
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321985071
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321985071
https://plusone.google.com/share?url=http://www.informit.com/title/9780321985071
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321985071
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321985071/Free-Sample-Chapter

Django Unleashed

This page intentionally left blank

Django Unleashed

Andrew Pinkham

800 East 96th Street, Indianapolis, Indiana 46240 USA

Django Unleashed
Copyright © 2016 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained
herein.

ISBN-13: 978-0-321-98507-1
ISBN-10: 0-321-98507-9

The Library of Congress cataloging-in-publication data is available at http://lccn.
loc.gov/2015033839.
Printed in the United States of America
First printing, October 2015

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book or programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief
Mark L. Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Chris Zahn

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Carol Lallier

Indexer
John S. Lewis

Proofreader
Linda Begley

Editorial Assistant
Kim Boedigheimer

Cover Designer
Mark Shirar

Compositor
DiacriTech

http://lccn.loc.gov/2015033839
http://lccn.loc.gov/2015033839

Contents

Preface xiii

Acknowledgments xvii

About the Author xix

I Django’s Core Features 1

1 Starting a New Django Project: Building a Startup
Categorizer with Blog 3

1.1 Introduction 3

1.2 Website Basics 4

1.3 Understanding Modern Websites 5

1.4 Building Modern Websites: The Problems That
Frameworks Solve and Their Caveats 6

1.5 Django: Python Web Framework 8

1.6 Defining the Project in Part I 11

1.7 Creating a New Django Project and Django Apps 13

1.8 Putting It All Together 21

2 Hello World: Building a Basic Webpage in
Django 23

2.1 Introduction 23

2.2 Creating and Integrating a New App 24

2.3 Building Hello World 25

2.4 Displaying Hello World 26

2.5 Controller Limitations: The Advantages of Models
and Views 27

2.6 Removing Our Helloworld App from Our Project 27

2.7 Putting It All Together 29

3 Programming Django Models and Creating a SQLite
Database 31
3.1 Introduction 31

3.2 Why Use a Database? 32

3.3 Organizing Our Data 32

3.4 Specifying and Organizing Data in Django
Using Models 36

vi Contents

3.5 Using Django to Automatically Create a SQLite
Database with manage.py 49

3.6 Manipulating Data in the Database: Managers
and QuerySets 56

3.7 String Case Ordering 68

3.8 Putting It All Together 71

4 Rapidly Producing Flexible HTML with Django
Templates 73

4.1 Introduction 73

4.2 Revisiting Hello World: The Advantages of
Templates 74

4.3 Understanding Django Templates and
Their Goals 77

4.4 Choosing a Format, an Engine, and a Location
for Templates 77

4.5 Building a First Template: A Single Tag
Object 78

4.6 Building the Rest of Our App Templates 90

4.7 Using Template Inheritance for Design
Consistency 102

4.8 Using Templates in Python with the Template,
Context, and loader Classes 112

4.9 Putting It All Together 118

5 Creating Webpages with Controllers
in Django: Views and URL Configurations 121

5.1 Introduction 121

5.2 The Purpose of Views and URL
Configurations 122

5.3 Step-by-Step Examination of Django’s Use of
Views and URL Configurations 126

5.4 Building Tag Detail Webpage 128

5.5 Generating 404 Errors for Invalid
Queries 132

5.6 Shortening the Development Process with
Django View Shortcuts 135

5.7 URL Configuration Internals: Adhering to App
Encapsulation 143

5.8 Implementing the Views and URL Configurations
to the Rest of the Site 148

Contents vii

5.9 Class-Based Views 155

5.10 Redirecting the Homepage 163

5.11 Putting It All Together 166

6 Integrating Models, Templates, Views, and URL
Configurations to Create Links between
Webpages 169

6.1 Introduction 169

6.2 Generating URLs in Python and Django
Templates 170

6.3 Using the url Template Tag to Build a Navigation
Menu 175

6.4 Linking List Pages to Detail Pages 177

6.5 Creating Links on the Object Detail Pages 184

6.6 Revisiting Homepage Redirection 186

6.7 Putting It All Together 187

7 Allowing User Input with Forms 189

7.1 Introduction 189

7.2 Django Forms as State Machines 190

7.3 Creating TagForm, a Form for Tag Objects 190

7.4 Building the Forms for Startup, Newslink, and
Post Models 206

7.5 Putting It All Together 210

8 Displaying Forms in Templates 211

8.1 Introduction 211

8.2 Creating a New Template to Create
Tag Objects 211

8.3 Creating a New Template to Update
Tag Objects 224

8.4 Creating a New Template to Delete
Tag Objects 226

8.5 Creating Templates for StartupForm,
NewsLinkForm, and PostForm 227

8.6 Reconsidering Template Inheritance 229

8.7 Putting It All Together 231

9 Controlling Forms in Views 233

9.1 Introduction 233

9.2 Webpages for Creating Objects 233

viii Contents

9.3 Webpages for Updating Objects 256

9.4 Webpages for Deleting Objects 268

9.5 Putting It All Together 276

10 Revisiting Migrations 279

10.1 Introduction 279

10.2 Last Week’s Episode (Reviewing Chapter 3) 279

10.3 Data Migrations 280

10.4 Schema Migrations 288

10.5 Putting It All Together 296

11 Bending the Rules: The Contact Us
Webpage 299

11.1 Introduction 299

11.2 Creating a contact App 300

11.3 Creating the Contact Webpage 301

11.4 Splitting Organizer urls.py 308

11.5 Putting It All Together 310

12 The Big Picture 313

12.1 Introduction 313

12.2 Django’s Core 313

12.3 Webpages with Views and URL
Configurations 316

12.4 Generating Webpages Thanks to Models
and Templates 317

12.5 Interacting with Data via Forms 318

12.6 Intervening in Control Flow 319

12.7 Moving Forward 319

II Djangos Contributed Libraries 321

13 Django’s Contributed Library 323

13.1 Introduction 323

13.2 Django’s Source Code (and Versioning) 323

13.3 Django’s contrib Code 325

13.4 Content (Not) Covered 327

13.5 Translation 328

13.6 Putting It All Together 329

Contents ix

14 Pagination: A Tool for Navigation 331

14.1 Introduction 331

14.2 A Word about URLs: Query versus Path 332

14.3 Discovering Django Pagination in the Shell 333

14.4 Paginating the Startup List Webpage 337

14.5 Pagination of Tag List Webpage Using the
URL Path 345

14.6 Putting It All Together 351

15 Creating Webpages with Django Flatpages 353

15.1 Introduction 353

15.2 Enabling Flatpages 353

15.3 Anatomy of the App 355

15.4 Building an About Webpage 355

15.5 Linking to FlatPage Objects 363

15.6 Security Implications of FlatPages 363

15.7 Migrations for Sites and Flatpages 365

15.8 Putting It All Together 371

16 Serving Static Content with Django 373

16.1 Introduction 373

16.2 Adding Static Content for Apps 374

16.3 Adding Static Content for the Project 376

16.4 Integrating Real CSS Content 377

16.5 Putting It All Together 381

17 Understanding Generic Class-Based Views 383

17.1 Introduction 383

17.2 Building Generic Object Detail Pages 384

17.3 Why Use Classes for Generic Views? 393

17.4 Building Generic Object Create Pages 394

17.5 Replacing CBVs with GCBVs 395

17.6 Forgoing GCBVs 400

17.7 Adding Behavior with GCBV 401

17.8 Putting It All Together 416

18 Advanced Generic Class-Based View Usage 417

18.1 Introduction 417

18.2 Rapid Review of GCBV 418

x Contents

18.3 Globally Setting Template Suffix for Update
Views 419

18.4 Generating Pagination Links 419

18.5 Re-creating PostDetail with
DateDetailView 426

18.6 Switching to GCBVs with PostGetMixin in
Post Views 429

18.7 Making PostGetMixin Generic 432

18.8 Fixing NewsLink URL Patterns and Form
Behavior 438

18.9 Putting It All Together 449

19 Basic Authentication 451
19.1 Introduction 451

19.2 Configuring Logging 452

19.3 Sessions and Cookies 456

19.4 auth App Anatomy: The Basics 457

19.5 Adding Login and Logout Features 458

19.6 Putting It All Together 472

20 Integrating Permissions 473

20.1 Introduction 473

20.2 Understanding contenttypes and Generic
Relations 473

20.3 auth App Anatomy: Permission and
Group Models 476

20.4 Protecting Views with Permissions 483

20.5 Conditionally Displaying Template Links 496

20.6 Displaying Future Posts in the Template 497

20.7 Putting It All Together 500

21 Extending Authentication 501

21.1 Introduction 501

21.2 auth App Anatomy: Password Views 501

21.3 Changing Passwords 503

21.4 Resetting Passwords 506

21.5 Disabling Accounts 513

21.6 Creating Accounts 517

21.7 URL Cleanup 544

Contents xi

21.8 Anatomy of the App: Full Dissection 545

21.9 Putting It All Together 547

22 Overriding Django’s Authentication with a
Custom User 549
22.1 Introduction 549

22.2 Creating a User Profile 550

22.3 Custom User 558

22.4 Data Migrations 568

22.5 Adding an Author to Blog Posts 572

22.6 Putting It All Together 576

23 The Admin Library 577
23.1 Introduction 577

23.2 A First Look 577

23.3 Modifying the Admin Controls for Blog Posts 581

23.4 Configuring the Admin for the User Model 593

23.5 Creating Admin Actions 616

23.6 Putting It All Together 618

III Advanced Core Features 619

24 Creating Custom Managers and Querysets 621
24.1 Introduction to Part III 621

24.2 Introduction to Chapter 24 621

24.3 Custom Managers and Querysets 622

24.4 Fixtures 624

24.5 Management Commands 627

24.6 Putting It All Together 648

25 Handling Behavior with Signals 649
25.1 Introduction 649

25.2 Apps and AppConfig 650

25.3 Signals 652

25.4 Putting It All Together 660

26 Optimizing Our Site for Speed 661
26.1 Introduction 661

26.2 Profiling 662

26.3 Limiting Database Queries 663

26.4 Changing Database Behavior Internally 679

xii Contents

26.5 Changing Performance Globally 681

26.6 Putting It All Together 685

27 Building Custom Template Tags 687
27.1 Introduction 687

27.2 Custom Template Filters 688

