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Abstract

Many decision problems can be formulated as mathematical optimization models. While de-

terministic optimization problems include only known parameters, real-life decision problems

almost invariably involve parameters that are subject to uncertainty. Failure to take this

uncertainty under consideration may yield decisions which can lead to unexpected or even

catastrophic results if certain scenarios are realized.

While stochastic programming is a sound approach to decision making under uncertainty, it

assumes that the decision maker has complete knowledge about the probability distribution

that governs the uncertain parameters. This assumption is usually unjustified as, for most

realistic problems, the probability distribution must be estimated from historical data and

is therefore itself uncertain. Failure to take this distributional modeling risk into account

can result in unduly optimistic risk assessment and suboptimal decisions. Furthermore, for

most distributions, stochastic programs involving chance constraints cannot be solved using

polynomial-time algorithms.

In contrast to stochastic programming, distributionally robust optimization explicitly accounts

for distributional uncertainty. In this framework, it is assumed that the decision maker has

access to only partial distributional information, such as the first- and second-order moments

as well as the support. Subsequently, the problem is solved under the worst-case distribution

that complies with this partial information. This worst-case approach effectively immunizes

the problem against distributional modeling risk.

The objective of this thesis is to investigate how robust optimization techniques can be used

for quantitative risk management. In particular, we study how the risk of large-scale derivative

portfolios can be computed as well as minimized, while making minimal assumptions about

the probability distribution of the underlying asset returns. Our interest in derivative portfo-

lios stems from the fact that careless investment in derivatives can yield large losses or even

bankruptcy. We show that by employing robust optimization techniques we are able to cap-

ture the substantial risks involved in derivative investments. Furthermore, we investigate how

distributionally robust chance constrained programs can be reformulated or approximated as

tractable optimization problems. Throughout the thesis, we aim to derive tractable models

that are scalable to industrial-size problems.
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Chapter 1

Introduction

1.1 Motivation and Objectives

At the time of writing, the world has gone through a period of unprecedented financial tur-

bulence. The crisis has resulted in the collapse of large financial institutions, the bailout of

banks by national governments and severe downturns in global stock markets. Indeed, many

economists consider it to be the worst financial crisis since the Great Depression of the 1930s.

The crisis resulted in the stagnation of worldwide economies due to the tightening of credit and

decline in international trade. It is now often referred to as the Great Recession. While the

global economies are starting to recover from the crisis, its ripple effects are still propagating

through the system and investors are exposed to considerable uncertainty.

The crisis serves us to illustrate the importance of reliable risk management. Investors face the

challenging problem of how to distribute their current wealth over a set of available assets with

the goal to earn the highest possible future wealth. However, in order to decide on the portfolio

allocations, the investor must take into consideration that the future asset returns are uncertain.

The investor’s portfolio allocation problem is traditionally solved using stochastic programming.

Stochastic programming implicitly assumes that the investor has complete knowledge about

the probability distribution of the asset returns. The framework offers a large variety of risk

measures, which are functions that estimate the risk of a given portfolio. Popular examples of

1



2 Chapter 1. Introduction

risk measures are the variance of the portfolio return, and the Value-at-Risk, which is equal to

a given quantile of the portfolio loss distribution. Subsequently, stochastic programming aims

to find the portfolio with the lowest associated risk that satisfies additional constraints imposed

by the investor on the portfolio allocations.

While stochastic programming is a sound framework that effectively enables the investor to

trade off risk and return, the underlying assumption that the investor has full and accurate

knowledge about the probability distribution of the asset returns is often unjustified. Indeed,

typically the investor must estimate the probability distribution from historical realizations

of the asset returns. After observing a limited amount of relevant historical observations,

the investor is often unable to accurately determine the probability distribution of the asset

returns. This drawback is a serious concern when it comes to estimating the risk associated

with a given portfolio. For example, when estimating the Value-at-Risk of a portfolio, we are

usually interested in the losses that occur in the “tails” of the portfolio loss distribution, that is,

the extreme events that occur with a very low probability. However, it is unlikely that we can

accurately estimate these events after observing a limited amount of historical observations. In

fact, the recent market crash, discussed above, is precisely one of such low probability events

that would have been very difficult, if not impossible, to predict statistically. Thus, using

stochastic programming on the basis of inaccurate probabilistic information can yield careless

and overly optimistic decisions.

In contrast to stochastic programming, robust optimization is an alternative modeling frame-

work for decision making under uncertainty that does not require strong assumptions about the

probability distribution of the uncertain parameters in the problem. In the context of the asset

allocation problem, the asset returns are assumed to be unknown but confined to an uncertainty

set, which reflects the decision maker’s uncertainty about the asset returns. Although the in-

vestor is free to choose the shape and size of the uncertainty set, it often constructed on the

basis of some partial distributional information, such as the first- and second-order moments as

well as the support of the random asset returns. Robust optimization models aim to find the

best decision in view of the worst-case realization of the asset returns within this uncertainty

set. It is important to note that this worst-case optimization approach offers us guarantees on
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the portfolio return: whenever the asset returns are realized within the prescribed uncertainty

set, the realized portfolio return will be greater than or equal to the calculated worst-case

portfolio return.

A closely related modeling paradigm to robust optimization is distributionally robust optimiza-

tion. Distributionally robust optimization is similar to stochastic programming, but explicitly

accounts for distributional uncertainty. In this framework, it is assumed that the decision maker

has access to only partial distributional information, such as the first- and second-order mo-

ments as well as the support of the random asset returns. The investor then considers the set

of all probability distributions of the asset returns that match the known partial distributional

information. Subsequently, the problem is solved under the worst-case distribution within this

set. Whenever the “true” (but unknown) distribution lies somewhere within this set, the in-

vestor is guaranteed that the actual risk will be lower that the calculated worst-case risk. This

worst-case approach effectively immunizes the problem against distributional modeling risk.

The main aim of this thesis is to employ (distributionally) robust optimization techniques to

elaborate new decision making models for investment problems that: (i) avoid making strong

assumptions about the probability distribution of the random parameters in the problem, (ii)

provide guarantees about the risk the investor is exposed to, and (iii) are tractably solvable

and therefore scalable to realistic problem sizes. More specifically, the objectives of this thesis

are to address the following problems:

(1) How can derivatives be incorporated into the robust portfolio optimization framework with-

out compromising the tractability of the problem? Furthermore, robust portfolio optimiza-

tion only provides weak guarantees when the asset returns are realized within the uncer-

tainty sets. We therefore wish to explore how the derivatives can provide insurance against

unexpected events when the asset returns are realized outside the uncertainty sets. How

does the insurance affect the portfolio performance and what can be said about the tradeoff

between these weak and strong guarantees?

(2) Value-at-Risk is a popular financial risk measure, but it assumes that the probability distri-

bution of the underlying asset returns is known precisely. Furthermore, it is a non-convex
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function of the portfolio weights, which makes it intractable to optimize. These difficulties

are further compounded when the portfolio contains derivatives. We wish to investigate

how the Value-at-Risk of large-scale derivative portfolios can be optimized in a tractable

manner, while making few assumptions about the probability distribution of the underlying

assets.

(3) In stochastic programming, we often wish to express that a system of constraints must

be satisfied with a given probability. The arising chance constrained programs are usually

intractable to solve. We wish to explore how distributionally robust optimization techniques

can be used to find conservative but tractable approximations of such chance constrained

programs.

1.2 Contributions and Structure of the Thesis

In this thesis, we investigate how robust optimization techniques can be used for quantitative

risk management. In particular, we study how the risk of large-scale derivative portfolios can

be computed as well as minimized, while making minimal assumptions about the probability

distribution of the underlying asset returns. Our interest in derivative portfolios stems from

the fact that careless investment in derivatives can yield large losses or even bankruptcy. We

show that by employing robust optimization techniques we are able to capture as well as

minimize the substantial risks involved in derivative investments. Furthermore, we investigate

how distributionally robust chance constrained programs can be reformulated or approximated

as tractable optimization problems. Throughout the thesis, we aim to derive tractable models

that are scalable to industrial-size problems.

Apart from a review of the background theory in Chapter 2 and conclusions in Chapter 6, the

thesis is divided into three chapters, which can be summarized as follows.

In Chapter 3 we investigate how simple derivatives, such as put and call options, can be

incorporated into the robust portfolio optimization framework. Robust portfolio optimization

aims to maximize the worst-case portfolio return given that the asset returns are allowed to vary
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within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio

performs well under normal market conditions. However, its performance may substantially

degrade in the presence of market crashes, that is, if the asset returns materialize far outside of

the uncertainty set. We propose a novel robust optimization model for designing portfolios that

include European-style options. This model trades off weak and strong guarantees on the worst-

case portfolio return. The weak guarantee applies as long as the asset returns are realized within

the prescribed uncertainty set, while the strong guarantee applies for all possible asset returns,

including those that are realized outside the uncertainty set. The resulting model constitutes a

convex second-order cone program, which is amenable to efficient numerical solution procedures.

We evaluate the model using simulated and empirical backtests and analyze the impact of the

insurance guarantees on the portfolio performance. The contents of this chapter are published

in

1. S. Zymler, B. Rustem, and D. Kuhn. Robust portfolio optimization with derivative insurance

guarantees. Under revision for the European Journal of Operations Research, 2010.

In Chapter 4 we study how the Value-at-Risk (VaR), a popular financial risk measure, of large-

scale derivative portfolios can be minimized while making weak assumptions about the prob-

ability distribution of the underlying asset returns. Portfolio optimization problems involving

VaR are often computationally intractable and require complete information about the return

distribution of the portfolio constituents, which is rarely available in practice. These difficulties

are further compounded when the portfolio contains derivatives. We develop two tractable

conservative approximations for the VaR of a derivative portfolio by evaluating the worst-case

VaR over all return distributions of the derivative underliers with given first- and second-order

moments. The derivative returns are modelled as convex piecewise linear or—by using a delta-

gamma approximation (a second-order Taylor expansion)—as (possibly non-convex) quadratic

functions of the returns of the derivative underliers. These models lead to new Worst-Case

Polyhedral VaR (WCPVaR) and Worst-Case Quadratic VaR (WCQVaR) approximations, re-

spectively. WCPVaR is a suitable VaR approximation for portfolios containing long positions

in European options expiring at the end of the investment horizon, whereas WCQVaR is suit-
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able for portfolios containing long and/or short positions in European and/or exotic options

expiring beyond the investment horizon. We prove that WCPVaR and WCQVaR optimization

can be formulated as tractable second-order cone and semidefinite programs, respectively, and

reveal interesting connections to robust portfolio optimization. Numerical experiments demon-

strate the benefits of incorporating non-linear relationships between the asset returns into a

worst-case VaR model. The contents of this chapter are based on

2. S. Zymler, D. Kuhn, and B. Rustem. Worst-Case Value-at-Risk of Non-linear Portfolios.

Under revision for Operations Research, 2010.

In Chapter 5 we develop tractable semidefinite programming based approximations for dis-

tributionally robust individual and joint chance constraints, assuming that only the first- and

second-order moments as well as the support of the uncertain parameters are given. It is known

that robust chance constraints can be conservatively approximated by Worst-Case Conditional

Value-at-Risk (CVaR) constraints. We first prove that this approximation is exact for robust

individual chance constraints with concave or (not necessarily concave) quadratic constraint

functions. We also show that robust individual chance constraints are equivalent to robust

semi-infinite constraints with uncertainty sets that can be interpreted as ellipsoids lifted to the

space of positive semidefinite matrices. By using the theory of moment problems we then obtain

a conservative approximation for joint chance constraints. This approximation affords intuitive

dual interpretations and is provably tighter than two popular benchmark approximations. The

tightness depends on a set of scaling parameters, which can be tuned via a sequential convex op-

timization algorithm. We show that the approximation becomes in fact exact when the scaling

parameters are chosen optimally. We further demonstrate that joint chance constraints can be

reformulated as robust semi-infinite constraints with uncertainty sets that are reminiscent of the

lifted ellipsoidal uncertainty sets characteristic for individual chance constraints. We evaluate

our joint chance constraint approximation in the context of a dynamic water reservoir control

problem and numerically demonstrate its superiority over the two benchmark approximations.

The contents of this chapter are based on

3. S. Zymler, D. Kuhn, and B. Rustem. Distributionally Robust Joint Chance Constraints with
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Second-Order Moment Information. Under review for Mathematical Programming, 2010.

1.3 Statement of Originality

This thesis is the result of my own work and no other person’s work has been used without due

acknowledgement in the main text of the thesis. This thesis has not been submitted for the

award of any degree or diploma in any other tertiary institution.



Chapter 2

Background Theory

In this chapter we summarize various definitions and results relating to convex optimization and

decision making under uncertainty. In particular, we give an overview of stochastic program-

ming, robust optimization, and distributionally robust optimization. We also give a general

description of portfolio optimization and risk measures. The selection of presented topics is

dictated entirely by their use in subsequent chapters. For a thorough review of convex and ro-

bust optimization the reader is referred to [BV04] and [BTEGN09], respectively. We emphasize

that each of the subsequent chapters also contain introductions with more specific background

references.

2.1 Notation

Throughout this thesis, we will use the following notation. We use lower-case bold face letters

to denote vectors and upper-case bold face letters to denote matrices. The space of symmetric

matrices of dimension n is denoted by Sn. For any two matrices X,Y ∈ Sn, we let 〈X,Y〉 =

Tr(XY) be the trace scalar product, while the relation X < Y (X � Y) implies that X−Y is

positive semidefinite (positive definite). Random variables are always represented by symbols

with tildes, while their realizations are denoted by the same symbols without tildes. For x ∈ R,

we define x+ = max{x, 0}. Unless stated otherwise, equations involving random variables are

8
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assumed to hold almost surely.

2.2 Convex Optimization

A convex optimization problem is a minimization problem of the form

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, ∀i = 1, . . . ,m

Ax = b,

(2.1)

where A ∈ Rp×n and each of the functions fi : Rn → R is convex. The function f0 is referred

to as the objective or cost function. As usual, (2.1) describes the problem of finding an x

that minimizes f0(x) among all the x that satisfy the constraints fi(x) ≤ 0, i = 1, . . . ,m and

Ax = b.

In the remainder of this section, we review important classes of convex optimization problems

which we will focus on throughout this thesis.

2.2.1 Linear Programming

A linear program or LP is a problem of the form

minimize
x∈Rn

cTx

subject to Gx ≤ f

Ax = b,

(2.2)

where A ∈ Rp×n, G ∈ Rm×n, c ∈ Rn, f ∈ Rm, and b ∈ Rp. Problem (2.2) is convex since it

only involves linear constraints.
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2.2.2 Second-Order Cone Programming

A Second-Order Cone Program or SOCP is a convex optimization problem of the form

minimize
x∈Rn

cTx

subject to ‖Bix+ di‖2 ≤ fT
i x+ gi, ∀i = 1, . . . ,m

Ax = b,

(2.3)

where Bi ∈ Rmi×n, di ∈ Rmi , fi ∈ Rn, gi ∈ R, and ‖y‖2 =
√
yTy denotes the L2 norm of y.

Note that when Bi and di are zero for i = 1, . . . ,m then the SOCP (2.3) reduces to a linear

program. Thus, the class of SOCPs encapsulates the class of LPs as a special case.

For any i = 1, . . . ,m, the constraint

‖Bix+ di‖2 ≤ fT
i x+ gi (2.4)

is referred to as a second-order cone constraint, since it is the same as requiring the affine

function (Bix+ di,f
T
i x+ gi) to lie in the second-order cone in Rmi+1, see Figure 2.1.

It is known that SOCPs can be solved in polynomial-time using interior point algorithms, thus,

SOCPs are tractable problems, see [AG03]. Furthermore, the reader is refered to [LVBL98] for

a detailed survey on the applications of second-order cone programming.

2.2.3 Semidefinite Programming

A Semidefinite Program or SDP is a convex optimization problem of the form

minimize
x∈Rn

cTx

subject to F0 +
n∑
i=1

Fixi < 0

Ax = b,

(2.5)

where each of the matrices Fi ∈ Rn×n is symmetric.
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Figure 2.1: Boundary of the convex second-order cone {(x, y, z) :
√
x2 + y2 ≤ z} in R3.

The constraint

F(x) = F0 +
n∑
i=1

Fixi < 0 (2.6)

requires that the linear combination F(x) of the matrices Fi is positive semidefinite and is

refered to as a linear matrix inequality or LMI. An LMI constraint of the form (2.6) is a convex

constraint on x since {x ∈ Rn : F(x) < 0} is a closed and convex set. In Figure 2.2 we plot

the boundary of the positive semidefinite cone

x y

y z

 < 0 ⇐⇒ x ≥ 0, y ≥ 0, xz ≥ y2.

The following lemma is often useful to rewrite general matrix inequalities as LMIs or to simplify

SDPs.

Lemma 2.2.1 (Schur Complement) Consider the matrix X ∈ Sn, which can be partitioned
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Figure 2.2: Boundary of the convex positive semidefinite cone in S2.

as

X =

A B

BT C

 ,
then the following results hold:

(i) X � 0 if and only if A � 0 and (C−BTA−1B) � 0.

(ii) If A � 0, then X < 0 if and only if (C−BTA−1B) < 0.

It is known that SDPs can also be solved in polynomial-time using interior point algorithms,

see [VB96]. Furthermore, any LP and SOCP can be formulated as an SDP. However, it is

generally recommended to reduce SDPs to LPs or SOCPs if it is possible to do so, since they

exhibit better scalability properties than SDPs [AG03], and the solver implementations for

these problems are more mature.
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2.3 Decision Making under Uncertainty

Many real-world optimization problems involve data parameters which are subject to uncer-

tainty or cannot be estimated accurately. Failure to take this uncertainty into account may

lead to suboptimal decisions. Consider for example the following convex optimization problem.

minimize
x∈Rn

f(x, ξ̃)

subject to g(x, ξ̃) ≤ 0

x ∈ X ,

(2.7)

where ξ̃ denotes the uncertain or random vector of data parameters and X ⊆ Rn is some

convex set that is not affected by uncertainty. Note that the cost function f and constraint

function g depend on the random vector ξ̃. This model essentially represents a whole family of

optimization problems, one for each possible realization of ξ̃. Therefore, (2.7) fails to provide

a unique solution. In the remainder of this section we briefly review alternative modeling

paradigms to disambiguate (2.7).

2.3.1 Stochastic Programming

Stochastic Programming assumes that the decision maker has full and accurate information

about the probability distribution Q of the random vector ξ̃. Subsequently, stochastic pro-

gramming enables us to disambiguate problem (2.7) as follows.

minimize
x∈Rn

EQ

(
f(x, ξ̃)

)
subject to Q

(
g(x, ξ̃) ≤ 0

)
≥ 1− ε

x ∈ X ,

(2.8)

where EQ(·) denotes the expectation with respect to the random vector ξ̃ given that it follows

the probability distribution Q. The stochastic program (2.8) aims to find the optimal solution

x ∈ X that minimizes the expected value EQ(f(x, ξ̃)) of the cost function. Furthermore,

the problem requires that the uncertain constraint g(x, ξ̃) ≤ 0 is satisfied with some high
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probability 1− ε. This is formulized by the chance-constraint

Q
(
g(x, ξ̃) ≤ 0

)
≥ 1− ε, (2.9)

where ε ∈ (0, 1) denotes the risk factor that is specified by the decision maker. Note that as

the value of ε decreases, the chance constraint has to be satisfied with a higher probability.

Chance-constrained programs of the type (2.8) were first discussed by Charnes et al. [CCS58],

Miller and Wagner [MW65] and Prékopa [Pre70].

Computing the optimal solution of a chance-constrained program is notoriously difficult. In

fact, even checking the feasibility of a fixed decision x requires the computation of a multi-

dimensional integral, which becomes increasingly difficult as the dimension of the random vector

ξ̃ increases. Moreover, even though the constraint function g is convex in x, the feasible set of

chance constraint (2.9) is typically nonconvex and sometimes even disconnected [Pre70, NS06].

Thus, chance-constrained programs are generically intractable to solve.

Furthermore, in order to evaluate the chance constraint (2.9), full and accurate information

about the probability distribution Q of the random vector ξ̃ is required. However, in many

practical situations Q must be estimated from historical data and is therefore itself uncertain.

Typically, one has only partial information about Q, e.g. about its moments or its support.

Replacing the unknown distribution Q in (2.8) by an estimate Q̂ corrupted by measurement

errors may lead to over-optimistic solutions which often fail to satisfy the chance constraint

under the true distribution Q.

2.3.2 Robust Optimization

In order to disambiguate the problem (2.7), robust optimization adopts a worst-case perspec-

tive, see Ben-Tal et al. [BTEGN09] for a thorough exposition on robust optimization. In this

modelling framework, the random vector ξ̃ remains unknown, but it is believed to material-

ize within an uncertainty set U . To immunize problem (2.7) against the inherent uncertainty

in ξ̃, we minimize the worst-case cost, where the worst-case is calculated with respect to all
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realizations ξ within the uncertainty set U . This can be formalized as a min-max problem

minimize
x∈Rn

max
ξ∈U

f(x, ξ)

subject to g(x, ξ) ≤ 0 ∀ξ ∈ U

x ∈ X .

(2.10)

Problem (2.10) is often refered to as the robust counterpart of problem (2.7). For any fixed

x, the function maxξ∈U f(x, ξ) computes the worst-case realized cost given that ξ can obtain

values within U . Note that this quantity depends in a non-trivial way on the decision variable

x. Thus, the aim of the above problem is to minimize the worst-case cost. Furthermore,

problem (2.10) requires that the constraint g(x, ξ) ≤ 0 is satisfied for all realizations of ξ ∈ U .

This is formulized by the semi-infinite constraint

g(x, ξ) ≤ 0 ∀ξ ∈ U , (2.11)

which, in the context of a robust optimization problem of type (2.10), is sometimes refered to

as a robust constraint.

The shape of the uncertainty set U should reflect the modeller’s knowledge about the distri-

bution of the random vector ξ̃, e.g., full or partial information about the support and certain

moments of the random vector ξ̃. Moreover, the size of U determines the degree to which

the user wants to safeguard feasibility of the corresponding explicit inequality constraint. The

robust semi-infinite constraint (2.11) is therefore closely related to the chance constraint (2.9).

For a large class of convex uncertainty sets, the semi-infinite constraint (2.11) can be refor-

mulated in terms of a small number of tractable (i.e., linear, second-order conic, or LMI)

constraints [BTN98, BTN99]. Consider, for example, the rectangular uncertainty set defined

as

Ubox = {ξ ∈ Rn : l ≤ ξ ≤ u} ,
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where l,u ∈ Rn and l < u. Then, the following equivalences hold.

xTξ ≤ 0 ∀ξ ∈ Ubox

⇐⇒ 0 ≥ max
ξ∈Rn

{
xTξ : l ≤ ξ ≤ u

}
⇐⇒ 0 ≥ min

λ∈Rn

{
xTu+ λT(l− u) : λ ≤ x, λ ≤ 0

}
⇐⇒ ∃λ ∈ Rn : xTu+ λT(l− u) ≤ 0, λ ≤ x, λ ≤ 0

The equivalence in the third line in the above expression follows from strong linear program-

ming duality, which holds since the primal maximization problem has a nonempty feasible set,

see [BV04, §5] for a thorough review on convex duality. Note that by employing this dualiza-

tion technique, we effectively reformulated the semi-infinite constraint in terms of a tractable

system of linear constraints. Similar dualization techniques will be employed throughout this

thesis to find tractable reformulations of robust constraints.

2.3.3 Distributionally Robust Optimization

Distributionally robust optimization is closely related to both stochastic programming and

robust optimization. In contrast to stochastic programming, the distributionally robust opti-

mization framework assumes that the decision maker only has partial information about the

probability distribution Q of the random vector ξ̃, such as the first and second moments and its

support. Let P denote the set of all probability distributions that are consistent with the known

distributional properties of Q. Similar to the robust optimization framework discussed above,

distributionally robust optimization adopts a worst-case approach. Only now the worst-case

is computed over all probability distributions within the set P . Thus, distributionally robust

optimization disambiguates problem (2.7) as follows.

minimize
x∈Rn

sup
P∈P

EP

(
f(x, ξ̃)

)
subject to inf

P∈P
P
(
g(x, ξ̃) ≤ 0

)
≥ 1− ε

x ∈ X

(2.12)
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For any fixed x, the function supP∈P EP(f(x, ξ̃)) computes the worst-case expected cost, that is,

the highest expected cost evaluated over all probability distributions P within the set P . The

aim of problem (2.12) is to minimize the worst-case expected cost. Furthermore, problem (2.12)

requires that the uncertain constraint g(x, ξ̃) ≤ 0 is satisfied with some high probability 1− ε

under any probability distribution P ∈ P . This is formulized by the distributionally robust

chance constraint

P
(
g(x, ξ̃) ≤ 0

)
≥ 1− ε ∀P ∈ P ⇐⇒ inf

P∈P
P
(
g(x, ξ̃) ≤ 0

)
≥ 1− ε. (2.13)

It is easily verified that whenever x satisfies (2.13) and Q ∈ P , then x also satisfies the chance

constraint (2.9) under the true probability distribution Q. Thus, by adopting a worst-case ap-

poach, distributionally robust optimization effectively immunizes the stochastic program (2.8)

against uncertainty about the probability distribution Q.

For certain choices of P , the distributionally robust optimization problem (2.12) can be re-

formulated as a tractable convex optimization problem. Scarf [Sca58] applies distributionally

robust optimization to a single-product newsboy problem and shows that, when only the first-

and second-order moments of the demand are known, the problem can be reformulated as a

tractable optimization problem. More recently, Bertsimas and Popescu [BP02] use semidefi-

nite programming to derive tight upper and lower bounds on option prices given that only the

moments of the underlying asset prices are known. El Ghaoui et al. [EGOO03] prove that the

worst-case Value-at-Risk of a financial portfolio can be optimized by solving tractable SOCPs

and SDPs by assuming that only the first- and second-order moments as well as the support

of the asset returns are known. Delage et al. [DY10] incorporate confidence intervals for the

first- and second-order moments within the distributionally robust optimization framework.

We refer the reader to Ben-Tal et al. [BTEGN09] for an overview on tractable reformulations

of distributionally robust chance constraints.
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2.4 Portfolio Optimization and Risk Measures

Investors face the challenging problem of how to distribute their current wealth over a set of

available assets, such as stocks, bonds, and derivatives, with the goal to earn the highest possible

future wealth. One of the first mathematical models for this problem was formulated by Harry

Markowitz [Mar52]. In his Nobel prize-winning work, he observed that a rational investor does

not aim solely at maximizing the expected return of an investment, but also at minimizing its

risk. In the Markowitz model, which is also refered to as mean-variance optimization, the risk

of a portfolio is measured by the variance of the portfolio return.

Although mean-variance optimization is appropriate when the asset returns are symmetrically

distributed, it is known to result in counter intuitive asset allocations when the portfolio return

is skewed [FKD07]. This shortcoming triggered extensive research on downside risk measures.

In this section we give a brief overview on portfolio optimization, describe some popular risk

measures that will be used in this thesis, and review the concept of coherent risk measures.

2.4.1 Portfolio Optimization

A general portfolio optimization problem can be formulized as

minimize
w∈Rn

ρ(wTr̃)

subject to w ∈ W .
(2.14)

In the above problem, the vector w ∈ Rn denotes the portfolio allocation weights, namely the

percentages of wealth allocated in different assets, and r̃ denotes the Rn-valued random vector

of asset returns. The setW ⊆ Rn denotes the set of admissible portfolios. The inclusionw ∈ W

usually implies the budget constraint wTe = 1 (where e denotes the vector of 1s). Optionally,

the set W may account for bounds on the allocation vector w and/or a constraint enforcing a

minimum expected portfolio return. The random return of the portfolio is computed as wTr̃.

The risk measure ρ maps the random portfolio return to a real number which represents the risk

of the portfolio w. Thus, problem (2.14) aims to determine the portfolio with the lowest risk
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from the set W of admissible portfolios. A recent survey of portfolio optimization is provided

in the monograph [FKD07].

2.4.2 Popular Risk Measures

In finance, risk measures can be subdivided into two main categories: moment-based and

quantile-based risk measures, see [NPS09]. Moment-based risk measures are related to classical

utility theory, whereas the theory of stochastic dominance has spurred interest in quantile-based

risk measures [Lev92]. In this subsection we review three commonly used risk measures: mean-

variance, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR). The VaR and CVaR

measures will be used throughout this thesis.

Mean-Variance

The most popular moment-based risk measure trades off the expected portfolio return and

variance of the portfolio return. It is defined as

ρ(wTr̃) = −wTµ+ λwTΣw,

where µ denotes the vector of mean asset returns, Σ represents the covariance matrix of the

asset returns, and the parameter λ characterizes the risk-aversion level of the investor. As λ

increases, the risk measure puts more weight on the variance of the portfolio return and therefore

results in a higher risk estimate. The use of the mean-variance risk measure can be traced back

to Markowitz’ seminal work [Mar52]. Although mean-variance optimization is appropriate when

the asset returns are symmetrically distributed, it is known to result in counter intuitive asset

allocations when the portfolio return is skewed. This shortcoming triggered extensive research

on quantile-based risk measures, which we discuss next.
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Value-at-Risk

The most popular quantile-base risk measure is the Value-at-Risk [Jor01]. The VaR at level ε is

defined as the (1− ε)-percentile of the portfolio loss distribution, where ε is typically chosen as

1% or 5%. Put differently, VaRε(w) is defined as the smallest real number γ with the property

that −wTr̃ exceeds γ with a probability not larger than ε, that is,

VaRε(w) = min
{
γ : P{γ ≤ −wTr̃} ≤ ε

}
, (2.15)

where P denotes the distribution of the asset returns r̃. Note that (2.15) constitutes a chance-

constrained stochastic program which is non-convex under general probability distributions P,

see Section 2.3.1. Thus, VaR optimization is generically intractable. We shall investigate this

issue in much greater detail in Chapter 4.

Conditional Value-at-Risk

The Conditional Value-at-Risk, proposed by Rockafellar and Uryasev [RU02], is an alternative

quantile-based risk measure which has been gaining popularity due to its desirable computa-

tional properties. The CVaR evaluates the conditional expectation of loss above the (1 − ε)-

quantile of the portfolio loss distribution, and can be formulized as

CVaRε(w) = min
β∈R

{
β +

1

ε
EP
(
−wTr̃ − β

)+
}
. (2.16)

In contrast to VaR, the CVaR is a convex function of the portfolio weights w. Moreover, it

is known that CVaRε(w) ≥ VaRε(w) for any portfolio w ∈ W . Thus, CVaR can be used to

conservatively approximate the VaR of a portfolio. We will use this property in Chapter 5 to

derive tractable approximations for chance constrained optimization problems. Furthermore,

CVaR is known to be a coherent risk measure. The next subsection reviews what coherent risk

measures are.
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2.4.3 Coherent Risk Measures

Consider the linear space of random variables

V =
{
wTr̃ : w ∈ Rn

}
. (2.17)

The function ρ : V → R is said to be a coherent risk measure if it satisfies the following four

axioms:

(i) Subadditivity: For all ṽ1, ṽ2 ∈ V , ρ(ṽ1 + ṽ2) ≤ ρ(ṽ1) + ρ(ṽ2).

(ii) Translation Invariance: For all ṽ ∈ V and a ∈ R, ρ(ṽ + a) = ρ(ṽ)− a.

(iii) Positive Homogeneity: For all ṽ ∈ V and α ≥ 0, ρ(αṽ) = αρ(ṽ).

(iv) Monotonicity: For all ṽ1, ṽ2 ∈ V such that ṽ1 ≥ ṽ2, ρ(ṽ1) ≤ ρ(ṽ2) (where ṽ1 ≥ ṽ2 means

that ṽ1(ω) ≥ ṽ2(ω) for all elements ω of the corresponding sample space).

The four axioms that define coherency were introduced and justified by Artzner et al. [ADEH99].

The subadditivity axiom ensures that the risk associated with the sum of two assets cannot

be larger than the sum of their individual risk quantities. This property entails that financial

diversification can only reduce the risk. Translation invariance means that receiving a sure

amount of a reduces the risk quantity by a. Positive homogeneity implies that the risk measure

scales proportionally with the size of the investment. Finally, monotonicity implies that when

one investment almost surely outperforms another investment, its risk must be smaller.

From all the risk measures discussed in the previous section, only the CVaR is a coherent risk

measure. VaR fails to satisfy the subadditivity axiom and the mean-standard deviation risk

measure does not satisfy the monotonicity axiom.



Chapter 3

Robust Portfolio Optimization with

Derivative Insurance Guarantees

Robust portfolio optimization aims to maximize the worst-case portfolio return given that the

asset returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is

not too large, the resulting portfolio performs well under normal market conditions. However,

its performance may substantially degrade in the presence of market crashes, that is, if the asset

returns materialize far outside of the uncertainty set. In this chapter, we propose a novel robust

optimization model for designing portfolios that include European-style options. This model

trades off weak and strong guarantees on the worst-case portfolio return. The weak guarantee

applies as long as the asset returns are realized within the prescribed uncertainty set, while the

strong guarantee applies for all possible asset returns. The resulting model constitutes a convex

second-order cone program, which is amenable to efficient numerical solution procedures. We

evaluate the model using simulated and empirical backtests and analyze the impact of the

insurance guarantees on the portfolio performance.

22
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3.1 Introduction

Investors face the challenging problem of how to distribute their current wealth over a set

of available assets, such as stocks, bonds, and derivatives, with the goal to earn the highest

possible future wealth. One of the first mathematical models for this problem was formulated

by Harry Markowitz [Mar52]. In his Nobel prize-winning work, he observed that a rational

investor does not aim solely at maximizing the expected return of an investment, but also at

minimizing its risk. In the Markowitz model, the risk of a portfolio is measured by the variance

of the portfolio return. A practical advantage of the Markowitz model is that it reduces to a

convex quadratic program, which can be solved efficiently.

Although the Markowitz model has triggered a tremendous amount of research activities in

the field of finance, it has serious disadvantages which have discouraged practitioners from

using it. The main problem is that the means and covariances of the asset returns, which are

important inputs to the model, have to be estimated from noisy data. Hence, these estimates

are not accurate. In fact, it is fundamentally impossible to estimate the mean returns with

statistical methods to within workable precision, a phenomenon which is sometimes referred to

as mean blur [Lue98, Mer80]. Unfortunately, the mean-variance model is very sensitive to the

distributional input parameters. As a result, the model amplifies any estimation errors, yielding

extreme portfolios which perform badly in out-of-sample tests [CZ93, Bro93, Mic01, DN09].

