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1 Introduction

In this essay I will introduce the space of distributions and a selection of it’s proper-
ties. The space of distributions arose by difficulties in the study of differential equations
when having to deal with non-differentiable functions. To tackle these problem we will
construct a space which in some sense extends the space of continuous and therefore
in particular differentiable functions. Our first aim will be to construct this space, the
space of distributions. It will turn out to be the dual space of a function space of very
well-behaved functions, which we will call the space of test functions. Well-behaved here
means that the function space is closed under derivation. This will allow us to quasi
“push” the derivative from the newly defined distribution to the well-behaved function.
As the dual space, its behaviour and structure strongly depend on the topology on the
function space, we will start by having a close look at the topologies we can put on the
space of test functions. Having found a suitable topology we will define the distributions
to be the dual space and look at its properties and induced topology.
Having constructed the space, the next step has to be to define the generalised derivative
for this larger space. To be consistent with existing results, we need to make sure that
the generalised derivative coincides with the classical derivative wherever it is defined.

With the space of distributions, it is now possible to study a much wider range of
problems which include the necessity to derive an object. But to tackle these problems
one might also want to apply other well known tools from Analysis such as the Fourier
transform. Thus our second goal will be to extend the constructions in a way that allows
us to to do this. Following the same idea, we will choose a function space which is closed
under derivation and Fourier transform and consider it’s dual space. This space will be
the space of tempered distributions with a generalised derivative and Fourier transfor-
mation. It will turn out that it can be identified with a subspace of distributions and
that our results from the first part generally also apply to tempered distributions.

Being familiar with these spaces and their basic properties we will establish a connection
to operator theory. This will shed light on a property helping with a problem which
will have arisen in the first section. Namely we will see in the first section that it is in
general not possible to multiply distributions. However, if the distributions are defined
on independent variables, it is always possible to define a multiplication. Following the
idea of considering test functions on independent variables, we will see another strong
result. It will turn out that every bounded linear operator on a space of test functions
into a space of distributions is given by an integral transform if the test function space
and the space of distributions are defined on independent variables. This is very re-
markable as it is far from true in general.

Finally, as many methods in studying differential equations make use of compactness
arguments, we will examine compactness properties in the space of distributions. The
Banach Alaoglu Bourbaki provides us with a large amount of compact sets. But in prac-
tise it is often desirable to use sequences to characterise compactness properties. We
will equip the space of distributions with the weak* topology, which is not metrisable
since the space of test functions is not finite dimensional. For non-metrisable topolo-
gies compactness and sequential compactness are not equivalent in general, which we
will illustrate with an example. Thus at this point we cannot characterise the compact
sets we get from the Banach Alaoglu Bourbaki theorem by sequences, so we will finish
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the essay by examining the relation between compactness and sequences in the space
of distributions. It will turn out that we have enough structure that compact sets are
actually also sequentially compact.

Overall we see that the spaces of distributions and tempered distributions allow us
to apply a lot of very powerful machinery. Furthermore, despite the fact that the in-
volved topologies often lack much seemingly important structure, the spaces behave
much better than one might think on first sight. This good structure makes them very
useful for application.

1.1 General definitions and conventions

Unless otherwise specified, throughout the essay Ω will denote an open subset of Rn and
K will be a compact subset of Ω.
When dealing with dual spaces we will denote the duality pairing by 〈x, f〉 with x ∈ X
and f ∈ X ′ the dual space, i.e. the element of the dual space on the right hand side
acts on the element of the vector space on the left hand side, 〈x, f〉 = f(x).
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2 The Space of Distributions

In this section we will introduce a space of well-behaved functions, the Schwartz space. It
is named in honour of Laurent Schwartz, who was a pioneer in the theory of distributions
and proved many fundamental results. Equipping this space with a suitable topology will
yield the space of distributions as it’s dual space. We will then examine the properties
of the space of distributions with it’s induced topology. In this chapter we will mainly
follow the constructions in Rudin’s book [10].

2.1 The Schwartz space

2.1.1 Definition and the first natural topology

We want to consider very well behaved functions, namely smooth functions with compact
support.

Definition 2.1 (The Schwartz space)
For fixed K ⊂ Ω compact, let

DK := {f ∈ C∞(Ω) : supp(f) ⊆ K}

Then the Schwartz space on Ω is the union over all such DK :

D(Ω) :=
⋃
K⊂Ω

DK = {f ∈ C∞(Ω) : supp(f) compact}

So the Schwartz space is the space of all smooth functions on Ω which have compact
support. It is also often called the space of test functions.

For this space we can find a topology in a very natural way. As we consider smooth
functions with compact support, the functions and all their derivatives are bounded. So
we can construct a family of norms by examining the derivatives of our functions up to
a certain degree. This idea is made precise in the following lemma.

Lemma 2.2
Define a family of norms on D(Ω) by

‖ϕ‖n := max
|α|≤n

sup
x∈Ω
|Dαϕ(x)|

Then these norms induce a locally convex, metrizable topology on D(Ω).
A local base is given by

Vn :=

{
ϕ ∈ D(Ω) : ‖ϕ‖n ≤

1

n

}
However, this topology is not complete.

Notation 2.1:
We will denote the topology on D(Ω) induced by (‖·‖n) by τ .
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Proof:

Part 1: (τ locally convex and metrizable)
The topology is clearly locally convex and as the Vn form a countable local base it is
also metrisable.
So it remains to show that the topology it is not complete.

Part 2: (τ not complete)
To see this let us consider an easy example of a Cauchy sequence in τ that does not
converge in this space (c.f. [10, p.151]).
Let Ω = R, ϕ ∈ D(R), supp(ϕ) = [0, 1]
Now define a sequence (ψk) by

ψk(x) := ϕ(x− 1) +
1

2
ϕ(x− 2) + . . .+

1

k
ϕ(x− k)

(ψk) is clearly a τ -Cauchy sequence in D(R) as

‖ψk − ψk−1‖n = ‖1

k
ϕ(x− k)‖n =

1

k
‖ϕ‖n

But ψ := limψk /∈ D(R) as supp(ψk) = [1, k + 1] and hence supp(ψ) = [1,∞) so it does
not have compact support.

q

The lack of completeness is rather unfortunate. In what follows, we will consider the
dual space and equip it with the weak* topology. If we can construct a topology on
D(Ω) which is complete, the weak* topology on the respective dual space will be well
behaved; e.g. in the dual of a Banach space w*-boundedness implies norm boundedness,
so completeness allows us to deduce information about the behaviour in norm from the
weak* topology. Therefore we shall now construct a different topology for the Schwartz
space which is complete. As the topology we have just seen arose in a very natural way,
we want the new topology of to be very close to it.
In above example we can see that the sequence failed to converge because of the limit
not having compact support. Hence our aim has to be to include a control over the
support of the limit function into the topology.

2.1.2 A better topology

To construct a topology which suits our needs better than the one we have seen in the
last part we shall first slightly weaken our norms.

Lemma 2.3
Let (Kn), Kn ↗ Ω a strictly increasing sequence of compact sets. Then

ρn(ϕ) := max
|α|≤n

sup
x∈Kn

|Dαϕ(x)|

is a family of seminorms on C∞(Ω). The induced topology on C∞(Ω) is locally
convex, metrisable and complete.
Furthermore, for any fixed K the induced subspace topology coincides with the
respective subspace topology of τ .
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Notation 2.2:
We will denote the topology on C∞(Ω) by τΩ and the subspace topology on DK for
any fixed K by τK .

Proof:
For the properties of the topology on C∞(Ω), c.f. [10, p.35].
As for the furthermore part, since, for fixed K, the norms from lemma 2.2 and the
seminorms ρ coincide from a certain n onwards (where K ⊂ Kn) and both are mono-
tone increasing one can ”chop off” the first finitely many terms. Hence both topologies
coincide.

q

Using this topology on the space of smooth functions, or rather it’s subspace topologies
on the DK , we now want to construct the desired topology on D(Ω). We have just
seen, that the topology induced by the family of seminorm is very close to the one we
obtained before following the very natural approach. The following construction will
preserve this but will add a certain control over bounded sets. This will help to control
Cauchy sequences as they are bounded.

Proposition 2.4
Let

β := {U ⊂ D(Ω) : U absolutely convex, U ∩DK ∈ τK ∀K}

The family of all unions of the sets

{ϕ+ U : ϕ ∈ D(Ω), U ∈ β}

is a topology for D(Ω) with local base β.

Notation 2.3:
We will denote this topology on D(Ω) by τ . A topology constructed this way
are called an inductive limit topology. If we restricting attention to an increasing
sequence of compact sets as in lemma 2.3, which we can certainly do, it is called a
strict inductive limit topology.
For τ -neighbourhoods we will use one of two notations, depending on the situation.
A τ -neighbourhood of some ϕ ∈ D(Ω) will either simply be written as U ∈ τ or as
ϕ+ U , where U ∈ β is a neighbourhood of 0.

Proof:
If τ is a topology, β is by definition a local base.
Clearly both the empty set (empty union) and D(Ω) (union over all ϕ ∈ D(Ω)) are
elements of τ . Furthermore, by definition, any union of elements of τ is an element of
τ . So to proof that τ is a topology it remains to check that it is closed under finite
intersections.
Let U1, U2 ∈ τ with U1 ∩ U2 6= ∅. Fix ϕ ∈ U1 ∩ U2. We need to find a τ -neighbourhood
of ϕ contained in U1 ∩U2, which is equivalent to finding a 0-neighbourhood V ∈ β such

7



Distributions: Topology and Sequential Compactness
– The Space of Distributions –

that ϕ + V ⊂ U1 ∩ U2. As the argument is symmetric for U1 and U2, in the following
we will use the index i = 1, 2.
As Ui ∈ τ we can find ϕi ∈ D(Ω), Vi ∈ β such that ϕ ∈ ϕi + Vi ⊂ Ui.
As the Vi are open we can shrink them a bit while keeping ϕi in the set, i.e.
ϕ ∈ ϕi + (1− δi) · Vi for some δi > 0. But this implies that

ϕ+ δi · Vi ⊂ ϕi + (1− δi) · Vi + δi · Vi

By convexity of Vi the right hand side is just ϕi + Vi . Hence we have

ϕ+ (δ1 · V1 ∩ δ2 · V2) ⊂ (ϕ1 + V1) ∩ (ϕ2 + V2) ⊂ U1 ∩ U2

So τ is closed under finite intersection and hence a topology with local base β.

q

After having assured that τ is a topology on D(Ω), we have to check, that it suits our
needs, i.e. that it is reasonably close to out first topology and complete. But firstly
we should check that the topology is conform with the vector space structure, i.e. that
addition and scalar multiplication are continuous with respect to τ .

Theorem 2.5
(D(Ω), τ) is a locally convex topological vector space.

Proof:
As β is a local base of convex sets, (D(Ω), τ) is clearly locally convex. We have to check
that addition and scalar multiplication are τ -continuous.

Part 1: (Addition is τ -continuous)
Let ϕ1, ϕ2 ∈ D(Ω) and (ϕ1 + ϕ2) + U an arbitrary τ -neighbourhood of ϕ1 + ϕ2.
We want τ -neighbourhoods ϕ1 + U1 and ϕ2 + U2, such that

ψ1 + ψ2 ∈ (ϕ1 + ϕ2) + U ∀ ψ1 ∈ ϕ1 + U1, ψ2 ∈ ϕ2 + U2

But if we choose U1 = U2 = 1
2U , by the convexity of U we have

(ϕ1 + 1
2U) + (ϕ2 + 1

2U) = (ϕ1 + ϕ2) + U . Hence the addition is continuous.

Part 2: (Multiplication is τ -continuous)
Let ϕ ∈ D(Ω), λ ∈ R and λ · ϕ+ U an arbitrary τ -neighbourhood of λ · ϕ.
We need to find a τ -neighbourhood ϕ+ V of ϕ and an open ball around λ, B(λ, δ) say,
such that

µ · ψ ∈ λ · ϕ+ U ∀ ψ ∈ ϕ+ V, µ ∈ Bδ (1)

But this is equivalent to saying

µ · ψ ∈ λ · ϕ+ U

⇔µ · ψ − λ · ϕ ∈ U
⇔µ (ψ − ϕ) + (µ− λ)ϕ ∈ U (2)

A way to make sure this equation holds is to ensure both summands are in 1
2U , say.

Convexity of U then again implies continuity.
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As U is a neighbourhood of 0, it is absorbing and hence we can find a t ∈ R such that
t · ϕ ∈ 1

2U . If |µ− λ| < t then
|µ| ≤ |λ|+ t (3)

Next we need to scale U by a factor c such that µ (ψ − ϕ) ∈ 1
2U . So we want

µ · c ≤ 1

2
(3)⇔c ≤ 1

2 (|λ|+ t)

Hence (2) and therefore (1) holds if we choose V = c · U and δ = t for t, c as above, so
the multiplication is continuous.

q

The topology τ arose in a very natural way, so it would be desirable to have our new
topology to be very close. In fact it coincides on every fixed DK as can be seen in the
next theorem.

Theorem 2.6
On any DK the subspace topology inherited from (D(Ω), τ) coincides with τK and
therefore by Lemma 2.3 also with the subspace topology of τ .

Proof:

Part 1: (τ |DK ⊆ τK)
Let U ∈ τ . We need U ∩ DK ∈ τK . Thus we fix ϕ ∈ U ∩ DK and construct a τK-
neighbourhood of it.
By definition of τ we can find V ∈ β such that ϕ+ V ⊂ U . But as ϕ is in DK we have

ϕ+ (V ∩DK) ⊂ U ∩DK

By definition of β we have V ∩DK ∈ τK , hence we have a τK-neighbourhood of ϕ. As
ϕ was arbitrary U ∩DK ∈ τK ∀K

Part 2: (τK ⊆ τ |DK )
Let E ∈ τK . We need to find U ∈ τ such that E = U ∩DK .
We have seen before, that τK coincides with the subspace topology of τ . Hence for all
ϕ ∈ E we can find n ∈ N and ε > 0 such that

{ψ ∈ DK : ‖ϕ− ψ‖n < ε} ⊂ E (4)

To get a τ -neighbourhood we need to consider functions from the whole of D(Ω), so for
all ϕ ∈ E let Uϕ := {ψ ∈ D(Ω) : ‖ψ‖n < ε}. This is a set in β and hence ϕ + Uϕ is a
τ -neighbourhood of ϕ.
By (4) ϕ+ (Uϕ ∩DK) = (ϕ+ Uϕ) ∩DK ⊂ E. Let

V =
⋃
ϕ∈E

(ϕ+ Uϕ)
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Certainly E ⊂ V as every E 3 ϕ ∈ ϕ+ Uϕ and V ⊂ E as every ϕ+ Uϕ ⊂ E.

q

2.1.3 The fundamental structure of the topology

The last theorems have shown that the topology τ is very reasonable. Thus we will now
show that we achieved our goal of constructing a complete topology. For this we will
show that we gained a certain control over bounded sets. Completeness will then be an
instant corollary as Cauchy sequences are bounded.