27.3 Custom Template Tags 690

27.4 Putting It All Together 706

28 Adding RSS and Atom Feeds and a Sitemap 707
28.1 Introduction 707

28.2 RSS and Atom Feeds 707

28.3 Sitemaps 715

28.4 Putting It All Together 724

29 Deploy! 725
29.1 Introduction: Understanding Modern

Deployments 725

29.2 Preparing for Deployment 726

29.3 Deploying to Heroku 738

29.4 Adding Backing Services 741

29.5 Putting It All Together 748

30 Starting a New Project Correctly 749
30.1 Introduction 749

30.2 Preparing a Project 749

30.3 Building the Project 752

30.4 The Road Ahead 754

IV Appendixes 755

A HTTP 757

B Python Primer 761

C Relational Database Basics 765

D Security Basics 769

E Regular Expressions 771

F Compilation Basics 773

G Installing Python, Django, and Your Tools 775

Index 779

Preface

In early 2013, a startup in Austin, Texas, approached me to work on a banking application
using Django. My experience with Django was limited: I had tried to use the tool in 2009
but felt that the learning curve was steep. I wanted to give Django a try but did not have
enough time to learn how to use it given the project’s time constraints (which was fine: we
were forced to use PHP anyway). When I looked at Django again in 2013, I discovered
that it had become far more accessible. For certain, those four years had seen Django
improve by leaps and bounds. However, I had also gained key knowledge working with
web frameworks.

At the end of the project in 2013, I was asked by a different group to take what I had
learned and teach its engineers how to program Django. I liked the work enough that I
started creating a series of videos based on the material. During a test showing of the
videos, one of my reviewers casually commented that the material would be more suitable
and more approachable as a book. I still have a hard time believing that such an innocent
comment resulted in a year and a half of such intense work, but that is the origin of this
book: an off-hand comment.

This book is the book I wish I’d had in 2009 and in 2013. It is a how-to book that
teaches you how to build a webpage from scratch using Django. The first part of the book
(the first 12 chapters) are for my 2009 self. It answers the basic questions that I had when I
started learning Django, and it explains the basics of web frameworks and websites. I think
of the remaining chapters as a response to my 2013 self. They address the needs of more
experienced users. Related materials are available at https://django-unleashed.com.
I hope you find this book useful.

Is This Book for Me?
This book is meant for two types of people:

1. Programmers who have never built a website before and do not know how web
frameworks operate

2. Programmers who have dabbled or used the basics of Django, and who would like
to hone their skills and take advantage of Django’s intermediate features

The book thus caters to both beginners and intermediate users. The only knowledge
assumed is basic programming knowledge and Python.

https://django-unleashed.com

xiv Preface

What This Book Contains
This book is a hands-on, single example: we build and deploy a fully functional website
over the course of the 30 chapters. Each chapter covers a single part of Django and is the
logical next step to building our website while learning how to use Django.

Part I, Django’s Core Features, is an introduction to websites, web frameworks, and
Django. We assume knowledge of programming and Python, but absolutely no knowledge
of the internals of back-end web programming. In these first 12 chapters, we use the core
parts of Django—the parts used in (almost) every website—to create the basics of our
website. This includes interacting with a database, sending HTML to visitors, and
accepting user input in a safe manner.

Part II, Django’s Contributed Library, examines the tools provided by Django that
are helpful when building a website but that are not necessary to every site. Effectively, we
will be adding features to our website to modernize the site and make it full-featured.
From Chapter 13 through Chapter 23, we will see how to integrate CSS into our website,
shorten our code through generic behavior, and add user authentication to our website.

Part III, Advanced Core Features, expands on Django’s basics, detailing how to
improve their use. We see how to take full control of our site, shortening code, optimizing
our site for speed, and expanding behavior. We then deploy our website to the Internet,
hosting the website on Heroku’s managed cloud. Finally, in Chapter 30, we consider what
we would have done differently in our project had we known at the beginning what we
now know at the end of the book.

Conventions Used in This Book
This book is written with a bottom-to-top approach, meaning we start with a lower level
of abstraction (more details) and gradually move up the abstraction ladder (shorter but
more opaque code). If you would prefer to learn with a top-to-bottom approach,
I recommend reading Chapter 12 after Chapter 1, and starting each chapter with the last
section of the chapter, titled “Putting It All Together” throughout the book.

This book features quite a few asides (sometimes called admonitions) meant to help you
understand Django or else to add tidbits of information to your programming toolkit.

Info An aside with basic information that extends or adds to the current content.

Warning! Gotchas, errors, and things to watch out for: these warnings are here to make
your life easier by helping you avoid common mistakes.

Documentation Links to documentation from Django, Python, and other resources,
which enable you to continue to learn material on the subject at hand.

Code Repository This book is heavily tied to the website found at https://django-
unleashed.com, as is the project code found throughout the book and provided in full
on github. Each example from the project has the git commit hash printed with it (and is
a link to the digital version), allowing you to access each commit by adding https://
dju.link/ before the commit hash (this may in turn be followed by a file path). Even so,

https://django-djangounleashed.com
https://django-djangounleashed.com
https://dju.link/
https://dju.link/

Preface xv

every so often a particular commit is worth noting, and these asides will point you toward
the code in the repository.

Ghosts of Django Past and Future The project in this book uses Django 1.8, the
latest version, to create a website. However, it is not uncommon to find earlier versions of
Django in the wild or at your new workplace. These asides aim to give you knowledge of
changes between Django 1.4 and Django 1.8 so you can more easily navigate the various
versions of Django if need be (that said, any new project should strive to use the latest
version of Python and Django).

This page intentionally left blank

Acknowledgments

I have been blessed with an incredible family. I could not have done this without them.
A huge thank you to Amber Gode and Anna Ossowski, both of whom read and

reviewed large portions of this book and without whom this would be a very different
product. Thanks to Wendell Smith, James Oakley, Dave Liechty, Jacinda Shelly, and
Andrew Farrell for all of their hard work and feedback on both the code and the writing.
Special thanks to Amy Bekkerman for always knowing the right question to ask. Thanks
to Harry Percival for catching problems with the code. Thanks to Sasha Méndez for her
feedback and particularly to Debra Williams Cauley of Pearson. She shared my enthusiasm
for this project and enabled me to get this book going. Thank you to Sarah Abraham,
Matt Kaemmerer, and Blake West, who were my very first guinea pigs (in the class that
eventually gave rise to this book). Thanks to Paul Phillips for always grabbing a beer and
listening to me complain about the sometimes frustrating, blinding work of coding and
writing.

Finally, I want to acknowledge the Django and Python Communities. They are an
amazing group of individuals, and I would not have written such an extensive book
without their openness and support.

This page intentionally left blank

About the Author

Andrew Pinkham is a software engineer who grew up in Paris and currently resides in
Austin, Texas. Andrew runs a consulting business called JamBon Software, which
specializes in web and mobile products and also offers Python and Django training. He
prides himself on being an engineer who can communicate complex ideas in simple ways
and is passionate about security and distributed systems. In his free time, Andrew writes
fiction and swims. He is a 2009 graduate of Dartmouth College and can be found online
at andrewsforge.com, or afrg.co for short.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.
When you write, please be sure to include this book’s title and author as well as your

name and email address. We will carefully review your comments and share them with the
author and editors who worked on the book.

Email: errata@informit.com
Mail:

Sams Publishing
ATTN: Reader Feedback
330 Hudson Street
7th Floor
New York, New York 10013

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Chapter 1
Starting a New Django Project:
Building a Startup Categorizer

with Blog

In This Chapter
m The difference between static and dynamic websites
m The difference between the front end and back end of websites
m The HTTP request/response cycle
m The nature of a framework and how it differs from a library
m What it means to be a Python web framework (e.g., Django)
m The outline of the project we will build in Parts I, II, and III

1.1 Introduction
We have a lot to do and a lot to learn, but instead of jumping right in, let’s take a moment
to understand what we’re doing.