Many attempts have been undertaken to ease this amplification of estimation errors. Black and

Litterman [BL91] suggest Bayesian estimation of the means and covariances using the market

portfolio as a prior. Jagannathan and Ma [JM03] as well as Chopra [Cho93] impose portfolio

constraints in order to guide the optimization process towards more intuitive and diversified

portfolios. Chopra et al. [CHT93] use a James-Steiner estimator for the means which tilts

the optimal allocations towards the minimum-variance portfolio, while DeMiguel et al. [DN09]

employ robust estimators.

In recent years, robust optimization has received considerable attention. Robust optimization is

a powerful modeling paradigm for decision problems subject to non-stochastic data uncertainty
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[BTN98]. The uncertain problem parameters are assumed to be unknown but confined to an

uncertainty set, which reflects the decision maker’s uncertainty about the parameters. Robust

optimization models aim to find the best decision in view of the worst-case parameter values

within these sets, see also Section 2.3.2 for an introduction to robust optimization. Ben-Tal

and Nemirovski [BTN99] propose a robust optimization model to immunize a portfolio against

the uncertainty in the asset returns. They show that when the asset returns can vary within

an ellipsoidal uncertainty set determined through their means and covariances, the resulting

optimization problem is reminiscent of the Markowitz model. This robust portfolio selection

model still assumes that the distributional input parameters are known precisely. Therefore, it

suffers from the same shortcomings as the Markowitz model.

Robust portfolio optimization can also be used to immunize a portfolio against the uncertainty

in the distributional input parameters. Goldfarb and Iyengar [GI03] use statistical methods for

constructing uncertainty sets for factor models of the asset returns and show that their robust

portfolio problem can be reformulated as a second-order cone program. Tütüncü and Koenig

[TK04] propose a model with box uncertainty sets for the means and covariances and show

that the arising model can be reduced to a smooth saddle-point problem subject to semidef-

inite constraints. Rustem and Howe [RH02] describe algorithms to solve general continuous

and discrete minimax problems and present several applications of worst-case optimization for

risk management. Rustem et al. [RBM00] propose a model that optimizes the worst-case port-

folio return under rival risk and return forecasts in a discrete minimax setting. El Ghaoui et

al. [EGOO03] show that the worst-case Value-at-Risk under partial information on the moments

can be formulated as a semidefinite program. Ben-Tal et al. [BTMN00] as well as Bertsimas

and Pachamanova [BP08] suggest robust portfolio models in a multi-period setting. Recently,

the relationship between uncertainty sets in robust optimization and coherent risk measures

[ADEH99] has been described in Natarajan et al. [NPS08] and Bertsimas and Brown [BB08],

see also Section 2.4.3 for an introduction to coherent risk measures. A recent survey of applica-

tions of robust portfolio optimization is provided in the monograph [FKD07]. Robust portfolios

of this kind are relatively insensitive to the distributional input parameters and typically out-

perform classical Markowitz portfolios [CS06].
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Robust portfolios exhibit a non-inferiority property [RBM00]: whenever the asset returns are

realized within the prescribed uncertainty set, the realized portfolio return will be greater than

or equal to the calculated worst-case portfolio return. Note that this property may fail to

hold when the asset returns happen to fall outside of the uncertainty set. In this sense, the

non-inferiority property only offers a weak guarantee. When a rare event (such as a market

crash) occurs, the asset returns can materialize far beyond the uncertainty set, and hence the

robust portfolio will remain unprotected. A straightforward way to overcome this problem is

to enlarge the uncertainty set to cover also the most extreme events. However, this can lead to

robust portfolios that are too conservative and perform poorly under normal market conditions.

In this chapter we will use portfolio insurance to hedge against rare events which are not

captured by a reasonably sized uncertainty set. Classical portfolio insurance is a well studied

topic in finance. The idea is to enrich a portfolio with specific derivative products in order to

obtain a deterministic lower bound on the portfolio return. The insurance holds for all possible

realizations of the asset returns and can therefore be qualified as a strong guarantee. Numerous

studies have investigated the integration of options in portfolio optimization models. Ahn et

al. [ABRW99] minimize the Value-at-Risk of a portfolio consisting of a single stock and a put

option by controlling the portfolio weights and the option strike price. Dert and Oldenkamp

[DO00] propose a model that maximizes the expected return of a portfolio consisting of a

single index stock and several European options while guaranteeing a maximum loss. Howe

et al. [HRS94] introduce a risk management strategy for the writer of a European call option

based on minimax using box uncertainty. Lutgens et al. [LSK06] propose a robust optimization

model for option hedging using ellipsoidal uncertainty sets. They formulate their model as a

second-order cone program which may have, in the worst-case, an exponential number of conic

constraints.

By combining robust portfolio optimization and classical portfolio insurance, we aim to provide

two layers of guarantees. The weak non-inferiority guarantee applies as long as the returns are

realized within the uncertainty set, while the strong portfolio insurance guarantee also covers

cases in which the returns are realized outside of the uncertainty set. The ideas set out in

this chapter are related to the concept of Comprehensive Robustness proposed by Ben-Tal et
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al. [BTBN06]. Comprehensive Robustness aims to control the deterioration in performance

when the uncertainties materialize outside of the uncertainty set. Our work establishes the

relationship between offering guarantees beyond the uncertainty set and portfolio insurance.

Indeed, we will show that in order to control the deterioration in portfolio return, our model

will allocate wealth in put and call options. The premia of these options will determine the

cost to satisfy the guarantee levels. The contributions in this chapter can be summarized as

follows:

(1) We extend the existing robust portfolio optimization models to include options as well as

stocks. Because option returns are convex piece-wise linear functions of the underlying

stock returns, options cannot be treated as additional stocks, and the use of an ellipsoidal

uncertainty set is no longer adequate. Under a no short-sales restriction on the options, we

demonstrate how our model can be reformulated as a convex second-order cone program

that scales gracefully with the number of stocks and options. We also show that our model

implicitly minimizes a coherent risk measure [ADEH99]. Coherency is a desirable property

from a risk management viewpoint.

(2) We describe how the options in the portfolio can be used to obtain additional strong guar-

antees on the worst-case portfolio return even when the stock returns are realized outside

of the uncertainty set. We show that the arising Insured Robust Portfolio Optimization

model trades off the guarantees provided through the non-inferiority property and the

derivative insurance strategy. Using conic duality, we reformulate this model as a tractable

second-order cone program.

(3) We perform a variety of numerical experiments using simulated as well as real market data.

In our simulated tests we illustrate the tradeoff between the non-inferiority guarantee and

the strong insurance guarantee. We also evaluate the performance of the Insured Robust

Portfolio Optimization model under “normal” market conditions, in which the asset prices

are governed by geometric Brownian motions, as well as in a market environment in which

the prices experience significant downward jumps. The impact of the insurance guarantees

on the portfolio performance is also analyzed using real market prices.
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The rest of the chapter is organized as follows. In Section 3.2 we review robust portfolio opti-

mization and elaborate on the non-inferiority guarantee. In Section 3.3 we show how a portfolio

that contains options can be modelled in a robust optimization framework and how strong in-

surance guarantees can be imposed on the worst-case portfolio return. We also demonstrate

how the resulting model can be formulated as a tractable second-order cone program. In Sec-

tion 3.4 we report on numerical tests in which we compare the insured robust model with the

standard robust model as well as the classical mean-variance model. We run simulated as well

as empirical backtests. Conclusions are drawn in Section 3.5, and a notational reference table

is provided in Appendix 3.6.1.

3.2 Robust Portfolio Optimization

Consider a market consisting of n stocks. Moreover, denote the current time as t = 0 and the

end of investment horizon as t = T . A portfolio is completely characterized by a vector of

weights w ∈ Rn, whose elements add up to 1. The component wi denotes the percentage of

total wealth which is invested in the ith stock at time t = 0. Furthermore, let r̃ denote the

random vector of total stock returns over the investment horizon, which takes values in Rn
+.1

By definition, the investor will receive r̃i dollars at time T for every dollar invested in stock i

at time 0. The return vector r̃ is representable as

r̃ = µ+ ε̃, (3.1)

where µ = E[r̃] ∈ Rn
+ denotes the vector of mean returns and ε̃ = r̃−E[r̃] stands for the vector

of residual returns. We assume that Cov[r̃] = E[ε̃ε̃T] = Σ ∈ Sn is strictly positive definite.

The return r̃p on some portfolio w is given by

r̃p = wTr̃ = wTµ+wTε̃.

1In this chapter, we will only use total returns because doing so considerably simplifies the notation and
mathematical derivations. In Chapter 4, however, we will use relative returns, which are more commonly used
in the literature.
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Markowitz suggested to determine an optimal tradeoff between the expected return E[r̃p] and

the risk Var[r̃p] of the portfolio [Mar52]. The optimal portfolio can thus be found by solving

the following convex quadratic program

max
w∈Rn

{
wTµ− λwTΣw | wTe = 1, l ≤ w ≤ u

}
, (3.2)

where the parameter λ characterizes the investor’s risk-aversion, the constant vectors l,u ∈ Rn

are used to model portfolio constraints, and e ∈ Rn denotes a vector of 1s.

3.2.1 Basic Model

Robust optimization offers a different interpretation of the classical Markowitz problem. Ben-

Tal and Nemirovski [BTN99] argue that the investor wishes to maximize the portfolio return

and thus attempts to solve the uncertain linear program

max
w∈Rn

{
wTr̃ | wTe = 1, l ≤ w ≤ u

}
.

However, this problem is not well-defined. It constitutes a whole family of linear programs. In

fact, for each return realization we obtain a different optimal solution. In order to disambiguate

the investment decisions, robust optimization adopts a worst-case perspective. In this modeling

framework, the return vector r̃ remains unknown, but it is believed to materialize within

an uncertainty set Ur. To immunize the portfolio against the inherent uncertainty in r̃, we

maximize the worst-case portfolio return, where the worst-case is calculated with respect to all

asset returns in Ur. This can be formalized as a max-min problem

max
w∈Rn

{
min
r∈Ur

wTr | wTe = 1, l ≤ w ≤ u
}
. (3.3)

The objective function in (3.3) represents the worst-case portfolio return should r̃ be realized

within Ur. Note that this quantity depends in a non-trivial way on the portfolio vector w.
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There are multiple ways to specify Ur. A natural choice is to use an ellipsoidal uncertainty set

Ur =
{
r : (r − µ)TΣ−1(r − µ) ≤ δ2

}
. (3.4)

As shown in an influential paper by El Ghaoui et al. [EGOO03], when r̃ has finite second-order

moments, then, the choice

δ =

√
p

1− p
for p ∈ [0, 1) and δ = +∞ for p = 1 (3.5)

implies the following probabilistic guarantee for any portfolio w.2

P
{
wTr̃ ≥ min

r∈Ur
wTr

}
≥ p (3.6)

The investor controls the size of the uncertainty set by choosing the parameter p. For p close to

0, the ellipsoid shrinks to {µ}, and therefore the investor is only concerned about the average

performance of the portfolio. When p is close to 1, the ellipsoid becomes very large, which

implies that the investor wants to safeguard against a large set of possible return outcomes.

Thus, the choice of uncertainty set size depends on the risk attitude of the investor.

It is shown in [BTN99] that for ellipsoidal uncertainty sets of the type (3.4), problem (3.3)

reduces to a convex second-order cone program [LVBL98].

max
w∈Rn

{
wTµ− δ

∥∥Σ1/2w
∥∥

2

∣∣∣ wTe = 1, l ≤ w ≤ u
}

(3.7)

Note that (3.7) is very similar to the classical Markowitz model (3.2). The main difference is

that the standard deviation
∥∥Σ1/2w

∥∥
2

=
√
wTΣw replaces the variance. The parameter δ is

the analogue of λ, which determines the risk-return tradeoff. It can be shown that (3.2) and

(3.7) are equivalent problems in the sense that for every λ there is some δ for which the two

problems have the same optimal solution.

2In Chapter 4, we will go into much greater detail about the probabilistic guarantees associated with the
size of the uncertainty set. For now, we only use (3.5) as a rule to select the uncertainty set size, without
emphasizing the probabilistic interpretation.
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3.2.2 Parameter Uncertainty

In the Introduction we outlined the shortcomings of the Markowitz model, which carry over

to the equivalent mean-standard deviation model (3.7): both models are highly sensitive to

the distributional input parameters (µ,Σ). These parameters, in turn, are difficult to estimate

from noisy historical data. The optimization problems (3.2) and (3.7) amplify these estimation

errors, yielding extreme portfolios that perform poorly in out-of-sample tests. It turns out that

robust optimization can also be used to immunize the portfolio against uncertainties in µ and

Σ. The starting point of such a robust approach is to assume that the true parameter values

are unknown but contained in some uncertainty sets which reflect the investor’s confidence in

the parameter estimates.

Assume that the true (but unobservable) mean vector µ ∈ Rn
+ is known to belong to a set

Uµ, and the true covariance matrix Σ ∈ Sn is known to belong to a set UΣ. Robust portfolio

optimization aims to find portfolios that perform well under worst-case values of µ and Σ

within the corresponding uncertainty sets. The parameter robust generalization of problem

(3.7) can thus be formulated as

max
w∈Rn

{
min
µ∈Uµ

wTµ− δ max
Σ∈UΣ

∥∥Σ1/2w
∥∥

2

∣∣∣ wTe = 1, l ≤ w ≤ u
}
. (3.8)

There are multiple ways to specify the new uncertainty sets Uµ and UΣ. Let µ̂ be the sample

average estimate of µ, and Σ̂ the sample covariance estimate of Σ. In the remainder, we will

assume that the estimate Σ̂ is reasonably accurate such that there is no uncertainty about it.

This assumption is justified since the estimation error in µ̂ by far outweighs the estimation

error in Σ̂, see e.g. [CZ93]. Thus, we may view the uncertainty set for the covariance matrix

as a singleton, UΣ = {Σ̂}. We note that all the following results can be generalized to cases in

which UΣ is not a singleton. This, however, leads to more convoluted model formulations. If the

stock returns are serially independent and identically distributed, we can invoke the Central

Limit Theorem to conclude that the sample mean µ̂ is approximately normally distributed.
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Henceforth we will thus assume that

µ̂ ∼ N (µ,Λ), Λ = (1/E)Σ, (3.9)

where E is the number of historical samples used to calculate µ̂. It is therefore natural to

assume an ellipsoidal uncertainty set for the means,

Uµ =
{
µ : (µ− µ̂)TΛ−1(µ− µ̂) ≤ κ2

}
, (3.10)

where κ =
√
q/(1− q) for some q ∈ [0, 1). The confidence level q has an analog interpretation

as the parameter p in (3.6). Using the above specifications of the uncertainty sets, problem

(3.8) reduces to

max
w∈Rn

{
wTµ̂− κ

∥∥Λ1/2w
∥∥

2
− δ

∥∥∥Σ̂1/2w
∥∥∥

2

∣∣∣ wTe = 1, l ≤ w ≤ u
}
, (3.11)

see [CS06]. By using the relations (3.9), one easily verifies that (3.11) is equivalent to

max
w∈Rn

{
wTµ̂−

(
κ√
E

+ δ

)∥∥∥Σ̂1/2w
∥∥∥

2

∣∣∣ wTe = 1, l ≤ w ≤ u
}
.

This problem is equivalent to (3.7) with the risk parameter δ shifted by κ/
√
E. Therefore, it is

also equivalent to the standard Markowitz model. Hence, seemingly nothing has been gained

by incorporating parameter uncertainty into the model (3.7).

Ceria and Stubbs [CS06] demonstrate that robust optimization can nevertheless be used to

systematically improve on the common Markowitz portfolios (which are optimal in (3.2), (3.7),

and (3.11)). The key idea is to replace the elliptical uncertainty set (3.10) by a less conservative

one. Since the estimated expected returns µ̂ are symmetrically distributed around µ, we expect

that the estimation errors cancel out when summed over all stocks. It may be more natural

and less pessimistic to explicitly incorporate this expectation into the uncertainty model. To
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this end, Ceria and Stubbs set

Uµ =
{
µ : (µ− µ̂)TΛ−1(µ− µ̂) ≤ κ2, eT(µ− µ̂) = 0

}
. (3.12)

With this new uncertainty set problem (3.8) reduces to

max
w∈Rn

{
wTµ̂− κ

∥∥Ω1/2w
∥∥

2
− δ

∥∥∥Σ̂1/2w
∥∥∥

2

∣∣∣ wTe = 1, l ≤ w ≤ u
}
, (3.13)

where

Ω = Λ− 1

eTΛe
ΛeeTΛ, (3.14)

see [CS06]. A formal derivation of the optimization problem (3.13) is provided in Theorem 3.6.1

in Appendix 3.6.

Example 3.2.1 We demonstrate the significance of parameter uncertainty on the optimal port-

folios with a simple example. Consider a market consisting of two stocks. We assume the their

returns are jointly normally distributed with mean vector µ and covariance matrix Σ set to

µ =

1.10

1.10

 , and Σ =

 0.04 0.024

0.024 0.04

 . (3.15)

Thus, both stocks have a mean return of 1.10 and volatility of 0.20, and are positively correlated

with coefficient 0.6.

Of course, in reality, these parameters are not known precisely and must be estimated from

historical data. To this end, we draw E = 250 samples from the normal distribution with the

above parameters and compute the sample means and covariance matrix by which we obtain

µ̂ =

1.0891

1.0970

 , and Σ̂ =

0.0427 0.0228

0.0228 0.0369

 . (3.16)

Note that the estimated parameters are close but not equal to the true parameters due to esti-

mation errors.
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Next, we assess the impact of the parameter estimation errors on the optimal portfolios. To

this end, we first solve problem (3.7) with λ = 1 using the true parameter values in (3.15) and

by constraining the weights to be nonnegative. Thus, we solve the following problem.

maximize
w1,w2

1.10w1 + 1.10w2 −
√

0.04w2
1 + 0.048w1w2 + 0.04w2

2

subject to w1 + w2 = 1

w1 ≥ 0, w2 ≥ 0

The above problem is solved using the SDPT3 optimization toolkit [TTT03] and we determine

the optimal portfolio weights to be w∗true = [0.5 0.5]T. The equally weighted portfolio solution

makes sense since both stocks returns have the same mean and standard deviation.

We now solve the same problem using the estimated parameters values in (3.16).

maximize
w1,w2

1.0891w1 + 1.0970w2 −
√

0.0427w2
1 + 0.0456w1w2 + 0.0369w2

2

subject to w1 + w2 = 1

w1 ≥ 0, w2 ≥ 0

The optimal portfolio solution of the above problem is determined to be w∗est = [0.374 0.626]T.

Note that w∗est is significantly different from w∗true due to the estimation errors. In fact, the

absolute error is |w∗est −w∗true| = 25%.

We now focus on problem (3.13), which explicitly accounts for parameter uncertainty in the

means. Firstly, we compute the Ω matrix using equation (3.14) and we obtain

Ω =

 3.382 −3.382

−3.382 3.382

× 10−5.

Next, we solve the following instance of problem (3.13) with κ = 2, which indicates that we are
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uncertain about the mean estimates.

maximize
w1,w2

1.0891w1 + 1.0970w2 − 2× 10−5
√

11.4379w2
1 − 6.7640w1w2 + 11.4379w2

2

−
√

0.0427w2
1 + 0.0456w1w2 + 0.0369w2

2

subject to w1 + w2 = 1

w1 ≥ 0, w2 ≥ 0

The optimal portfolio solution of the above problem is w∗rob = [0.495 0.505]T. Note that w∗rob

lies significantly closer to w∗true than w∗est. In fact, the absolute error is |w∗rob − w∗true| = 1%.

This simple example demonstrates that the robust portfolio optimization model (3.13) produces

portfolios which are less sensitive to estimation errors.

3.2.3 Uncertainty Sets with Support Information

For ease of exposition, consider again the basic model of Section 3.2.1. When the uncertainty

set Ur becomes excessively large, as is the case when δ → +∞ or, equivalently, when p → 1

(see (3.5)), Ur may extend beyond the support of r̃, which coincides with the positive orthant

of Rn. The resulting portfolios can then become unnecessarily conservative. To overcome this

deficiency, we modify Ur defined in (3.4) by including a non-negativity constraint

U+
r =

{
r ≥ 0 : (r − µ)TΣ−1(r − µ) ≤ δ2

}
. (3.17)

It can be shown that problem (3.3) with Ur replaced by U+
r is equivalent to

max
w,s∈Rn

{
µT(w − s)− δ

∥∥Σ1/2(w − s)
∥∥

2

∣∣∣ wTe = 1, s ≥ 0, l ≤ w ≤ u
}
. (3.18)

Remark 3.2.1 (Relation to coherent risk measures) Problem (3.18) can be shown to im-

plicitly minimize a coherent downside risk measure [ADEH99] associated with the underlying

uncertainty set, see Section 2.4.3 for an overview of coherent risk measures. Natarajan et

al. [NPS08] show that there exists a one-to-one correspondence between uncertainty sets and

risk measures (see also [BB08]). In what follows, we will briefly explain this correspondence in
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the context of problem (3.18). Introduce a linear space of random variables

V =
{
wTr̃ : w ∈ Rn

}
, (3.19)

and define the risk measure ρ : V → R through

ρ(wTr̃) = max
r

{
−wTr | r ∈ U+

r

}
(3.20)

= min
s≥0
−µT(w − s) + δ

∥∥Σ1/2(w − s)
∥∥

2
.

It can be seen that problem (3.18) is equivalent to the risk minimization problem

min
w

{
ρ
(
wTr̃

)
| eTw = 1, l ≤ w ≤ u

}
. (3.21)

Since the feasible set in (3.20) is a subset of the support of r̃, the risk measure ρ is coherent, see

[NPS08, Theorem 4]. Moreover, ρ can be viewed as a downside risk measure since it evaluates

to worst-case return over an uncertainty set centered around the expected asset return vector.

As in Section 3.2.2, model (3.18) may be improved by immunizing it against the uncertainty

in the distributional input parameters. Using similar arguments as in Theorem 3.6.1, it can be

shown that the parameter robust variant of problem (3.18),

max
w,s

{
min
µ∈Uµ

µT(w − s)− δ max
Σ∈UΣ

∥∥Σ1/2(w − s)
∥∥

2

∣∣∣ wTe = 1, s ≥ 0, l ≤ w ≤ u
}
,

is equivalent to

max
w,s,v

{
µ̂Tv − κ

∥∥Ω1/2v
∥∥

2
− δ

∥∥∥Σ̂1/2v
∥∥∥

2

∣∣∣ wTe = 1, w − s = v, s ≥ 0, l ≤ w ≤ u
}
. (3.22)

We note that we could have directly obtained (3.22) from the basic model (3.3) by defining the

uncertainty set for the returns as

U+
r,µ =

{
r ≥ 0 : ∃µ ∈ Uµ, (r − µ)TΣ−1(r − µ) ≤ δ2

}
(3.23)
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where Uµ is defined as in (3.12). The uncertainty set U+
r,µ accounts for the uncertainty in the

returns whilst taking into consideration that the centroid µ of U+
r , as defined in (3.17), has to

be estimated and is therefore also subject to uncertainty.

Problem (3.22) implicitly minimizes a coherent risk measure associated with the uncertainty

set U+
r,µ. Coherency holds since U+

r,µ is a subset of the support of r̃, see Remark 3.2.1. Some

risk-tolerant investors may not want to minimize a risk measure without imposing a constraint

on the portfolio return. Taking into account the uncertainty in the expected asset returns

motivates us to constrain the worst-case expected portfolio return,

min
µ∈Uµ

wTµ ≥ µtarget,

where µtarget represents the return target the investor wishes to attain in average. This semi-

infinite constraint can be reformulated as a second-order cone constraint of the form

wTµ̂− κ
∥∥Ω1/2w

∥∥
2
≥ µtarget. (3.24)

The optimal portfolios obtained from problem (3.22), with or without the return target con-

straint (3.24), provide certain performance guarantees. They exhibit a non-inferiority property

in the sense that, as long as the asset returns materialize within the prescribed uncertainty set,

the realized portfolio return never falls below the optimal value of problem (3.22). However,

no guarantees are given when the asset returns are realized outside of the uncertainty set.

In Section 3.3 we suggest the use of derivatives to enforce strong performance guarantees, which

will complement the weak guarantees provided by the non-inferiority property.

3.3 Insured Robust Portfolio Optimization

Since their introduction in the second half of the last century, options have been praised for

their ability to give stock holders protection against adverse market fluctuations [Mac92]. A
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standard option contract is determined by the following parameters: the premium or price of

the option, the underlying security, the expiration date, and the strike price. A put (call) option

gives the option holder the right, but not the obligation, to sell to (buy from) the option writer

the underlying security by the expiration date and at the prescribed strike price. American

options can be exercised at any time up to the expiration date, whereas European options

can be exercised only on the expiration date itself. We will only work with European options,

which expire at the end of investment horizon, that is, at time T . We restrict attention to

these instruments because of their simplicity and since they fit naturally in the single period

portfolio optimization framework of the previous section.

We now briefly illustrate how options can be used to insure a stock portfolio. An option’s payoff

function represents its value at maturity as a function of the underlying stock price ST . For

put and call options with strike price K, the payoff functions are thus given by

Vput(ST ) = max{0, K − ST} and Vcall(ST ) = max{0, ST −K}, (3.25)

respectively. Assume now that we hold a portfolio of a single long stock and a put option on

this stock with strike price K. Then, the payoff of the portfolio amounts to

Vpf(ST ) = ST + Vput(ST ) = max{ST , K}.

This shows that the put option with strike price K prevents the portfolio value at maturity

from dropping below K. Of course, this insurance comes at the cost of the option premium,

which has to be paid at the time when the option contract is negotiated.

Similarly, assume that we hold a portfolio of a single shorted stock and a call option on this

stock with strike price K. Then, the payoff function of this portfolio is

Vpf(ST ) = −ST + Vcall(ST ) = max{−ST ,−K},

which insures the portfolio value at maturity against falling below −K.
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Although we focus on European options expiring at time T , all models to be developed in

this chapter remain valid for American options exercisable at time T . We emphasize that the

timing flexibility of American options cannot be exploited in the single-period setting under

consideration, and therefore American options are usually too expensive for our purposes.

Nevertheless, if there are only very few European options expiring at the end of the investment

horizon, it may be beneficial to include American options into our portfolio to increase the

spectrum of available strike prices.

3.3.1 Robust Portfolio Optimization with Options

Assume that there are m European options in our market, each of which has one of the n

stocks as an underlying security. We denote the initial investment in the options by the vector

wd ∈ Rm. The component wdi denotes the percentage of total wealth which is invested in

the ith option at time t = 0. A portfolio is now completely characterized by a joint vector

(w,wd) ∈ Rn+m, whose elements add up to 1. In what follows, we will forbid short-sales of

options and therefore require that wd ≥ 0. Short-selling of options can be very risky, and

therefore the imposed restriction should be in line with the preferences of a risk-averse investor.

The return r̃p of some portfolio (w,wd) is given by

r̃p = wTr̃ + (wd)Tr̃d, (3.26)

where r̃d represents the vector of option returns. It is important to note that r̃d is uniquely

determined by r̃, that is, there exists a function f : Rn → Rm such that r̃d ≡ f(r̃).

Let option j be a call with strike price Kj on the underlying stock i, and denote the return and

the initial price of the option by r̃dj and Cj, respectively. If Si0 denotes the initial price of stock

i, then its end-of-period price can be expressed as Si0r̃i. Using the above notation, we can now



3.3. Insured Robust Portfolio Optimization 39

explicitly express the return r̃dj as a convex piece-wise linear function of r̃i,

fj(r̃) =
1

Cj
max

{
0, Si0r̃i −Kj

}
= max {0, aj + bj r̃i} , with aj = −Kj

Cj
< 0 and bj =

Si0
Cj

> 0. (3.27a)

Similarly, if r̃dj is the return of a put option with price Pj and strike price Kj on the underlying

stock i, then r̃dj is representable as a slightly different convex piece-wise linear function of r̃i,

fj(r̃) = max {0, aj + bj r̃i} , with aj =
Kj

Pj
> 0 and bj = −S

i
0

Pj
< 0. (3.27b)

Using the above notation, we can write the vector of option returns r̃d compactly as

r̃d = f(r̃) = max {0,a+ Br̃} , (3.28)

where a ∈ Rm, B ∈ Rm×n are known constants determined through (3.27a) and (3.27b), and

‘max’ denotes the component-wise maximization operator.

As in Section 3.2.3, we adopt the view that the investor wishes to maximize the worst-case

portfolio return whilst assuming that the stock returns r̃ will materialize within the uncertainty

set U+
r as defined in (3.17). This problem can be formalized as

max
w,wd

 min
r∈U+

r

rd=f(r)

wTr + (wd)Trd
∣∣∣ eTw + eTwd = 1, l ≤ w ≤ u, wd ≥ 0

 , (3.29)

which is equivalent to

maximize φ (3.30a)

subject to w ∈ Rn, wd ∈ Rm, φ ∈ R

wTr + (wd)Trd ≥ φ ∀r ∈ U+
r , r

d = f(r) (3.30b)

eTw + eTwd = 1 (3.30c)

l ≤ w ≤ u, wd ≥ 0. (3.30d)
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Note that the worst-case objective is reexpressed in terms of the semi-infinite constraint (3.30b),

and at optimality, φ represents the worst-case portfolio return. In the remainder we will work

with the epigraph formulation (3.30) instead of the max-min formulation (3.29) because it

enables us to incorporate portfolio insurance constraints in a convenient way, see Section 3.3.2.

The constraint (3.30b) looks intractable, but it can be reformulated in terms of finitely many

conic constraints.

Theorem 3.3.1 Problem (3.30) is equivalent to

maximize φ (3.31a)

subject to w ∈ Rn, wd ∈ Rm, y ∈ Rm, s ∈ Rn, φ ∈ R

µT(w + BTy − s)− δ
∥∥Σ1/2(w + BTy − s)

∥∥
2

+ aTy ≥ φ (3.31b)

eTw + eTwd = 1 (3.31c)

0 ≤ y ≤ wd, s ≥ 0 (3.31d)

l ≤ w ≤ u, wd ≥ 0, (3.31e)

which is a tractable second-order cone program.

Proof Assume first that δ > 0. We observe that the semi-infinite constraint (3.30b) can be

reexpressed in terms of the solution of a subordinate minimization problem,

min
r∈Ur
rd=f(r)

wTr + (wd)Trd ≥ φ. (3.32)

By using the definitions of the function f and the set U+
r , we obtain a more explicit represen-
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tation for this subordinate problem.

minimize wTr + (wd)Trd

subject to r ∈ Rn, rd ∈ Rm∥∥Σ−1/2(r − µ)
∥∥

2
≤ δ

r ≥ 0

rd ≥ 0

rd ≥ a+ Br

(3.33)

For any fixed portfolio vector (w,wd) feasible in (3.30), problem (3.33) represents a convex

second-order cone program. Note that since wd ≥ 0 for any admissible portfolio, (3.33) has an

optimal solution (r, rd) which satisfies the relation (3.28). The dual problem associated with

(3.33) reads:

maximize µT(w + BTy − s)− δ
∥∥Σ1/2(w + BTy − s)

∥∥
2

+ aTy

subject to y ∈ Rm, s ∈ Rn

0 ≤ y ≤ wd, s ≥ 0

(3.34)

Note that strong conic duality holds since the primal problem (3.33) is strictly feasible for

δ > 0, see [AG03, LVBL98]. Thus, both the primal and dual problems (3.33) and (3.34) are

feasible and share the same objective values at optimality. This allows us to replace the inner

minimization problem in (3.32) by the maximization problem (3.34). The requirement that the

optimal value of (3.34) be larger than or equal to φ is equivalent to the assertion that there

exist y ∈ Rm, s ∈ Rn feasible in (3.34) whose objective value is larger than or equal to φ. This

justifies the constraints (3.31b) and (3.31d). All other constraints and the objective function

in (3.31) are the same as in (3.30), and thus the two problems are equivalent.

We now assume that δ = 0. Then, by definition, the uncertainty set U+
r = {µ} and rd = f(µ).
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Therefore, constraint (3.30b) reduces to

µTw + f(µ)Twd ≥ φ

⇐⇒ µTw + (max {0, a+ Bµ})Twd ≥ φ

⇐⇒ µTw + max
0≤y≤wd

{
aTy + µTBTy

}
≥ φ

⇐⇒ max
0≤y≤wd
s≥0

{
µT(w + BTy − s) + aTy

}
≥ φ,

where the last equivalence holds because µ ≥ 0. Constraint (3.30b) is thus equivalent to (3.31b)

and (3.31d).

Observe that in the absence of options we must set wd = 0, which implies via constraint (3.31d)

that y = 0. Thus, (3.31) reduces to (3.18), that is, the robust portfolio optimization problem

of a stock only portfolio.

We note that Lutgens et al. [LSK06] propose a robust portfolio optimization model that incor-

porates options and also allows short-sales of options. However, their problem reformulation

contains, in the worst case, an exponential amount of second-order constraints whereas our

reformulation (3.31) only contains a single conic constraint at the cost of excluding short-sales

of options.

Example 3.3.1 Consider a market consisting of a stock and a European put option written on

this stock. Assume that the stock has an expected monthly return of 1.01 and monthly volatility

of 9%. The initial price of the stock is S0 = $100. The option matures in 21 days and has a

strike price of K = $100. Furthermore, we assume that the price of the put option is P = $3.58.

In this example we wish to compute the optimal portfolio containing these two assets using

model (3.31). We assume that the modeler assigns p = 70% uncertainty to the stock return.

Thus, using equation (3.5), we obtain δ = 1.53. Now we compute the option specific multipliers
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a and b, see (3.27b). More specifically, we have

a =
K

P
=

100

3.58
= 27.93 and b = −S0

P
= − 100

3.58
= −27.93.

We now insert the above parameter values into model (3.31) and we obtain

maximize φ

subject to w ∈ R, wd ∈ R, y ∈ R, s ∈ R, φ ∈ R

1.01(w − 27.93y − s)− 1.53 ‖0.09(w − 27.93y − s) + 27.93y‖2 ≥ φ

w + wd = 1

0 ≤ y ≤ wd, s ≥ 0

w ≥ 0, wd ≥ 0.