Theorem 2.7
Let E be a bounded set in D(Ω). Then

(i) There exists a common compact set containing the support of all functions
in E, i.e. ∃K such that supp(ϕ) ⊂ K ∀ϕ ∈ E

(ii) There exists a uniform bound for every norm from Lemma 2.2, i.e.
∀n ∈ N ∃Mn such that ‖ϕ‖n ≤Mn ∀ϕ ∈ E

Proof:
We will show the contrapositive of (i) and (ii) will be an immediate consequence as the
topologies coincide on any fixed DK .

Part 1: (Construct a τ -neighbourhood that fails to absorb E)
Let E ⊂ D(Ω) be such that there exists no compact set K which contains the support
of every function in E, that is

S :=
⋃
ϕ∈E

supp(ϕ)

is not compact.
Hence we can find a sequence (xn) in S which does not have a limit point. As we are
choosing the sequence in S we can make sure that for every xn we can find a function
ϕn in E that is supported around xn, i.e. we choose (xn) ⊂ S and (ϕn) ⊂ E such that
ϕn(xn) 6= 0 for every n.
We now have a, in a way, widely spread out set of points in Ω and functions in E which
have an effect at these points. To deduce information about the whole of E from this we
consider the functions in D(Ω) which are sufficiently bounded at these points. Precisely
let

W :=

{
ϕ ∈ D(Ω) : |ϕ(xn)| < 1

n
|ϕn(xn)|

}
Then W belongs to β. Assuming this is true, W would absorb E if E is bounded,
because the multiplication in D(Ω) with respect to τ is continuous, so the sets in β are
absorbent. But by construction ϕn 6∈ n ·W as ϕn(xn) 6< ϕn(xn). So there is no scalar
such that W absorbs E, hence E is not bounded. This proves (i), every bounded set in
D(Ω) must lay completely in some DK .
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Part 2: (Show that W actually is a set in β)
To finish the proof of (i) it remains to check this. By definition we need to proof that the
intersection of W with any DK is open in the respective topology, since W is certainly
absolutely convex. Therefore fix K. As we have chosen the sequence (xn) such that it
doesn’t have a limit point there are only finitely many elements of the sequence in any
sufficiently small open set. But as K is compact finitely many of these sufficiently small
open sets cover K. Therefore we have only finitely many xn in K. Hence we know that
all functions in DK are 0 for all but finitely many xn. Let

I := {n ∈ N : xn ∈ K}

the finite index set of our chosen points laying in K. This allows us to write the
intersection of W and DK as follows

W ∩DK =

{
ϕ ∈ DK : |ϕ(xn)| < 1

n
|ϕn(xn)| ∀n ∈ N

}
=
⋂
n∈I

{
ϕ ∈ DK : |ϕ(xn)| < 1

n
|ϕn(xn)|

}
(5)

For every ψ ∈ {ϕ ∈ DK : |ϕ(xn)| < cn} the set ψ+ {ϕ ∈ DK : ‖ϕ‖0 < cn − ψ(xn)} is a
τK-neighbourhood of ψ inside ψ ∈ {ϕ ∈ DK : |ϕ(xn)| < cn}. So (5) is a finite intersec-
tion of τK-open sets and therefore in τK . Hence W is in β and the proof in part 1 is valid.

Part 3: (There exists a uniform bound for every norm)
We have seen before that on DK the topologies τ and τK coincide, so E is also a
bounded set in DK . But being bounded in a locally convex space means exactly that
every seminorm (or norm as the case may be) inducing the topology is bounded. This
is exactly (ii).

q

Corollary 2.8
(D(Ω), τ) is complete.

Proof:
Let (ϕn) be a τ -Cauchy sequence. As Cauchy sequences are bounded, by Theorem 2.7,
there exists a common support K. Hence (ϕn) ⊂ DK for this K. By Theorem 2.6 the
subspace topology of τ coincides with τK on DK so (ϕn) is a τK-Cauchy sequence. But
(DK , τK) is complete, so the sequence converges. Hence (D(Ω), τ) is complete.

q

So the topology τ seems very well behaved. It’s structure gives us a strong control
over bounded sets and thus over convergence of sequences. However it has a minor
drawback, it is not metrisable. It will turn out that this won’t be an issue for our
intended constructions. We will see that the space of distributions behaves very nicely,
which is due to the fact that we can usually prove things for an arbitrary DK and than
deduce that the result holds for D(Ω). Nevertheless we will have a closer look at the
metrisability and related structure in the following section to get a better understanding
of the topology.

11



Distributions: Topology and Sequential Compactness
– The Space of Distributions –

2.1.4 A deeper inspection of the structure of the topology

The fact that the space of test functions is not metrizable is the most commonly men-
tioned property and can easily be proved using a Baire argument (c.f. [10]). However
even more is true, it actually is, in a manner of speaking, very far from being metrizable.
Recall the following definition.

Definition 2.9
A space is called sequential if it satisfies either of the two equivalent conditions

(i) Every sequentially open subset is open

(ii) Every sequentially closed subset is closed

In fact the space of test functions is even far from being sequential. Klaus Floret men-
tions in [8] that it actually contains sequentially closed linear subspaces which are not
closed. The fact that the space of test functions is not sequential can sometimes be
found as an exercise to the reader, e.g. in the book by Wilansky [17, p. 224]. Here the
reader is pointed to a paper by Webb [16] and to Shirai and Dudley. In fact amongst
others Webb discusses the properties of sequential closures and sequential closedness and
their relation to closed sets in some detail. He also refers to Dudley’s paper [6], in which
he proves an important necessary and sufficient criterion for a space to be sequential.
Furthermore he points out that Shirai (in [13]) proofed that the space of test functions
does not fulfil this condition and therefore fails to be sequential.

Proposition 2.10
A topological vector space which is Hausdorff is sequential if and only if there exists
no strictly finer topology with the same convergent sequences.

This result was given by Dudley in [6]. We shall use it in this section to prove that the
space of test functions is not sequential. We will do this by presenting the most relevant
results from Shirai’s paper [13], with a few adaptations to fill in gaps which were either
left by Shirai, or which arose from not covering some of the results stated in the paper,
as we will not consider all aspects of the paper. These results establish the existence of
a topology on the space of test functions which is strictly finer than the topology τ .
At first we need to make some constructions about the topology τ , which go along with
the way Schwartz introduced them in his book [12] and Shirai in his paper [13]. As
a simplification we will consider test functions on the whole of Rn. This allows us to
choose Kn = Bn in Lemma 2.3 as the sequence of compact sets converging to Ω = Rn.

Remark 2.11
With the choice Kn = Bn in Lemma 2.3 we get basic open neighbourhoods of 0 for
every DKn by taking the sets

{ϕ ∈ DBn : |Dαϕ(x)| < ε, |α| ≤ m}
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We can extend these functions to the whole of Rn by setting them 0 outside Bn. We
will denote these sets by

V (m, ε,Bn) := {ϕ ∈ D(Rn) : |Dαϕ(x)| < ε, |α| ≤ m, supp(ϕ) ⊆ Bn}

Note that the way we constructed the topology τ means that if A is τ -open, then for
every ϕ ∈ A and every K such that supp(ϕ) ⊆ K there exists a τK-neighbourhood of 0
which is contained in A. This motivates the following construction.

Definition 2.12
Let

• (mn) ⊂ N be an unbounded, increasing sequence of natural numbers

• (εn) ⊂ R+ be a decreasing null sequence of positive real numbers

For these sequences define inductively for λ, µ ∈ N

Uλ,0 := V (mλ, ελ,Bλ)

and
Uλ,µ :=

⋃
06=ϕ∈Uλ,µ−1

(ϕ+ V (mλ+µ, ελ+µ,Bλ+µ))

By taking the union over all these Uλ,µ we obtain a τ -open, absolutely convex set.

U =
⋃

0≤µ<∞
1≤λ<∞

Uλ,µ

Now every ϕ ∈ U is contained in some Uλ0,µ0 for some λ0, µ0 ∈ N. Thus it can be
written as

ϕ = ϕλ0 + ϕλ0+1 + . . .+ ϕλ0+µ0

such that ϕλ0 6= 0 and

ϕλ0+µ ∈ V (mλ0+µ, ελ0+µ,Bλ0+µ) ∀ 0 ≤ µ ≤ µ0

We obtain a collection of sets by taking all possible choices of sequences as above:

U =
{
U((mn), (εn)) : (mn) ⊂ N,mn ↗∞, (εn) ⊂ R+, εn ↘ 0

}
As long as no confusion is to be expected we will omit the parameters indicating
the corresponding sequences and will simply write U ∈ U .

Lemma 2.13
U is a local base of neighbourhoods at 0 for the topology τ .

Proof:
It is clear that U is a local base of 0 for the topology it induces on D(Rn). We need to
proof that the induced topology is exactly τ . To do this within the prove we will denote
the topology induced by U by τ̂ , following the notation used by Shirai.

13
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Part 1: (τ̂ ⊆ τ → τ is finer than τ̂)
Let U ∈ U . U is an absolutely convex subset of D(Rn), so we need to show that the
intersection with any DK is τK-open. As mentioned in proposition 2.4 and earlier in
this chapter we can restrict our attention to the closed balls Bn.
Thus fix a radius n and let ϕ ∈ U ∩ DBn . We need to find a τBn neighbourhood of ϕ
which is contained in U . We have

U ⊃ Uλ0,µ0 3 ϕ = ϕλ0 + . . .+ ϕλ0+µ0

for some λ0, µ0 ∈ N and ϕλ0+µ ∈ V (mλ0+µ, ελ0+µ,Bλ0+µ) for 0 ≤ µ ≤ µ0.
We can now find a δµ > 0 for every 0 ≤ µ ≤ µ0 such that

|Dαϕλ0+µ(x)|+ δµ < ελ0+µ ∀ |α| ≤ mλ0+µ

by the definition of the V ’s (as open sets). Now let δ = min{δ0, . . . , δµ0} and define
τBn-neighbourhoods of the ϕλ0+µ by

Ṽµ =

{
ψ ∈ DBn : |Dα (ψ − ϕλ0+µ) (x)| < δ

µ0 + 2
, |α0| ≤ mλ0+µ0 , x ∈ Bn

}
for 0 ≤ µ ≤ µ0, where ϕλ0+µ as regarded as functions in DBn , “chopped off” outside
Bn as their support lays completely inside Bn. Then for any ψ = ψ0 + . . . + ψµ0 with

ψµ ∈ Ṽµ

|Dαψ(x)| <
µ0∑
µ=0

(
|Dαϕλ0+µ(x)|+ δ

µ0 + 2

)
< δ +

µ0∑
µ=0

|Dαϕλ0+µ(x)| <
µ0∑
µ=0

ελ0+µ

for every x ∈ Bn, thus ψ ∈ Uλ0,µ0 , as the distance to ϕ is less then the difference

contained in each of the V ’s. Furthermore ϕ ∈ Ṽ0 + . . . + Ṽµ0 which is a τBn-open set.
Thus U ∩DBn ∈ τBn , which proves that U is τ -open.

Part 2: (τ ⊆ τ̂ → τ̂ is finer than τ)
Fix a τ -open set A and some ϕ0 ∈ A. We need to find U ∈ U such that ϕ0 ∈ U ⊂ A.
Since A is τ -open it’s intersection with any DK is open. Thus we have ϕ0 ∈ Vn ∈ τBn
for every Bn such that the support of ϕ0 is contained in it. Without loss of generality
we can assume that the Vn are basic open sets, i.e.

Vn = {ϕ ∈ DBn : |Dαϕ(x)| < εn, |α| ≤ mn, x ∈ Bn}

Let n0 be the smallest integer such that supp(ϕ0) ⊆ Bn0 . Now define sequences (m̃n)
and (ε̃n) by setting

m̃λ =

{
mn0 λ ≤ n0

max{mλ, m̃λ−1} λ > n0

ε̃λ =

{
εn0
2λ

λ ≤ n0

min{ ελ
2λ
,
ε̃λ−1

2 } λ > n0

Now (m̃λ) is clearly increasing and (ε̃λ) is decreasing, thus they define a U ∈ U . The
choice of ε̃λ makes sure that any function in U , being the sum of finitely many functions
from the V (m̃λ, ε̃λ,Bλ), will not exceed the bounds of the according Vn, up to at least
the same degree of derivatives by the choice of the m̃λ. Thus we have that U ⊂ A as
desired.

14
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q

Remark 2.14
Note that this already gives us a hint towards the “size” of τ . The set of all pairs of
sequences (mn), (εn) as in definition 2.12 is clearly not countable, so this local base
is also not countable. Furthermore the set of pairs of sequences is not separable, so
it is not to be expected that we can reduce it to a countable local base.

We can construct another topology in a very similar way.

Definition 2.15
Let (mn), (εn) as in definition 2.12 and similar to the constructions there define
inductively for λ, µ ∈ N

Wλ,0 := V (mλ, ελ,Bλ)

and

Wλ,µ :=
⋃

06=ϕ∈Wλ,µ−1

(
ϕ+ V

(
mλ+µ, sup

x∈Rn

|ϕ(x)|
5µ + 5µ−1 + . . .+ 5

,Bλ+µ

))

As seen in definition 2.12 we take the union over all such Wλ,µ.