Part I is an example meant to demonstrate the core features of Django. Part I is intended
to be read linearly. Jump between chapters at your own peril!

This first chapter is a general introduction to the modern world of building dynamic
websites. We start by introducing web technologies and jargon before taking a look at
Django. Our introduction to Django focuses on what Django is and appropriate ways to use
it. We then outline the project we’ll build, scoping out the content for not only Part I but
also Parts II and III. This overview gives us the opportunity to use Django to generate a
basic project that we’ll use throughout the book.

Warning!
This book assumes knowledge of Python (but not web technologies)! While the
appendix supplies a very short review of Python, this book will not teach you to code
in Python.

4 Chapter 1 Starting a New Django Project

Info
This book is heavily tied to a git repository, which contains all of the project code and
much of the example code found in this book:

https://github.com/jambonrose/DjangoUnleashed-1.8/

If you are reading the digital version of this book, the file paths and commit hashes
in the project examples of this book are actually links that will take you directly to
relevant commit on Github.

If you are reading a physical copy of this book, I have provided the dju.link
shortlink domain. The link http://dju.link/9937ef66c0 will redirect you to the Github
commit diff for the project, just as http://dju.link/9937ef66c0/helloworld/views.py
will redirect you to the views.py file as it exists in the 9937ef66c0 hash.

Additional content may be found on the book’s website:

http://django-unleashed.com/

Info
To get started with this book, you only really need to have Python and Django
installed. However, having tools like git, virtualenvwrapper, and pip will make your
life significantly easier. For install instructions and the full list of tools helpful for
building Django projects, please see Appendix G.

1.2 Website Basics
Before talking about how we build websites, it’s important to understand what a website is
and how it operates.

When we open our browser and enter a URL such as http://google.com, our
computer uses HTTP (the scheme in the URL) to talk to the computer (or set of
computers) found at the google.com domain. The goal of this computer is to give us
information that we are asking for.

A website is a resource stored on a server. A server is simply a computer whose job is to
provide a resource (a website in this case) or service and serve it to you. A website comprises
one or more webpages. A webpage is a discrete entity that contains data. The core
functionality of a website is to send these webpages to people who ask for them. To do this,
we use a protocol (a means of communication) called Hyper Text Transfer Protocol (HTTP).
Formally, a user’s browser sends an HTTP request to a website. The website then sends an
HTTP response containing a webpage. The process is illustrated in Figure 1.1.

Each webpage is uniquely identifiable, usually by using a Uniform Resource Locator
(URL). A URL is a string with specific information, split according to the following
(specified in RFC 3986):1 scheme://network location/path?query#fragments.
For example, Figure 1.2 shows the breakdown for a real URL.

The network location, or authority, is typically either an IP address (such as 127.0.0.1)
or a domain name, as shown in Figure 1.2. The scheme tells the browser not only what to

1. https://dju.link/rfc3986

https://github.com/jambonrose/DjangoUnleashed-1.8/
http://dju.link/9937ef66c0
http://dju.link/9937ef66c0/helloworld/views.py
http://django-unleashed.com/
http://tools.ietf.org/html/rfc3986
http://google.com
https://dju.link/rfc3986

1.3 Understanding Modern Websites 5

WebsiteUser

Step 1.
HTTP Request

Step 2.
HTTP Response

Figure 1.1: HTTP Request/Response Cycle Diagram

Uniform Resource Locator (URL)

http://AndrewsForge.com/article/upgrading-django-to-17/

Scheme Top-Level Domain Path

Domain
(Network Location)

Figure 1.2: URL Components

get but how to get it. The URL https://google.com/ tells the browser to use the
HTTPS protocol (Secure HTTP) to go to the Google website and ask for the webpage
found at / (the last slash on the URL is the path; if omitted, the slash is added implicitly).

In Part I, we only need to use scheme, network location, and path portions of our URLs.
In Chapter 14: Pagination: A Tool for Navigation, we’ll see how to make use of the query
with Django. We won’t make use of fragments, as they’re typically used directly in HTML as
anchors (links) internal to a single webpage.

The request/response loop of the HTTP protocol and the URL are the basis of every
website. Originally, it was the only part of the website. Today, websites are more
full-featured and more complex.

1.3 Understanding Modern Websites
HTTP is a stateless protocol: it doesn’t know who you are or where you’ve been. It knows
only what you’ve just asked it for. In the early days of the Internet, each webpage on a site
was a file, such as a text file or a PDF. Websites were static.

Today, many websites are dynamic. We now interact with websites: instead of just
asking the server to send us a file, we write comments on videos, blog about the best web
framework ever, and tweet cat pictures to our friends. To enable these activities, webpages
must be generated (computed) for each user based on new and changing data. We’ve had to
add a number of technologies on top of HTTP to determine state (such as sessions, which
we’ll see in Chapter 19: Basic Authentication), and we now have entire languages and
systems (like Django!) to make the dynamic generation of webpages as easy as possible. Our
original HTTP loop now has an extra step between the request and response, as shown in
Figure 1.3.

This dynamic generation of webpages is referred to as back-end programming, as
opposed to front-end programming. Front-end programming involves creating the

https://google.com/

6 Chapter 1 Starting a New Django Project

WebsiteUser

Step 1.
HTTP Request

Step 3.
HTTP Response

Step 2.
Computation

Figure 1.3: HTTP Request/Response Cycle Diagram

behavior of the webpage once it has already been generated by the back end. We can think
of the combined experience in four steps:

1. A user’s browser issues a request for a page.

2. The server (or back end) generates a markup file (typically HTML) based on recorded
information and information provided by the user; this file in turn points the user to
download associated content such as JavaScript, which defines behavior, and
Cascading Style Sheets (CSS), which define style such as color and fonts. The entire
set of items defines the webpage.

3. The server responds to the user’s browser with this markup file (typically causing the
browser to then ask for the other content such as CSS and JavaScript).

4. The user’s browser uses the information to display the webpage. The combination of
HTML (content and structure), CSS (style), and JavaScript (behavior) provides the
front-end part of the website.

While front-end programming certainly provides for a dynamic experience, the words
dynamic webpage typically refer to a webpage that is computed on the back end. It can be
difficult to distinguish the difference between front-end and back-end programming because
modern websites strive to blur the difference to create a more seamless user experience. In
particular, websites known as single-page applications blur this line to the point that
step 2 is seriously mangled. However, the distinction is still important, as the HTTP
protocol remains between the user and the server and the tools for front-end and back-end
programming are typically quite different.

Furthermore, this book does not cover front-end programming. We will see how to
serve static content such as CSS and JavaScript in Chapter 16: Serving Static Content
with Django, but we will not write a single line of either. This book is dedicated entirely to
back-end programming and generating dynamic webpages with Django.

1.4 Building Modern Websites: The Problems
That Frameworks Solve and Their Caveats

Very few people program dynamic websites from scratch anymore (i.e., without relying on
other people’s code). It is a difficult, tedious process, and it is typically not a good use of
time. Instead, most developers rely on frameworks.

1.4 Building Modern Websites: The Problems That Frameworks Solve and Their Caveats 7

A framework is a large codebase, or collection of code, meant to provide universal,
reusable behavior for a targeted project. For example, a mobile framework, such as those
provided by Apple and Google for their mobile phones or smartphones, provides key
functionality for building mobile apps. Consider the many touch actions on the iPhone: a
user can tap his or her screen or hold, slide, turn with two fingers, and more. Developers do
not need to worry about figuring out what touch action the user has performed: Apple’s
framework handles that task for developers.

Using frameworks offers enormous advantages. The most obvious is the removal of
tedious and repetitive tasks: if iPhone apps require specific behavior, then the framework
will provide it. This saves time for developers not only because of the provided functionality,
which allows developers to avoid coding entirely, but also because the code provided is
tested by many other developers on a wide variety of projects. This widespread testing is
particularly important when it comes to security—a group of developers working on a
framework are more likely to get sensitive components right than is any single developer.

Frameworks are different from other external codebases, such as libraries, because they
feature inversion of control. Understanding inversion of control is key to properly using
frameworks. Without a framework, the developer controls the flow of a program: he or she
creates behavior or pulls behavior into the code project by calling functions from a library or
toolkit. By contrast, when using a framework, the developer adds or extends code in specific
locations to customize the framework to the program’s requirements. The framework,
which is essentially the base of the program, then calls those functions implemented by the
developer. In this way, the framework, not the developer, dictates control flow. This is
sometimes referred to as the Hollywood principle: “Don’t call us, we’ll call you.” We can
easily demonstrate the difference in pseudocode (Example 1.1).

Example 1.1: Python Code

Using a Library
def my_function(*args):

...
library.library_function(*args)
...

