inches and $H_1 = 1$ foot.

(4) At this same point note the value of $\phi_{\rm TH}$. The pump speed is calculated from the relationship:

$$N = \frac{1838 \phi_{TH} H^{1/2}}{D_{TH}}$$

Round to the nearest synchronous speed.

(5) Readjust $\emptyset_{\rm TH}$ for synchronous speed, pick off a new Q1 from the model curves and repeat steps (3) and (4), if required. Continue this process until the re-adjusted value of $\emptyset_{\rm TH}$ and corresponding Q1 from the model curves produce a value of $D_{\rm TH}$ that results in a synchronous speed in step (4).

(6) With fixed values for $D_{\rm TH}$ and N, the $\phi_{\rm TH}$ corresponding to other pumping heads is calculated from the following relationship:

$$\phi_{\rm TH} = \frac{\rm N \ D_{\rm TH}}{\rm 1838 \ H^{1/2}} = \frac{\rm Kn}{\rm H^{1/2}}$$

(7) For given head and corresponding value of $\phi_{\rm TH}$ extract Q_1 from the model curves and calculate the uncorrected value of prototype discharge from the following relationship:

$$Q_2 = Q_1 \left(\frac{D_{TH}}{12}\right)^2 H^{1/2}$$

(8) The prototype efficiency of the pump-turbine is determined by the Moody formula in accordance with MT-4.5 of Guide Specifications CE-2201.02 HYDRAULIC PUMP-TURBINES - FRANCIS TYPE Paragraph MT-4.5. The efficiencies are increased by the same amount in both the pumping and generating modes of operation. The following formula is applied to the peak efficiency value:

$$E_2 = 100 - (100 - E_1) \left(\frac{D_m}{D_p}\right)^{0.2}$$

$$E_2 - E_1 = \text{step-up in efficiency}$$

Using two-thirds of the step-up, the model efficiencies (E_1) are increased by 2/3 $(E_2 - E_1)$ to give the expected or prototype efficiencies, E_2 .

(9) The values of discharge in step (7) are increased by the ratio (E_2/E_1) to account for the increased efficiency of the prototype. The increased values are used in plotting the expected head-cfs curve of the prototype.

(10) With Q, H and E being taken directly from the performance curves, the horsepower-cfs curve is completed using the formula:

$$HP = \frac{Q H w}{550 E}$$

g. The following procedure is used to calculate prototype performance in the generating mode from the associated hill curves shown at the bottom of the model curves in Appendix D.

(1) $\phi_{\rm TH}$ values for the range in net operating heads are calculated from the formula established in (6) above.

(2) Prototype horsepowers for each head are calculated by intercepting the fixed gate curves at the associated value of $\emptyset_{\rm TH}$, noting the corresponding HP₁ and substituting known values in the following formula:

$$HP_{2} = HP_{1} \left(\frac{D_{2}}{D_{1}}\right)^{2} \left(\frac{H_{2}}{H_{1}}\right)^{3/2}$$
$$HP_{2} = HP_{1} \left(\frac{D_{TH}}{12}\right)^{2} \left(\frac{H_{2}}{1}\right)^{3/2}$$

(3) The expected prototype efficiency (E_2) is calculated by adding the step-up determined in f(8) above to the associated model efficiency (E_1) , at each fixed gate point.

(4) With HP, H and E being taken directly from the expected performance curves, the expected prototype discharge is calculated from the following formula:

$$Q = \frac{550 \text{ HP}}{\text{w H E}}$$

5-8. SETTING OF PUMP-TURBINE RUNNER - FRANCIS TYPE.

a. The setting, which is generally referred to the elevation of the distributor centerline, is determined by critical sigma in the pumping mode. The appropriate sigma value for each pumping head can be picked off directly at each corresponding ${\it \varnothing}_{\rm TH}$ on the model curves, then substituted in the following formula to compute the submergence, ${\rm H}_{\rm S}$:

$$\sigma_{\rm c} = \frac{{\rm H_b} - {\rm H_v} - {\rm H_s} - {\rm safety}}{{\rm H}}$$

(1) Appropriate values for $\rm H_b$ and $\rm H_v$ are shown on Figure 6, Appendix C.

(2) A recommended safety margin is calculated by substituting in the following formula:

Safety margin = 0.2 D_i + 0.4 $H^{1/2}$

where D_i is the prototype runner inlet diameter in feet. This diameter is expressed as a dimensionless ratio, D_1 in Table 3 and Figure 4. The actual diameter is the product of the ratio times D_{TH} , in feet.

b. The values of critical sigma from the model tests are referred to the bottom of the runner. Likewise, the submergence (H_S) computed above is referred to this same point. The distance, a, from the distributor centerline to the bottom of the runner is expressed as a dimensionless ratio, d, in Table 3 and Figure 4. The distance is the product of the ratio times D_{TH} , in feet. The setting is calculated as follows:

Elevation distributor centerline = Tailwater Elev. + H_s + a

5-9. SPIRAL CASING AND DRAFT TUBE - FRANCIS TYPE.

a. The turbine manufacturer is responsible for the design of the water passages from the upstream end of the turbine casing inlet to the discharge of the draft tube. Deviations from the model dimensions can affect performance.

b. Pumping considerations dictate the design of the spiral casing and draft tube, except for the number and width of draft tube piers which depend on structural requirements.

5-10. <u>DRAFT TUBE LINERS.</u> Draft tube liners for pump-turbines should extend to the pier noses.

5-11. RUNAWAY SPEEDS.

a. Runaway speed tests for Francis type or fixed-blade propeller type pump-turbines are conducted the same as those for the Francis type turbines.

b. The runaway speed tests for adjustable blade propeller type pump turbines are conducted the same as for the adjustable blade turbine.

c. The calculation of prototype maximum runaway speed is the same as that shown in paragraph 4-8c.

d. It is sometimes necessary to limit the gate opening of the prototype Francis pump-turbine to limit overspeed because of the difficulty of designing a generator to withstand the higher overspeed of high gate openings.

e. The effect of sigma on a Francis type pump-turbine can be neglected, however, sigma must be considered for propeller type pump-turbines.

5-12. <u>AIR ADMISSION</u>. An air and check valve (or valves) should be installed for Francis-type pump turbines to permit operating at gate openings below 50 percent.

5-13. <u>RUNNER SEAL CHAMBER DRAINS</u>. The seal chamber pipe drain header should discharge in the vertical leg of the draft tube on the side furthest away from the draft tube exit.

5-14. <u>SAMPLE CALCULATIONS</u>. A typical calculation for a pump turbine installation is included in Appendix E.

CHAPTER 6

GENERATORS AND GENERATOR - MOTORS

6-1. GENERAL.

a. The hydroelectric generators and generator-motors are synchronous machines. Both produce electric energy by the transformation of hydraulic power into electric power but the latter also acts in reverse rotation as a motor to drive the pump-turbine as a pump.

b. As hydraulic turbines and pump turbines must be designed to suit the specific range of conditions under which they will operate, each generator and generator-motor is unique in that the electrical and mechanical design must conform to the hydraulic characteristic of the site and to the specific requirements of the electrical system.

c. A major difference between a generator-motor and the conventional generator is the special design features incorporated in the former required for starting and operating the unit in the reverse direction as a motor.

d. Guide Specifications cover the electrical and mechanical characteristics and the structural details of generators and generator-motors.

6-2. THE SELECTION AND NUMBER OF UNITS.

a. Factors affecting the selection and number of units are outlined in Chapter 1, Paragraph 1-7.

b. The type of generator or generator-motor depends on the type of turbine or pump-turbine to which it is connected and also whether the center line of the shafts will be vertical, horizontal or inclined.

c. Vertical shaft generators connected to Francis and Fixed Blade Propeller Turbines have three basic designs:

1. Suspended Generator - a thrust bearing located on top of the generator with two guide bearings.

2. Umbrella Generator - a thrust bearing and one guide bearing located below the rotor.

3. Modified Umbrella Generator - a combination guide and thrust bearing located below the rotor and a second guide bearing located above the rotor.

d. Horizontal shaft generators usually require thrust bearings capable of taking thrust in both directions. The thrust required may not be the same in both directions.

e. While some vertical shaft generators connected to adjustable blade turbines have been of the umbrella type, the Corps requires all vertical shaft adjustable blade turbines and all vertical shaft pumpturbines to have two guide bearings and one thrust bearing located either above or below the rotor.

f. Generators and generator-motors connected to inclined axis turbines require thrust bearings capable of taking thrust in both directions (away from and towards the generator) and two guide bearings.

6-3. <u>GENERATOR RATING.</u> Generators are rated in kva (electrical output) with the power factor determined by consideration of anticipated loads and system characteristics to which the unit or units will be connected.

6-4. <u>GENERATOR VOLTAGE AND FREQUENCY</u>. Determination of generator voltage is based on economic factors which include the cost of generator leads, instrument transformers, surge protective equipment, circuit breakers, space limitations, the requirement to serve local loads and the generator costs for the various voltage levels available. The standard frequency in the U.S.A. is 60 Hz.

6-5. <u>SPEED</u>. The speed of the unit is established by the turbine selected speed which must take into consideration that some synchronous speeds have a number of poles which for the kva rating desired would not give an acceptable winding design. See Table of Generator Speeds in Appendix A.

6-6. <u>POWER FACTOR</u>. The power factor of the generator is determined by the transmission and distribution facilities involved in addition to probable loads and system characteristics. If the generator is connected to a long, high-voltage transmission line, it may be economic as well as desirable to install a generator capable of operating with leading power factors. If the project is located near a large load center it may be economical to install a generator with larger than normal reactive capability by using 0.80 or 0.90 power factor machines. For the majority of installations 0.95 power factors generators will be the economic ones to specify. In general, for best operation the power factor of the generators should match the power factor of the load.

6-7. FLYWHEEL EFFECT (WK^2) .

a. While the moment of inertia (WK^2) of the rotating parts of a unit (generator plus turbine) is a factor affecting system stability, the use of high speed circuit breakers and relays has in most cases removed the need for higher than normal WK^2 from the standpoint of the electrical system. Then the need for higher than normal WK^2 depends on the WK^2 needed to keep the speed rise of the unit and the pressure rise in the water passages for the turbine or pump-turbine within acceptable limits.

b. Greater than normal WK^2 may be required for an isolated plant or a unit serving an isolated load.

6-8. GENERATOR - MOTOR RATING.

a. The generator-motor rating depends on the pump-turbine characteristics and the system to which it will be connected.

b. Having selected a pump-turbine to meet the required capacity head conditions, the motor rating can be determined. In pump-turbine installations there may be considerable variations in head and consequently a variation in the motor requirements. The motor requirements may dictate the maximum rating of the generator-motor but in no case should the maximum horsepower required in the pumping mode be more than 94 percent of the 100 percent, 75 degree Centigrade nameplate rating, the motor rating being in KW (shaft output) or its horsepower equivalent.

c. The power factor depends on the system voltage conditions and transformer impedance and usually results in selecting a power factor of 0.95 (over-excited). There may be cases, during the hours of pumping, in which the system voltage may be reduced to where voltage studies show it is necessary for the machine to operate in the pumping mode at a lower voltage than in the generating mode. The range may be such as to require a dual voltage rating. Usually a difference in ratings for generating and motoring of about three percent less can be furnished without undue cost or complication.

6-9. EXCITATION SYSTEMS.

a. While for many years the excitation for synchronous generators

was provided by directly connected main and pilot exciters, the pilot exciter was later eliminated and a rotating and/or a static voltage regulator system was used in connection with the direct-connected main exciter. Currently, except for very small generators, a static excitation system is specified. A static excitation system is specified for all reversible units.

b. The static excitation system is a static potential-sourcerectified type with power for the excitation circuit normally taken directly from the generator or generator-motor leads. The complete excitation equipment consists of the excitation transformer, rectifiers, a-c excitation power circuit breaker, a-c bus between the transformer and rectifier, silicon controlled rectifiers, d-c bus from the rectifier cubicle to the generator or generator-motor field brush terminals, and a static automatic voltage regulator which controls the firing of the SCR's. The system designed for a generator-motor includes the necessary provisions for both directions of operation.

c. Most of the recent excitation systems have been provided with power system stabilizing equipment which changes the generator field current in proportion to instantaneous deviations from normal frequency to help dampen oscillations. This equipment should usually be furnished with solid-state excitation systems.

d. The Institute of Electrical and Electronics Engineers "Standard Definitions for Excitation Systems for Synchronous Machines," ANSI/IEEE Std 421.1-1986 should be consulted for an understanding of the application of solid-state devices to excitation systems. This report includes the new and revised definitions for excitation systems as applied to synchronous machines and gives particular emphasis on solid-state devices. The report includes figures illustrating the essential elements of an automatic control system, the components commonly used and figures which show the actual configuration of principal excitation systems supplied by domestic manufacturers.

6-10. THRUST AND GUIDE BEARINGS.

a. The Guide Specifications require that the generator and or generator-motor be provided with a nonspherical, adjustable-shoe or self-equalizing Kingsbury type or a General Electric spring type thrust bearing and for a generator-motor be suitable for rotation in either direction. For vertical machines the thrust bearing may be above or below the rotor. Units with very high thrust bearing loads and areas where space below the rotor is limited generally have the thrust bearing located above the rotor. Locating the thrust bearing below the rotor can reduce costs. Effects of the bearing location on vibration should be considered.

b. The generator of a vertical machine may be provided with one guide bearing below the rotor if the generator is connected to a Francis or fixed blade propeller turbine. An upper guide bearing must be provided if its installation is deemed necessary by the manufacturer for satisfactory operation or if the thrust bearing provided is of the selfequalizing type.

c. The generator of a vertical machine connected to an adjustable blade propeller turbine must be provided with two guide bearings.

d. The generator-motor of a vertical machine must be provided with two guide bearings with provisions for adequate lubrication in both directions of rotation.

c. It is now common practice to require that thrust bearings be provided with an externally pressurized system for providing high pressure oil to the thrust bearing surfaces during the starting and stopping of the machine.

6-11. THRUST BEARING BELOW THE ROTOR.

a. When the thrust bearing is located below the rotor the shaft coupling must be located farther below the stator than when the thrust bearing is located above the rotor.

b. The thrust bearing block is required by specifications to be forged integrally with the shaft.

c. Thrust bearings located below the rotor must be larger in diameter (for the same load carrying ability) than thrust bearings located above the rotor, due to the larger diameter of the shaft at the bearing location.

d. Two methods of inspection and removal of thrust bearing parts are provided, depending on the manufacturer of the generator or generator-motor. One method provides removable bearing housing covers in a bridge type lower bearing bracket. With the covers removed the thrust bearing is exposed for inspection and can be removed through the space between the bracket arms without disturbing the main support. The second method involves the lowering of the thrust bearing by use of a specially designed lowering device into the turbine pit. This design requires that the shaft coupling be located at a greater distance below

the stator.

6-12. THRUST BEARING ABOVE THE ROTOR.

a. This design permits access to the bearing parts by overhead crane and assures adequate working space regardless of machine size and thrust bearing capacity.

b. This location is the standard location for small and high speed machines where the space below the rotor is limited.

c. This location does not place a limitation on the size of shaft forging facilities available. Large structural members are required to support the thrust bearing located above the rotor. These members support the thrust bearing loads and must be stiff enough to minimize deflections. They have to bridge a larger span than the bearing bracket located below the rotor.

d. The location does not require as large a diameter of bearings as does the thrust bearing located below the rotor and consequently the bearing losses are lower.

e. The bearing may be split when required for installations, such as with Kaplan turbines. This not only facilitates handling, but permits removal of bearing and parts without dismantling the Kaplan piping.

6-13. THRUST BEARING NOT INCORPORATED IN THE GENERATOR OR GENERATOR-MOTOR.

a. Slant axis adjustable blade turbines and pump turbines require a thrust bearing design to take thrust in both directions and may or may not be purchased with the generator depending on its location.

b. It is the common practice in Europe to procure the thrust bearing with the turbine and to mount the thrust bearing on the turbine head cover. Some savings is claimed in certain installations by so doing as it omits the large thrust bearing supports.

c. This location presents problems in coordinating the procurement and installation of the bearing. Thrust bearings are customarily furnished by the generator manufacturers in the U.S. and installed by them in the generator. d. For very large capacity slow speed units it may be necessary for economic reasons to locate the thrust bearing on the turbine head cover.

6-14. <u>HIGH PRESSURE OIL SYSTEM.</u> High pressure oil starting system in a thrust bearing is essential for the operation of a reversible unit. and should be specified for any unit over 31,260 kva in rating. To start these units, the oil is pumped under high pressure through openings in the stationary segments, forcing lubricating oil between the stationary and rotating parts of the bearing before the unit is started. This reduces the friction and breakaway torque to very low values, and reducing wear. It is also in service during shut-down.

6-15. ELECTRICAL CHARACTERISTICS.

a. The electrical characteristics of a generator and generatormotor, in addition to determining its individual performance, will affect the performance of the power system to which it will be connected. These characteristics can be varied within limits to best suit overall performance. The values for these characteristics must be included in the procurement specifications.

b. Characteristics of a generator or generator-motor which have an important effect on the stability characteristics of the electrical system are Short Circuit Ratio, Transient Reactance, Exciter System Performance, and the electrical damping provided by the WK^2 of the rotating parts of the units.

c. A short circuit ratio (SCR) is the ratio of the field current required to produce rated voltage at no load to the field current required to circulate rated current or short circuit. With no saturation, it is the reciprocal of the synchronous impedance (Xd) and a convenient factor for comparing and specifying the relative steady-state characteristics of generators and generator-motors. The higher the ratio, the greater the inherent stability of the machine. A system stability study is necessary to determine whether a higher-than-normal short-circuit ratio is required. Increasing the ratio above normal increases the machine size (the machine being de-rated), the normal flywheel effect (WK²) and the machine costs, and decreases the efficiency and the transient reactance of the machine.

d. Some electrical systems require a lower than normal transient reactance. However, when a higher than normal SCR is specified, the transient reactance will be less than normal. Either the lower than normal transient reactance or the higher than normal SCR, but not both, will increase the cost. The cost increase is determined by the more

expensive option. Decreasing transient reactance increases fault currents.

e. An increase in the rotor inertia (WK^2) above normal increases the cost, size and weight of the machine and decreases the efficiency. In a pump-turbine installation increasing the WK^2 of the generator-motor increases the starting time in the pumping mode. See Paragraph 6-7.

f. Exciter System Performance (See IEEE 69TP154 - PWR).

(1) Modern voltage regulator systems have increased the dynamic as well as the steady state stability of electrical systems.

(2) The excitation system should be capable of reversing the excitation voltage of full negative voltage to rapidly reduce field current when required. Capability to reverse field current, however, is normally not required.

(3) It must be recognized that some systems, at times, require operation of the generating equipment at voltages below normal. It must also be recognized that the excitation system should be capable of achieving the required performance at a specified voltage available from the generator terminals. However, specifying a voltage materially below normal will increase the size of the excitation equipment, the space required to house it, and its cost.

h. Amortisseur Windings.

(1) While many hydroelectric generators have been provided with non-continuous amortisseur windings in the past, continuous amortisseur windings are now normally specified for all Corps of Engineers machines. Continuous amortisseur windings provide substantial benefits over nonconnected windings regarding stability, supplying unbalanced loads, effects on hunting etc., as described below. These benefits are particularly advantageous because of the difficulty in prior determination of system conditions. Continuous, heavy-duty amortisseur windings are required for generator-motors which are to be started as induction motors.

(2) Amortisseur windings are designed for a calculated ratio of quadrature-axis subtransient reactance to direct-axis subtransient reactance not to exceed 1.35 for an open amortisseur winding and not to exceed 1.10 for a closed winding.

(3) The advantages of amortisseur windings are:

(a) They reduce and in some cases eliminate hunting or sustained pulsations in current and voltage that occur under certain conditions of operation of a synchronous generator.

(b) They are effective in reducing the overvoltages due to unbalanced loads and faults, which can be an important factor in the application of lightning arrestors and in the coordination of insulation levels.

(c) Because they are a material aid in damping out oscillation they are of benefit in improving the ability of the machines to ride through system disturbances.

(d) They provide additional stabilizing torque for generators which are automatically synchronized.

(e) They reduce circuit breaker recovery voltages but tend to increase the magnitude of the current required to be interrupted.

(f) They aid in protecting field windings against current surges caused by lightning or internal faults and in case of the latter are effective in reducing additional damage to the machine.

(g) They permit pump-turbine motor-generators to be started as induction motors.

(4) Amortisseur windings increase stresses in the machine and connected equipment due to the increase in short-circuit current. The additional winding in the rotor must be built to withstand the stresses at maximum overspeed conditions and the stresses in the rotor parts are also increased. A continuous amortisseur winding complicates the cooling and disassembly of the field coils.

(5) An amortisseur winding designed for a calculated ratio of quadrature-axis subtransient reactance to direct-axis subtransient reactance not to exceed 1.35 will increase the price of the machine by approximately one percent. For a ratio not to exceed 1.10, the price increase is approximately three percent. For a continuous winding suitable for use in starting, the price increase is five percent due to the increase in thermal capacity of the winding required.

6-16. METHODS AVAILABLE FOR STARTING PUMP-TURBINES IN THE PUMPING MODE OF OPERATION.

a. The methods for starting pump-turbines in the pumping mode of operation can be classified into three groups, namely: Group 1 which requires continuous amortisseur winding; Group 2 which does not require continuous amortisseur windings; and Group 3 which requires separate starting devices.

b. Group 1 Starting Methods: Four methods of starting the unit as an induction motor with full or reduced voltage applied to the generator-motor terminal as follows:

- (1) Full voltage start.
- (2) Reduced voltage start.
- (3) Part winding start.

(4) Reduced frequency induction start. This method utilizes another generator or generator-motor which may be isolated for starting duty.

- c. Group 2 Starting Methods:
 - (1) Synchronous start.
 - (2) Static converter start.
- d. Group 3 Starting Methods:
 - (1) Wound rotor induction motor start Pony motor.
 - (2) Shaft connected starting turbine.
 - (3) Exciter starting.

e. The first three methods under Group 1 are applicable only to moderately sized units. Of these methods, the full voltage method has the lowest cost in its applicable range because no extra switching equipment is required. It also has the shortest starting time of any method (approximately 20 to 30 seconds). Because of the large starting kva that the full voltage method requires (unless the unit will be connected to a very stiff system), the system voltage drop may be too great for the system to tolerate when a unit is being started. Methods

(2), (3) and (4) are applicable within the range of metal clad type breakers. The start up time will be of two to three minutes and the starting kva in the neighborhood of the machine rating. The part winding start, Method (3) of Group 1 requires a careful investigation in each case. The difficulties in design of the motor-generator may make this type of starting impractical. The reduced frequency induction start method, Group 1, Method (4), sometimes referred to as the semisynchronous start method, is applicable to plants having conventional generating units as well as generator-motor units, where provision is made so that a generator unit and a generator-motor unit may be isolated for starting or where a remote unit and transmission line may be isolated to start or be started by an isolated unit in the plant. This method is the one that has been most applicable for the Corps pump-The amortisseur duty for this type of start is turbine installations. much less than for the other methods in Group 1. In this method of starting, the water in the pump-turbine draft tube is depressed, the generator unit is brought up to approximately 80 percent speed without excitation and then connected to the generator motor, field current is then applied to the generating unit and the generator-motor accelerates as an induction motor and the generating unit will decelerate until the same speed is reached usually 30 to 40 percent rated speed. At this point field current is applied to the motor synchronizing it to the generator, the turbine wicket gates opened and the units brought up to rated speed and synchronized to the system. The pumping load can now be transferred to the system at the rate desired and the generating unit shut down or used to start another pumping unit if so required. This method of starting and synchronizing to the system eliminates any sudden load change on the system. This method of starting is applicable to all ratings but requires a careful study of starting conditions be made. Usually the rating of the generating unit is about equal to that of the unit to be started, but its WK^2 can be as little as 50 percent of the WK^2 of the unit to be started.

f. The synchronous start method, Method (1) of Group 2 as in the semi-synchronous start method uses an isolated generating unit to provide the starting power. Water is depressed in the pump-turbine draft tube and both units are electrically connected at standstill. Excitation is applied to both machines at rest and they are then brought up to speed in synchronism by admitting water to the turbine. This system provides smooth and rapid starting in 1-5 minutes. A separate source of excitation is required for each unit. A continuous amortisseur winding is not required for this method of starting. It is applicable for all ratings. The units have the same rated speed and the starting unit can be as small as 15 percent of the rating of the maximum unit to be started. This system will permit start-up without the normal

tailwater depression. As soon as the unit reaches a speed high enough to prime the pump-turbine, the gates of the pump turbine are opened. This avoids a rough pump-start condition at shut-off head and synchronous speed and provides smooth and rapid starting and transfer ofload to the system.

g. The static converter start, Method (2) of Group 3 is applicable to all ratings but its cost limits its use to a plant having 3 or 4 units of large capacity. The static converter is connected to a starting bus which in turn is connected to the unit to be started. During starting, the converter supplies a variable frequency output to the motor. The generator-motor is connected to the starting bus with zero frequency, and the input frequency during acceleration up to synchronous speed is controlled by silicon-controlled rectifier thyristors. As soon as the pumping unit has been synchronized to the power systems, the static converter can be de-energized and the starting bus and converter connected for starting the next unit. The static converter can be used as a brake to reduce deceleration time when a unit is being removed from service to maintenance, or in an emergency. Its use will also reduce wear on the generator.

h. Wound rotor induction motor start (Pony motor), Method (1) of Group 3 is applicable to any size unit, but because of its high cost for small units, its use is usually limited to large units. The starting time depends on the motor capacity provided, but usually is of the order of ten minutes with an approximate starting kva of five percent. This is probably the most costly method because starting motors are required for each unit. The starting control also requires a large floor area. It does provide for a very smooth starting system, however, and permits balancing of the complete unit in both directions of rotation without watering the unit.

APPENDIX A

AFFINITY LAWS, MODEL RELATIONSHIPS AND GENERATOR SPEEDS VERSUS NUMBER OF POLES

SECTION	SUBJECT	PAGE
A 1	PUMP AFFINITY LAWS	A- 3
A2	PUMP MODEL RELATIONSHIPS	A -3
A3	TURBINE AFFINITY LAWS	A-4
A4	TURBINE MODEL RELATIONSHIPS	A -5
A 5	GENERATOR SPEEDS VS. NUMBER OF POLES	A -6

PAGE A-2 INTENTIONALLY LEFT BLANK

A1. PUMP AFFINITY LAWS

With Impeller	Diameter	Held	Constant

$$\frac{Q_1}{Q_2} = \frac{N_1}{N_2}$$
$$\frac{H_1}{H_2} = \left(\frac{N_1}{N_2}\right)^2$$
$$\frac{Bhp_1}{Bhp_2} = \left(\frac{N_1}{N_2}\right)^3$$

A2. PUMP MODEL RELATIONSHIPS

$$\frac{N_1}{N_2} = \frac{D_2}{D_1} \times \left(\frac{H_1}{H_2}\right)^{1/2}$$
$$\frac{Q_1}{Q_2} = \left(\frac{D_1}{D_2}\right)^2 \times \left(\frac{H_1}{H_2}\right)^{1/2}$$
$$\frac{P_1}{P_2} = \left(\frac{H_1}{H_2}\right)^{3/2} \times \left(\frac{D_1}{D_2}\right)^2$$

When

 $H_1 = H_2$

Then

$$\frac{H_1}{H_2} = \left(\frac{D_1}{D_2}\right)^2 \times \left(\frac{N_1}{N_2}\right)^2 = 1$$
$$\frac{D_1}{D_2} = \frac{N_2}{N_1}$$

Therefore

Note: Subscript 1 refers to model pumps. Subscript 2 refers to prototype pumps.