W =
⋃

0≤µ<∞
1≤λ<∞

Wλ,µ

Again we find that every ϕ ∈ W is contained in some Wλ0,µ0 for some λ0, µ0 ∈ N.
Thus it can be written as

ϕ = ϕλ0 + ϕλ0+1 + . . .+ ϕλ0+µ0

such that 0 6= ϕλ0 ∈ V (mλ0 , ελ0 ,Bλ0) and

ϕλ0+µ ∈ V
(
mλ0+µ, sup

x∈Rn

|(ϕλ0 + ϕλ0+1 + . . .+ ϕλ0+µ−1)(x)|
5µ + 5µ−1 + . . .+ 5

,Bλ0+µ

)
∀ 1 ≤ µ ≤ µ0

We will denote the collection of neighbourhoods of 0 one obtains by again taking
all sequences as described above by W and the resulting topology by τ̃ .

Theorem 2.16
τ̃ is strictly finer than τ , i.e. τ ( τ̃ .

Proof:
First we need to show that τ ⊆ τ̃ i.e. τ̃ is finer than τ . Then we will assume for the
contrary that also τ is finer than τ̃ , which would mean they are the same. We will then
reach a contradiction, which implies that τ̃ must be strictly finer.

15
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Part 1: (Show that τ ⊆ τ̃ → τ̃ is finer than τ)
Let A be a τ -open set, we need to find W ∈ W such that W ⊂ A. By definition of τ we
have A∩DBn ∈ τBn for every Bn. Thus we can find a basic τBn-neighbourhood for each
n, say

Vn = {ϕ ∈ DBn : |Dαϕ(x)| < εn, |α| ≤ mn, x ∈ Bn}

Consider a W ∈ W for some (m̃n), (ε̃n) to be determined in the proof. If ϕ ∈ W , we
know from definition 2.15 that ϕ = ϕλ0 + . . . + ϕλ0+µ0 ∈ Wλ0,µ0 for some λ0, µ0 ∈ N.
By construction we know that ϕλ0 6= 0 and we can assume that ϕλ0+µ0 6= 0, otherwise
we would have ϕ ∈Wλ0,µ0−1. A direct calculation inductively now shows that

sup
x∈Rn
|Dαϕλ0+µ(x)| < sup

x∈Rn

|(ϕλ0 + . . .+ ϕλ0+µ−1)(x)|
5µ + . . .+ 5

≤ sup
x∈Rn

|ϕλ0(x)|
5µ

(6)

for every |α| ≤ m̃λ0 and every 0 ≤ µ ≤ µ0. Since sup
x∈Rn

|ϕλ0(x)| < ε̃λ0 we find

sup
x∈Rn
|Dαϕ(x)| ≤

µ0∑
µ=0

sup
x∈Rn
|Dαϕλ0+µ(x)|

<
∞∑
µ=0

ε̃λ0
5µ

=
5

4
ε̃λ0

(7)

for every |α| ≤ m̃λ0 .
Now let n = λ0 +µ0 and write ϕ = ϕk + . . .+ϕn for some k ≤ n. Then clearly ϕ ∈ DBn
and by (7) we know that sup

x∈Rn
|Dαϕ(x)| < 5

4 ε̃k for all |α| ≤ m̃k. So if we choose ε̃k <
4
5εn

and m̃k ≥ mn for all 1 ≤ k ≤ n, where εn,mn are the the variables from the respective
Vn, then ϕ ∈ Vn ⊂ A. Iterating this process to choose all m̃n and ε̃n we obtain a
W ∈ W which is contained in A as we can obviously without loss of generality make the
sequences m̃n increasing and ε̃n decreasing. Therefore we see that τ̃ is finer than τ , as
claimed.

Part 2: (Examine the structure of the open sets U ∈ U and W ∈ W)
To show that τ̃ is actually strictly finer than τ , we will assume the contrary, i.e. the
reverse inclusion also holds. This is, if we fix a W ∈ W then there must exist a
U 3 U ⊆W .
Denote the sequences inducing U by (mn) and (εn) and the sequences inducing W by
(m̃n) and (ε̃n).
As m̃n →∞ there exists n0 ∈ N such that m1 + 1 < m̃n1 . Now let

ηn1 = min{εn1 , ε̃n1} and ρ = sup
ϕ∈V (mn1 ,ηn1 ,B 1

3
)

sup
x∈B 1

3

|ϕ(x)|

Then there exists a function ϕ0 ∈ V (mn1 , ηn1 ,B 1
3
) which is somewhat close to the

supremum, say

sup
x∈B 1

3

|ϕ0(x)| > ρ

2
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Since ρ is clearly bigger then 0 we can find an integer k such that ρ >
ε̃n1
k . But ε̃n1 is

at least as big as ηn1 by definition of ηn1 . Thus we find that

sup
x∈B 1

3

|ϕ0(x)| > ηn1

2k
(8)

Remark: Shirai defines ρ in his paper, but it seems to be unnecessary. We will have
ρ = ηn1 as there will clearly be a function in V (mn1 , ηn1 ,B 1

3
) coming arbitrary close to

ηn1 inside B 1
3
. Thus we can replace ρ by ηn1 in what we have just seen and all arguments

remain true. In what follows we will only use (8) which is independent of ρ.

Continuing with the main argument we can also find a function f ∈ V (m1,
ηn1
10k ,B 1

3
) such

that there exists a multi-index α0 such that

|α0| = m1 + 1 and sup
x∈B1/3

|Dα0f(x)| > 2ε̃1 (9)

since the set V only gives control over the derivatives up to degree m1.

Part 3: (Construct a function in U using above structure)
Combining above constructions we now define a function which we will find to lay in U
and thus by assumption also in W . First translate ϕ0 by n1 − 1

2 in x1 direction, i.e.

φ0(x) := ϕ0

(
x1 +

(
n1 −

1

2

)
, x2, . . . , xn

)
Now define a new function as the sum of f as above and the φ we just defined

ψ(x) = f(x) + φ0(x)

By definition of ηn1 and since εn is decreasing we have
ηn1
10k < εn1 < ε1. Thus we find

that
f ∈ V (m1,

ηn1

10k
,B 1

3
) ⊂ V (m1, ε1,B1) (10)

Furthermore ϕ0 was chosen to be compactly supported in the closed ball with radius 1
3 .

We translated this ball to be centred around n1 − 1
2 . As n1 is a natural number, the

translated function φ0 lays completely between n1 and n1 − 1, whence

supp(φ0) ⊂ Bn1 \ B◦n1−1

Thus the same specifications we had for ϕ0 are true for the translated version if we
enlarge the ball appropriately, i.e.

φ0 ∈ V (mn1 , ηn1 ,Bn1) ⊂ V (mn1 , εn1 ,Bn1) (11)

From (10) and (11) we see (using the notation from definition 2.12)

ψ ∈ V (m1, ε1,B1) + V (mn1 , εn1 ,Bn1) ⊂ U1,n1 ⊂ U

But U is contained in W by assumption, so ψ ∈W .
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Part 4: (Show that such a function cannot exist in W )
As ψ ∈ W there exist λ0, µ0 ∈ B such that ψ ∈ Wλ0,µ0 , using the notation from
definition 2.15. We will have a look at the size of λ0 compared to n1 and doing so reach
contradictions, which will tell us that such a λ0 cannot exist.
Note first that the supports of φ0 and f are disjoint

supp(f)︸ ︷︷ ︸
⊃B 1

3

∩ supp(φ0)︸ ︷︷ ︸
⊃Bn1\B

◦
n1−1

= ∅ (12)

Now we consider two possible cases.

• Assume λ0 < n1:
Recalling the choice of ϕ0 (8) and since φ0 and f have disjoint support we have

4

5
· ηn1

2k
<

4

5
· sup
x∈Rn
|φ0(x)| ≤ 4

5
· sup
x∈Rn
|ψ(x)|

As before we can write ψ = ψλ0 + . . .+ ψλ0+µ0 , and as in (6) a direct calculation
shows that

sup
x∈Rn
|ψλ0+µ(x)| < sup

x∈Rn

|ψλ0(x)|
5µ

0 ≤ µ ≤ µ0

Using this, similar to (7), we find

4

5
· sup
x∈Rn
|ψ(x)| ≤ 4

5
·
µ0∑
µ=0

sup
x∈Rn
|ψλ0+µ(x)|

≤ 4

5
· sup
x∈Rn

|ψλ0(x)| ·
∞∑
µ=0

1

5µ

= sup
x∈Rn

|ψλ0(x)|

But ψλ0 is supported inside Bλ0 so we can restrict the last supremum to x ∈ Bλ0 .
By again examining the sum ψ = ψλ0 + . . .+ψλ0+µ0 we can make another estima-
tion of the supremum

sup
x∈Bλ0

|ψ(x)| = sup
x∈Bλ0

|ψλ0(x) + . . .+ ψλ0+µ0(x)|

≥ sup
x∈Bλ0

|ψλ0(x)| − sup
x∈Bλ0

|ψλ0+1| − . . .− sup
x∈Bλ0

|ψλ0+µ0(x)|

≥ sup
x∈Bλ0

|ψλ0(x)| − sup
x∈Bλ0

|ψλ0 |
µ0∑
µ=1

1

5µ

≥ sup
x∈Bλ0

|ψλ0(x)| − sup
x∈Bλ0

|ψλ0 |
1

5

∞∑
µ=0

1

5µ

≥ 3

4
· sup
x∈Bλ0

|ψλ0(x)|
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Thus we see that

sup
x∈Bλ0

|ψλ0(x)| ≤ 4

3
· sup
x∈Bλ0

|ψ(x)|

By the assumption for λ0 we have that Bλ0 ⊆ Bn1−1 and thus supp(φ0)∩Bλ0 = ∅.
So inside Bλ0 only f makes a contribution to ψ and we have

4

5
· ηn1

2k
<

4

3
· sup
x∈Bλ0

|ψ(x)| = 4

3
· sup
x∈Bλ0

|f(x)| ≤ 4

3
· ηn1

10k

by the choice of f . But this is clearly a contradiction.

• Assume λ0 ≥ n1:
By construction of f (9) there exists a multi-index α0 such that

2ε̃1 < sup
x∈Rn
|Dα0f(x)|

and |α0| = m1 + 1 < m̃n1 ≤ m̃λ0 as m̃n is increasing.
Furthermore by (12) we that

sup
x∈Rn
|Dα0f(x)| ≤ sup

x∈Rn
|Dα0ψ(x)|

Finally writing ψ = ψλ0 + . . . + ψλ0+µ0 using an argument similar to (6) and (7)
as before we find

sup
x∈Rn
|Dαψ(x)| ≤

µ0∑
µ=0

sup
x∈Rn
|Dαψλ0+µ(x)|

<
∞∑
µ=0

ε̃λ0
5µ

=
5

4
ε̃λ0

for every α such that |α| ≤ m̃λ0 , which is true for α0 as seen above. So putting all
this together we obtain

2ε̃1 < sup
x∈Rn
|Dα0f(x)| ≤ sup

x∈Rn
|Dα0ψ(x)| ≤ 5

4
ε̃λ0

But this is a contradiction, as ε̃1 > ε̃λ0 as ε̃n is decreasing.

Thus we have reached a contradiction and τ̃ must be finer than τ as claimed.

q

Corollary 2.17
τ is not sequential.
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Proof:
Since τ̃ is finer than τ we trivially have that a τ̃ -convergent sequence is τ -convergent.
For the reverse recall that a sequence (ϕn) converges to 0 in the τ -topology if and only
if there exists a compact set K say, such that the support of every ϕn is contained in K
and (ϕn) converges to 0 in DK . But this means

∀ ε > 0,m ∈ N ∃ N ∈ N such that ‖Dαϕn(x)‖ < ε ∀ |α| ≤ m,x ∈ K

Now fix a W ((mn), (εn)) ∈ W, then V (mλ, ελ,Bλ) ⊂ W for every λ. Let λ0 be big
enough, such that K is contained in Bλ0 . Then, as above,

∃N0 ∈ N such that ‖Dαϕn(x)‖ < ελ0 ∀ |α| ≤ mλ0 , x ∈ K ⊂ Bλ0

for every n ≥ N0. Thus ϕn ∈ V (mλ0 , ελ0 ,Bλ0) ⊂W and thus (ϕn) is also τ̃ -convergent.
So τ̃ is a strictly finer topology than τ with the same convergent sequences, thus by
proposition 2.10 τ is not sequential.

q

Since every first countable space is sequential this result tells us that there cannot exist
a countable local base for this topology and thus it also proves that the topology is not
metrisable. Throughout the essay we will encounter several cases where metrisability
would have been very convenient to have, but, as mentioned before, usually we can prove
a result by restricting attention to the metrisable spaces DK and than prove that the
result also holds for all test functions on Ω.
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2.2 The space of Distributions

Now that we have equipped the Schwartz space with a suitable topology we can define
the space of distributions, as mentioned before as the dual space of the Schwartz space.
After the short “detour” in the last section, we are now following Rudin’s constructions
[10] again.

2.2.1 Definition and basic properties

Definition 2.18 (The space of distributions)
Let

D ′(Ω) = {T : D(Ω)→ R : T continuous, linear}

D ′(Ω) is called the space of distributions.

Having this definition, we should have a look at which functionals belong to D ′(Ω).
A general result from Functional Analysis characterises when linear functionals on a
locally convex space are continuous. This provides us with a criterion to check if a given
functional is a distribution.

Theorem 2.19
Let T : D(Ω)→ R be linear. The following are equivalent

(i) T is continuous (at 0)

(ii) T is bounded

(iii) T |DK is continuous for all K

(iv) For every K there exists NK ∈ N and a constant 0 < CK <∞ such that

|〈ϕ, T 〉| ≤ CK‖ϕ‖NK ∀ϕ ∈ DK

Note that we will mostly use (iv) to verify the continuity of a given functional.