Using a framework
def my_function(*args):

...

framework.run(my_function)

Inversion of control may seem counterintuitive or even impossible. How may the robot
choose its behavior? Remember: the framework is built by other developers, and they are
the ones who specify the behavior followed by the framework. As a developer using a
framework, you are simply adding to or directing the behavior provided by other developers.

Using a framework has a few caveats. A framework may offer significant time savings,
reusability, and security and may encourage a more maintainable and accessible codebase,

8 Chapter 1 Starting a New Django Project

but only if the developer is knowledgeable about the framework. A developer cannot fill in
all the gaps (by adding or extending code) expected by the framework until he or she
understands where all the gaps are. Learning a framework can be tricky: because a
framework is an interdependent system, using a part of the framework may require
understanding another part of the system (we’ll see this in Chapter 6: Integrating Models,
Templates, Views and URL Configurations to Create Links between Webpages), which
requires knowledge and tools from the three chapters preceding it. For this reason, using a
framework requires investing significant overhead in learning the framework. In fact, it will
take all of Part I of this book to explain the core inner workings of Django and to gain a
holistic understanding of the framework. But once there, we’ll be off to the races.

Despite this overhead, it is in your interest to use a framework and to spend the
time to learn how to use it properly. Colloquially, developers are told, “Don’t fight the
framework.”

1.5 Django: Python Web Framework
As outlined in Section 1.3, a website must always

1. Receive an HTTP request (the user asks for a webpage)

2. Process the request

3. Return the requested information as an HTTP response (the user sees the webpage)

Django is a free and open-source Python back-end web framework that removes the tedium
of building websites by providing most of the required behavior. Django handles the
majority of the HTTP request and response cycle (the rest is handled by the server Django
runs on top of). Developers need only focus on processing the HTTP request, and Django
provides tools to make even that easy.

All Django projects are organized in the same way, largely because of the framework’s
inversion of control but also because it makes navigating existing Django projects much
easier for developers who, for instance, maintain the code or step into a job mid-project.

Django’s project structure is most often described according to the
Model-View-Controller (MVC) architecture because it makes the framework easier to learn.
Originally, MVC was a very specific architecture, but it has become an umbrella term for
libraries that are patterned after the following idea (illustrated in Figure 1.4):

m The Model controls the organization and storage of data and may also define
data-specific behavior.

m The View controls how data is displayed and generates the output to be presented to
the user.

m The Controller is the glue (or middleman) between the Model and View (and the
User); the Controller will always determine what the user wants and return data to
the user, but it may also optionally select the data to display from the Model or use
the View to format the data.

1.5 Django: Python Web Framework 9

View
(style,

or format)

Controller
(the brain,
or glue)

Model
(structured data)

Figure 1.4: MVC Architecture Diagram

Most often, literature will state that different pieces of Django map to different pieces of
MVC. Specifically,

m Django models are an implementation of MVC Models (Chapter 3: Programming
Django Models and Creating a SQLite Database).

m Django templates map to MVC Views (Chapter 4: Rapidly Producing Flexible
HTML with Django Templates).

m Django views and URL configuration are the two pieces that act as the MVC
Controller (Chapter 5: Creating Webpages with Controllers in Django).

Warning!
Django and MVC use the word view to mean different things.

m The View portion of MVC determines how data is displayed.
m In Django, a view refers to something that builds a webpage and is part of the

implementation of MVC Controllers.

Django views and MVC Views are unrelated. Do not confuse them.

The truth is a little bit more complicated. Django projects aren’t truly MVC, especially if
we abide by the original definition. We will discuss this topic in much more depth in
Chapter 12: The Big Picture, once we have a better grasp of all of the moving pieces. For
the moment, because it can help beginners organize the framework, we continue to use the
(more modern and vague version of) MVC architecture to make sense of the framework.

If we combine our diagrams of the HTTP request/response loop and MVC architecture
as in Figure 1.5, we get a much better picture of how Django works.

The Controller, the subject of Chapter 5, represents the heart of Django and is the only
part of the MVC architecture that is necessary to generate a webpage. However, most

10 Chapter 1 Starting a New Django Project

Database

View
Data Output

C
om

pu
te

r

Data Input

Django Website

Controller

Model

User

Figure 1.5: Application of MVC Architecture Diagram

browsers expect data to be returned by the server in specific formats, such as XML, HTML,
or HTML5. The View encapsulates the tools Django supplies for easily outputting such data
and is the subject of Chapter 4. Finally, we typically need to use persistent data when
generating content in the Controller. The Model section represents the tools for structuring
and storing data and is the subject of Chapter 3.

Info
You may have noticed that the popular format JSON is missing from the list of formats
that the View section of Django outputs (XML, HTML, HTML5). Django doesn’t
need to supply a tool for outputting JSON because Python, which Django is built in,
provides a JSON serializer.

You’ll note that the Model section is connected to a database. The Model itself does not
store data but instead provides tools for communicating with databases. We discuss the
merits of databases in more depth in Chapter 3. For the moment, just note that Django
provides the tools to communicate with several different databases, including SQLite,
MySQL, PostgreSQL, and Oracle, which is yet another huge time-saver for us.

Django provides many more tools to make building websites easy. For instance, database
schema migrations (Chapter 3 and Chapter 10: Revisiting Migrations), which help with
managing models, and an authentication system (Chapter 19 and Chapter 22: Overriding
Django’s Authentication with a Custom User) are built in. What’s more, Django is Python
code, allowing developers to use any standard or third-party Python library. Python libraries
afford developers an enormous amount of power and flexibility.

1.6 Defining the Project in Part I 11

Django prides itself on being the “web framework for perfectionists with deadlines.”
Django provides the functionality needed for every website. The framework also comes
with tools to make common website features easy to implement. This “batteries included”
approach is why tens of thousands of developers use Django. Released into the wild in 2005,
Django powers many websites, including Instagram, Pinterest, Disqus, and even The Onion.
The core team of Django developers rigorously and regularly test Django, making it both
fast and safe.

Django follows the Don’t Repeat Yourself (DRY) principle. You will never need to
repeat your code if you don’t want to (of course, Django won’t stop you if you do).
Additionally, Django adheres to the Python philosophy that explicit is better than implicit.
Django will never assume what you want and will never hide anything from you. If there is
a problem, Django will tell you.

As mentioned in Section 1.3, despite all of the things Django will do for you, it will not
build or help build front-end behavior for you (this is the purview of JavaScript apps and the
browser). Django is a back-end framework, only one half of the equation for building a
modern website. It allows you to dynamically create HTML for the front end (Chapter 4)
and to intelligently provide the content necessary for a modern front end (Chapter 16), but
it does not provide the tools to build dynamic browser behavior for the user. However,
before you toss this book in a corner and walk away from Django forever, note that a back
end is necessary before a front end can exist. A back end may be only half of the equation, but it
is the first half: without the request/response loop, there is no website.

1.6 Defining the Project in Part I
The purpose of Django Unleashed is to teach Django by example. The goal of Part I of this
book is to teach you the core fundamentals of Django, the parts of the system required by
every website, and how MVC (mostly) applies to that system. To accomplish these tasks, we
begin building a website that is self-contained to Django: we purposefully avoid any
external libraries built for Django in order to better focus on the framework itself. At each
step of the building process, you are introduced to a new Django feature, providing insight
into the framework. By the end of Part I, these insights will allow you to see exactly how
Django operates and adheres to MVC. Note that the book builds on this project all the way
through Part III. Even then, the goal is not to build a production-quality website but rather
to teach you via example. We nonetheless discuss how to begin and build a production
website in Chapter 30.

1.6.1 Selecting Django and Python Versions
Django 1.8 is the latest and greatest Django version and is what every new project should
use. Although this book includes informative notes about older versions, please do not use
deprecated versions for new projects because these versions do not receive security updates.

Django 1.8 supports Python 2.7 and Python 3.2+ (Python 3.2, Python 3.3, and
Python 3.4). When starting a new project, developers are left with the choice of which
Python version to use for their project. The choice, unfortunately, is not as simple as picking
the latest version.

12 Chapter 1 Starting a New Django Project

Python 3 is the future, as Python 2.7 is officially the last Python 2 version. For a website
to work for as long as possible, it becomes desirable to create Django websites in Python 3.
However, Python 2 is still commonly used, as Django has only officially supported Python 3
since version 1.6, released in November 2013. What’s more, enterprise Linux systems still
ship with Python 2 as the default, and tools and libraries built for Django may still require
Python 2 (as our site in Parts I, II, III is self-contained to Django, we do not need to worry
about this decision yet, but we return to the issue in Chapter 30).

When creating reusable tools for a Django project, the gold standard is thus to write code
that works in both Python 3 and Python 2. The easiest way to do this is to write code
intended for Python 3 and then make it backward compatible with Python 2.7.

Our project is a simple website not aimed at being reused. In light of this and the many
guides written about writing Python code that runs in both 2 and 3, our project will be
built to run only in Python 3. Specifically, we use Python 3.4 (there is no technological
reason to choose 3.2 or 3.3 over 3.4). This will further allow us to focus on Django itself
and not get distracted by compatibility issues.