With Speed Held Constant

$$\frac{Q_1}{Q_2} = \frac{D_1}{D_2}$$

$$\frac{H_1}{H_2} = \left(\frac{D_1}{D_2}\right)^2$$

$$\frac{Bhp_1}{Bhp_2} = \left(\frac{D_1}{D_2}\right)^3$$

 $\frac{H_1}{H_2} = \left(\frac{Q_1}{Q_2}\right)^{2/3} x \left(\frac{N_1}{N_2}\right)^{4/3}$ $\frac{Q_1}{Q_2} = \frac{N_1}{N_2} x \left(\frac{D_1}{D_2}\right)^3$ $\frac{P_1}{P_2} = \left(\frac{N_1}{N_2}\right)^3 x \left(\frac{D_1}{D_2}\right)^5$

and $\frac{Q_2}{Q_1} = \left(\frac{D_2}{D_1}\right)^3 \times \frac{N_2}{N_1} = \left(\frac{D_2}{D_1}\right)^3 \times \frac{D_1}{D_2} = \left(\frac{D_2}{D_1}\right)^2$

$$\frac{P_2}{P_1} = \left(\frac{D_2}{D_1}\right)^5 \times \left(\frac{N_2}{N_1}\right)^3 = \left(\frac{D_2}{D_2}\right)^5 \times \left(\frac{D_1}{D_2}\right)^3 = \left(\frac{D_2}{D_1}\right)^2$$

 $N_s = \frac{N \times Q^{1/2}}{H^{3/4}}$ Where Q is in gpm, N is RPM, and H is in feet.

whp =
$$\frac{W \times CFS \times H}{550} = \frac{S \times GPM \times H}{3960}$$

Where W is specific weight of water (lb/ft³) S is specific weight of liquid referred to water at 68^oF H is turbine net head in feet

eff =
$$\frac{whp}{bhp}$$
 $\sigma = \frac{NPSH}{H}$

A3. TURBINE AFFINITY LAWS

For Constant DiameterFor Constant Head $\frac{P_1}{P_2} = \left(\frac{H_1}{H_2}\right)^{3/2}$ $\frac{N_1}{N_2} = \frac{D_2}{D_1}$ $\frac{N_1}{N_2} = \frac{Q_1}{Q_2} = \left(\frac{H_1}{H_2}\right)^{1/2}$ $\frac{Q_1}{Q_2} = \left(\frac{D_1}{D_2}\right)^2 = \frac{P_1}{P_2}$

A-4

A4. TURBINE MODEL RELATIONSHIPS

$$\frac{N_{1}}{N_{2}} = \frac{D_{2}}{D_{1}} \times \left(\frac{H_{1}}{H_{2}}\right)^{1/2}$$

$$N_{R} = \text{Prototype Runaway Speed}$$

$$N_{R} = \frac{1838 \times \emptyset \times (H_{2})^{1/2}}{D_{2}}$$

$$\frac{Q_{1}}{Q_{2}} = \frac{N_{1}}{N_{2}} \times \left(\frac{D_{1}}{D_{2}}\right)^{3}$$

$$\frac{HP_{1}}{HP_{2}} = \left(\frac{H_{1}}{H_{2}}\right)^{3/2} \times \left(\frac{D_{1}}{D_{2}}\right)^{2}$$

$$\frac{Q_{1}}{Q_{2}} = \left(\frac{D_{1}}{D_{2}}\right)^{2} \times \left(\frac{H_{1}}{H_{2}}\right)^{1/2}$$

$$\frac{HP_{1}}{HP_{2}} = \left(\frac{N_{1}}{N_{2}}\right)^{3} \times \left(\frac{D_{1}}{D_{2}}\right)^{5}$$

$$\mathcal{O}^{-} = \frac{H_{b} - H_{v} - H_{s}}{H}$$
Roger's Curve: $\mathcal{O}^{-} = \frac{N_{s}^{2}}{16,000}$

$$\Phi = \frac{N \times D}{1838 \times H^{1/2}} \qquad N_{s} = \frac{N \times P^{1/2}}{H^{5/4}} \qquad Q = \frac{HP \times 8.8}{H \times eff}$$

Turbine Shaft Diameters:
$$d = \frac{321,000 \times HP^{1/3}}{N \times Stress}$$
 (solid shafts)

Hollow Shafts:
$$s = \frac{321,000 \times HP \times d}{N (d^4 - d_1^4)}$$
 (d₁ is inside diameter)

A5. GENERATOR SPEEDS VS NUMBER OF POLES

$$RPM = \frac{120 \times Hz}{n}$$
 For 60 cycles: $RPM = \frac{7,200}{n}$

Hz = Frequency in cycles per second

n = No. of Poles

Poles	RPM	Poles	RPM	Poles	RPM
24	300.0	60	120.0	104	69.2
26	277.0	64	112.4	110	65.5
28	257.1	68	105.9	112	64.3
30	240.0	70	102.9	120	60.0
32	225.0	72	100.0	126	57.1
36	200.0	76	94.7	128	56.2
40	180.0	80	90.0	130	55.4
42	171.4	84	85.7	132	54.5
44	163.6	88	81.8	136	52.9
48	150.0	9 0	80.0		
50	144.0	9 6	75.0		
52	138.5	98	73.5		
56	128.6	100	72.0		

60 Hz Synchronous Speeds

Note: Omit Poles 34, 38, 54, 58, 62, 66, 72, and 82.

APPENDIX B

DATA - CORPS OF ENGINEERS PLANTS

TABLE	SUBJECT	PAGE
		P 0
B-1	TURBINE DATA	B-2
B-2	GENERATOR DATA	B-6
B-3	PUMP-TURBINE PERFORMANCE DATA	B-9
B-4	PUMP-TURBINE WEIGHTS AND DIMENSIONS	B9
B-5	GENERATOR-MOTOR DATA	B÷9

Refer to the factor Solution Each Fill Fill Filler <							M TING					Date			
IDDO 1-1 NOLON LM 13,500 54.5 13.5 17.0 10.45 54.5 13.5 17.0 10.45 54.5 13.5 17.0 10.45 54.5 13.5	PUMER FLOWT	STALE	unit ng.	ING	₩Ľ	9	1	1600 (FT)		MIR 1600 (FT)		1000 1000 1000	56111MG (F1) ++++	NJACH Thatai (FT - Ju)	ME (50)
ECONCIA 1,2 FRANCIS 565 30,00 11,2 FRANCIS 55 30,00 11,2 FRANCIS 5 31 10,0 ECONGIA 1,2 FRANCIS 1,2 FRANCIS 1,2 FRANCIS 1,2 FRANCIS 1,2 FRANCIS 1,2 FRANCIS 1,3 1,0,5 1,1 1,4 1,	ALIENT FALLS	0401	-1	NOPLON	Ē	19,600	5.5	প্র	7	-	2	3	-2.0	4 63	\$
Econcia 1 FameTis 1 2,90 650 13 10 10.3 14.3 4.5 Itensis 1,2 FameTis 1 4 2,90 650 13 10 10.3 14.3 4.5 <td< td=""><td>RLATUON</td><td>GEONGIA</td><td>1.2</td><td>FRACIS</td><td>8</td><td>50,000</td><td>112.5</td><td>21</td><td>021</td><td>102.5</td><td>3</td><td>7</td><td>10.5</td><td>6-21</td><td>550.8</td></td<>	RLATUON	GEONGIA	1.2	FRACIS	8	50,000	112.5	21	021	102.5	3	7	10.5	6- 21	550.8
If is is a state in the state of the state in	ALLALODNA	EEONGIA	-	FRANCIS	4	2,900	3	21	170	101.5		10.5	4.5	3-3.2	ĸ
Nr. I [BN. 1-1 MRCIN MSLID S_1000 6.5.3 4.5 7.2 5. 7.0 7.2 7.000 7.2 7.000 7.2 7.000 7.2 7.000 7.0 </td <td>PHISING</td> <td>16 LAS</td> <td>1.2</td> <td>FIRMUTS</td> <td>Ŧ</td> <td>42,300</td> <td>8</td> <td>176</td> <td>234</td> <td>115</td> <td>\$</td> <td>21</td> <td>k</td> <td>9-7-1</td> <td>1.92.</td>	PHISING	16 LAS	1.2	FIRMUTS	Ŧ	42,300	8	176	234	115	\$	21	k	9-7-1	1.92.
AND GROS 1,2 FRANCIS MACLAN Link T,400 Link T,5 S00 Link T,7 S00 Link Link <thlink< th=""> <thlink< td=""><td>MARKEY</td><td>KY. & TENK</td><td><u>1</u></td><td>NOPLON</td><td>UNCLU</td><td>20,000</td><td>64.5</td><td>\$</td><td>22</td><td>er.</td><td>*</td><td>63</td><td>7.0</td><td>ž</td><td>2</td></thlink<></thlink<>	MARKEY	KY. & TENK	<u>1</u>	NOPLON	UNCLU	20,000	64.5	\$	22	er.	*	63	7.0	ž	2
S. Dodolfi 1-6 F1r-BL.PMD EE1 93,30 81.6 7 7 50 86 70 -2.0 DREGNI 1 LUCHAL FIL-BL.PMD EE1 93,30 81.6 73 44.67 33.7 -2.0 DREGNI 1 LUCHAL FIL-BL.PMD EE1 93,30 81.6 73 44.67 33.7 -2.0 DREGNI 1,12 KNOLAR 555 555 50 63 55.7 55 55.7 73 44.67 33.7 -2.0 DREGNI 1,12 KNOLAR 555 50 63 55.7 50 63 55.7 75 55.7 74 73 74 7.1 7.0 7.1 7.	MERVER	ARCINERS	1.2	FRANCIS	MASED	11,400	105.9	3	200	2	61	¥	7.2	15-3.4	5.3.2
DREGN 1 LUDUR LL Sign Sign </td <td>BIG BEND</td> <td>S. DANUTA</td> <td>-</td> <td>FII-BL. PRLP</td> <td>EEAF</td> <td>90, 300</td> <td>81.8</td> <td>67</td> <td>R</td> <td>я</td> <td>38</td> <td>2</td> <td>-2.0</td> <td>53-65</td> <td>5</td>	BIG BEND	S. DANUTA	-	FII-BL. PRLP	EEAF	90, 300	81.8	67	R	я	38	2	-2.0	53-65	5
Anonecse 1,2 Francis SS S,00 15 56,000 75 50 15 55 56,000 75 50 69 25,7 82 50,00 7,00 70	BIG CLIFF	DREBON	-	KAPLAN	Ę	26,500	163.6	16	3	73	44.67	1.15	- <u>5</u> 0	124.2	
DREGN 1,2 NOPCH 55 64,000 75 50 63 25,7 82 53.6 5.5 DREGN 3-10 KOROM 56 57 50 63 25,7 82 53.6 5.5 DREGN 3-10 KOROM 565 5,000 75 50 63 25,7 82 53.6 55.7 82 53.6 53.7 53.6 <td>BLAKELY NIN.</td> <td>BRUNSAS</td> <td>1,2</td> <td>FRANCIS</td> <td>985</td> <td>Se, 600</td> <td>2</td> <td>99</td> <td><u>7</u></td> <td>2</td> <td>R</td> <td>40.0</td> <td>7.0</td> <td>11</td> <td>R</td>	BLAKELY NIN.	BRUNSAS	1,2	FRANCIS	9 8 5	Se, 600	2	99	<u>7</u>	2	R	40.0	7.0	11	R
DECON 3-10 KORLIN Sis N ₁ X00 75 60 69 25.7 RC 55.6 5.5 DIRECIN SS(0) KORLIN FIL FIL <td< td=""><td>BUNNEVILLE</td><td>DREEDN</td><td>1.2</td><td>KAPLAN</td><td>955</td><td>66,000</td><td>r</td><td>3</td><td>53</td><td>2.1</td><td>3</td><td>59.6</td><td>5.5</td><td>23-1</td><td>3</td></td<>	BUNNEVILLE	DREEDN	1.2	KAPLAN	9 5 5	66,000	r	3	53	2.1	3	59.6	5.5	23-1	3
DREGN SS(0) UOPLAN Sec S, UO Z-1 With UNSHINGTON T1, 2 NOPLAN Sec	BONEVILLE	OREGON	3-10	KGPLAN	85	74,000	r	3	69	2.7	28	59.6	5 5	23-4	3
MOSHINGTON 11-10 MOCLON A-C 105,000 63.2 22 70 22.5 94 72.12 -7.87 MOSHINGTON 1,2 FRANCIS A-C 69,000 156.5 59 64 22.5 43 30.5 -20 MOSHINGTON 1,2 FRANCIS A-C 69,000 156.5 59 64 22.5 43 30.5 -20 RECONSIA 1,2 FRANCIS MCSLID 55,000 126.6 175 215 144 23 30.5 -20 RECONSIA 1,4 3 FRANCIS MCSLID 55,000 126.6 175 217 128 170 104 52 30.5 -20 37 127 25 4.2 7 1 1 10.7 10.7 10.7 10.7 10.7 1 1 10.7 10.7 1 10.7 1 1 1 10.7 1 1 1 10.7 10.7	BOMEVILLE	DREGUN	(0)SS	KUPLAN	505	5,000	ß	8	69	2.7	R/R			6-9	
MOSHINGTON F1,2 NUOLON Eu 20,700 156.5 59 64 22.5 41 30.5 -20 DLVGHOM 1,2 FRANCIS R-C 69,000 126.6 175 215 144 23 7 7 1 REVIER 1,2 FRANCIS R-C 69,000 126.6 175 215 144 23 7 7 1 REVIER 1.1,2 FRANCIS M-G 277 136 170 104 K2 33 7 7 1 8 7 7 1 8 7 7 1 15 100 104 K2 33 7 7 1 1 10 10 12 10 10 7 7 1 1 1 10 10 7 7 1 1 10 12 10 10 7 1 1 1 1 1 1 1	BUNNEVILLE	ND19N1HSMN	11-18	NOLIN	ĩ	105,000	69.2	я	2	5.S	5	72.12	-1.67	27 -6	1,125
Ducknown 1,2 Francis R-C 6,000 12.8 11.4 53 25 144 53 25 4.2 REUNGIA 1,2 Francis MCLU 1,2 Francis MCLU 12 Francis MCLU 12 Francis MCLU 12 Francis MCLU 17 13 11.0 REUNCIA 1,2 Francis MCLU 13 Francis MCLU 17 13 13 11.0 Rev. J. MC. 1-4 Francis MCLU 2,4 13 13 12 14 53 33 11.0 REUNCIA 1-4 Francis MCLU 24,6 190 237 127 54 33 11.0 REUNCIA 1,2 Francis MCLU 14 27 33 10.7 REUN 1,1,2 Francis MCLU 172,000 154,6 190 22 28 26 66 RENU 1-3<	RUNNEVILLE	MCBH1WE10N	F1,2	KAPLAN	3	20,700	156.5	5	3	2.5	7	30.5	Ŗ	9-11	2
ECONGIN 1,2 FRANCIS MGGLD 55,000 100 136 170 104 62 33 7 1 REUNGIA 3 FRANCIS MC 277 136 170 104 62 33 7 1 1 REUNGIA 3 FRANCIS MC 277 136 170 104 62 33 11.0 RAW. J. MO. 5-6 FRANCIS MC 277 136 170 104 62 33 11.0 RAW. J. MO. 5-6 FRANCIS MC 136 17 13 10.7 10.7 10.7 13 10.7 <	BRINEN BON	DLUGHOND	1,2	FRANCIS	ĩ	69,000	1 č8.6	21	215	H	я	Я	4. È	12-8-1	S
REUNCIA 3 FRANCIS A. A,400 277 136 170 106 62 16 7 RMM. J. MOL 1-4 FRANCIS A. A,400 277 136 170 106 62 16 -7 RMM. J. MOL 5-6 FRANCIS A-C S2,000 128.6 190 237 127 54 33 11.0 RMM. J. MOL 5-6 FRANCIS M65.0 172,000 161.6 345 427.5 320 63 33 10.7 FRANCIS M65.0 172,000 16.6 345 427.5 320 63 33 10.7 FRANCIS M65.0 172,000 16.1.6 345 427.5 320 63 33 310.7 FRANCIS M65.0 105.0 16.0 22 23 9 26 56 56 56 56 56 56 56 56 56 56 56 56	BUF URD	GEORGIA	1,2	FRANCIS		55,000	<u>10</u>	136	170	10	3	55	7	14-10.8	\$
Rew. J. MD. 1-4 Freencis A-C S2,000 128.6 190 237 127 54 33 11.0 Rew. J. MD. 5-6 Freencis Medul K2,000 128.6 190 237 127 54 33 10.7 Rew. J. MD. 5-6 Freencis Medul K2,000 126.6 190 237 127 54 33 10.7 FEAN. 1-3 Freencis Medul R2,000 156.6 345 427.5 320 63 33 10.7 FEAN. 1-3 Freencis Medul 27,000 156.1 345 427.5 320 63 33 10.7 FEAN. 1-3 Reparts Medul 20,000 60 22 23 36 36 36 36 36 36 36 36 36 36 36 36 36 56 66 65 66 66 66 66 66	Bur URD	GEUNGIA	- ~1	FRANCIS	4	a, 400	277	136	170	8	3	16	ب م	5-7.1	74.5
AMM. J. MOL. 5-0 FRANCIS NNGAID 62,200 128.6 190 237 127 5-4 33 10.7 EGONGIA 1,2 FRANCIS NNGAID 172,000 163.6 345 427.5 320 63 26 -12.9 TENN. 1-3 FRANCIS NNGAID 172,000 163.6 345 427.5 320 63 28 -12.9 TENN. 1-3 FRANCIS NNGAID 172,000 160 207 131 56 33 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 5.6 6.6	BULL SHORLS	ARK. 4 MD.	1	FRANCIS	ĩ	26 ¹ 00	128.6	8	237	127	Я	R	11.0	12-6.5	367.5
EG0610 1,2 FR0NCIS NG410 172,000 163.6 345 427.5 320 63 28 -12.9 TENU. 1-3 FR0NCIS RUH 62,500 105.9 160 207 131 58 38 3.6 5.6 6.6<	BULL SHIRLS	FRK. 4 MD.	Ĵ	FRANCIS	Nest D	92'S9	128.6	8	237	127	\$	R	10.7	12-8.1	8
TEAN. 1-3 FRANCIS BLH E2,500 105,9 160 207 131 56 38 3.6 5.6 6.6 <t< td=""><td>CARTERS</td><td>SECINGIA</td><td>1,2</td><td>FRANCIS</td><td>UPSHI</td><td>172,000</td><td>163.6</td><td>3MS</td><td>427.5</td><td>2</td><td>3</td><td>28 2</td><td>-12.9</td><td>13-2</td><td>09</td></t<>	CARTERS	SECINGIA	1,2	FRANCIS	UPSHI	172,000	163.6	3MS	427.5	2	3	28 2	-12.9	13-2	09
TEAN. 1-3 LUDLAN MGELD 20,000 60 22 29 9 82 65 6.6 MASHINGTON 1-4,15,16 FRANCIS SMS 100,000 100 165 178.5 148 70 42 -7 MASHINGTON 5-14 FRANCIS MGELD 100,000 100 165 182.5 148 70 42 -7 MASHINGTON 5-14 FRANCIS MGELD 100,100 100 165 182.5 148 70 42 -7 MASHINGTON 5-14 FRANCIS MGELD 136,000 125.5 16.3 196 70 42 -7 MASHINGTON 55(2) FRANCIS MELTUN 3.500 514 171 164 146 22 28.5 6	CENTER HILL	IENN.	[-]	FRANCIS	Ę	66' 200	105.9	3	20)	131	3	3	3.8	15-0.5	\$57.5
MASHINGTON 1-4,15,16 FRANCIS SMS 100,000 100 165 178,5 148 70 42 -7 MASHINGTON 5-14 FRANCIS M6540 100,000 100 165 182,5 148 70 42 -7 MASHINGTON 5-14 FRANCIS M6540 100,000 100 165 182,5 148 70 42 -7 MASHINGTON 5-12 FRANCIS M15041 136,000 112,5 16.3 130 70 43 -7 MASHINGTON 55(2) FRANCIS FETUN 3.500 51.4 171 16.4 14.6 22 28.5 4	CHEATHON	TEMM.	1-3	KAPLAN	MG40	ي، 1000	3	ম	R	6	¥	53	6. 6	22-10	33
MOSHINGTON 5-14 FRANCIS MOSAD 100 165 182.5 148 70 42 -7 MOSHINGTON 17-27 FRANCIS MITRONI 136,000 112.5 16.3 196 130 70 43 -7 MOSHINGTON 55(2) FRANCIS METUN 3.500 51.4 171 164 146 22 28.5 4	CHIEF JOSEPH	NUSHINGTON	1-4, 15, 16	FRANCIS	9 5	100,000	8	1 65	178.5	2	2	¥	-	ž	713
HASHINGTON 17-27 FRANCIS MITROH 136,000 112.5 163 196 130 70 43 -7 HASHINGTON SS(2) FRANCIS PELTUN 3.500 514 171 164 146 22 28.5 4	CHIEF JUSEPH	ND19NTHSHI	5-5	FRANCIS	NGLD	100,000	1 0	ä	182.5	148	2	¥	7	15-5.7	3
HUGHINGTON 55(2) FRANCIS PELTUN 3,500 514 171 184 148 22 28.5 4	CHIEF JUSEPH	NU19NINGLON	12-11	FRANCIS	HITRON	136,000	112.5	3	196	97	2	7	I -	16-10	572
	CHIEF JOSEPH	NCHINGTON	55 (2)	FRANCIS	PEL TUN	3,500	514	171	Ņ	148	প্র	24.5	•	3-3-1	2

TURBINE DATA TABLE B-1

1. Runners Replaced in 1987 by Voith

NOTES

Unit Specing C to C ft. C Dist. to Bottom of Draft Tube C Dist. to Min. Tailwater with 1 Unit Operating (-) indicates C Dist. below Min. Tailwater

::!

ļ

TABLE B-1 (cont)

TURBINE DATA

						941 1M2		, XOM	MIN.	TINU			RUNNER	1019
PONER PLANT	SIAIE	UNIT NO.	344.1	NFR.	£	ž	1600 (FT)	89 G	99 J	SPRCING (F1)++	DEPTH (FT) +++	SETTING (FT) ++++	THROAT (FT - IN)	MEIGHT (TONS)
CI DOCATE FONATA	MICONIDI	-	KOD DN	4	8	128.6	2	101	69	2	47.2	۹ ۲	15-5	83
CI DOK HILI	ED. 1 S.C.	• ፲	FRANCIS	NNSAD	55.000	8	971	151	112	3	66	9	14-10	984
	TEMM.	-1	KOPLAN	BLH	28 .50	65.5	\$	3	Ľ		69	6.5	24-2	615
COLEAR	DREGON	1.2	FRANCIS	4	17, 250	904	ĸ	448	257.2	5	15	5.5	₹ -† -5	61
DALE HOLLOW	TENN.	-1 -1	FRANCIS	SNS	22 [,] 00	163.6	140	151	115	¥	2	1	9-5.5	275
DURDANELLE	RIKANSAS	1	NUPLAN	DEN	51, 800	84	3	3	જી	26	3	4.5	6-25	720
DE GHAY	REVENSES	-	FRANCIS	UNSED	63,600	3	171	216	Ŧ	49	જ	7	12-0.2	333.6
DENTSON	CHULA. & TEX.	1.2	FRANCIS	9 1 5	26,00	8	102.5	131	75.5	5	F4	7.4	15-11.5'	501.3
DETROIT	DREGON	1.2	FRONCIS	6L.H	20,000	163.6	285	375	Ş	3	Ŋ	5.0	01-01	437
DEXTER	OREGON		KOFLAN	UNSED	20,700	128.6	51	58.3	21	51	βū	-4.6	13-3	206.5
NURSHOW	1 DHHO	1.2	FRANCIS	Ţ	142,000	<u>6</u> 00	995	ŝ	\$ \$	ş	ß		10-5	302
DIADRUMAN	DHU	- ~-	FRANCIS	Ę	346,000	1c8.6	33	6,59	457	3	ደ	1.5	16-0	8 60
EUFALLA	DKLAHOMA	1-3	FRANCIS	NISAD	41, 500	8	¥	ន	2	61	¥	8.2	15-2	443.2
FORT GIBSON	DULAHONG	1	FRANCIS	H H	16,000	8	53	8	38	3	34.25	8	12-7.2	212.5
FORT PECK (1st)	MONTANG	-	FRANCIS	SINS	20,00	1 č 8. 6	170	216	120	9	સ્ટ	9.45	12-1.6	004
FORI FECK (1st)	PURPLAN	2	FRANCIS	98 35	č0,000	163.6	140	216	120	\$	સ્ટ	9.45	8-8	171
FORT PECK (1st)	PUNTANG		FIRMULIS	SINS	50,000	128.6	170	216	<u>8</u>	9	R	9.45	12-1.6	904
FURT PECK (2md)	NUTRNA	8−4	FRANCIS	Ţ	55,000	128.6	170	210	115	33	36	ŝ	12-51	450
FURT RANDALL	S. DAKUTA	8-1	FRANCIS	Ţ	57,000	65.7	112	145	75.5	20	.¥	6	15-6	<u>3</u>
FOSTER	DREGON	1,2	KOPLAN	BCH	13,800	257	101	115	8	\$	5	-10	8-3	ŝ
GARRISON	N. DAKOTA	1-3	FRANCIS	ВСH	86,000	\$	3	191	8	د	47	ور	17-11.5	5¥6
69HRISON	N. DAKOTA	4 ,5	FRANCIS	Ĵ	90 [,] 00	8	ŝ	184	5	٢	14	ę	17-11.5	870
GRVINS POINT	NEB. 4 S.D.		KGPLAN	BLH	54,000	75	8	60	04	8	3	8	0-22	855.5
GREEN FETER	DREGON	1,2	FRANCIS	ц Т	55,000	163.6	æ	361	186	45	ĉ8	ę	9 9	275
GREEN PETER	OREGON	FI	FRANCIS	٦	2,000	3	ଟ୍ଥି	8 3	161	ş	28 2	-15	1-11.4	16
GREERS FEARY	RACINGRS	1,2	FRANCIS	BLH	66, 300	120	175	214	<u>15</u>	8	37	ß	13-8	376
HARTWELL	69. t S.C.	*	FRANCIS	UNSED	91,5000	8	170	167	Ŧ	3	.¥	7	14-10	
HARTNELL	69. 4 S.C.	ŝ	FRANCIS	¶ >	126,000	112.5	170	187	-143	3	¥	11	16-0	
HILLS CREEK	OREGON	1,2	FRANCIS	BLH	21,700	277	đ	ନ୍ୟୁ	181.5	3	17	6.2	6-2 6	S
ICE HARBOR	HSH.	1-3	KOPLAN	985 1985	143,000	8	69	5	78	8	70.67	-16.5	53-4	946
ICE HARBOR	HOH	9 4	KOPLON	Ţ	174,000	85.7	69	105	ц	8	70.67	-16.5	ዋ አን	1,000
JIM MODDRUFF	FLORIDA	1-3	KAPLAN	NISAD	14,000	25	26.5	ಸ	1	3	84	8	1-1-	357.5
JOHN DAY	ore. & most.	1-16	NGFLAN	ŝ	212,400	ይ	5	110	8 3.5	8	92	-40.5	9 %	1,075
JUHN H. KERR	N.C. & VQ.	-	FRANCIS	BLH	17,000	138.5	8	108	3	60.33	90	5.9	1-01	Ş
JOHN H. KERR	N.C. & VR.	2-7	FRANCIS	UNSAD	45,000	85.7	8	106	3	2	54	6.5	16-9	3
JONES BLUFF	RLABRIN	1	FIX-BL. PRUP.	NNS4D	23,480	22	28.2	41.7	10	73	5 5	17.2	21-4	3
J. PERCY PRIEST	TENN.	-	FIX-BL. PROP.	Į	42,700	128.6	78	<u>90</u>	ß		¥	7	<u>5</u>	360
KEYSTONE	DKI DHUMO	ት	FIX-BL, PRUP.	Ţ	49,000	Ę,	1	117	38	71	45.5	6 Y	16-3	007