We solve the above problem using SDPT3 [TTT03] and we obtain the optimal solution values

w∗ = 0.9654 and wd∗ = 0.0346. Thus, the majority of the wealth is invested in the stock whereas

the remainder is invested in the put option to hedge away the downside risk. In fact, the optimal

amount of units of the stock in the portfolio is w∗/S0 = 0.9654/100 = 0.0097 and the optimal

amount of units of the put option is wd∗/P = 0.0346/3.58 = 0.0097. Thus, the optimal solution

is to match the investment of stock with the option precisely.

As in Section 3.2.3, one can immunize model (3.30) against estimation errors in µ̂. If we replace

the uncertainty set U+
r by U+

r,µ defined in (3.23), then problem (3.30) reduces to the following

second-order cone program similar to (3.31).

maximize φ

subject to µ̂Tv − κ
∥∥Ω1/2v

∥∥
2
− δ

∥∥∥Σ̂1/2v
∥∥∥

2
+ aTy ≥ φ

w + BTy − s = v, and (3.31c), (3.31d), (3.31e)

(3.35)

This model guarantees the optimal portfolio return to exceed φ conditional on the stock returns

r̃ being realized within the uncertainty set U+
r,µ. In what follows, we will thus refer to φ as the
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conditional worst-case return.

3.3.2 Robust Portfolio Optimization with Insurance Guarantees

We now augment model (3.35) by requiring the realized portfolio return to exceed some fraction

θ ∈ [0, 1] of φ under every possible realization of the return vector r̃. This requirement is

enforced through a semi-infinite constraint of the form

wTr + (wd)Trd ≥ θφ ∀r ≥ 0, rd = f(r). (3.36)

Model (3.35) with the extra constraint (3.36) provides two layers of guarantees: the weak

non-inferiority guarantee applies as long as the returns are realized within the uncertainty

set, while the strong portfolio insurance guarantee (3.36) also covers cases in which the stock

returns are realized outside of U+
r,µ.3 The level of the portfolio insurance guarantee is expressed

as a percentage θ of the conditional worst-case portfolio return φ, which can be interpreted as

the level of the non-inferiority guarantee. This reflects the idea that the derivative insurance

strategy only has to hedge against certain extreme scenarios, which are not already covered

by the non-inferiority guarantee. It also prevents the portfolio insurance from being overly

expensive. The Insured Robust Portfolio Optimization model can be formulated as

maximize φ (3.37a)

subject to w ∈ Rn, wd ∈ Rm, φ ∈ R

wTr + (wd)Trd ≥ φ ∀r ∈ U+
r,µ, r

d = f(r) (3.37b)

wTr + (wd)Trd ≥ θφ ∀r ≥ 0, rd = f(r) (3.37c)

eTw + eTwd = 1 (3.37d)

l ≤ w ≤ u, wd ≥ 0. (3.37e)

3In reality one has to also consider counterparty risk of the options, but this is beyond the scope of this
thesis.
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Note that the conditional worst-case return φ drops when the uncertainty set U+
r,µ increases. At

the same time, the required insurance level decreases, and hence the insurance premium drops

as well. This manifests the tradeoff between the non-inferiority and insurance guarantees. In

Proposition 3.3.1 below we show that when the highest possible uncertainty is assigned to

the returns (by setting p = 1, see (3.5)), or the highest insurance guarantee is demanded (by

setting θ = 1), the same optimal conditional worst-case return is obtained. Intuitively, this

can be explained as follows. When the uncertainty set covers the whole support, then the

insurance guarantee adds nothing to the non-inferiority guarantee. Conversely, the highest

possible insurance is independent of the size of the uncertainty set.

Proposition 3.3.1 If u ≥ 0, then the optimal objective value of problem (3.37) for p = 1

coincides with the optimal value obtained for θ = 1.

Proof Since u ≥ 0, there are feasible portfolios with w ≥ 0. Thus, φ ≥ θφ ≥ 0 at optimality.

For p = 1, the uncertainty sets in (3.37b) and (3.37c) coincide, which implies that (3.37c)

becomes redundant. For θ = 1, on the other hand, (3.37b) becomes redundant. In both cases

we end up with the same constraint set. Thus, the claim follows.

Although we exclusively use uncertainty sets of the type (3.23), the models in this chapter do

not rely on any assumptions about the size or shape of U+
r,µ and can be extended to almost any

other geometry. We note that for the models to be tractable, it must be possible to describe

U+
r,µ through finitely many linear or conic constraints.

Problem (3.37) involves two semi-infinite constraints: (3.37b) and (3.37c). In Theorem 3.3.2

we show that (3.37) still has a reformulation as a tractable conic optimization problem.
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Theorem 3.3.2 Problem (3.37) is equivalent to the following second-order cone program.

maximize φ

subject to w ∈ Rn, s ∈ Rn, wd ∈ Rm, y ∈ Rm, z ∈ Rm, φ ∈ R

µ̂Tv − κ
∥∥Ω1/2v

∥∥
2
− δ

∥∥∥Σ̂1/2v
∥∥∥

2
+ aTy ≥ φ

aTz ≥ θφ

w + BTy − s = v

w + BTz ≥ 0

eTw + eTwd = 1

0 ≤ y ≤ wd, 0 ≤ z ≤ wd,

s ≥ 0, wd ≥ 0, l ≤ w ≤ u.

Proof We already know how to reexpress (3.37b) in terms of finitely many conic constraints.

Therefore, we now focus on the reformulation of (3.37c).

As usual, we first reformulate (3.37c) in terms of a subordinate minimization problem,

min
r≥0

rd=f(r)

wTr + (wd)Trd ≥ θφ. (3.38)

By using the definition of the function f and the fact that wd ≥ 0, the left-hand side of (3.38)

can be reexpressed as the linear program

minimize wTr + (wd)Trd

subject to r ∈ Rn, rd ∈ Rm

r ≥ 0

rd ≥ 0

rd ≥ a+ Br.

(3.39)
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The dual of problem (3.39) reads

maximize aTz

subject to z ∈ Rm

w + BTz ≥ 0

0 ≤ z ≤ wd.

(3.40)

Strong linear duality holds because the primal problem (3.39) is manifestly feasible. Therefore,

the optimal objective value of problem (3.40) coincides with that of problem (3.39), and we

can substitute (3.40) into the constraint (3.38). This leads to the postulated reformulation in

(3.38).

Note that problem (3.38) implicitly minimizes a coherent risk measure determined through the

uncertainty set

{(r, rd) : r ∈ U+
r,µ, r

d = f(r)}. (3.41)

Coherency holds since this uncertainty set is a subset of the support of the random vector

(r̃, r̃d), see Remark 3.2.1. A risk-tolerant investor may want to move away from the minimum

risk portfolio. This is achieved by appending an expected return constraint to the problem:

E[r̃p] = wTµ+ (wd)TE[max {0,a+ Br̃}] ≥ µtarget. (3.42)

For any distribution of r̃, we can evaluate the expected return of the options via sampling.

Since sampling is impractical when the expected returns are ambiguous, one may alternatively

use a conservative approximation of the return target constraint (3.42),

wTµ+ (wd)T(max {0,a+ Bµ}) ≥ µtarget. (3.43)

Indeed, (3.42) is less restrictive than (3.43) by Jensen’s inequality. To account for the uncer-



48 Chapter 3. Robust Portfolio Optimization with Derivative Insurance Guarantees

tainty in the estimated means, we can further robustify (3.43) as follows,

maximize
q∈Rm

µT(w + BTq) + aTq

subject to 0 ≤ q ≤ wd

 ≥ µtarget ∀µ ∈ Uµ,

which is equivalent to

maximize
q∈Rm

µ̂T(w + BTq)− κ
∥∥Ω1/2(w + BTq)

∥∥
2

+ aTq

subject to 0 ≤ q ≤ wd

 ≥ µtarget.

As a third alternative, the investor may wish to disregard the expected returns of the options

altogether in the return target constraint. Taking into account the uncertainty in the estimated

means, we thus obtain the second-order cone constraint

wTµ̂− κ
∥∥Ω1/2w

∥∥
2
≥ µtarget, (3.44)

which is identical to (3.24). The advantages of this third approach are twofold.

Firstly, by omitting the options in the expected return constraint, we force the model to use

the options for risk reduction and insurance only, but not for speculative reasons. Only the

stocks are used to attain the prescribed expected return target. In light of the substantial risks

involved in speculation with options, this might be attractive for risk-averse investors.

Secondly, the inclusion of an expected return constraint converts (3.38) to a mean-risk model

[Har91], which minimizes a coherent downside risk measure, see Remark 3.2.1. However, Dert

and Oldenkamp [DO00] and Lucas and Siegmann [LS08] have identified several pitfalls that

may arise when using mean-downside risk models in the presence of highly asymmetric asset

classes such as options and hedge funds. The particular problems that occur in the presence

of options have been characterized as the Casino Effect : Mean-downside risk models typically

choose portfolios which use the least amount of money that is necessary to satisfy the insurance

constraint, whilst allocating the remaining money in the assets with the highest expected return.

In our context, a combination of inexpensive stocks and put options will be used to satisfy
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the insurance constraint. Since call options are leveraged assets and have expected returns

that increase with the strike price [CS02], the remaining wealth will therefore generally be

invested in the call options with the highest strike prices available. The resulting portfolios

have a high probability of small losses and a very low probability of high returns. Since the

robust framework is typically used by risk-averse investors, the resulting portfolios are most

likely in conflict with their risk preferences. It should be emphasized that the Casino Effect

is characteristic for mean-downside risk models and not a side-effect of the robust portfolio

optimization methodology. In order to alleviate its impact, Dert and Oldenkamp propose the

use of several Value-at-Risk constraints to shape the distribution of terminal wealth. Lucas

and Siegmann propose a modified risk measure that incorporates a quadratic penalty function

to the expected losses. In all our numerical tests, we choose to exclude the expected option

returns from the return target constraint. This will avoid betting on the options and thus

mitigate the Casino Effect. As we will show in the next section, our numerical results indicate

that the suggested portfolio model successfully reduces the downside risk and sustains high

out-of-sample expected returns.

3.4 Computational Results

In Section 3.4.1 we investigate the optimal portfolio composition for different levels of risk-

aversion and illustrate the tradeoff between the weak non-inferiority guarantee and the strong

insurance guarantee. In Section 3.4.2 we conduct several tests based on simulated data, while

the tests in Section 3.4.3 are performed on the basis of real market data. In both sections,

we compare the out-of-sample performance of the insured robust portfolios with that of the

non-insured robust and classical mean-variance portfolios. The comparisons are based on the

following performance measures: average yearly return, worst-case and best-case monthly re-

turns, yearly variance, skewness, and Sharpe ratio [Sha66]. All computations are performed

using the C++ interface of the MOSEK 5.0.0.105 conic optimization toolkit on a 2.0 GHz Core

2 Duo machine running Linux Ubuntu 8.04. The details of the experiments are described in

the next sections.
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3.4.1 Portfolio Composition and Tradeoff of Guarantees

All experiments in this section are based on the n = 30 stocks in the Dow 30 index. We assume

that for each stock there are 40 put and 40 call options that mature in one year. The 40 strike

prices of the put and call options for one particular stock are located at equidistant points

between 70% and 130% of the stock’s current price. In total, the market thus comprises 2400

options in addition to the 30 stocks.

In our first simulated backtests, we assume that the stock prices are governed by a multivariate

geometric Brownian motion,

dS̃it
S̃it

= µci dt+ σci dW̃ i
t , i = 1 . . . n,

E
[
dW̃ i

t dW̃ j
t

]
= ρcij dt, i, j = 1 . . . n,

(3.45)

where S̃i denotes the price process of stock i and W̃ i denotes a standard Wiener process. The

continuous-time parameters µci , σ
c
i , and ρcij represent the drift rates, volatilities and correla-

tion rates of the instantaneous stock returns, respectively. We calibrate this stochastic model

to match the annualized means and covariances of the total returns of the Dow 30 stocks re-

ported in Idzorek [Idz02]. The transformation which maps the annualized parameters to the

continuous-time parameters in (3.45) is described in [Meu05, p. 345]. Furthermore, we assume

that the risk-free rate amounts to rf = 5% per annum and that the options are priced according

to the Black-Scholes formula [BS73].

In the experiments of this section we do not allow short-selling of stocks. Furthermore, we

assume that there is no parameter uncertainty. Therefore, we set q = 0. In the first set of tests

we solve problem (3.38) without an expected return constraint and without a portfolio insurance

constraint. We determine the optimal portfolio allocations for increasing sizes of uncertainty

sets parameterized by p ∈ [0, 1). The optimal portfolio weights are visualized in the top left

panel of Figure 3.1, and the optimal conditional worst-case returns are displayed in the bottom

left panel. For simplicity, we only report the total percentage of wealth allocated in stocks,

calls, and put options, and provide no information about the individual asset allocations. All
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instances of problem (3.38) considered in this test were solved within less than 2 seconds, which

manifests the tractability of the proposed model.

Figure 3.1 exhibits three different allocation regimes. For small values of p, the optimal port-

folios are entirely invested in call options or a mixture of calls and stocks. This is a natural

consequence of the leverage effect of the call options, which have a much higher return potential

than the stocks when they mature in-the-money. As a result, the optimal conditional worst-case

return is very high. Large investments in call options tend to be highly risky; this is reflected

by a sudden decrease in call option allocation at threshold value p ≈ 7%.

We also observe a regime which is entirely invested in stocks. Here, the risk is minimized

through variance reduction by diversification, and no option hedging is involved.

At higher uncertainty levels, there is a sudden shift to portfolios composed of stocks and put

options. This transition takes place when the uncertainty set is large enough such that stock-

only portfolios necessarily incur a loss in the worst case. The effect of the put options can

be observed in the bottom left panel of Figure 3.1, which shows a constant worst-case return

φ > 1 for higher uncertainty levels. Here, risk is not reduced through diversification. Instead, an

aggressive portfolio insurance strategy is adopted using deep in-the-money put options. The put

options are used to cut away the losses, and thus φ > 1. For high uncertainty levels, maximizing

the conditional worst-case return amounts to maximizing the absolute insurance guarantee

because the uncertainty set converges to the support of the returns, see Proposition 3.3.1.

The Black-Scholes market under consideration is arbitrage-free. An elementary arbitrage ar-

gument implies that the maximum guaranteed lower bound on the return of any portfolio is

not larger than the risk-free return exp(rfT ). The conditional worst-case return in problem

(3.38) is therefore bounded above by exp(rfT ) already for moderately sized uncertainty sets.

This risk-free return can indeed be attained, at least approximately, by combining a stock and

a put option on that stock with a very large strike price. Note that the put option matures

in-the-money with high probability. Thus, the resulting portfolio pays off the strike price in

most cases and is almost risk-free. Its conditional worst-case return is only slightly smaller

than exp(rfT ) (for large uncertainty sets with p . 1). However, investing in an almost risk-free
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portfolio keeps the expected portfolio return fairly low, that is, close to the risk-free return.

In order to bypass this shortcoming, we impose an expected return constraint on the stock part

of the portfolio with a target return of 8% per annum, see (3.44). The results of model (3.38)

with an expected return constraint and without a portfolio insurance constraint are visualized

on the right hand side of Figure 3.1. Most of the earlier conclusions remain valid, but there are a

few differences. Because the stocks are needed to satisfy the return target, we now observe that

all portfolios put a minimum weight of nearly 90% in stocks. For higher levels of uncertainty,

the allocation in put options increases gradually when higher uncertainty is assigned to the

returns.

The optimal conditional worst-case return smoothly degrades for increasing uncertainty levels

and now drops below 1. Here, we anticipate a loss in the worst-case. Recall that the (negative)

conditional worst-case return can be interpreted as a risk measure, see Remark 3.2.1. In order

to satisfy the expected return constraint, the optimal portfolios have to take higher risks than

in the absence of an expected return constraint. As a result, the optimal conditional worst-case

return is now lower (due to the higher risk) than before. This is a natural consequence of the

risk-return tradeoff. For p & 90%, the conditional worst-case return saturates at the worst-case

return that can be guaranteed with certainty.

Next, we analyze the effects of the insurance constraint on the conditional worst-case return.

To this end, we solve problem (3.38) for various insurance levels θ ∈ [0, 1] and uncertainty

levels p ∈ [0, 1), whilst still requiring the expected return to exceed 8%. Figure 3.2 shows the

conditional worst-case return as a function of p and θ.

For any fixed p, the conditional worst-case return monotonically decreases with θ. Observe that

this decrease is steeper for lower values of p. When the uncertainty set is small, the conditional

worst-case return is relatively high. Therefore, the inclusion of the insurance guarantee has a

significant impact due to the high insurance costs that are introduced. When the uncertainty

set size is increased, the conditional worst-case return drops, and portfolio insurance needs to

be provided for a lower worst-case portfolio return at an associated lower portfolio insurance

cost.
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Figure 3.1: Visualization of the optimal portfolio allocations (top) and corresponding condi-
tional worst-case returns (bottom), with (right) and without (left) an expected return con-
straint.

When θ = 1, the portfolio is insured against dropping below the conditional worst-case return.

That is, the optimal portfolio provides the highest possible insurance guarantee that is still

compatible with the expected return target. This optimal portfolio is independent of the size

of the uncertainty set, and therefore the worst-case return is constant in p. For p & 80%, the

uncertainty set converges to the support of the returns, and the resulting optimal portfolio is

independent of θ, see Proposition 3.3.1. Note that if the expected return target is increased,

then the guaranteed worst-case return for θ = 1 decreases. In fact, in order to satisfy the higher

expected return constraint the cost of insurance has to be decreased. The cost of insurance can

only be lowered by decreasing the allocation in put options, which implies a lower guaranteed

worst-case return.
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Figure 3.2: Tradeoff of weak and strong guarantees.

3.4.2 Out-of-Sample Evaluation Using Simulated Prices

A series of controlled experiments with simulated data help us to assess the performance of the

proposed Insured Robust Portfolio Optimization (irpo) model under different market condi-

tions. We first generate price paths under a multivariate geometric Brownian motion model

to reflect “normal” market conditions. Next, we use a multivariate jump-diffusion process to

simulate a volatile environment in which market crashes can occur. In both settings, we com-

pare the performance of the irpo model to that of the Robust Portfolio Optimization (rpo)

model (3.22), and the classical Mean-Variance Optimization (mvo) model. The optimal mvo

portfolio is found by minimizing the variance of the portfolio return subject to an expected

portfolio return constraint. In this case the estimated means and covariance matrix of the asset

returns are used without taking parameter uncertainty into account.

Backtest Procedure and Evaluation

The following experiments are again based on the stocks in the Dow 30 index. The first test

series is aimed at assessing the performance of the models under “normal” market conditions. To
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this end, we assume that the stock prices are governed by the multivariate geometric Brownian

motion described in (3.45).

We denote by r̃l the vector of the asset returns over the interval [(l − 1)∆t, l∆t], where ∆t is

set to one month (i.e., ∆t = 1/12) and l ∈ N. By solving the stochastic differential equations

(3.45), we find

r̃il = exp

[(
µci −

(σci )
2

2

)
∆t+ ε̃il

√
∆t

]
, i = 1 . . . n, (3.46)

where {ε̃l}l∈N are independent and identically normally distributed with zero mean and covari-

ance matrix Σc ∈ Rn×n with entries Σc
ij = ρcijσ

c
iσ

c
j for i, j = 1 . . . n.

To evaluate the performance of the different portfolio models, we use the following rolling-

horizon procedure:

1. Generate a time-series of L monthly stock returns {rl}Ll=1 using (3.46) and initialize the

iteration counter at l = E. The number E < L determines the size of a moving estimation

window.

2. Calculate the sample mean µ̂l and sample covariance matrix Σ̂l of the stock returns

{rl}ll′=l−E+1 in the current estimation window. We assume that there are 20 put and 20

call options available for each stock that expire after one month. The 20 strike prices

of the options are assumed to scale with the underlying stock price: the proportionality

factor ranges from 80% to 120% in steps of 2%.4

Next, convert the estimated monthly volatilities to continuous-time volatilities via the

transformation in [Meu05, p. 345] and calculate the option prices via the Black-Scholes

formula.5 For the irpo model we then calculate the necessary option related data al and

Bl defined in (3.28).

4This set of options is a reasonable proxy for the set available in reality. Depending on liquidity, there might
be more or fewer options available, but the use of 20 strike prices oriented around the spot prices seems a good
compromise.

5In reality, one would use option prices observed in the market instead of calculated ones. An empirical
backtest based on real option price data is provided in Section 3.4.3.
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Model k Type p q θ Model k Type p q θ

1 mvo – – –
2 rpo 0.50 0.80 – 17 irpo 0.70 0.80 0.00
3 rpo 0.60 0.80 – 18 irpo 0.70 0.80 0.70
4 rpo 0.70 0.80 – 19 irpo 0.70 0.80 0.80
5 rpo 0.80 0.80 – 20 irpo 0.70 0.80 0.90
6 rpo 0.90 0.80 – 21 irpo 0.70 0.80 0.99
7 irpo 0.50 0.80 0.00 22 irpo 0.80 0.80 0.00
8 irpo 0.50 0.80 0.70 23 irpo 0.80 0.80 0.70
9 irpo 0.50 0.80 0.80 24 irpo 0.80 0.80 0.80
10 irpo 0.50 0.80 0.90 25 irpo 0.80 0.80 0.90
11 irpo 0.50 0.80 0.99 26 irpo 0.80 0.80 0.99
12 irpo 0.60 0.80 0.00 27 irpo 0.90 0.80 0.00
13 irpo 0.60 0.80 0.70 28 irpo 0.90 0.80 0.70
14 irpo 0.60 0.80 0.80 29 irpo 0.90 0.80 0.80
15 irpo 0.60 0.80 0.90 30 irpo 0.90 0.80 0.90
16 irpo 0.60 0.80 0.99 31 irpo 0.90 0.80 0.99

Table 3.1: Parameter settings of the portfolio models used in the backtests.

3. Determine the optimal portfolios (wk
l ,w

d,k
l ) corresponding to the models k = 1, . . . , 31

specified in Table 3.1.

4. For strategy k, the portfolio return rkl+1 over the interval [l∆t, (l + 1)∆t] is given by:

rkl+1 = (wk
l )Trl+1 + (max {0, al + Bl rl+1})Twd,kl .

Since rl+1 is outside of the estimation window, this constitutes an out-of-sample evalua-

tion.

5. If l < L− 1, then increment l and go to step 2. Otherwise, terminate.

In all backtests we set L = 240 and use an estimation window of size E = 120. We set the

risk-free rate to rf = 5% per annum and the expected return target to 8% per annum. We

allow short-selling of individual stocks up to −20% and do not impose upper bounds on the

portfolio weights.

The rolling-horizon procedure generates L−E returns {rkl }Ll=E+1 for our 31 portfolio strategies

indexed by k. For each of these strategies we calculate the following performance measures:

the out-of-sample mean, variance, skewness, Sharpe ratio, worst-case and best-case monthly
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return.

µ̂k =
1

L− E

L∑
l=E+1

rkl , (mean)

(σ̂2)k =
1

L− E − 1

L∑
l=E+1

(rkl − µ̂k)2, (variance)

γ̂k =
1

L− E

L∑
l=E+1

((rkl − µ̂k)/σ̂k)3, (skewness)

ŜR
k

=
µ̂k − rf
σ̂k

, (Sharpe ratio)

r̂k = min {rkl : E + 1 ≤ l ≤ L}, (worst-case return)

r̂
k

= max {rkl : E + 1 ≤ l ≤ L}. (best-case return)

By assuming an initial wealth of 1, we also calculate the final wealth ω̂k of strategy k as follows

ω̂k =
L∏

t=E+1

rkl .

We repeat the rolling-horizon procedure described above R = 300 times with different random

generator seeds and calculate averages of the performance measures. We also estimate the

probability of the different portfolio strategies (with k > 1) yielding a higher final wealth

than the Markowitz strategy (with k = 1) by counting the simulation runs in which this

outperformance is observed. Finally, we compute the excess return of any strategy k relative

to the Markowitz strategy, ω̂k/ω̂1 − 1, averaged over all simulation runs.

A property of the geometric Brownian motion price process is that there are almost surely no

discontinuities in the price paths. In reality, rare events such as market crashes can occur,

and therefore the Jump-Diffusion model introduced by Merton [Mer76] may be more suitable

to describe real price movements. Under Merton’s Jump-Diffusion model, the stock prices are
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governed by the stochastic differential equations

dS̃it
S̃it

= (µci − λcη) dt+ σci dW̃ i
t + d

Ñt∑
j=1

(Ỹj − 1), i = 1 . . . n,

E
[
dW̃ i

t dW̃ j
t

]
= ρcij dt, i, j = 1 . . . n,

(3.47)

where Ñ is a Poisson process with arrival intensity λc, and {Ỹj}j∈N is a sequence of independent

identically distributed nonnegative random variables. Ñt denotes the number of jumps, or

market crashes, between 0 and time t, while the Ỹj represent the relative price changes when

such crashes occur. W̃t and Ñt are assumed to be independent.

For simplicity, we assume that all stock prices jump at the same time. Moreover, instead of

making the jump sizes stochastic, as in the general formulation above, we assume that all prices

experience a deterministic relative change of η = −15% when a crash occurs. We set λc = 2,

indicating that on average there are two crashes per year. Solving the stochastic differential

equations (3.47) we obtain the following expression for the stock returns

r̃il = exp

[(
µci −

(σci )
2

2
− λcη

)
∆t+ ε̃il

√
∆t

] Ñl∆t∏
j=Ñ(l−1)∆t+1

Yj, i = 1 . . . n, (3.48)

where Ñt follows a Poisson distribution with parameter λc∆t and Yj = eη for all j. We now

repeat the previously described rolling-horizon backtest by using (3.48) instead of (3.46).

Discussion of Results

The results of our simulated backtests based on the geometric Brownian motion model are

summarized in Table 3.3.

In comparison with the nominal mvo portfolio, we observe that the rpo portfolios exhibit a

significantly higher average return at the cost of a relatively small increase in variance. This is

also reflected by the Sharpe ratio values, which are higher than that of the mvo portfolio for

all levels of p. When p increases, we notice a slight decrease in variance and expected return
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because the portfolios become more conservative. We see that the non-insured rpo portfolios

outperform the mvo portfolio with probability 75%. This indicates that taking the uncertainty

of the mean estimates into account results in a considerable improvement of out-of-sample

performance.

Next, we assess the performance of the irpo portfolios. For a fixed insurance level θ, we observe

that the worst-case monthly return (Min) increases with p. In most cases, it also increases with

θ for fixed p. However, this is not always the case. At p = 80%, for instance, the worst-case

return for θ = 90% is higher than for θ = 99%. The reason for this is that a large portion

of wealth is allocated to the options in order to satisfy the high insurance demands. Because

there are no price jumps, these options have a low probability to mature in-the-money. The

options have a noticeable effect on the skewness of the portfolio returns, which increases with

p and θ. This is because the put options are effectively cutting away the losses and therefore

cause the portfolio return distribution to be positively skewed.

Finally, for all tested values of p and θ, the irpo portfolios accumulate a higher final wealth

than the nominal mvo portfolio in about 65% of the cases. In terms of Sharpe ratio, the irpo

portfolios perform comparably to the rpo portfolios. However, the non-insured rpo portfolios

have an increased expected return and a higher probability of outperforming the nominal mvo

portfolio in terms of realized wealth. Note that, although the irpo portfolios have a lower

probability of outperforming the mvo portfolio, they achieve higher excess returns than the

rpo portfolios because the options help preserve wealth over time. We conclude that under

normal market conditions the non-insured rpo model seems to generate the most attractive

out-of-sample results.

The results of our simulated backtests based on Merton’s jump diffusion model are summarized

in Table 3.4. The following discussion highlights the differences to the results obtained using

the geometric Brownian motion model.

The rpo portfolios still have a significant probability of outperforming the mvo portfolio in

terms of realized wealth. Due to the crashes, however, this probability now decreases to 65%

(as opposed to 75% in the absence of crashes). Notice that the worst-case monthly returns of
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the rpo portfolios are of the same order of magnitude as those of the mvo portfolio. We also

observe that the realized returns for the rpo and mvo portfolios are highly negatively skewed

because of the downward jumps of the prices.

The irpo portfolios have an increased expected return and lower variance with respect to the

mvo portfolio for all tested values of p and θ. This is also reflected by an improvement in

Sharpe ratio, which for p = 60% and θ = 99% is 60% higher than that of the mvo portfolio.

The irpo portfolios exhibit increased skewness relative to the mvo and rpo portfolios. The

skewness of the irpo portfolios becomes positive for values of p ≥ 80% and θ = 99%. The

worst-case return gradually improves with increasing values of p and θ, and for p = 90% the

worst-case is 50% higher than that of the nominal mvo portfolio. Finally, the irpo portfolios

achieve a higher realized wealth than the mvo portfolio in about 77% of the simulation runs.

Notice also that the excess returns monotonically increase with θ. The increase in realized

wealth is due to the option insurance which helps preserve wealth during market crashes. In

contrast, the crashes cause large losses of wealth to the mvo and rpo portfolios.

In conclusion, the simulated tests indicate that the irpo model has advantages over the mvo

and rpo models when the market exhibits jumps. It typically results in a higher realized wealth

and Sharpe ratio.

3.4.3 Out-of-Sample Evaluation Using Real Market Prices

Simulated stock and option prices may give an unrealistic view of how our portfolio strategies

perform in reality due to the following reasons. Firstly, it is known that real stock returns are

not serially independent and identically distributed. Secondly, real option prices deviate from

those obtained via the Black-Scholes formula by using historical volatilities. Finally, we are

restricted to invest in the options traded in the market, and our assumption about the range

of available strike prices may not hold.

Therefore, we now evaluate the portfolio strategies under the same rolling-horizon procedure

described in the previous section but with real stock and option prices. Historical stock and
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Ticker Name

XMI AMEX Major Market Index
SPX S&P 500 Index
MID S&P Midcap 400 Index
SML S&P Smallcap 600 Index
RUT Russell 2000 Index
NDX NASDAQ 100 Index

Table 3.2: Equity indices used in the historical backtest.

option prices are obtained from the OptionMetrics IvyDB database, which is one of the most

complete sources of historical option data available. We limit ourselves to the equity indices

shown in Table 3.2. These indices were chosen because they have the most complete time-series

in the database. As before, we rebalance on a monthly basis, and at every rebalancing date

we consider all available European put and call options that expire in one month.6 Because

the irpo strategy is long in options, we use the highest option ask prices to make sure that we

could have acquired the options at the specified prices.

The time-series covers the period from 18/01/1996 until 18/09/2008. We use an estimation

window of 15 months.7 Moreover, we allow short-selling in every equity index up to −20% of

total portfolio value but impose no upper bounds on the weights. The target expected return

is set to 8% per annum. The range of tested p and θ values is the same as in the previous

section, see Table 3.1.

Discussion of Results

The results of the backtests based on real market prices are given in Table 3.5. Similar to the

out-of-sample results based on simulated prices, the rpo portfolios produce higher expected

returns than the nominal mvo model, while their Sharpe ratios are more than twice as large

as that of the mvo portfolio for all tested values of p.

The irpo portfolios also outperform the mvo portfolio in terms of expected return and Sharpe

6In order to avoid the use of erroneous option data, we only selected those options for which the implied
volatility was supplied and which had a bid and ask price greater than 0. We found that this procedure allowed
us to filter out incorrect entries.

7Different estimation windows yielded slightly different out-of-sample results. However, the general conclu-
sions are independent of the choice of the estimation window.
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ratio for all values of p and θ. However, compared to the rpo portfolios, they have a slightly

lower expected return on average. This decrease in expected return is due to the cost of insur-

ance. We also observe that the irpo portfolios have smaller variance than the rpo portfolios

for all tested parameter settings. On average the irpo portfolios also produce slightly higher

Sharpe ratios than the rpo portfolios.

In Figure 3.3 we plot the cumulative wealth over time of the mvo portfolio, an rpo portfolio

with p = 50%, an irpo portfolio with p = 50% and θ = 70%, and an irpo portfolio with

p = 50% and θ = 99%. The irpo portfolio with θ = 70% performed better than the mvo

and rpo portfolios. However, we emphasize that the performance of the irpo model is highly

dependent on the values chosen for p and θ. For example, it can be observed that with p = 50%

and θ = 99% the irpo portfolio is outperformed by the rpo portfolio due to the high cost of

insurance.

For all tested parameters values, the irpo model yields a higher worst-case monthly return than

the rpo model and a significant increase in skewness for levels of p ≥ 60%. The worst-case

return monotonically increases with p. However, it is not always increasing in θ. High insurance

levels of θ & 90% lead to large investments in put options which expire worthless with high

probability. This is also reflected by a significant drop in expected return and an associated

decrease in Sharpe ratio.

The reasons for this are twofold. Firstly, the strong insurance guarantees are more expensive

in reality than in the simulations. This is because the Black-Scholes formula underestimates

the prices of far out-of-the-money put options when historical volatilities are used. Secondly,

we are limited to invest in the options that are traded in the market and are therefore unable

to invest in options with strike prices that would have resulted in better portfolios.

To conclude, we note that for this particular data set the rpo and irpo portfolios systematically

outperform the nominal mvo portfolio in terms of expected return and Sharpe ratio. On

average the rpo portfolios achieve higher expected returns than the irpo portfolios, whereas

the irpo portfolios obtain slightly higher average Sharpe ratios. We also conclude that the

performance of the irpo model is highly dependent on the chosen values of p and θ. The
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Figure 3.3: Cumulated return of the mvo, rpo, and irpo portfolios using monthly rebalancing
between 19/06/1997 and 18/09/2008.

insurance levels should therefore be tuned to market behavior. Higher insurance levels can help

preserve the accumulated portfolio wealth when the market is volatile and experiences jumps.

Lower insurance levels are preferable in less volatile periods since unnecessary insurance costs

are avoided.

3.5 Conclusions

In this chapter, we extended robust portfolio optimization to accommodate options. Moreover,

we showed how the options can be used to provide strong insurance guarantees, which also

hold when the stock returns are realized outside of the prescribed uncertainty set. Using conic

and linear duality, we reformulated the problem as a convex second-order cone program, which

is scalable in the amount of stocks and options and can be solved efficiently with standard

optimization packages. The proposed methodology can be applied to a wide range of uncertainty

sets and can therefore be seen as a generic extension to the robust portfolio optimization

framework.
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We first performed backtests on simulated data, in which the asset prices reflect normal market

conditions as well as market crashes. In both cases the option premia are calculated using

the standard Black-Scholes model. The simulated results indicate that the insured robust

portfolios have lower expected returns than the non-insured robust portfolios under normal

market conditions but have clear advantages with respect to Sharpe ratio, expected return, as

well as cumulative wealth, when the prices experience jumps.