Proof:
The equivalence of (i) and (ii) is a well known fact from Functional Analysis, the same
is true for (iii) and (iv), i.e. a set is bounded if and only if all (semi)norms are bounded
(c.f. [10, pp.27-28]).
Trivially (i) implies (iii), so it remains to show that (iii) also implies (i).
That is for every open neighbourhood V of 0 in R we need to find a neighbourhood
U of 0 in D(Ω) such that T (U) ⊂ V . Without loss of generality we may assume that
V = {x ∈ R : |x| < ε}.
By (iv) for all K we have NK ∈ N and a constant 0 < CK <∞ such that

|〈ϕ, T 〉| ≤ CK‖ϕ‖NK ∀ϕ ∈ DK

But then the set

U :=

{
ϕ ∈ D(Ω) : ‖ϕ‖NK <

ε

CK
for supp(ϕ) ⊂ K

}
21



Distributions: Topology and Sequential Compactness
– The Space of Distributions –

is a 0 neighbourhood in D(Ω) which is as desired: For ϕ ∈ U we have

|〈ϕ, T 〉| ≤ CK‖ϕ‖NK < CK ·
ε

CK
= ε

q

Definition 2.20 (Order of a distribution)
If in theorem 2.19 (iv) we can choose N independently of K, i.e. such that for every
K

|〈ϕ, T 〉| ≤ CK‖ϕ‖N ∀ϕ ∈ DK

we call the smallest possible choice of N the order of T . If no N works for every K
we say that T has infinite order.

The following result concerned with sequential continuity of distributions is quite re-
markable. We have seen that the topology on the space of test functions is not first
countable, in which case sequential continuity and continuity are not equivalent in gen-
eral. But as the following theorem states, despite the fact that the topology is not first
countable, the structure in this case is good enough to get an equivalence again.

Lemma 2.21
Let T : D(Ω)→ R be linear. Then T is a distribution if and only if 〈ϕn, T 〉 −→

n→∞
0

for every sequence (ϕn) of test functions such that ϕn −→
n→∞

0 in (D(Ω), τ).

Proof:
Note that this is just sequential continuity at 0 and thus by linearity of T sequential
continuity everywhere. As in general a map between topological spaces which is contin-
uous is also sequentially continuous, the condition is certainly true if T is a distribution,
i.e. continuous. The remarkable part is the reverse direction. In general sequential
continuity may be strictly weaker than continuity when dealing with non first-countable
spaces. The fact that we actually have equivalence for distributions is due to the fact
that for every sequence we can always restrict to a fixed DK , which is metrisable.
More precisely let (ϕn) be a sequence in D(Ω) that converges to 0. We saw in theorem
2.7 and corollary 2.8 that this means that the ϕn have a common compact support,
i.e. (ϕn) ⊂ DK and ϕn −→

n→∞
0 in DK . As DK is metrisable, sequential continuity im-

plies continuity. But this is true for any sequence in D(Ω) and thus for every K, so by
theorem 2.19 (iii) T is continuous.

q
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Definition 2.22 (Support of a distribution)
Let T ∈ D ′(Ω). If 〈ϕ, T 〉 = 0 for every ϕ that is supported inside some open U , T
is said to vanish in U . Let V be the union over all such U

V =
⋃
{U : T vanishes in U}

Then the support of T is defined as

supp(T ) = Ω \ V

Proposition 2.23
It can be checked that this definition has exactly the properties one might expect
for this to be the support. For T ∈ D ′(Ω)

a) T vanishes on Ω \ supp(T )

b) If ϕ ∈ D(Ω) and supp(ϕ) ∩ supp(T ) = ∅ then 〈ϕ, T 〉 = 0

c) If supp(T ) = ∅ then T = 0

2.2.2 Some members of the space of distributions

Having this result to decide if any object is a distribution, lets find some objects be-
longing to D ′(Ω). Initially we said that we would like the continuous functions to be
included in our larger space of objects. In the way we constructed the space it cannot
contain the space of continuous functions in the classical way, but in what follows we
will show that we can identify every continuous function with exactly one distribution.
In fact something stronger is true, we can identify a much larger class of functions with
distributions.

Theorem 2.24 (Regular distributions)
Every f ∈ L1,loc(Ω) can be identified with a distribution Tf of degree 0 in D ′(Ω).
This distribution is given by

〈ϕ, Tf 〉 :=

∫
Ω
f(x) · ϕ(x)dx (13)

If Tf = Tg for some f, g ∈ L1,loc(Ω) then f and g agree almost everywhere.
The set {Tf : f ∈ L1,loc(Ω)} is called the set of regular distributions.

23



Distributions: Topology and Sequential Compactness
– The Space of Distributions –

Proof:

Part 1: (Tf is a distribution)
First we need to check that (13) really defines a distribution. By Theorem 2.19 (iv) we
need to find NK ∈ N and 0 < CK <∞ such that |〈ϕ, Tf 〉| ≤ CK‖ϕ‖NK ∀ϕ ∈ DK .
So fix K, then for any ϕ ∈ DK the integrand is clearly 0 outside K so we have

〈ϕ, Tf 〉 ≤
∫
K
|f(x)|dx · ‖ϕ‖0

Hence we can choose NK = 0 and CK =
∫
K |f(x)|dx to find that Tf is indeed a distri-

bution of degree 0.

Part 2: (Tf = Tg ⇒ f = g a.e.)
Clearly we have

Tf = Tg ⇔
∫

Ω
f(x) · ϕ(x)dx =

∫
Ω
g(x) · ϕ(x)dx ∀ϕ ∈ D(Ω)

⇔
∫

Ω
(f(x)− g(x)) · ϕ(x)dx = 0 ∀ϕ ∈ D(Ω)

But D(Ω) is dense in L1,loc(Ω), so we can choose ϕ arbitrary close to f − g to find that

Tf = Tg ⇔
∫

Ω
(f(x)− g(x))2 dx = 0

⇔
∫

Ω
|f(x)− g(x)| dx = 0

Thus f and g agree almost everywhere.

q

Notation 2.4:
We will be abusing notation and write f ∈ D ′(Ω) instead of Tf ∈ D ′(Ω) as long as
no confusion is to be expected.

So we indeed constructed a space which extends the space of continuous functions in a
certain sense. But the space D ′(Ω) is much bigger then L1,loc as the following results
show.

Lemma 2.25 (Dirac delta distribution)
For all x0 ∈ Ω a distribution of degree 0 is given by

〈ϕ, δx0〉 := ϕ(x0)

This is called the Dirac delta distribution. It is not a regular distribution.
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Proof:
We have

|〈ϕ, δx0〉| = |ϕ(x0)| ≤ ‖ϕ‖0
So choosing NK = 0 and CK = 1 for all K in Theorem 2.19 (iv) shows that δx0 is in
D ′(Ω) and of degree 0.
It remains to proof that δx0 is not regular. To do this, assume the contrary, that is there
exists f ∈ L1,loc such that for all ϕ ∈ D(Ω) we have

〈ϕ, δx0〉 =

∫
Ω
f(x) · ϕ(x)dx (14)

But this is not true as can be seen by considering the following parametrised test func-
tion.
Let

ϕε :=

 e
− 1

1−|x−x0ε |
2

x0 − ε < x < x0 + ε
0 otherwise

Then 〈ϕε, δx0〉 = ϕε(x0) = e−1. But as ϕε is bounded from above by e−1 for all ε,
assuming (14) holds and estimating the right hand side we find

∣∣e−1
∣∣ =

∣∣∣∣∫
Ω
f(x) · ϕε(x)dx

∣∣∣∣ ≤ ∫ x0+ε

x0−ε
|f(x)| · e−1dx

Passing to the limit ε → 0 this integral clearly converges to 0 for every L1,loc function.
But this is a contradiction to being bounded from below by e−1. Hence δx0 cannot be
a regular distribution.

Lemma 2.26
Similar to Theorem 2.24 one can identify certain measures with distributions. For
µ a complex Borel measure or µ a positive measure which is finite for all K a
distribution is defined by

〈ϕ, Tµ〉 :=

∫
Ω
ϕdµ

Usually one will again simply write µ instead of Tµ as long as no confusion is to be
expected.

Remark 2.27
We see that we indeed achieved our goal of enlarging the space of continuous func-
tions, in fact, looking at above examples, it seems like we enlarged it quite a lot.
However, it turns out that we enlarged it by a pretty reasonable amount. One can
show that, at least locally, every distribution is given by a partial derivative of some
continuous function. To provide every continuous functions with all possible par-
tial derivatives, we therefore couldn’t use any subspace of the distributions. More
detailed information can be found e.g. in Rudin’s book [10].
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2.2.3 The Topology of D ′(Ω)

We will equip the space of distributions with the weak* topology, i.e. the topology of
pointwise convergence on D(Ω).
We will start with a quick reminder how the weak* topology looks like.

Proposition 2.28 (w∗-open sets)
We say a set V ⊂ D ′(Ω) is w∗-open if and only if

∀ T0 ∈ V ∃ n ∈ N, ϕ1, . . . , ϕn ∈ D(Ω), ε > 0 such that

T0 ∈
{
T ∈ D ′(Ω) : |〈ϕi, T0 − T 〉| < ε for 1 ≤ i ≤ n

}
⊆ V

Proposition 2.29 (w∗-convergence)

Let (Tn) ⊂ D ′(Ω), T ∈ D ′(Ω). We say Tn converges w∗ to T and write Tn
w∗→ T if

and only if
〈ϕ, Tn〉 → 〈ϕ, T 〉 ∀ ϕ ∈ D(Ω)

in R. Note that this illustrates why we often say that the weak* topology is the
topology of pointwise convergence.

Proposition 2.30 (w∗-boundedness)
A set B ⊂ D ′(Ω) is w∗-bounded if for all ϕ ∈ D(Ω) the set

{〈ϕ, T 〉 : T ∈ B}

is bounded in R.

Having recalled these basic properties of the weak* topology it would be reasonable to
examine compactness, as compactness is very desirable for many applications. However
this will be done very detailed and thus in section 5. Instead we will now examine “how
big” the weak* topology on the space of distributions is.

Theorem 2.31
The weak* topology on D ′(Ω) is not first countable, i.e. it does not have a countable
local neighbourhood base.

Proof:
Assume there is a countable base of neighbourhoods of 0 ∈ D ′(Ω), B say.

Part 1: (Gain control by replacements with standard basic sets)
Clearly we can obtain a base of the neighbourhoods of 0 in (D ′(Ω), w∗) by taking finite
intersections of the sets

Wϕ,ε :=
{
T ∈ D ′(Ω) : |〈ϕ, T 〉| < ε

}
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for all ε > 0 and ϕ ∈ D(Ω). So for every fixed V ∈ B we can find
n ∈ N, ϕ1, . . . , ϕn ∈ D(Ω) and k1, . . . , kn such that

Wϕ1,
1
k1

∩ · · · ∩Wϕn,
1
kn

⊂ V (15)

Furthermore we can choose the ϕi to be linearly independent. To see this assume they
were not linearly independent i.e. ϕn = λ1 · ϕ1 + . . .+ λn−1 · ϕn−1. Now choose in (15)
k1 = . . . = kn−1 := k′ > (|λ1|+ . . .+ |λn−1|) · kn. But then

n−1⋂
i=1

Wϕi,
1
k′
⊂

n−1⋂
i=1

{
T ∈ D ′(Ω) : |〈ϕi, T 〉| <

1

(|λ1|+ . . .+ |λn−1|) · kn

}
⊂
{
T ∈ D ′(Ω) : |λ1| · |〈ϕ1, T 〉|+ . . .+ |λn−1| · |〈ϕn−1, T 〉| <

1

kn

}
= Wϕn,

1
kn

So if the ϕi were linearly dependent we could discard some of them by choosing the ki
big enough so that the remaining ϕi are linearly independent.
If we now replace every V ∈ B by the intersection (15) we obtain B′, which is still a
countable base of neighbourhoods of 0.

Part 2: (Construct a basic open set not containing any set in the base)
Now let X :=

⋃
V ∈B
{ϕ1, . . . , ϕn} as above. Since we take a countable union of finite sets

X is countable, so we can relabel so that X = {ϕn : n ∈ N}.
But the space of test functions has uncountable dimension, e.g. for all α > 0 the functions

ϕα(x) = e
−α

1−|x|2 for x ∈ B1 and ϕα(x) = 0 outside this ball are all linearly independent.
Thus we can find a test function which is not in the span of X.
Fix ψ ∈ D(Ω) \ span{X}. Using the Hahn-Banach-Theorem for locally convex spaces
we can find distributions Tj such that

Tj(ψ) = 1 and Tj(ϕi) =
1

j
for i = 1, . . . , j

By definition Tj ∈Wϕi,
1
ki

if 〈ϕi, T 〉 < 1
ki

But by construction we have control over 〈ϕi, T 〉 if j > i and it is less then 1
ki

if j > ki.
So we certainly have Tj ∈Wϕi,

1
ki

if j > max(i, ki). Hence

Tj ∈Wϕi,
1
ki

∀ j > max(i, ki)

Since 〈ψ, Tj〉 = 1 for all j, this means no Tj can be contained in
Wψ,1 = {T ∈ D ′(Ω) : |〈ψ, T 〉| < 1}. So by the construction in part 1 no U ∈ B can be
contained in Wψ,1. But this is a contradiction as Wψ,1 is clearly an open set, hence it
would have to contain a set of B if B was a local base.

q

Actually even more is true, the weak* topology on D ′(Ω) is not even sequential. This is
strongly related to the compactness properties and will thus also be discussed in chapter
5.
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2.3 Operations on D ′(Ω)

2.3.1 Derivation

We have now extended the space of continuous functions to a much larger class of
objects, but the initial goal was to construct an extension with a generalised derivative.
As we need the generalised derivative to agree with the classical one, where it is defined,
lets first look at what we can find for differentiable functions. To simplify the notation
also assume that Ω ⊆ R.
Let f ∈ C1(Ω) and Tf the associated regular distribution. We want T ′f = f ′ in the
distributional sense, so T ′f = Tf ′ . But by investigating the right hand side we find

Tf ′ =

∫
Ω
f ′(x)ϕ(x)dx

IBP
= −

∫
Ω
f(x)ϕ′(x)dx

As ϕ is compactly supported, the boundary terms of the integration by parts vanish.
For sufficiently differentiable functions one can iterate this argument to find∫

Ω
f (n)(x)ϕ(x)dx

IBP
= (−1)n

∫
Ω
f(x)ϕ(n)(x)dx

We see that we can, in a manner of speaking, move the derivative over to ϕ. This gives
rise to the following definition.