Ì

(cont)	
B-1	
TABLE	

TURBINE DATA

						RATING		1	1		19990			TOTA
poner plant	SIAIE	UNIT NO.	1174	MFR.	9	R.S.	HEAD (FT)	NEQ0 (FT)	HEAD HEAD	SPICING (FT)++	1000 DEPTH (FT) +++	SETTING (FT) ++++	NUMER THRUAT (FT - IN)	NE LONS) (TONS)
LAUREL	KENTUCKY	-	FRANCIS	H	98,000	Ŧ	เส	8	214		33.5	0	13-3.1	88¥
LIBEY	NUNTANA	1	FRANCIS	Ţ	165,000	128.6	ŝ	JA1	165	3	¥	7	14-10	502.5
LIBBY	NONIAND	5-8	FRANCIS	ĩ	165,000	128.6	900	INE	3	3	¥	7	14-10	502.5
LITILE GUISE	.HSHI	1-3	KAPLAN	ЯLH	212,000	8	85	F	90.5	8	76	-39	9-92 92	2701
LITLE GUUSE	HIST.	4	KAPLAN	Ţ	212,000	3	3	R	90.5	8	76	-39	9 %	1250
LOOKOUT POINT	UREGON	<u>~-</u>	FRANCIS	PELTUN	56,500	128.6	185	233	126	3	33	11.2	13-0.8	362.5
LUST CREEK	UREGON	<u>~-</u> 1	FRANCIS	£	33,800	240	275	323	<u>8</u>	*	24	-0.5	1-10	162.5
LONER GRANITE	HSH.		KGFLAN	BLH	212,400	8	55	100	76	8	92	14	992 58-0	1,075
LONER GRANITE	HSHI	ţ	KAPLAN	Ţ	212,400	8	53	<u>8</u>	76	8	76	Ŧ	26-0	1, 250
LONER MONUMENTAL	HSHI	- -1	KAPLAN	Ĵ,	212,400	8	5	31	87	8	76	-40.5	<u>66-0</u>	1,075
LONER MONUMENTAL	HODH.	9- 4	KAPLAN	Ţ	212,400	8	5	<u>1</u> 06	87	8	76	-40.5	č6-0	1,250
MCNARY	ORE. & MASH.	1-12	KAPLAN	Ses	111,300	65.7	3	ж	3	8	59.5	ъ.5 С	23-4	1, 050
MUNARY	URE, & HASH.	13, 14	KAPLAN	Ses	111,300	65.7	3	ጽ	3	38	59.5	-8.5	23-4	1,050
NCNGRY	DRE. & MICH.	SS (2)	FRANCIS	FELTON	4,500	277	8	ж	3	<i>21</i>	13	T	5-3.6	3
MILLERS FERRY	AL, ABAMA	1-3	F1X-R. FR0P.	NNS AD	34, 000	69.3	35.5	14	ß	33	3	11.5	22-3	550
NANPIL RIVER	130HIDd	-	FRANCIS	ЗЯ С	995	1200	200.0	200.0	225.0	200.0			1-4-5	2.7
WWPIL RIVER	130MMDd	2	FRANCIS	90	1536.8	96	200.0	200.0	225.0	200.0			01-1	7.3
NARRUNS	ARKANSAS	1,2	FRANCIS	Ę,	12,000	2 <u>7</u> 2	ਸ਼	153.5	8	જ	18	6	6-9	87.3
NARRUMS	ARKANSAS	~	FRANCIS	BLH	12,000	225	ž	153.5	3	2	18	6	6-9	87.3
NEW MELONES	CALIFORNIA	1,2	FRANCIS	Ţ	205,000	163.6	9 9	565	302.5	5. 2	38.83	7.5	12 -8	
NORF ORK	ARK. & MO.	1,2	FRANCIS	SHS	42,000	128.6	99	දි	130	3	ĸ	10	12-1.6	335.0
COTE DOTE	N.D. & S.D.	1-1	FRANCIS	Ŧ	128,500	<u>9</u>	165	203	114	76	Ŧ	4	17-0	740.5
ULD HICKORY	TENN		KAPLAN	BCH	45,000	75	45	3	53	3	3	8	6-23	855.5
02ARK	REVENSES	<u>-</u> 2	RDJ. BL. INCL. AK.	Ĩ	27,900	60.2	5	ž	17	3	39.78	-14.7	26-3	745
EHILIPOTT	VIRGINIA	1,2	FRANCIS	ł	9° + 00	217	ž	176	108	ઝ	16.5	3.7	5-5 2-5	70
RICHARD B. RUSSELL	GR AND S.C.	+	FRANCIS	47	104,000	2	144	3	134	11	£4	1ê		
ROBERT S. KEAR	DIVERTIME	<u>1</u>	KAFLAN	Ţ	38,000	75	ጺ	14	ନ୍ଦ	87	67	7.5	24-2	675
SAINT MARYS (OLD)	NICHIGAN	01	KAPLAN	£	3,000	1 <i>č</i> 8.6	ନ୍ଥ	22 . 6	18.3	58 5	21.2	ŝ	9-6	
SAINT MARYS (NEW)	MICHIGAN	1-3	FIX-BL. PROP.	Ę	6,975	8	21	22.6	18.3	5	36.33	3.23	Ţ	
SALNT MARYS (NEW)	MICHIGAN	5 3	KOPLAN	5965	3,000	1¢8.6	51	22.6	18.3	49.5	27.63	J. 27	ĩ	
SAINI SIEFHENS	s.c.		PR0P	Į	39,000	100	64	57.9	40.3		*	-10.4#	18-6	
SAM RRY BURN	TEXAS	1,2	NUTUN	Į	41, 300	120	2	9 9	53	57	45.5	-3, 5	15-0	293.8
SNET I I SHOW	ALASKA	1,2	FRANCIS	IHSI8 N	32, 300	514	745	ĝ	675	¥	13	-2.0	4- 3	146
SNETT I SHAN	ALASKA	~	FRANCIS	590	47,000	0 09	945.5	990.5	788	×3	13	9	4 -3	ĸ
STOCKTUN	NISSOURI	-	KAPLAN	NNS40	71, 800	55	61	1 08	\$	N/A	70.67	-6.5	23-4.6	908
FIBLE ROCK	ARK. 4 MO.	1	FRANCIS	EELT	68,000	1č8. 6	<u>8</u>	2c8	461	5	ነያ	7.2	13-6	386
TENKILLER FERRY	DIKLAHOMA	1,2	FRANICS	QWQ	23,500	150	21	181	103.5	Ŧ	30	7.9	9-6.1	247.5
THE ROUTES	DOCONN		100-000											

ETL 1110-2-317 15 December 1988

(cont)	
B-1	
TABLE	

TURBINE DATA

						RAT ING		ş	1		DKOFT		Ri Beef R	10101
PONER PLANT	SIAIE	unit nu.	IYAE		2	£	89 (j.	199 199	199 199 199	508CIN6 (FT)++	DEPTH (F1) +++	5611146 (F1) ++++	THRONT (FT - IN)	INE IGHT (10NS)
tie hortes	DRFEIDN	15-21	KORA GN		135,000	3	2	8	3	-38	70.7	-	Я Х	695
	DIRFERIN	E1.E2	KODI ON		18.800	3	1	3	ង	₽ ₽	35.5	-14.5	10-0	167.5
INE DOLLES	DRFGON	58(2)	FRANCIS		¥, 500	112	81	90.5	3	27	50.3	-5.5	5-3.5	42.5
TOWN IN LEF	TEXAS	<u>ب</u>	S" KRFLOW	065	4820	163.6	27.1	ĸ	11.5	ß	15.44	ŝ	9-2.2	
HOU 158 F. CEODEE	69. 4 A.A.	+- I	KOFLAN		45, 500	112.5	2	88	31	67				
HOCODESI I D	MISSOURT	-	FRANCIS		171	251	15	8	5	N/A	45.5	-2.5	16-8	378
LE LEFERS FOR 1 S	DKL PHONE	1-3	RUJ. FL. INCL. RI.		30, 900	60.24	ଅ	31	17	3	39.78	-14.8	26-3	745
	GEORGIA	-	FIX-M. PRUD.		5,400	171	"	"	Ŧ	A/A	18	4°0	6-0	77.5
LEST PUINT	GEORGIA	2,3	FIX-RL. PRUP.		51,500	90 100	3	72.4	\$	11	х	-1.1	19-2	437.5
UHI INEY	TEXAS	1.2	FRANCIS		20,700	128.6	91.5	126	77.5	¥	ନ୍ତ	e.5	10-10.8	167.5
HOLF CREEK	NENTUCKY	9	FRANCIS		62,500	105.9	<u>8</u>	214	Ш	8	1 2	1	15-0.5	527.5

1

TABLE B-2

GENERATOR DATA

PONER PLANT	STAIE	UNIT NUS.	NF.R.	E.	KVA	æ	2	ş		NERCIIVE NNI (FERCENI)	NLT NLT (LB. FT.2)	Housing Dianeter (F1.,-In.)	ICIAL MEIGHT (TONS)
ALIENI FALLS	10440	1-3	뇅	54.5	15, 778	3 3	14.200	13.8	01.1	55.0	55.000.000	48 - 6	3
ALLATUUNG	GEORGIA	1,2	N'HSE	112.5	40,000	0 .90	36.00	13.8	1.22	43.0	39,000,000	0-97	413
ALLATOUNA	GEURGIA	-	IT HSE	95 1	د. 200	0.80	2,000	ج. ح	1.00	NUR	89.000	12 - 6 (MAX)	2 8. 3
DMISTAD	TEXAS	7-1	30	Ż	TET .NE	. 35	33,000	13.8	1.175	34.0	8, 332, 000	27 - 6	
BAHKLEY	KY. & TEMI.	1	35	65.5	36, 111	<u>.</u> 9	005'R	13.8	1.10	51.0	114,000,000	20 - 05	676.9
FEAVER	RECONSIGN	1,2	35HTN	105.9	58,947	0.95	56,000	13.6	1.175	43.0	57.200.000	41 - 0	486.5
BIG RENU	S. DAKOTA	1-8	NI HCC	81.8	61,579	0.95	58,500	13.8	1.175	44.0	109,400,000	45 - 8	677.5
BIG (1.1FF	DREGUN	1	N' HSE	163.6	c0,000	0, 90	18,000	14.4	1.10	43.0	9,000,000	31 - 0	237.3
BLAKELY MIN.	ARKANSAS	1,2	JSH.A	120	11,667	0.90	37,500	13.8	1.10	42.0	44,000,000	40 - 0	435
BOWEVILLE	DREGON	1,2	R	ደ	48,000	0.30	43,200	13.8	1.10	44.0	113,000,000	46 - 0	750
BUNNEVILLE	OREGON	3-10	쁆	25	60,000	0. 30	51,000	13.8	96.1	44.0	113,000,000	48 - 0	1,000
BONNEVILLE	OREGON	SS (0)	Sec	[2]	5,000	0. 80	000 ¹	4.16	1.04	0.30	884,000	0-02	8
BUNNEVILLE	MD19N1HSHM	11-18	Я	69.2	70,000	0.95	66,500	13.8	1.175	4¢.0	164, 960, 000	52 - 2	8 20
BUNNEVILLE	ND19N1HSHN	FU142	3SH N	156.5	13, 800	0.95	13, 110	13.8	1.175	45.0	. –	201.0 # 301.0	165
BRUKEN BUN	DLKAHUMA	1,2	Ţ	128.6	52,632	0.95	20 [°] 00	13.8	1.175	41.0	34,400,000	40 - 04	348.5
BUFURD	GEORGIA	1,2	3SH IN	0 1	***	0, 90	40°,000	13.8	1.10	43.0	80, 000, 000	43 - 4	587.5
EUFORU	GEURGIA	~	35H M	277	6,667	0° 30	6,000	13.8	1.10	44.0	750,000	18 - 4 (MiX)	16
BULL SHORLS	ARK. 4 MD.	1	Ч Ч	128.6	42,100	0. 45	00) ¹ 04	13.8	1.17	42.0	34,000,000	9 - 04	360
HULL SHURLS	1 80, 4 10,	۲,	ĩ	128.6	47,368	0.95	45,000	13.8	1.175	41.0	34,000,000	0 - 04	362.8
DARTERS	GEORGIA	1,2	Ţ	163.6	131,579	0.95	125,000	13.8	1.175	37.0	97,000,000	42 - 0	775
CENTER HILL	TENN.	1-3	33	105.9	50,000	6 .9	45,000	13.8	1.10	43.0	55,000,000	40 - 04	3 2
DEATHAN	TENN.	1-3	35H IN	3	13, 333	6 .9	12,000	13.8	1.10	54.0	47,500,000	5 - 1	431.6
CHIEF JOSEPH	MRSHINGTON	1-4, 15, 16	3SH M	8	67, 368	0.95	64,000	13.8	1.17	43.0	84,000,000	42 - 6	6 80
CHIEF JOSEPH	NO19NTHSHI	55	1.HSE	8	67, 368	0.95	64,000	13.8	1.17	43.0	B4, 000, 000	42 - 6	680
THEF JOSEPH	INDIGNINGTON	17-27	ж	112.5	100,000	0.95	35,0 00	13.8	1.17	37.0	97,000,000	46 - 0	528
CHIEF JOSEPH	NOTANINGTON	SS (2)	ELLIOTT	514	3,000	0.80	2, 400	4.2	1.00	NORM	75,000	12 (M)()	33.9
J.LARENCE CANNON	NISSOURI	-	8	128.6	28, 421	°,55	27,000	13.8	1.175	43.0	15, 500, 000	35 - 0	<u></u>
DLARK HILL	64. 1 S.C.	1-1	8	<u>8</u>	11° 111	e. 9	40 ⁴ 000	13.8	1.10	43.0	55,000,000	9 - 14	5 9 5
CORDELL HULL	TENN.	1-3	35	65.5	37,037	0. 90	33,333	13.8	1.10	45.0	114,000,000	54 - (NRX)	564.5
CUUGAR	OREGON	1,2	ELLIOTT	34	13, 156	0.55	12,500	6.9	1.175	38.0	1,498,000	<u>8</u> 2 - 0	101.9
ore hollow	IEM.	1-3	N'HSE	163.6	20,000	06.0	18,000	13.8	1.10	4 ∕2•0	7, 500, 000	28 - 4	195.8
DARDANELLE	REVENSERS	1	JCH I	R	37,632	0. 55	31,000	13.8	1.175	48. 0	54,500,000	42 - B	460
DEGRAY	RARANSAS	-	Ĵ	3	42, 105	0.95	40 [°] 000	13.8	1.175	40.0	34,000,000	0 - 62	8 2
DENISON	OKLA. & TEX.	1,2	3SH J	8	36,842	0.95	35,000	13.8	1.50	43.0	55,000,000	39 - 2	497
DE FROIT	DREBON	1,2	N'HSE	163.6	55, 555	0.6.0	50,000	13.8	1.76	31.0	29,000,000	36 - 3	230
DEXTER	OREGON	1,2	3	128.6	15,000	8.1	15,000	13.8	1.8	46.0	9,000,000	31 - 8	X
XIDHSUDIY	1 DHHO	1,2	ЧÇ	ξ.	94, 737	0. 35	90,000	13.8	1.175	36.0	36, 200, 000	36 -1	445

(cont)	
B-2	
TABLE	

GFNERATOR DATA

							BATING		1	TRUCCIENT	-		101/0
tanto (a mit	CTATC	Init MS.	1		3	8	3	2			ž į	DIANEIER	INDIAN INCIDA
			2	2		:	ł	i	ī	(PERCENT)	(LA. +1.2)	(FTIM.)	(90))
	UNDEL	-	7	174.6	231.579	8	220.000	1	217	39.0	200,000,000	6 - 34	126
		1 - 1	W KGE	9	31.579	55.0	N. 000	12.4	1.175	4°0	31, 900, 000	5 3 - 2	365
cuet clean		-	Ţ	9	12.579	8	11.250	13.0	1.10	49.0	13,500,000	28 - 0	226.5
Cher DECK (151)	IN IN CARD	,	Ţ	120.6	18. 869	3	200	13.0	1.10	39.0	30, 000, 000	ዮ 潟	2
CUBI DELIX (151)	Canal William	• •		IÉA	16.667	3	15,000	11.0	1.26	40.0	7,000,000	25 - 6	165
FINE DECK (151)		. ~	ļ	124.6	24.669	8.0	30	13.0	1.10	410	30,000,000	36 - 0	2
		10 1	ELL 1011	128.6	501 A	3	000 °04	13.6	1.17	42.0	39, 500, 000	4 - X	411.4
	S. Devila	-	N'HEE	1.2	A2, 105	3	000 00	11.0	1.17	46.0	B2, 000, 000	0 - 14	614
FUSIER	CORFECTIV	1,2	Ţ	ŝ	10,566	0. 95	10,000	2.4 4	1.175	42.0	2,000,000	17-1122-10	115.5
EQUER 1 SLUN	N. DOVUTA		. 25	8	M, 210	0. S	000 '08	971	1.96	0.A.	150,000,000	50 - 6	1, 122.5
GORNISIAN	N. DAKUTA	5.4	3	8	64,210	6. S	000 00	13.8	217	410	126, 000, 000	30 - 6 20	2
GOVING PULNT	NEB. 1 S.B.	[-]	æ	r	81.2	0. S	316,215	11.0	1.17	48.0	80,200,000	47 - 10	631.4
HAEN PETER	OREGUN	1.2	1991 A	162.6	42, 105	83	000 11	11.0	1.13	40.0	22,000,000	а - Ж	38:5
GREEN PEIER	OREGUN	. 5	¥	3	1,500	و. لا	5	57	21.13	Đ	97. 1	0 - 4	342.5
GREERS FEARY	SHOWING	1,2	BLIOTT	81	20, 22	و 2	48,000	11.0	1.96	41.0	40,000,000	0 - 9F	a A
ARTICLE	55.4 55	+ - 1	H'HGE	8	73,333	9 8	6 2,60	110	1.12	410	36 , 000, 000	0 - 4	615
HARTHELL	1357 169	'n	送	112.5	84,210	<u>8</u> З	900 ¹ 09	13.8	1.17	42.0	77,614,000	\$	
HILLS CREEK	DREGON	1,2	2	211	15, 789	s 8	15,000	6.9	51.17	0.0 1	1, 600, 000	21 - 8	113
ICE HARKOR	HSUN	1 - 3	3	8	94, 737	و لا	30'0 0	13.8	1.175	43.0	156, 500, 000	0 - 6+	1,013
ICE HARBOR	HSUN	4 - E	ж	85.7	116,800	°.3	110,960	13.8	1.175	• A	205, 20 8 , 000	ዋ አ	
JIM MODRUFF	FLORIDA	1-3	N KK	r	11,111	8	10,000	13.8	1.10	52.0	20,000,000 3	(<u>1 - 10 (NRX</u>)	267.5
ione day	OVE. 1 HASH	1 - 16	8	8	142, 105	3	135,000	13.8	1.175	410	245,000,000	0 - J	1, 164.0
ICHN N. NERR	ALC. E VA.	-	391.1	138.5	13, 333	80	12,000	11.8	5/1.1	45.0	7, 500, 000	31 - 8	021
(JHN H. KERR	ALC: 5 VR.	2-7	394.5	8 5. 7	25,555	0.90	8 ନ	13.8	5/1.1	45.0	60,000,000	45 - 66	512.5
NUNES BLUFF	R. ABANA	4 - 1	1994 J	22	17, 895	8 8	17,000	13.8	1. 186	0'X	30, 400, 000	4 - 64	æ
I. PEACY PALEST	TENN.	ер - С	394 M	128.7	31,111	8.0	2 8, 000	13.8	1.10	42.0	28,000,000	38 - 6	310
EVSIUE	UND-ND THO	1-2	ж	120	36,842	8	35,000	3.8	1.175	41.0	30,000,000	36 - 2	401.5
LAUREL	NENTUCKY	-	8	441	67, 778	o. 9	61,000	13.8	1.10	40.0	43,000,000	9 - 62	Ķ
LIGUY	MURING	+ - 1	354.4	128.6	110,526	8 8	105,000	13.6		40.0	97,500,000	41 - 0	3
LIEBY	MUNTANG	5 - 8	354.4	128.6	110,526	8.0	105,000	13.0	21.13	40 O	BN, 362, 000	45 - 0	664.2
111LE 6005E	HSUN	1-3	8	8	142,105	0.95	135,000	11.0	5/1-1	43.0	245,000,000	0 - 5	1, 161
LITILE GUUGE	HOUN	4 - 6	Я	8	145,105	80	135,000	13.8	1.175	110	341,000,000	0 - 5	1,176
LOOKUUT POINT	DREGON	1 - 3	ж	128.6	47,222	ч К	111 '0+	13.8	1.10	42.0	26,450,000	37 - 0	454.8
LOST CREEK	DREGUN	1 - 2	Ţ	2 4 0	25, 7 8 9	°,	24, 500	13.8	1.175	38.0	7, 100, 000	24-0132-0	164.5
LONER GROW TE	HOUN	1-3	ж	8	142, 105	° 8	135,000	13.8	1.175	43.0	245,000,000	0 - 5	1, 161
LONER GRANITE	HSUN	4 - 6	33	8	142,105	3	135,000	13.8	1.175	43.0	241, 300,000	0-55	1,176
CONER MONUMENTAL	HSU	1-3	35	3	142,105	8	135,000	13.6	1.175	43.0	245,000,000	0 - V S	1, 161
DIER NONDENTAL	HEH	9 - 4	3	8	142,165	9 8	13,000	13.6	21.1	20	241,300,000	0 - 5	1,176

