
Divide and Conquer: Integer Multiplication 

 
The standard integer multiplication routine of two n-digit 

numbers involves n multiplications of an n-digit number by a 

single digit, plus the addition of n numbers, which have at most 

2n digits. All in all, assuming that each addition and 

multiplication between single digits takes O(1), this 

multiplication takes O(n2) time: 

 

       quantity  time 

1) multiplication n-digit by 1-digit  n   O(n) 

2) additions 2n-digit by n-digit max n   O(n) 

 

Total time = n*O(n) + n*O(n) = 2n*O(n) = O(n)*O(n) = O(n2). 

 

(Note: other statements necessary in the integer multiplication 

of large integers are minor compared to the work detailed 

above.) 

 

Now, as we have done with several problems in the past, let's 

consider a divide-conquer solution: 

 

Imagine multiplying an n-bit number by another n-bit 

number, where n is a perfect power of 2. (This will make the 

analysis easier.) We can split up each of these numbers into 

two halves.  

 

Let the first number be I, and the second be J. Let the "left 

half" of the first number be Ih and the "right half" of the first 

number be Il. (h is for high bits, l is for low bits.) Assign Jh and 

Jl similarly. With this notation, we can set the stage for solving 

the problem in a divide and conquer fashion. 

 

 



I x J  = [(Ih x 2n/2) + Il] x [(Jh x 2n/2) + Jl] 

 

 = Ih x Jh x 2n + (Il x Jh + Ih x Jl) x 2n/2 + Il x Jl 

 

Written in this manner we have broken down the problem of 

the multiplication of 2 n-bit numbers into 4 multiplications of 

n/2- bit numbers plus 3 additions. (Note that multiplying any 

binary number by an arbitrary power of two is just a shift 

operation of the bits.) Thus, we can compute the running time 

T(n) as follows: 

 

T(n) = 4T(n/2) + θ (n) 

 

This has the solution of T(n) = θ(n2) by the Master Theorem. 

 

Now, the question becomes, can we optimize this solution in 

any way. In particular, is there any way to reduce the number 

of multiplications done. Some clever guess work will reveal the 

following: 

 

Let P1 = (Ih + Il) x (Jh + Jl) = IhxJh  +  Ihx Jl  +  IlxJh  +  IlxJl 

       P2 = Ih x Jh , and 

       P3 = Il x Jl 

 

Now, note that  

 

P1 - P2 – P3 = IhxJh  +  IhxJl  +  IlxJh  +  IlxJl - IhxJh - IlxJl 

                    = IhxJl  +  IlxJh   

 

Then we have the following: 

 

I x J  = P2 x 2n + [P1 - P2 – P3]x 2n/2 + P3. 

 

 

So, what's the big deal about this anyway? 



 

Now, consider the work necessary in computing P1, P2 and P3. 

Both  P2 and P3 are n/2-bit multiplications. But, P1 is a bit more 

complicated to compute. We do two n/2 bit additions, (this 

takes O(n) time), and then one n/2-bit multiplication. 

(Potentially, n/2+1 bits…)  

 

After that, we do two subtractions, and another two additions, 

each of which still takes O(n) time. Thus, our running time 

T(n) obeys the following recurrence relation:  

 

T(n) = 3T(n/2) + θ(n). 

 

The solution to this recurrence is T(n) = θ(n^(log23)), which is 

approximately T(n) = θ(n1.585), a solid improvement. 

 

Although this seems it would be slower initially because of 

some extra precomputing before doing the multiplications, for 

very large integers, this will save time.  

 

Q: Why won't this save time for small multiplications? 

A: The hidden constant in the θ(n) in the second recurrence is 

much larger. It consists of 6 additions/subtractions whereas the 

θ(n) in the first recurrence consists of 3 additions/subtractions. 