Definition 2.32 (Generalised derivative)
Let T ∈ D ′(Ω). Then the distributional derivative of T is defined as

〈ϕ,DαT 〉 := (−1)|α| · 〈Dαϕ, T 〉

Lemma 2.33
Let T ∈ D ′(Ω), then DαT is also a distribution.

Proof:
By Theorem 2.19 (iv) we have that for any fixed K

|〈ϕ, T 〉| ≤ CK‖ϕ‖NK ∀ϕ ∈ DK

for NK ∈ N and 0 < CK <∞.
But then we have

|〈ϕ,DαT 〉| = |〈Dαϕ, T 〉|
≤ CK‖Dαϕ‖NK
≤ CK‖ϕ‖NK+|α|

Hence DαT ∈ D ′(Ω) by Theorem 2.19 (iv).

q

Remark 2.34
Note that this shows that if T is of degree N , then DαT is of degree N + |α|.
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Obviously we have all usual derivation laws for the generalised derivative. The observa-
tions before the definition of the generalised derivative make clear that for continuously
differentiable functions the classical and the generalised derivative are coherent, i.e.
DαTf = TDαf .

2.3.2 Multiplication

We extended the vector space of continuous functions to a much larger space equipped
with a generalised derivative. However, the space of continuous functions also has an
algebra structure. Hence one might wish to also extend the multiplication of continuous
functions to the space of distributions. Unfortunately this is not possible in general. We
will see in this section that a multiplication of two distributions can only be defined if
a certain amount of structure is assumed for at least one of the factors. That is, the
space of distributions with its generalised derivative cannot be given an algebra structure
which is coherent with the multiplication of continuous functions.
Further reading can be found in the book by Colombeau [3] which has been the main
reference for this section or in the original paper by Laurent Schwartz [11].

Definition 2.35
Let C(Ω) be the algebra of continuous functions on Ω.
Denote it’s unit, the constant 1 function, by 1.

Theorem 2.36
Let A be an algebra extension of C(Ω) equipped with a generalised derivative
D : A→ A, satisfying the product rule. Denote by x the element in A such
that Dx = 1. Then D2(|x|) = 0.

Proof:

Part 1: (Compare the classical and generalised derivative of a suitable function)
Consider x · |x| ∈ C(Ω) ⊂ A. By derivating twice, using the generalised derivative and
applying the Leibniz rule, one finds

D2(x · |x|) = D

D(x)︸ ︷︷ ︸
=1

·|x|+ x ·D(|x|)


= D(|x|) +D(x)︸ ︷︷ ︸

=1

·D(|x|) + x ·D2(|x|)

= 2 ·D(|x|) + x ·D2(|x|)

But x · |x| is also classically differentiable, so we have

D2(x · |x|) = D (2 · |x|)
= 2 ·D(|x|)
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This tells us that x ·D2(|x|) = 0.
But x is invertible in A so that

0 = x−1 ·
(
x ·D2(|x|)

)
=
(
x−1 · x

)
·D2(|x|)

= 1 ·D2(|x|)

So D2(|x|) = 0 as claimed.

Part 2: (x is invertible in A)
To see that x is invertible, consider x2 · (log |x| − 1). This is a continuous function on
Ω \ {0} and can by continuously extended by giving it the value 0 at x = 0. Then
the continuous extension lays in A. As the extension is unique we can identify it with
the original function. Thus in what follows we will regard x2 · (log |x| − 1) as being
continuous everywhere. The extension is even differentiable, hence we can apply the
same idea as before and compare the generalised and classical derivative.
For the generalized derivative, applying the product rule, one finds

D2
[
x2 · (log |x| − 1)

]
= D2 [x · (log |x| − 1) · x]

= D

D [x · (log |x| − 1)] · x + x · (log |x| − 1) ·D[x]︸︷︷︸
=1


= D2 [x · (log |x| − 1)] · x +D [x · (log |x| − 1)] ·D[x]︸︷︷︸

=1

+D [x · (log |x| − 1)]

= D2 [x · (log |x| − 1)] · x + 2 ·D [x · (log |x| − 1)]

Looking at the classical derivative we have

D2
[
x2 · (log |x| − 1)

]
= D

[
D
[
x2
]
· (log |x| − 1) + x2 ·D [(log |x| − 1)]

]
= D

[
2 · x · (log |x| − 1) + x2 · 1

x

]
= 2 ·D [x · (log |x| − 1)] + 1

Plugging both together and rearranging we get

D2 [x · (log |x| − 1)] · x + 2 ·D [x · (log |x| − 1)] = 2 ·D [x · (log |x| − 1)] + 1

⇔ D2 [x · (log |x| − 1)] · x = 1

So we have D2 [x · (log |x| − 1)] = x−1 which completes the proof.

q

30



Distributions: Topology and Sequential Compactness
– The Space of Distributions –

Corollary 2.37
The algebra structure of the space of continuous functions cannot be extended to
the space of distributions.

Proof:
Assume the algebra structure can be extended to D ′(Ω). Then by Theorem 2.36 we
know that D2(|x|) = 0.
We can view D2(|x|) as a distribution. To understand a distribution we have to study
its effect on an arbitrary test function.

〈ϕ,D2(|x|)〉 = 〈D2ϕ, |x|〉 =

∫
Ω
|x|(x) ·D2ϕ(x)dx

We can split the integral in two parts by considering

Ω− := {x ∈ Ω : x(x) < 0}

and
Ω+ := {x ∈ Ω : x(x) > 0}

as {x ∈ Ω : x(x) = 0} is a zero set since by continuity and the choice of x (Dx ≡ 1) we
have x(x) = 0⇔ x = 0.

∫
Ω
|x|(x) ·D2ϕ(x)dx

=

∫
Ω+

|x|(x) ·D2ϕ(x)dx+

∫
Ω−
|x|(x) ·D2ϕ(x)dx

IBP
=

∫
∂Ω+

|x|(x)Dϕ(x)dx+

∫
∂Ω−
|x|(x)Dϕ(x)dx−

(∫
Ω+

1 ·D2ϕ(x)dx+

∫
Ω−
−1 ·D2ϕ(x)dx

)
=

∫
Ω+

−1 ·Dϕ(x)dx+

∫
Ω−

1 ·Dϕ(x)dx

The boundary terms vanish as ∂Ω+ and ∂Ω− can be split into a part of ∂Ω and a part
where x = 0. So on either part of the boundary one of the factors is 0. Applying
integration by parts again yields∫

Ω+

−1 ·Dϕ(x)dx+

∫
Ω−

1 ·Dϕ(x)dx

IBP
=

∫
∂Ω+

−1 · ϕ(x)dx+

∫
∂Ω−

1 · ϕ(x)dx−
∫

Ω+

0 ·Dϕ(x)dx−
∫

Ω−
0 ·Dϕ(x)dx

= 2 · ϕ(0)

This shows that D2(|x|) = 2δ0 in the space of distributions. But this is a contradiction
to Theorem 2.36 if the algebra structure of the continuous functions could be extended
to the space of distributions.

q
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Remark 2.38
We actually proved something stronger. Corollary 2.37 tells us that there cannot
be an Algebra extension of the continuous functions, which contains the Dirac δ
distribution.

However the multiplication can be extended to some cases by imposing structure on
at least on of the factors. To see one example, assume the first factor to be a regular
distribution given by a smooth function. In this case a sensible multiplication can be
defined with the second factor being an arbitrary distribution. One can say that the
good structure of the first factor, being smooth, evens out the bad structure of the
second, being completely arbitrary.

Proposition 2.39
Let T ∈ D ′(Ω), f ∈ C∞(Ω). Define the product f · T by

〈ϕ, f · T 〉 = 〈f · ϕ, T 〉

Then f · T ∈ D ′(Ω).

We will see another example when a sensible multiplication can be defined in chapter 4.
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3 The space of Tempered Distributions

Recall that the basic idea to construct the generalised derivative on the space of distri-
butions was to push the derivative to the test function. This was a sensible approach
because the space of test functions is closed under derivation.
Being able to derive a very large class of objects, one might wish to extend other pow-
erful tools of Analysis to a larger class of objects. Many problems arising in PDEs
and elsewhere can be tackled using Fourier transformation. Hence we shall shrink the
space of distributions such that we can extend the Fourier transformation to this space.
This subspace of the distributions will be called the space of tempered distributions. To
shrink the space of distributions appropriately we will enlarge the Schwartz space to a
space which is closed under Fourier transformation.
There exist further generalisations, but it is custom to regard these spaces on the whole
of Rn. We will follow this practise and hence also compare the new spaces to the special
cases D(Rn) and D ′(Rn). This is in line with the way the tempered distributions are
introduced in the book by Rudin [10], which we will again be following to a large extend
in this section.

3.1 The Space of rapidly decreasing functions

Definition 3.1 (The space of rapidly decreasing functions)
Let

S (Rn) :=

{
f ∈ C∞(Ω) : sup

x∈Ω
|xn ·Dαf(x)| <∞ ∀n ∈ N, ∀α

}
i.e. the space of all smooth functions such that the function and all it’s derivatives
decrease faster than any power of 1

|x| .

S (Rn) is called the space of rapidly decreasing functions.

It is obvious that every test function ϕ is also a rapidly decreasing function. We know
that ϕ and all it’s derivatives are compactly supported so obviously have a global max-
imum. Looking at the definition we can easily construct a family of norms on S (Rn).

3.1.1 The topology of S (Rn)

Definition 3.2
We can define a countable family of norms on the space of rapidly decreasing func-
tions by

σm,n(f) := max
|α|≤m

sup
x∈Ω

(
1 + |x|2

)n |Dαf(x)|

This family of norms turns S (Rn) into a locally convex space. We will denote the
induced topology by σ.

Remark 3.3
Since

(
1 + |x|2

)n
is bounded on K for every fixed n, (σm,n)m∈N gives a family of

norms which is equivalent to (‖·‖m) on DK , so the subspace topology of σ on DK

is the same as τK .
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As the topologies induced on DK coincide, the embedding iDK of DK into S (Rn)
is τK-to-σ|DK -continuous. Hence i : D(Rn)→ S (Rn) is τ -to-σ-continuous.

Theorem 3.4
The test functions are dense in the rapidly decreasing functions, with respect to the
topology σ.

D(Rn)
d

↪−→ S (Rn)

Proof:
Let f ∈ S (Rn). For every ε > 0 and every m,n ∈ N we need to find ϕm,n,ε ∈ D(Rn)
such that σm,n(f − ϕm,n,ε) < ε. Fix m,n and ε and choose ϕ ∈ D(Rn) such that
ϕ|B(0,1) ≡ 1. Now let

ϕt(x) := f(x) · ϕ(t · x)

For the difference f − ϕt we find

(f − ϕt)(x) = f(x)− f(x) · ϕ(t · x)

= f(x) · (1(x)− ϕ(t · x))

= f(x) · (1− ϕ)(t · x) (16)

Differentiating (16) using the Leibniz formula and chain rule yields

Dα(f − ϕt)(x) =
∑
β≤α

(
|α|
|β|

)
(Dα−βf)(x) · t|β| · (Dβ(1− ϕ))(t · x)

But (1 − ϕ)(t · x) = 0 for every t ∈ B
(
0, 1

t

)
since ϕ was chosen to be identically 1 on

the unit ball. Thus also Dα(f − ϕt)(x) = 0 on B
(
0, 1

t

)
, hence we can restrict attention

to x outside this ball.

σm,n(f − ϕt) = max
|α|≤m

sup
x 6∈B(0, 1

t )

(
1 + |x|2

)n |Dα(f − ϕt)(x)| (17)

Now note that f is a rapidly decreasing function, so f and all it’s derivatives decrease
faster than any power of 1

|x| as x gets large. Therefore (Dα−βf)(x) will cancel out the

growth of
(
1 + |x|2

)n
for sufficiently large x. We can achieve this as, by making t small

in (17), we can restrict the inner supremum to arbitrary large x.
As t|β| converges to zero when t goes to zero and (1 − ϕ) is bounded, we see that
σm,n(f − ϕt) gets arbitrary small as t→ 0.

q

Remark 3.5
One can also show the following inclusions

(a) S (Rn)
d

↪−→ Lp(Rn)

(b) S (Rn)
d

↪−→ C0(Rn)
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where C0(Rn) denotes the space of continuous functions vanishing at infinity.

Again we would like our topology to be complete to get a well behaved dual space. This
is indeed the case as stated in the following lemma.

Lemma 3.6
S (Rn) is a Fréchet space.

Proof:
The topology is certainly metrisable as it is a countable family of norms. Hence we only
need to check completeness.
Therefore let (fk) ⊂ S (Rn) be a σ-Cauchy sequence. We will show that this is also
a Cauchy sequence in C∞(Rn) with respect to the topology τΩ which is complete. We
will then show that the limit lies in S (Rn) and that it also converges in S (Rn) with
respect to σ.

Part 1: (σ-Cauchy ⇒ τΩ-Cauchy)
Note that (fk) being a σ-Cauchy sequence means that for every n ∈ N and ε > 0 there
exists N ∈ N such that σm,n (fk1 − fk2) < ε for all k1, k2 ≥ N . So, as

(
1 + |x|2

)n
is

bounded on any K, this means in particular that

ε > max
|α|≤m

sup
x∈Ω

(
1 + |x|2

)n |Dα (fk1 − fk2) (x)|

≥ max
|α|≤m

sup
x∈K

(
1 + |x|2

)n |Dα (fk1 − fk2) (x)|

≥ max
|α|≤m

sup
x∈K

C · |Dα (fk1 − fk2) (x)|

By absorbing the constant C into ε we get that for every n ∈ N and ε > 0 there exists
N ∈ N such that

ρm (fk1 − fk2) < ε for all k1, k2 ≥ N

So (fk) is also a Cauchy sequence in C∞(Rn) with the topology τΩ, which is complete.
So fk → f in C∞(Rn).