ETL 1110-2-317 15 December 1988

Ì

(cont)	
B-2	
TABLE	

GENERATOR DATA

Duck Rular State Model F Mod F Mod Model Model<								RATING		1	TRANSLENT	1	0.10471	10101
Activation State Model										Υ S	REACTIVE		HUU5ING	
NIL CREATION NIL CREATION 06: 1 MESR 1-12 E 55.1 73,64 0.55 70,000 1.10 1.90 22.0 06: 1 MESR 13.10 E11 27.7 73,64 0.55 70,000 1.10 1.90 22.0 06: 1 MESR 1.13 WHE 57.7 73,64 0.55 70,000 1.11 1.90 22.0 06: 1 MESR 1.13 WHE 57.7 73,64 0.55 70,000 1.11 1.17 22.0 06: 1 MESR 1.12 WHE 53.1 54,64 0.90 50,000 1.11 1.17 24.0 0.85 0.96 1.12 WHE 1.13 4.90 1.13 4.13 4.1 0.85 0.95 1.11 2.30 0.95 5.000 1.11 4.1 4.1 0.85 0.95 1.12 1.12 1.12 1.11 1.11 1.1 <th>PONER PLANT</th> <th>SIRIE</th> <th>UNIT NOS.</th> <th>MFR.</th> <th>N SE</th> <th>Ϋ́</th> <th>×</th> <th>ł</th> <th>Ň</th> <th>PAT 10</th> <th>Į</th> <th>Z.</th> <th>DIAMETER</th> <th></th>	PONER PLANT	SIRIE	UNIT NOS.	MFR.	N SE	Ϋ́	×	ł	Ň	PAT 10	Į	Z.	DIAMETER	
DR: I. Holds: I 12 E B. J. J, 4, 6, 1 0.55 7, 0, 000 1.13 1.29 2, 0 0.6: 4. Holes: 13, 1 E11 65, 1 3, 4, 16 0.55 7, 000 1.13 1.29 2, 0 0.6: 4. Holes: 53 (2) 1.1 55, 3, 1 0.55 1.44 1.17 2, 1 2, 0										M.I	(PERCENT)	(LB. +1.2)	(FI IN.)	(1043)
Mit Disk: 1 Link E11 5.1 7,3,64 0.55 7,000 1.1 1.9 2.0 Rit Qik: 1 west: 1.3 H Link E1 5.1 7,164 0.55 7,000 1.2 1.9 2.0 Rit Qiweti 1 1.3 Mit 2.0 1,66 1.8 1.31 Mit 1.33 Mit 2.0 2.0 1.20 2.0 <th2.0< <="" td=""><td>CN4RY</td><td>DRE. & MASH.</td><td>1 - 12</td><td>З</td><td>65.7</td><td>73,664</td><td>80</td><td>70,000</td><td>17.6</td><td>.90</td><td>32.0</td><td>130,000,000</td><td>51 - 8</td><td>1,200</td></th2.0<>	CN4RY	DRE. & MASH.	1 - 12	З	65.7	73,664	80	70,000	17.6	.90	32.0	130,000,000	51 - 8	1,200
Mit Dist. 1 MSN. Sici FM 2/1 3/150 6.0 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 1/100 3.00 4.2 4.	CINGRY	ORE. & MOSH.	13.14	EEAT	65.7	73,604	o. 95	70,000	13.8	1.90	32.0	168,000,000	51-8	1,165
RIV R, 400000 1-3 WHE 6.3.1 7.5. 6.4.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.3.1 1.	CINGRY	DRE. & MASH.	SS(2)	EN	115	3, 750	0.80	 	4.2	1.00	35.0	360,000	17-7 (M9X)	50.5
EI Power: 1 F-J 1.200 9.6 -1 1.25 -1.4 Rindowskis 1,2 P-J 200 1,400 1.30 1.40 1.410 Rindowskis 1,2 WHK 2.5 9,444 0.90 8,500 1.18 1.10 9,40 Rindowskis 1,2 WHK 2.5 9,444 0.90 8,500 1.18 1.10 8,40 Rindowskis 1,2 WHK 2.5 9,444 0.90 8,500 1.18 1.10 8,40 Rindowskis 1-7 E 11,2 WHK 2.5 9,44 0.90 1,500 1.10 8,40 Nu.h. 45.h. 1-7 E 11,2 WHK 2.5 9,90 1.10 8,40 Rissett EGDRig 1-4 5 1,43 0.95 5,500 1.10 8,40 Kissett 12 11,2 11,2 11,4 11,4 11,17 11,17 11	ILLERS FERRY	RLABONG	1-3	N'HSE	63.3	26, 316	°.8	8.8	13.8	1.175	6.9 X	53, 500,000	43-6	024
EI Dower: 2 A-1 90 1,466 4 1,111 ···I Reverses 1,2 H-1 90 1,466 -0 1,111 ···I Reverses 1,2 HLIDI 225 9,444 0.98 6,500 1.10 1.10 4.10 Reverses 1,2 WHSE 253 9,444 0.98 5,500 1.10 1.10 4.10 Reverses 1,2 WHSE 253 9,444 0.98 5,500 1.10 1.10 4.10 Reverses 1-5 WHSE 253 1,753 0.99 5,500 1.10 4.10 Reverses 1-5 E 1.1 2.1,53 0.99 5,000 1.10 4.10 Reverses 1-5 E 1.10 2.1,53 0.10 1.10 4.10 Reverses 1-5 1.10 2.1,53 0.99 5,000 1.11 1.175 4.10 Reverses 1	ONPIL RIVER	POHNEL		Ę.	1200	3	8.	22	₹.			2,400		24,650.0
Revenses 1,2 ELLIOT 2:5 3,444 0,50 1,3 1,10 4,10 Revenses 5 WHK 2:5:5 3,444 0,50 1,3 1,10 4,10 Revenses 5 WHK 2:5:5 3,444 0,50 1,3 1,10 4,10 Revenses 5 WHK 2:5:5 3,444 0,50 1,3 1,10 4,10 Revenses 1-7 W E 15,50 0,50 1,3 1,10 4,10 Revenses 1-5 W E 1,50 0,50 1,3 1,10 4,10 Revenses 1-5 W E 1,50 0,50 1,40 1,10 4,10 Revenses 1-5 E 1,53 0,50 1,40 1,10 4,10 Revenses 1-6 75 2,500 1,40 1,10 4,10 Revenses 1-1 1,40 1,40 1,40 1,115 1	ANDIL RIVER	POHNEL	Q	<u>ا</u> -1	36	1.666	8.	1.333	8			4,500		33,075.0
Reverses 5 WHS 2:5: 3,441 0.50 8,500 11.0 1.10 43.0 No. 4, F.O. 17,2 K 16,66,67 0.50 13.4 1.10 43.0 No. 4, F.O. 17,2 K 16,66,67 0.50 13.4 1.10 43.0 N.M. 4, F.O. 17,2 K 11,2 11,25 11.2 11.15 11.15 23.0 A.M. 4, F.O. 11,2 K 11,25 11,25 11.2 11.15 11.15 24.0 A.M. 4, F.O. 11,3 54 13,250 0.60 13.4 1.117 11.17 24.0 A.M. 4, F.O. 11,4 24 25,00 13.4 1.175 25,00 13.4 1.175 24.0 S (GUI) NICHIGAN 1-3 6 25,00 13.4 1.175 24.0 S (GUI) NICHIGAN 1-3 6 25,00 13.4 1.175 24.0 S (GUI) NICHIGAN <t< td=""><td>ARRUMS</td><td>REKENSAS</td><td>1,2</td><td>BLLOT</td><td>225</td><td>9,444</td><td>0.90</td><td>8, 500</td><td>13.8</td><td>1.10</td><td>43.0</td><td>2,000,000</td><td>22-1)</td><td><u>95</u></td></t<>	ARRUMS	REKENSAS	1,2	BLLOT	225	9,444	0.90	8, 500	13.8	1.10	43.0	2,000,000	22-1)	<u>95</u>
S CRLIFONIG 1,2 RL 164,64 0.90 150,000 1.10 1.10 34.0 MNL 1, 61.0. 1, 7 WHEE 1.64,64 0.90 15,000 1.10 1.10 4.10 MNL 1, 61.0. 1, 7 WHEE 1.64,64 0.90 15,000 1.10 1.10 4.10 MNL 1, 61.0. 1, 7 0.90 15,400 0.95 55,000 1.10 1.10 4.0 MNSSEL 1.9 1.7 0.90 55,000 1.1.0 1.175 3.10 MNSSEL 1.9 1.4 1.2 2.4,90 0.55 7.5,00 1.175 3.10 K 1.11 1.1 1.10 3.13 0.90 3.14 1.175 3.10 K 1.11 1.1 1.10 3.15 0.90 3.14 1.175 3.10 K 1.11 1.11 1.10 3.5 0.90 3.14 0.90 3.11 <td< td=""><td>ARHOMS</td><td>ARKANSAS</td><td>л</td><td>N HSE</td><td><u></u></td><td>9,444</td><td>0.90</td><td>B, 500</td><td>13.8</td><td>1.10</td><td>43.0</td><td>2,000,000</td><td>č1-0</td><td>91</td></td<>	ARHOMS	ARKANSAS	л	N HSE	<u></u>	9,444	0.90	B, 500	13.8	1.10	43.0	2,000,000	č1-0	91
Me. I. NO. 1,2 WHER 12.6.6 34,89 0.90 35,000 13.8 1.10 43.0 N.D. I. S.D. 1-7 E 10.0 83,414 0.55 65,000 13.8 1.175 42.0 RISSELL EDIRGIA 1-4 E 13,250 0.59 75,000 13.8 1.175 55.00 RISSELL EDIRGIA 1-4 E 12.0 78,947 0.55 75,000 13.8 1.175 55.00 S (KH) NICHIGAN 1-3 E 12.80 78,947 0.55 75,000 13.8 1.175 54.97 S (KH) NICHIGAN 1-3 E 12.80 75,000 13.8 1.175 35.0 S (KH) NICHIGAN 1-3 E 12.86 2,500 0.90 2,500 13.8 1.175 34.0 S (KH) NICHIGAN 1-3 E 12.86 2,500 0.90 2,500 13.8 1.175 34.0	EN NELONES	CALIFORNIA	1,2	3	163.6	166,667	0.90	150,000	13.8	1.10	36.0	67, 330,000	0-7 4	
Y K.D. I S.D. I=7 K III IIIIS K=0 K=0 IIIIS K=0 K=0 K=0 IIIIS K=0 K=0 IIIIS K=0 K=0 IIIIS K=0 K=	CREDRY	ARK. & NO.	5,1	3SH M	12 8.6	6 99'9 7	0.30	35,000	13.8	1.10	43.0	30,000,000	1 -35	386.5
T TEMESSEE 1-4 CE 75 31,250 0.80 25,000 1.10 1.10 4.0 RUSSELL EEDBG(i) 1-4 EE 7.1 21,023 0.55 7.000 1.13 1.175 3.7.0 RUSSELL EEDBG(i) 1-4 EE 7.1 7.001 1.1.1 1.175 3.7.0 S (KU) NIDH(EW 1-3 EE 1.20 7.8,93 0.59 7.000 1.1.1 2.7.5 3.7.0 S (KU) NIDH(EW 1-3 EE 1.20 7.8,93 0.59 2.000 1.1.6 4.0 2.7.5 S (KU) NIDH(EW 1-3 EE 1.20 7.8,93 0.59 2.000 1.1.6 2.7.5 3.7.5 S (KU) NIDH(EW 1-3 EE 1.20 3.5.5 3.7.5 1.1.75 3.7.5 S (KU) NIDH(EW 1-3 S (EE 2.7.53 0.50 2.5.50 1.3.8 <th1.175< th=""> 3.7.5</th1.175<>	¥	N.D. & S.D.	1-7	3	001	89, 474	0.95	65,000	13.8	1.175	42.0	165,000,000	0-6 4	826.5
RMCRELL EE 514 21,03 0.55 75,000 1.16 1.175 35,0 RMCRELL EE0661A 1-1 5-4 1.20 78,97 0.55 75,000 1.18 1.175 35,0 KMCSELL EE0661A 1-4 5-4 1.20 78,97 0.55 75,000 1.18 1.175 45,00 KM INLUEGAN 1.0 EE 1.20 78,97 0.55 75,000 1.18 1.175 45,00 S (KUI) MIDUEGAN 1.3 EE 86,6 2,330 0.39 2,6,000 1.16 24,95 1.175 45,00 S (KEU) MIDUEGAN 1.12 EE 28,070 0.39 21,000 1.16 24,95 A LENSO 1.12 EE 2.12 2.13 2.30 3.20 3.20 3.10 MIDUEGAN 1.12 MIDUEGAN 1.12 2.13 0.39 2.13 0.11 2.13 1.11 2.11 2.11	LD HICKORY	TENNESSEE	<u>†</u>	y	75	31,250	0.80	22,000	13.8	9 3-1	48.0	70,000,000	45-8	559.5
RUSSELL EE DRG (A 1-4 5-4 120 78,91 0.55 75,00 12.8 11.75 17.0 KER DULOHOMON 1-4 5-4 120 78,91 0.55 75,00 12.8 11.75 45.0 KER DULOHOMON 1-4 5-4 120 78,23 0.99 2,000 4.0 1.15 45.0 S (KKU) MICHIGAN 1-3 EE 128.6 2,333 0.99 2,000 4.0 1.16 24.45 S (KKU) MICHIGAN 1-3 EE 128.6 2,333 0.99 2,000 4.0 1.16 24.45 S (KKU) MICHIGAN 1-3 EE 128.6 2,333 0.99 2,350 1.17 24.40 R (KSO) MICHIGAN 1 EE 25,452 0.99 23,500 1.13 24.70 R (KSO) 1 MICHIGAN 1 EE 27.759 27.500 1.3.8 1.17 44.0 <td>ZARK</td> <td>RIKANSAS</td> <td>1-5</td> <td>3</td> <td>514</td> <td>21,053</td> <td>0.95</td> <td>20,000</td> <td>13.8</td> <td>1.175</td> <td>35.0</td> <td>600,000</td> <td>11-10</td> <td>113.5</td>	ZARK	RIKANSAS	1-5	3	514	21,053	0.95	20,000	13.8	1.175	35.0	600,000	11-10	113.5
KER DRUGHOR 1-4 KE 75 28,97 0.55 27,500 13.6 1.175 45.0 5 (KLI) NICHIGAN 1-3 KE 75 25,500 0.60 2,000 4.0 1.4 24-46 5 (KLI) NICHIGAN 1-3 KE 128.6 2,550 0.60 2,000 4.2 1.00 36.0 5 (KLI) NICHIGAN 1-3 KE 80 5,333 0.90 4,600 1.4 24-466 5 (KLI) NICHIGAN 3 51 25,500 0.60 2,500 0.34 0.0 36.0	ICHARD B. RUSSELL	GEORGIA	<u>+</u>	5-A	2	78, 947	0.55	75,000	13.8	1.175	37.0	63, 400, 000	23-3	
S (0.1) R(Dritican 10 EE 1c8.6 2,500 0.60 2,000 4.0 1.1 24-66 S (KH) N(Dritican 1-3 EE 128.6 2,530 0.80 2,000 4.2 1.00 36.6 S (KH) N(Dritican 1-3 EE 128.6 2,530 0.80 2,000 4.2 1.00 36.0 RKS 5.C. 1,2 WHSE 128.0 5,500 0.80 2,000 4.2 1.00 36.0 RKS 5.C. 1,2 WHSE 128.0 5,500 0.30 31.6 1.175 44.0 RLSGURI 1 1 EE 57 47,579 0.5 5,500 1.18 1.175 44.0 RLSGURI 1 1 EE 1.5 47.10 34.0 1.175 44.0 RLSGURI 1 1 E 1.5 47.10 1.175 47.0 RLSGURI 1 1	DBERT S. KERR	DKLAHDMA	1	3	25	28, 947	0.95	27,500	13.8	1.175	49.0	61,500,000	8-44	451
S (KU) NICHIGN 1-3 EE 120. 5,333 0.30 4,600 13.6 1.10 36.6 KEK S.C. NICHIGN 3.4 EE 128.6 2,500 0.80 2,000 4.2 1.00 36.0 KEK S.C. NICHIGN 3.4 EE 128.6 2,500 0.80 2,000 4.2 1.00 36.0 KEK S.C. NICHIGN 3.4 EE 128.6 2,500 0.30 2,100 36.0	AINT MARYS (ULD)	NICHIGAN	01	ж	128.6	2,500	0.80	2,000	4.0	1.4	24-56	1,500,000	16-4	
S (KEU) NICHIGN Ja GE 128.6 2,500 0.80 2,000 4.2 1.00 36.0 KEKS S.C. S.C. NICHIGN Ja GE 128.6 2,500 0.80 2,000 1.17 1.175 44.0 KEKS S.C. NICHIGN Ja GE 1.28 1.26 25,300 1.38 1.175 44.0 RENSOL J.P.SOURH I HEKE 1.28 6.00 34,500 1.38 1.175 44.0 RENSOLM I HE K 5.5 47,579 0.79 53,500 1.38 1.175 44.0 RENSOLM I H WESC 1.30 1.36 1.175 44.0 RENSOLM I H WESC 0.95 5.6,000 1.38 1.175 44.0 RENSOLM I H WESC 1.30 1.36 1.175 44.0 RENSOLM <thi< th=""> I 1.57</thi<>	AINT MARYS (NEW)	MICHIGAN	1-3	ж	8	5, 333	0.30	4,600	13.6	1.10	36.6	6, 750, 000	2-2 22	156.5
HEKS S.C. N TEROS 1,2 WHSE 120 27,369 0.95 26,000 13.6 1.175 M.0 R 405K0 1,2 WHSE 120 27,369 0.95 26,000 13.6 1.175 M.0 R 405K0 1,2 EE 514 26,200 0.99 23,580 13.6 1.175 M.0 R MISSOURI 1 EE 75 47,579 0.95 56,000 13.6 1.175 M.0 R MISSOURI 1 EE 75 47,579 0.95 56,000 13.6 1.175 47.0 R MISSOURI 1 EE 75 47,579 0.95 56,070 13.6 1.175 47.0 R MISSOURI 1 1 EE 75 47,579 0.95 56,070 13.6 1.175 47.0 R MISSOURI 1 1 1 1 1 1<.175	AJNT MORYS (NEW)	NICHIGON	3	8	128.6	2,500	0.80	2000 2	4.2	9.1	36.0	1, 500,000	16-4	62.5
N TERGS 1,2 WHSE 120 27,368 0.95 66.000 13.6 1.175 M.0 R405K0 1,2 EE 514 26,200 0.90 23,580 13.6 1.10 34.0 R405K0 1,2 EE 514 26,200 0.90 23,580 13.6 1.11 34.0 R405K0 1,2 EE 514 26,200 0.90 23,580 13.6 1.17 34.0 R405K0 1,1 HE 75 47,579 0.95 56,000 13.8 1.17 34.0 R4NL DULAHOM 1,12 ELLIOT 150 17,655 0.95 50,000 13.8 1.17 41.0 DREBON 1,1-1 EE 175 87.105 0.95 56,975 13.8 1.17 41.0 DREBON 1,1-1 EL 116 13.50 13.600 13.8 1.175 41.0 DREBON 15.222 EL <t< td=""><td>AINT STEPHENS</td><td>S.C.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	AINT STEPHENS	S.C.												
RLASKO 1,2 EE 51,4 26,200 0.90 23,560 13,6 1,0 34,0 RLOSKO 3 SIEDENS 600 34,500 0.90 31,050 13,8 1,11 34,0 RLOSKO 3 SIEDENS 600 34,500 0.90 31,050 13,8 1,17 41,0 RRW DKLAHOM 1,2 ELLIDT 150 17,655 0.95 50,000 13,8 1,17 41,0 RRW DKLAHOM 1,2 ELLIDT 150 17,655 0.95 17,000 13,8 1,17 41,0 DREENN 15,7 WHSE 1250 17,695 0.95 17,000 13,8 1,17 41,0 DREENN 15,72 WHSE 1250 17,855 0,95 13,500 13,40 1,175 41,0 DREENN 15,72 WHSE 277 37,750 0,95 13,500 1,175 41,0 DREENN 1,162	AM RAYBURN	TEXAS	1,2	H'HSE	120	27,368	°. 2	26.000	13.8	1.175	44.0	20, 700, 000	57-P	205
RLGSK0 3 STEDENS 600 34,500 0.90 31,050 13.8 1.1 34.0 RINSCOLIRI 1 GR. J 3 STEDENS 600 34,500 0.95 45,200 13.8 1.175 47.0 RINV DNLAHONO 1,2 ELLIOT 150 17,855 0.95 47,000 13.8 1.175 47.0 RINV DNLAHONO 1,2 ELLIOT 150 17,855 0.95 17,000 13.8 1.175 47.0 DREDN 1-1 WFKE 1280 52,632 0.95 17,000 13.8 1.175 47.0 DREEN 1-1 WFKE 1280 17,855 0.95 17,000 13.8 1.175 44.0 DREEN 52(2) EH 277 3,750 0.95 13,500 1.175 44.0 DREEN 1 152 36,111 0.90 3,200 1.175 41.0 TICKS 1-4 E	NETTISHON	RLASKA	1,2	8	514	26,200	0.90	23,560	13.8	1.0	0.¥	1, 300, 000	26-0x16-6	
NISSOURI I EE 75 47,579 0.55 45,200 13.4 1.175 47.0 RMN. J. MO. 1-4 WHSE 128.6 52,632 0.95 50,000 13.4 1.175 41.0 RMN. J. MO. 1-4 WHSE 128.6 52,632 0.95 50,000 13.4 1.17 41.0 RRW DMCAMONG 1,2 ELLIDT 150 17,895 0.95 78,000 13.4 1.17 41.0 DREBON 15-22 E.E 86 90,500 0.95 78,000 13.4 1.175 44.0 DREBON 15-22 E.E 80 90,500 0.95 13,500 13.4 1.175 44.0 DREBON 55(2) E.M 277 3,750 0.99 3,000 4.2 1.00 31.5 REMOR 1-4 ELLIOT 112.5 36,111 0.99 3,000 4.2 1.100 31.5 REMOR 1 <	VETTISHAN	RLRSKA	m	SIENENS	<u>8</u>	34,500	0.90	31,050	13.8	1.1	0°%	1,208,000	26-0417-0	168
ARM. J. MC. I=4 WHGE 128.6 Sz,632 0.95 Sq,000 13.8 1.17 41.0 FERRY DKLAMOMG 1,2 ELLIDT 150 17,855 0.95 17,000 13.8 1.17 41.0 DREGNN 1-14 EEL ELLIDT 150 17,855 0.95 17,000 13.8 1.175 44.0 DREGNN 15-22 EE ER 80 90,500 0.95 15,975 13.8 1.175 44.0 DREGNN 55(2) ER 80 90,500 0.95 15,975 13.8 1.175 44.0 DREGNN 51(1 277 3,750 0.96 3,000 1.2 4.0 4.0 DREGNN 51(2 WHGE 18.1 17.5 36,111 0.99 3,000 4.2 1.10 31.5 DREGNN 11 17 3,750 0.90 3.0 4.0 0.9 31.5 4.0 0.0 31.5	TOCKTON	NI SSOURI	-	8	R	47,579	0.95	45,200	13.8	1.175	47.0	86, 500, 000	0-84	716
ERRY DKLAHONG 1,2 ELLIDT 150 17,855 0.95 17,000 13.8 1.17 44.0 0REGN 1-14 EE 85.7 82,105 0.95 78,000 13.8 1.175 44.0 0REGN 15-22 EE 80 90,500 0.95 85,975 13.8 1.175 44.0 0REGN 51,F2 WHSE 200 14,210 0.95 13,500 13.8 1.175 44.0 0REGN 55(2) EM 277 3,750 0.96 3,000 4.2 1.00 13.8 1.175 44.0 0REGN 51 277 3,750 0.96 3,000 4.2 1.00 31.5 15000 12 1 0.99 3,000 4.2 1.00 31.5 4.0 15000 1 1 0.99 3,000 4.2 1.00 31.5 4.0 0 4.0 4.0 4.0 4.10 4.0	PELE ROCK	ARK. & MO.	1	35H,M	128.6	52,632	0.95	50,000	13.8	1.17	41.0	40,000,000	9-95 1	438
UREGN 1-14 EC B5.7 B2,105 0.95 78,000 13.8 1.175 44.0 DREGN 15-22 EE 80 90,500 0.95 B5,975 13.8 1.175 44.0 DREGN 15-22 EE 80 90,500 0.95 B5,975 13.8 1.175 44.0 DREGN SS(2) EM 277 3,750 0.40 3,000 4.2 1.00 M0M TEXIS 1-2 DE EM 277 3,750 0.40 3,000 4.2 1.10 31.5 RISSDMI 1 1 E 1.12.5 36,111 0.99 2,500 13.6 1.175 35.0 MISSDMI 1 1 E 21,03 0.35 36,000 13.6 1.175 35.0 MISSDMI 1 1 E 21,053 0.35 36,000 13.6 1.175 35.0 LS DRUMOM 1 E<	ENKILLER FERRY	DKLAHONA	1,2	ELLIOT	2	17,855	0.95	17,000	13.8	1.17	44.0	8, 500, 000	£2-3	173.5
OREGN 15-22 EE 80 90,500 0.55 85,975 13.8 1.175 44.0 UREGN F1,F2 WHGE 200 14,210 0.95 13,500 13.8 1.175 43.0 UREGN SS(2) EM 277 3,750 0.80 3,000 4.2 1.00 MOM TEXAS 1-2 DBE 16.1.6 277 3,750 0.80 3,000 4.2 1.00 MOM TEXAS 1-2 DBE 16.3.6 4,444 0.90 4,000 4.2 1.10 31.5 ALL 1-4 ELLIOT 112.5 36,111 0.90 3,000 4.2 1.10 31.5 MISSOURI 1 6 514 21,053 0.95 20,000 13.6 1.10 31.5 ALS 0HUMM 1-5 EE 214 21,053 0.95 20,000 13.6 1.10 31.5 ALS 0HUMM 1-5	HE DALLES	UREBON	+1-1	Я	85.7	Bč, 105	0.95	78,000	13.8	1.175	4.0	138,000,000	20-B	646
OREGN F1,F2 WHEE 200 14,210 0.95 13,500 13.8 1.175 43.0 OREBON SS(2) EN 277 3,750 0.80 3,000 4.2 1.00 MON TEXAS 1-2 DRE 16.1 277 3,750 0.80 3,000 4.2 1.00 MON TEXAS 1-4 ELLIOT 112.5 36,111 0.90 4.2 1.10 31.5 ANNON 1-5 DRE 112.5 36,111 0.90 3.000 4.2 1.10 31.5 ALS DNLAHON 1-5 DRE 53.6,111 0.90 3,376 1.10 31.5 ALS DNLAHON 1-5 DRE 2.1,653 0.95 20,000 13.8 1.175 35.0 CEORGIA 1 ECORGIA 2.3 0.59 3.75 0.50 3.13 1.175 35.0 CEDREIA 1 ECORGIA 2.3 0.50 <	HE DALLES	OREBON	15-22	33	26	90,500	e. %	85, 975	13.8	1.175	44.0	163,000,000	₹-05	807.9
OREADN SS(2) EN 277 3,750 0.80 3,000 4.2 1.00 MOM TEXES 1-2 DEE 163.6 4,444 0.90 4.2 1.00 MOM TEXES 1-2 DEE 163.6 4,444 0.90 4.2 1.10 31.5 EDMEE 6A 1-4 ELLIOT 112.5 36,111 0.90 4.2 1.10 31.5 MISSOURT 1 1 ELLIOT 112.5 36,111 0.90 32,500 13.8 1.10 31.5 MISSOURT 1 1 EE 514 21,053 0.95 29,000 13.8 1.175 35.0 LS 0NLAHOWT 1 EE 32.7 3,750 0.90 3,375 4.2 1.10 43.0 GEORGIA 1 EX 37,750 0.90 3,375 4.2 1.10 44.0 ELIOR 1,2 EC 100 36,60 <td< td=""><td>HE DULLES</td><td>OREGUN</td><td>F1,F2</td><td>39H.M</td><td>200 2</td><td>14,210</td><td>0.95</td><td>13,500</td><td>13.8</td><td>1.175</td><td>43.0</td><td>2, 900, 000</td><td>č4-7</td><td>165</td></td<>	HE DULLES	OREGUN	F1,F2	39H.M	200 2	14,210	0.95	13,500	13.8	1.175	43.0	2, 900, 000	č4-7	165
TEXes 1-2 DBE 16.1.6 4,444 0.590 4,000 4.2 1.10 31.5 EDMBE GA I A.CA. 1-4 ELLIOT 112.5 36,111 0.590 4,000 4.2 1.10 31.5 MISSOURT 1 -4 ELLIOT 112.5 36,111 0.590 32,500 13.6 1.10 43.0 MISSOURT 1 5 54 21,653 0.55 26,0000 13.8 1.175 35.0 LS DNLAHOWA 1-5 6E 514 21,653 0.55 26,0000 13.8 1.175 35.0 GEORGIA 1 6E 100 36,667 0.590 3,375 4.2 1.175 44.0 TEXES 1,2 6E 100 36,667 0.590 13.6 1.175 45.0 REMILICXY 1-6 6E 105.9 50,000 0.34 1.10 45.0	HE DALLEB	OREGON	SS (2)	EN	217	3, 750	0.80	3,000	4.2	1.60	NOR	360,000	16-0 (Mfil)	50.5
EDRGE GA I A.R. 1-4 ELLIOF 112.5 36,111 0.90 32,500 13.8 1.10 43.0 MISSOURI 1 1 1 1 1.2.5 36,111 0.90 32,500 13.8 1.10 43.0 LS ONLAHONA 1-5 BE 514 21,653 0.95 29,000 13.8 1.175 35.0 GEORGIA 1 BE 327 3,750 0.90 3,375 4.2 1.10 44.0 GEORGIA 2,3 6E 100 36,647 0.90 35,000 13.16 1.175 44.0 IEXIS 1,2 A-C 128.667 0.90 13.6 1.175 45.0 KENIUCYY 1-6 BE 105.9 50,000 0.34 1.10 45.0	OWN BLUFF	TEXAS	1-2	300	163.6	4.44	0.90	4,000	4.2	1.10	31.5	547,000	16-7x14-4	47.8
MISSOURI I LS DALAHOMA 1-5 BE 514 21,053 0.95 20,000 13.8 1.175 35.0 GEORGIA 1 BE 327 3,750 0.90 3,375 4.2 1.10 44.0 GEORGIA 2,3 GE 100 36,842 0.95 35,000 13.8 1.175 44.0 TEXES 1,2 A-C 128.6 16,667 0.90 13,000 13.8 1.10 45.0 KENIUCY 1-6 BE 105.9 50,000 0.90 45,000 13.8 1.10 45.0	ALIER F. GEORGE	GH 4 ALA.	+ 	ELLIOF	112.5	36, 111	0° 30	36,500	13.8	1.10	43.0	40,000,000	3 4,0	464.5
DALLAHONG 1-5 BE 514 21,053 0.95 20,000 13.8 1.175 35.0 GEORGIA 1 BE 327 3,750 0.90 3,375 4.2 1.10 44.0 GEORGIA 2,3 GE 100 36,842 0.95 35,000 13.8 1.175 44.0 TEXRS 1,2 A-C 128.6 16,667 0.90 13,600 13.8 1.10 45.0 KENILCXY 1-6 BE 105.9 50,000 0.90 45,000 13.8 1.10 43.0	DIAPPELLO	MI SSOURI	-											
GEORGIA 1 BE 327 3,750 0.90 3,375 4.2 1.10 44.0 GEORGIA 2,3 GE 100 36,842 0.95 35,000 13.6 1.175 44.0 TEXRS 1,2 A-C 128.6 16,667 0.90 13.6 1.175 44.0 TEXRS 1,2 A-C 128.6 16,667 0.90 13.6 1.10 45.0 REMULIXY 1-6 6E 105.9 50,000 0.90 45,000 13.6 1.10 43.0	EPBERS FALLS	DKLAHOMA	-1 -5	3	514	21,053	°.8	20,000	13.8	1.175	35.0	600,000	11-10	113.5
GEORGIA 2,3 GE 100 36,942 0.95 35,000 13.8 1.175 44.0 TEXRS 1,2 A-C 129.6 16,667 0.90 15,000 13.8 1.10 45.0 KENIUCXY 1-6 GE 105.9 50,000 0.90 45,000 13.6 1.10 43.0	EST FOINT	GEORGIA	-	ж	17 I	3, 750	0.90	3, 375	4.2	1.10	44.0	275,000	15-5116-1	3
TEXRS 1,2 A-C 128.6 16,667 0.90 15,000 13.8 1.10 45.0 KEMINCXY 1-6 6E 105.9 50,000 0.90 45,000 13.8 1.10 43.0	EST PUINT	GEORGIA	2, 3	3	<u>8</u>	36, 842	0.95	35,000	13.8	1.175	44.0	35, 200, 000	8-0 4	381.1
KENINCXY 1-6 6E 105.9 50,000 0.90 45,000 13.6 1.10 43.0	41 I.NEY	TEXAS	1,2	Å	128.6	16,667	o. 9	15,000	13.8	1.10	45.0	11,000,000	9-77	215.5
	OLF CREEK	KENTUCKY	<u> </u>	3	105.9	50,000	6 .9	45,000	13.8	1.10	43.0	55,000,000	¶ ₽	3

ETL 1110-2-317 15 December 1988

								TURBINE DATA			2	puro data		
							M ING				MATING			
power plant	SIAIE	TIM	TYPE	HF.	Ē	2	89.5		N N N	C.F.B.			11900 16100	
								5			-		=	
CORTERS	GEONGIA	3.4	FRANCIS	Ţ	<u>8</u>	173,	173, 000 BAS	•		274"4			เส	l A
CLARENCE CONNUN	19006STM	- ~	FRANCIS	£	R	006 'A			5	5,50			3	3
DE GRAY	PRICERS	~	FROMUTS	MIS40	128.6	4,500			Ŧ	1,900	-		170	2
LAUNCH	MISSOURI	1 - 6	PDI. R. INCL. AK	3	8	074 ¹ 24	•	79.2	4	4,500			9	÷.
					F)	TABLE B-4								
				- JWI	TURB I NE	PUMP-TURBINE WEIGHTS	AND DIMENSIONS	NOISNE	ន្ល					
					1105	C DIST. 10 001'M	C DIST. TO MIN. T.W.,		C DIST. 10 MIN. T.M.,		RUNER	RUNGER	~	
PONER PLANT	STATE	IN	INPE		SPACING	CF DAGFT	I UNIT Generative	ct	Surger 1965	5 -	DISCHARGE	DIRNETER		
		ġ			(FT)		(F1)	•	(L)		(FIIN.)	(FTIN.)	-	(SMU))
CONTERS	GENORIA	24	FRANCIS	5	3	R	-21.6		ភ្		14 - 2	8 - 03 20 - 8		797
di Agence Contin	MISSOURI	, ~	FRANCIS	6	2	8	Ŧ		•		19 - 3	22 - 6.4	•	1,036
DEFADY	REALENSES		FRANCIS	S	64	2	7		7	-	11 - 3.8	15 - 9.5	ŝ	Ŋ
Inumer	NISSOURI	90 	æ	ď.	36 I 57	23	-30.4		×¢		21 - 2	N/R		683.5
						TABLE B-5	νĮ							
					GENER	GENERATOR-MOTOR DATA	R DATA							
					RAT ING			THEFT				3		
POLEA PLANT	STATE	unit Nos.	HER. ROW	Υ. Υ	¥	2		PEACENT)	9	¥	2	M.T (LB. +T2)	DIMETER (FT IN.)	ME (BHT (TONG)
CARTERS	GEONGLA	3-4	3	131,579	1		R. 1			0.95	13.8	90,000,000		651.0
CLARENCE CONDIN	NISSOURI	~		28, 421 22, 121			¢	0.24		5 5 5 5	0 Y	000 1000 170 100 1000 11		2.4.0
DEGRAY	ARKANGAG MI COTINI	2 i	A-C 128.6		5 5 5 5 5 5	28,000 13.8 26,957 13.8	21-1			2 2	971	26,000,000		368.0
		P -										•		