Since the Black-Scholes prices might not reflect realistic option premia, we also performed

backtests on historical data. We observed that on average the rpo portfolios achieve higher

expected returns than the irpo portfolios, whereas the irpo portfolios obtain higher Sharpe

ratios. The results also indicate that the performance of the irpo model is highly dependent

on the values chosen for p and θ. When the insurance level is set too high, the cost of insurance

causes the performance to deteriorate. Therefore, the level of insurance should be tuned to the

market; to preserve wealth, higher insurance levels can benefit the portfolio when the market

is volatile and experiences jumps. Lower insurance levels are preferable in less volatile periods

since unnecessary insurance costs are avoided.
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3.6 Appendix

3.6.1 Notational Reference Table

n Number of stocks
m Number of options
r̃p Total portfolio return
rf Risk-free rate
w, wd Weights of the stocks and options, respectively
e Vector of ones
l, u Lower and upper bounds on the weights of the stocks
r̃, r̃d Total stock and option returns, respectively
µ, Σ Mean vector and covariance matrix of r̃, respectively

µ̂, Σ̂ Sample mean and sample covariance matrix of r̃, respectively
Λ Covariance matrix of µ̂
Ω Modified covariance matrix of µ̂
λ Risk-aversion parameter
µtarget Portfolio return target
p, q Probabilities of r̃ and µ̂ to be realized within their respective

uncertainty sets, respectively
Ur Uncertainty set for r̃
U+
r Uncertainty set for r̃ including support information
Uµ Uncertainty set for µ
U+
r,µ Uncertainty set for r̃ and µ including support information

δ, κ Size parameters for the uncertainty sets U+
r,µ and Uµ, respectively

φ Conditional worst-case portfolio return
θ Insurance level
T End of investment horizon

S̃it , i = 1, . . . , n Price of stock i at time t

W̃ i, i = 1, . . . , n Standard Wiener processes

Ñ Poisson process
λc Arrival intensity
η Relative price change during crash
µc, σc, ρc Instantaneous drifts, volatilities and correlation rates, respectively
L Size of the time-series
E Size of the estimation window
Ki, i = 1, . . . ,m Strike price of option i
Pi, Ci, i = 1, . . . ,m Price of option i if it is a call/put option
a,B Parameters of function f
f Function relating r̃ and r̃d
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3.6.2 Proof of Theorem 3.6.1

Theorem 3.6.1 For Uµ defined as in (3.12), and UΣ = {Σ̂}, problem (3.8) is equivalent to

the following second-order cone program,

max
w∈Rn

{
wTµ̂− κ

∥∥Ω1/2w
∥∥

2
− δ

∥∥∥Σ̂1/2w
∥∥∥

2

∣∣∣ wTe = 1, l ≤ w ≤ u
}
,

where

Ω = Λ− 1

eTΛe
ΛeeTΛ.

Proof Because UΣ is a singleton, it is clear that problem (3.8) is equivalent to

max
w∈Rn

{
min
µ∈Uµ

wTµ− δ
∥∥∥Σ̂1/2w

∥∥∥
2

∣∣∣ wTe = 1, l ≤ w ≤ u
}
. (3.49)

When κ = 0, the claim is obviously true. In the rest of the proof we thus assume that κ > 0.

Using the definition of the uncertainty set Uµ, the inner minimization problem in (3.49) can be

rewritten as

min
µ∈Rn

wTµ

s. t.
∥∥Λ−1/2(µ− µ̂)

∥∥
2
≤ κ

eT(µ− µ̂) = 0.

(3.50)

For any fixed portfolio w, problem (3.50) represents a second-order cone program. We proceed

by dualizing (3.50). After a few minor simplification steps, we obtain the dual problem

max
q∈R

wTµ̂− κ
∥∥Λ1/2(w − qe)

∥∥ . (3.51)

Strong conic duality holds since the primal problem (3.49) is strictly feasible for κ > 0. Thus,

both the primal and dual problems (3.49) and (3.50) are feasible and share the same objective

values at optimality. Since κ > 0, the optimal dual solution is given by

q∗ = argmin
q∈R

∥∥Λ1/2(w − qe)
∥∥ =

wTΛe

eTΛe
.
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By substituting q∗ into (3.51) we obtain the optimal value of (3.50), which amounts to

wTµ̂− κ
∥∥Ω1/2w

∥∥
2
. (3.52)

We can now substitute (3.52) into (3.49) to obtain the postulated result.
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Chapter 4

Worst-Case Value-at-Risk of

Non-Linear Portfolios

In Chapter 3, we investigated how to incorporate options within the robust portfolio optimiza-

tion framework. In this chapter our aim will be to apply distributionally robust optimization

techniques to minimize the Value-at-Risk (VaR) of derivative portfolios. Portfolio optimization

problems involving VaR are often computationally intractable and require complete informa-

tion about the return distribution of the portfolio constituents, which is rarely available in

practice. These difficulties are further compounded when the portfolio contains derivatives.

Nevertheless, we will show that by employing duality theory and by solving moment problems,

the Worst-Case VaR, which is a distributionally robust version of VaR, can be optimized effi-

ciently even when the portfolio contains derivatives. Interestingly, we will also show that there

exists an equivalence between Worst-Case VaR optimization and robust portfolio optimization,

which we elaborated in Chapter 3.

4.1 Introduction

Although mean-variance optimization is appropriate when the asset returns are symmetrically

distributed, it is known to result in counter intuitive asset allocations when the portfolio return

71
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is skewed. This shortcoming triggered extensive research on downside risk measures. Due to

its intuitive appeal and since its use is enforced by financial regulators, Value-at-Risk (VaR)

remains the most popular downside risk measure [Jor01]. The VaR at level ε is defined as the

(1− ε)-quantile of the portfolio loss distribution.

Despite its popularity, VaR lacks some desirable theoretical properties. Firstly, VaR is known

to be a non-convex risk measure. As a result, VaR optimization problems usually are computa-

tionally intractable. In fact, they belong to the class of chance-constrained stochastic programs,

which are notoriously difficult to solve. Secondly, VaR fails to satisfy the subadditivity prop-

erty of coherent risk measures [ADEH99], see also Section 2.4.3. Thus, the VaR of a portfolio

can exceed the weighted sum of the VaRs of its constituents. In other words, VaR may pe-

nalize diversification. Thirdly, the computation of VaR requires precise knowledge of the joint

probability distribution of the asset returns, which is rarely available in practice.

A typical investor may know the first- and second-order moments of the asset returns but

is unlikely to have complete information about their distribution. Therefore, El Ghaoui et

al. [EGOO03] propose to maximize the VaR of a given portfolio over all asset return distribu-

tions consistent with the known moments. The resulting Worst-Case VaR (WCVaR) represents

a conservative (that is, pessimistic) approximation for the true (unknown) portfolio VaR. In

contrast to VaR, WCVaR represents a convex function of the portfolio weights and can be opti-

mized efficiently by solving a tractable second-order cone program. El Ghaoui et al. [EGOO03]

also disclose an interesting connection to robust optimization [BTN98, BTN99, RH02]: WCVaR

coincides with the worst-case portfolio loss when the asset returns are confined to an ellipsoidal

uncertainty set determined through the known means and covariances.

In this chapter we study portfolios containing derivatives, the most prominent examples of which

are European call and put options. Sophisticated investors frequently enrich their portfolios

with derivative products, be it for hedging and risk management or speculative purposes. In the

presence of derivatives, WCVaR still constitutes a tractable conservative approximation for the

true portfolio VaR. However, it tends to be over-pessimistic and thus may result in undesirable

portfolio allocations. The main reasons for the inadequacy of WCVaR are the following.
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• The calculation of WCVaR requires the first- and second-order moments of the derivative

returns as an input. These moments are difficult or (in the case of exotic options) almost

impossible to estimate due to scarcity of time series data.

• WCVaR disregards perfect dependencies between the derivative returns and the underlying

asset returns. These (typically non-linear) dependencies are known in practice as they can

be inferred from contractual specifications (payoff functions) or option pricing models. Note

that the covariance matrix of the asset returns, which is supplied to the WCVaR model, fails

to capture non-linear dependencies among the asset returns, and therefore WCVaR tends to

severely overestimate the true VaR of a portfolio containing derivatives.

Recall that WCVaR can be calculated as the optimal value of a robust optimization problem

with an ellipsoidal uncertainty set, which is highly symmetric. This symmetry hints at the

inadequacy of WCVaR from a geometrical viewpoint. An intuitively appealing uncertainty set

should be asymmetric to reflect the skewness of the derivative returns. Recently, Natarajan

et al. [NPS08] included asymmetric distributional information into the WCVaR optimization

in order to obtain a tighter approximation of VaR. However, their model requires forward-

and backward-deviation measures as an input, which are difficult to estimate for derivatives.

In contrast, reliable information about the functional relationships between the returns of the

derivatives and their underlying assets is readily available.

In this chapter we develop novel Worst-Case VaR models which explicitly account for perfect

non-linear dependencies between the asset returns. We first introduce the Worst-Case Poly-

hedral VaR (WCPVaR), which provides a tight conservative approximation for the VaR of a

portfolio containing European-style options expiring at the end of the investment horizon. In

this situation, the option returns constitute convex piecewise-linear functions of the underlying

asset returns. WCPVaR evaluates the worst-case VaR over all asset return distributions consis-

tent with the given first- and second-order moments of the option underliers and the piecewise

linear relation between the asset returns. Under a no short-sales restriction on the options, we

are able to formulate WCPVaR optimization as a convex second-order cone program, which

can be solved efficiently [AG03]. We also establish the equivalence of the WCPVaR model to a
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robust optimization model described in Chapter 3.

Next, we introduce the Worst-Case Quadratic VaR (WCQVaR) which approximates the VaR

of a portfolio containing long and/or short positions in plain vanilla and/or exotic options

with arbitrary maturity dates. In contrast to WCPVaR, WCQVaR assumes that the derivative

returns are representable as (possibly non-convex) quadratic functions of the underlying asset

returns. This can always be enforced by invoking a delta-gamma approximation, that is, a

second-order Taylor approximation of the portfolio return. The delta-gamma approximation is

popular in many branches of finance and is accurate for short investment periods. Moreover, it

has been used extensively for VaR estimation, see, e.g., the surveys by Jaschke [Jas02] and Mina

and Ulmer [MU99]. However, to the best of our knowledge, the delta-gamma approximation has

never been used in a VaR optimization model. We define WCQVaR as the worst-case VaR over

all asset return distributions consistent with the known first- and second-order moments of the

option underliers and the given quadratic relation between the asset returns. WCQVaR provides

a tight conservative approximation for the true portfolio VaR if the delta-gamma approximation

is accurate. We show that WCQVaR optimization can be formulated as a convex semidefinite

program, which can be solved efficiently [VB96], and we establish a connection to a novel robust

optimization problem. The main contributions in this chapter can be summarized as follows:

(1) We generalize the WCVaR model [EGOO03] to explicitly account for the non-linear re-

lationships between the derivative returns and the underlying asset returns. To this end,

we develop the WCPVaR and WCQVaR models as described above. We show that in the

absence of derivatives both models reduce to the WCVaR model. Moreover, we formulate

WCPVaR optimization as a second-order cone program and WCQVaR optimization as a

semidefinite program. Both models are polynomial time solvable.

(2) We show that both the WCPVaR and the WCQVaR models have equivalent reformula-

tions as robust optimization problems. We explicitly construct the associated uncertainty

sets which are, unlike conventional ellipsoidal uncertainty sets, asymmetrically oriented

around the mean values of the asset returns. This asymmetry is caused by the non-linear

dependence of the derivative returns on their underlying asset returns. Simple examples
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illustrate that the new models may approximate the true portfolio VaR significantly better

than WCVaR in the presence of derivatives.

(3) The robust WCQVaR model is of relevance beyond the financial domain because it con-

stitutes a tractable approximation of a chance-constrained stochastic program, see Sec-

tion 2.3.1, that is affine in the decision variables but (possibly non-convex) quadratic in

the uncertainties. Although tractable approximations for chance constrained programs

with affine perturbations have been researched extensively (see, e.g., [NS06]), the case

of quadratic data dependence has remained largely unexplored (with the exception of

[BTEGN09, §1.4]).

(4) We evaluate the WCQVaR model in the context of an index tracking application. We show

that when investment in options is allowed, the optimal portfolios exhibit vastly improved

out-of-sample performance compared to the optimal portfolios based on stocks only.

The remainder of the chapter is organized as follows. In Section 4.2 we review the mathe-

matical definitions of VaR and WCVaR. Moreover, we recall the relationship between WCVaR

optimization and robust optimization. In Section 4.3 we highlight the shortcomings of WC-

VaR in the presence of derivatives. In Section 4.4 we develop the WCPVaR model in which

the option returns are modelled as convex piecewise-linear functions of the underlying asset

returns. We prove that it can be reformulated as a second-order cone program and construct

the uncertainty set which generates the equivalent robust portfolio optimization model. In

Section 4.5 we describe the WCQVaR model, which approximates the portfolio return by a

quadratic function of the underlying asset returns. We show that it can be reformulated as a

semidefinite program and prove its equivalence to an augmented robust optimization problem

whose uncertainty set is embedded into the space of positive semidefinite matrices. Section

4.6 evaluates the out-of-sample performance of the WCQVaR model in the context of an index

tracking application. Conclusions are drawn in Section 4.7.
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4.2 Worst-Case Value-at-Risk Optimization

Consider a market consisting of m assets such as equities, bonds, and currencies. We denote the

present as time t = 0 and the end of the investment horizon as t = T . A portfolio is characterized

by a vector of asset weights w ∈ Rm, whose elements add up to 1. The component wi denotes

the percentage of total wealth which is invested in the ith asset at time t = 0. Furthermore,

r̃ denotes the Rm-valued random vector of relative assets returns over the investment horizon.

By definition, an investor will receive 1 + r̃i dollars at time T for every dollar invested in asset

i at time 0. The return of a given portfolio w over the investment period is thus given by the

random variable

r̃p = wTr̃. (4.1)

Loosely speaking, we aim at finding an allocation vector w which entails a high portfolio return,

whilst keeping the associated risk at an acceptable level. Depending on how risk is defined, we

end up with different portfolio optimization models.

Arguably one of the most popular measures of risk is the Value-at-Risk (VaR). The VaR at

level ε is defined as the (1− ε)-percentile of the portfolio loss distribution, where ε is typically

chosen as 1% or 5%. Put differently, VaRε(w) is defined as the smallest real number γ with

the property that −wTr̃ exceeds γ with a probability not larger than ε, that is,

VaRε(w) = min
{
γ : P{γ ≤ −wTr̃} ≤ ε

}
, (4.2)

where P denotes the distribution of the asset returns r̃.

In this chapter we investigate portfolio optimization problems of the type

minimize
w∈Rm

VaRε(w)

subject to w ∈ W ,

(4.3)

where W ⊆ Rm denotes the set of admissible portfolios. The inclusion w ∈ W usually implies

the budget constraint wTe = 1 (where e denotes the vector of 1s). Optionally, the set W
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may account for bounds on the allocation vector w and/or a constraint enforcing a minimum

expected portfolio return. In this chapter we only require thatW must be a convex polyhedron.

By using (4.2), the VaR optimization model (4.3) can be reformulated as

minimize
w∈Rm,γ∈R

γ

subject to P{γ +wTr̃ ≥ 0} ≥ 1− ε

w ∈ W ,

(4.4)

which constitutes a chance-constrained stochastic program, see Section 2.3.1. Optimization

problems of this kind are usually difficult to solve since they tend to have non-convex or

even disconnected feasible sets. Furthermore, the evaluation of the chance constraint requires

precise knowledge of the probability distribution of the asset returns, which is rarely available

in practice.

4.2.1 Two Analytical Approximations of Value-at-Risk

In order to overcome the computational difficulties and to account for the lack of knowledge

about the distribution of the asset returns, the objective function in (4.3) must usually be

approximated. Most existing approximation techniques fall into one of two main categories:

non-parametric approaches which approximate the asset return distribution by a discrete (sam-

pled or empirical) distribution and parametric approaches which approximate the asset return

distribution by the best fitting member of a parametric family of continuous distributions. We

now give a brief overview of two analytical VaR approximation schemes that are of particular

relevance for our purposes.

Both in the financial industry as well as in the academic literature, it is frequently assumed that

the asset returns r̃ are governed by a Gaussian distribution with given mean vector µr ∈ Rm

and covariance matrix Σr ∈ Sm. This assumption has the advantage that the VaR can be
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calculated analytically as

VaRε(w) = −µT
rw − Φ−1(ε)

√
wTΣrw, (4.5)

where Φ is the standard normal distribution function. This model is sometimes referred to as

Normal VaR (see, e.g., [NPS08]). In practice, the distribution of the asset returns often fails to

be Gaussian. In these cases, (4.5) can still be used as an approximation. However, it may lead

to gross underestimation of the actual portfolio VaR when the true portfolio return distribution

is leptokurtic or heavily skewed, as is the case for portfolios containing options.

To avoid unduly optimistic risk assessments, El Ghaoui et al. [EGOO03] suggest a conservative

(that is, pessimistic) approximation for VaR under the assumption that only the mean values

and covariance matrix of the asset returns are known. Let Pr be the set of all probability

distributions on Rm with mean value µr and covariance matrix Σr. We emphasize that Pr

contains also distributions which exhibit considerable skewness, so long as they match the

given mean vector and covariance matrix. The Worst-Case Value-at-Risk for portfolio w is

now defined as

WCVaRε(w) = min

{
γ : sup

P∈Pr
P{γ ≤ −wTr̃} ≤ ε

}
. (4.6)

Note that the above problem constitutes a distributionally robust chance-constrained program,

see Section 2.3.3. El Ghaoui et al. demonstrate that WCVaR has the closed form expression

WCVaRε(w) = −µT
rw + κ(ε)

√
wTΣrw, (4.7)

where κ(ε) =
√

(1− ε)/ε. WCVaR represents a tight approximation for VaR in the sense that

there exists a worst-case distribution P∗ ∈ Pr such that VaR with respect to P∗ is equal to

WCVaR.

When using WCVaR instead of VaR as a risk measure, we end up with the portfolio optimization

problem

minimize
w∈Rm

− µT
rw + κ(ε)

∥∥Σ1/2
r w

∥∥
2

subject to w ∈ W ,

(4.8)
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which represents a second-order cone program that is amenable to efficient numerical solution

procedures.

4.2.2 Robust Optimization Perspective on Worst-Case VaR

Consider the following robust optimization problem (see Section 2.3.2 for an intoduction to

robust optimization).

minimize
w∈Rm,γ∈R

γ

subject to γ +wTr ≥ 0 ∀r ∈ U

w ∈ W .

(4.9)

An uncertainty set that enjoys wide popularity in the robust optimization literature is the

ellipsoidal set,

U = {r ∈ Rm : (r − µr)TΣ−1
r (r − µr) ≤ δ2},

which is defined in terms of the mean vector µr and covariance matrix Σr of the asset returns

as well as a size parameter δ. By conic duality it can be shown that the following equivalence

holds for any fixed (w, γ) ∈ W × R.

γ +wTr ≥ 0 ∀r ∈ U ⇐⇒ −µT
rw + δ

∥∥Σ1/2
r w

∥∥
2
≤ γ (4.10)

Problem (4.9) can therefore be reformulated as the following second-order cone program.

minimize
w∈Rm

− µT
rw + δ

∥∥Σ1/2
r w

∥∥
2

subject to w ∈ W
(4.11)

By comparing (4.8) and (4.11), El Ghaoui et al. [EGOO03] noticed that optimizing WCVaR

at level ε is equivalent to solving the robust optimization problem (4.9) under an ellipsoidal

uncertainty set with size parameter δ = κ(ε), see also Natarajan et al. [NPS08]. This uncertainty

set will henceforth be denoted by Uε.
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In this chapter we extend the WCVaR model (4.7) and the equivalent robust optimization

model (4.9) to situations in which there are non-linear relationships between the asset returns,

as is the case in the presence of derivatives.

4.3 Worst-Case VaR for Derivative Portfolios

From now on assume that our market consists of n ≤ m basic assets and m−n derivatives. We

partition the asset return vector as r̃ = (ξ̃, η̃), where the Rn-valued random vector ξ̃ and Rm−n-

valued random vector η̃ denote the basic asset returns and derivative returns, respectively.

To approximate the VaR of some portfolio w ∈ W containing derivatives, one can principally

still use the WCVaR model (4.7), which has the advantage of computational tractability and

accounts for the absence of distributional information beyond first- and second-order moments.

However, WCVaR is not a suitable approximation for VaR in the presence of derivatives due

to the following reasons.

The first- and second-order moments of the derivative returns, which must be supplied to

the WCVaR model, are difficult to estimate reliably from historical data, see, e.g., [CS02].

Note that the moments of the basic assets returns (i.e., stocks and bonds etc.) can usually be

estimated more accurately due to the availability of longer historical time series. However, even

if the means and covariances of the derivative returns were precisely known, WCVaR would still

provide a poor approximation of the actual portfolio VaR because it disregards known perfect

dependencies between the derivative returns and their underlying asset returns. In fact, the

returns of the derivatives are uniquely determined by the returns of the underlying assets, that

is, there exists a (typically non-linear) measurable function f : Rn → Rm such that r̃ = f(ξ̃).1

Put differently, the derivatives introduce no new uncertainties in the market; their returns are

uncertain only because the underlying asset returns are uncertain. The function f can usually

be inferred reliably from contractual specifications (payoff functions) or pricing models of the

derivatives.

1For ease of exposition, we assume that the returns of the derivative underliers are the only risk factors
determining the option returns.
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In summary, WCVaR provides a conservative approximation to the actual VaR. However,

it relies on first- and second-order moments of the derivative returns, which are difficult to

obtain in practice, but disregards the perfect dependencies captured by the function f , which

is typically known.

When f is non-linear, WCVaR tends to severely overestimate the actual VaR since the covari-

ance matrix Σr accounts only for linear dependencies. The robust optimization perspective on

WCVaR manifests this drawback geometrically. Recall that the ellipsoidal uncertainty set Uε

introduced in Section 4.2.2 is symmetrically oriented around the mean vector µr. If the un-

derlying assets of the derivatives have approximately symmetrically distributed returns, then

the derivative returns are heavily skewed. An ellipsoidal uncertainty set fails to capture this

asymmetry. This geometric argument supports our conjecture that WCVaR provides a poor

(over-pessimistic) VaR estimate when the portfolio contains derivatives.

In the remainder of the chapter we assume to know the first- and second-order moments of

the basic asset returns as well as the function f , which captures the non-linear dependencies

between the basic asset and derivative returns. In contrast, we assume that the moments of

the derivative returns are unknown.

In the next sections we derive generic Worst-Case Value-at-Risk models that explicitly account

for non-linear (piecewise linear or quadratic) relationships between the asset returns. These new

models provide tighter approximations for the actual VaR of portfolios containing derivatives

than the WCVaR model, which relies solely on moment information.

Below, we will always denote the mean vector and the covariance matrix of the basic asset

returns by µ and Σ, respectively. Without loss of generality we assume that Σ is strictly

positive definite.
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4.4 Worst-Case Polyhedral VaR Optimization

In this section we describe a Worst-Case VaR model that explicitly accounts for piecewise

linear relationships between option returns and their underlying asset returns. We show that

this model can be cast as a tractable second-order cone program and establish its equivalence

to a robust optimization model that admits an intuitive interpretation.

4.4.1 Piecewise Linear Portfolio Model

We now assume that the m − n derivatives in our market are European-style call and/or put

options derived from the basic assets. All these options are assumed to mature at the end of

the investment horizon, that is, at time T .

For ease of exposition, we partition the allocation vector as w = (wξ,wη), where wξ ∈ Rn

and wη ∈ Rm−n denote the percentage allocations in the basic assets and options, respectively.

In this section we forbid short-sales of options, that is, we assume that the inclusion w ∈ W

implies wη ≥ 0. Recall that the set W of admissible portfolios was assumed to be a convex

polyhedron.

We now derive an explicit representation for f by using the known payoff functions of the basic

assets as well as the European call and put options. Since the first n components of r̃ represent

the basic asset returns ξ̃, we have fj(ξ̃) = ξ̃j for j = 1, . . . , n. Next, we investigate the option

returns r̃j for j = n + 1, . . . ,m.2 Let asset j be a call option with strike price kj on the basic

asset i, and denote the return and the initial price of the option by r̃j and cj, respectively. If si

denotes the initial price of asset i, then its end-of-period price amounts to si(1 + ξ̃i). We can

now explicitly express the return r̃j as a convex piecewise linear function of ξ̃i,

fj(ξ̃) =
1

cj
max

{
0, si(1 + ξ̃i)− kj

}
− 1

= max
{
−1, aj + bj ξ̃i − 1

}
, where aj =

si − kj
cj

and bj =
si
cj
. (4.12a)

2The following equations are equivalent to those presented in Section 3.3.1 but where we now use relative
returns. The equations are repeated for clarity of exposition.
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Similarly, if asset j is a put option with price pj and strike price kj on the basic asset i, then

its return r̃j is representable as a different convex piecewise linear function,

fj(ξ̃) = max
{
−1, aj + bj ξ̃i − 1

}
, where aj =

kj − si
pj

and bj = − si
pj
. (4.12b)

Using the above notation, we can write the vector of asset returns r̃ compactly as

r̃ = f(ξ̃) =

 ξ̃

max
{
−e,a+ Bξ̃ − e

}
 , (4.13)

where a ∈ Rm−n, B ∈ R(m−n)×n are known constants determined through (3.27a) and (3.27b),

e ∈ Rm−n is the vector of 1s, and ‘max’ denotes the component-wise maximization operator.

Thus, the return r̃p of some portfolio w ∈ W can be expressed as

r̃p = wTr̃ = (wξ)Tξ̃ + (wη)Tη̃

= wTf(ξ̃) = (wξ)Tξ̃ + (wη)T max
{
−e,a+ Bξ̃ − e

}
. (4.14)

4.4.2 Worst-Case Polyhedral VaR Model

For any portfolio w ∈ W , we define the Worst-Case Polyhedral VaR (WCPVaR) as

WCPVaRε(w) = min

{
γ : sup

P∈P
P
{
γ ≤ −wTf(ξ̃)

}
≤ ε

}
(4.15)

= min

{
γ : sup

P∈P
P
{
γ ≤ −(wξ)Tξ̃ − (wη)T max

{
−e,a+ Bξ̃ − e

}}
≤ ε

}
,

where P denotes the set of all probability distributions of the basic asset returns ξ̃ with a given

mean vector µ and covariance matrix Σ. WCPVaR provides a tight conservative approximation

for the VaR of a portfolio whose return constitutes a convex piecewise linear (i.e., polyhedral)

function of the basic asset returns.

In the remainder of this section we derive a manifestly tractable representation for WCPVaR.
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As a first step to achieve this goal, we simplify the maximization problem

sup
P∈P

P
{
γ ≤ −(wξ)Tξ̃ − (wη)T max

{
−e,a+ Bξ̃ − e

}}
, (4.16)

which can be identified as the subordinate optimization problem in (4.15).

For some fixed portfolio w ∈ W and γ ∈ R, we define the set Sγ ⊆ Rn as

Sγ = {ξ ∈ Rn : γ + (wξ)Tξ + (wη)T max{−e,a+ Bξ − e} ≤ 0}.

For any ξ ∈ Rn and nonnegative wη ∈ Rm−n we have

(wη)T max{−e,a+ Bξ − e} = min
g∈Rm−n

{
gTwη : g ≥ −e, g ≥ a+ Bξ − e

}
= max
y∈Rm−n

{
yT(a+ Bξ)− eTwη : 0 ≤ y ≤ wη

}
,

where the second equality follows from strong linear programming duality. Thus, the set Sγ

can be written as

Sγ =

{
ξ ∈ Rn : max

0≤y≤wη

{
γ + (wξ)Tξ + yT(a+ Bξ)− eTwη

}
≤ 0

}
. (4.17)

The optimal value of problem (4.16) can be obtained by solving the worst-case probability

problem

πwc = sup
P∈P

P{ξ̃ ∈ Sγ}. (4.18)

The next lemma reviews a general result about worst-case probability problems and will play

a key role in many of the following derivations. The proof is due to Calafiore et al. [CTEG09]

but is repeated in Appendix 4.8.1 to keep this chapter self-contained.

Lemma 4.4.1 Let S ⊆ Rn be any Borel measurable set (which is not necessarily convex), and

define the worst-case probability πwc as

πwc = sup
P∈P

P{ξ̃ ∈ S}, (4.19)
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where P is the set of all probability distributions of ξ̃ with mean vector µ and covariance matrix

Σ � 0. Then,

πwc = inf
M∈Sn+1

{
〈Ω,M〉 : M < 0,

[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ ∈ S
}
, (4.20)

where

Ω =

Σ + µµT µ

µT 1

 (4.21)

is the second-order moment matrix of ξ̃.

Lemma 4.4.1 enables us to reformulate the worst-case probability problem (4.18) as

πwc = inf
M∈Sn+1

〈Ω,M〉

s. t.
[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ : max
0≤y≤wη

{γ + (wξ)Tξ + yT(a+ Bξ)− eTwη} ≤ 0

M < 0.

(4.22)

We now recall the non-linear Farkas Lemma, which is a fundamental theorem of alternatives in

convex analysis and will enable us to simplify the optimization problem (4.22), see, e.g., [PT07,

Theorem 2.1] and the references therein.

Lemma 4.4.2 (Farkas Lemma) Let f0, . . . , fp : Rn → R be convex functions, and assume

that there exists a strictly feasible point ξ̄ with fi(ξ̄) < 0, i = 1, . . . , p. Then, f0(ξ) ≥ 0 for all

ξ with fi(ξ̄) ≤ 0, i = 1, . . . , p, if and only if there exist constants τi ≥ 0 such that

f0(ξ) +

p∑
i=1

τifi(ξ) ≥ 0 ∀ξ ∈ Rn.
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We will now argue that problem (4.22) can be reformulated as follows.

inf 〈Ω,M〉

s. t. M ∈ Sn+1, τ ∈ R, M < 0, τ ≥ 0[
ξT 1

]
M
[
ξT 1

]T − 1 + 2τ

(
max

0≤y≤wη
{γ + (wξ)Tξ + yT(a+ Bξ)− eTwη}

)
≥ 0 ∀ξ ∈ Rn

(4.23)

For ease of exposition, we first first define

h = min
ξ∈Rn

max
0≤y≤wη

{γ + (wξ)Tξ + yT(a+ Bξ)− eTwη}.

The equivalence of (4.22) and (4.23) is proved case by case. Assume first that h < 0. Then, the

equivalence follows from the Farkas Lemma. Assume next that h > 0. Then, the semi-infinite

constraint in (4.22) becomes redundant and, since Ω � 0, the optimal solution of (4.22) is

given by M = 0 with a corresponding optimal value of 0. The optimal value of problem (4.23)

is also equal to 0. Indeed, by choosing τ = 1/h, the semi-infinite constraint in (4.23) is satisfied

independently of M. Finally, assume that h = 0. In this degenerate case the equivalence follows

from a standard continuity argument. Details are omitted for brevity of exposition.

It can be seen that since τ ≥ 0, the semi-infinite constraint in (4.23) is equivalent to the

assertion that there exists some 0 ≤ y ≤ wη with

[
ξT 1

]
M
[
ξT 1

]T − 1 + 2τ
(
γ + (wξ)Tξ + yT(a+ Bξ)− eTwη

)
≥ 0 ∀ξ ∈ Rn.

This semi-infinite constraint can be written as

ξ
1


TM +

 0 τ(wξ + BTy)

τ(wξ + BTy)T −1 + 2τ(γ + yTa− eTwη)



ξ

1

 ≥ 0 ∀ξ ∈ Rn

⇐⇒ M +

 0 τ(wξ + BTy)

τ(wξ + BTy)T −1 + 2τ(γ + yTa− eTwη)

 < 0.
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Thus, the worst-case probability problem (4.22) can equivalently be formulated as

πwc = inf 〈Ω,M〉

s. t. M ∈ Sn+1, y ∈ Rm−n, τ ∈ R

M < 0, τ ≥ 0, 0 ≤ y ≤ wη

M +

 0 τ(wξ + BTy)

τ(wξ + BTy)T −1 + 2τ(γ + yTa− eTwη)

 < 0.

(4.24)

By using (4.24) we can express WCPVaR in (4.15) as the optimal value of the following mini-

mization problem.

WCPVaRε(w) = inf γ

s. t. M ∈ Sn+1, y ∈ Rm−n, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ ε, M < 0, τ ≥ 0, 0 ≤ y ≤ wη

M +

 0 τ(wξ + BTy)

τ(wξ + BTy)T −1 + 2τ(γ + yTa− eTwη)

 < 0

(4.25)

Problem (4.25) is non-convex due to the bilinear terms in the matrix inequality constraint.

It can easily be shown that 〈Ω,M〉 ≥ 1 for any feasible point with vanishing τ -component.

However, since ε < 1, this is in conflict with the constraint 〈Ω,M〉 ≤ ε. We thus conclude

that no feasible point can have a vanishing τ -component. This allows us to divide the matrix

inequality in problem (4.25) by τ . Subsequently we perform variable substitutions in which we

replace 1/τ by τ and M/τ by M. This yields the following reformulation of problem (4.25).

WCPVaRε(w) = inf γ

s. t. M ∈ Sn+1, y ∈ Rm−n, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ τε, M < 0, τ ≥ 0, 0 ≤ y ≤ wη

M +

 0 wξ + BTy

(wξ + BTy)T −τ + 2(γ + yTa− eTwη)

 < 0

(4.26)
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Observe that (4.26) constitutes a semidefinite program (SDP) that can be used to efficiently

compute the WCPVaR of a given portfolio w ∈ W . However, it would be desirable to obtain

an equivalent second-order cone program (SOCP) because SOCPs exhibit better scalability

properties than SDPs [AG03]. Theorem 4.4.1 shows that such a reformulation exists.