Part 2: (f is a rapidly decreasing function)
Every Cauchy sequence is bounded, so for every m,n ∈ N we have a constant Mm,n ∈ R
such that

σm,n(fk) = max
|α|≤m

sup
x∈Ω

(
1 + |x|2

)n |Dαfk(x)| < Mm,n

This means in particular that for every fixed x ∈ Ω the supremum over all α is bounded,
which gives us

sup
|α|≤m

(
1 + |x|2

)n |Dαfk(x)| < Mm,n ∀x ∈ Ω

⇔ sup
|α|≤m

|Dαfk(x)| < Mm,n

(1 + |x|2)n
∀x ∈ Ω (18)
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But by the definition of τΩ all derivatives of (fk) must converge pointwise to the respec-
tive derivative of f . Hence from (18) we can deduce that

sup
|α|≤m

|Dαf(x)| < Mm,n

(1 + |x|2)n
∀x ∈ Ω

But this means that σm,n(f) <∞ for all m,n and hence that f ∈ S (Rn).

Part 3: (The sequence also converges in the space of rapidly decreasing functions)
To show that also fk −→

k→∞
f in S (Rn) we can without loss of generality assume that

f = 0, as we can replace (fk) by (fk − f) if necessary. This is obviously also a Cauchy
sequence in S (Rn) which converges if and only if (fk) converges.
But fk −→

k→∞
0 in C∞(Rn) means that

ρm(fk) = max
α|≤m

sup
x∈Km

|Dαfk(x)| −→
k→∞

0 ∀ m ∈ N

which implies that

max
|α|≤m

|Dαfk(x)| −→
k→∞

0 ∀x ∈ Ω

⇔ |Dαfk(x)| −→
k→∞

0 ∀x ∈ Ω,∀α

From this we can deduce that for any fixed n ∈ N

max
|α|≤m

(
1 + |x|2

)n |Dαfk(x)| −→
k→∞

0 ∀x ∈ Ω

which implies that also

σm,n(fk) = max
|α|≤m

sup
x∈Ω

(
1 + |x|2

)n |Dαfk(x)| −→
k→∞

0

Hence (fn) also converges in S (Rn) to f , so (S (Rn), σ) is complete.

q

Remark 3.7
A metric on S (Rn) is given by

d(f, g) :=

∞∑
m,n=0

2−(m+n) σm,n (f − g)

1 + σm,n (f − g)

We have already seen in the proof of the fact that we can check continuity of a linear
map on the space of distributions by checking sequential continuity, that it was crucial
to have a Fréchet space as underlying structure. This will also occur again in this essay.
Thus we see that the fact that S (Rn) is a Fréchet space will simplify these proofs
significantly as we don’t need to restrict to the DK spaces anymore with subsequently
extending the result to the whole space.
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3.2 The space of Tempered Distributions

3.2.1 Definition and basic properties

Definition 3.8 (The space of Tempered Distributions)
Let

S ′(Rn) := {T : S (Rn)→ R : T continuous, linear}
S ′(Rn) is called the space of tempered distributions.

Lemma 3.9
Let T ∈ D ′(Rn) then there is at most one S ∈ S ′(Rn) continuously extending T to
S (Rn).

Proof:
Assume there are two distinct continuous extensions of T , S1 and S2 say. For S1 and S2

to be distinct, they have to disagree on at least one function and therefore by continuity
on a small open set U ⊂ S (Rn). But by Theorem 4.3 the test functions are dense
in S (Rn), thus we can find ϕ ∈ U ∩ D(Rn) such that S1(ϕ) 6= S2(ϕ). But this is a
contradiction as S1 and S2 are both extensions of T .

q

Remark 3.10
Certainly every S ∈ S ′(Rn), restricted to D(Rn), is a distributions. Thus lemma
3.9 justifies to identify S with S|D(Rn) ∈ D ′(Rn) and regard S ′(Rn) as a subspace
of D ′(Rn).

3.2.2 The topology of S ′(Rn)

Just as the space of distributions we equip S ′(Rn) with the weak* topology, which
coincides with the subspace topology of the weak* topology on the space of distributions.
Despite having a better underlying structure on S (Rn), the weak* topology on S ′(Rn)
still does not have a countable neighbourhood base.

Theorem 3.11
The weak* topology on S ′(Rn) is not first countable.

Proof:
Note that the proof of Theorem 2.31 did not use any specific properties of the space of
test functions or distributions. In fact the result is true for the weak* topology on the
dual space of any locally convex topological vector space of uncountable dimension.
But the space of test functions is contained in S (Rn), so it has uncountable dimension
and thus the weak* topology on S ′(Rn) is not first countable.

q
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3.3 Operations on S ′(Rn)

3.3.1 Derivation and Multiplication

Similarly to the space of test functions, the space of rapidly decreasing functions is
closed under derivation. Therefore the derivation works nicely in exactly the same way
as for distributions. This is exactly as one hopes for when regarding the tempered dis-
tributions as a subspace.

For the multiplication of two tempered distributions everything we said about mul-
tiplication of distributions applies. In section 2.3.2 we proved that there cannot be an
algebra extension of the continuous functions containing the Dirac delta distribution.
But as the delta distribution is tempered, this immediately implies that a multiplication
of tempered distributions cannot be defined in general.

3.3.2 Fourier Transformation

As we mentioned before a major reason to construct the space of tempered distributions
is to extend the definition of the Fourier transformation. We will briefly state some
of the basic properties and results in this section without any proofs. There is a large
amount of literature available covering the Fourier transform on the space of tempered
distributions in great detail, e.g. the books by Rudin [10] or Hörmander [9]. We will
use the following notation:

Definition 3.12
Let f ∈ L1(Rn) then

(Ff) (y) := f̂(y) := (2π)−
n
2

∫
Rn
f(x) · e−y·xdx y ∈ Rn

is the Fourier transformation of f .

Examining the effect of the Fourier transform on L1(Rn) one finds that there is no simple
way to describe the image, other than that it will be a subset of the space of continuous
functions vanishing at infinity.

Proposition 3.13
F is a bounded linear operator from L1(Rn) into C0(Rn).

F ∈ L (L1(Rn), C0(Rn))

This in particular means that 1 cannot be the Forier transform of a function in
L1(Rn).

As we mentioned before the space of rapidly decreasing functions was chosen because it
is closed under the Fourier transform. At first view one can also find several other good
properties.
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Proposition 3.14
The Fourier transform is a bounded linear operator from the space of rapidly de-
creasing functions into itself. It behaves well considering derivatives and has a fixed
point in S (Rn).
Let f ∈ S (Rn), x ∈ then

(a) F ∈ L (S (Rn),S (Rn))

(b) ξ̂αf(x) = (−1)|α|Dαf̂(x)

(c) D̂αf(x) = xαf̂(x)

(d) F(e−|·|
2
) = e−|·|

2

In (b) ξαf denotes the map from Rn to R given by x 7→ ξα · f(ξ).

Closer examination reveals even more, the Forier transform actually is an automorphism
on the space of rapidly decreasing functions. This has the consequence that it induces
an automorphism on it’s dual, the space of tempered distributions.

Proposition 3.15 (Fourier inversion theorem for S (Rn))
F ∈ L (S (Rn),S (Rn)) is bijective and continuous, so an automorphism.
For f ∈ S (Rn) the inverse is given by

(
F−1f

)
(x) = (2π)−

n
2

∫
Rn
ey·x · f(x)dy = f̂(−x)

When we extended the derivative to the space of distributions, we did this by “push-
ing” the derivative onto the test function as the space of test functions is closed under
derivation. As we have just seen, the space of rapidly decreasing functions is closed under
Fourier transform, so following the same idea, we can now extend the Fourier transform
to tempered distributions by “pushing” the Fourier transform onto the rapidly decreas-
ing function.

Definition 3.16
For S ∈ S ′(Rn) define the Fourier transform by

Ŝ(f) := S(f̂) f ∈ S (Rn)

F̂ is again a tempered distribution.

Just as the derivation for distributions the Fourier transform on the tempered distri-
butions inherits the good properties of the Fourier transform on the rapidly decreasing
functions.
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Proposition 3.17
F ∈ L (S ′(Rn),S ′(Rn)) is bijective and continuous, so an automorphism.
Furthermore, for S ∈ S ′(Rn), x ∈ Rn

(a) ξ̂αS(x) = (−1)|α|DαŜ(x)

(b) D̂αS(x) = yαŜ(x)

In (a) ξαS denotes the map from S (Rn) to R given by f 7→ S(ξαf) using the
notation from proposition 3.14.
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4 Schwarz Kernel

In section 2.3.2 we saw that it is in general not possible to multiply two distributions.
However there is a special case in which a general product can be defined. If we have
two distributions which are defined on two independent sets there exists a well defined
product, coherent with the corresponding product for functions. This case also sheds
light on some other interesting properties.
For the rest of this chapter we will work with two independent open sets rather then
one as before, i.e. we will consider Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 . We will in general use the
index j = 1, 2 for statements referring to both of these sets. In notation we will follow
Blanchard and Brüning [2] as well as Hörmander [9], as these also provide most of the
information presented throughout this chapter. Furthermore Trèves’ book [15] has been
an important source of information complementing the material presented in the former
two books.

4.1 Tensor Products

To find a reasonable definition of a tensor product on the space of distributions we
should start by examining the situation for functions. Especially we will take a close
look at the tensor product of test functions, as it can be expected that this will shed
light on the situation for distributions.

4.1.1 Tensor Product of functions

As a first step recall the tensor product of two functions.

Definition 4.1 (Tensor Product of functions)
Let fj : Ωj → R. Then the tensor product of f1 and f2 is the function

(f1 ⊗ f2)(x1, x2) := f1(x1) · f2(x2)

for all xj ∈ Ωj .
Clearly f1 ⊗ f2 is well defined and lives on Ω1 × Ω2 ⊂ Rn1+n2 .

Remark 4.2
It is obvious from above definition that the tensor product is supported on the
product of the support of its factors and that it inherits regularity for differentiation
(by the Leibniz rule) and integration (by Fubini) from its factors.

(a) supp(f1 ⊗ f2) = supp(f1)× supp(f2).

(b) If fj ∈ Ckj (Ωj) then f1 ⊗ f2 ∈ Cmin(k1,k2)(Ω1 × Ω2)

(c) If fj ∈ L1,loc(Ωj) then f1 ⊗ f2 ∈ L1,loc(Ω1 × Ω2)

This remark tells us that the tensor product of two test functions is again a test function
on the product space. Taking all tensor products of elements of D(Ωj) we obtain a
vector space which plays an important role in extending the tensor product to the space
of distributions.
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Notation 4.1:
We will write

D(Ω1)⊗D(Ω2) := span {ϕ1 ⊗ ϕ2 : ϕj ∈ D(Ωj)}

for the vector space spanned by all tensor products of two test functions on Ω1 and
Ω2.

This space is obviously contained in D(Ω1×Ω2). The following proposition makes clear
that it will be very useful for the definition of a tensor product of distributions.

Proposition 4.3
The tensor product of the test function spaces D(Ω1) and D(Ω2) is dense in the
test function space on the product of Ω1 and Ω2.

D(Ω1)⊗D(Ω2)
d

↪−→ D(Ω1 × Ω2)

4.1.2 Tensor product of distributions

Proposition 4.3 gives us a strong tool to extend the tensor product to the space of
distributions, as we can reduce attention to the tensor product of test function spaces
D(Ω1) ⊗ D(Ω2) to obtain results for the larger space of distributions on test functions
on the product set D(Ω1 × Ω2).
The functions in the tensor product of two test function spaces are still in a way separate.
So as a step to understanding the situation for the test functions on the product space
it is nearby to try to separate them, i.e. keep one of the variables fixed and see how a
distribution acts on the other variable.

Proposition 4.4
Let T1 ∈ D ′(Ω1) and ϕ ∈ D(Ω1 × Ω2). Fix x2 ∈ Ω2 and regard ϕ as function of x1

i.e.
ϕx2 (x1) := ϕ (x1, x2) ∈ D(Ω1)

Then 〈ϕx2 , T1〉 is well defined and identifying x2 with 〈ϕx2 , T1〉

ψ1 : Ω2 → R
x2 7→ 〈ϕx2 , T1〉

we get a test function on Ω2, ψ1 ∈ D(Ω2). The mapping

F1 : D(Ω1 × Ω2)→ D(Ω2)

ϕ 7→ ψ1

is a continuous linear mapping.
Clearly the same construction is possible for T2 ∈ D ′(Ω2) with Ω1 and Ω2 reversed,
obtaining a continuous linear map

F2 : D(Ω1 × Ω2)→ D(Ω1)

ϕ 7→ ψ2 = (x1 7→ 〈ϕx1 , T2〉)
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To simplify notation we will follow a suggestive notation widely used across liter-
ature, e.g. in [9] or [2], and write 〈ϕ, T1〉 for F1(ϕ) = ψ1 = (x2 7→ 〈ϕx2 , T1〉) and
〈ϕ, T2〉 for F2(ϕ).

The introduced notation already suggests the way to define the tensor product. We
follow the construction in proposition 4.4 and, in a manner of speaking, apply one
distribution after the other to the test function on the product space.

Theorem 4.5 (Tensor Product of distributions)
Let Tj ∈ D ′(Ωj), then there exists a unique distribution T1⊗T2 ∈ D ′(Ω1×Ω2) such
that

〈ϕ1 ⊗ ϕ2, T1 ⊗ T2〉 = 〈ϕ1, T1〉 · 〈ϕ2, T2〉 (19)

for all ϕj ∈ D(Ωj). This distribution is called the tensor product of T1 and T2.