PUMP-TURBINE PERFORMANCE DATA

TABLE B-3

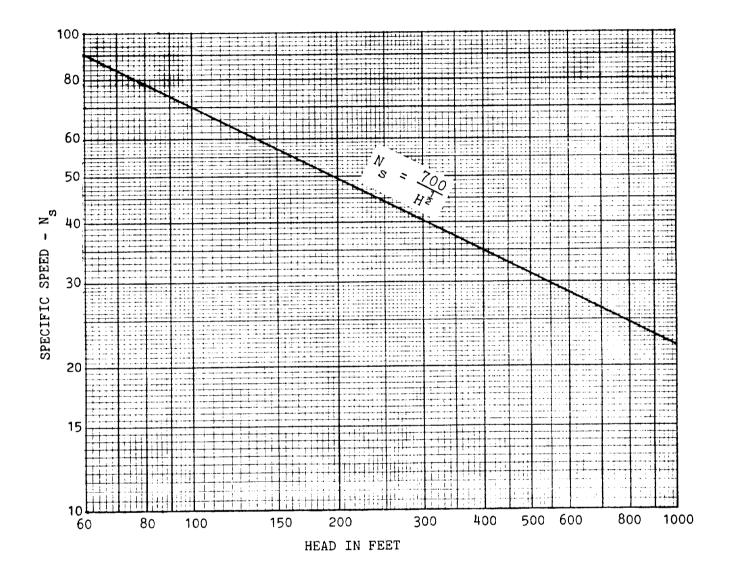
B-9

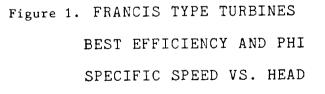
ETL 1110-2-317 15 December 1988

Ì

ł

APPENDIX C


TURBINE SELECTION CHARTS AND DIMENSIONS


FIGURE	SUBJECT	PAGE
1	FRANCIS TYPE TURBINES, BEST EFFICIENCY AND PHI, SPECIFIC SPEED VS. HEAD	C-3
2	FRANCIS TYPE PUMP-TURBINES, RATED PUMPING CONDITIONS, PUMPING HEAD VS. SPECIFIC SPEED	C-4
3	PROPELLER TYPE TURBINES, RATED CONDITIONS, SPECIFIC SPEED VS. HEAD	C-5
4	FRANCIS TYPE TURBINES, DIMENSIONS AND PROPORTIONS	C-6
5	PROPELLER TYPE TURBINES, DIMENSIONS	C-7
6	WATER VAPOR PRESSURE VS. WATER TEMPERATURE, BAROMETRIC PRESSURE VS. ELEVATION	C-8

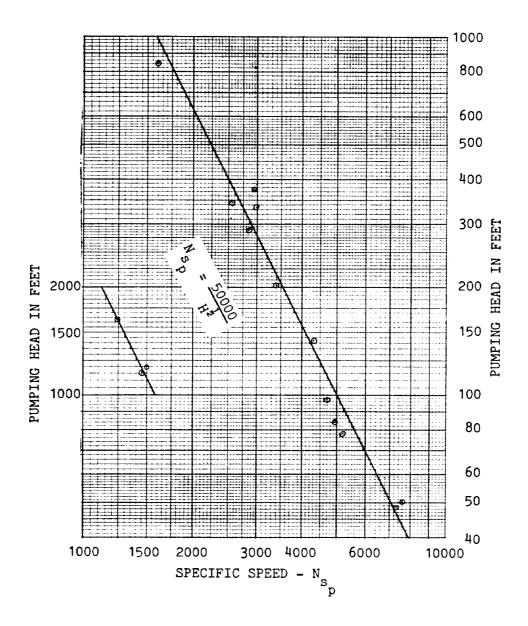
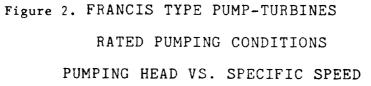
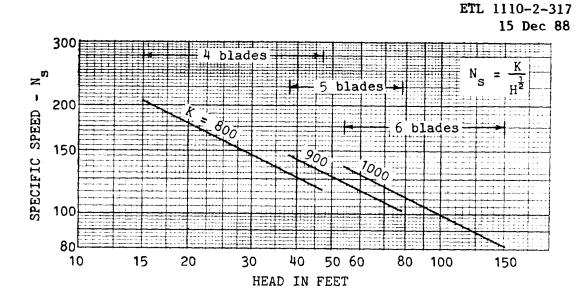
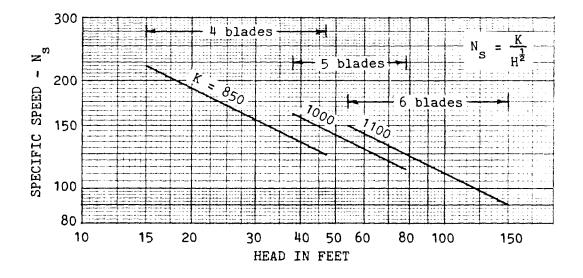

DATA AND DIMENSIONAL RATIOS - $D_{TH} = 1.0$

TABLE	SUBJECT	PAGE
1	FRANCIS TYPE TURBINES	C-9
2	FRANCIS AND PROPELLER TYPE TURBINES	C-10
3	FRANCIS TYPE PUMP TURBINES	C-11
4	PROPELLER TYPE TURBINES	C-12
5	PROPELLER TYPE TURBINES	<u>C</u> -13


PAGE C-2 INTENTIONALLY LEFT BLANK





Note: Plotted points are from existing installations.

FIXED BLADE RUNNER

KAPLAN (ADJUSTABLE BLADE) RUNNER

Figure 3. PROPELLER TYPE TURBINES

RATED CONDITIONS

SPECIFIC SPEED VS. HEAD

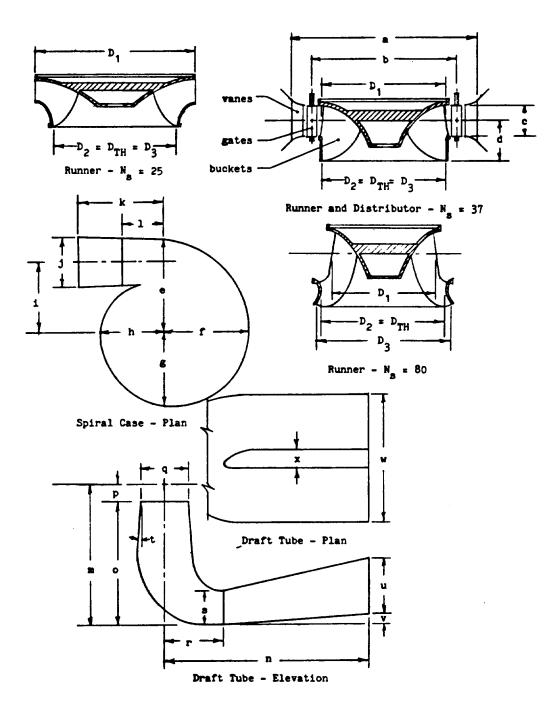
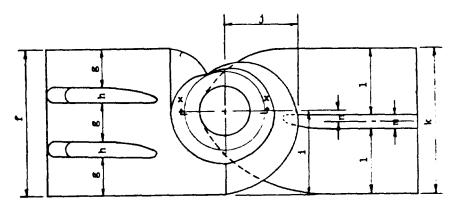



Figure 4. FRANCIS TYPE TURBINES - DIMENSIONS AND PROPORTIONS

<u>Plan</u>

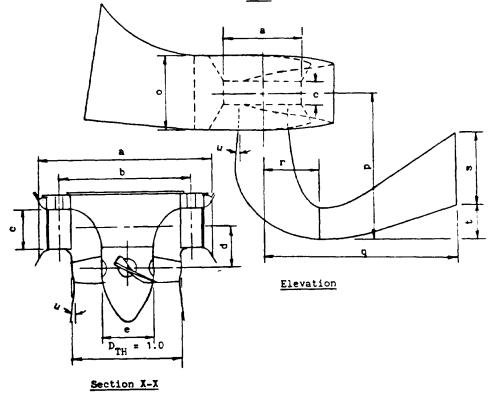


Figure 5. PROPELLER TYPE TURBINES - DIMENSIONS

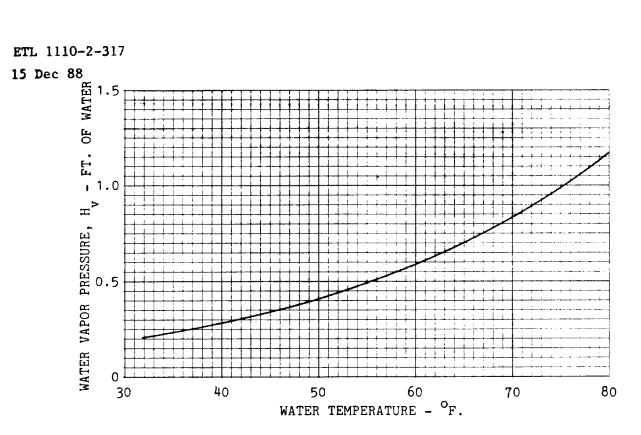


Figure 6(a). WATER VAPOR PRESSURE vs. WATER TEMPERATURE

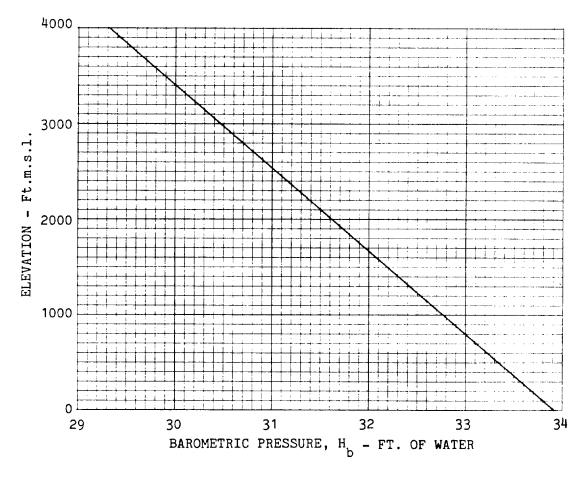


Figure 6(b). BAROMETRIC PRESSURE vs. ELEVATION

TABLE 1

FRANCIS TYPE TURBINES DATA AND DIMENSIONAL RATIOS - $D_{TH} = 1.0$

(Refer to Fig. 4)

Fig. No.	F1	F2	F3	F4	F 5	F 6	F 7	F 8	(1)
Ns	27.2	34.3	37.2	44.7	50.6	63.1	65.0	B0.0	42.8
vanes	22	20	24		20	20	24	10	20
gates	22	20	24	24	20	20	24	20	20
buckets	14	16	15	18	15	15	13	15	17
D	1.207	1.064	1.011	0.976	0.920	0.883	1.008	0.859	1.056
$D_2 = D_{TH}$	12"	12.09"	12"	11"	12.52"	12"	13"	13.57"	12"
D ₃	1.000	1.000	1.000	1.000	1.018	1.083	1.054	1.136	1.000
a	1.895	1.698	1.498		1.518	1.698	1.590	1.639	1.715
b	1.385	1.256	1.171	1.172	1.150	1.271	1.194	1.217	1.266
с	0.184	0.177	0.231	0.254	0.290	0.333	0.299	0.429	0.160
d	0.320	0.343	0.323	0.352	0.377	0.431	0.429	0.434	0.287
e	1.883	1.803	1.705				1.856		1.793
f	1.738	1.656	1.560				1.773		1.657
g	1.569	1.476	1.384				1.572		1.501
h	1.313	1.198	1.106				1.243		1.274
i	1.440	1.307	1.281				1.254		1.315
j	0.976		1.179				1.155		1.000
k	1.728		2.072				1.933		0.953
1	0.864		0.742						
m	2.876	2.960	2.830		2.717	3.101	3.041	3.229	2.370
n	4.153	4.365	3.982		4.328	4.512	4.999	3.377	3.424
0	2.546	2.609	2.501		2.353	2.647	2.610	2.795	2.079
p	0.330	0.351	0.329		0.384	0.454	0.431	0.434	0.290
q	1.003	1.003	1.006		1.023	1.097	1.060	1.141	1.004
Г	1.229	1.284	1.207		1.228	1.626	1.500	1.483	1.260
5					0.747				
t	4 ⁰	4.53°	4.68 ⁰		4.5 ⁰	7 [°] ≢	6.5 ⁰		
u	1.156	1.094	1.281		1.427	1.260	1.244	1.061	0.920
v	0	0.261	0		0.593	0.479	0.305	0	
v	3.375	3.231	3.540		3.039	3.983	, ,	4.118	3.500
x	0.313	0.388	0.337		0.266	0.303*		0.331	0.380

* two piers (1) other designs

C-9

TABLE 2

FRANCIS AND PROPELLER TYPE TURBINES DATA AND DIMENSIONAL RATIOS - $D_{TH} = 1.0$

(Refer to Fig. 4)

			(vere	r to ri	5 T /				
							Prop	eller T	vpe
Fig. No.	(1)	(1)	(1)	(1)			FB3	F(1)	
N 3	48	50.8	57.6	65.2					
vanes	23	20	20	10			3	5	7
gates	24	20	20	20				umr	umr
buckets	13	17	15	15		,	column	columr)	column)
D ₁	1.060	0.935	0.968	0.807			¦∦, date	5, late	5, late
$D_2 = D_{TH}$	13.72"	12.52"	15.75"	14.87"				• •	• L
D3	1.000	1.018	1.022	1.081			tab e other	Tab othe	ab
8	1.600	1.518	1.542	1.580			0 5.		
b	1.239	1.150	1.164	1.190			s) ²	(see for	(see for
C	0.267	0.290	0.317	0.403					
d	0.402	0.377	0.399	0.441					
e	1.797						2.199	2.174	1.998
ſ	1.636						1.989	1.962	1.796
B	1.448	e e		• •			1.715	1.708	1.553
ħ	1.179			r] ume				1.305	1.160
i	1.273						1.523	1.458	1.333
3	1.205	uedo	1.310	open			1.587	1.467	1.377
k	1.386		1.577)			2.215	1.620	
1									
m	3.117	2.711	2.754	2.646					
n	5.122	4.328	4.054	5.867					
0	2.712	2.333	2.355	2.201					
Ρ	0.404	0.379	0.399	0.445					
Q	1.004	1.023	1.024	1.084					
r	1.536	1.228	1.270	1.811					
8									
t	6.9 ⁰	4.5 [°]	5.3 ⁰	7.6°					
บ	1.276	1.238	1.095	1.149					
v	0.313	0.593	0.522	0					
v	3.272	3.039	3.860	3.307					
x	0.321*	0.266	0.328	0.304					

* Two piers F = fixed blade; K = Kaplan

(1) other designs

TABLE 3

FRANCIS TYPE PUMP TURBINES DATA AND DIMENSIONAL RATIOS - D_{TH} = 1.0

(Refer to Fig. 4)

								· ···-	T
Fig. No.	PT1	PT2	PT3	(3)	(3)	(3)	(3)	ļ	ļ
[#] ⁸ p (1)	2150	3200	4700	2600	4500	2650	5100		ļ
vanes	20	14	10	20	14	20	10		
gates	20	28	20	20	28	20	20		
buckets	7	6	6	6	6	6	6		
D ₁	1.604	1.317	1.154	1.493	1.135	1.459	1.078		
^D 2 ^{≠ D} TH	9.995"	11.205"	13.000"	12.328"	12.000"	12.850	12.030"		
D ₃	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
8	2.369	1.832	1.810	2.254	1.712	2.101	1.701		
b	1.876	1.479	1.423	1.785	1.346	1.712	1.342		
c	0.221	0.289	0.315	0.264	0.334	0.253	0.336		
d	0.434	0.399	0.385	0.433	0.385	0.409	0.392		
e	2.159	1.855	2. 05 0	1.967	2.005	1.919	2.004		
f	2.010	1.703	1.887	1.831	1.829	1.784	1.829		
B	1.826	1.521	1.690	1.665	1.615	1.620	1.620		
h	1.570	1.257	1.394	1.435	1.316	1.388	1.325		
i	1.699	1.381	1.455	1.501	1.494	1.470	2.524		
j	1.039	1.071	1.212	0.923	1.351	0.921	1.214		
'k	2.647	1.607	1.682	1.622	1.247	1.000	1.666		
1									
Ð	2.823	2.853	2.690	4.329	2.598	2.353	2.476		
n	10.525	3.893	3.700	5.640	4.610	4.747	3.698		
0	2.382	2.473	2.286	3.863	2.209	1.940	2.035		
P	0.441	0.380	0.404	0.465	0.389	0.413	0.441		
q	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
r	1.299	1.284	1.183		1.173	1.118	1.240		
3			0.638	(2)		0.600			
t	7°	10 ⁰	7°	6 ⁰	7.4 ⁰	7°			
u	2.162	1.238	1.009	1.615	1.507	1.403	1.012		
v	1.941	0.555	0.404	0.470	0.623	0.903	0.389		
W	3.838	3.094	3.630	1.615	3.429	3.600			
x	0.485	0.309*	0.269*	(2)	0.312	0.424			

(1) Gpm units at e ...; (2) No pier, as horizontal leg is circular.

• Two piers ; (3) other designs

TABLE 4

PROPELLER TYPE TURBINES data and dimensional ratios - $D_{TH} = 1.0$

(Refer to Fig. 5)

							(1)	(1)	(1)
Fig. No.	FB1	FB2	FB3	K1	K 2	K3	K	F-27°	F-30 [°]
vanes	10	24	20	10	20	20	10	24	24
gates	20	24	20	20	20	20	20	24	24
blades	4	5	6	4	5	6	4	5	5
D _{TH} -model	12.44"	12"	12.08"	12.44"	12.51"	12"	12.44"	12"	12"
a	1.571	1.443	1.542	1.578	1.501	1.567	1.571	1.477	1.443
b	1.194	1.148	1.192	1.193	1.151	1.200	1.194	1.178	1.148
с	0.482	0.394	0.404	0.482	0.390	0.406	0.482	0.406	0.394
d	0.427	0.367	0.365	0.427	0.370	0.368	0.422	0.368	0.367
e	0.327	0.350	0.327	0.327	0.400	0.440	0.360	0.390	0.350
f	3.000	2.911				3.171	3.062		2.911
g	0.803	0.787	N # 9			0.857	0.855		0.787
h	0.296	0.275	Table Fig.			0.300	0.248		0.275
i	1.727	1.780				1.854	1.800		1.780
t	1.482	1.318	(See (See			1.515	1.467		1.318
k	3.000	2.912	3.261	3.060	3.127	3.171	3.060	3.307	2.912
1	0.818	1.338	1.415	1.406	0.875	1.457	0.855	0.889	1.338
E	0.273	0.236	0.431	0.248	0.251	0.257	0.248	0.321*	0.236
n	0.227	0.325				0.268	0.269		0.325
0	1.566	1.534				1.671			1.534
Р	2.773	2.790	2.791	3.020	2.907	3.030	2.780	2.936	2.790
q	4.500	3.627	3.730	3.900	4.391	3.930	4.060	4.529	3.627
r	1.174	1.130	1.231	1.170	1.323	1.220	1.280	1.303	1.130
S	1.424	1.102	1.139	1.160	1.273	1.200	1.240	1.333	1.102
t	0.758	0.659	0.528	0.690	0.882	0.720	0.500	0.962	0.659
u	7.9 ⁰	11 ⁰	8.1 ⁰	5.5 ⁰	7.9 ⁰	7°	8.1 ⁰	7 [°]	7°

two piers; F = fixed blade; K = Kaplan
(1) other designs

TABLE 5

PROPELLER TYPE TURBINES DATA AND DIMENSIONAL RATIOS - D_{TH} = 1.0

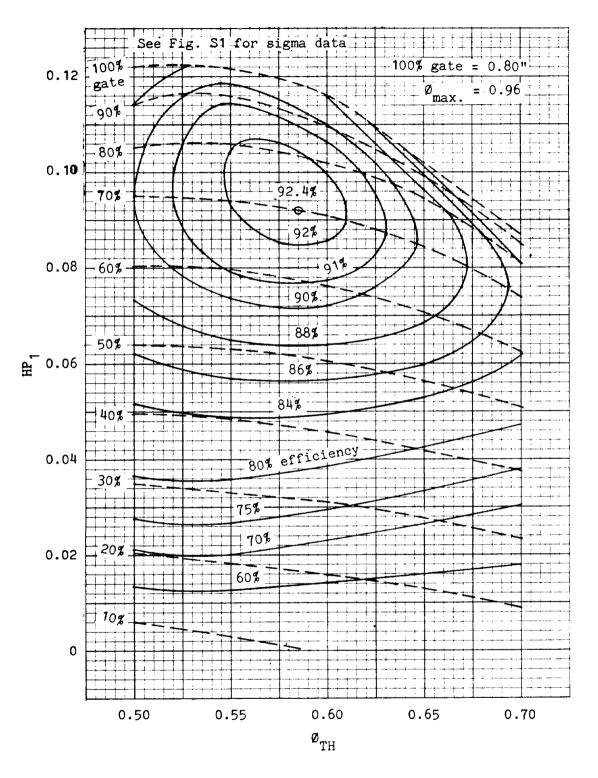
(Refer to Fig. 5)								
(1)	(1)	(1)	(1)	<u>(1)</u>		r	·	
ĸ	F-29.6°	ĸ	ĸ	F				
20	24	24	24	20				
20	24	24	24	20				
5	6	6	6	8				
12"	12"	12"	12"	12"				
1.574	1.443	1.443	1.443	1.580				
1.200	1.148	1.148	1.148	1.200				
0.406	0.394	0.446	0.446	0.409				
0.368	0.367	0.394	0.394	0.551				
	0.350	0.440	0.440					
	2.911	2.911	\sim	\sim				
	0.787	0.787	e 2 . 4	e 1				
	0.275	0.275	ebl Fig	abl Fig				
	1.780	1.780	е Т ее	ີຍ				
	1.318	1.318	(Se (S	(Se (3				
	2.912	2.912	2.892	3.394				
	1.338	1.338	0.787	1.457				
	0.236	0.236	0.266	0.480				<u> </u>
	0.325	0.325						
	1.534	1.534						
3.030	2.780	2.807	2.628	3.028	-			
3.930	3.627	3.627	4.063	4.414				
1.220	1.130	1.130		1.221				
1.200	1.102	1.102	1.137	1.326				
0.720	0.659	0.659	0.545	0.780				
	7°	11 ⁰	4.6 ⁰	7 ⁰				
	K 20 20 20 5 12" 1.574 1.200 0.406 0.368 3.030 3.930 1.220 1.200	K F-29.6° 20 24 20 24 5 6 12" 12" 1.574 1.443 1.200 1.148 0.406 0.394 0.368 0.367 0.368 0.367 0.368 0.367 0.787 0.275 1.780 1.318 2.912 1.338 0.236 0.325 1.534 3.030 3.930 3.627 1.220 1.130 1.200 1.102 0.720 0.659	K $F-29.6^{\circ}$ K 20 24 24 20 24 24 20 24 24 20 24 24 20 24 24 20 24 24 20 24 24 20 24 24 5 6 6 12" 12" 12" 1.574 1.443 1.443 1.200 1.148 1.148 0.406 0.394 0.446 0.368 0.367 0.394 0.350 0.440 2.911 2.911 0.787 0.787 0.275 0.275 1.318 1.318 2.912 2.912 1.338 1.338 0.236 0.236 0.236 0.236 0.325 0.325 1.534 1.534 3.030 2.780 1.30	K F-29.6° K K 20 24 24 24 20 24 24 24 20 24 24 24 20 24 24 24 20 24 24 24 20 24 24 24 20 24 24 24 5 6 6 6 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.200 1.148 1.148 1.148 0.406 0.394 0.446 0.446 0.368 0.367 0.394 0.394 0.350 0.440 0.440 2.911 $$ 0.787 0.787 $ -$ 0.275 0.275 $ -$ 1.318 1.318 1.318 $ -$ 1.318 1.318 1.318 <t< th=""><th>K F-29.6° K K F 20 24 24 24 20 20 24 24 24 20 20 24 24 24 20 5 6 6 6 8 12" 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.580 1.200 1.148 1.148 1.148 1.200 0.406 0.394 0.446 0.446 0.409 0.368 0.367 0.394 0.394 0.551 0.350 0.440 0.440 2.911 \frown \frown 0.787 0.787 \bigcirc $=$ $=$<!--</th--><th>K F-29.6° K K F 20 24 24 24 20 20 24 24 24 20 20 24 24 24 20 20 24 24 20 20 5 6 6 6 8 12" 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.580 1.200 1.148 1.148 1.200 0.000 0.406 0.394 0.446 0.446 0.409 0.368 0.367 0.394 0.394 0.551 0.350 0.440 0.440 0 0.440 2.911 2.911 \bigcirc \bigcirc \bigcirc \bigcirc 0.275 0.275 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.318 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.318 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.338 0.787 1.457 \bigcirc</th><th>K F-29.6° K K F 20 24 24 24 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 12" 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.580 1.200 1.148 1.148 1.200 0.400 0.446 0.406 0.394 0.446 0.440 0.409 0.551 0.368 0.367 0.787 0.400 0.440 0.400 2.911 2.911 0.70 0.70 0.77 0.77</th><th>K F-29.6° K K F </th></th></t<>	K F-29.6° K K F 20 24 24 24 20 20 24 24 24 20 20 24 24 24 20 5 6 6 6 8 12" 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.580 1.200 1.148 1.148 1.148 1.200 0.406 0.394 0.446 0.446 0.409 0.368 0.367 0.394 0.394 0.551 0.350 0.440 0.440 2.911 \frown \frown 0.787 0.787 \bigcirc $=$ </th <th>K F-29.6° K K F 20 24 24 24 20 20 24 24 24 20 20 24 24 24 20 20 24 24 20 20 5 6 6 6 8 12" 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.580 1.200 1.148 1.148 1.200 0.000 0.406 0.394 0.446 0.446 0.409 0.368 0.367 0.394 0.394 0.551 0.350 0.440 0.440 0 0.440 2.911 2.911 \bigcirc \bigcirc \bigcirc \bigcirc 0.275 0.275 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.318 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.318 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.338 0.787 1.457 \bigcirc</th> <th>K F-29.6° K K F 20 24 24 24 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 12" 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.580 1.200 1.148 1.148 1.200 0.400 0.446 0.406 0.394 0.446 0.440 0.409 0.551 0.368 0.367 0.787 0.400 0.440 0.400 2.911 2.911 0.70 0.70 0.77 0.77</th> <th>K F-29.6° K K F </th>	K F-29.6° K K F 20 24 24 24 20 20 24 24 24 20 20 24 24 24 20 20 24 24 20 20 5 6 6 6 8 12" 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.580 1.200 1.148 1.148 1.200 0.000 0.406 0.394 0.446 0.446 0.409 0.368 0.367 0.394 0.394 0.551 0.350 0.440 0.440 0 0.440 2.911 2.911 \bigcirc \bigcirc \bigcirc \bigcirc 0.275 0.275 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.318 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.318 \bigcirc \bigcirc \bigcirc \bigcirc 1.318 1.338 0.787 1.457 \bigcirc	K F-29.6° K K F 20 24 24 24 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 20 24 24 20 20 12" 12" 12" 12" 12" 1.574 1.443 1.443 1.443 1.580 1.200 1.148 1.148 1.200 0.400 0.446 0.406 0.394 0.446 0.440 0.409 0.551 0.368 0.367 0.787 0.400 0.440 0.400 2.911 2.911 0.70 0.70 0.77 0.77	K F-29.6° K K F

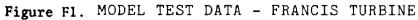
(Refer to Fig. 5)

• two piers; F = fixed blade; K = Kaplan (1) other designs

APPENDIX D

MODEL TEST CURVES FOR D_{TH} = 12 INCHES AND H = 1 FOOT AND CRITICAL RUNNER SIGMAS


SECTION	DESCRIPTION	PAGE
1	FRANCIS TURBINES	D-1
2	FRANCIS PUMP-TURBINES	D-13
3	PROPELLER TURBINES	D-19
4	CRITICAL RUNNER SIGMAS	D-27