Theorem 4.4.1 Problem (4.26) can be reformulated as

WCPVaRε(w) = min
0≤g≤wη

−µT(wξ + BTg) + κ(ε)
∥∥Σ1/2(wξ + BTg)

∥∥
2
− aTg + eTwη, (4.27)

which constitutes a tractable SOCP.

Proof The proof follows a similar reasoning as in [EGOO03, Theorem 1] and is therefore

relegated to Appendix 4.8.2.

Remark 4.4.1 In the absence of derivatives, that is, when the market only contains basic

assets, then m = n and w = wξ. In this special case we obtain

WCPVaRε(w) = −µTw + κ(ε)
∥∥Σ1/2w

∥∥
2

= WCVaRε(w).

Thus, the WCPVaR model encapsulates the WCVaR model (4.7) as a special case.

The problem of minimizing the WCVaR of a portfolio containing European options can now

be conservatively approximated by

minimize
w∈Rm

WCPVaRε(w)

subject to w ∈ W ,
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which is equivalent to the tractable SOCP

minimize γ

subject to wξ ∈ Rn, wη ∈ Rm−n, g ∈ Rm−n, γ ∈ R

− µT(wξ + BTg) + κ(ε)
∥∥Σ1/2(wξ + BTg)

∥∥
2
− aTg + eTwη ≤ γ

0 ≤ g ≤ wη, w = (w,wη), w ∈ W .

(4.28)

Recall that the set of admissible portfolios W precludes short positions in options, that is,

w ∈ W implies wη ≥ 0. Furthermore, note that problem (4.28) bears a strong similarity to

the robust portfolio optimization model (3.31), which we derived in Section 3.3

4.4.3 Robust Optimization Perspective on WCPVaR

In Section 4.2 we highlighted a known relationship between WCVaR optimization and robust

optimization. Moreover, in Section 4.3 we argued that the ellipsoidal uncertainty set related to

the WCVaR model is symmetric and as such fails to capture the asymmetric dependencies be-

tween options and their underlying assets. In the next theorem we establish that the WCPVaR

minimization problem (4.28) can also be cast as a robust optimization problem of the type

(4.9). However, the uncertainty set which generates WCPVaR is no longer symmetric.

Theorem 4.4.2 The WCPVaR minimization problem (4.28) is equivalent to the robust opti-

mization problem

minimize
w∈Rm,γ∈R

γ

subject to −wTr ≤ γ ∀r ∈ Upε

w ∈ W ,

(4.29)

where the uncertainty set Upε ⊆ Rm is defined as

Upε =
{
r ∈ Rm : ∃ξ ∈ Rn, (ξ − µ)TΣ−1(ξ − µ) ≤ κ(ε)2, r = f(ξ)

}
. (4.30)

3The small differences are due to the facts that we use relative returns and that we do not consider support
information in this chapter.
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Figure 4.1: Illustration of the Upε uncertainty set: the classical ellipsoidal uncertainty set has
been transformed by the piecewise linear payoff function of the call option written on stock B.

Proof The result is based on conic duality. We refer to Theorem 3.3.1 for an analogous

exposition of the proof.

Remark 4.4.2 Unlike the uncertainty set Uε defined in Section 4.2.2, the new uncertainty set

Upε reflects the non-linear relationship between the option returns and their underlying asset

returns. Because f is a convex piecewise linear function, the uncertainty set is no longer

symmetric around µ. The asymmetry is caused by the option returns, see Figure 4.1.

Example 4.4.1 Consider a Black-Scholes economy consisting of stocks A and B, a European

call option on stock A, and a European put option on stock B. Furthermore, let w be an equally

weighted portfolio of these m = 4 assets, that is, set wi = 1/m for i = 1, . . . ,m. Thus we have

w = [0.25 0.25 0.25 0.25]T.

We assume that the prices of stocks A and B are governed by a bivariate geometric Brownian

motion with drift coefficients of 12% and 8%, and volatilities of 30% and 20% per annum,

respectively. The correlation between the instantaneous stock returns amounts to 20%. The

initial prices of the stocks are $100. The options mature in 21 days and have strike prices of

$100. We assume that the risk-free rate is 3% per annum and that there are 252 trading days

per year. By using the Black-Scholes formulas [BS73], we obtain call and put option prices of

$3.5758 and $2.1774, respectively.

We want to compute the VaR at confidence level ε for portfolio w and a 21-day time horizon.
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To this end, we randomly generate L=5,000,000 end-of-period stock prices and corresponding

option payoffs. These are used to obtain L asset and portfolio return samples. Figure 4.2 (left)

displays the sampled portfolio loss distribution, which exhibits considerable skewness due to the

options. The Monte-Carlo VaR is obtained by computing the (1 − ε)-quantile of the sampled

portfolio loss distribution.

We also compute the 21-day sample means µr and sample covariance matrix Σr of the asset

returns, which are used for the calculation of WCVaR (4.7) and WCPVaR (4.27). These values

are

µr =



0.01

0.0067

0.1165

−0.0856


, and Σr =



0.0077 0.0010 0.1245 −0.0204

0.0010 0.0034 0.0160 −0.0670

0.1245 0.0160 2.5466 −0.3028

−0.0204 −0.0670 −0.3028 1.9580


,

where the first two entries in µr belong to the stock returns, followed by the call and put option

returns. The entries for the covariance matrix obey this ordering.

Let us now compute WCVaR at, for example, ε = 10%. We have κ(0.1) =
√

(1− 0.1)/0.1 = 3.

We now insert the above parameter values into equation (4.7), and compute WCVaR0.1(w) as

−



0.01

0.0067

0.1165

−0.0856



T 

0.25

0.25

0.25

0.25


+ 3

√√√√√√√√√√√√



0.25

0.25

0.25

0.25



T 

0.0077 0.0010 0.1245 −0.0204

0.0010 0.0034 0.0160 −0.0670

0.1245 0.0160 2.5466 −0.3028

−0.0204 −0.0670 −0.3028 1.9580





0.25

0.25

0.25

0.25


,

which is equal to 1.4916.

Next, we evaluate WCPVaR at ε = 10%. To this end, we first compute the option specific

multipliers a and B, see (4.12). These are equal to

a =

100−100
100

100−100
100

 =

0

0

 , and B =

 100
3.5758

0

0 − 100
2.1774

 =

27.9655 0

0 −45.9261

 .
Furthermore, the WCPVaR model only requires the means µ and covariance matrix Σ of the
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Figure 4.2: Left: The portfolio loss distribution obtained via Monte-Carlo simulation. Note
that negative values represent gains. Right: The VaR estimates at different confidence levels
obtained via Monte-Carlo sampling, WCVaR, and WCPVaR.

stock returns, which are equal to

µ =

 0.01

0.0067

 , and Σ =

0.0077 0.0010

0.0010 0.0034

 .
We now compute WCPVaR0.1(w) by inserting the above parameter values into problem (4.27),

by which we obtain

min
g1∈R,g2∈R

−

 0.01

0.0067


T
0.25

0.25

+

 27.9655g1

−45.9261g2


+

1

1


T 0.25

0.25


+3

√√√√√√

0.25

0.25

+

 27.9655g1

−45.9261g2




T 0.0077 0.0010

0.0010 0.0034



0.25

0.25

+

 27.9655g1

−45.9261g2




s. t. 0 ≤ g1 ≤ 0.25, 0 ≤ g2 ≤ 0.25.

The above problem is solved using the SDPT3 optimization toolkit [TTT03] and we find an

optimal objective value equal to 0.5624.

Figure 4.2 (right) displays the VaR estimates at different levels of ε ∈ [0.01, 0.2]. We observe

that for all values of ε, the WCVaR and WCPVaR values exceed the Monte-Carlo VaR esti-

mate. This is not surprising since these models are distributionally robust and as such provide

a conservative estimate of VaR. Note that the Monte-Carlo VaR can only be calculated accu-
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rately if many return samples are available (e.g., if the return distribution is precisely known).

However, WCVaR vastly overestimates WCPVaR. This effect is amplified for lower values of ε,

where the accuracy of the VaR estimate matters most. Indeed, for ε = 1%, the WCVaR reports

an unrealistically high value of 497%, which is 7 times larger than the corresponding WCPVaR

value.

4.5 Worst-Case Quadratic VaR Optimization

The WCPVaR model suffers from a number of weaknesses which may make it unattractive for

certain investors.

Firstly, in order to obtain a tractable problem reformulation we had to prohibit short-sales of

options. Although this is not restrictive for investors who merely want to enrich their portfolios

with options in order to obtain insurance benefits (see Chapter 3), it severely constrains the

complete set of option strategies that larger institutions might want to include in their portfolios.

Furthermore, we can only calculate and optimize the risk of portfolios comprising options that

mature at the end of the investment horizon. As a result, investors cannot use the model,

for example, to optimize portfolios including longer term options that mature far beyond the

investment horizon.

Finally, the model is only suitable for portfolios containing plain vanilla European options and

can not be used when exotic options are included in the portfolio.

In this section we propose an alternative Worst-Case VaR model which mitigates the weaknesses

of the WCPVaR model. It is important to note that WCPVaR does not make any assumptions

about the pricing model of the options. Only observable market prices and the known payoff

functions of the options are used to calculate the option returns. In contrast, the new model

proposed in this section requires the availability of a pricing model for the options. Moreover, it

approximates the portfolio return using a second-order Taylor expansion which is only accurate

for short investment horizons.
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4.5.1 Delta-Gamma Portfolio Model

As in Section 4.4, we assume that there are n ≤ m basic assets and m − n derivatives whose

values are uniquely determined by the values of the basic assets. However, in contrast to

Section 4.4, we do not only focus on European style options but also allow for exotic derivatives.

Furthermore, we no longer require that the options mature at the end of the investment horizon.

We let s̃(t) denote the n-dimensional vector of basic asset prices at time t ≥ 0 and assume that

the prices at time t = 0 are known (i.e., deterministic). Moreover, we assume that the value of

any (basic or non-basic) asset i = 1, . . . ,m is representable as vi(s̃(t), t), where vi : Rn×R→ R

is twice continuously differentiable.

For a sufficiently short horizon time T , a second-order Taylor expansion accurately approximates

the asset values at the end of the investment horizon. For i = 1, . . . ,m we have

vi(s̃(T ), T )− vi(s(0), 0) ≈ θ̄iT + ∆̄T
i (s̃(T )− s(0)) +

1

2
(s̃(T )− s(0))TΓ̄i(s̃(T )− s(0)),

where

θ̄i = ∂tvi(s(0), 0) ∈ R, ∆̄i = ∇svi(s(0), 0) ∈ Rn, and Γ̄i = ∇2
svi(s(0), 0) ∈ Sn. (4.31)

The values computed in (4.31) are referred to as the ‘greeks’ of the assets. We emphasize that

the computation of the greeks relies on the availability of a pricing model, that is, the value

functions vi must be known. Note that the values of the functions vi at (s(0), 0) can be observed

in the market. However, the values of vi in a neighborhood of (s(0), 0) are not observable. The

proposed second-order Taylor approximation is very popular in finance and is often referred to

as the delta-gamma approximation, see [Jas02].

By using the relative greeks

θi =
T

vi(s(0), 0)
θ̄i, ∆i =

1

vi(s(0), 0)
diag(s(0))∆̄i, Γi =

1

vi(s(0), 0)
diag(s(0))TΓ̄i diag(s(0)),
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the delta-gamma approximation can be reformulated in terms of relative returns

r̃i ≈ fi(ξ̃) = θi + ∆T
i ξ̃ +

1

2
ξ̃TΓiξ̃ ∀i = 1, . . . ,m. (4.32)

Here we use the (possibly non-convex) quadratic functions fi to map the basic asset returns ξ̃

to the asset returns r̃.

The return of a portfolio w ∈ W can therefore be approximated by

wTr̃ ≈ θ(w) + ∆(w)Tξ̃ +
1

2
ξ̃TΓ(w)ξ̃, (4.33)

where we use the auxiliary functions

θ(w) =
m∑
i=1

wiθi, ∆(w) =
m∑
i=1

wi∆i, and Γ(w) =
m∑
i=1

wiΓi,

which are all linear in w. We emphasize that, in contrast to Section 4.4, we now allow for

short-sales of derivatives.

In the remainder of this section we derive a Worst-Case VaR optimization model based on the

quadratic approximation (4.33).

4.5.2 Worst-Case Quadratic VaR Model

We define the Worst-Case Quadratic VaR (WCQVaR) of a fixed portfolio w ∈ W in terms of

the Taylor expansion (4.33).

WCQVaRε(w) = min

{
γ : sup

P∈P
P
{
γ ≤ −wTf(ξ̃)

}
≤ ε

}
= min

{
γ : sup

P∈P
P
{
γ ≤ −θ(w)−∆(w)Tξ̃ − 1

2
ξ̃TΓ(w)ξ̃

}
≤ ε

}
(4.34)

Note that the WCQVaR approximates the portfolio return wTr̃ by a (possibly non-convex)

quadratic function of the basic asset returns ξ̃.
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Theorem 4.5.1 below shows how the WCQVaR of a portfolio w can be computed by solving

a tractable SDP. We first recall the S-lemma, which is a crucial ingredient for the proof of

Theorem 4.5.1. We refer to Pólik and Terlaky [PT07] for a derivation and an in-depth survey

of its manifold uses.

Lemma 4.5.1 (S-lemma) Let fi(ξ) = ξTAiξ, i = 0, . . . , p be quadratic functions of ξ ∈ Rn.

Then, f0(ξ) ≥ 0 for all ξ with fi(ξ) ≤ 0, i = 1, . . . , p, if there exist constants τi ≥ 0 such that

A0 +

p∑
i=1

τiAi < 0.

For p = 1, the converse implication holds if there exists a strictly feasible point ξ̄ with f1(ξ̄) < 0.

Theorem 4.5.1 The WCQVaR of a fixed portfolio w ∈ W can be computed by solving the

following tractable SDP.

WCQVaRε(w) = inf γ

s. t. M ∈ Sn+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ τε, M < 0, τ ≥ 0,

M +

 Γ(w) ∆(w)

∆(w)T −τ + 2(γ + θ(w))

 < 0

(4.35)

Proof For the given portfolio w ∈ W and for any fixed γ ∈ R, we introduce the set Qγ ⊆ Rn,

defined through

Qγ =

{
ξ ∈ Rn : γ ≤ −θ(w)−∆(w)Tξ − 1

2
ξTΓ(w)ξ

}
. (4.36)

As in Section 4.4, the first step towards a tractable reformulation of WCQVaR is to solve the

worst-case probability problem

πwc = sup
P∈P

P{ξ̃ ∈ Qγ}, (4.37)

which can be identified as the subordinate maximization problem in (4.34). Lemma 4.4.1
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implies that (4.37) can equivalently be formulated as

πwc = inf
M∈Sn+1

{
〈Γ,M〉 : M < 0,

[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ ∈ Qγ
}
. (4.38)

By the definition of Q, the semi-infinite constraint in problem (4.38) is equivalent to

[
ξT 1

]
(M− diag(0, 1))

[
ξT 1

]T ≥ 0 ∀ξ :
[
ξT 1

]  1
2
Γ(w) 1

2
∆(w)

1
2
∆(w)T γ + θ(w)

 [ξT 1
]T ≤ 0.

By using the S-lemma and by analogous reasoning as in Section 4.4.2, we can replace the

semi-infinite constraint in problem (4.38) by

∃τ ≥ 0 : M +

 τΓ(w) τ∆(w)

τ∆(w)T −1 + 2τ(γ + θ(w))

 < 0

without changing the optimal value of the problem. Thus, the worst-case probability problem

(4.37) can be rewritten as

πwc = inf 〈Ω,M〉

s. t. M ∈ Sn+1, τ ∈ R, M < 0, τ ≥ 0

M +

 τΓ(w) τ∆(w)

τ∆(w)T −1 + 2τ(γ + θ(w))

 < 0.

(4.39)

The WCQVaR of the portfolio w can therefore be obtained by solving the following non-convex

optimization problem.

WCQVaRε(w) = inf γ

s. t. M ∈ Sn+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ ε, M < 0, τ ≥ 0

M +

 τΓ(w) τ∆(w)

τ∆(w)T −1 + 2τ(γ + θ(w))

 < 0

(4.40)
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By analogous reasoning as in Section 4.4.2, it can be shown that any feasible solution of prob-

lem (4.40) has a strictly positive τ -component. Thus we may divide the matrix inequality

in (4.40) by τ . After the variable transformation τ → 1/τ and M → M/τ , we obtain the

postulated SDP (4.35).

Remark 4.5.1 In the absence of derivatives, that is, if the market only contains basic assets,

then m = n, and the coefficient functions in the delta-gamma approximation (4.33) reduce to

θ(w) = 0, ∆(w) = w, and Γ(w) = 0. In this special case, the WCQVaR is computed by

solving the following SDP.

WCQVaRε(w) = inf γ

s. t. M ∈ Sn+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ τε, M < 0, τ ≥ 0

M +

 0 w

wT −τ + 2γ

 < 0

El Ghaoui et al. [EGOO03] have shown (using similar arguments as in Theorem 4.4.1) that

this SDP has the closed form solution

WCVaR(w) = −µTw + κ(ε)
√
wTΣw, where κ(ε) =

√
1− ε
ε

.

Thus, the WCQVaR model is a direct extension of the WCVaR model (4.7).

Problem (4.35) constitutes a convex SDP that facilitates the efficient computation of the

WCQVaR for any fixed portfolio w ∈ W . Since the matrix inequality in (4.35) is linear in

(M, τ , γ) and w, one can reinterpret w as a decision variable without impairing the problem’s

convexity. This observation reveals that we can efficiently minimize the WCQVaR over all
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portfolios w ∈ W by solving the following SDP.

inf γ

s. t. M ∈ Sn+1, τ ∈ R, γ ∈ R, w ∈ W

〈Ω,M〉 ≤ τε, M < 0, τ ≥ 0

M +

 Γ(w) ∆(w)

∆(w)T −τ + 2(γ + θ(w))

 < 0

(4.41)

Remark 4.5.2 Unlike in Section 4.4, there seems to be no equivalent SOCP formulation for

the SDP (4.41). In particular, there is no simple way to adapt the arguments in the proof of

Theorem 4.4.1 to the current setting. The reason for this is a fundamental difference between

the corresponding SDP problems (4.26) and (4.41). In fact, the top left principal submatrix in

the last LMI constraint is independent of w in (4.26) but not in (4.41).

4.5.3 Robust Optimization Perspective on WCQVaR

We now highlight the close connection between robust optimization and WCQVaR minimiza-

tion. In the next theorem we elaborate an equivalence between the WCQVaR minimization

problem and a robust optimization problem whose uncertainty set is embedded into a space of

positive semidefinite matrices.

Theorem 4.5.2 The WCQVaR minimization problem (4.41) is equivalent to the robust opti-

mization problem

minimize
w∈Rm,γ∈R

γ

subject to − 〈Q(w),Z〉 ≤ γ ∀Z ∈ U qε

w ∈ W ,

(4.42)

where

Q(w) =

 1
2
Γ(w) 1

2
∆(w)

1
2
∆(w)T θ(w)

 ,
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and the uncertainty set U qε ⊆ Sn+1 is defined as

U qε =

Z =

X ξ

ξT 1

 ∈ Sn+1 : Ω− εZ < 0, Z < 0

 . (4.43)

Proof For some fixed portfolio w ∈ W , the WCQVaR can be computed by solving problem

(4.35), which involves the LMI constraint

M +

 Γ(w) ∆(w)

∆(w)T −τ + 2(γ + θ(w))

 < 0. (4.44)

Without loss of generality, we can rewrite the matrix M as

M =

V v

vT u

 .
With this new notation, the LMI constraint (4.44) is representable as

[ξT 1]

 V + Γ(w) v + ∆(w)

(v + ∆(w))T u− τ + 2(γ + θ(w))

 [ξT 1]T ≥ 0 ∀ξ ∈ Rn

⇐⇒ ξT(V + Γ(w))ξ + 2ξT(v + ∆(w)) + u− τ + 2(γ + θ(w)) ≥ 0 ∀ξ ∈ Rn

⇐⇒ γ ≥ −1

2
ξT(V + Γ(w))ξ − ξT(v + ∆(w))− θ(w)− 1

2
(u− τ) ∀ξ ∈ Rn

⇐⇒ γ ≥ sup
ξ∈Rn

{
−1

2
ξT(V + Γ(w))ξ − ξT(v + ∆(w))− θ(w)− 1

2
(u− τ)

}
.

Thus, the WCQVaR problem (4.35) can be rewritten as

inf sup
ξ∈Rn

− 1

2
ξT(V + Γ(w))ξ − ξT(v + ∆(w))− θ(w)− 1

2
(u− τ)

s. t. V ∈ Sn, v ∈ Rn, τ ∈ R, u ∈ RV v

vT u

 < 0, τ ≥ 0, 〈V,Σ + µµT〉+ 2vTµ+ u ≤ τε.

(4.45)

Note that if V + Γ(w) is not positive semidefinite, the inner maximization problem in (4.45)
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is unbounded. However, this implies that any V ∈ Sn is infeasible in the outer minimization

problem unless V + Γ(w) < 0. Therefore, we can add the constraint V + Γ(w) < 0 to

the minimization problem in (4.45) without changing its feasible region. With this constraint

appended, the min-max problem (4.45) becomes a saddlepoint problem because its objective is

concave in ξ for any fixed (V,v, u, τ) and convex in (V,v, u, τ) for any fixed ξ. Moreover, the

feasible sets of the outer and inner problems are convex and independent of each other. Thus,

we may interchange the ‘inf’ and ‘sup’ operators to obtain the following equivalent problem,

see, e.g., [DM74, Theorem 5.1].

max
ξ∈Rn

min − 1

2
ξT(V + Γ(w))ξ − ξT(v + ∆(w))− θ(w)− 1

2
(u− τ)

s. t. V ∈ Sn, v ∈ Rn, τ ∈ R, u ∈ RV v

vT u

 < 0, τ ≥ 0, 〈V,Σ + µµT〉+ 2vTµ+ u ≤ τε.

(4.46)

We proceed by dualizing the inner minimization problem in (4.46). After a few elementary

simplification steps, this dual problem reduces to

max − 1

2
〈Γ(w), ξξT + Y〉 − ξT∆(w)− θ(w)

s. t. Y ∈ Sn, α ∈ R, Y < 0, 1 ≤ α ≤ 1

εα(Σ + µµT)− (ξξT + Y) αµ− ξ

(αµ− ξ)T α− 1

 < 0.

(4.47)

Note that strong duality holds because the inner problem in (4.46) is strictly feasible for any

ε > 0, see [VB96]. This allows us to replace the inner minimization problem in (4.46) by

the maximization problem (4.47), which yields the following equivalent formulation for the
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WCQVaR problem (4.35).

max − 1

2
〈Γ(w), ξξT + Y〉 − ξT∆(w)− θ(w)

s. t. Y ∈ Sn, ξ ∈ Rn, α ∈ R, Y < 0, 1 ≤ α ≤ 1

εα(Σ + µµT)− (ξξT + Y) αµ− ξ

(αµ− ξ)T α− 1

 < 0

We now introduce a new decision variable X = ξξT + Y, which allows us to reformulate the

above problem as

max − 1

2
〈Γ(w),X〉 − ξT∆(w)− θ(w)

s. t. X ∈ Sn, ξ ∈ Rn, α ∈ R, 1 ≤ α ≤ 1

εα(Σ + µµT)−X αµ− ξ

(αµ− ξ)T α− 1

 < 0, X− ξξT < 0.

By definition of Ω as the second-order moment matrix of the basic asset returns, see (4.21),

the first LMI constraint in the above problem can be rewritten as

αΩ−

X ξ

ξT 1

 < 0.

Furthermore, by using Schur complements, the following equivalence holds.

X− ξξT < 0 ⇐⇒

X ξ

ξT 1

 < 0
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Therefore, problem (4.47) can be reformulated as

max −

〈 1
2
Γ(w) 1

2
∆(w)

1
2
∆(w)T θ(w)

 ,
X ξ

ξT 1

〉

s. t. X ∈ Sn, ξ ∈ Rn, α ∈ R, 1 ≤ α ≤ 1

ε

αΩ−

X ξ

ξT 1

 < 0,

X ξ

ξT 1

 < 0.

Since the objective function is independent of α and Ω � 0, the optimal choice for α is 1/ε; in

fact, this choice of α generates the largest feasible set. We conclude that the WCQVaR for a

fixed portfolio w can be computed by solving the following problem.

max −

〈 1
2
Γ(w) 1

2
∆(w)

1
2
∆(w)T θ(w)

 ,
X ξ

ξT 1

〉

s. t. X ∈ Sn, ξ ∈ Rn, Ω− ε

X ξ

ξT 1

 < 0,

X ξ

ξT 1

 < 0

The WCQVaR minimization problem (4.41) can therefore be expressed as the min-max problem

min
w∈W

max
Z∈Uqε

− 〈Q(w),Z〉, (4.48)

which is manifestly equivalent to the postulated semi-infinite program (4.42).

It may not be evident how the uncertainty set U qε (defined in (4.43)) associated with the

WCQVaR formulation is related to the ellipsoidal uncertainty set Uε defined in Section 4.2.2.

We now demonstrate that there exists a strong connection between these two uncertainty sets,

even though they are embedded in spaces of different dimensions.

Corollary 4.5.1 If the constraint Γ(w) < 0 is appended to the definition of the set W of
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admissible portfolios, then the robust optimization problem (4.42) reduces to

minimize
w∈Rm,γ∈R

γ

subject to − θ(w)−∆(w)Tξ − 1

2
ξTΓ(w)ξ ≤ γ ∀ξ ∈ Uε

w ∈ W ,

(4.49)

where Uε is the ellipsoidal uncertainty set defined in Section 4.2.2.

Proof The inner maximization problem in (4.48) can be written as

max − θ(w)−∆(w)Tξ − 1

2
〈Γ(w),X〉

s. t. X ∈ Sn, ξ ∈ Rn, X− ξξT < 0(Σ + µµT)− εX µ− εξ

(µ− εξ)T 1− ε

 < 0.

By introducing the decision variable Y = X− ξξT as in the proof of Theorem 4.5.2, the above

problem can be reformulated as

max − θ(w)−∆(w)Tξ − 1

2
ξTΓ(w)ξ − 1

2
〈Γ(w),Y〉

s. t. Y ∈ Sn, ξ ∈ Rn, Y < 0(Σ + µµT)− ε(Y + ξξT) µ− εξ

(µ− εξ)T 1− ε

 < 0.

(4.50)

We will now argue that Y = 0 at optimality. This holds due to the following two facts: (i) for

Y = 0 we obtain the largest feasible set, and (ii) we have 〈Γ(w),Y〉 ≥ 0 for all Y < 0 because

Γ(w) < 0 by assumption. Thus problem (4.50) reduces to

max
ξ∈Rn

− θ(w)−∆(w)Tξ − 1

2
ξTΓ(w)ξ

s. t.

(Σ + µµT)− εξξT µ− εξ

(µ− εξ)T 1− ε

 < 0.
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Using similar arguments as in Theorem 4.4.1 (in particular, see (4.8.2)), we can show that the

semidefinite constraint in the above problem is equivalent to

 Σ ξ − µ

(ξ − µ)T κ(ε)2

 < 0 ⇐⇒ (ξ − µ)TΣ−1(ξ − µ) ≤ κ(ε)2.

Thus the original min-max formulation (4.48) can be reexpressed as

min
w∈W

max
ξ∈Uε

− θ(w)−∆(w)Tξ − 1

2
ξTΓ(w)ξ,

which is equivalent to the postulated robust optimization problem.

Remark 4.5.3 Note that the robust optimization problem (4.49) can be reformulated as

minimize
w∈Rm,γ∈R

γ

subject to −wTr ≤ γ ∀r ∈ U q2ε

w ∈ W ,

(4.51)

where the uncertainty set U q2ε is defined as

U q2ε =

r ∈ Rm :

∃ξ ∈ Rn such that

(ξ − µ)TΣ−1(ξ − µ) ≤ κ(ε)2 and

ri = θi + ξT∆i + 1
2
ξTΓiξ ∀i = 1, . . . ,m


In contrast to the simple ellipsoidal set Uε, the set U q2ε is asymmetrically oriented around µ.

This asymmetry is caused by the quadratic functions that map the basic asset returns ξ to

the asset returns r, see Figure 4.3. As a result, the WCQVaR model may provide a tighter

approximation of the actual VaR of a portfolio containing derivatives than the WCVaR model.

It seems that a min-max formulation (4.51) with an uncertainty set embedded into Rm is only

available if Γ(w) < 0, that is, if the portfolio return is a convex quadratic function of the basic

assets returns. In general, however, one needs to resort to the more general formulation (4.42),
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Figure 4.3: Illustration of the U q2ε uncertainty set: the classical ellipsoidal uncertainty set has
been transformed by the quadratic approximation of the return of the call option written on
stock B.

in which the uncertainty set is embedded into Sn+1; the dimension increase can compensate for

the non-convexity of the portfolio return function.

Example 4.5.1 We repeat the same experiment as in Example 4.4.1 but estimate the portfolio

VaR after 2 days instead of 21 days. Since the VaR is no longer evaluated at the maturity

time of the options, we use the WCQVaR model instead of the WCPVaR model. We use an

analogous Monte-Carlo simulation as in Example 4.4.1 to generate the stock and option returns

over a 2-day investment period as well as the corresponding sample means µr and covariance

matrix Σr. We determine their values to be

µr =



0.0009

0.0006

0.0106

−0.0083


, and Σr =



0.0007 0.0001 0.0107 −0.0020

0.0001 0.0003 0.0014 −0.0068

0.0107 0.0014 0.1636 −0.0302

−0.0020 −0.0068 −0.0302 0.1514


,

where the first two entries in µr belong to the stock returns, followed by the call and put option

returns. The entries for the covariance matrix obey this ordering.

Let us now compute WCVaR at ε = 10%. We have κ(0.1) =
√

(1− 0.1)/0.1 = 3. We now



4.5. Worst-Case Quadratic VaR Optimization 107

insert the above parameter values into equation (4.7), and compute WCVaR0.1(w) as

−



0.0009

0.0006

0.0106

−0.0083



T 

0.25

0.25

0.25

0.25


+ 3

√√√√√√√√√√√√



0.25

0.25

0.25

0.25



T 

0.0007 0.0001 0.0107 −0.0020

0.0001 0.0003 0.0014 −0.0068

0.0107 0.0014 0.1636 −0.0302

−0.0020 −0.0068 −0.0302 0.1514





0.25

0.25

0.25

0.25


,

which is equal to 0.3831.

Next, we evaluate WCQVaR at ε = 10%. The coefficients of the quadratic approximation func-

tion (4.33) are calculated using the standard Black-Scholes greek formulas (see, e.g., [Mac92]).

Thus, we have

θ(w) = −0.00019513× 0.25− 0.00017798× 0.25 = −9.3276× 10−5

∆(w) = 0.25

1

0

+ 0.25

0

1

+ 0.25

14.7872

0

− 0.25

 0

21.6419

 =

 3.9468

−5.1605


Γ(w) = 0.25

128.4907 0

0 0

+ 0.25

0 0

0 316.5187

 =

32.1227 0

0 79.1297

 .
Furthermore, WCQVaR requires the second-order moment matrix Ω of the stock returns, which

we compute using (4.21). We have

Ω =


0.0007 0.0001 0.0009

0.0001 0.0003 0.0006

0.0009 0.0006 1.0000

 .

We now compute WCQVaR0.1(w) by inserting the above parameter values into problem (4.35),
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by which we obtain

inf γ

s. t. M ∈ S3, τ ∈ R, γ ∈ R

〈
0.0007 0.0001 0.0009

0.0001 0.0003 0.0006

0.0009 0.0006 1.0000

 ,M
〉
≤ 0.1τ, M < 0, τ ≥ 0,

M +


32.1227 0 3.9468

0 79.1297 −5.1605

3.9468 −5.1605 −τ + 2(γ − 9.3276× 10−5)

 < 0.

The above problem is solved using the SDPT3 optimization toolkit [TTT03] and we find an

optimal objective value γ∗ = 0.2899.

Figure 4.4 (left) displays the sampled portfolio loss distribution, which is still skewed, although

considerably less than in Example 4.4.1. In Figure 4.4 (right) we compare Monte-Carlo VaR,

WCVaR, and WCQVaR for different confidence levels. Even for the short horizon time under

consideration, the WCVaR model still fails to give a realistic VaR estimate. At ε = 1%, WCVaR

is more than 3 times as large as the corresponding WCQVaR value. This example demonstrates

that the WCQVaR can offer significantly better VaR estimates than WCVaR when the portfolio

contains options.

4.6 Computational Results

In Section 4.6.1 we compare the out-of-sample performance of the WCQVaR in the context of

an index tracking application and analyze the benefits of including options in the investment

strategy. We refer to Chapter 3 for an in-depth analysis of the in- and out-of-sample perfor-

mance of the robust optimization problem (4.29), whose equivalence to our novel WCPVaR

model was established in Theorem 4.4.2. All computations are performed within Matlab 2008b



4.6. Computational Results 109

 0

 1

 2

 3

 4

 5

 6

 7

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6

pr
ob

ab
ili

ty
 (

%
)

portfolio loss

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 80  82  84  86  88  90  92  94  96  98  100

V
aR

Confidence level (1-ε)%

Monte-Carlo VaR
Worst-Case VaR

Worst-Case Quadratic VaR

Figure 4.4: Left: The portfolio loss distribution obtained via Monte-Carlo simulation. Note
that negative values represent gains. Right: The VaR estimates at different confidence levels
obtained via Monte-Carlo sampling, WCVaR, and WCQVaR.

and by using the YALMIP interface [L0̈4] of the SDPT3 optimization toolkit [TTT03]. We use

a 2.0 GHz Core 2 Duo machine running Linux Ubuntu 9.04.

4.6.1 Index Tracking using Worst-Case VaR

Index tracking is a common and important problem in portfolio management. The aim is to

replicate the behavior of a given stock market index, sometimes referred to as the benchmark,

with a given set of other assets not containing the index itself.

We let r̃1 denote the random return of the benchmark over the investment interval [0, T ]. In

order to replicate this benchmark, we are given m−1 assets, whose vector of returns is denoted

by r̃−1. This set of assets includes n− 1 basic assets as well as m− n options derived from the

basic assets. We denote by w−1 ∈ Rm−1 the asset weights in the replicating portfolio.