Proof:
Following proposition 4.4 define a map T on D(Ω1 × Ω2) by

〈ϕ, T 〉 := 〈〈ϕ, T1〉, T2〉

We have to show that T = T1 ⊗ T2 is as stated in the theorem.
By proposition 4.4 T is well defined and linear. Furthermore, as the notation suggests
we are, in a manner of speaking, applying two distributions one after the other, so it is
clear that the map is also continuous. Thus is remains to show that T satisfies 19 and
is uniquely determined by it.
Let ϕj ∈ D ′(Ωj) and ϕ = ϕ1 ⊗ ϕ2. By the construction in proposition 4.4 we see that

〈ϕ, T1〉 = 〈ϕ1 · ϕ2, T1〉 = 〈ϕ1, T1〉 · ϕ2

and thus as desired
〈ϕ1 ⊗ ϕ2, T 〉 = 〈ϕ1, T1〉 · 〈ϕ2, T2〉

This clearly defines T uniquely on D(Ω1)⊗D(Ω2). But this space is dense in D(Ω1×Ω2)
by proposition 4.3, hence continuity of T implies that it is uniquely defined on the whole
of D(Ω1 × Ω2).

q

The way we constructed T1 ⊗ T2 in the proof indicates an immediate corollary, as the
choice of order of applying T1 and T2 was arbitrary.

Corollary 4.6 (Fubini’s Theorem for Distributions)
Let Tj ∈ D ′(Ωj).

〈(ϕ1 ⊗ ϕ2, T1 ⊗ T2〉 = 〈〈ϕ, T1〉, T2〉 = 〈〈ϕ, T2〉, T1〉

for all ϕ ∈ D ′(Ω1 × Ω2). Particularly in view of regular distributions this can be
regarded as a way of interchanging the order of integration, thus it is often called
Fubini’s Theorem for Distributions.
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Proof:
When we constructed T1 ⊗ T2 in the proof of theorem 4.5 we arbitrarily chose to apply
first T1 and then T2. Obviously the same construction can be done with T1 and T2

interchanged. Clearly
〈ϕ1 ⊗ ϕ2, T 〉 = 〈ϕ1, T1〉 · 〈ϕ2, T2〉

implies that the two constructions coincide on D(Ω1)⊗D(Ω2) because of commutativity
in R. But then again by density of D(Ω1) ⊗ D(Ω2) in D(Ω1 × Ω2) and continuity of
T1 ⊗ T2 they agree on the whole of D(Ω1 × Ω2).

q

Having two locally integrable functions we can now consider their tensor product or
regard them as distributions and then form the distributional tensor product. Hence we
need to check that these two products coincide.

Corollary 4.7
Let fj ∈ L1,loc(Ωj), then

Tf1 ⊗ Tf2 = Tf1⊗f2

Proof:
Fix an arbitrary ϕ ∈ D(Ω1 × Ω2). By definition 4.1 we have f1 ⊗ f2 = f1(x1) · f2(x2).
Regarding this as a regular distribution yields

〈ϕ, Tf1⊗f2〉 =

∫
Ω1×Ω2

f1(x1) · f2(x2) · ϕ(x1, x2)d(x1, x2)

=

∫
Ω2

∫
Ω1

f1(x1) · f2(x2) · ϕ(x1, x2)dx1 dx2

Following the construction in proposition 4.4 we find that

〈ϕ, Tf1〉 =

∫
Ω1

f1(x1) · ϕ(x1, x2)dx1

Using this and theorem 4.5 or corollary 4.6 we see that for Tf1 ⊗ Tf2 we have

〈ϕ, Tf1 ⊗ Tf2〉 = 〈〈ϕ, Tf1〉, Tf2〉

= 〈
∫

Ω1

f1(x1) · ϕ(x1, x2)dx1, Tf2〉

=

∫
Ω2

(∫
Ω1

f1(x1) · ϕ(x1, x2)dx1

)
· f2(x2)dx2

So clearly, as ϕ was arbitrary, Tf1 ⊗ Tf2 = Tf1⊗f2 for all ϕ ∈ D(Ω1 × Ω2).

q
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4.2 The Schwartz Kernel Theorem

Having expanded the tensor product, obtaining distributions in two variables, we are
now able to examine a connection to integral operator theory. Let us first recall the
definition of integral operators.

Definition 4.8 (Integral operator)
Let Fj be function spaces on Ωj respectively. A linear operator T : F2 → F1 is
called an integral operator or integral transform if it is of the form

(T (f))(x1) =

∫
Ω2

K(x1, x2) · f(x2)dx2 f ∈ F2

for some measurable function K ∈ L0(Ω1×Ω2). The function K is called the kernel
function.

So every choice of a function of two variables K corresponds to an integral operator.
Surely some caution is required in terms of the choice of K to make sure the integral
always exists. The necessary regularity of K thus depends on the function space F2,
usual choices include continuous functions or square integrable functions.

Example 4.9
K ∈ C(Ω1×Ω2) defines an integral operator from the space of continuous, compactly
supported functions into the space of continuous functions.

T : Cc(Ω2)→ C(Ω1)

This can not only be extend to distributions, we can even write any bounded linear
operator from the space of test functions in one variable into the space of distributions
in a second variable as an integral operator. This is a very strong result, in general it
is far from true that any bounded linear operator between two function spaces can be
written as an integral transform.

Proposition 4.10 (Schwartz kernel theorem)
There is a one-to-one correspondence between D ′(Ω1×Ω2) and L (D(Ω2),D ′(Ω1)).
More precisely

• Every K ∈ D ′(Ω1 × Ω2) defines a K ∈ L (D(Ω2),D ′(Ω1)) such that

〈ϕ1,K(ϕ2)〉 = 〈ϕ1 ⊗ ϕ2,K〉 (20)

• For every K ∈ L (D(Ω2),D ′(Ω1)) there is exactly one distribution such that
(20) holds

Thus the two spaces are isomorphic

D ′(Ω1 × Ω2) ∼ L (D(Ω2),D ′(Ω1))
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As mentioned before this result is far from being obvious, in fact it lays quite deep.
Let us make some comments on the proof. Trèves [15] gives a very structural proof
that these spaces are isomorphic. First he establishes that the space of bounded lin-
ear operators is isomorphic to the completion of the tensor product of the two separate
distribution spaces D ′(Ω1) and D ′(Ω2), denoted by D ′(Ω1)⊗̂D ′(Ω2), by examining topo-
logical properties of the underlying space of test functions, its dual and its embedding
into it’s bidual. Subsequently he notes that the tensor product of the two distribution
spaces is dense in both, it’s completion and the space of distributions on D ′(Ω1 × Ω2).
Consequently he shows that D ′(Ω1)⊗̂D ′(Ω2) and D ′(Ω1×Ω2) induce the same subspace
topology on D ′(Ω1)⊗D ′(Ω2).
The approach in Hörmanders book [9] is more constructive, inspiring the first part of
the proposition. The proof is rather lengthy, though. While it is straight forward that
(20) defines a bounded linear map, the converse is not as easy, which was to be expected,
as this is what makes the theorem so remarkable. That the condition uniquely defines
a distribution is a fairly easy consequence of continuity and density, similar to what we
have seen in the proof of theorem 4.5. It is however not as easy to proof the existence,
the crack of the theorem. The proof given by Hörmander uses an approximating se-
quence of distributions. He assumes the distribution to exist and uses convolution of
a distribution with a test function to construct the sequence. He than shows that the
limit indeed exists and has the desired property.

Remark 4.11
The bounded linear maps in proposition 4.10 induce bilinear forms on the test
functions. More precisely let ϕj ∈ D(Ωj) and K ∈ L (D(Ω2),D ′(Ω1)) then

(ϕ1, ϕ2) 7→ 〈ϕ1,K(ϕ2)〉

is a bilinear map on D(Ω1)×D(Ω2).
In view of this, proposition 4.10 says that all these bilinear maps are already included
in the general theory of distributions, using the structure we introduced in section
4.1.2, creating a two variable meaning for distributions.
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5 Compactness in the space of Distributions

In this chapter we will closely examine the properties of compactness in the space of
distributions. It will turn out that the situation is much better than one might expect
at first.
As the unit ball is compact in the norm topology if and only if the space has finite
dimension, the closed norm-balls are not compact in the space of distributions. Thus
one doesn’t have many norm compact sets. However, as we equipped the space with
the weak* topology we get a large amount of w∗-compact sets by the Banach Alaoglu
Bourbaki Theorem. As we are considering the weak* topology on D ′(Ω) speaking of
compactness in this space will always refer to w∗-compactness.
Examining the situation closer we will find that we can in this case actually characterise
the w∗-compactness by properties of sequences, which is not at all to be expected in the
weak* topology.

5.1 The Banach Alaoglu Bourbaki Theorem

As D(Ω) is not a normed spaces, we cannot apply the Banach Alaoglu theorem. There-
fore we will state and prove the Banach Alaoglu Bourbaki theorem, which is a generali-
sation by Bourbaki which applies to locally convex spaces. To simplify notation, we will
assume that we consider a vector space over R, but the given proof will work for any
scalar field. Before we can state the theorem we should recall the definition of a polar
set.

Definition 5.1 (Polar Set)
Let X be a vector space, X ′ it’s dual space. For any set U ⊂ X the polar set in X ′

is the set

U◦ :=

{
x′ ∈ X ′ : sup

x∈U
|〈x, x′〉| ≤ 1

}

Having this definition we can state the Banach Alaoglu Bourbaki theorem. The proof
given is a fairly standard proof which works like the proof for the Banach Alaoglu
theorem to a large extend. This proof is most commonly to be found in literature (e.g.
in [1]). The necessary adaptations of the proof of Bourbaki’s generalisation given here
can be found in this or similar form in Rudin’s book [10].

Theorem 5.2 (Banach Alaoglu Bourbaki Theorem)
Let X be a vector space, X ′ it’s dual space. Let U be a neighbourhood of 0 in X.
Then U◦ ⊂ X ′ is w∗-compact.

Proof:
We will homeomorphically embed U◦ into a compact subset of RX with the topology
of pointwise convergence. This space is the space of X-indexed real sequences, which
can also be regarded as the space of all R-valued functions on X as they are canonically
homeomorphic.
We will then show that the image of U◦ in RX is closed. It is therefore also compact
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as a closed subset of a compact set and, as the embedding was homeomorphic, we thus
have that U◦ is compact.

Part 1: (Embed U◦ homeomorphically into RX)
Since U is a 0 neighbourhood we can find a V ⊂ U such that V is absolutely convex. As
every functional which is bounded by 1 on U is clearly also bounded by 1 on V we have
that U◦ ⊂ V ◦. Hence compactness of V ◦ implies compactness of U◦. We can therefore
assume U to be absolutely convex and absorbing.
Hence we can find a constant λx for every x ∈ X such that x ∈ λx ·U . Since every x′ in
U◦ is bounded by 1 on U this tells us that it is bounded by λx on the whole of X.
Now define sets

Fx := {λ ∈ R : |λ| ≤ λx}
and form the product of these sets

F =
∏
x∈X

Fx

Every Fx is a compact subset of R hence, by Tychonov’s theorem, the product F is
compact in the product topology.
Now U◦ embeds into F by the mapping

θ : U◦ → F

θ(x′) =
(
x′(x)

)
x∈X

It is obvious that θ is injective. The continuity of θ and θ−1 are immediate consequences
of the universality property of weak topologies. Recall that for a space Y and a family of
functions on Y , E say, the weak topology on Y generated by E is the smallest topology
making every function in E continuous. The universality property then says that for
any topological space Z a map g : Z → Y is continuous if and only if f ◦ g is continuous
for every f ∈ E
The product topology on F is generated by the coordinate projections

πx : F → Fx

πx
(
(µx)x∈X

)
= µx

For continuity of θ it is thus enough to show that πx ◦ θ is continuous for every πx. But
by the definitions we have

πx ◦ θ(x′) = πx(
(
x′(x)

)
x∈X)

= x′(x)

= x̂|U◦

where x̂(x′) = x′(x), the canonical embedding of x into X ′′, the bidual of X. This is
clearly w∗-continuous.
On the other hand, the topology onX ′ and thus on U◦ is generated by {x̂ ∈ X ′′ : x ∈ X}.
Therefore for continuity of θ−1 we need to check that x̂ ◦ θ−1 is continuous for every x̂.
But using the definitions in this case we find

x̂ ◦ θ−1(
(
x′(x)

)
x∈X) = x̂(x′)

= x′(x)

= πx(
(
x′(x)

)
x∈X)
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Thus θ−1 is continuous on the image of θ in F . This means that U◦ is homeomorphic
to Imθ ⊂ F , which is compact in RX .

Part 2: (The image of U◦ is closed in RX)
As mentioned before, the space of real valued functions on X is homeomorphic to RX
by the canonical map

Θ : (f : X → R)→ RX

(x 7→ νx) 7→ (νx)x∈X

The map θ from part 1 is obviously the restriction of Θ to U◦. So to show that the
image of U◦ is closed, i.e. θ (U◦) = θ (U◦) we need to show that

Θ−1(θ (U◦)) = Θ−1(θ (U◦)) = U◦

It is clear that U◦ ⊂ Θ−1(θ (U◦)). Thus we fix f0 ∈ Θ−1(θ (U◦)) and show that f0 is in
U◦, i.e. linear and bounded by 1 on U .

We are considering RX and hence the space of real valued functions on X with the
topology of pointwise convergence so basic open neighbourhoods of f0 are sets

Vy,ε = {f : X → R : |f(y)− f0(y)| < ε}

for y ∈ X and ε > 0.

• Linearity of f0:
For fixed x, y ∈ X and s, t ∈ R the set

V := Vx,ε ∩ Vy,ε ∩ Vs·x+t·y,ε

is an open neighbourhood of f0. As Θ−1 is continuous there exists
f ∈ Θ−1(θ (U◦)) = U◦ in V . So we have f ∈ U0 such that |f − f0| < ε which we
can use to estimate f0 as follows

|f0(s · x+ t · y)− s · f0(x)− t · f0(y)|
= |f0(s · x+ t · y)− f(s · x+ t · y) + s · f(x) + t · f(y)− s · f0(x)− t · f0(y)|
= |(f0 − f)(s · x+ t · y) + s · (f − f0)(x) + t · (f − f0)(y)|
< ε+ |s| · ε+ |t| · ε

But ε was arbitrary, so we find that f0 is indeed linear.