1.6.2 Project Specifications
Website tutorials have gone through phases. Tutorials started by teaching developers how to
build blogs. Some disparaged these yet-another-blog tutorials as being passé. Writers
switched first to building forums, then polls, and finally to-do lists.

In the real world, if you needed any of these applications, you would download an
existing project such as WordPress or sign up for a service such as Medium. Rather than
weeks of development, you would have a website by the end of an afternoon. It might not
be as you envisioned your perfect site, but it would be good enough.

One of Django’s major strengths is its precision. Django allows for the rapid creation of
unusual websites that work exactly as the developer desires. It is in your interest for this
book to build a website that is not available on the Internet already. The difficulty with
building an unusual website is that the material tends to be less accessible.

Given the approachable nature of a blog, we will build a blog with special features. A
blog is a list of articles, or blog posts, published on a single site and organized by date. Blog
authors may choose to write about anything in each post, but they usually stick to a general
theme throughout the entire blog. Our blog focuses on news relating to technology startup
businesses. The goal is to help publicize startups to blog readers.

The problem with most blogs is that their topics are not well organized. Blogging
platforms typically label blog posts with tags, leading writers to create tags for each item they
blog about. A blog about startups would likely have a tag for each startup written about. We
use Django to improve our blog’s topic organization.

In our website, we expand blog functionality by codifying the creation of startups. Each
startup will be its own object, not a tag. The advantage of making startups their own objects
is that it allows us to add special information about them. We can now display information
related to the business. We can list a description and a date, and we can even link to external
articles written about the startup. These capabilities would not be possible if the startup were
simply a tag.

1.7 Creating a New Django Project and Django Apps 13

Furthermore, we may organize startups with the same tags we use to label the blog posts.
For example, we may label Startup A with the Mobile and Video Games tags. We could
then tag Startup B with Mobile and Enterprise. These categories make organizing data
simple but flexible. If we browse to the Mobile tag, the website uses that tag to list both
Startup A and Startup B as well as any blog posts with the tag. For our website, we also
enable blog posts to be directly connected to startup objects. Blog posts will thus exist for
news about the site itself or to announce news about startups in our system. Our website
makes startups far more discoverable than a regular blog website would.

In Part I, we focus on the most basic features. We create the blog, startup, and tagging
system in Django. The goal is to make Django’s core, features necessary to every website, as
evident as possible.

In Part II, we allow authenticated users to log in. The public will be able to read any of
the content of the website. Authenticated users will be able to submit articles, startups, and
tags. These content suggestions will be reviewable by you, the site administrator.

In Part III, we allow for tag inheritance. If we write a blog post about Startup A, the tags
labeling the startup will now also label the blog post.

It benefits us to list the webpages we will build in Part I:

1. A page to list tags

2. A page to list startups

3. A page to list blog posts

4. A page for each tag

5. A page for each startup

6. A page for each blog post (which also lists news articles)

7. A page to add a new tag

8. A page to add a new startup

9. A page to add a new blog post

10. A page to add and connect news articles to blog posts

1.7 Creating a New Django Project and
Django Apps

In the following section, we create a new Django project in preparation for the website laid
out in the last section. We then create Django apps, which are like small libraries within our
project (we go over them in detail when we create them). By the end, we will be ready to
start coding our website.

We do not cover how to install Django here. The official website has an excellent and
updated guide2 to do this. Just in case, however, I have supplied my own writing on the
subject in Appendix G.

2. https://dju.link/18/install

https://docs.djangoproject.com/en/1.8/topics/install/
https://docs.djangoproject.com/en/1.8/topics/install/
https://dju.link/18/install

14 Chapter 1 Starting a New Django Project

1.7.1 Generating the Project Structure
Inversion of control means that Django already provides most of the code required to run a
website. Developers are expected to supplement or extend the existing code so that the
framework may then call this code; by placing code in key places, developers instruct the
framework how to behave according to the developers’ desires. Think of it as creating a
building: even though many of the tools and contractors are supplied, the developer must
still give these contractors orders, and the process requires a very specific scaffolding.
Originally, building the scaffolding was a real pain, as developers had to manually account
for framework conventions. Luckily, modern frameworks supply tools that generate the
correct scaffolding for us. Once this scaffolding is in place, we can instruct the various
contractors to behave in specific ways.

With Django correctly installed (please see Appendix G), developers have access to the
django-admin command-line tool. This command, an alias to the django-admin.py
script, provides subcommands to automate Django behavior.

Ghosts of Django Past
If you are using a version of Django prior to 1.7, then the alias django-admin will
be unavailable. You will instead have to invoke the actual script, django-admin.py.

Our immediate interest with django-admin is the startproject subcommand,
which automatically generates correct project scaffolding with many, but not all, of the
expected Django conventions. To create a project named suorganizer (start up
organizer), you can invoke the command shown in Example 1.2.

Example 1.2: Shell Code

$ django-admin startproject suorganizer

Inside the new folder by the name of our new project, you will find the folder structure
shown in Example 1.3.

Example 1.3: Shell Code

$ tree .
.

manage.py
suorganizer

--init--.pyr
settings.py
urls.py
wsgi.py

1 directory, 5 files

1.7 Creating a New Django Project and Django Apps 15

Please note the existence of two directories titled suorganizer. To avoid confusion
between the two directories, I distinguish the top one as root, or /, throughout the rest of
the book. As such, instead of writing suorganizer/manage.py, I will refer to that file
by writing /manage.py. Importantly, this means /suorganizer/settings.py refers
to suorganizer/suorganizer/settings.py. What’s more, all commands executed
from the command line will henceforth be run from the root project directory, shown in
Example 1.4.

Example 1.4: Shell Code

$ ls
manage.py suorganizer

Let’s take a look at what each file or directory does.

m / houses the entire Django project.
m /manage.py is a script much like django-admin.py: it provides utility functions.

We will use it in a moment. Note that it is possible to extend manage.py to perform
customized tasks, as we will see in Part II.

m /suorganizer/ contains project-wide settings and configuration files.
m /suorganizer/ init .py is a Python convention: it tells Python to treat the

contents of this directory (/suorganizer/) as a package.
m /suorganizer/settings.py contains all of your site settings, including but not

limited to

m timezone
m database configuration
m key for cryptographic hashing
m locations of various files (templates, media, static files, etc)

m /suorganizer/urls.py contains a list of valid URLs for the site, which tells your
site how to handle each one. We will see these in detail in Chapter 5.

m /suorganizer/wsgi.py stands for Web Server Gateway Interface and contains
Django’s development server, which we see next.

1.7.2 Checking Our Installation by Invoking Django’s
runserver via manage.py

While Django has only created a skeleton project, it has created a working skeleton project,
which we can view using Django’s testing server (the one referenced in /suorganizer/
wsgi.py). Django’s /manage.py script, provided to every project, allows us to quickly get
up to speed.

16 Chapter 1 Starting a New Django Project

Django requires a database before it can run. We can create a database with the
(somewhat cryptic) command migrate (Example 1.5).

Example 1.5: Shell Code

$./manage.py migrate

You should be greeted with the output (or similar output) shown in Example 1.6.

Example 1.6: Shell Code

Operations to perform:
Synchronize unmigrated apps: staticfiles, messages
Apply all migrations: contenttypes, auth, admin, sessions

Synchronizing apps without migrations:
Creating tables...

Running deferred SQL...
Installing custom SQL...

Running migrations:
Rendering model states... DONE
Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying sessions.0001_initial... OK

We’ll see exactly what’s going on here starting in Chapter 3 and in detail in Chapter 10.
For the moment, let’s just get the server running by invoking the runserver command
shown in Example 1.7.

Example 1.7: Shell Code

$./manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).
May 2, 2015 - 16:15:59
Django version 1.8.1, using settings 'suorganizer.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

1.7 Creating a New Django Project and Django Apps 17

Ghosts of Django Past
In versions prior to Django 1.7, the command above will not work, as manage.py
does not have execute permissions. Run chmod +x manage.py to give
manage.py the needed permission, or else execute it by invoking it through Python.
For example: python manage.py runserver

If you navigate your browser to http://127.0.0.1:8000/, you should be greeted
with the screen printed in Figure 1.6.

Django is running a test server on our new project. As the project has nothing in it,
Django informs us we need to create an app using /manage.py.

To quit the server, type Control-C in the terminal.

1.7.3 Creating New Django Apps with manage.py
In Django nomenclature, a project is made of any number of apps. More expressly, a project
is a website, while an app is a feature, a piece of website functionality. An app may be a blog,
comments, or even just a contact form. All of these are encapsulated by a project, however,
which is the site in its totality. An app may also be thought of as a library within the project.
From Python’s perspective, an app is simply a package (Python files can be modules, and a
directory of modules is a package).

We have two features in our site: (1) a structured organization of startups according to
tags and (2) a blog. We will create an app for each feature.

As with a project, Django supplies a way to easily create the scaffolding necessary to build
an app. This time, we invoke /manage.py to do the work for us, although we could just as
easily have used django-admin. Let’s start with the central focus of our site, our startup
organizer, and create an app called organizer, as shown in Example 1.8.