Typically, the level of discrepancy between the benchmark and the portfolio is quantified by

the tracking-error E(|wT
−1r̃−1 − r̃1|). Note that minimizing the tracking-error penalizes both

under- and over-performance of the portfolio relative to the benchmark.

We adopt a slightly different approach. Instead of minimizing the tracking-error, we are only

concerned about the portfolio falling short of the benchmark. The excess-return of a portfolio

w−1 relative to the benchmark is computed as wTr̃ where w = [−1 wT
−1]T and r̃ = [r̃1 r̃T−1]T.

In order to measure the risk of the replicating portfolio falling below the benchmark, we can
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use the VaR at confidence ε = 5%.4 The optimal replicating portfolio is found by minimizing

VaRε(w) over all admissible portfolios w ∈ W with

W =
{
w ∈ Rm : w+ −w− = w, eTw− ≤ α + 1, w+ ≥ 0, w− ≥ 0, eTw = 0

}
. (4.52)

The inclusion w ∈ W implies that the portfolio weights w−1 sum up to 1 and that the total

amount of shortsales in the replicating portfolio is limited to α = 4%.

Since we include options in the replicating portfolio, we use WCQVaRε(w) to approximate the

VaR objective. The optimal portfolios are found by solving problem (4.41).

We now compare the out-of-sample performance of the optimal portfolios containing options

with those where investment in options is prohibited. Recall that in the absence of options

WCQVaR reduces to WCVaR, see Remark 4.5.1.

We assess the out-of-sample behavior of the WCQVaR model using a rolling-horizon backtest

procedure. The aim is to minimize the under-performance of the replicating portfolio relative

to the S&P 500 index, which is often taken as a proxy for the market portfolio. The replicating

portfolio is based on the 30 stock constituents of the Dow Jones Industrial Average, as well

as some options written on these. We only include options that expire between 30 and 60

days after the investment dates. This ensures that the option payoffs are differentiable and

accurately representable by the delta-gamma approximation. Moreover, longer term options

tend to be more illiquid and are therefore not included.

Daily stock and option data are obtained from the Optionmetrics IvyDB database, which is one

of the most complete sources of historical option data available. We consider a historical data

range from January 2nd, 2004 to October 10th, 2008, containing a total of 1181 trading days.

We use the following rolling-horizon backtest procedure. At every investment date we estimate

the mean vector µ and covariance matrix Σ of the stock returns using the daily returns of the

previous 600 trading days. Thus, our backtest starts on the 600th trading day in the historical

data set. We compute the out-of-sample returns of the optimal replicating portfolios using the

4We ran the backtests in this section with different values of ε. Although we only report results for ε = 5%,
the general conclusions are independent of the choice of ε.
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stock and option prices on the next available trading day. This process is repeated for all but

the first 600 trading days in our data set.

For simplicity, we use the mid-prices of the assets to calculate the returns. Furthermore,

the WCQVaR model requires information about the options’ delta and gamma sensitivities.

These are obtained from the implied volatilities reported in the Optionmetrics database and

are calculated using the Black-Scholes formula.5 We disregard transaction costs and income

taxes on option returns, which are beyond the scope of this thesis.

The same rolling-horizon procedure is used to obtain the out-of-sample returns of the optimal

replicating portfolios with and without options. On average the optimal stock-only portfolios

are found in 2.1 seconds, whereas the portfolios with options are found in 7.4 seconds. In

total we obtain two sequences of L = 581 out-of-sample portfolio returns, corresponding to the

strategies with and without options, which are denote by {rol }Ll=1 and {rsl }Ll=1, respectively. The

returns of the benchmark are denoted by {r1,l}Ll=1.

Since the portfolios minimize the under-performance with respect to the benchmark, it is of

interest to analyze how much wealth the robust strategies generate relative to the benchmark.

By assuming an initial capital of 1 dollar, we calculate the relative wealth ωkl at the end of

period l for portfolio strategy k = o, s as

ωkl =

∏l
m=1(1 + rkm)∏l
m=1(1 + r1,m)

.

Figure 4.5 displays the relative wealth generated over time by the robust strategies. Both

strategies outperform the benchmark over the entire test period. However, the inclusion of

options improves the performance considerably. Over the test period, the strategy with options

outperforms the benchmark by 56%, whereas the stock-only strategy only outperforms the

benchmark by 12%. The annualized average excess-return of the stock-only strategy is 4.9%

and that of the option strategy amounts to 19%.

5In order to avoid the use of erroneous option data, we only selected those options for which the implied
volatility was supplied in the database and which had a bid and ask price greater than 0. We found that this
procedure allowed us to filter out incorrect entries.
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between 22/05/2006 and 10/10/2008.

The Sharpe ratio [Sha66] is frequently used to assess the performance of an investment strategy.

It is calculated as (µ̂ − rf )/σ̂, where µ̂ and σ̂ represent the annualized estimated mean and

standard deviation of the out-of-sample returns, respectively, and rf = 3% is the risk-free rate

per annum. The stock-only strategy has a Sharpe ratio of 0.13, while the option strategy

achieves a value of 0.97. These results clearly demonstrate the benefits of including options in

the replicating portfolio.

We observe that all optimal portfolios w satisfy Γ(w) < 0, although this was not imposed as a

constraint. This implies that the delta-gamma approximation (4.33) of the optimal portfolio re-

turn is convex in the returns of the underlying assets. Alexander has observed this phenomenon

in a simulation experiment and argues that it is a natural consequence of the risk minimization

process. In fact, a portfolio with a convex payoff loses less from downward price moves and

benefits disproportionately from upward price moves of the underlying assets [Ale08].

We further observe that the optimal portfolios hold both long and short positions in options on

the same underlying asset. It is known that short-sales of options can generate high expected

returns (see, e.g., [CS02]) but they also carry considerable risk. Thus, optimal portfolios always
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cover the short-sale of an option by a long position in another option on the same underlying

asset. On average the optimal portfolios allocate 11% of wealth in options and 89% in stocks.

This implies that the high expected returns generated by the option strategy are not due to

risky positions in options, but rather result from a balanced investment in a mixture of both

stocks and options.

Next, we assess the realized VaRs of the stock-only and option strategies. These are obtained by

first computing the ε-quantiles of all out-of-sample excess-returns of both strategies and then

multiplying these values by -1 (recall that VaR measures the degree of under-performance).

For ε = 5% the realized VaR of the stock-only strategy amounts to 0.29%, while that of

the option strategy is 0.33%. For ε = 1%, the realized VaR values are 0.49% and 0.54%,

respectively. These results indicate that the option strategy has a slightly higher out-of-sample

VaR than the stock-only strategy. However, since the option strategy achieves much higher

excess-returns on average, the differences in VaR are negligible. Interestingly, the worst-case

daily under-performance of the stock-only strategy is 0.78%, whilst that of the option strategy

is 0.61%. Thus, the option strategy performs better in terms of worst-case under-performance

relative to the benchmark.

The WCQVaR model described in Section 4.5 assumes the underlying asset returns to be

the only sources of uncertainty in the market. It is known, however, that implied volatilities

constitute important risk factors for portfolios containing options. In particular, long dated

options are highly sensitive to fluctuations in the volatilities of the underlying assets. The

sensitivity of the portfolio return with respect to the volatilities is commonly referred to as vega

risk. The WCQVaR model can easily be modified to include implied volatilities as additional

risk factors. The arising delta-gamma-vega-approximation of the portfolio return is still a

quadratic function of the risk factors. Thus, the theoretical derivations in Section 4.5 remain

valid in this generalized setting. However, estimating first- and second-order moments of the

implied volatilities requires the modeling and calibration of the implied volatility surface over

time, which is beyond the scope of this thesis. We conjecture that extending the WCQVaR

model to account for vega risk can further improve the realized VaR of the option strategy.
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4.7 Conclusions

Derivatives depend non-linearly on their underlying assets. In this chapter we generalized

the WCVaR model by explicitly incorporating this non-linear relationship into the problem

formulation. To this end, we developed two new models.

The WCPVaR model is suited for portfolios containing European options maturing at the

investment horizon. WCPVaR expresses the option returns as convex-piecewise linear functions

of the underlying assets. A benefit of this model is that it does not require knowledge of the

pricing models of the options in the portfolio. However, in order to be tractably solvable, the

WCPVaR model precludes short-sales of options.

The WCQVaR model can handle portfolios containing general option types and does not rely

on short-sales restrictions. It exploits the popular delta-gamma approximation to model the

portfolio return. In contrast to WCPVaR, WCQVaR does require knowledge of the option

pricing models to determine the quadratic approximation. Through numerical experiments we

demonstrate that the WCPVaR and WCQVaR models can provide much tighter VaR estimates

of a portfolio containing options than the WCVaR model which does not explicitly account for

non-linear dependencies between the asset returns.

We analyzed the performance of the WCQVaR model in the context of an index tracking

application and find that including options in the investment strategy significantly improves

the out-of-sample performance. Although options are typically seen as a risky investment, our

numerical results indicate that their use in a robust optimization framework can offer substantial

benefits.
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4.8 Appendix

4.8.1 Proof of Lemma 4.4.1

Define the indicator function of the set S as

IS(ξ) =


1 if ξ ∈ S,

0 otherwise.

The worst-case probability problem (4.19) can equivalently be expressed as

πwc = sup
µ∈M+

∫
Rn

IS(ξ)µ(dξ)

s. t.

∫
Rn
µ(dξ) = 1∫

Rn
ξµ(dξ) = µ∫

Rn
ξξTµ(dξ) = Σ + µµT,

(4.53)

whereM+ represents the cone of nonnegative Borel measures on Rn. The optimization variable

of the semi-infinite linear program (4.53) is the nonnegative measure µ. As can be seen, the first

constraint forces µ to be a probability measure. The following constraints enforce consistency

with the given first- and second-order moments, respectively.

We now assign dual variables y0 ∈ R, y ∈ Rn, and Y ∈ Sn to the equality constraints in (4.53),

respectively, and introduce the following dual problem (see, e.g., [Sha01]).

inf y0 + yTµ+ 〈Y,Σ + µµT〉

s. t. y0 ∈ R, y ∈ Rn, Y ∈ Sn

y0 + yTξ + 〈Y, ξξT〉 ≥ IS(ξ) ∀ξ ∈ Rn

(4.54)

Because Σ � 0, it can be shown that strong duality holds [Isi60]. Therefore the worst-case

probability πwc coincides with the optimal value of the dual problem (4.54).
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By defining

M =

 Y 1
2
y

1
2
yT y0

 ,
problem (4.54) can be reformulated as

inf
M∈Sn+1

〈Ω,M〉

s. t.
[
ξT 1

]
M
[
ξT 1

]T ≥ IS(ξ) ∀ξ ∈ Rn.

(4.55)

By definition of IS(ξ), the constraint in (4.55) can be expanded in terms of two semi-infinite

constraints.

[
ξT 1

]
M
[
ξT 1

]T ≥ 0 ∀ξ ∈ Rn (4.56a)[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ ∈ S (4.56b)

Since (4.56a) is equivalent to M < 0, the claim follows.

4.8.2 Proof of Theorem 4.4.1

In order to obtain the postulated SOCP reformulation, we calculate the dual associated with

problem (4.26), which, after some simplification steps, reduces to

WCPVaRε(w) = max (e− δ)Twη − 2mTwξ

s. t. α ∈ R, δ ∈ Rm−n, m ∈ Rn, Z ∈ Sn

0 ≤ α ≤ 1

2ε
, αΩ < Y =

 Z m

mT 1/2

 < 0,

δ − 2Bm− a ≥ 0, δ ≥ 0.

(4.57)

Note that problem (4.57) is strictly feasible, which implies that strong conic duality holds

[VB96]. This confirms that the optimal value of the dual problem (4.57) exactly matches the

WCPVaR.
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By the definition of Ω in (4.21), we may conclude that

αΩ < Y ⇐⇒

α(Σ + µµT)− Z αµ−m

(αµ−m)T α− 1/2

 < 0 =⇒ α ≥ 1/2.

This allows us to divide the matrix inequality in problem (4.57) by α. Subsequently, we apply

the variable substitution (Z,m, α) → (V,v, y) with V = Z/α, v = m/α, and y = 1
2α
∈ [ε, 1].

We thus obtain the following problem reformulation.

WCPVaRε(w) = max (e− δ)Twη − v
Twξ

y

s. t. y ∈ R, δ ∈ Rm−n, v ∈ Rn, V ∈ Sn

ε ≤ y ≤ 1, Ω <

V v

vT y

 < 0

δ ≥ Bv

y
+ a, δ ≥ 0

(4.58)

Assume first that y = 1 at optimality. Then, by the definition of Ω and the linear matrix

inequality in problem (4.58), we find v = µ, while (4.58) reduces to

max
δ∈Rm−n

{
(e− δ)Twη − µTwξ : δ ≥ a+ Bµ, δ ≥ 0

}
=− µTwξ − (max{−e,a+ Bµ− e})Twη

=− f(µ)Tw. (4.59)

Assume now that y < 1 at optimality. By the definition of Ω and by using Schur complements,

we find

Ω <

V v

vT y

 ⇐⇒
Σ + µµT −V µ− v

(µ− v)T 1− y

 < 0

⇐⇒ Σ + µµT −V − 1

1− y
(µ− v)(µ− v)T < 0. (4.60a)
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A similar argument yields the equivalence

V v

vT y

 < 0 ⇐⇒ V − 1

y
vvT < 0. (4.60b)

By combining (4.60a) and (4.60b), the linear matrix inequality constraints in problem (4.58)

are equivalent to

Σ + µµT − 1

1− y
(µ− v)(µ− v)T < V <

1

y
vvT.

The decision variable V can now be eliminated from the problem, while the linear matrix

inequality constraints in (4.58) can be replaced by

Σ + µµT <
1

1− y
(µ− v)(µ− v)T +

1

y
vvT

⇐⇒ Σ <
1

y(1− y)
(v − yµ)(v − yµ)T. (4.61)

The above arguments imply that problem (4.58) can be reformulated as

WCPVaRε(w) = max{φ(y) : y ∈ [ε, 1]},

where

φ(y) = max (e− δ)Twη − v
Twξ

y

s. t. δ ∈ Rm−n, v ∈ Rn

Σ <
1

y(1− y)
(v − yµ)(v − yµ)T,

δ ≥ Bv

y
+ a, δ ≥ 0.

(4.62)

For any fixed y ∈ [ε, 1), we have that y−1(1 − y)−1 > 0, and the linear matrix inequality in

(4.62) can be rewritten as  Σ v − yµ

(v − yµ)T y(1− y)

 < 0.
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Since Σ � 0, this linear matrix inequality holds if and only if

(v − yµ)TΣ−1(v − yµ) ≤ y(1− y),

which is equivalent to the second-order cone constraint

∥∥Σ−1/2(v − yµ)
∥∥

2
≤
√
y(1− y).

For y ∈ [ε, 1), the value of φ(y) can thus be found by solving the following SOCP.

φ(y) = max (e− δ)Twη − v
Twξ

y

s. t. δ ∈ Rm−n, v ∈ Rn∥∥Σ−1/2(v − yµ)
∥∥

2
≤
√
y(1− y)

δ ≥ Bv

y
+ a, δ ≥ 0

(4.63)

Note that the above problem is strictly feasible for y ∈ [ε, 1). By strong conic duality the

associated dual problem has the same optimal value [AG03]. We thus obtain that φ(y) = φ′(y)

for y ∈ [ε, 1), where

φ′(y) = min
0≤g≤wη

− µT(wξ + BTg) +

√
1− y
y

∥∥Σ1/2(wξ + BTg)
∥∥

2
− aTg + eTwη.

Note that for y = 1, we also have φ(1) = φ′(1) since

φ′(1) = min
0≤g≤wη

− µT(wξ + BTg)− aTg + eTwη

= −µTwξ − (max{−e,a+ Bµ− e})Twη

= φ(1),

where the second equality follows from (4.59). Maximizing φ(y) over y yields the desired

WCPVaR value. Since
√

(1− y)/y is monotonically decreasing in y, we have y = ε at optimal-
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ity. This results in the following optimization problem

WCPVaRε(w) = min
0≤g≤wη

− µT(wξ + BTg) +

√
1− ε
ε

∥∥Σ1/2(wξ + BTg)
∥∥

2
− aTg + eTwη,

which is the postulated reformulation of WCPVaR as the optimal value of a SOCP.



Chapter 5

Distributionally Robust Joint Chance

Constraints

In Chapter 4, we derived tractable reformulations of Worst-Case Value-at-Risk measures by

solving moment problems. It is important to note that the Worst-Case Value-at-Risk is equiv-

alent to a distributionally robust chance constrained program. In this chapter, we leverage on

the reformulation techniques developed in Chapter 4 to further investigate general distribution-

ally robust chance constrained programs. In particular, we focus on joint chance constraints,

which require a system of uncertainty-affected constraints to be jointly satisfied with a given

probability. Problems involving such constraints are typically difficult to solve. In fact, even

finding a feasible solution for such problems can be intractable. However, we will show that

distributionally robust joint chance constrained programs can be approximated using tractable

semidefinite programs and that the arising approximations can be reformulated as straight

robust optimization problems.

121
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5.1 Introduction

A large class of decision problems in engineering and finance can be formulated as chance

constrained programs of the form

minimize
x∈Rn

cTx

subject to Q
(
ai(ξ̃)Tx ≤ bi(ξ̃) ∀i = 1, . . . ,m

)
≥ 1− ε

x ∈ X ,

(5.1)

where x ∈ Rn is the decision vector, X ⊆ Rn is a convex closed set that can be represented

by semidefinite constraints, and c ∈ Rn is a cost vector. Without much loss of generality, we

assume that c is deterministic. The chance constraint in (5.1) requires a set of m uncertainty-

affected inequalities to be jointly satisfied with a probability of at least 1−ε, where ε ∈ (0, 1) is a

desired safety factor specified by the modeler. The uncertain constraint coefficients ai(ξ̃) ∈ Rn

and bi(ξ̃) ∈ R, i = 1, . . . ,m, depend affinely on a random vector ξ̃ ∈ Rk, whose distribution Q

is assumed to be known. We thus have

ai(ξ̃) = a0
i +

k∑
j=1

aji ξ̃j and bi(ξ̃) = b0
i +

k∑
j=1

bji ξ̃j.

For ease of notation we introduce auxiliary functions yji : Rn → R, which are defined through

yji (x) = (aji )
Tx− bji , i = 1, . . . , n, j = 0, . . . , k.

These functions enable us to rewrite the chance constraint in problem (5.1) as

Q
(
y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . ,m

)
≥ 1− ε, (5.2)

where yi(x) = [y1
i (x), . . . , yki (x)]T for i = 1, . . . ,m. By convention, (5.2) is referred to as an

individual or joint chance constraint if m = 1 or m > 1, respectively. Chance constrained

programs were first discussed by Charnes et al. [CCS58], Miller and Wagner [MW65] and

Prékopa [Pre70]. Although they have been studied for a long time, they have not found wide
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application in practice due to the following reasons.

Firstly, computing the optimal solution of a chance constrained program is notoriously difficult.

In fact, even checking the feasibility of a fixed decision x requires the computation of a multi-

dimensional integral, which becomes increasingly difficult as the dimension k of the random

vector ξ̃ increases. Furthermore, even though the inequalities in the chance constraint (5.2) are

biaffine in x and ξ̃, the feasible set of problem (5.1) is typically nonconvex and sometimes even

disconnected.

Secondly, in order to evaluate the chance constraint (5.2), full and accurate information about

the probability distribution Q of the random vector ξ̃ is required. However, in many practical

situations Q must be estimated from historical data and is therefore itself uncertain. Typically,

one has only partial information about Q, e.g. about its moments or its support. Replacing

the unknown distribution Q in (5.1) by an estimate Q̂ corrupted by measurement errors may

lead to over-optimistic solutions which often fail to satisfy the chance constraint under the true

distribution Q.

In a few special cases chance constraints can be reformulated as tractable convex constraints.

For example, it is known that if the random vector ξ̃ follows a Gaussian distribution, then

an individual chance constraint can be equivalently expressed as a single second-order cone

constraint. In this case, the chance constrained problem becomes a tractable second-order cone

program (SOCP), which can be solved in polynomial time, see Alizadeh and Goldfarb [AG03].

More generally, Calafiore and El Ghaoui [CEG06] have shown that individual chance constraints

can be converted to second-order cone constraints whenever the random vector ξ̃ is governed by

a radial distribution. Tractability results for joint chance constraints are even more scarce. In

a seminal paper, Prékopa [Pre70] has shown that joint chance constraints are convex when only

the right-hand side coefficients bi(ξ̃) are uncertain and follow a log-concave distribution. How-

ever, under generic distributions, chance constrained programs are computationally intractable.

Indeed, Shapiro and Nemirovski [NS06] point out that computing the probability of a weighted

sum of uniformly distributed variables being nonpositive is already NP-hard.

Recently, Calafiore and Campi [CC06] as well as Luedtke and Ahmed [LA08] have proposed
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to replace the chance constraint (5.2) by a pointwise constraint that must hold at a finite

number of sample points drawn randomly from the distribution Q. A similar approach was

advised by Erdoǧan and Iyengar [EI06]. The advantage of this Monte Carlo approach is that

no structural assumptions about Q are needed and that the resulting approximate problem is

convex. Calafiore and Campi [CC06] showed that one requiresO(n/ε) samples to guarantee that

a solution of the approximate problem is feasible in the original chance constrained program.

However, this implies that it may be computationally prohibitive to solve large problems or to

solve problems for which a small violation probability ε is required.

A natural way to immunize the chance constraint (5.2) against uncertainty in the probability

distribution is to adopt a distributionally robust approach. To this end, let P denote the set

of all probability distributions on Rk that are consistent with the known properties of Q, such

as its first and second moments and/or its support. Consider now the following ambiguous or

distributionally robust chance constraint.

inf
P∈P

P
(
y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . ,m

)
≥ 1− ε (5.3)

It is easily verified that whenever x satisfies (5.3) and Q ∈ P , then x also satisfies the chance

constraint (5.2) under the true probability distribution Q. Replacing the chance constraint (5.2)

with its distributionally robust counterpart (5.3) yields the following distributionally robust

chance constrained program

minimize
x∈Rn

cTx

subject to inf
P∈P

P
(
y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . ,m

)
≥ 1− ε

x ∈ X ,

(5.4)

which constitutes a conservative approximation for problem (5.1) in the sense that it has the

same objective function but a smaller feasible set.

A common method to simplify the distributionally robust joint chance constraint (5.3), which

looks even less tractable than (5.2), is to decompose it into m individual chance constraints by
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using Bonferroni’s inequality. Indeed, by ensuring that the total sum of violation probabilities of

the individual chance constraints does not exceed ε, the feasibility of the joint chance constraint

is guaranteed. Nemirovski and Shapiro [NS06] propose to divide the overall violation probability

ε equally among the m individual chance constraints. However, the Bonferroni inequality is not

necessarily tight, and the corresponding decomposition could therefore be over-conservative. In

fact, for positively correlated constraint functions, the quality of the approximation is known

to decrease as m increases [CSSC09]. Consequently, the Bonferroni method may result in a

poor approximation for problems with joint chance constraints that involve many inequalities.

A recent attempt to improve on the Bonferroni approximation is due to Chen et al. [CSSC09].

They first elaborate a convex conservative approximation for a joint chance constraint in terms

of a Worst-Case Conditional Value-at-Risk (CVaR) constraint. Then, they rely on a classi-

cal inequality in order statistics to determine a tractable conservative approximation for the

Worst-Case CVaR and show that the resulting approximation for the joint chance constraint

necessarily outperforms the Bonferroni approximation. An attractive feature of this method

is that the arising approximate constraints are second-order conic representable. However, the

employed probabilistic inequality is not necessarily tight, which may again render the approxi-

mation over-conservative.

The principal aim of this chapter is to develop new tools and models for approximating joint

chance constraints under the assumption that only the first- and second-order moments as

well as the support of the random vector ξ̃ are known. We embrace the modern approach to

approximate robust chance constraints by Worst-Case CVaR constraints, but in contrast to the

state-of-the-art methods described above, we find an exact semidefinite programming (SDP)

reformulation of the Worst-Case CVaR which does not rely on potentially loose probabilistic

inequalities. This exact reformulation is facilitated by the theory of moment problems as well

as conic duality arguments. We also propose an efficient sequential SDP algorithm to solve the

distributionally robust chance constrained program (5.4).

Our secondary objective is to gain deeper insights into the relationship between robust chance

constrained programming and straight robust optimization. While it is well known that there



126 Chapter 5. Distributionally Robust Joint Chance Constraints

is a close connection between ambiguous individual chance constraints and robust semi-infinite

constraints (see, e.g., Ben-Tal et al. [BTEGN09]), the representability of ambiguous joint chance

constraints as straight robust constraints has not been thoroughly investigated. We show that

robust joint chance constraints can indeed be reformulated as robust semi-infinite constraints

and thereby develop a natural extension of the theory of ambiguous individual chance con-

straints. The main contributions in this chapter can be summarized as follows:

(1) We prove that a distributionally robust individual chance constraint is equivalent to a

Worst-Case CVaR constraint if the underlying constraint function is either concave or

(possibly nonconcave) quadratic in ξ. We also demonstrate that this equivalence can fail

to hold even if the constraint function is convex and piecewise linear in ξ.

(2) We show that a robust individual chance constraint can be reformulated as a robust semi-

infinite constraint involving a new type of uncertainty set embedded in the space of positive

semidefinite matrices. This uncertainty set can be interpreted as a lifted version of an

ellipsoid in the ξ-space.

(3) We develop an SDP-based approximation for robust joint chance constraints and prove that

this approximation consistently outperforms the state-of-the-art methods described above.

We show that the approximation quality is controlled by a set of scaling parameters and

that the approximation becomes exact if the scaling parameters are chosen optimally.

(4) We present an intuitive dual interpretation for the joint chance constraint approximation

and prove that a distributionally robust joint chance constraint can be reformulated as

a robust semi-infinite constraint. The corresponding uncertainty set is intimately tied to

the lifted ellipsoidal uncertainty sets discovered in the context of robust individual chance

constraints.

(5) We analyze numerically the performance of the new joint chance constraint approximation

when applied to a dynamic water reservoir control problem.

The remainder of this chapter is organized as follows. In Section 5.2 we review and extend

existing approximations for distributionally robust individual chance constraints and investi-

gate the relation between individual chance constraints and Worst-Case CVaR constraints. In
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Section 5.3 we elaborate a new approximation for joint chance constraints. We show that the

approximation quality is controlled by a set of scaling parameters and prove that the approx-

imation becomes exact if the scaling parameters are chosen optimally. We also show that the

arising approximate constraints can be reformulated as robust semi-infinite constraints. In

Section 5.4 we analyze the performance of our joint chance constraint approximation in the

context of a dynamic water reservoir control problem.

Notation. We use lower-case bold face letters to denote vectors and upper-case bold face

letters to denote matrices. The space of symmetric matrices of dimension n is denoted by Sn.

For any two matrices X,Y ∈ Sn, we let 〈X,Y〉 = Tr(XY) be the trace scalar product, while

the relation X < Y (X � Y) implies that X − Y is positive semidefinite (positive definite).

Random variables are always represented by symbols with tildes, while their realizations are

denoted by the same symbols without tildes. For x ∈ R, we define x+ = max{x, 0}.

5.2 Distributionally Robust Individual Chance Constraints

It is known that robust individual chance constraints can be conservatively approximated by

Worst-Case CVaR constraints. In this section, we first show how the theory of moment prob-

lems can be used to reformulate these Worst-Case CVaR constraints in terms of tractable

semidefinite constraints. Subsequently, we prove that the Worst-Case CVaR constraints are

in fact equivalent to the underlying robust chance constraints for a large class of constraint

functions. Finally, we illuminate the relation between robust chance constrained programming

and classical robust optimization.

Distributional Assumptions. In the remainder of this chapter we let µ ∈ Rk be the mean

vector and Σ ∈ Sk be the covariance matrix of the random vector ξ̃ under the true distribution

Q. Thus, we implicitly assume that Q has finite second-order moments. Without loss of

generality we also assume that Σ � 0. Furthermore, we let P denote the set of all probability

distributions on Rk that have the same first- and second-order moments as Q.
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5.2.1 The Worst-Case CVaR Approximation

For m = 1, (5.3) reduces to a distributionally robust individual chance constraint

inf
P∈P

P
(
y0(x) + y(x)Tξ̃ ≤ 0

)
≥ 1− ε, (5.5)

whose feasible set is denoted by

X ICC =

{
x ∈ Rn : inf

P∈P
P
(
y0(x) + y(x)Tξ̃ ≤ 0

)
≥ 1− ε

}
.

In the remainder of this section we will demonstrate that X ICC has a manifestly tractable

representation in terms of Linear Matrix Inequalities (LMIs). To this end, we first recall the

definition of CVaR due to Rockafellar and Uryasev [RU02]. For a given measurable loss function

L : Rk → R, probability distribution P on Rk, and tolerance ε ∈ (0, 1), the CVaR at level ε

with respect to P is defined as

P-CVaRε(L(ξ̃)) = inf
β∈R

{
β +

1

ε
EP

(
(L(ξ̃)− β)+

)}
, (5.6)

where EP(·) denotes expectation with respect to P. CVaR essentially evaluates the conditional

expectation of loss above above the (1 − ε)-quantile of the loss distribution. It can be shown

that CVaR represents a convex functional of the random variable L(ξ̃).

CVaR can be used to construct convex approximations for chance constraints. Indeed, it is well

known that

P
(
L(ξ̃) ≤ P-CVaRε(L(ξ̃))

)
≥ 1− ε,

for any measurable loss function L, see, e.g., Ben-Tal et al. [BTEGN09, §4.3.3]. Thus,

P-CVaRε(L(ξ̃)) ≤ 0 is sufficient to imply P(L(ξ̃) ≤ 0) ≥ 1 − ε. As this implication holds for

any probability distribution and loss function, we conclude that

sup
P∈P

P-CVaRε

(
y0(x) + y(x)Tξ̃

)
≤ 0 =⇒ inf

P∈P
P
(
y0(x) + y(x)Tξ̃ ≤ 0

)
≥ 1− ε. (5.7)
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Thus, the Worst-Case CVaR constraint on the left hand side constitutes a conservative ap-

proximation for the distributionally robust chance constraint on the right hand side of (5.7).

The above discussion motivates us to define the feasible set

Z ICC =

{
x ∈ Rn : sup

P∈P
P-CVaRε

(
y0(x) + y(x)Tξ̃

)
≤ 0

}
, (5.8)

and the implication (5.7) gives rise to the following elementary result.

Proposition 5.2.1 The feasible set Z ICC constitutes a conservative approximation for X ICC,

that is, Z ICC ⊆ X ICC.

We will now show that Z ICC has a tractable representation in terms of LMIs.

Theorem 5.2.1 The feasible set Z ICC can be written as

Z ICC =


x ∈ Rn :

∃(β,M) ∈ R× Sk+1,

M < 0, β + 1
ε
〈Ω,M〉 ≤ 0,

M−

 0 1
2
y(x)

1
2
y(x)T y0(x)− β

 < 0


.

The proof of Theorem 5.2.1 relies on the following well-known result about worst-case expec-

tation problems, which will play a key role in many of the subsequent derivations. We relegate

its proof to Appendix 5.6.1.

Lemma 5.2.1 Let f : Rk → R be a measurable function, and define the worst-case expectation

θwc as

θwc = sup
P∈P

EP

(
(f(ξ̃))+

)
, (5.9)

where P represents the usual set of all probability distributions on Rk with given mean vector

µ and covariance matrix Σ � 0. Then,

θwc = inf
M∈Sk+1

{
〈Ω,M〉 : M < 0,

[
ξT 1

]
M
[
ξT 1

]T ≥ f(ξ) ∀ξ ∈ Rk
}
,
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where

Ω =

Σ + µµT µ

µT 1


is the second-order moment matrix of ξ̃.

Proof of Theorem 5.2.1: By using (5.6), the Worst-Case CVaR in (5.8) can be expressed as

sup
P∈P

P-CVaRε

(
y0(x) + y(x)Tξ̃

)
= sup

P∈P
inf
β∈R

{
β +

1

ε
EP

(
(y0(x) + y(x)Tξ̃ − β)+

)}
= inf

β∈R

{
β +

1

ε
sup
P∈P

EP

(
(y0(x) + y(x)Tξ̃ − β)+

)}
, (5.10)

where the interchange of the maximization and minimization operations is justified by a stochas-

tic saddle point theorem due to Shapiro and Kleywegt [SK02], see also Delage and Ye [DY10]

or Natarajan et al. [NPS09]. We now show that the Worst-Case CVaR (5.10) of some fixed

decision x ∈ Rn can be computed by solving a tractable SDP. To this end, we first derive an

SDP reformulation of the worst-case expectation problem

sup
P∈P

EP

(
(y0(x) + y(x)Tξ̃ − β)+

)
,

which can be identified as the subordinate maximization problem in (5.10). Lemma 5.2.1

enables us to reformulate this worst-case expectation problem as

inf
M∈Sk+1

〈Ω,M〉

s. t. M < 0,
[
ξT 1

]
M
[
ξT 1

]T ≥ y0(x) + y(x)Tξ − β ∀ξ ∈ Rk.

(5.11)

Note that the semi-infinite constraint in (5.11) can be written as the following LMI.

ξ
1


TM−

 0 1
2
y(x)

1
2
y(x)T y0(x)− β



ξ

1

 ≥ 0 ∀ξ ∈ Rk ⇐⇒ M−

 0 1
2
y(x)

1
2
y(x)T y0(x)− β

 < 0
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This in turn allows us to reformulate the worst-case expectation problem as

inf
M∈Sk+1

〈Ω,M〉

s. t. M < 0, M−

 0 1
2
y(x)

1
2
y(x)T y0(x)− β

 < 0.
(5.12)

By replacing the subordinate worst-case expectation problem in (5.10) by (5.12), we obtain

sup
P∈P

P-CVaRε

(
y0(x) + y(x)Tξ̃

)
= inf β + 1

ε
〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−

 0 1
2
y(x)

1
2
y(x)T y0(x)− β

 < 0,

(5.13)

and thus the claim follows.

5.2.2 The Exactness of the Worst-Case CVaR Approximation

So far we have shown that the feasible set Z ICC defined in terms of a Worst-Case CVaR

constraint constitutes a tractable conservative approximation for X ICC. We now demonstrate

that this approximation is in fact exact, that is, we show that the implication (5.7) is in fact

an equivalence. We first recall the nonlinear Farkas Lemma as well as the S-lemma, which

are crucial ingredients for the proof of this result. We refer to Pólik and Terlaky [PT07] for a

derivation and an in-depth survey of the S-lemma as well as a review of the Farkas Lemma.