• f0 bounded by 1 on U :
Fix an arbitrary x ∈ U and consider the open neighbourhood Vx,ε. Then there
exists f ∈ Θ−1(θ (U◦)) = U◦ in Vx,ε, i.e. |f(x) − f(x0)| < ε. But f is in U◦ so
bounded by 1 on U thus in particular at x. As ε is arbitrary we must also have
that f0 is bounded by 1 at x. Since x was arbitrary f0 is bounded by 1 on U and
thus in U◦.
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We can conclude that Θ−1(θ (U◦)) = U◦. Hence θ (U◦) is closed and thus compact and
so is U◦.

q

Remark 5.3
Note that

(a) D(Ω) and S (Rn) are locally convex spaces. Therefore theorem 5.2 applies to
both, hence we get a large amount of compact sets in D ′(Ω) and S ′(Rn).

(b) For metric spaces the Banach Alaoglu Bourbaki theorem is equivalent to the Ba-
nach Alaoglu theorem. S (Rn) is metrisable, thus the Banach Alaoglu theorem
would suffice in this case.

This result tells us that we are provided with many compact sets in the spaces of distri-
butions and tempered distributions, which is very desirable for applications. However
it is often convenient to characterise compact sets by properties of sequences. This is
a very common approach in metric spaces, as the different notions of compactness are
all equivalent if the topology is metrisable. But for non-metrisable topologies the com-
pactness definitions are not in general equivalent. Therefore we shall now examine how
sequences in the space of distributions behave with respect to compact sets.
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5.2 Sequential Compactness

We will start with an example that illustrates the necessity of having a closer look at
the behaviour of the sequences in the compact sets we obtain from the Banach Alaoglu
Bourbaki theorem. We consider the space of bounded sequences and its dual equipped
with the weak* topology. In this case we can easily find a w∗-compact set which is not
w∗-sequentially compact. The given example could be regarded as the standard example
for a weak* compact but not weak* sequentially compact set, one can find it in e.g. [5].

Example 5.4
Let

l∞ = {x := (xn) scalar sequence : (xn) bounded}

the space of bounded sequences equipped with the supremum norm

‖x‖∞ = sup
n∈N
|xn|

and l′∞ its dual space equipped with the weak* topology. As l∞ is a normed space
by Banach Alaoglu we know that the unit ball in l′∞ is w∗-compact.
To show that the unit ball is not sequentially compact we need to find a sequence
un in Bl′∞ without a converging subsequence. Recall that

un
w∗→ u in l′∞ if 〈x, un〉 → 〈x, u〉 ∀ x ∈ l∞

Now let
(un) ⊂ l′∞ s.t. 〈x, un〉 = xn ∀ x ∈ l∞

Then

‖un‖ = sup
x∈Bl∞

|〈x, un〉|
def. ‖·‖∞
≤ sup

x∈Bl∞
‖x‖∞

x∈Bl∞
≤ 1

So actually (un) ⊂ Bl′∞ as desired. To show that (un) does not have a converging
subsequence assume the contrary, that there exists a converging subsequence (uni)
say. To reach a contradiction it suffices to find one x ∈ l∞ such that lim

i→∞
〈x, uni〉

does not exist. Let

xk :=

{
(−1)i if k = ni

0 otherwise

Then obviously (xk) ∈ l∞ and

lim
i→∞
〈(xk), uni〉 = lim

i→∞
(−1)i

which clearly doesn’t exist. Hence there cannot exist a convergent subsequence of
(un) ⊂ Bl′∞ .
Therefore Bl′∞ is compact but not sequentially compact.

q

This means that in general the result of Banach Alaoglu Bourbaki does not give us much
control over sequences. However, in the space of distributions the situation turns out to
be better than it might have been expected.
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5.2.1 Sequential compactness of weak* bounded sets

Theorem 5.5
Let A ⊂ D ′(Ω) a set of distributions that is pointwise bounded, i.e. on any fixed
test function ϕ ∈ D(Ω). Then A is sequentially compact.

Proof:
We need to find a converging subsequence for any sequence of distributions in A. There-
fore we can, without loss of generality, assume that A is already a countable sequence of
distributions, if not we start by picking an arbitrary sequence inside A. Thus we have

A := {Tn : n ∈ N} sup
n∈N
|〈ϕ, Tn〉| <∞ ∀ ϕ ∈ D(Ω)

We have seen before that we could characterise continuity of linear maps on the space
of test functions by restricting to the DK spaces, because these spaces are Fréchet
spaces, which gives us a lot more control. The fact that we are considering properties of
sequences again suggests to do the same approach here. We will then use an inductive
argument based on the constructions in lemma 2.3 to extend the result to the whole of
D(Ω).

Part 1: (Establish the existence of a convergent subsequence for fixed DK)
Fix K1 ⊂ Ω compact. A is of course in particular pointwise bounded on every ϕ ∈
DK1 and DK1 is a Fréchet space by lemma 2.2. Therefore we can apply a generalised
version of the Banach-Steinhaus theorem, which states that a set of continuous linear
mappings from a Fréchet space into a normed space which is pointwise bounded is also
equicontinuous.
Thus we know that A is pointwise bounded and equicontinuous as a set of continuous
linear maps on DK1 . So if we now regardA as a subset of C(DK1), the space of continuous
functionals on DK1 with the supremum norm, a general version of the Arzelà-Ascoli
theorem applies and thus A is totally bounded with respect to the supremum norm.
Therefore we know that there exists a subsequence (Tni) of A that converges in the
supremum-norm, i.e. it converges uniformly, to some f ∈ C(DK1). But this convergence
is stronger then the weak* convergence, which is pointwise convergence on DKj , whence
it also converges w∗ly to f , i.e

Tni
w∗−→
i→∞

f

Part 2: (Iteratively construct a nested sequence of convergent sequences)
Now pick K2 ⊂ Ω compact such that K1 ⊂ K◦2 . By the argument in part 1 we can find
a subsequence (Tnk) of A that converges in the weak* topology. But by the choice of K2

we have that DK1 ⊂ DK2 and (Tnk) converges pointwise on DK2 . Therefore it must in
particular converge pointwise on DK1 . Thus we can without loss of generality assume,
that (Tnk) is a subsequence of the sequence (Tni) we found in the first step.
Iterating this argument we obtain a sequence of nested sequences in A which converge
pointwise on some DKj , i.e. in the respective weak* topology. Passing to the limit
Kj ↗ K we obtain a sequence in A that converges pointwise, i.e. w∗ly on D(Ω).

q
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Note that pointwise boundedness is exactly weak* boundedness as can be seen in propo-
sition 2.30. As every weak* compact set is weak* bounded, theorem 5.5 tells us that
every compact set we get from Banach Alaoglu Bourbaki is actually also sequentially
compact. However the converse is unfortunately far from true, the space of distribu-
tions is not even sequential, as we mentioned before. Thus a sequentially compact, so
in particular sequentially closed set might not even be weak* closed thus in particular
not weak* compact.

5.2.2 The space of distributions is not sequential

To see that the space of distributions is indeed not sequential consider the following
example. We will first state the example as a proposition in a general case which is
also applicable to other non-sequential spaces and then present a concrete example for
the space of distributions. To simplify things we will consider D ′(R). This goes in
line with the way Smolyanov stated the example in [14]. In this paper he states the
example in its general case and mentions thereafter that the concrete example for the
space of distributions fulfils the assumptions. Smolyanov doesn’t give proves, the fact
that the given example fulfils the assumptions and that it is in fact sequentially closed
but not closed can be easily checked, as the conditions become fairly obvious once they
are spelled out, which we will do as part of the example.

Proposition 5.6
Let E and F be locally convex spaces and

A := {ak,n : k, n ∈ N} ⊂ E

B := {bn,k : k, n ∈ N} ⊂ F
and let

C := {ck,n = ak,n + bn,k : k, n ∈ N} ⊂ E ⊕ F
If

(i) 0 6∈ A ∩B

(ii) ak,n −→
n→∞

0 uniformly with respect to k

(iii) For fixed n ∈ N there exists no sequence ki such that aki,n converges

(iv) For fixed n ∈ N bn,k −→
k→∞

0

(v) If bni,ki converges then sup
i∈N

ni <∞

Then C is sequentially closed but not closed.

In the concrete example we will see that the crack of this example is that 0 is not in
the sequential closure of the set as the set is sequentially closed and does not contain 0,
but that 0 is contained in the closure. In fact condition (i) makes sure that 0 /∈ C while
conditions (ii) and (iv) make sure that 0 is “close” to C, i.e. contained in the closure.
Conditions (iii) and (v) make sure that the set C is sequentially closed.
Let us now proceed to stating the example in D ′(R) where these conditions can easily
be checked.
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Example 5.7
Let

A :=
{
ak,n = δ(k)

n : k, n ∈ N
}
⊂ D ′(R)

B :=

{
bn,k =

1

k
δ

(n)
0 : k, n ∈ N

}
⊂ D ′(R)

where δ(k) and δ(n) denote the k-th and n-th derivative of δ respectively. Now let

C := {ck,n = ak,n + bn,k : k, n ∈ N} ⊂ D ′(R)

Then C is weak* sequentially closed but not weak* closed. Indeed we have all
properties from proposition 5.6:

(i) Clearly ak,n 6= 0 and bn,k 6= 0 for all n, k ∈ N.

(ii)

ak,n
w∗−→

n→∞
0⇔ 〈ϕ, δ(k)

n 〉 −→n→∞ 0 ∀ ϕ ∈ D(R)

This is indeed the case. If supp(ϕ) ⊂ K then also supp(Dkϕ) ⊂ K for all k.

Furthermore supp(δ
(k)
n ) = {n} for all k, so there exists an N ∈ N such that

supp(δ
(k)
n ) ∩ supp(Dkϕ) = ∅ for all n ≥ N and all k ∈ N.

Thus 〈ϕ, δ(k)
n 〉 = Dkϕ(n) = 0 for all n > N .

(iii)

ak,n
w∗−→
i→∞

T ⇔ 〈ϕ, δ(ki)
n 〉 → 〈ϕ, T 〉 ∀ ϕ ∈ D(R)

This clearly cannot happen for any unbounded sequence (ki) as 〈ϕ, δ(ki)
n 〉 =

(Dkiϕ)(n) and for fixed n we can clearly construct a test function such that
the sequence of it’s ki-th derivatives evaluated at n does not converge.

(iv)

bn,k
w∗−→
k→∞

0⇔ 〈ϕ, 1

k
δ

(n)
0 〉 → 0 ∀ ϕ ∈ D(R)

But this is true as 〈ϕ, 1
kδ

(n)
0 〉 = 1

k (Dnϕ)(0) which clearly converges to 0 for any
fixed n as k goes to infinity.

(v)

bn,k
w∗−→
i→∞

T ⇔ 〈ϕ, 1

ki
δ

(ni)
0 〉 → 〈ϕ, T 〉 ∀ ϕ ∈ D(R)

But 〈ϕ, 1
ki
δ

(ni)
0 〉 = 1

ki
(Dniϕ)(0), so if we allowed for the ni to be unbounded

we could construct a ϕ such that (Dniϕ)(0) > k2
i · i for every i. Then clearly

1
ki

(Dniϕ)(0) would not converge as i goes to infinity.

Putting these properties together we get the claim.
Assume that

(ci) ⊂ C ci = cki,ni = aki,ni + bni,ki

such that ci → T for some T ∈ D ′(R). This can clearly only happen if both
summands converge. We know from (v) that if bni,ki converges, we must have
sup
i∈N

ni <∞. Thus, by passing on to a subsequence if necessary, we can assume that
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the ni are constant. But for fixed ni (iii) tells us that there cannot be an increasing
sequence ki such that aki,ni converges. Therefore we can also deduce that the ki
must be constant. Thus ci is constant, so trivially converging to ci ∈ C. This shows
that C is sequentially closed.
A basic open neighbourhood of 0 ∈ D ′(R) in the weak* topology is given by

Vϕ,ε =
{
T ∈ D ′(R) : |〈ϕ, T 〉| < ε

}
By (ii) there exists N ∈ N big enough such that N 6∈ supp(ϕ) and then 〈ϕ, ak,n〉 = 0
for all k. But from (iv) we know that for fixed N the bN,k converge to 0. So there
exists a K ∈ N such that 〈ϕ, bN,k〉 < ε which means that

〈ϕ, cK,N 〉 = 〈ϕ, aK,N 〉+ 〈ϕ, bN,K〉 < ε

and thus cK,N ∈ Vϕ,ε. So every neighbourhood of 0 contains an element of C, but
from (i) we know that 0 6∈ C, so C is not weak* closed.

q
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A Notation

Topologies introduced within the essay:

• τ - non-complete, metrisable topology on D(Ω) - Notation 2.1

• τΩ - complete, metrisable topology on C∞(Ω) - Notation 2.2

• τK - complete, metrisable topology on DK - Notation 2.2

• τ - complete, non-metrisable topology on D(Ω) - Notation 2.3

• τ̃ - topology on D(Ω), strictly finer than τ - Definition 2.15

• σ - complete, metrisable topology on S (Rn) - Definition 3.2

Notation used potentially without explanation

• supp(f) = {f 6= 0} the support of a function

• ‖x‖ = ‖x‖2 =
n∑
i=1
|xi|2 x ∈ Rn

• L1,loc(Ω) the set of locally integrable functions on Ω

• L (A,B)
The space of bounded linear operators from A to B,where A,B function spaces

• C0(Rn) =

{
f ∈ C(Rn) : lim

|x|→∞
f(x) = 0

}
The space of continuous functions vanishing at infinity

• A◦ the interior of a set A

• x · y the scalar product of x, y ∈ Rn

• L0 the space of measurable functions

• Bn := B(0, n) := {x ∈ Rn : ‖x‖ ≤ n}
The closed ball in Rn centred at 0 with radius n

56



Distributions: Topology and Sequential Compactness
– References –

B References

[1] Graham R. Allan - Introduction to Banach Spaces and Algebras - Oxford University
Press, 2011
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[15] François Trèves - Topological Vector Spaces, Distributions and Kernels - Academic
Press, New York, 1967

[16] J. H. Webb - Sequential convergence in locally convex spaces - Mathematical Pro-
ceedings of the Cambridge Philosophical Society Vol. 64 Issue 02, 1968, pp. 341-364

[17] Albert Wilanski - Modern Methods in Topological Vector Spaces - Mc Graw-Hill,
1978

57