SECTION I

FRANCIS TURBINE MODEL TEST CURVES FOR D_{TH} = 12 INCHES AND H = 1 FOOT

FIGURE	DESCRIPTION	PAGE
F1	$N_{s} = 27.2$	D-3
F2	$N_{5} = 34.3$	D-4
F 3	$N_{s} = 37.2$	D-5
F4	$N_{s} = 44.7$	D6
F 5	$N_{\rm S} = 50.6$	D-7
F6	$N_{s} = 63.1$	D-8
F7	$N_{\rm s} = 65.0$	D-9
F8	$N_{\rm S} = 80.0$	D-10
F9	PERFORMANCE HILL DATA, BEST PHI CONDITIONS	D-11

PAGE D-2 INTENTIONALLY LEFT BLANK

 $D_{TH} = 12"$ ONE FOOT HEAD $N_s = 27.2$

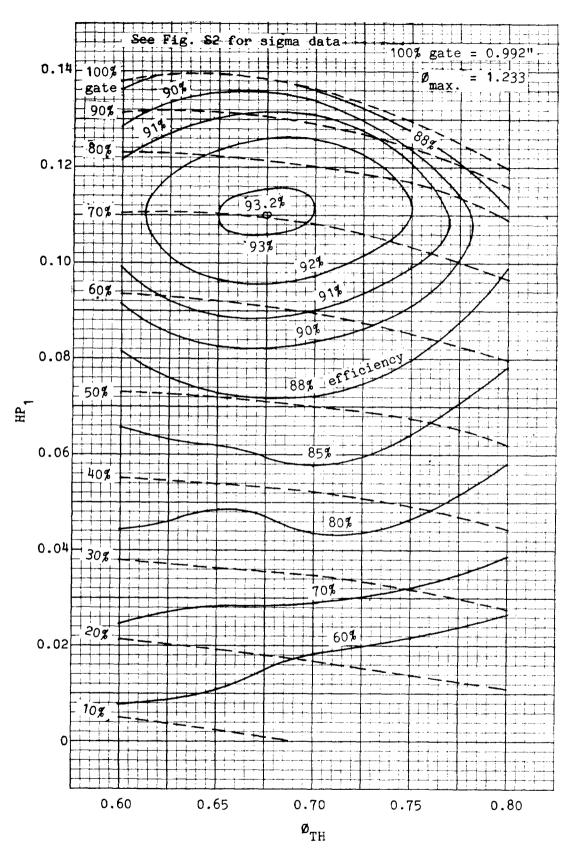


Figure F2. MODEL TEST DATA - FRANCIS TURBINE

 $D_{TH} = 12"$ ONE FOOT HEAD $N_s = 34.3$

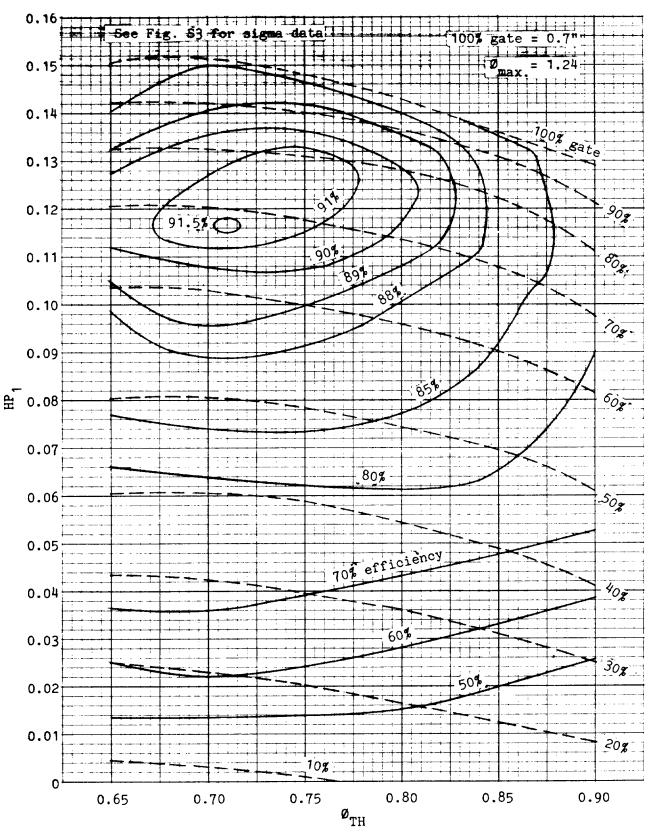


Figure F3. MODEL TEST DATA - FRANCIS TURBINE $D_{TH} = 12"$ ONE FOOT HEAD $N_s = 37.2$

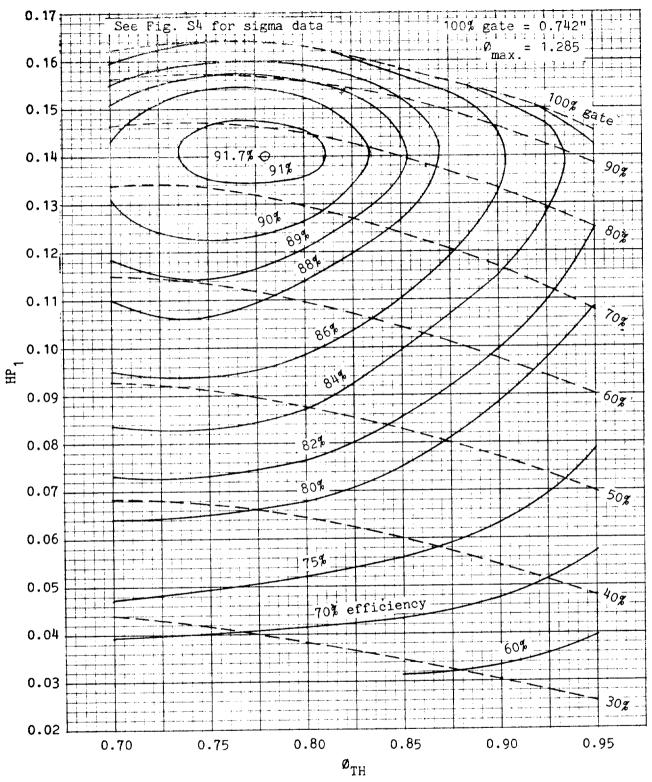
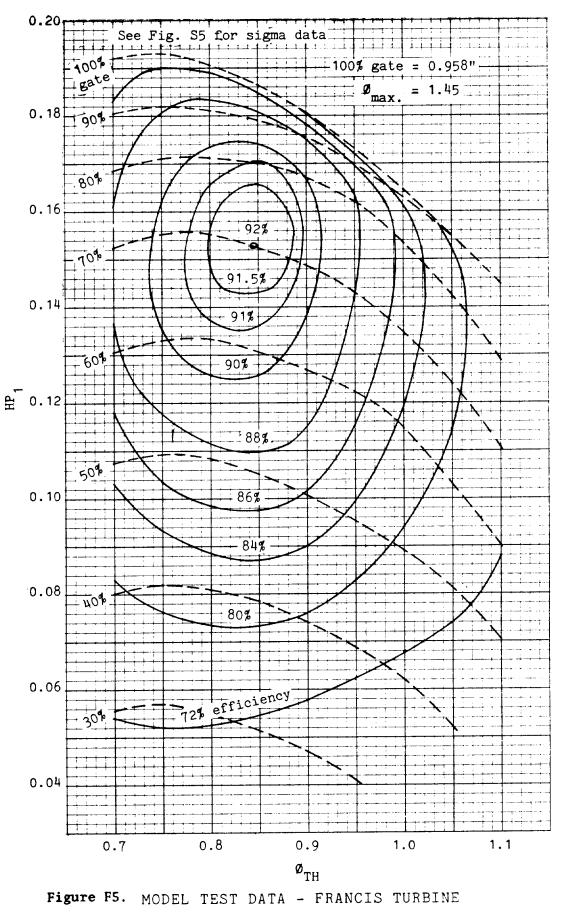
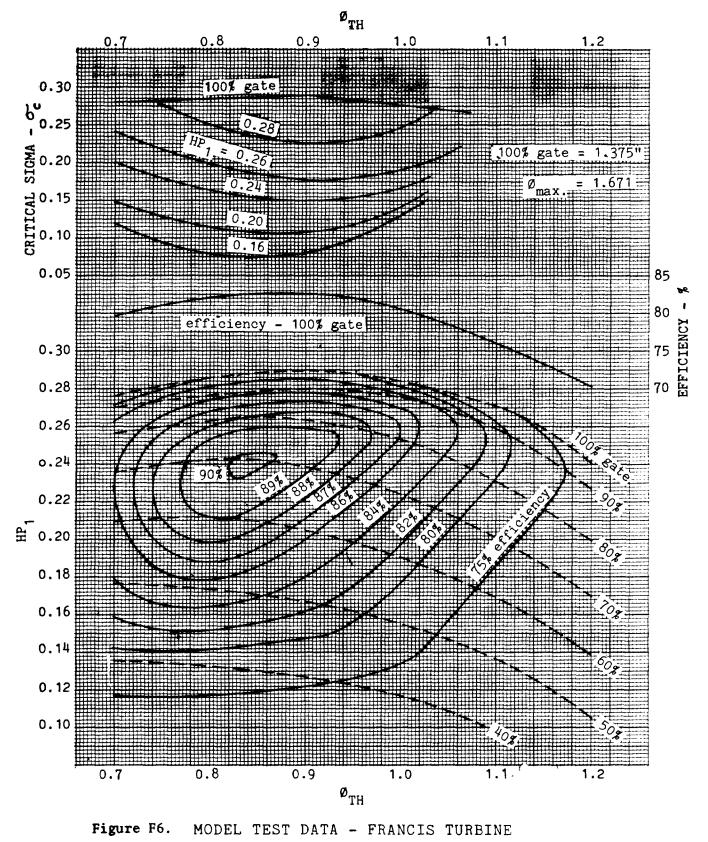




Figure F4. MODEL TEST DATA - FRANCIS TURBINE $D_{TH} = 12"$ ONE FOOT HEAD $N_s = 44.7$

$$D_{TH} = 12"$$
 ONE FOOT HEAD $N_s = 50.6$

 $D_{TH} = 12"$ ONE FOOT HEAD $N_s = 63.1$

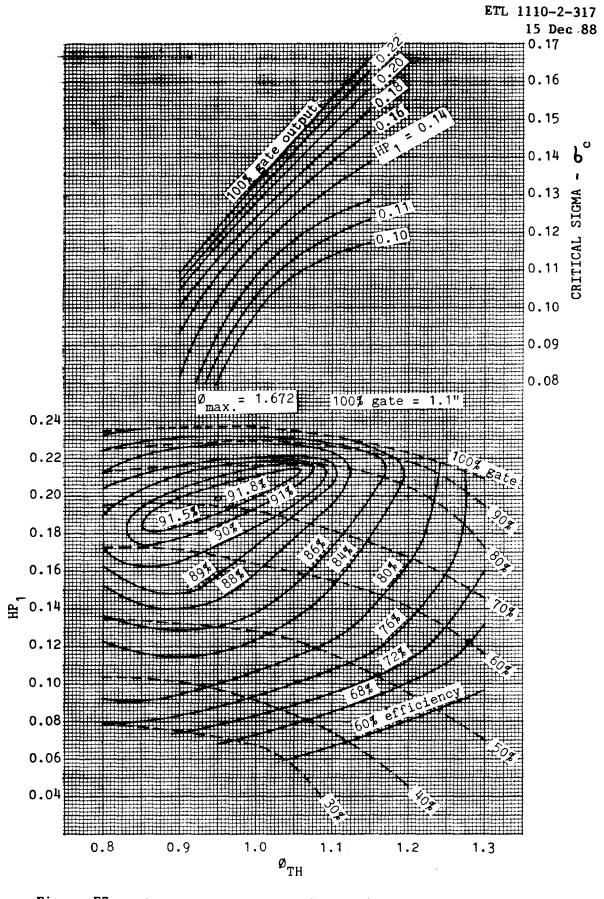
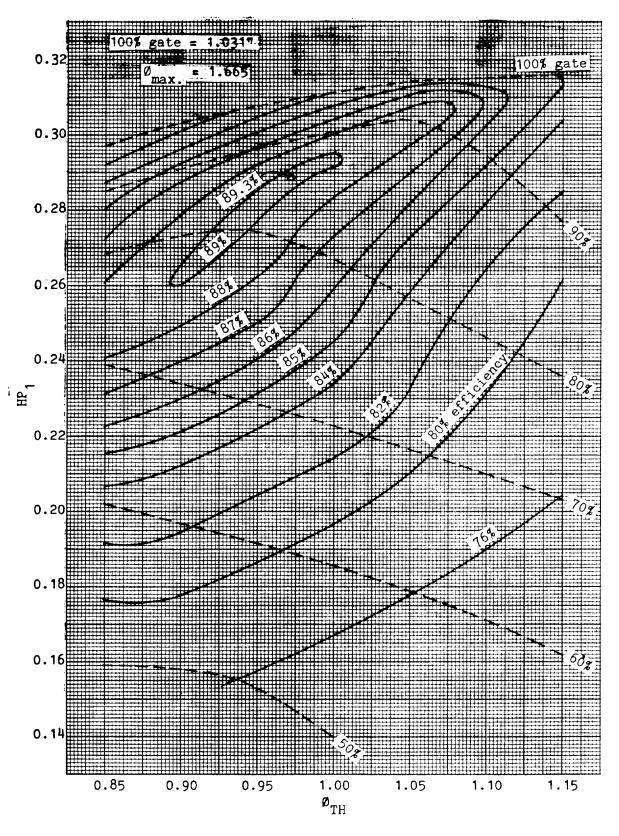
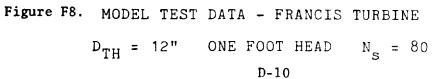




Figure F7. MODEL TEST DATA - FRANCIS TURBINE

 $D_{TH} = 12"$ ONE FOOT HEAD $N_s = 65$

15 Dec 88

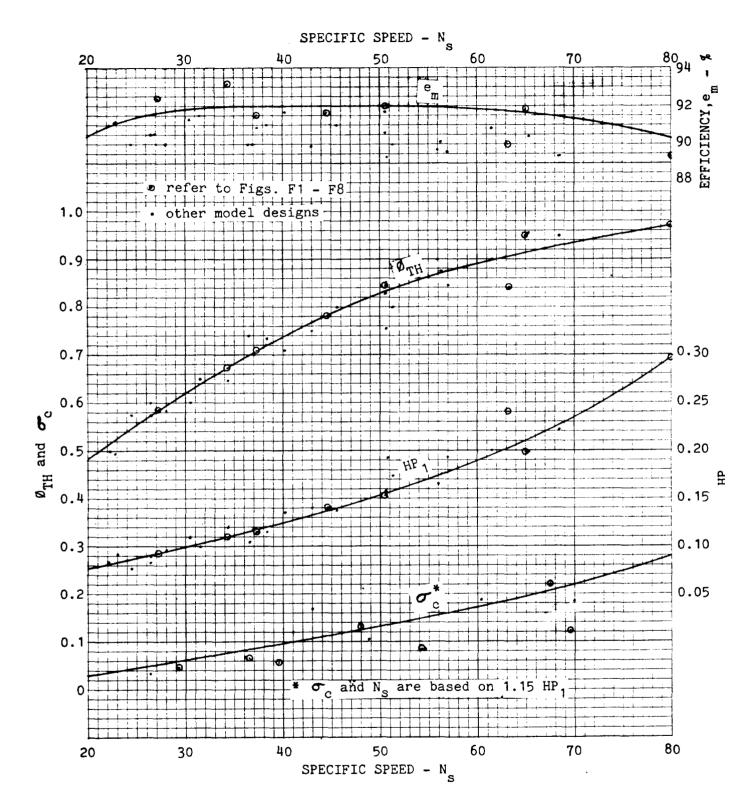
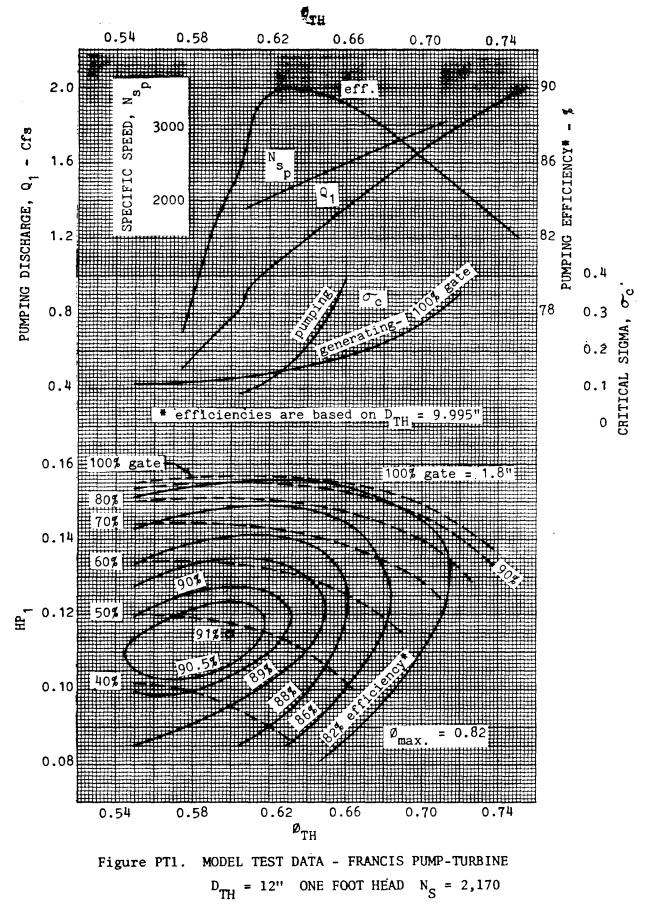


Figure F9. FRANCIS TURBINES; PERFORMANCE HILL DATA - BEST PHI CONDITIONS. $D_{TH} = 12''$ ONE FOOT HEAD

PAGE D-12 INTENTIONALLY LEFT BLANK

v


SECTION II

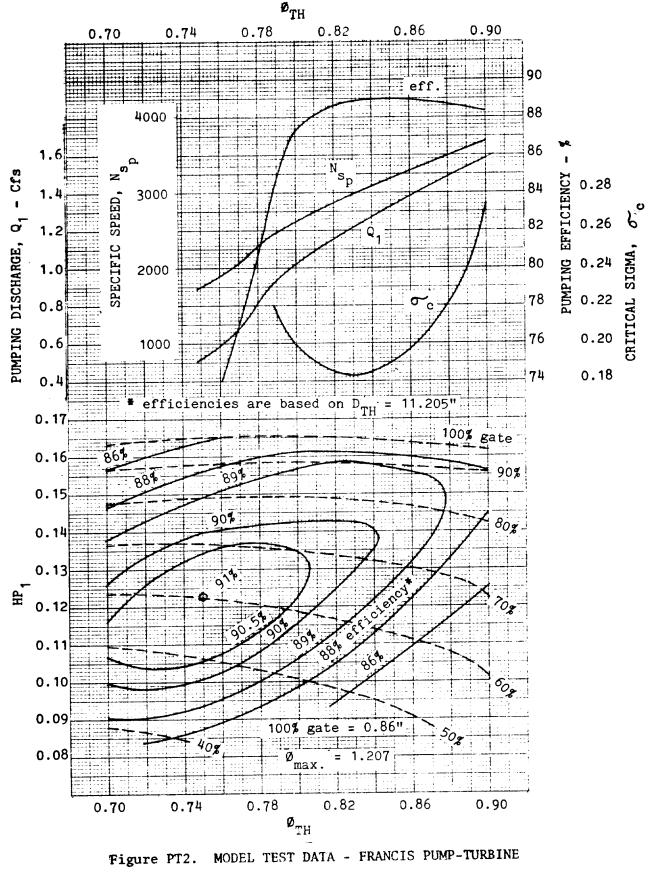
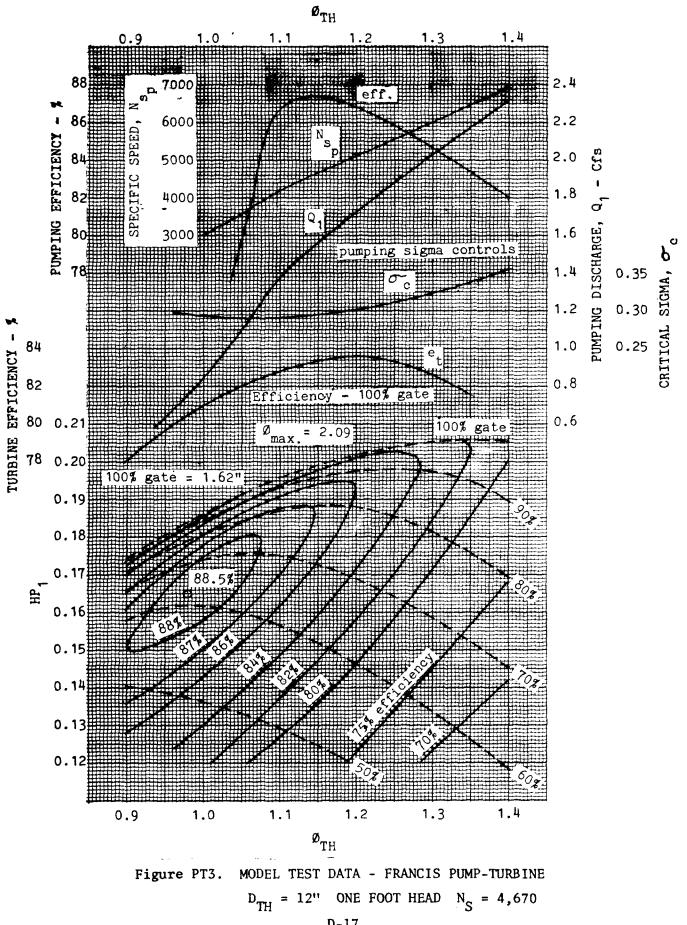

FRANCIS PUMP-TURBINE MODEL TEST CURVES FOR D_{TH} = 12 INCHES AND H = 1 FOOT

FIGURE	DESCRIPTION	PAGE
PT1	$N_{s} = 2,170$	D-15
PT2	$N_{\rm s} = 3,160$	D-16
PT3	$N_{g} = 4,670$	D-17

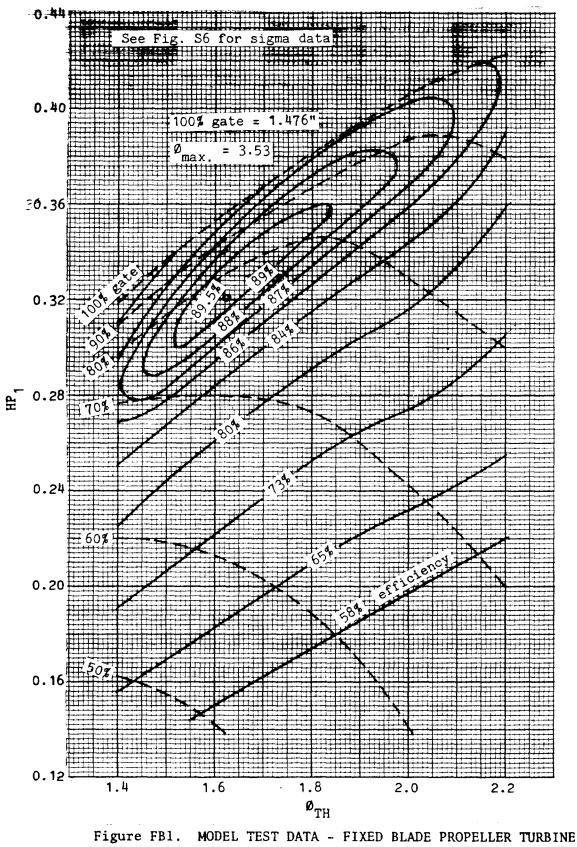

PAGE D-14 INTENTIONALLY LEFT BLANK

.

$$D_{TH} = 12''$$
 ONE FOOT HEAD $N_S = 3,160$

D-17

PAGE D-18 INTENTIONALLY LEFT BLANK


SECTION III

PROPELLER TURBINE MODEL TEST CURVES FOR D_{TH}^{+} 12 INCHES AND H = 1 FOOT

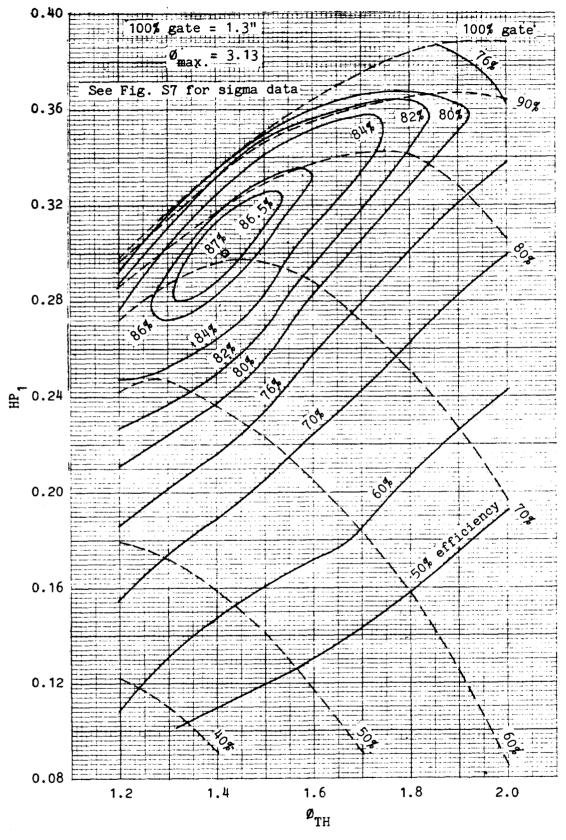
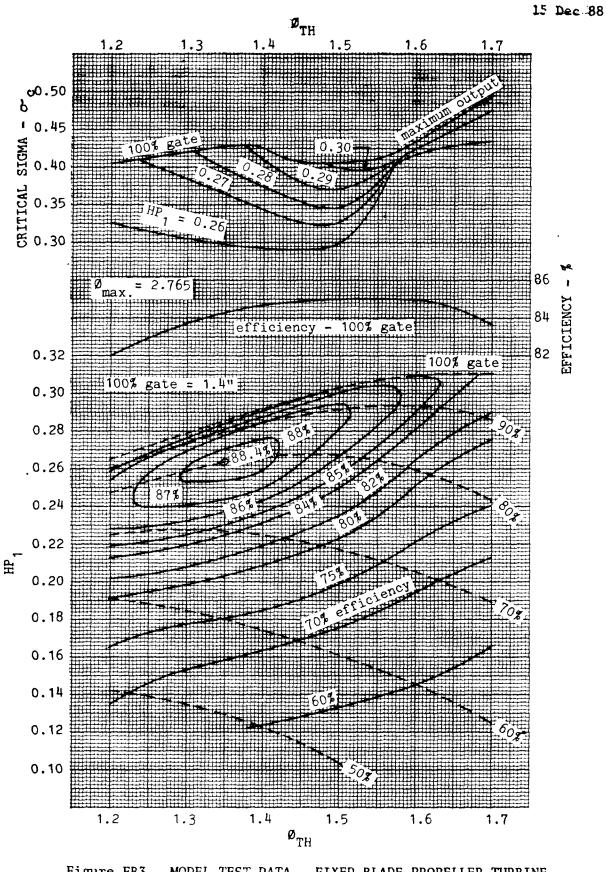
FIGURE	DESCRIPTION	PAGE
FB1	FOUR BLADES FIXED AT 24 ⁰ BLADE ANGLE	D-21
FB2	FIVE BLADES FIXED AT 31 ⁰ BLADE ANGLE	D-22
FB3	SIX BLADES FIXED AT 27 ⁰ BLADE ANGLE	D-23
K 1	FOUR BLADE KAPLAN TURBINE	D-24
K2	FIVE BLADE KAPLAN TURBINE	D-25
КЗ	SIX BLADE KAPLAN TURBINE	D-26