Lemma 5.2.2 (Farkas Lemma) Let f0, . . . , fp : Rk → R be convex functions, and assume

that there exists a strictly feasible point ξ̄ with fi(ξ̄) < 0, i = 1, . . . , p. Then, f0(ξ) ≥ 0 for all

ξ with fi(ξ) ≤ 0, i = 1, . . . , p, if and only if there exist constants τi ≥ 0 such that

f0(ξ) +

p∑
i=1

τifi(ξ) ≥ 0 ∀ξ ∈ Rk.

Lemma 5.2.3 (S-lemma) Let fi(ξ) = ξTAiξ with Ai ∈ Sn be quadratic functions of ξ ∈ Rn
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for i = 0, . . . , p. Then, f0(ξ) ≥ 0 for all ξ with fi(ξ) ≤ 0, i = 1, . . . , p, if there exist constants

τi ≥ 0 such that

A0 +

p∑
i=1

τiAi < 0.

For p = 1, the converse implication holds if there exists a strictly feasible point ξ̄ with f1(ξ̄) < 0.

Theorem 5.2.2 Let L : Rk → R be a continuous loss function that is either

(i) concave in ξ, or

(ii) (possibly nonconcave) quadratic in ξ.

Then, the following equivalence holds.

sup
P∈P

P-CVaRε

(
L(ξ̃)

)
≤ 0 ⇐⇒ inf

P∈P
P
(
L(ξ̃) ≤ 0

)
≥ 1− ε (5.14)

Proof Consider the Worst-Case Value-at-Risk of the loss function L, which is defined as

WC-VaRε(L(ξ̃)) = inf
γ∈R

{
γ : inf

P∈P
P
(
L(ξ̃) ≤ γ

)
≥ 1− ε

}
. (5.15)

By definition, the WC-VaR is indeed equal to the (1−ε)-quantile of L(ξ̃) evaluated under some

worst-case distribution in P . We first show that the following equivalence holds.

inf
P∈P

P
(
L(ξ̃) ≤ 0

)
≥ 1− ε ⇐⇒ WC-VaRε

(
L(ξ̃)

)
≤ 0 (5.16)

Indeed, if the left hand side of (5.16) is satisfied, then γ = 0 is feasible in (5.15), which

implies that WC-VaRε(L(ξ̃)) ≤ 0. To see that the converse implication holds as well, we

note that for any fixed P ∈ P , the mapping γ 7→ P(L(ξ̃) ≤ γ) is upper semi-continuous,

see [PAS09]. Thus, the related mapping γ 7→ inf
P∈P

P(L(ξ̃) ≤ γ) is also upper semi-continuous.

If WC-VaRε(L(ξ̃)) ≤ 0, there exists a sequence {γn}n∈N that converges to zero and is feasible

in (5.15), which implies

inf
P∈P

P
(
L(ξ̃) ≤ 0

)
≥ lim sup

n→∞
inf
P∈P

P
(
L(ξ̃) ≤ γn

)
≥ 1− ε.
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Thus, (5.16) follows.

To prove the postulated equivalence (5.14), it is now sufficient to show that

sup
P∈P

P-CVaRε

(
L(ξ̃)

)
= WC-VaRε

(
L(ξ̃)

)
.

Note that (5.15) can be rewritten as

WC-VaRε(L(ξ̃)) = inf
γ∈R

{
γ : sup

P∈P
P
(
L(ξ̃) > γ

)
≤ ε

}
. (5.17)

We proceed by simplifying the subordinate worst-case probability problem sup
P∈P

P(L(ξ̃) > γ),

which can be expressed as

inf
M∈Sk+1

{
〈Ω,M〉 : M < 0,

[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ : γ − L(ξ) < 0
}
, (5.18)

see Lemma 4.4.1.

We will now argue that for all but one value of γ problem (5.18) is equivalent to

inf 〈Ω,M〉

s. t. M ∈ Sk+1, τ ∈ R, M < 0, τ ≥ 0[
ξT 1

]
M
[
ξT 1

]T − 1 + τ (γ − L(ξ)) ≥ 0 ∀ξ ∈ Rk.

(5.19)

For ease of exposition, we define h = inf
ξ∈Rk

γ − L(ξ). The equivalence of (5.18) and (5.19) is

proved case by case. Assume first that h < 0. Then, the strict inequality in the parameter

range of the semi-infinite constraint in (5.18) can be replaced by a weak inequality without

affecting its optimal value. The equivalence then follows from the Farkas Lemma (when L(ξ)

is concave in ξ) or from the S-lemma (when L(ξ) is quadratic in ξ). Assume next that h > 0.

Then, the semi-infinite constraint in (5.18) becomes redundant and, since Ω � 0, the optimal

solution of (5.18) is given by M = 0 with a corresponding optimal value of 0. The optimal value

of problem (5.19) is also equal to 0. Indeed, by choosing τ = 1/h, the semi-infinite constraint

in (5.19) is satisfied for any M < 0. Finally, note that (5.18) and (5.19) may be different for
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h = 0.

Since (5.18) and (5.19) are equivalent for all but one value of γ and since their optimal values

are nonincreasing in γ, we can express WC-VaRε(L(ξ̃)) in (5.17) as

WC-VaRε(L(ξ̃)) = inf γ

s. t. M ∈ Sk+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ ε, M < 0, τ ≥ 0[
ξT 1

]
M
[
ξT 1

]T − 1 + τ (γ − L(ξ)) ≥ 0 ∀ξ ∈ Rk.

(5.20)

It can easily be shown that 〈Ω,M〉 ≥ 1 for any feasible solution of (5.20) with vanishing τ -

component. However, since ε < 1, this is in conflict with the constraint 〈Ω,M〉 ≤ ε. We thus

conclude that no feasible point can have a vanishing τ -component. This allows us to divide the

semi-infinite constraint in problem (5.20) by τ . Subsequently we perform variable substitutions

in which we replace τ by 1/τ and M by M/τ . This yields the following reformulation of

problem (5.20).

WC-VaRε(L(ξ̃)) = inf γ

s. t. M ∈ Sk+1, τ ∈ R, γ ∈ R
1
ε
〈Ω,M〉 ≤ τ, M < 0, τ ≥ 0[
ξT 1

]
M
[
ξT 1

]T − τ + γ − L(ξ) ≥ 0 ∀ξ ∈ Rk

Note that, since Ω � 0 and M < 0, we have 1
ε
〈Ω,M〉 ≥ 0. This allows us to remove the

redundant nonnegativity constraint on τ . We now introduce a new decision variable β = γ− τ ,

which allows us to eliminate γ.

WC-VaRε(L(ξ̃)) = inf β + τ

s. t. M ∈ Sk+1, τ ∈ R, β ∈ R
1
ε
〈Ω,M〉 ≤ τ, M < 0[
ξT 1

]
M
[
ξT 1

]T
+ β − L(ξ) ≥ 0 ∀ξ ∈ Rk
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Note that at optimality τ = 1
ε
〈Ω,M〉, which finally allows us to express WC-VaRε(L(ξ̃)) as

WC-VaRε(L(ξ̃)) = inf β + 1
ε
〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R, M < 0[
ξT 1

]
M
[
ξT 1

]T
+ β − L(ξ) ≥ 0 ∀ξ ∈ Rk.

(5.21)

Recall now that by Lemma 5.2.1 we have

sup
P∈P

P-CVaRε

(
L(ξ̃)

)
= inf

β∈R

{
β +

1

ε
sup
P∈P

EP

(
(L(ξ̃)− β)+

)}
= inf β + 1

ε
〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R, M < 0[
ξT 1

]
M
[
ξT 1

]T
+ β − L(ξ) ≥ 0 ∀ξ ∈ Rk,

which is clearly equivalent to (5.21). This observation completes the proof.

Corollary 5.2.1 The following equivalence holds

sup
P∈P

P-CVaRε

(
y0(x) + y(x)Tξ̃

)
≤ 0 ⇐⇒ inf

P∈P
P
(
y0(x) + y(x)Tξ̃ ≤ 0

)
≥ 1− ε,

which implies that Z ICC = X ICC.

Proof The claim follows immediately from Theorem 5.2.2 by observing that L(ξ) = y0(x) +

y(x)Tξ is linear (and therefore concave) in ξ.

In the following example we demonstrate that the equivalence (5.14) can fail to hold even if

the loss function L is convex and piecewise linear in ξ.

Example 5.2.1 Let ξ̃ be a scalar random variable with mean µ = 0 and standard deviation

σ = 1. Moreover, let P be the set of all probability distributions on R consistent with the given

mean and standard deviation. Consider now the loss function L(ξ) = max{ξ − 1, 4ξ − 4},

and note that L is strictly increasing and convex in ξ. In particular, L is neither concave
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nor quadratic and thus falls outside the scope of Theorem 5.2.2. We now show that for this

particular L the Worst-Case CVaR constraint sup
P∈P

P-CVaR 1
2
(L(ξ̃)) ≤ 0 is violated even though

the distributionally robust individual chance constraint inf
P∈P

P(L(ξ̃) ≤ 0) ≥ 1/2 is satisfied. To

this end, we note that the Chebychev inequality P(ξ̃ − µ ≥ κσ) ≤ 1/(1 + κ2) for κ = 1 implies

sup
P∈P

P
(
ξ̃ ≥ 1

)
≤ 1

2
⇐⇒ sup

P∈P
P
(
L(ξ̃) ≥ L(1) = 0

)
≤ 1

2

=⇒ sup
P∈P

P
(
L(ξ̃) > 0

)
≤ 1

2

⇐⇒ inf
P∈P

P
(
L(ξ̃) ≤ 0

)
≥ 1

2
,

where the first equivalence follows from the monotonicity of L. Assume now that the true

distribution Q of ξ̃ is discrete and defined through Q(ξ̃ = −2) = 1/8, Q(ξ̃ = 0) = 3/4, and

Q(ξ̃ = 2) = 1/8. It is easy to verify that Q ∈ P and that Q-CVaR 1
2
(L(ξ̃)) = 0.25. Thus,

sup
P∈P

P-CVaR 1
2
(L(ξ̃)) ≥ 0.25 > 0. We therefore conclude that the Worst-Case CVaR constraint

is not equivalent to the robust chance constraint.

5.2.3 Robust Optimization Perspective on Individual Chance Con-

straints

There exists a close relationship between distributionally robust chance constrained program-

ming and straight robust optimization, a powerful modeling paradigm for decision problems

subject to non-stochastic data uncertainty, see, e.g., [BTEGN09, BTN98, BTN99]. In order to

elicit this connection, we consider the following semi-infinite constraint.

y0(x) + y(x)Tξ ≤ 0 ∀ξ ∈ Uε (5.22)

In contrast to the chance constraint (5.5), which requires the underlying linear inequality to

be satisfied with a certain probability, the above semi-infinite constraint forces the inequality

to be satisfied for all realizations of ξ̃ within a prescribed uncertainty set Uε. The shape of the

uncertainty set should reflect the modeler’s knowledge about the distribution of the random
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vector ξ̃, e.g., full or partial information about its support and its moments. Recall that in

our current setting only the first- and second-order moments of ξ̃ are assumed to be known.

Moreover, the size of Uε should be chosen in such a way as to guarantee that the set of all

x ∈ Rn feasible in (5.22) approximates X ICC.

Chen et al. [CSSC09] have derived an uncertainty set with these desirable properties. Inspired

by their approach, we derive an uncertainty set with the strong property that (5.5) and (5.22)

are indeed equivalent. The following theorem constitutes a first step towards this goal.

Theorem 5.2.3 For any fixed x ∈ X , the robust chance constraint (5.5) is equivalent to the

semi-infinite constraint

〈 0 1
2
y(x)

1
2
y(x)T y0(x)

 ,Λ〉 ≤ 0 ∀Λ ∈ U1
ε , (5.23)

where the uncertainty set U1
ε ⊆ Sk+1 is defined as

U1
ε =

{
Λ ∈ Sk+1 : Λ < 0,

1

ε
Ω−Λ < 0, Λk+1,k+1 = 1

}
. (5.24)

Proof: The equivalence between robust individual chance constraints and Worst-Case CVaR

constraints holds for any fixed x ∈ X . The Worst-Case CVaR can be computed by solving the

SDP (5.13). After a few elementary simplification steps the dual of problem (5.13) reduces to

sup
Λ∈Sk+1

〈 0 1
2
y(x)

1
2
y(x)T y0(x)

 ,Λ〉

s. t. Λ < 0,
1

ε
Ω−Λ < 0, Λk+1,k+1 = 1.

(5.25)

Note that strong duality holds because the primal problem (5.13) is convex and the dual

problem (5.25) is strictly feasible for any ε ∈ (0, 1) since Ω � 0 (as a result of Σ � 0).

Constraining the Worst-Case CVaR to be nonpositive is therefore equivalent to requiring that

the optimal objective value of problem (5.25) is nonpositive, which is manifestly equivalent to

the semi-infinite constraint (5.23).
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Next, we demonstrate that the uncertainty set U1
ε , which is embedded in the space of positive

semidefinite matrices Sk+1, is closely related to an ellipsoidal uncertainty set in the ξ-space.

Corollary 5.2.2 For any fixed x ∈ X , the robust chance constraint (5.5) is equivalent to the

semi-infinite constraint

y0(x) + y(x)Tξ ≤ 0 ∀ξ ∈ U ell
ε , (5.26)

where

U ell
ε =

{
ξ ∈ Rk : (ξ − µ)TΣ−1(ξ − µ) ≤ 1− ε

ε

}
.

Proof: By expanding the trace in (5.23), we can reformulate this semi-infinite constraint as

y0(x) + y(x)Tξ ≤ 0 ∀ξ ∈ projξ(U1
ε ),

where projξ(U1
ε ) denotes the projection of the uncertainty set U1

ε to the space Rk and is defined

as

projξ(U1
ε ) =

ξ ∈ Rk : ∃X ∈ Sk,

X ξ

ξT 1

 < 0,
1

ε
Ω−

X ξ

ξT 1

 < 0

 .

The equivalence of projξ(U1
ε ) and U ell

ε follows directly from Corollary 4.5.1.

Lemma 5.2.2 allows us to interpret the uncertainty set U1
ε defined in (5.24) as a version of the

ellipsoidal uncertainty set U ell
ε lifted to the space of positive semidefinite matrices Sk+1. We

emphasize that the simplification of (5.23) to (5.26) in Corollary 5.2.2 is only possible because

the inequality in the chance constraint (5.5) is linear in the random vector ξ̃. We further

remark that the semi-infinite constraint (5.26) can be expressed as a single SOCP constraint,

see, e.g., El Ghaoui et al. [EGOO03]. The importance of the lifted uncertainty set U1
ε will

become evident in the next section, where we will show that the uncertainty set associated

with a distributionally robust joint chance constraint of type (5.3) is not ellipsoidal but can be

interpreted as a generalization of U1
ε .
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5.3 Distributionally Robust Joint Chance Constraints

We define the feasible set X JCC of the distributionally robust joint chance constraint (5.3) as

X JCC =

{
x ∈ Rn : inf

P∈P
P
(
y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . ,m

)
≥ 1− ε

}
.

The aim of this section is to investigate the structure of X JCC and to elaborate tractable

conservative approximations. We first review two existing approximations and discuss their

benefits and shortcomings.

5.3.1 The Bonferroni Approximation

A popular approximation for X JCC is based on Bonferroni’s inequality. Note that the robust

joint chance constraint (5.3) is equivalent to

inf
P∈P

P

(
m⋂
i=1

{
y0
i (x) + yi(x)Tξ̃ ≤ 0

})
≥ 1− ε ⇐⇒ sup

P∈P
P

(
m⋃
i=1

{
y0
i (x) + yi(x)Tξ̃ > 0

})
≤ ε.

Furthermore, Bonferroni’s inequality implies that

P

(
m⋃
i=1

{
y0
i (x) + yi(x)Tξ̃ > 0

})
≤

m∑
i=1

P
(
y0
i (x) + yi(x)Tξ̃ > 0

)
∀P ∈ P .

For any vector of safety factors ε ∈ E = {ε ∈ Rm
+ :

∑m
i=1 εi ≤ ε}, the system of distributionally

robust individual chance constraints

inf
P∈P

P
(
y0
i (x) + yi(x)Tξ̃ ≤ 0

)
≥ 1− εi ∀i = 1, . . . ,m (5.27)

represents a conservative approximation for the distributionally robust joint chance constraint (5.3).

By Theorem 5.2.1, we can reformulate each of the individual chance constraints in (5.27) in

terms of tractable LMIs. In fact, as explained at the end of Section 5.2.3, we can further reduce

these LMIs to SOCP constraints, but this further simplification is irrelevant for our purposes.
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Thus, for any ε ∈ E , the assertion that x ∈ ZJCC
B (ε), where

ZJCC
B (ε) =


x ∈ Rn :

∃(βi,Mi) ∈ R× Sk+1 ∀i = 1, . . . ,m,

Mi < 0, βi + 1
εi
〈Ω,Mi〉 ≤ 0 ∀i = 1, . . . ,m,

Mi −

 0 1
2
yi(x)

1
2
yi(x)T y0

i (x)− βi

 < 0 ∀i = 1, . . . ,m


,

is a sufficient condition to guarantee that x satisfies the original distributionally robust joint

chance constraint (5.3). The above arguments culminate in the following result.

Theorem 5.3.1 (Bonferroni Approximation) For any ε ∈ E we have ZJCC
B (ε) ⊆ X JCC.

A major shortcoming of the Bonferroni approximation is that the approximation quality de-

pends critically on the choice of ε ∈ E . Unfortunately, the problem of finding the best ε ∈ E

for a generic chance constrained problem of type (5.4) is nonconvex and believed to be in-

tractable [NS06]. As a result, in most applications of Bonferroni’s inequality the “risk budget”

ε is equally divided among the m individual chance constraints in (5.27) by setting εi = ε/m

for i = 1, . . . ,m. This approach was first advocated by Nemirovski and Shapiro [NS06].

The Bonferroni approximation can be overly conservative even if ε ∈ E is chosen optimally. The

following example, which is adapted from Chen et al. [CSSC09], highlights this shortcoming.

Example 5.3.1 Assume that the inequalities in the chance constraint (5.3) are perfectly posi-

tively correlated in the sense that

y0
i (x) = δiŷ

0(x) and yi(x) = δiŷ(x)

for some affine functions ŷ0 : Rn → R and ŷ : Rn → Rk and for some fixed constants δi > 0

for i = 1, . . . ,m. In this case, it can readily be seen that the joint chance constraint (5.3) is

equivalent to the robust individual chance constraint

inf
P∈P

P
(
y0(x) + y(x)Tξ̃ ≤ 0

)
≥ 1− ε. (5.28)
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Thus, the least conservative choice for εi which guarantees that (5.27) implies (5.3) is εi = ε

for i = 1, . . . ,m. However, this means that the εi sum to mε instead of ε as required by the

Bonferroni approximation. In fact, the optimal choice for ε ∈ E is εi = ε/m for i = 1, . . . ,m.

This example demonstrates that the quality of the Bonferroni approximation diminishes as m

increases if the inequalities in the joint chance constraint are positively correlated.

5.3.2 Approximation by Chen, Sim, Sun and Teo

In order to mitigate the potential over-conservatism of the Bonferroni approximation, Chen

et al. [CSSC09] proposed an approximation based on a different inequality from probability

theory. The starting point is the observation that the joint chance constraint (5.3) can be

reformulated as

inf
P∈P

P
(

max
i=1,...,m

{
αi

(
y0
i (x) + yi(x)Tξ̃

)}
≤ 0

)
≥ 1− ε (5.29)

for any vector of strictly positive scaling parameters α ∈ A = {α ∈ Rm : α > 0}. Note that

the choice of α ∈ A does not affect the feasible region of the chance constraint (5.29). Although

these scaling parameters are seemingly unnecessary, it turns out that they can be tuned to

improve the approximation to be developed below. We emphasize that (5.29) represents a

distributionally robust individual chance constraint, which can be conservatively approximated

by a Worst-Case CVaR constraint. Thus, for any α ∈ A, the requirement

x ∈ ZJCC(α) =

{
x ∈ Rn : sup

P∈P
CVaRε

(
max

i=1,...,m

{
αi

(
y0
i (x) + yi(x)Tξ̃

)})
≤ 0

}
(5.30)

implies that x ∈ X JCC, see Proposition 5.2.1. It is important to note that, in contrast to the

chance constraint (5.29), the Worst-Case CVaR constraint x ∈ ZJCC(α) does depend on the

choice of α ∈ A. Thus, the Worst-Case CVaR constraint in (5.30) is not equivalent to the

robust chance constraint (5.29) since the max function in (5.29) is convex piecewise linear, see

also Theorem 5.2.2 and Example 5.2.1.

The following theorem due to Chen et al. [CSSC09] provides a tractable conservative approxi-

mation for ZJCC(α).
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Theorem 5.3.2 (Approximation by Chen et al.) For any α ∈ A we have ZJCC
U (α) ⊆

ZJCC(α) ⊆ X JCC where

ZJCC
U (α) =



x ∈ Rn :

∃β ∈ R, w0 ∈ R, w ∈ Rk, {Mi}mi=0 ∈ Sk+1,

β + 1
ε

(
∑m

i=0〈Ω,Mi〉) ≤ 0, M0 −

 0 1
2
w

1
2
wT w0 − β

 < 0

Mi −

 0 1
2
(αiyi(x)−w)

1
2
(αiyi(x)−w)T αiy

0
i (x)− w0

 < 0 ∀i = 1, . . . ,m

Mi < 0 ∀i = 0, . . . ,m,



,

(5.31)

Proof The inclusion ZJCC(α) ⊆ X JCC follows from Proposition 5.2.1. To prove ZJCC
U (α) ⊆

ZJCC(α), we note that the constraint x ∈ ZJCC(α) is equivalent to J (x,α) ≤ 0, where

J (x,α) = sup
P∈P

CVaRε

(
max

i=1,...,m

{
αi

(
y0
i (x) + yi(x)Tξ̃

)})
= inf

β∈R

{
β +

1

ε
sup
P∈P

EP

([
max

i=1,...,m

{
αi

(
y0
i (x) + yi(x)Tξ̃

)}
− β

]+
)}

≤ 0. (5.32)

Due to a classical result in order statistics by Meilijson and Nadas [MN79], we have

sup
P∈P

EP

([
max

i=1,...,m

{
αi

(
y0
i (x) + yi(x)Tξ̃

)}
− β

]+
)

≤ sup
P∈P

EP

(
(w0 +wTξ̃ − β)+

)
+

m∑
i=1

sup
P∈P

EP

([
αiy

0
i (x)− w0 + (αiyi(x)−w)Tξ̃

]+
)

= G(w0,w, β,α,x)

for any fixed (w0,w) ∈ R × Rk. This estimate provides the following upper bound on the

Worst-Case CVaR.

J (x,α) ≤ Ĵ (x,α) = inf
β∈R, w0∈R, w∈Rk

{
β +

1

ε
G(w0,w, β,α,x)

}
(5.33)

The evaluation of Ĵ (x,α) involves the solution of m + 1 subordinate worst-case expectation
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problems, all of which have equivalent tractable SDP formulations of the type (5.12). This

enables us to reformulate Ĵ (x,α) as

Ĵ (x,α) = inf β +
1

ε

(
m∑
i=0

〈Ω,Mi〉

)

s. t. w ∈ Rk, w0 ∈ R, β ∈ R, Mi ∈ Sk+1 ∀i = 0, . . . ,m

Mi −

 0 1
2
(αiyi(x)−w)

1
2
(αiyi(x)−w)T αiy

0
i (x)− w0

 < 0 ∀i = 1, . . . ,m

M0 −

 0 1
2
w

1
2
wT w0 − β

 < 0, Mi < 0 ∀i = 0, . . . ,m.

(5.34)

Thus, the assertion x ∈ ZJCC
U (α) implies x ∈ ZJCC(α), and we conclude that ZJCC

U (α) ⊆

ZJCC(α) for all α ∈ A.

Note that, since the feasible set ZJCC
U (α) constitutes a tractable conservative approximation for

X JCC for any α ∈ A, the union
⋃
α∈AZJCC

U (α) still constitutes a conservative approximation for

X JCC. Chen et al. [CSSC09] prove also that their approximation is tighter than the Bonferroni

approximation by showing that ZJCC
B (ε) ⊆

⋃
α∈AZJCC

U (α) for all ε ∈ E . Unfortunately, similar

to the Bonferroni approach, the approximation by Chen et al. depends critically on the choice

of α, while the problem of finding the best α ∈ A for a generic chance constrained program of

the type (5.4) is nonconvex and therefore believed to be intractable.

5.3.3 The Worst-Case CVaR Approximation

Both approximations discussed so far rely on inequalities from probability theory, which are not

necessarily tight. In this section we show that the set ZJCC(α) has in fact an exact tractable

representation in terms of LMIs. This result relies on the solution of a moment problem that

allows us to determine an exact reformulation of the Worst-Case CVaR in (5.32), and it leads

to a tighter convex approximation for the feasible set X JCC.
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Theorem 5.3.3 For any fixed x ∈ Rn and α ∈ A, we have

ZJCC(α) =


x ∈ Rn :

∃(β,M) ∈ R× Sk+1,

β + 1
ε
〈Ω,M〉 ≤ 0, M < 0,

M−

 0 1
2
αiyi(x)

1
2
αiy

T
i αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m


. (5.35)

Proof As in Section 5.2, the first step towards a tractable reformulation of the Worst-Case

CVaR in the definition of ZJCC(α) is to solve the worst-case expectation problem

sup
P∈P

EP

([
max

i=1,...,m

{
αi

(
y0
i (x) + yi(x)Tξ̃

)}
− β

]+
)
. (5.36)

For any fixed x ∈ X , β ∈ R, and α ∈ A, Lemma 5.2.1 enables us to reformulate (5.36) as

inf
M∈Sk+1

〈Ω,M〉

s. t. M < 0,
[
ξT 1

]
M
[
ξT 1

]T ≥ max
i=1,...,m

{
αi

(
y0
i (x) + yi(x)Tξ̃

)}
− β ∀ξ ∈ Rk.

(5.37)

We emphasize that (5.37) represents a lossless reformulation of the worst-case expectation

problem (5.36). The semi-infinite constraint in (5.37) can be expanded into m simpler semi-

infinite constraints of the form

[
ξT 1

]
M
[
ξT 1

]T ≥ αi
(
y0
i (x) + yi(x)Tξ

)
− β ∀ξ ∈ Rk, i = 1, . . . ,m.

Using similar arguments as in Section 5.2, these semi-infinite constraints can be equivalently

expressed as the following system of LMIs.

M−

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m
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We can therefore reformulate the worst-case expectation problem (5.36) as

inf
M∈Sk+1

〈Ω,M〉

s. t. M < 0, M−

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m.
(5.38)

Substituting (5.38) into (5.32) yields

J (x,α) = inf β +
1

ε
〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m,

(5.39)

where J (x,α) is defined as in the proof of Theorem 5.3.2. SinceZJCC(α) = {x ∈ Rn : J (x,α) ≤

0}, the claim follows.

Theorem 5.3.3 establishes that ZJCC(α) has an exact representation in terms of LMIs. We have

already seen in Section 5.3.2 that ZJCC(α) ⊆ X JCC for all α ∈ A and that ZJCC
U (α) ⊆ ZJCC(α),

see Theorem 5.3.2. Thus, ZJCC(α) constitutes a tractable conservative approximation for X JCC

which is at least as tight as ZJCC
U (α).

Remark 5.3.1 As a consistency check, we can verify that the constraints in (5.31) imply the

constraint in (5.35). To this end, assume first that x ∈ ZJCC
U (α) for some given α ∈ A. This

implies that there exists some (β, w0,w, {Mi}mi=0) that satisfy

M0 + Mi −

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m, (5.40a)

and

β +
1

ε

(
m∑
i=0

〈Ω,Mi〉

)
≤ 0, (5.40b)

see (5.31). We now prove that x ∈ ZJCC(α) by showing that α, β, M =
∑m

i=0 Mi, and x are
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feasible in (5.35). Firstly, since Mi < 0 for i = 0, . . . ,m we have that M < 0. Secondly, it is

easy to see that the inequality (5.40b) is equivalent to

β +
1

ε
〈Ω,M〉 ≤ 0.

Finally, since M =
∑m

i=0 Mi < M0 + Mj for all j = 1, . . . ,m, the inequalities in (5.40a) imply

that

M−

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m.

Thus, all the constraints in (5.35) are satisfied.

Recall from Section 5.3.2 that ZJCC
B (ε) ⊆

⋃
α∈AZJCC

U (α) for all ε ∈ E . Moreover, we have

ZJCC
U (α) ⊆ ZJCC(α) ⊂ X JCC for all α ∈ A. This allows us to conclude that our new approxi-

mation is at least as tight as the two state-of-the-art approximations discussed above.

Remark 5.3.2 In contrast to the classical Bonferroni approximation, the new approximation

behaves reasonably in situations in which the m inequalities in the chance constraint (5.3) are

positively correlated. Indeed, by choosing αi := 1/δi > 0 for all i = 1, . . . ,m in Example 5.3.1,

the constraint x ∈ ZJCC(α) is equivalent to

∃β ∈ R, M ∈ Sk+1 : β +
1

ε
〈Ω,M〉 ≤ 0, M < 0, M−

 0 1
2
y(x)

1
2
y(x)T y0(x)− β

 < 0,

which can easily be identified as the SDP reformulation of the individual chance constraint (5.28).

This implies that ZJCC(α) = X ICC for all α ∈ A in Example 5.3.1, see also Theorem 5.2.1.

Thus, by choosing α appropriately, our method can provide tight approximations for distribu-

tionally robust joint chance constraints, even in situations when the m inequalities are positively

correlated.
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5.3.4 Dual Interpretation of the Worst-Case CVaR Approximation

In this section we explore a different way to find a tractable conservative approximation for the

chance constraint (5.3). Subsequently, we will prove that this approximation is equivalent to

the Worst-Case CVaR approximation.

Consider again the robust individual chance constraint (5.29) which is equivalent to the robust

joint chance constraint (5.3) for any fixed α ∈ A. Instead of approximating (5.29) by a Worst-

Case CVaR constraint, we can approximate the max-function in the chance constraint (5.29)

by a quadratic majorant of the form q(ξ) = ξTQξ + ξTq + q0 that satisfies

q(ξ) ≥ max
i=1,...,m

{
αi
(
y0
i (x) + yi(x)Tξ

)}
∀ξ ∈ Rk,

⇐⇒ q(ξ) ≥ αi
(
y0
i (x) + yi(x)Tξ

)
∀ξ ∈ Rk, i = 1, . . . ,m.

(5.41)

Replacing the max function in (5.29) by q(ξ) yields the distributionally robust (individual)

quadratic chance constraint

inf
P∈P

P
(
ξ̃TQξ̃ + ξ̃Tq + q0 ≤ 0

)
≥ 1− ε. (5.42)

For further argumentation, we define

ZJCC
Q (α) =

x ∈ Rn :
∃Q ∈ Sk, q ∈ Rk, q0 ∈ R such that

q(ξ) = ξTQξ + ξTq + q0 satisfies (5.41) and (5.42)

 . (5.43)

Proposition 5.3.1 For any fixed α ∈ A the feasible set ZJCC
Q (α) constitutes a conservative

approximation for X JCC, that is, ZJCC
Q (α) ⊆ X JCC.

Proof Note that any x feasible in (5.29) is also feasible in (5.43) since

P
(
ξ̃TQξ̃ + ξ̃Tq + q0 ≤ 0

)
≤ P

(
max

i=1,...,m

{
αi(y

0
i (x) + yi(x)Tξ̃)

}
≤ 0

)
∀P ∈ P .

Since x is feasible in (5.29) if and only if x ∈ X JCC, the claim follows.



148 Chapter 5. Distributionally Robust Joint Chance Constraints

Theorem 5.3.4 For any fixed x ∈ Rn and α ∈ A we have

ZJCC
Q (α) =


x ∈ Rn :

∃Q ∈ Sk, q ∈ Rk, q0 ∈ R, β ∈ R, M ∈ Sk+1,

β + 1
ε
〈Ω,M〉 ≤ 0, M < 0, M−

 Q 1
2
q

1
2
qT q0 − β

 < 0,

 Q 1
2
(q − αiyi(x))

1
2
(q − αiyi(x))T q0 − αiy0

i (x)

 < 0 ∀i = 1, . . . ,m


.

Proof Note that the constraints in (5.41) are equivalent to

 Q 1
2
(q − αiyi(x))

1
2
(q − αiyi(x))T q0 − αiy0

i (x)

 < 0 ∀i = 1, . . . ,m.

Moreover, by Theorem 5.2.2, the robust quadratic chance constraint (5.42) is equivalent to the

Worst-Case CVaR constraint

sup
P∈P

P-CVaR
(
ξ̃TQξ̃ + ξ̃Tq + q0

)
= inf

β∈R

{
β +

1

ε
sup
P∈P

EP

([
ξ̃TQξ̃ + ξ̃Tq + q0 − β

]+
)}

≤ 0.

(5.44)

As usual, we first find an SDP reformulation of the subordinate worst-case expectation problem

sup
P∈P

EP

([
ξ̃TQξ̃ + ξ̃Tq + q0 − β

]+
)
.

By Lemma 5.2.1, this problem can be rewritten as

inf
M∈Sk+1

〈Ω,M〉

s. t. M < 0,
[
ξT 1

]
M
[
ξT 1

]T ≥ ξTQξ + ξTq + q0 − β ∀ξ ∈ Rk.

(5.45)

Note that the semi-infinite constraint in (5.45) is equivalent to

ξ
1


TM−

 Q 1
2
q

1
2
qT q0 − β



ξ

1

 ≥ 0 ∀ξ ∈ Rk ⇐⇒ M−

 Q 1
2
q

1
2
qT q0 − β

 < 0,
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which enables us to rewrite (5.45) as

inf
M∈Sk+1

〈Ω,M〉

s. t. M < 0, M−

 Q 1
2
q

1
2
qT q0 − β

 < 0.
(5.46)

Substituting (5.46) into (5.44) shows that the robust quadratic chance constraint (5.42) is

equivalent to

0 ≥ inf β + 1
ε
〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−

 Q 1
2
q

1
2
qT q0 − β

 < 0.