 

Note: Incidentally, I decided to do this problem on my own 

instead of looking at the book solution. As it turns out, I solved 

it slightly differently than the book. Hopefully this illustrates 

that even if "the book" has a particular solution to a problem, 

that doesn't mean another equally plausible and efficient 

solution does not exist. Furthermore, many problems have 

multiple solutions of competing efficiency, so often times, there 

isn't a single right answer. (FYI, there were two fundamentally 

different algorithms that got close to full-credit on the 

pearl/box problem.) 



Example to Illustrate Algorithm 

 
Mutliply 11010011 x 01011001. 

 

To simplify matters, I will do the work in decimal, and just 

show you the binary outputs: 

 

Let I = 11010011, which is 211 in decimal 

Let J = 01011001, which is 89 in decimal. 

Then we have Ih = 1101, which is 13 in decimal, and  

       Il = 0011,  which is 3 in decimal 

Also we have  Jh = 0101, which is 5 in decimal, and  

      Jl = 1001,  which is 9 in decimal 

 

1) Compute Ih + Il = 10000, which is 16 in decimal 

2) Compute Jh + Jl = 1110, which is 14 in decimal 

3) Recursively multiply (Ih + Il) x (Jh + Jl), giving us 11100000, 

     which is 224 in decimal. (This is P1.) 

4) Recursively mutliply Ih x Jh , giving us 01000001, 

     which is 65 in decimal. (This is P2.) 

5) Recursively multiply Il x Jl, giving us 00011011, 

     which is 27 in decimal. (This is P3.) 

6) Compute P1 - P2 – P3 using 2 subtractions to yield 10000100, 

     which is 132 in decimal 

7) Now compute the product as 01000001x100000000 + 

      10000100x  00010000 + 

      00011011 = 

 0100000100000000 (P2x28) 

         100001000000 ((P1- P2- P3) x24) 

 +        00011011  (P3) 

-------------------------------- 

         0100100101011011, which is 18779 in decimal, the correct 

answer.  (This is also 65x28+132 x24+27.) 







Skyline problem 
 

You are to design a program to assist an architect in drawing 

the skyline of a city given the locations of the buildings in the 

city. To make the problem tractable, all buildings are 

rectangular in shape and they share a common bottom (the city 

they are built in is very flat). The city is also viewed as two-

dimensional. A building is specified by an ordered triple 

where and are left and right coordinates, 

respectively, of building i and is the height of the building. In 

the diagram below buildings are shown on the left with triples 

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), 

(23,13,29), (24,4,28) the skyline, shown on the right, is 

represented by the sequence: (1, 11, 3, 13, 9, 0, 12, 7, 16, 3, 19, 

18, 22, 3, 23, 13, 29, 0)  

 
 

 

 

 

You need to Merge two skylines——similar to the merge sort 

 

For instance: there are two skylines, 

 

Skyline A:         a1, h11, a2, h12, a3, h13, …, an, 0 

Skyline B:         b1, h21, b2, h22, b3, h23, …, bm, 0 

 



merge ( list of a’s, list of b’s)    form into   (c1, h11, c2, h21, c3, …, 

cn+m, 0) 

 

Clearly, we merge the list of a's and b's just like in the 

standard Merge algorithm. But, it addition to that, we have to 

properly decide on the correct height in between each set of 

these boundary values. We can keep two variables, one to store 

the current height in the first set of buildings and the other to 

keep the current height in the second set of buildings. Basically 

we simply pick the greater of the two to put in the gap. 

 

After we are done, (or while we are processing), we have to 

eliminate redundant "gaps", such as 8, 15, 9, 15, 12, where 

there is the same height between the x-coordinates 8 and 9 as 

there is between the x-coordinates 9 and 12. (Similarly, we will 

eliminate or never form gaps such as 8, 15, 8, where the x-

coordinate doesn't change.) 

 

Since merging two skylines of size n/2 should take O(n), letting 

T(n) be the running time of the skyline problem for n 

buildings, we find that T(n) satisfies the following recurrence: 

 

T(n) = 2T(n/2) + O(n) 

 

Thus, just like Merge Sort, for the Skyline problem T(n) = 

O(nlgn). 