Figure 1.6: Runserver Congratulations Screenshot

http://127.0.0.1:8000/

18 Chapter 1 Starting a New Django Project

Example 1.8: Shell Code

$./manage.py startapp organizer

The directory structure of the project should now be as shown in Example 1.9.

Example 1.9: Shell Code

$ tree .
.

manage.py
organizer

--init--.py
admin.py
migrations

--init--.py
models.py
tests.py
views.py

suorganizer

--init--.py
settings.py
urls.py
wsgi.py

3 directories, 11 files

Ghosts of Django Past
Prior to version 1.7, Django did not supply a migration system, and thus the
migrations directory in projects older than that version will not appear, or will
actually belong to a tool called South. Be careful about this when using projects built
in early Django versions!

Info
You will likely also find files ending in .pyc. These are compiled Python files and can
be safely ignored. However, if you find them as distracting as I do, you can use the
following shell command to remove them: find . -name '*.pyc'-delete.
Python will re-create them the next time your run your site.

Let’s take a look at the new items.

m /organizer/ contains all the files related to our new organizer app. Any file
necessary to running our blog will be in this directory.

m /organizer/ init .py is a Python convention: just as for
/suorganizer/ init .py, this file tells Python to treat the contents of this
directory (/organizer/) as a package.

m /organizer/admin.py contains the configuration necessary to connect our app to
the Admin library supplied by Django. While Admin is a major Django feature, it is

1.7 Creating a New Django Project and Django Apps 19

not part of Django’s core functionality, and we will wait until Part II to examine it,
along with the rest of the Django Contributed Library (apps included with Django’s
default install). If you are very impatient, you should be able to jump to Chapter 23:
The Admin Library as soon as you’ve finished reading Chapter 5.

m /organizer/migrations/ is a directory that contains data pertaining to the
database tables for our app. It enables Django to keep track of any structural changes
the developer makes to the database as the project changes, allowing for multiple
developers to easily change the database in unison. We will see basic use of this
database table in Chapter 3 and revisit the topic in Chapter 10.

m /organizer/migrations/ init .py marks the migration directory as a
Python package.

m /organizer/models.py tells Django how to organize data for this app. We do see
how this is done in the next chapter.

m /organizer/tests.py contains functions to unit test our app. Testing is a book
unto itself (written by Harry Percival), and we do not cover that material.

m /organizer/views.py contains all of the functions that Django will use to process
data and to select data for display. We make use of views starting in Chapter 2 but
won’t fully understand them until Chapter 5.

Django encapsulates data and behavior by app. The files above are where Django will
look for data structure, website behavior, and even testing. This may not make sense yet, but
it means that when building a site with Django, it is important to consider how behavior is
organized across apps. Planning how your apps interact and which apps you need, as we did
earlier in this chapter, is a crucial step to building a Django site.

We can create our blog app in exactly the same way as the organizer app, as shown in
Example 1.10.

Example 1.10: Shell Code

$./manage.py startapp blog

Note that the directory structure and all the files generated are exactly the same as for
our organizer app.

1.7.4 Connecting Our New Django Apps to Our Django Project in
settings.py

Consider for a moment the difference between /organizer/ (or /blog/) and
/suorganizer/. Both encapsulate data, the former for our organizer (or blog) app and
the second for our project-wide settings, a phrase that should mean more now that we know
the difference between an app and a project (reminder: a project is made up of one or
more apps).

We must now connect our new apps to our project; we must inform our project of the
existence of organizer and blog. On line 33 of /suorganizer/settings.py, you will
find a list of items titled INSTALLED APPS. Currently enabled in our project are a list of

20 Chapter 1 Starting a New Django Project

Django contributed apps (you can tell because these items all start with django.contrib),
some of which we examine in Part II. We append the list with our new apps, as shown in
Example 1.11.

Example 1.11: Project Code
suorganizer/settings.py in ba014edf45

33 INSTALLED_APPS = (
34 'django.contrib.admin',
35 'django.contrib.auth',
36 'django.contrib.contenttypes',
37 'django.contrib.sessions',
38 'django.contrib.messages',
39 'django.contrib.staticfiles',
40 'organizer',
41 'blog',
42)

Info
While the order of INSTALLED APPS typically does not matter, there are instances in
which apps listed prior to others will be given precedence. We see an instance of this
in Chapter 24.

Let’s run our test server again (Example 1.12).

Example 1.12: Shell Code

$./manage.py runserver 7777
Performing system checks...

System check identified no issues (0 silenced).
February 10, 2015 - 19:09:25
Django version 1.8.3, using settings 'suorganizer.settings'
Starting development server at http://127.0.0.1:7777/
Quit the server with CONTROL-C.

Info
Note that this time, I’ve run the server with an extra parameter that specifies which
port I want to run on. Instead of the default port 8000, the server may now be
accessed on port 7777 via URL http://127.0.0.1:7777/. By convention,
http://127.0.0.1 will always point to your own computer. Any port may be
specified, but a port number below 1024 may require superuser privileges (which are
typically attained via sudo). The ability to specify a port is useful when the 8000 port

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/ba014edf45/suorganizer/settings.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/ba014edf45
http://127.0.0.1:7777/
http://127.0.0.1

1.8 Putting It All Together 21

is already taken. For instance, you may be testing another Django website at the same
time or have another program that defaults to 8000. To make the server publicly
available on port 80 (the standard port for HTTP; a very dangerous thing to do), you
could use the command sudo ./manage.py runserver 0.0.0.0:80.

Navigating to the page in your browser, you should be greeted by exactly the same page
in your browser, telling you once again to

1. Create a new App

2. Configure our site URLs

We have successfully done item 1 and will demonstrate item 2 in our Hello World
example in the next chapter.

We will return to our main project in Chapter 3, where we organize our data and create
a database. In Chapter 4, we create templates to display data. In Chapter 5, we build our
URL configuration (expanding on item 2 above) and the rest of the MVC Controller.
These activities will effectively reveal how Model-View-Controller theory maps to Django.

1.8 Putting It All Together
The chapter outlined the project to be built in Parts I, II, and III of the book and
introduced Django.

Django is a Python web framework based on MVC architecture, which signifies that
Django removes the tedium of building websites by supplying a universal, reusable codebase.
This approach saves developers time in the long run but creates an overhead cost of having
to learn the interdependent system. Like any framework, Django works on the principle of
inversion of control, sometimes called the Hollywood principle (“Don’t call us, we’ll call
you”), which explains why we write code in locations dictated by Django convention.
Specifically, in keeping with MVC architecture, we know that we need only worry about
the Models, Views, and Controllers and that Django will glue them together and handle
everything else.

In this chapter, we used django-admin to generate the project scaffolding necessary for
Django. This scaffolding allows us to add code in specific locations, according to inversion
of control.

We not only generated a Django project but also created the apps necessary for any
project: a project is a website, whereas an app is a feature, a piece of website functionality.
The site we’ve set out to build is a startup categorization system paired with a blog. Given
the two features, we created two apps using Django’s manage.py tool. We then used this
tool to run a test server, checking our work. The test server informed us that, now that we
have our apps created and connected to our project via settings.py, we should
configure our site URLs. We take a quick look at this in the next chapter, but we wait until
Chapter 5 before we really get there.

This book seeks to teach Django by example. Part I teaches Django’s core, or the pieces
of the framework that are typically required for every project. Django organizes project data
according to MVC theory. Chapters 3, 4, and 5 each demonstrate a core Django feature,
each an aspect of MVC. In Chapter 3, we organize our data and create a database.

22 Chapter 1 Starting a New Django Project

In Chapter 4, we create the display output for our data. In Chapter 5, we connect our data
to our display, creating webpages by programming Django views, pointed to by URL
configurations.

Before we jump into MVC, however, Chapter 2: Hello World: Building a Basic
Webpage in Django illustrates a basic Django site, which sheds light on the power of MVC.

This page intentionally left blank

Chapter 5
Creating Webpages with

Controllers in Django: Views
and URL Configurations

In This Chapter
m Build webpages with views and URL patterns
m Learn the purpose behind views and URL configurations
m Build views using both Python functions and objects
m Learn the differences between function and class-based views
m Make programming quicker with Django shortcuts
m Connect URL configurations to encapsulate behavior by app
m Preview webpage redirection

5.1 Introduction
In Chapter 2: Hello World: Building a Basic Webpage in Django, we saw that the
Controller is the only part of Django actually required to make a webpage (the relevant
diagram is reprinted in Figure 5.1). However, we immediately ran into problems: we had no
way to easily fetch and format data. Because the main function of websites revolves around
data, the Controller is often described as the glue between Model and View despite the
Controller’s independence.

In this chapter, we return to the Controller, seen earlier in Chapter 2 and Chapter 4:
Rapidly Producing Flexible HTML with Django Templates. We first re-examine how the
two parts of the Controller, URL configurations and views, interact. We then use the
cumulative knowledge we have gained to build dynamic webpages.