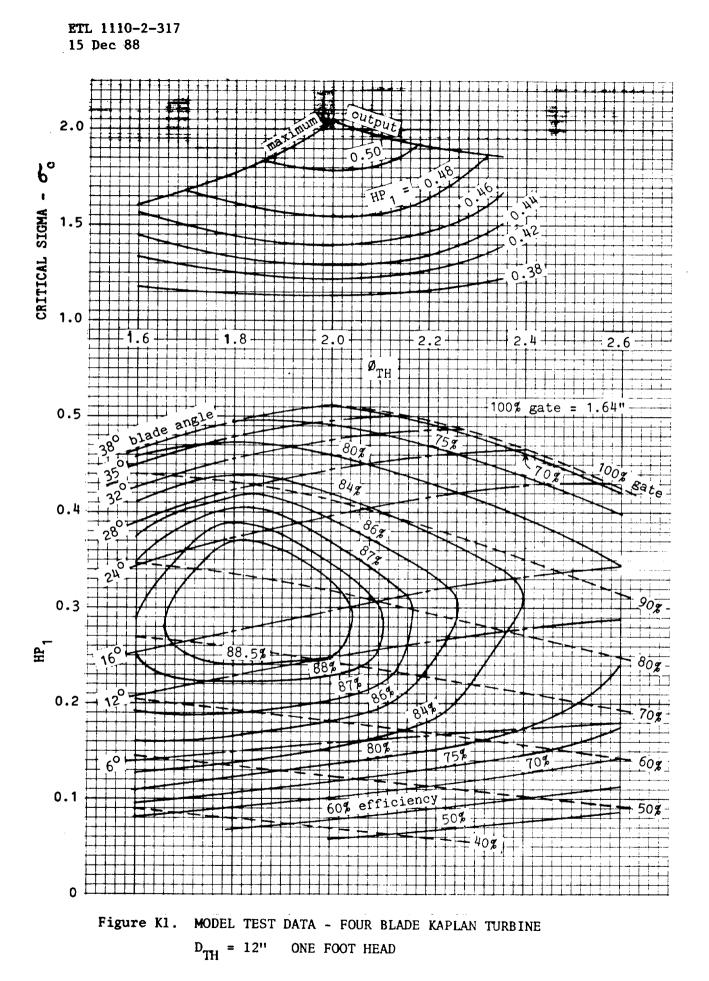
D-19

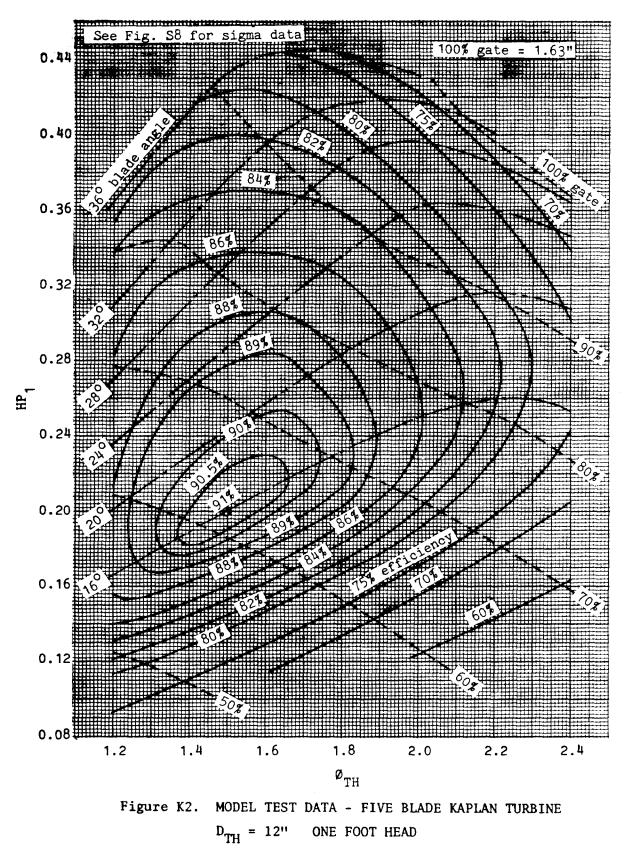
PAGE D-20 INTENTIONALLY LEFT BLANK

FOUR BLADES 24⁰ BLADE ANGLE

15 Dec .88


Figure FB2. MODEL TEST DATA - FIXED BLADE PROPELLER TURBINE FIVE BLADES 31[°] BLADE ANGLE


$$D_{\text{TH}} = 12$$
 " ONE FOOT HEAD

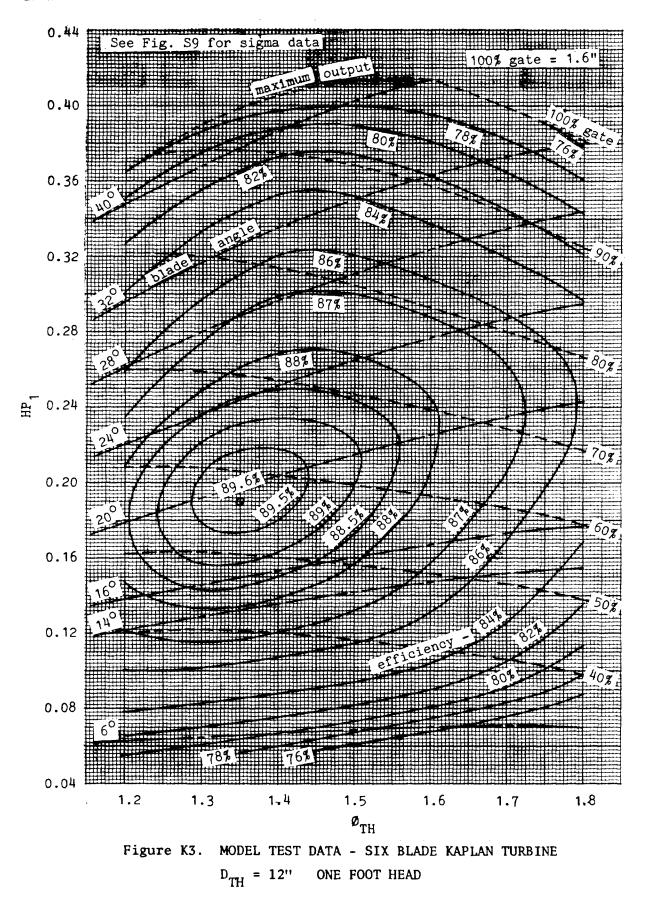
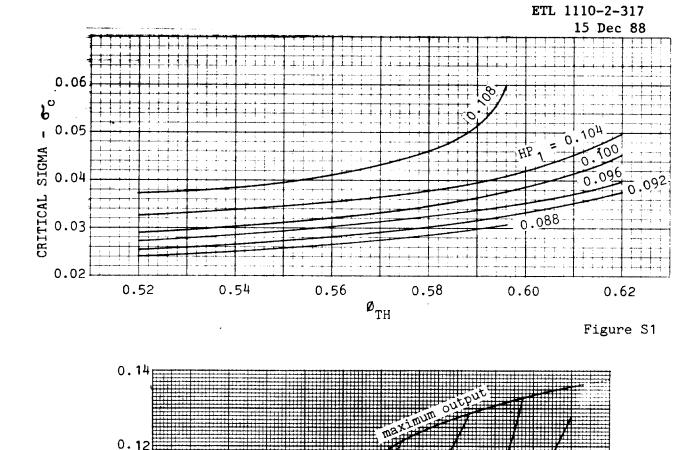

ETL 1110-2-317.

Figure FB3. MODEL TEST DATA - FIXED BLADE PROPELLER TURBINE SIX BLADES 27° BLADE ANGLE $D_{TH} \approx 12''$ ONE FOOT HEAD

D-25

SECTION IV

CRITICAL RUNNER SIGMAS


FIGURE	DESCRIPTION (FRANCIS)	PAGE
S1	REFERS TO FIGURE F1	D-29
S2	REFERS TO FIGURE F2	D-29
S 3	REFERS TO FIGURE F3	D-30
S4	REFERS TO FIGURE F4	D-30
S5	REFERS TO FIGURE F5	D-31

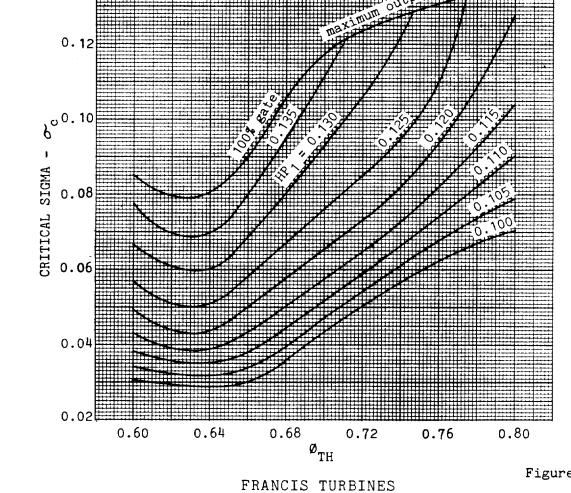
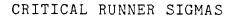
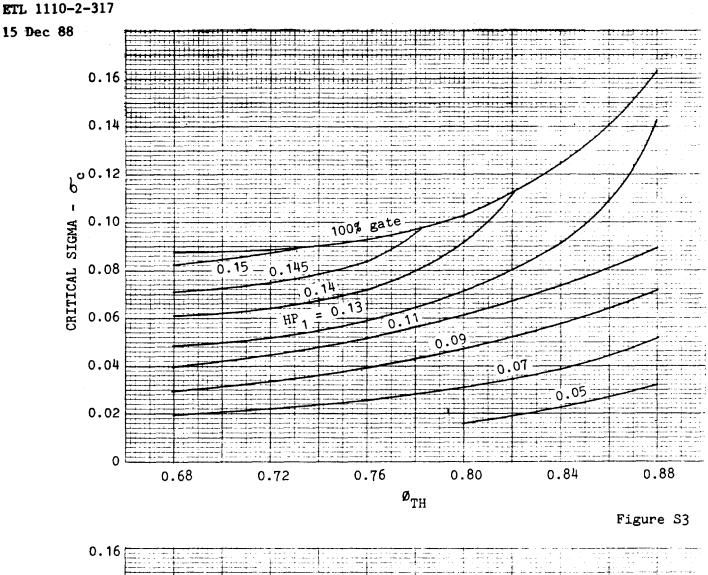
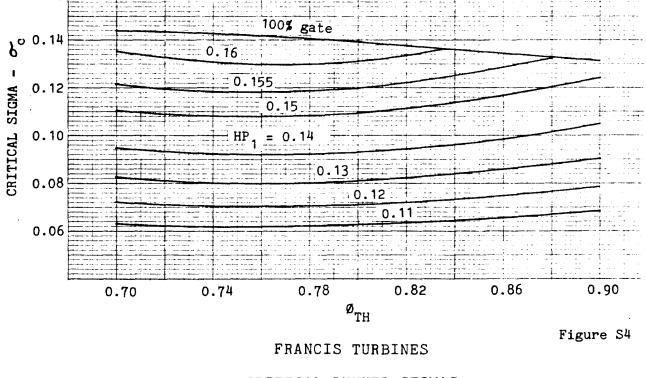
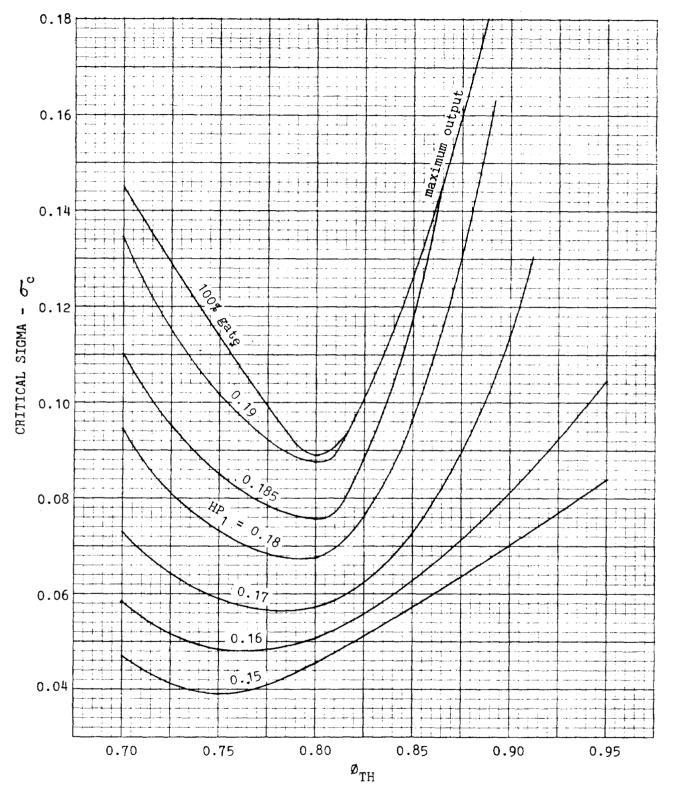

FIGURE	DESCRIPTION (FIXED BLADE PROPELLER)	PAGE
S6	REFERS TO FIGURE FB1	D-32
S 7	REFERS TO FIGURE FB2	D-32

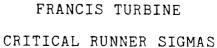
FIGURE	DESCRIPTION (KAPLAN)	PAGE	
S6	REFERS TO FIGURE K2	D-33	
S7	REFERS TO FIGURE K3	D-34	

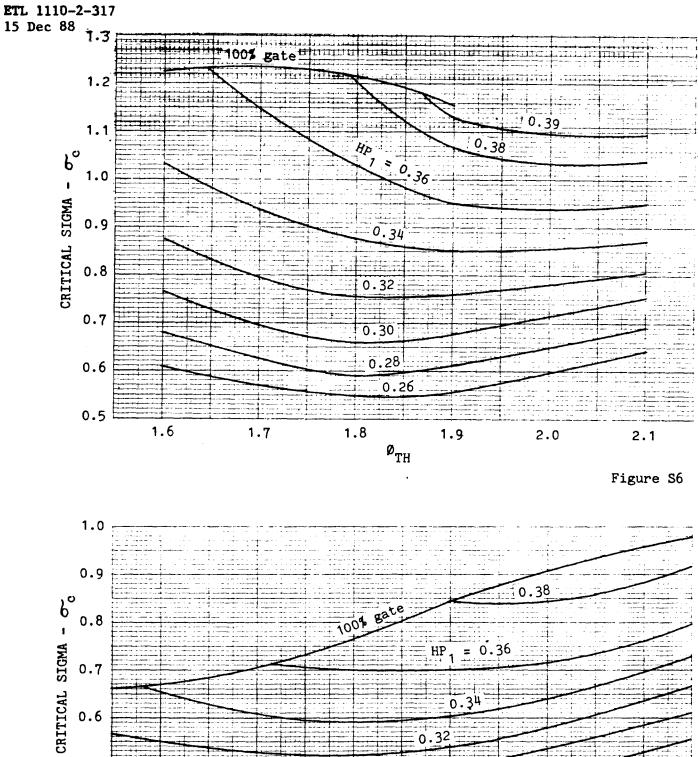
D-27

PAGE D-28 INTENTIONALLY LEFT BLANK

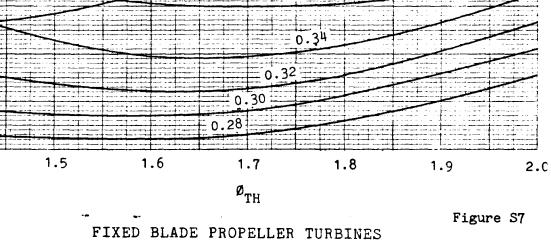

Figure S2



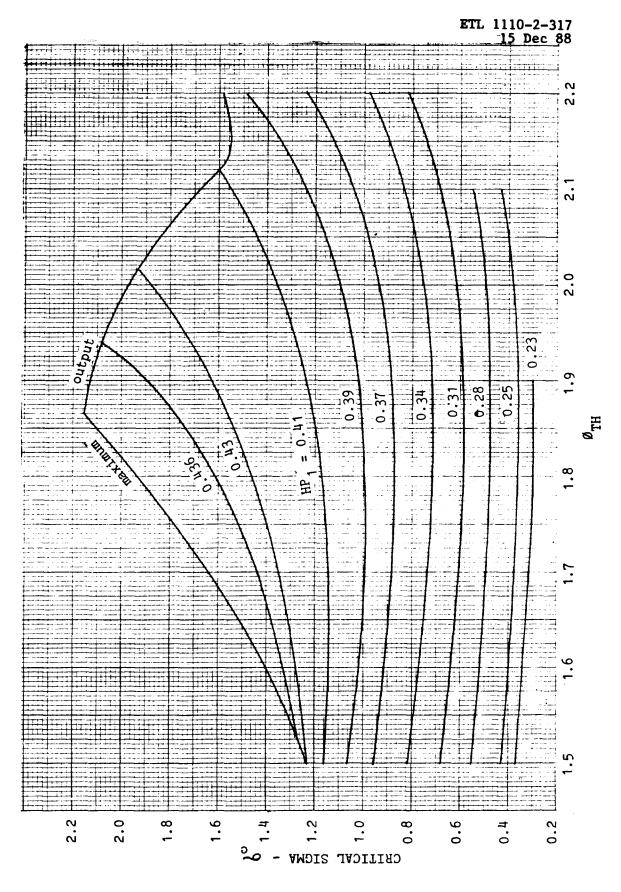


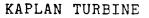
CRITICAL RUNNER SIGMAS

D-30

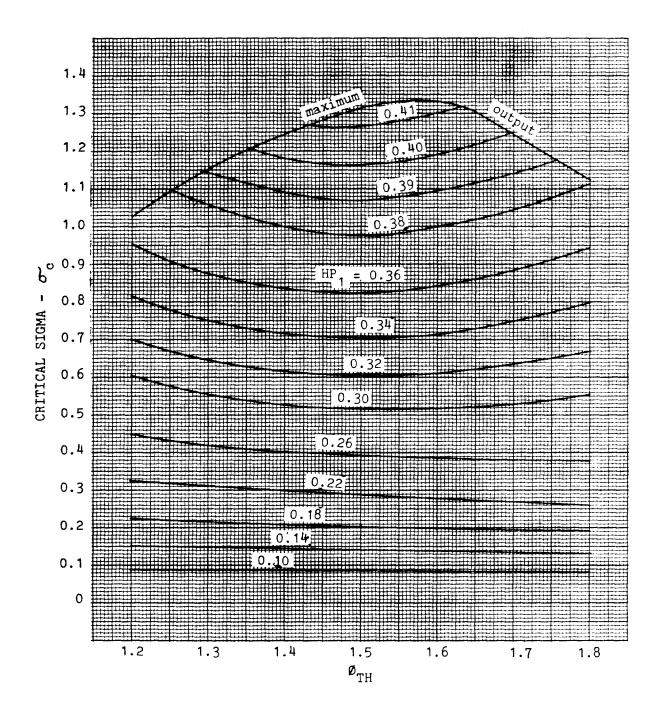


0.6


0.5


0.4

1.4



CRITICAL RUNNER SIGMAS

CRITICAL RUNNER SIGMAS

KAPLAN TURBINE

APPENDIX E

SAMPLE CALCULATIONS

SECTION I

FRANCIS TYPE TURBINES AND PUMP-TURBINES

SECTION	SUBJECT	PAGE
1	DESIGN REQUIREMENTS	E-3
2	SELECTION OF PUMP-TURBINES	E-3
3	GENERATING CYCLE	E-7
4	CONVENTIONAL FRANCIS TURBINE	E-9
5	PROTOTYPE DIMENSIONS	E -13

•

1. DESIGN REQUIREMENTS:

-a. Powerplant capacity - 150,000 KW

b. Installation: 2 pump-turbines and one conventional turbine.

c. Pumping requirements: 3,600 cfs each at a dynamic head of 153 feet. The heads vary between 137.5 and 160 feet. The minimum tailwater level for pumping is Elev. 540 ft. m.s.l.

d. Generating requirements: The 3 units must have an aggregate dependable capacity of 150,000 KW. The 3 units must also be capable of producing 170,500 KW at a net head of 137.4 feet. The net heads vary between 132.5 and 151.9 feet. The average (rated) net head is 144.8 feet.

2. SELECTION OF PUMP-TURBINES.

a. Reference Figure 2, Appendix C to note that the recommended specific speed, $N_{\rm sp}$ for the 153 foot rated pumping head has a value of about 4,000.

b. Referring to the model curves in Appendix D, select the design shown on Figure PT3 as the best choice for this specific speed.

c. At maximum efficiency, note the following: $E_1 = 87.4$ percent, $Q_1 = 1.57$ cfs and $\beta_{TH} = 1.15$.

d. Calculate D_{TH}:

$$3,600 = 1.57 \left(\frac{D_{\text{TH}}}{12}\right)^2 (153)^{1/2}$$

 $D_{TH} = 163$ inches

e. Calculate speed, N:

$$N = \frac{1838 (1.15) (153)^{1/2}}{163} = 160 \text{ rpm}$$

Round to 163.6 rpm

f. The calculation of the runner throat diameter and associated synchronous speed generally requires an iterative solution. Further

- 1-

iterations are required until the selected value for $\emptyset_{\rm TH}$ and associated value of Q_1 produce a value for $D_{\rm TH}$ which substituted in the speed equation, step e, yields a synchronous speed. The following approximation is used to calculate the next trial value of $\emptyset_{\rm TH}$:

The necessary iterations for this case are as follows:

Step	ϕ_{TH}	QI	D_{TH}	N
1	1.150	1.57	163.4	160.0
2	1.176	1.65	159.4	167.8
3	1.160	1.59	162.4	162.4
4	1.165	1.61	161.3	164.2
5	1.162	1.60	161.8	163.2

The accuracy in reading the model test data does not allow a closer determination of $D_{\rm TH}$ or N from step 5. Therefore, the solution indicates $D_{\rm TH}$ = 162 inches for N = 163.6 rpm.

g. At this point the user should make a cursory examination of the pumping efficiencies for other heads with a view to, perhaps, changing the speed to alter the head-efficiency characteristic. In this example, the following relationships are noted:

Ø _{TH} =	<u>163.6 (162</u> 1838 (H) ^{1/}	$\frac{1}{2} = \frac{14.42}{H^{1/2}}$	
	Н	Ø _{TH}	E ₁
	160.0	1.140	87.4
	153.0	1.166	87.3
	137.5	1.230	86.3

This relationship is satisfactory and the balance of the example is completed on the basis of $D_{TH} = 162$ inches and N = 163.6 rpm.

h. Calculate efficiency step-up.

$$E_2 = 100 - (100 - E_1) \left(\frac{D_m}{D_p}\right)^{0.2}$$

Where, max. $E_1 = 88.5$ percent (generating); $D_m = 12$ inches; $D_p = 162$ inches.

$$E_2 = 100 - (100 - 88.5) \left(\frac{12}{162}\right)^{0.2} = 93.2 \text{ percent}$$

step-up = (2/3) (93.2 - 88.5) = 3.1 percent

i. The expected pumping discharge is calculated to include the effect of the higher prototype expected efficiency as follows:

$$Q_{2_{c}} = Q_{1} \left(\frac{162}{12}\right)^{2} (H)^{1/2} \frac{E_{2}}{E_{1}}$$

j. The required pumping horsepower is calculated as follows:

$$HP = \frac{Q_2 C H_w}{550 E_2}$$

k. The required setting of the runner is controlled by the maximum head-minimum tailwater condition. For maximum head, $\phi_{\rm TH}$ = 1.14 and from Figure PT3, ____ = 0.295.

$$\sigma_{\rm C} = \frac{{\rm H}_{\rm b} - {\rm H}_{\rm v} - {\rm H}_{\rm s} - {\rm safety}}{{\rm H}}$$

Refer to Figure 6, Appendix C: For tailwater Elev. 540, H_b = 33.3 feet and a water temperature of 70° F., H_v = 0.8 feet.

safety margin = 0.2
$$D_i$$
 + 0.4 $H^{1/2}$

Refer to Table 3, Appendix C, noting that $D_1 = 1.154$

therefore, $D_{1}^{:} = 1.154 \frac{162}{12} = 15.6$ feet

subs: safety margin = 0.2 (15.6) + 0.4 $(160)^{1/2}$ = 8.2 feet

The required submergence is calculated as follows:

$$0.295 = \frac{33.3 - 0.8 - H_{\rm s} - 8.2}{160}$$

 $H_s = -22.9$ feet

The distance, a, between the bottom of the runner and the distributor centerline is calculated using the ratio, d, from Table 3, Appendix C, as follows:

d = 0.385a = 0.385 (162/12) = 5.2 feet

The elevation of the distributor centerline is calculated as follows:

Elev. = tailwater Elev. + H_s + a

Elev. = 540 + (-22.9) + 5.2 = 522.3 ft. m.s.l.

1. The expected pumping performance is as follows:

Head	137.5	145.0	153.0	160.0
ϕ_{TH}	1.230	1.198	1.166	1.140
Q ₁	1.82	1.72	1.62	1.53
E1	86.3	86.8	87.3	87.4
Q _{2c}	4,029	3,909	3,777	3,652
E ₂	89.4	89.9	90.4	90.5
HP	70,200	71,420	72,410	73,140

3. GENERATING CYCLE.

a. The prototype expected performance is calculated as follows:

$$E_2 = E_1 + 3.1$$
 percent

Head	Ø _{TH}	Percent gate	HP ₁	E ₁	HP ₂	Q ₂	E ₂
132.5	1.253	100	0.204	83.3	56,710	4,375	86.4
		90	0.198	84.6	55,040	4,180	87.7
		80	0.185	83.9	51,420	3,940	87.0
		70	0.164	80.9	45,590	3,615	84.0
		60	0.140	76.0	38,920	3,280	79.1
137.4	1.230	100	0.203	83.5	59,590	4,420	86.6
		90	0.198	85.0	58,120	4,240	88.1
		80	0.187	84.7	54,890	4,015	87.8
		70	0.166	82.1	48,730	3,675	85.2
		60	0.143	78.0	41,970	3,325	81.1
145	1.198	100	0.202	83.6	64,280	4,515	86.7
		9 0	0.197	85.2	62,690	4,320	88.3

Head	Ø _{TH}	Percent gate	HP ₁	E ₁	HP ₂	Q ₂	E ₂
		80	0.188	85.9	59,820	4,090	89.0
		70	0.169	83.8	53,780	3,765	86.9
		60	0.147	80.0	46,780	3,425	83.1
		50	0.119	74.0	37,870	2,990	77.1
151.9	1.170	100	0.200	83.5	68,240	4,580	86.6
		90	0.197	85.2	67,220	4,425	88.3
		80	0.189	86.5	64,4 90	4,180	89.6
		70	0.171	85.0	58,340	3,850	88.1
		60	0.150	81.8	51,180	3,505	84.9
		50	0.123	76.8	41,970	3,055	79.9

b. The maximum runaway speed is calculated as follows:

Refer Figure PT3 to note that $\phi_{max} = 2.09$ $N_{max} = \frac{1838 (2.09) (151.9)^{1/2}}{162} = 292 \text{ rpm}$

c. The guaranteed capacities at the 132.5 foot and 137.4 foot net head conditions are calculated at 98 percent of the 100 percent gate capacities indicated in above tabulation. The guaranteed capacities for the conventional unit at these two heads are as follows:

KW output = $0.98 (0.746) E_g HP_2$ KW output = $0.98 (0.746) (0.97) HP_2 = 0.709 HP_2$ Head - feet132.5 137.4Plant output - KW150,000 170,500Pump-turbines - KW80,400 84,500

Conventional - KW	69, 600	86,000
Conventional - HP	96,180	118,850
Expected - HP	98,140	121,280

4. CONVENTIONAL FRANCIS TURBINE.

a. The relationship for N_s vs. Head shown on Figure 1, Appendix C insures designs with moderate speeds and relatively shallow submergences. In a mixed installation with pump-turbines and conventional turbines, the inherent deeper submergences required of the former generally dictates a variation of this conservative approach. This is necessary to provide a more balanced equipment layout and avoid exaggerated levels for the generator-motors and generators. For this reason the "K" value used in Figure 1 is increased to, say, a value of 800. The corresponding N_c for H = 144.8 feet is 66.5.

b. Referring to the model curves in Appendix D, it may be noted that the designs shown on Figures F6 and F7 are within the range of this specific speed. A comparison of these designs indicates that the former has higher unit power with attendant higher critical sigmas, whereas the latter has higher overall efficiencies with lower critical sigmas and reduced unit power. The former design, Figure F6, is selected for the following reasons. The higher unit power will result in a smaller runner throat diameter with consequent smaller physical dimensions of the turbine to more nearly approach the physical dimensions of the pumpturbines. The higher critical sigmas require deeper submergences, however, this is not inappropriate in view of the deep submergence of the pump-turbines.

c. The method for sizing this unit differs from the conventional approach for Francis turbines. In this instance, the output required at the 137.4 feet critical net head dictates the size. This output is associated with the full gate capacity at a value of $\phi_{\rm TH}$ slightly higher than the best $\phi_{\rm TH}$ to be associated with the average head of 144.8 feet. For the latter condition a first value of $\phi_{\rm TH}$ = 0.86 is chosen. The corresponding value for the 137.4 foot head condition is calculated as follows:

From Figure F6 for $\phi_{\rm TH}$ = 0.883, the 100 percent gate HP = 0.29. This is associated with the required expected output of 121,280 HP to

calculate D_{TH} as follows:

121,280 = 0.29
$$\left(\frac{D_{\text{TH}}}{12}\right)^2 (137.4)^{3/2}$$

 $D_{TH} = 193.4$ inches

d. Calculate the speed, as follows:

$$N = \frac{1838 \ (0.833) \ (137.4)^{1/2}}{193.4} = 98.4$$

Round to nearest synchronous speed = 100 rpm

This speed and the $D_{\rm TH}$ calculated above are first values of an iterative solution similar to that described in 2.f. of this example. The necessary iterative steps are as follows:

Step	Ø _{TH}	HP ₁	DTH	N
1	0.883	0.29	193.4	98.4
2	0.897	0.29	193.4	100

Round D_{TH} to 193.5 inches

e. The expected prototype output is calculated as follows:

$$HP_2 = HP_1 \left(\frac{193.5}{12}\right)^2 (H)^{3/2} = 260.02 (HP_1) (H)^{3/2}$$

f. The efficiency step-up is calculated, using the procedure established in 2.h. of this example, as follows:

$$\mathbf{E_2} = 100 - (100 - 90) \left(\frac{12}{193.5}\right)^{0.2}$$

 $E_2 = 94.3 \text{ percent}$

step-up = (2/3) (94.3 - 90) = 2.9 percent

g. The expected discharge is calculated as follows:

$$Q_2 = \frac{550 \text{ HP}_2}{62.3 \text{ (H) E}_2} = 8.828 \frac{\text{HP}_2}{(\text{H}) \text{ E}_2}$$

h. The guaranteed capacity required at the 137.4 feet critical head is 118,850 HP. The generator output is 86,000 KW. The generator nameplate rating is 86,000 KW at 0.95 p.f. or 90,526 KVA. The turbine is designed to mechanically withstand operation at the generator nameplate rating at 1.0 p.f. or 125,100 HP. The turbine setting is predicated on the availability of 118,850 HP at the critical and higher heads. Although the critical head conditions will generally dictate the setting, it is recommended that other conditions be checked to assure that the critical sigma characteristics of proposed design or unusual tailwater conditions do not alter this normal circumstance.

i. The procedure described in 2.k. of this example is used to establish the turbine setting. The dimensionless ratios for calculating the dimensions D_i and a are obtained from Table 1, Appendix C. The results of pertinent calculations are tabulated as follows:

Net head, feet	137.4	144.8	151.9
T.W. elev.,ft.m.s.l.	550.8	548.5	541.6
HP	118,850	118,850	118,850
Ø _{IH}	0.898	0.875	0.854
HP ₁	0.284	0.262	0.244
oc	0.245	0.1830	0.160
H _b , feet	33.3	33.3	33.3
H _v , feet	0.8	0.8	0.8
D _i , feet	14.2	14.2	14.2
Safety margin, feet	7.5	7.7	7.8
H _s , feet	-8.7	-1.7	+0.4
a, feet	6.9	6.9	6.9

Dist. elev, ft. m.s.l. 549.0 553.7 548.9

It is to be noted that the conditions at the critical and maximum heads dictate about the same setting.

j. The maximum runaway speed is calculated as follows:

From Figure F6, $\phi_{max} = 1.671$

$$N_{max} = \frac{1838 (1.671) (151.9)^{1/2}}{193.5} = 195.6 \text{ rpm}$$

k. The expected prototype performance is tabulated below:

Head	Ø _{TH}	HP ₁	E	HP2	Q ₂	E ₂
132.5	0.915	0.123	75	48,780	77.9	4,170
		0.148	80	58,690	82.9	4,715
		0.185	84	73,370	86.9	5,625
		0.217	87	86,060	89.9	6,375
		0.241	89	95,570	91.9	6,930
		0.258	89	102,320	91.9	7,415
		0.273	87	108,260	89.9	8,025
		0.285	84	113,020	86.9	8,665
		0.290	82.5	115,010	85.4	8,970
137.4	0.898	0.122	75	51,090	77.9	4,215
		0.148	80	61,9 80	82.9	4,805
		0.211	87	88,360	89.9	6,315

Head	Ø _{TH}	HP ₁	E1	HP2	Q ₂	E ₂
		0.235	89	98,410	91.9	6,880
		0.259	89	108,460	91.9	7,585
		0.274	87	114,740	89.9	8,200
		0.285	84	119,350	86.9	8,825
144.8	0.875	0.120	75	54,370	77.9	4,255
		0.146	80	66,150	82.9	4,865
		0.174	84	78,830	86.9	5,530
		0.203	87	91,970	89.9	6,235
		0.227	89	102,840	91.9	6,825
		0.260	89	117,790	91.9	7,815
		0.273	87	123,680	89.9	8,390
151.9	0.854	0.119	75	57,9 30	77.9	4,320
		0.144	80	70,100	82.9	4,915
		0.170	84	82,750	86.9	5,535
		0.197	87	95,900	89.9	6,200
		0.219	89	106,610	91.9	6,740
		0.239	90	116,340	92.9	7,280
		0.246	90	119,750	92.9	7,490

5. <u>PROTOTYPE DIMENSIONS</u>. The prototype dimensions of the pump-turbines can be calculated from the dimensionless ratios shown in Table 3, Appendix C. Similar dimensions for the Francis turbine can be calculated from the ratios shown in Table 1, Appendix C.

SECTION II

FIXED BLADE PROPELLER TURBINE

SECTION	SUBJECT	PAGE
1	DESIGN REQUIREMENTS	E-17
2	TURBINE SELECTION	E-17

PAGE E-16 INTENTIONALLY LEFT BLANK

1. DESIGN REQUIREMENTS.

a. Powerplant capacity: 65,000 KW with 2 units.

b. Generator requirements:

(1) Nameplate rating: 36,111 KVA, 0.9 pf., 32,500 KW, 13.8 KV and 60 Hz.

(2) Must be designed for continuous operation at rated KVA, voltage, p.f. and frequency.

c. Turbine requirements:

- Net heads: 78 foot rated, 60 foot minimum and 100 foot maximum.
- (2) Require 30,000 HP guaranteed output at 60 foot net head.

(3) Turbine output is limited to 49,900 HP (rated KVA at 1.0 p.f.).

2. TURBINE SELECTION.

a. To utilize the capability of a generator mated with a fixed blade propeller turbine, the turbine at or near best efficiency at rated head should have an output of 95 percent of the horsepower equivalent of the generator rating:

$$HP = \frac{0.95 (32,500)}{0.746 (0.97)} = 42,600$$

b. Reference Figure 3, Appendix C to note that the rated head condition and the wide head range for this unit dictates a 6 blade runner. The recommended specific speed at the 78 foot rated head is calculated as follows:

$$N_s = \frac{1,000}{(78)^{1/2}} = 113.2$$

c. The speed is calculated as follows:

$$N = \frac{113.2 \ (78)^{5/4}}{(42,600)^{1/2}} = 127.1$$

Round to nearest synchronous speed = 128.6 rpm

Corrected $N_{\rm S} = 114.5$

d. For preliminary studies requiring only an approximate speed and runner throat diameter, the following empirical formula for $\phi_{\rm TH}$ may be used to calculate the diameter:

e. The appropriate model test curves for these conditions are shown on Figure FB3. A curve of best efficiency is constructed from the following data taken from the efficiency contours:

$\phi_{ m TH}$	1.230	1.290	1.350	1.420	1.515
HP ₁	0.244	0.256	0.264	0.272	0.290

The location of the design point along this curve is determined by iteration. This is accomplished by substituting associated values of HP_1 and $\emptyset TH$ in the following formula for specific speed:

$$N_{\rm s} = 153.17 \ (\phi_{\rm TH}) \ ({\rm HP}_1)^{1/2} = 114.5$$

The approximate value $\emptyset_{\text{TH}} = 1.391$ from (d) above is used in the first step of the iterative process as follows:

Ø _{TH}	1.391	1.440	1.430
HP ₁	0.2685	0.2745	0.2730
Ns	110.4	115.6	114.5

The design point is located at ØTH = 1.430 and $HP_1 = 0.2730$. The runner throat diameter for this preliminary selection is calculated as follows:

42,600 = 0.273
$$\left(\frac{D_{\text{TH}}}{12}\right)^2$$
 (78)^{3/2}

 $D_{TH} = 180.6$ inches

f. It may be noted from inspection of Figure FB3 that the design point calculated above is located to the right of bet The model efficiency at this point is $E_1 = 87.9$ percent, which is less than the 88.4 percent peak efficiency. The peak efficiency at the rated conditions can be improved by selecting the next lower synchronous speed, 120 rpm, and repeating the iterative solution for the new design point. The calculations and tabulation of the iterative steps are as follows:

$$N_{\rm s} = \frac{(42,000)^{1/2}}{(78)^{5/4}} (120) = 106.8$$

Use first trial $\phi_{\text{TH}} = 1.43 \left(\frac{120}{128.6} \right) = 1.334$

$\phi_{\rm TH}$	1.334	1.362	1.355
HP ₁	0.2620	0.2650	0.2645
Ns	104.6	107.4	106.7

Calculate the runner throat diameter:

$$42,600 = 0.2645 \left(\frac{D_{\text{TH}}}{12}\right)^2 (78)^{3/2}$$

 $D_{TH} = 183.5$ inches

g. The second selection matches the peak efficiency of this design to the rated conditions. This is accomplished by selecting a larger, lower speed unit. At this point in the selection process, the user must evaluate the increased capital costs of the larger unit against the benefits of the higher efficiency. The costs should include the effects on the powerhouse structure, excavation taking into account any change in the turbine setting, generator cost, . . . etc. The latter selection is arbitrarily used in the remainder of this example.

h. The model test curves must be checked to assure that the 30,000 HP guaranteed output at 60 foot minimum net head can be developed with the proposed design. The necessary calculations in this determination are as follows:

Referring to Figure FB3 at $\phi_{\rm TH}$ = 1.547, note that the full gate (100 percent) output is HP₁ = 0.3070.

percent margin
$$= \frac{0.307}{0.276} (100) = 111.2$$
 percent

The design meets the requirement that the expected full gate output is at least 2 percent greater than the guaranteed output.

i. The prototype expected performance is calculated as follows:

$$\begin{split} & \phi_{\rm TH} = \frac{11.98}{({\rm H})^{1/2}} \\ & {\rm HP}_2 = {\rm HP}_1 \left(\frac{183.5}{12} \right)^2 ({\rm H}_2)^{3/2} = 233.84 \ ({\rm HP}_1) \ ({\rm H}_2)^{3/2} \\ & {\rm E}_2 = 100 - (100 - 88.4) \left(\frac{12}{183.5} \right)^{0.2} = 93.3 \ {\rm percent} \\ & {\rm step-up} = (2/3) \ (93.3 - 88.4) = 3.3 \ {\rm percent} \\ & {\rm E}_{\rm C} = {\rm E}_1 + 3.3 \ {\rm percent} \end{split}$$

o -	550 H	HP ₂ -	- 8 828	HP ₂	
Q ₂ =	62.3 I	E _C H ₂ =	0.020	$\frac{H_2}{E_C H_2}$	

H ₂	Ø _{TH}	HP ₁	E ₁	HP2	Ec	Q ₂
60	1.547	0.184	70	20,000	73.3	4,015
		0.208	75	22,610	78.3	4,015
		0.234	80	25,430	83.3	4,490
		0.247	82	26,840	85.3	4,630
		0.264	84	28,690	87.3	4,835
		0.272	85	29,560	88.3	4,925
		0.282	86	30,650	89.3	5,050
		0.304	86	33,040	89.3	5,445
		0.307	85	33,360	88.3	5,560
78	1.356	0.159	7 0	25,610	73.3	3,955
		0.181	75	29,160	78.3	4,215
		0.204	80	32,860	83.3	4,465
		0.214	82	34,470	85.3	4,575
		0.226	84	36,410	87.3	4,720
		0.231	85	37,210	88.3	4,77(
		0.238	86	38,340	89.3	4,86
		0.244	87	39,310	90.3	4,92
		0.254	88	40,920	91.3	5,07

H ₂	Ø _{TH}	HPI	E ₁	HP ₂	E _C	Q ₂
		0.264	88.4	42,530	91.7	5,250
		0.271	88	43,650	91.3	5,410
		0.278	87	44,780	90.3	5,615
		0.282	86	45,430	89.3	5,755
		0.285	85	4 5,910	88.3	5,885
		0.287	84.4	46,230	87.7	5,9 65
100	1.198	0.135	70	31,570	73.3	3,800
		0.165	75	38,580	78.3	4,350
		0.191	80	44,660	83.3	4,735
		0.202	82	47,240	85.3	4,890
		0.213	84	49,810	87.3	5.035
		0.219	85	51,210	88.3	5,120

j. The setting of the turbine depends upon the output requirements and the related head-tailwater conditions. The setting is generally predicated on the tailwater level with one unit operating. For this example it is assumed that it is desired to operate the unit at generator rating and 0.9 p.f. under the rated and higher heads. The corresponding turbine output is 44,500 HP. Under normal circumstances the rated condition dictates the setting. However, it is good practice to check the other head conditions to assure that unusual sigma characteristics or head-tailwater relationships do not alter this normal circumstance. The output requirements at the lower heads are assumed to vary directly with the head between the 44,500 HP at 78 foot and the 30,000 HP guaranteed output at 60 foot head. The relationship between tailwater level and discharge is linear between the following sets of conditions:

Discharge - cfs 5,000 11,000 k. The following steps are required to establish the turbine settings on the basis of the conditions set forth above:

$$HP_1 = \frac{HP_2}{233.84 \text{ H}^{3/2}}$$

From Figure FB3, pick off $\sigma_{\rm C}$ and ${\rm E}_1$

$$E_c = E_1 + 3.3$$
 percent

$$Q_2 = \frac{8.828 (HP_2)}{E_c (H_2)}$$

T.W. Elev. =
$$\frac{Q_2}{2222}$$
 + 540.75

$$\sigma_{\rm C} = \frac{\rm H_b - \rm H_v - \rm H_s - safety}{\rm H_2}$$

From Figure 6, Appendix C: $H_b = 33.3 \text{ feet}$, $H_v = 0.8 \text{ feet} (70^{\circ} \text{ F.})$ safety = 0.2 $D_{TH} + 0.7 (H_2)^{1/2}$ Distr. centerline elev. = T.W. elev. + $H_s + a$ $a = (d)D_{TH}$ Refer to Table 4 and Figure 5, Appendix C to note d = 0.365a = 0.365 (183.5/12) = 5.6 feet

Ø _{TH}	1.547	1.432	1.356	1.263	1.198
HP2	30,000	38,600	44,500	44,500	44,500
HP ₁	0.276	0.282	0.276	0.223	0.190
E ₁	85.4	87.4	87.3	85.1	80.0
с	0.375	0.365	0.385		
E _C	88.7	90.7	90.6	88.4	83.3
Q ₂	4,975	5,370	5,560	4,935	4,715
T.W. Elev.	543.0	543.2	543.3	543.0	542.9
Safety	8.5	8.9	9.2	9.7	10.1
H _s	1.5	-2.0	-6.8		
Distr. Elev.	550.1	546.8	542.1		

1. As generally expected, the rated conditions dictate the turbine setting. The HP_1 values shown in above tabulation at the higher heads are well below the range of sigma values shown on Figure FB3. This is due to the fact that HP_1 varies with the inverse of $H^{3/2}$. Since the tailwater levels do not vary substantially at the higher heads, the plant sigma with the distributor set at Elevation 542.1 varies only with the inverse of H and sufficient submergence is assured.

m. The cavitation limits for the higher heads can be established for the selected setting by deriving a relationship for $_{\rm C}$ in terms of head then entering the critical sigma curves on Figure FB3 to estimate the corresponding value of HP₁. This procedure is as follows:

$$\phi_{\rm TH} = \frac{1.98}{({\rm H}_2)^{1/2}}$$

 $\sigma_{\rm C} = \frac{\rm H_{\rm b} - \rm H_{\rm v} - (Distr. El. - T.W. El. - a) - safety}{\rm H_2}$

By substituting known values and allowing a constant tailwater level at Elev. 543, this equation becomes:

$$c = \frac{35.9 - 0.7 (H_2)^{1/2}}{H_2}$$

A summary of the maximum output limits is as follows:

H ₂	Ø _{TH}	с	HP ₁	HP2
80	1.339	0.370	0.270	45,180
82	1.323	0.361	0.268	46,530
84	1.307	0.351	0.266	47,890
86	1.292	0.342	0.264	49,230
86.5	1.288	0.340	0.264	49,660

The limiting output of 49,500 HP can be developed at 86.5 feet and the higher heads without cavitation.

n. The prototype maximum runaway speed is estimated as follows:

$$N_{max} = \frac{1838 \ \phi_{max}}{D_{TH}} (H)^{1/2}$$

Refer to Figure FB3 to note that $\phi_{max} = 2.765$

$$N_{\text{max}} = \frac{1838 (2.765)(100)^{1/2}}{183.5} = 277 \text{ rpm}$$

o. As an exercise, the user may elect to analyze the merits of the first selection with N = 128.6 rpm and $D_{\rm TH}$ = 180.6 inches. This will familiarize the user with the formulas and procedures required to develop the necessary data for a given design.

p. The prototype dimensions of the principal parts and water passages of the turbine can be calculated from the dimensionless ratios shown in Table 4 Appendix C.

ETL 1110-2-317 15 Dec 88

APPENDIX E

SECTION III

ADJUSTABLE BLADE PROPELLER TURBINE

SECTION	SUBJECT	PAGE
1	DESIGN REQUIREMENTS	E-29
2	TURBINE SELECTION	E-29

•

PAGE E-28 INTENTIONALY LEFT BLANK

.

1. DESIGN REQUIREMENTS.

- a. Powerplant capacity: 69,000 KW with 2 units
- b. Generator requirements:
- (1) Nameplate rating: 36,320 KVA, 0.95 p.f., 34,500 KW, 13.8 KV and 60 hz.
- (2) Must be designed for continuous operation at rated KVA at rated voltage, p.f. and frequency.
- c. Turbine requirements:
 - (1) Net heads: 70 foot rated, 53 foot minimum and 88 foot maximum.
 - (2) Require 33,200 HP guaranteed output at 53 foot net head.
 - (3) Turbine output is limited to 50,190 HP (rated KVA at 1.0 p.f.)
 - (4) The setting requires a concrete semi-spiral case.

2. TURBINE SELECTION.

a. The turbine output required to match the generator rating is calculated as follows:

$$HP = \frac{34,500}{0.746 (0.97)} = 47,680$$

b. Refer to Figure 3, Appendix C to note that the rated head condition and the wide head range for this unit dictates a 6 blade runner. The recommended specific speed at the 70 foot rated head is calculated as follows:

$$N_{S} = \frac{1,100}{(70)^{1/2}} = 131.5$$

c. The speed is calculated as follows:

$$N = \frac{131.5 (70)^{5/4}}{(47.680)^{1/2}} = 121.9$$

Round to nearest synchronous speed = 120 rpm

Corrected $N_s = 129.5$

d. For preliminary studies requiring only an approximate speed and runner throat diameter, the following empirical formula for $0/N_{\rm TH}$ may be used to calculate the diameter:

e. The appropriate model test curves for these conditions are shown on Figure K3, Appendix D. The design point for rated conditions is to be located along the on-cam 32° blade angle curve. The location of the design point is determined by iteration. This is accomplished by substituting associated values of HP₁ and \emptyset_{TH} in the following formula for specific speed:

$$N_{\rm s} = 153.17 \ Q_{\rm TH} \ ({\rm HP}_1)^{1/2}$$

The approximate value $\emptyset_{TH} = 1.440$ from d above is used in the first step of the iterative process as follows:

ϕ_{TH}	1.440	1.450	1.445
HP ₁	0.342	0.343	0.342
Ns	129.0	130.1	129.4

The design point is located at $\phi_{\rm TH}$ = 1.445 and HP₁ = 0.342. The runner throat diameter for this preliminary selection is calculated as follows:

47,680 = 0.342
$$\left(\frac{D_{\text{TH}}}{12}\right)^2$$
 (70) 3/2

 $D_{TH} = 185$ inches

f. The location of this design point with reference to the extremes in head conditions should be checked as follows:

(1) At the 53 foot minimum head a guaranteed output of 33,200 HP is required:

$$\phi_{\rm TH} = \frac{12.08}{(53)^{1/2}} = 1.659$$

$$HP_1 = \frac{33,200}{237.67 (53)^{3/2}} = 0.362$$

Refer to Figure K3 at $Ø_{\rm TH}$ = 1.659 to note that the full gate (100 percent) HP₁ = 0.405

percent margin = $\frac{0.405}{0.362}$ (100) = 111.9 percent

The design meets the requirement that the expected full gate output is at least 2 percent greater than the guaranteed output.

(2) For the 88 foot maximum head, check the efficiencies for generator rated load:

From Figure K3, $E_1 = 88.1$ percent This efficiency is considered satisfactory. (3) From Figure K3 it is noted that the best $\emptyset_{\text{TH}} = 1.35$, which corresponds to a net head of 80.1 feet. At maximum efficiency, $E_1 = 89.6$ percent, the corresponding prototype expected output is 32,370 HP. This corresponds to about 68 percent of generator rated load.

g. It is recommended that alternate designs be investigated before making a final selection. In this instance the adjacent synchronous speeds, 112.5 and 128.6 rpm. should be investigated. The balance of this example, however, will proceed on the basis of N = 120 rpm and $D_{\rm TH}$ = 185 inches.

h. The prototype expected performance is calculated as follows:

$$Q_2 = \frac{550 \text{ HP}_2}{62.3 (E_c) \text{ H}_2} = 8.828 \frac{\text{HP}_2}{\text{E}_2 \text{ H}_2}$$

H ₂	Ø _{TH}	HP 1	E ₁	HP ₂	E _C	Q ₂
53	1.659	0.072	76	6,600	78.9	1,390
		0.080	78	7,340	80.9	1,505
		0.086	80	7,890	82.9	1,580
		0.098	82	8,9 90	84.9	1,760
		0.115	84	10,550	86.9	2,015
		0.151	86	13,850	88.9	2,590
		0.184	87	16,870	89.9	3,120

,

¹ 2	Ø _{TH}	HP 1	E ₁	HP ₂	E _C	Q ₂
		0.276	87	25,310	89.9	4,680
		0.298	86	27,330	88.9	5,110
		0.327	84	29,990	86.9	5,735
		0.352	82	32,280	84.9	6,320
		0.372	80	34,110	82.9	6,840
70	1.444	0.058	76	8,070	78.9	1,285
		0.063	78	8,770	80.9	1,385
		0.070	80	9,740	82.9	1,480
		0.078	82	10,860	84.9	1,610
		0.091	84	12,670	86.9	1,835
		0.110	86	15,310	88.9	2,165
		0.124	87	17,260	89.9	2,415
		0.145	88	20,180	90.9	2,795
		0.158	88.5	21,990	91.4	3,030
		0.173	89	24,080	91.9	3,300
		0.233	89	32,4 30	91.9	4,440
		0.249	88.5	34,660	91.4	4,770
		0.271	88	37,720	90.0	5,220
		0.302	87	42,040	89.9	5,8 85
		0.324	86	45,100	88.9	6,385
		0.355	84	49,410	86.9	7,155

H ₂	ØTH	HP 1	E ₁	HP2	E _C	Q ₂
88	1.288	0.060	80	11,770	82.9	1,420
		0.069	82	13,540	84.9	1,595
		0.082	84	16,090	86.9	1,855
		0.101	8 6	19,820	88.9	2,230
		0.115	87	22,560	89.9	2,510
		0.134	88	26,290	90.9	2,895
		0.144	88.5	28,250	91.4	3,095
		0.158	89	31,000	91.9	3,375
		0.190	89.5	37,280	92.4	4,040
		0.218	89	4 2,770	91.9	4,660
		0.232	88.5	45,5 20	91.4	4,985
		0.245	88	48,070	90.9	5,290
		0.270	87	52,970	89.9	5,900

h. The setting of the turbine depends upon the output requirements and the related head-tailwater conditions. The setting is generally predicated on the tailwater level with one unit operating. For this example it is assumed that it is desired to operate the unit at the generator rating of 0.95 p.f. under the rated and higher heads. The corresponding turbine output is 47,680 HP. Under normal circumstances the rated condition dictates the setting. However, it is good practice to check the other head conditions to assure that unusual sigma characteristics or head-tailwater relationships do not alter this normal circumstance. The output requirements at the lower heads are assumed to vary directly with the head between the 47,680 HP at 70 foot and the 33,200 HP guaranteed output at 53 foot head. The relationship between tailwater level and discharge is linear between the following sets of conditions:

Tailwater Elev ft. m.s.l.	500.0	543.5
Discharge- cfs	5,000	11,000

i. The following steps are required to establish the turbine settings on the basis of the-conditions set forth above:

From Figure K3, pick off $\sigma_{\rm C}$ and ${\rm E_1}$ for above ${\rm \varnothing}_{\rm TH}$ and ${\rm HP_1}$ values.

$$E_{c} = E_{1} + 2.9 \text{ percent}$$

 $Q_{2} = 8.828 \frac{HP_{2}}{E_{c} H_{2}}$

T.W. Elev. =
$$\frac{Q_2}{1714}$$
 + 537.1

$$\sigma'_{c} = \frac{H_{b} - H_{v} - H_{s} - safety}{H_{2}}$$

From Figure 6, Appendix C: $H_b = 33.3$ feet, $H_v = 0.8$ feet (700 F.) safety = 0.2 $D_{TH} + 0.7 (H_2)^{1/2}$

Distributor centerline Elevation = T.W. Elevation + H_s + a

 $a = (d) D_{TH}$

Refer Table 4 and Figure 5, Appendix C to note that d = 0.368

a = 0.368 (185/12) = 5.7 feet

Refer to Figure S9 for values of critical runner sigma.

H ₂	53	62	70	80	88	
Ø _{TH}	1.659	1.534	1.444	1.351	1.288	
HP2	33,200	40,870	47,680	47,680	47,680	
HP ₁	0.362	0.352	0.342	0.280	0.243	
E ₁	81.0	83.6	84.7	87.3	88.2	
с	0.880	0.780	0.725	0.475	0.375	
E _C	83.9	86.5	87.6	90.2	91.1	
Q ₂	6,590	6,730	6,860	5,830	5,250	
T.W. Elev.	540.9	541.0	541.1	540.5	540.2	
Safety	8.2	8.6	9.0	9.4	9.7	
H _s	-22.3	-24.5	-27.2	-14.9	-10.2	
Distr. Elev.	524.3	522.3	519.6	531.3	535.7	

j. As generally expected, the rated conditions dictate the turbine setting. This is due to the fact that HP_1 varies with the inverse of $(H)^{3/2}$. Since the tailwater levels do not vary substantially at the higher heads, the plant sigma with the distributor set at Elev. 519.6 varies only with the inverse of H and sufficient submergence is assured.

k. The cavitation limits for the higher heads can be established for the selected setting by deriving a relationship or σ'_C in terms of head, then entering the critical sigma curves on Figure S9 to estimate the corresponding value of HP₁ This procedure is as follows:

$$\phi_{\text{TH}} = \frac{\frac{12.08}{(\text{H}_2)^{1/2}}}{\sigma_{\text{C}}}$$

$$\sigma_{\text{C}} = \frac{\frac{\text{H}_{\text{b}} - \text{H}_{\text{v}} \text{ (Distr. El. - T.W. El. -a)} - \text{safety}}{\text{H}_2}}{\frac{\text{H}_2}{\text{H}_2}}$$

By substituting known values and allowing a constant tailwater level at Elev. 540, this equation becomes:

$$\sigma_{C} = \frac{56 - 0.7 (H_2)^{1/2}}{H_2}$$

A summary of the maximum output limits is as follows:

^H 2	Ø _{TH}	ø _c	HP ₁	HP2
72	1.424	0.695	0.337	48,930
72	1.404	0.675	0.332	50,230

The limiting output of 50,190 HP can be developed at 74 feet and the higher heads without cavitation with distributor centerline Elev. 519.6.

1. The prototype dimensions of the principal parts and water passagaes of the turbines can be calculated from the dimensionless ratios shown in Table 4, Appendix C.

♥U.S. GOVERNMENT PRINTING OFFICE: 1990 720-527/10999