Thus, the claim follows.

In the following theorem we show that the approximate feasible set ZJCC
Q (α) is equivalent to the

set ZJCC(α) found in Section 5.3.3. This implies that the approximation of a distributionally

robust joint chance constraint by a Worst-Case CVaR constraint is equivalent to the approx-

imation of the max function implied by the joint chance constraint by a quadratic majorant.

Note that both approximations depend of the choice of the scaling parameters α.

Theorem 5.3.5 For any α ∈ A we have ZJCC
Q (α) = ZJCC(α).

Proof By defining the combined variable

Y =

 Q 1
2
q

1
2
qT q0

 ,
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the set ZJCC
Q (α) can be rewritten as

ZJCC
Q (α) =


x ∈ Rn :

∃Y ∈ Sk, β ∈ R, M ∈ Sk+1,

β + 1
ε
〈Ω,M〉 ≤ 0, M < 0

M +

 0 0

0T β

 < Y <

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x)

 ∀i = 1, . . . ,m


,

It is easy to see that Y may be eliminated from the above representation of ZJCC
Q (α) by

rewriting the last constraint group as

M−

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m.

This observation establishes the postulated equivalence.

5.3.5 The Exactness of the Worst-Case CVaR Approximation

So far we have shown that, for any fixed α ∈ A, the feasible set ZJCC(α) constitutes a tractable

conservative approximation for X JCC. This implies that the union of all sets of the type ZJCC(α)

for α ∈ A still constitutes a conservative approximation for X JCC. We now demonstrate that

this improved approximation is in fact exact.

Theorem 5.3.6 The Worst-Case CVaR approximation is exact if α is treated as a decision

variable. Formally, we have

X JCC =
⋃
α∈A

ZJCC(α).

Proof Recall from Section 5.3.1 that the feasible set X JCC can be written as

X JCC =

{
x ∈ Rn : sup

P∈P
P

(
m⋃
i=1

{
y0
i (x) + yi(x)Tξ̃ > 0

})
≤ ε

}
.
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By Lemma 4.4.1 we may thus conclude that

X JCC =

x ∈ Rn :
∃M ∈ Sk+1, 〈Ω,M〉 ≤ ε, M < 0,[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ ∈
⋃m
i=1

{
y0
i (x) + yi(x)Tξ > 0

}
 .

The semi-infinite constraint in the above representation of X JCC can be reexpressed as

[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ : y0
i (x) + yi(x)Tξ > 0, ∀i = 1, . . . ,m,

which, by the S-lemma, is equivalent to

∃α ≥ 0, M−

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x) + 1

 < 0 ∀i = 1, . . . ,m.

Thus, the feasible set X JCC can be written as

X JCC =


x ∈ Rn :

∃M ∈ Sk+1, α ∈ Rm,

〈Ω,M〉 ≤ ε, M < 0, α > 0,

M−

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x) + 1

 < 0 ∀i = 1, . . . ,m


. (5.47)

Note that we require here without loss of generality that α is strictly positive. Indeed, it can

be shown that no feasible α has any vanishing components. By Theorem 5.3.3, we have

⋃
α∈A

ZJCC(α) =


x ∈ Rn :

∃β ∈ R, M ∈ Sk+1, α ∈ A

β + 1
ε
〈Ω,M〉 ≤ 0, M < 0,

M−

 0 1
2
αiyi(x)

1
2
αiy

T
i αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m


. (5.48)

Note that any feasible β in ZJCC(α) must be nonpositive since β + 1
ε
〈Ω,M〉 ≤ 0, M < 0, and

Ω � 0.

It is clear that X JCC ⊆
⋃
α∈AZJCC(α) since we are free to set β = −1 in (5.48) and since
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−1 + 1
ε
〈Ω,M〉 ≤ 0 is equivalent to 〈Ω,M〉 ≤ ε. To prove the converse inclusion, we select an

arbitrary x ∈
⋃
α∈AZJCC(α) and a corresponding (β,M,α) satisfying the constraints in (5.48).

Assume first that β < 0. Since all constraints in (5.48) are homogeneous of degree 1 in (β,M,α),

the scaled variables (β′,M′,α′) = (−1,−M/β,α/β) are also feasible in (5.48). Moreover,

(x, β′,M′,α′) is feasible in (5.47), and thus x ∈ X JCC. Assume now that β = 0. Then, the

constraints in (5.48) imply M = 0. Since α > 0, this in turn implies that

y0
i (x) + yi(x)Tξ ≤ 0 ∀ξ ∈ Rk, ∀i = 1, . . . ,m

=⇒ inf
P∈P

P
(
y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . ,m

)
= 1.

These observations make it clear that x ∈ X JCC, which concludes the proof.

Theorem 5.3.6 implies that the original joint chance constrained program

minimize
x∈X∩X JCC

cTx

is equivalent to

minimize
x∈X∩ZJCC(α)

α∈A

cTx (5.49)

Unfortunately, optimizing jointly over x ∈ X ∩ZJCC(α) and α ∈ A in (5.49) involves Bilinear

Matrix Inequalities (BMIs). It is known that generic BMI constrained problems are NP-hard,

see [TO95]. Similar nonconvexities arise also in the approximations discussed in Sections 5.3.1

and 5.3.2, which underlines the general perception that problems with distributionally robust

joint chance constraints are hard to solve.

Recall, however, that for any fixed α ∈ A, the set ZJCC(α) is representable in terms of tractable

LMI constraints involving the auxiliary variables β and M. In particular, the constraints

in (5.48) are convex in β,M, and x for any fixed α, and convex in α for any fixed β,M,

and x. In Section 5.3.8 we will use this property to propose an algorithm for solving (5.49)

approximately.
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5.3.6 Robust Optimization Perspective on Joint Chance Constraints

In Section 5.2.3 we have shown that robust individual chance constraints are equivalent to

robust semi-infinite constraints involving an uncertainty set that can be interpreted as an

ellipsoid lifted to the space of positive semidefinite matrices. In this section we show that there

exists also a close relationship between robust joint chance constraints and robust semi-infinite

optimization.

We first show that one can construct a robust counterpart for the constraint x ∈ ZJCC(α).

Theorem 5.3.7 For any fixed x ∈ X and α ∈ A we have x ∈ ZJCC(α) if and only if

m∑
i=1

αi

〈 0 1
2
yi(x)

1
2
yi(x)T y0

i (x)

 ,Λi

〉
≤ 0 ∀(Λ1, . . . ,Λm) ∈ Umε , (5.50)

where the uncertainty set Umε ⊆ (Sk+1)m is defined as

Umε =

(Λ1, . . . ,Λm) ∈ (Sk+1)m :

Λi < 0 ∀i = 1, . . . ,m

1
ε
Ω−

∑m
i=1 Λi < 0∑m

i=1 Λi
k+1,k+1 = 1

 . (5.51)

Proof In the proof of Theorem 5.3.3 we have seen that x ∈ ZJCC(α) if and only if the optimal

value of the SDP in (5.39) is nonpositive. After a few elementary simplification steps, the dual

of this SDP reduces to

sup
m∑
i=1

αi

〈 0 1
2
yi(x)

1
2
yi(x)T y0

i (x)

 ,Λi

〉

s. t. Λ1, . . . ,Λm ∈ Sk+1

1

ε
Ω−

m∑
i=1

Λi < 0,
m∑
i=1

Λi
k+1,k+1 = 1

Λi < 0 ∀i = 1, . . . ,m.

(5.52)

Using similar arguments as in Theorem 5.2.3, it can be shown that strong duality holds. Thus,
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x ∈ ZJCC(α) if and only if the optimal value of problem (5.52) is nonpositive, which is mani-

festly equivalent to the postulated semi-infinite constraint (5.50).

Remark 5.3.3 Note that for m = 1, the uncertainty set Umε defined in (5.51) reduces to U1
ε

defined in (5.24), which is the uncertainty set associated with a distributionally robust individual

chance constraint. In this case, the robust counterpart (5.50) adopts the form

α

〈 0 1
2
y

1
2
yT y0

 ,Λ〉 ≤ 0 ∀Λ ∈ U1
ε .

The scalar α > 0 can be divided away by which we recover the semi-infinite constraint (5.23).

This shows that the robust counterpart (5.50) of the joint chance constraint (5.3) encapsulates

that of the individual chance constraint (5.5) as a special case.

In the next theorem we show that one can also construct a robust counterpart for the constraint

x ∈ ZJCC
U (α), see Section 5.3.2.

Theorem 5.3.8 For any fixed x ∈ X and α ∈ A, we have x ∈ ZJCC
U (α) if and only if

m∑
i=1

αi

〈 0 1
2
yi(x)

1
2
yi(x)T y0

i (x)

 ,Λi

〉
≤ 0 ∀(Λ1, . . . ,Λm) ∈ Ûmε , (5.53)

where the uncertainty set Ûmε ⊆ (Sk+1)m is defined as

Ûmε =

(Λ1, . . . ,Λm) ∈ (Sk+1)m :

Λi < 0 ∀i = 1, . . . ,m

1
ε
Ω−Λi < 0 ∀i = 1, . . . ,m∑m
i=1 Λi

k+1,k+1 = 1


Proof The proof relies on deriving the dual of the SDP (5.34) and then follows the argumen-

tation in the proof of Theorem 5.3.7.

The semi-infinite constraints (5.50) and (5.53) both represent (conservative) robust counter-

parts for the distributionally robust joint chance constraint (5.3). Note that (5.53) with the
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uncertainty set Ûmε is generally more conservative than (5.50) with the uncertainty set Umε .

Indeed, it can easily be seen that Umε ⊆ Ûmε since the inequalities Λi < 0 for i = 1, . . . ,m and

1
ε
Ω −

∑m
i=1 Λi < 0 imply that 1

ε
Ω − Λi < 0 for i = 1, . . . ,m. Note that Umε is generically a

strict subset of Ûmε , which is consistent with Remark 5.3.1.

5.3.7 Injecting Support Information

In many practical applications the support of the (true) distribution Q of ξ̃ is known to be a

strict subset of Rk. Disregarding this information in the definition of P can result in unnec-

essarily conservative robust chance constraints. In this section we briefly outline how support

information can be used to tighten robust chance constraints and their approximations devel-

oped in Section 5.3. To this end, we first revise our distributional assumptions.

Distributional Assumptions. The random vector ξ̃ has a distribution Q with mean vector

µ and covariance matrix Σ � 0. We assume that Q is supported on Ξ = {ξ ∈ Rk : [ξT 1]Wi[ξ
T 1]T ≤

0 ∀i = 1, . . . , l}, where Wi ∈ Sk+1 for all i = 1, . . . , l.1 Thus, we have Q(ξ̃ ∈ Ξ) = 1. We

define PΞ as the set of all probability distributions supported on Ξ that have the same first-

and second-order moments as Q.

In this section we are interested in tractable conservative approximations for the feasible set

X JCC
Ξ =

{
x ∈ Rn : inf

P∈PΞ

P
(
y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . ,m

)
≥ 1− ε

}
.

As before, we study approximate feasible sets of the form

ZJCC
Ξ (α) =

{
x ∈ Rn : sup

P∈PΞ

CVaRε

(
max

i=1,...,m

{
αi

(
y0
i (x) + yi(x)Tξ̃

)})
≤ 0

}

for α ∈ A. By using similar arguments as in Section 5.2.1, one can show that ZJCC
Ξ (α) ⊆ X JCC

Ξ

for all α ∈ A. However, the sets ZJCC
Ξ (α) have no longer an exact representation in terms of

1Note that every finite intersection of half-spaces and ellipsoids in Rk is representable as a set of the form Ξ.
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LMIs. Instead, they need to be conservatively approximated.

Theorem 5.3.9 For any fixed α ∈ A, we have YJCC
Ξ (α) ⊆ ZJCC

Ξ (α) ⊆ X JCC
Ξ , where YJCC

Ξ (α)

has the following tractable reformulation in terms of LMIs.

YJCC
Ξ (α) =


x ∈ Rn :

∃M ∈ Sk+1, β ∈ R, τi ∈ Rl,

β + 1
ε
〈Ω,M〉 ≤ 0, τi ≥ 0 ∀i = 0, . . . ,m

M +
∑l

j=1 τ0,jWj < 0

M +
∑l

j=1 τi,jWj −

 0 1
2
αiyi(x)

1
2
αiyi(x)T αiy

0
i (x)− β

 < 0 ∀i = 1, . . . ,m


.

(5.54)

Furthermore, for l = 1, we have YJCC
Ξ (α) = ZJCC

Ξ (α).

Proof The proof widely parallels the proof of Theorem 5.3.1. The only difference is that Rk

is replaced by Ξ and that we use the S-lemma to approximate (for l > 1) or reformulate (for

l = 1) the semi-infinite constraints over Ξ by LMI constraints.

Remark 5.3.4 While ZJCC(α) is exactly representable in terms of LMIs in the absence of sup-

port information, Theorem 5.3.9 only provides a conservative LMI approximation for ZJCC
Ξ (α).

Nevertheless, it is easily verified that ZJCC(α) ⊆ YJCC
Ξ (α) and therefore YJCC

Ξ (α) constitutes a

better approximation for ZJCC
Ξ (α) than ZJCC(α). In fact, by setting τi = 0 for all i = 0, . . . ,m,

(5.54) reduces to (5.39).

Remark 5.3.5 Support information can also be used in a straightforward way to tighten the

approximations discussed in Sections 5.3.1 and 5.3.2.
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5.3.8 Optimizing over the Scaling Parameters

By Theorem 5.3.6, the original distributionally robust chance constrained program (5.4) can

be written as

minimize
x∈Rn,α∈A

cTx

subject to J (x,α) ≤ 0

x ∈ X ,

(5.55)

where the Worst-Case CVaR functional J (x,α) is defined as in (5.32). Unfortunately, as

discussed in Section 5.3.3, J (x,α) is merely biconvex, but not jointly convex in x and α.

Thus, optimization problem (5.55) is nonconvex. By Theorem 5.3.3, however, the problem

becomes convex and tractable when the values of the scaling parameters α are frozen.

For the further argumentation we define the set Ā = {α : α ≥ δe}, where e denotes the

vector of ones and δ > 0 represents a small tolerance, which we set to 10−7. Note that, unlike

A, the set Ā is closed. Consider now the following optimization model where α ∈ Ā is fixed.

min
x∈Rn

cTx

s. t. J (x,α) ≤ 0

x ∈ X

(5.56)

We emphasize again that by Theorem 5.3.3 (5.56) is equivalent to a tractable SDP and that

any x feasible in (5.56) is also feasible in the original chance constrained problem (5.4). In the

remainder of this section we develop an algorithm that repeatedly solves (5.56) while system-

atically improving the scaling parameters α.

The main idea of this approach, which is inspired by [CSSC09], is to minimize J (x,α) over

α ∈ Ā with the aim of enlarging the feasible region of problem (5.56) and thereby improving

the objective value. To this end, we introduce the following optimization model which depends

parametrically on x ∈ X .

min
α∈Rm

J (x,α)

s. t. α ∈ Ā
(5.57)
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Theorem 5.3.3 implies that (5.57) can also be expressed as a tractable SDP.

Assume that x∗ is an optimal solution of problem (5.56) for a given α ∈ Ā. By the feasibility

of x∗ in (5.56) we know that J (x∗,α) ≤ 0. Keeping x∗ fixed, we then solve problem (5.57) to

obtain the optimal scaling parameters α∗ corresponding to x∗. By construction, we find

J (x∗,α∗) ≤ J (x∗,α) ≤ 0. (5.58)

The above inequalities imply that the optimal objective value of problem (5.56) with input α∗

must not exceed cTx∗. Therefore, by solving the problems (5.56) and (5.57) in alternation, we

obtain a sequence of monotonically decreasing objective values. This motivates the following

algorithm, which relies on the availability of an initial feasible solution xinit for problem (5.56).

Algorithm 5.3.1 Sequential Convex Optimization Procedure

1. Initialization. Let xinit be some feasible solution of problem (5.56). Set the current

solution to x0 ← xinit, the current objective value to f 0 ← cTx0, and the iteration counter

to t← 1.

2. Scaling Parameter Optimization. Solve problem (5.57) with input xt−1 and let α∗

denote an optimal set of scaling parameters. Set αt ← α∗.

3. Decision Optimization. Solve problem (5.56) with input αt and let x∗ denote an

optimal solution. Set xt ← x∗ and f t ← cTxt.

4. Termination. If (f t − f t−1)/|f t−1| ≤ γ (where γ is a given small tolerance), output xt

and stop. Otherwise, set t← t+ 1 and go back to Step 2.

Theorem 5.3.10 Assume that xinit is feasible in problem (5.56) for some α ∈ Ā. Then, the

sequence of objective values {f t} generated by Algorithm 5.3.1 is monotonically decreasing. If

the set X is bounded, then the sequence {xt} is also bounded, while the sequence {f t} converges

to a finite limit.
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Proof By the inequality (5.58), an update of the scaling parameters from αt−1 to αt in Step

2 of the algorithm preserves the feasibility of xt−1 in problem (5.56). This guarantees that the

sequence of objective values {f t} is monotonically decreasing. Furthermore, it is readily seen

that the solution sequence {xt} is bounded if the feasible set X is bounded. Since (5.56) has

a continuous objective function, the monotonicity of the objective value sequence implies that

{f t} has a finite limit.

Remark 5.3.6 Algorithm 5.3.1 can also be used in the presence of support information as

discussed in Section 5.3.7. In this case, the Worst-Case CVaR functional J (x,α) has to be

redefined in the obvious way. Algorithm 5.3.1 can further be used in the context of the approx-

imation by Chen et al., see Section 5.3.2. In this case, J (x,α) is replaced by its conservative

approximation Ĵ (x,α) defined in (5.33). Details are omitted for brevity of exposition.

We emphasize that Algorithm 5.3.1 does not necessarily find the global optimum of prob-

lem (5.55). Nevertheless, as confirmed by the numerical results in the next section, the method

can perform well in practice.

5.4 Numerical Results

We consider a dynamic water reservoir control problem for hydro power generation, which is

inspired by a model due to Andrieu et al. [AHR10]. Let ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃T ) denote the

sequence of stochastic inflows (precipitation) into the reservoir at time instances t = 1, . . . , T .

The history of inflows up to time t is denoted by ξ̃t = (ξ̃1, . . . , ξ̃t), where ξ̃T = ξ̃. We let µ ∈ RT

and Σ ∈ ST denote the mean vector and covariance matrix of ξ̃, respectively. Furthermore,

ξ̃ is supported on a rectangle of the form Ξ = [l, u]. However, we assume that no further

information about the true distribution of ξ̃ is available. As usual, we let PΞ denote the set of

all distributions supported on Ξ with matching first- and second-order moments. We denote by

xt(ξ̃
t) the amount of water released from the reservoir in period t. Note that the decision xt(ξ̃

t)

is selected at time t after ξ̃t has been observed and is therefore a function of the observation
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history. We require xt(ξ̃
t) ≥ 0 almost surely for all P ∈ PΞ and t = 1, . . . , T . The water level

at time t is computed as the sum of the initial level l0 and the cumulative inflows minus the

cumulative releases up to time t, that is,

l0 +
t∑
i=1

ξ̃i −
t∑
i=1

xt(ξ̃
t).

We require that the water level remains between some upper threshold lhigh (flood reserve) and

some lower threshold llow (dead storage) over all time periods t = 1, . . . , T with probability

1 − ε, where ε ∈ (0, 1). The water released in any period t is used to produce electric energy

which is sold at a periodic price

ct = 10 + 5 sin

[
π(1− t)

3

]
∀t = 1, . . . , T.

The worst-case expected profit over all time periods is computed as

inf
P∈PΞ

EP

(
T∑
t=1

ctxt(ξ̃
t)

)
.

In order to determine an admissible control strategy that maximizes the worst-case profit, we

must solve the following distributionally robust joint chance constrained problem.

maximize
x1(·),...,xT (·)

inf
P∈PΞ

EP

(
T∑
t=1

ctxt(ξ̃
t)

)

subject to inf
P∈PΞ

P

(
llow ≤ l0 +

t∑
i=1

ξ̃i −
t∑
i=1

xt(ξ̃
t) ≤ lhigh ∀t = 1, . . . , T

)
≥ 1− ε

xt(ξ̃
t) ≥ 0 P-a.s. ∀P ∈ PΞ, t = 1, . . . , T

(5.59)

Note that (5.59) is an infinite dimensional problem since the control decisions xt(·) are generic

measurable functionals of the uncertain inflows. To reduce the problem complexity, we focus

on policies that are affine functions of ξ̃. Thus, we optimize over affine disturbance feedback

policies of the form

xt(ξ̃
t) = x0

t + xT
t Ptξ̃ ∀t = 1, . . . , T, (5.60)
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where x0
t ∈ R, xt ∈ Rt and Pt : RT → Rt is a truncation operator that maps ξ̃ to ξ̃t.

By focusing on affine control policies we conservatively approximate the infinite dimensional

dynamic problem (5.59) by a problem with a polynomial number of variables, namely, the

coefficients {x0
t ,xt}Tt=1. For more details on the use of affine control policies in robust control

and stochastic programming, see, e.g., Ben-Tal et al. [BTEGN09], Chen et al. [CSS], and

Kuhn et al. [KWG09].

By applying now standard robust optimization techniques [BTEGN09], the requirement that

xt(ξ̃
t) ≥ 0 holds almost surely can be expressed as

x0
t + xT

t Ptξ ≥ 0 ∀ξ ∈ Ξ

⇐⇒ 0 ≤ min
ξ∈RT

{
x0
t + xT

t Ptξ : l ≤ ξ ≤ u
}

⇐⇒ 0 ≤ max
λt∈RT

{
x0
t + xT

t Ptu+ λT
t (l− u) : λt ≥ PT

t xt, λt ≥ 0
}

⇐⇒ ∃λt ∈ RT : x0
t + xT

t Ptu+ λT
t (l− u) ≥ 0, λt ≥ PT

t xt, λt ≥ 0.

By substituting (5.60) into (5.59) we thus obtain the following conservative approximation

for (5.59).

maximize
T∑
t=1

ct
(
x0
t + xT

t Ptµ
)

subject to λt ∈ RT , xt ∈ Rt ∀t = 1, . . . , T

inf
P∈PΞ

P


l0 − lhigh +

t∑
i=1

ξ̃i −

(
t∑
i=1

x0
i + xT

i Piξ̃

)
≤ 0 ∀t = 1, . . . , T

llow − l0 −
t∑
i=1

ξ̃i +

(
t∑
i=1

x0
i + xT

i Piξ̃

)
≤ 0 ∀t = 1, . . . , T

 ≥ 1− ε

x0
t + xT

t Ptu+ λT
t (l− u) ≥ 0

λt ≥ PT
t xt, λt ≥ 0

 ∀t = 1, . . . , T

(5.61)

Note that the joint chance constraint in (5.61) involves 2T inequalities that are bilinear in the

decisions {xt}Tt=1 and the random vector ξ̃. Problem (5.61) can therefore be identified as a

special instance of problem (5.4) and is amenable to the approximation methods described in
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Section 5.3. In the remainder of this section, we compare the performance of these approxima-

tion methods.

In the subsequent tests, we set T = 5, l0 = 1, llow = 1, and lhigh = 5. The mean value of ξ̃t is

assumed to be 1, while its standard deviation is set to 10%, over all time periods. Furthermore,

we set the correlation of different stochastic inflows to 25% for adjacent time periods and 0%

otherwise. Finally, we assume that Ξ = [0, 2]T . All tests are run for a range of reliability levels

ε between 1% and 10% in steps of 1%.

We first solve problem (5.61) using the Bonferroni approximation by decomposing the joint

chance constraint into 2T individual chance constraints with reliability factors εi = ε/(2T ) for

i = 1, . . . , 2T . The resulting optimal objective value is denoted by V B, and the associated

optimal solution is used to initialize Algorithm 5.3.1. We run the algorithm using our new

approximation as well as the approximation by Chen et al. described in Section 5.3.2. We

denote the resulting optimal objective values by V M and V U , respectively. In both cases the

algorithm’s convergence threshold is set to γ = 10−6.

In Table 5.1 we report the optimal objective values and the improvement of V M relative to

V U and V B. As expected, all three methods yield optimal objective values that increase with

ε because the joint chance constraint becomes less restrictive as ε grows. At ε = 1% the

objective values of the different approximations coincide. However, V M exceed V U and V B for

all the other values of ε. In this particular example, our method outperforms the Bonferroni

approximation by up to 24% and the approximation by Chen et al. by up to 11%, see Table 5.1.

5.5 Conclusions

In this chapter we developed tractable SDP-based approximations for distributionally robust

individual and joint chance constraints. We first showed that distributionally robust individual

chance constraints are equivalent to Worst-Case CVaR constraints if the underlying constraint

functions are concave or (possibly non-concave) quadratic in the uncertain parameters. We

also showed that individual chance constraints can be reformulated as robust semi-infinite
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ε V M V U V B (V M − V U)/V U (V M − V B)/V B

1% 44.3 44.3 44.3 0.0% 0.0%
2% 44.9 44.3 44.3 1.3% 1.3%
3% 49.4 46.4 44.3 6.4% 11.4%
4% 52.4 48.6 44.5 7.8% 17.6%
5% 54.5 48.8 45.2 11.7% 20.5%
6% 56.3 52.0 46.0 8.3% 22.5%
7% 57.8 54.2 46.7 6.5% 23.6%
8% 58.9 55.8 47.3 5.5% 24.5%
9% 59.9 57.1 47.8 4.8% 25.2%
10% 60.7 58.2 48.8 4.3% 24.5%

Table 5.1: Optimal objective values of the water reservoir control problem when using our new
approximation (V M), the approximation by Chen et al. (V U), and the Bonferroni approximation
(V B). We also report the relative differences between V M and V U as well as V M and V B.

constraints involving uncertainty sets that can be interpreted as ellipsoids lifted to the space of

positive semidefinite matrices.

Subsequently, we used the theory of moment problems to obtain a new approximation for joint

chance constraints. We prove that this approximation is tighter that the classical Bonferroni

approximation as well as a more recent approximation suggested by Chen et al. [CSSC09]. The

approximation quality is controlled by a set of scaling parameters. We also showed that the

approximation becomes exact if the scaling parameters are chosen optimally. Unfortunately,

however, optimizing jointly over the decision variables of the original problem and the scaling

parameters leads to a BMI constrained problem and is therefore nonconvex. We therefore

proposed a sequential convex optimization algorithm that guides the choice of the scaling

parameters. The new approximation also enables us to reformulate joint chance constraints as

robust semi-infinite constraints whose uncertainty sets are reminiscent of the lifted ellipsoidal

uncertainty sets characteristic for individual chance constraints.

We evaluated the new joint chance constraint approximation in the context of a dynamic water

reservoir control problem and demonstrate numerically its superiority over the state-of-the-art

approximations.
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5.6 Appendix

5.6.1 Proof of Lemma 5.2.1

Proof The worst-case expectation problem (5.9) can equivalently be expressed as

θwc = sup
µ∈M+

∫
Rk

max{0, f(ξ)}µ(dξ)

s. t.

∫
Rk
µ(dξ) = 1∫

Rk
ξµ(dξ) = µ∫

Rk
ξξTµ(dξ) = Σ + µµT,

(5.62)

whereM+ represents the cone of nonnegative Borel measures on Rk. The optimization variable

of the semi-infinite linear program (5.62) is the nonnegative measure µ. Note that the first

constraint forces µ to be a probability measure. The other two constraints enforce consistency

with the given first- and second-order moments, respectively.

We now assign dual variables y0 ∈ R, y ∈ Rk, and Y ∈ Sk to the equality constraints in (5.62),

respectively, and introduce the following dual problem (see, e.g., [Sha01]).

inf y0 + yTµ+ 〈Y,Σ + µµT〉

s. t. y0 ∈ R, y ∈ Rk, Y ∈ Sk

y0 + yTξ + 〈Y, ξξT〉 ≥ max{0, f(ξ)} ∀ξ ∈ Rk

(5.63)

Because Σ � 0, it can be shown that strong duality holds [Isi60]. Therefore the worst-case

probability θwc coincides with the optimal value of the dual problem (5.63).

By defining the combined variable

M =

 Y 1
2
y

1
2
yT y0

 ,
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problem (5.63) reduces to

inf
M∈Sk+1

〈Ω,M〉

s. t.
[
ξT 1

]
M
[
ξT 1

]T ≥ max{0, f(ξ)} ∀ξ ∈ Rk.

(5.64)

Note that the semi-infinite constraint in (5.64) can be expanded in terms of two equivalent

semi-infinite constraints.

[
ξT 1

]
M
[
ξT 1

]T ≥ 0 ∀ξ ∈ Rk (5.65a)[
ξT 1

]
M
[
ξT 1

]T ≥ f(ξ) ∀ξ ∈ Rk (5.65b)

Since (5.65a) is equivalent to M < 0, the claim follows.
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Conclusion

6.1 Summary of Thesis Achievements

The main achievements of this thesis can be summarized as follows.

In Chapter 3, we extended robust portfolio optimization to accommodate options. Moreover,

we showed how the options can be used to provide strong insurance guarantees, which also hold

when the stock returns are realized outside of the prescribed uncertainty set. The arising model

can be interpretted as a fusion between robust portfolio optimization and classical portfolio in-

surance. Using conic and linear duality, we reformulated the model as a convex second-order

cone program, which is scalable in the amount of stocks and options and can be solved effi-

ciently with standard optimization packages. The proposed methodology can be applied to a

wide range of uncertainty sets and can therefore be seen as a generic extension to the robust

portfolio optimization framework. Through extensive numerical backtesting, we observed that

on average the non-insured portfolios achieve higher expected returns than the insured portfo-

lios, whereas the insured portfolios obtain higher Sharpe ratios. The results also indicate that

the performance of the insured portfolios is highly dependent on the required level of insurance.

When the insurance level is set too high, the cost of insurance causes the performance to de-

teriorate. Therefore, the level of insurance should be tuned to the market; to preserve wealth,

higher insurance levels can benefit the portfolio when the market is volatile and experiences

166
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jumps. Lower insurance levels are preferable in less volatile periods since unnecessary insurance

costs are avoided.

In Chapter 4, we generalized the WCVaR model by explicitly incorporating the non-linear re-

lationships between derivatives and their underlying assets. To this end, we developed two new

models. The WCPVaR model is suited for portfolios containing European options maturing

at the investment horizon. WCPVaR expresses the option returns as convex-piecewise linear

functions of the underlying assets. A benefit of this model is that it does not require knowl-

edge of the pricing models of the options in the portfolio. However, in order to be tractably

solvable, the WCPVaR model precludes short-sales of options. The WCQVaR model can han-

dle portfolios containing general option types and does not rely on short-sales restrictions. It

exploits the popular delta-gamma approximation to model the portfolio return. In contrast

to WCPVaR, WCQVaR does require knowledge of the option pricing models to determine the

quadratic approximation. Through numerical experiments we demonstrate that the WCPVaR

and WCQVaR models can provide much tighter VaR estimates of a portfolio containing options

than the WCVaR model which does not explicitly account for non-linear dependencies between

the asset returns. Using historical backtesting, we analyzed the performance of the WCQVaR

model in the context of an index tracking application and find that including options in the

investment strategy significantly improves the out-of-sample performance. Although options

are typically seen as a risky investments, our numerical results indicate that their use in a

robust optimization framework can offer substantial benefits.

In Chapter 5, we developed tractable SDP-based approximations for distributionally robust

individual and joint chance constraints. We first showed that distributionally robust individual

chance constraints are equivalent to Worst-Case CVaR constraints if the underlying constraint

functions are concave or (possibly non-concave) quadratic in the uncertain parameters. We

also showed that individual chance constraints can be reformulated as robust semi-infinite

constraints involving uncertainty sets that can be interpreted as ellipsoids lifted to the space

of positive semidefinite matrices. Subsequently, we used the theory of moment problems to

obtain a new approximation for joint chance constraints. We prove that this approximation

is tighter that the classical Bonferroni approximation as well as a more recent approximation
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suggested by Chen et al. [CSSC09]. The approximation quality is controlled by a set of scaling

parameters. We also showed that the approximation becomes exact if the scaling parameters

are chosen optimally. Unfortunately, however, optimizing jointly over the decision variables

of the original problem and the scaling parameters leads to a BMI constrained problem and

is therefore nonconvex. We therefore proposed a sequential convex optimization algorithm

that guides the choice of the scaling parameters. The new approximation also enables us to

reformulate joint chance constraints as robust semi-infinite constraints whose uncertainty sets

are reminiscent of the lifted ellipsoidal uncertainty sets characteristic for individual chance

constraints. We evaluated the new joint chance constraint approximation in the context of a

dynamic water reservoir control problem and demonstrated numerically its superiority over the

state-of-the-art approximations.

6.2 Directions for Future Research

Possible directions for future research are outlined as follows.

Stochastic Volatility. The WCQVaR model described in Chapter 4 assumes the underlying

asset returns to be the only sources of uncertainty in the market. It is known, however,

that implied volatilities constitute important risk factors for portfolios containing options.

In particular, long dated options are highly sensitive to fluctuations in the volatilities of

the underlying assets. The sensitivity of the portfolio return with respect to the volatil-

ities is commonly referred to as vega risk. The WCQVaR model can easily be modified

to include implied volatilities as additional risk factors. The arising delta-gamma-vega-

approximation of the portfolio return is still a quadratic function of the risk factors. Thus,

the theoretical derivations in Chapter 4 remain valid in this generalized setting. It would

be interesting to investigate if extending the WCQVaR model to account for vega risk

can further improve the performance of the model in historical backtests.

Reducing the Conservatism of Distributionally Robust Optimization . In this the-

sis, we only assumed that the first- and second-order moments as well as the support of
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the true probability distribution were known. It would be worthwhile to investigate if

more distributional information can be injected into the distributionally robust optimiza-

tion framework without impairing the tractability of the models. As more distributional

information is included, the set of compatible probability distributions is reduced and the

distributionally robust optimization problems become less conservative.

Modeling Nonlinear Dependencies through Copulas. In this thesis, we modeled the non-

linear relationships between derivative and their underlying assets. Copulas are a different

approach to model nonlinear dependencies. It would be interesting to investigate whether

copula information can be incorporated within the distributionally robust optimization

framework in a tractable manner.

Practical Applications. It would be beneficial to further apply the developed theory of ro-

bust chance constraints to real-world applications.
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