The Controller is central to Django and comes with a number of options. Once we have
the basics, we look at how to handle problems that occur in views. We then look at ways to
more rapidly code views (at the cost of developer control). Coding views enable us to very
quickly build all the webpages for our site.

122 Chapter 5 Creating Webpages with Controllers in Django

View
Data Output

C
om

pu
te

r

Data Input

Django Website

Controller

Model

Database

User

Figure 5.1: Application of MVC Architecture Diagram

Before we finish the chapter, we also examine two special methods for creating
Controllers, which become important later in the book.

This chapter assumes knowledge of HTTP and regular expressions. Primers on both are
provided in Appendix A and Appendix E, respectively.

5.2 The Purpose of Views and URL
Configurations

A webpage consists of (1) the data contained in the webpage and (2) the URL (location) of
the webpage. Django follows this abstraction by splitting the Controller into two parts.
Django views give Django the data of the webpage. The URL associated with each view is
listed in the URL configuration.

Warning!
For many beginners, the name of the Controller causes confusion: Django views are
unrelated to MVC architecture’s View. Django views are one half of the Controller.
Django templates map to MVC’s Views. To differentiate between the two, I capitalize
View when referring to MVC and use lowercase view when referring to Django.

In the rest of this section, we expand on the nature and purpose of the URL
configuration and views. To make the material more tangible, we then step through what
happens when Django receives a request, detailing the actions the Controller takes.

5.2 The Purpose of Views and URL Configurations 123

5.2.1 Django URL Configurations
As discussed in Chapter 1, Section 1.2, webpages were originally quite basic. The webpage’s
data were contained in a flat file (a text file, an HTML file, or a PDF file, for instance). The
URL was literally the location of the file on the server. If a user directed his or her browser
to http://awebsite.com/project1/important.pdf, the awebsite.com server
would go to the project1 directory and fetch the important.pdf file to give to the
user’s browser.

Because modern web frameworks generate webpages dynamically, URLs have ceased to
be the actual path to the data. A URL is now an abstraction, and it represents the logical
path to data. For instance, the path /startup/jambon-software obviously requests
information about the JamBon Software startup, whereas the path
/blog/2013/1/django-training/ is clearly a request for a blog post about Django
classes published in January 2013.

The name Uniform Resource Locator is thus not quite right anymore, as we are not actually
requesting the location of the data. Instead, we are simply identifying it. Appropriately,
URLs are a direct subset of Uniform Resource Identifiers (URIs), as illustrated in
Figure 5.2.

While there is some confusion surrounding the difference between URLs and URIs,
RFC 39861 is quite clear on the topic (effectively superseding RFC 3305)2:

A URI can be further classified as a locator, a name, or both. The term “Uniform Resource
Locator” (URL) refers to the subset of URIs that, in addition to identifying a resource, provides a
means of locating the resource by describing its primary access mechanism (e.g., its network
“location”).

Uniform
Resource
Locators

Uniform Resource Identifiers

Figure 5.2: URLs are a subset of URIs

1. https://dju.link/rfc3986
2. https://dju.link/rfc3305

http://awebsite.com/project1/important.pdf
https://www.ietf.org/rfc/rfc3986.txt
https://tools.ietf.org/html/rfc3305
https://dju.link/rfc3305
https://dju.link/rfc3986

124 Chapter 5 Creating Webpages with Controllers in Django

Every URL is thus a URI. However, a URL must specify a scheme to access the data,
such as http or https, while a URI does not have to. According to this definition, the
string /blog/2013/1/django-training/ is a URI, but the string http://site.
django-unleashed.com/blog/2013/1/django-training/ is a URL despite the
fact that the URL path is not an actual location. For this reason, Django continues to refer
to URLs instead of URIs.

Because of the Hollywood principle (inversion of control), the URL configuration acts
as a way to direct both users and Django to data. The URL configuration connects URLs to
views: Django uses the URL configuration to find views. Django does not know the
existence of any view without the URL configuration.

The URL configuration is a list of URL pattens. The URL pattern represents the two
parts of a webpage: it maps a URI (the route/location/identifier) to a view (the data).
Formally, the URI is a regular expression pattern, whereas the view is a Python callable.
A URL configuration can also point to another URL configuration instead of a view, as we
discuss in more depth in Section 5.7.1.

In Figure 5.3, each arrow is a URL pattern. Multiple URIs may point to a single view,
but a single URI may not be defined more than once. The regular expression pattern in
each URL pattern is how Django performs its matching. When Django receives an HTTP
request, it tries to match the URL of the request to each and every regular expression
pattern in each and every URL pattern. Upon finding a match, Django calls the view that
the regular expression pattern maps to. Django uses the first match, meaning that the order
of the list of URL patterns matters if there are several potential matches. If Django does not
find a match, it returns an HTTP 404 error.

In the example provided by Figure 5.3, if a user requested the URI /startup/, perhaps
in a URL such as http://site.django-unleashed.com/startup/, then Django

References to Views

Regular Expression Patterns
(URIs)

URL Configuration

startup_list()'startup/'

Unknown to Django!

Figure 5.3: URL Configuration

http://site.django-unleashed.com/startup/
http://site.django-unleashed.com/blog/2013/1/django-training/
http://site.django-unleashed.com/blog/2013/1/django-training/

5.2 The Purpose of Views and URL Configurations 125

would call the startup list() function view. Django automatically strips the root slash
of the URL path (to Django, /startup/ becomes startup/).

We first coded a URL pattern in Chapter 2 and then again in Chapter 4. This last one,
shown in Example 5.1, should still exist in suorganizer/urls.py.

Example 5.1: Project Code
suorganizer/urls.py in 95b20c151b

23 url(r'ˆ$', homepage),

Requesting the root path of our website causes Django to call homepage(), coded in
organizer/views.py. We walk through exactly how Django does this shortly.

Info
A word of caution: there are URL patterns, and there are regular expression patterns.
Simply referring to a pattern is ambiguous and should be avoided.

5.2.2 Django Views
The view is where webpage data is generated. The developer uses the view to interact with
the database, load and render the template, and perform any other logic necessary to
displaying a webpage.

A Django view is any Python callable (function, class, or object) that meets the following
two requirements:

m Accepts an HttpRequest object as argument
m Returns an HttpResponse object

An HttpRequest object contains all of the information about the page requested, any
data the user is passing to the website, and any data the browser is sending about the user.
The HttpResponse returns an HTTP code (please see Appendix A for information about
HTTP codes) as well as any data the developer chooses to return to the user.

Because the nature of a view depends solely on its input and output, any Python callable
can be a view. Typically, however, you will be using either functions or Django’s supplied
classes to create views. For the moment, we build views using functions and wait until the
end of the chapter to look at Django’s class-based views.

Developers often refer to Django views as view functions. This is rather confusing, as
views are not limited to being functions (this was not the case historically, which is where
the vocabulary originates). In this book, I refer to any callable that builds a webpage as a
view. Any view that is built using a function is called a function view, and any view that
is an object is called a class-based view (following the documentation’s nomenclature).

We currently have a function view coded in organizer/views.py, shown in
Example 5.2.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/95b20c151b/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/95b20c151b

126 Chapter 5 Creating Webpages with Controllers in Django

Example 5.2: Project Code
organizer/views.py in f0d1985791

7 def homepage(request):
8 tag_list = Tag.objects.all()
9 template = loader.get_template(
10 'organizer/tag_list.html')
11 context = Context({'tag_list': tag_list})
12 output = template.render(context)
13 return HttpResponse(output)

We can see how the function in Example 5.2 adheres to view requirements: it accepts an
HttpRequest object as the request argument and returns an HttpResponse object
with the output of a rendered template. It is also clearly dynamic, generating content based
on data in the database.

In this chapter, we focus on using the database to generate dynamic pages. In Chapter 9:
Controlling Forms in Views, we generate dynamic pages based on not only the database but
also the contents of the HttpRequest object. In Chapter 15: Creating Webpages with
Django Flatpages, we also discuss the ability to make static/flat pages with views.

5.3 Step-by-Step Examination of Django’s Use
of Views and URL Configurations

Nothing clarifies programming quite like walking through each step the code takes.
Let’s find out what happens when we run our web server and navigate to http://
127.0.0.1:8000/.

Before we can go to the webpage, we have to start Django. We do so with Example 5.3.

Example 5.3: Shell Code

$./manage.py runserver

Django loads the settings in suorganizer/settings.py, configuring itself. It then
loads all of the URL patterns in the URL configuration into memory, which allows Django
to match URLs quickly. Once set up, we can type http://127.0.0.1:8000/ into our
browser.

Our browser begins by finding the server with the network location 127.0.0.1. That’s
easy: that IP address always refers to the machine you’re using. Once it knows that, it looks
at the scheme and path of the URL and sends an HTTP request for the path / to itself on
port 8000. Django receives this request.

Info
If we had requested just http://127.0.0.1:8000 (without the last slash), the
browser would still request the path /. It is implicit in this case.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/f0d1985791/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/f0d1985791
http://127.0.0.1:8000/
http://127.0.0.1:8000
http://127.0.0.1:8000/
http://127.0.0.1:8000/

5.3 Step-by-Step Examination of Django’s Use of Views and URL Configurations 127

Django first translates the actual HTTP request (raw data) into an HttpRequest object
(Python). Having this object in Python makes it easy for us and the framework to
manipulate any information the browser is passing our site, as we shall discover in Chapter 9.
Django takes the path in the HttpRequest object—currently /—and strips it of the first /.
In this case, we are left with the empty string. Our new path is the empty string ".

Django’s next goal is to select a URL pattern. Django has the list of URL patterns in the
URL configuration it loaded into memory when it first started up. Each URL pattern
consists of at least two things: a regular expression pattern and a view. To select a URL
pattern, Django tries to match the requested path—the empty string in this case—to each
regular expression pattern of each URL pattern. Given our URL configuration, Django
currently has only two options, shown in Example 5.4.

Example 5.4: Project Code
suorganizer/urls.py in 95b20c151b

16 from django.conf.urls import include, url
17 from django.contrib import admin
18
19 from organizer.views import homepage
20
21 urlpatterns = [
22 url(r'ˆadmin/', include(admin.site.urls)),
23 url(r'ˆ$', homepage),
24]

Each call to url() in Example 5.4 is a URL pattern. Django tries to match the empty
string, derived from the URL path, to each of the regular expression patterns in the URL
patterns above. The empty string very clearly does not match the text admin/. However,
Django will select the second URL pattern because the regular expression r'ˆ$' matches
the empty string:

m The r informs Python the string is raw, meaning it does not escape any of the
characters in the string.

m The ˆ matches the beginning of a string.
m The $ matches the end of a string.

With the URL pattern url(r'ˆ$', homepage) selected, Django calls the Python
function the URL pattern points to. In this case, the URL pattern points to the
homepage() Python function, imported via the call from organizer.views import
homepage on line 19. When Django calls the view, it passes the HttpRequest object to
the view.

We coded the view such that it loads tag data from the database, loads the tag list
template, and renders the template with the Tag object data. We then pass this output to an
HttpResponse object and return it to Django. Django translates this object into a real
HTTP response and sends it back to our browser. Our browser then displays the webpage
to us.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/95b20c151b/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/95b20c151b

128 Chapter 5 Creating Webpages with Controllers in Django

To clarify, the regular expression r'ˆa$' would match a request to
http://127.0.0.1:8000/a. If we were to change the URL pattern from url(r'ˆ$',
homepage) to url(r'ˆhome/$', homepage), we would now need to navigate to
http://127.0.0.1:8000/home/ to run the homepage() function and display a
list of tags.

Inversion of control should be apparent. We are not controlling Django. It translates
HTTP requests and responses for us and handles the entire URL matching process. We are
simply providing it with the data to use in these matches and telling it what to use to build
the webpage (the view). And even then, we are relying heavily on the tools Django provides.

If we were to ask Django for a webpage that did not exist, such as
http://127.0.0.1:8000/nonexistent/, Django would try to match
nonexistent/ to the regular expression patterns in our URL configuration. When it did
not find one, it would error. In production, Django would send back an HTTP 404
response. However, because we have DEBUG=TRUE in our suorganizer/settings.py
file, Django instead tries to warn us of the problem and shows us a list of valid URL paths.

5.4 Building Tag Detail Webpage
To reinforce what we already know and expand our knowledge of URL patterns, we now
create a second webpage. Our webpage will display the information for a single Tag object.
We call our function view tag detail(). Let’s begin by adding a URL pattern.

In Chapter 3, we specifically added SlugField to our Tag model to allow for the
simple creation of unique URLs. We intend to use it now for our URL pattern. We want
the request for /tag/django/ to show the webpage for the django Tag and the request for
/tag/web/ to show the webpage for the web Tag.

This is the first gap in our knowledge. How can we get a single URL pattern to
recognize both /tag/django/ and /tag/web/? The second gap in our knowledge is that
we have no easy way to use the information in the URL pattern. Once we’ve isolated django
and web, how can we pass this information to the view so that it may request the data from
the database?

To make the problem more concrete, let’s start with the tag detail() view.

5.4.1 Coding the tag detail() Function View
Open /organizer/views.py and program the bare minimum functionality of a view
(accept an HttpRequest object, return an HttpResponse object), as shown in
Example 5.5.

Example 5.5: Project Code
organizer/views.py in f0d1985791

16 def tag_detail(request):
17 return HttpResponse()

http://127.0.0.1:8000/a
http://127.0.0.1:8000/home/
http://127.0.0.1:8000/nonexistent/
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/f0d1985791/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/f0d1985791

5.4 Building Tag Detail Webpage 129

Our first task is to select the data for the Tag object that the user has selected. For the
moment, we will assume that we have somehow been passed the unique slug value of the
Tag as the variable slug, and we use it in our code (but Python will yell at you if you try
to run this). We use the get() method of our Tag model manager, which returns a single
object. We want our search for the slug field to be case insensitive, so we use the iexact
field lookup scheme. Our lookup is thus Tag.objects.get(slug iexact=slug), as
shown in Example 5.6.

Example 5.6: Project Code
organizer/views.py in ba4f692e00

16 def tag_detail(request):
17 # slug = ?
18 tag = Tag.objects.get(slug--iexact=slug)
19 return HttpResponse()

We may now load the template we wish to render, organizer/tag detail.html.
When we wrote the template, we wrote it to use a variable named tag. We thus create a
Context object to pass the value of our Python variable named tag to our template
variable tag. Recall that the syntax is Context({'template variable name':
Python variable name}). We thus extend our view code as shown in Example 5.7.

Example 5.7: Project Code
organizer/views.py in 2fdb78366f

16 def tag_detail(request):
17 # slug = ?
18 tag = Tag.objects.get(slug--iexact=slug)
19 template = loader.get_template(
20 'organizer/tag_detail.html')
21 context = Context({'tag': tag})
22 return HttpResponse(template.render(context))

We have what would be a fully working function view if not for the problem we are now
forced to confront: the slug variable is never set. The value of the slug will be in the URL
path. If Django receives the request for /tag/django/, we want the value of our slug
variable to be set to 'django'. Django provides two ways to get it.

The first way is terrible and inadvisable: we can parse the URL path ourselves. The
request variable, an HttpRequest object, contains all the information provided by the
user and Django, and we could access request.path info to get the full path. In our
example above, request.path info would return 'tag/django/'. However, to get
the slug from our URL path, we would need to parse the value of request.path info,
and doing so in each and every view would be tedious and repetitive, in direct violation of
the Don’t Repeat Yourself (DRY) principle.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/ba4f692e00/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/ba4f692e00
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/2fdb78366f/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/2fdb78366f

130 Chapter 5 Creating Webpages with Controllers in Django

The second method, the recommended and easy solution, is to get Django to send it to
us via the URL configuration, as we shall discover in the next section. To accommodate this
solution, we simply add slug as a parameter to the function view.

Our final view is shown in Example 5.8.

Example 5.8: Project Code
organizer/views.py in 84eb438c96

16 def tag_detail(request, slug):
17 tag = Tag.objects.get(slug--iexact=slug)
18 template = loader.get_template(
19 'organizer/tag_detail.html')
20 context = Context({'tag': tag})
21 return HttpResponse(template.render(context))

5.4.2 Adding a URL Pattern for tag detail
With our tag detail() function view fully programmed, we now need to point Django
to it by adding a URL pattern to the URL configuration. The pattern will be in the form
of url(<regular expression>, tag detail), where the value of
<regular expression> is currently unknown. In this section, we need to solve two
problems:

1. We need to build a regular expression that allows for multiple inputs. For example,
/tag/django/ and /tag/web/ must both be valid URL paths.

2. We must pass the value of the slug in the URL path to the detail view.

The answer to both of these problems is to use regular expressions groups.
To solve the first case, we first begin by building a static regular expression. Remember

that our regular expressions patterns should not start with a /. To match /tag/django/
we can use the regular expression r'ˆtag/django/$'. Similarly, r'ˆtag/web/$' will
match /tag/web/. The goal is to build a regular expression that will match all slugs. As
mentioned in Chapter 3, a SlugField accepts a string with a limited character set:
alphanumeric characters, the underscore, and the dash. We first define a regular expression
character set by replacing django and web with two brackets: r'ˆtag/[]/$'. Any
character or character set inside the brackets is a valid character for the string. We want
multiple characters, so we add the + character to match at least one character:
r'ˆtag/[]+/$'. In Python, \w will match alphanumeric characters and the underscore.
We can thus add \w and - (the dash character) to the character set to match a valid slug:
r'ˆtag/[\w\-]+/$'. This regular expression will successfully match /tag/django/,
/tag/web/, and even /tag/video-games/ and /tag/video games/.

Info
In the code above we opted to specify [\w\-]+ for the slug match, instead of [\w-]+
or [-\w]+. Python will accept and work correctly with [\w-]+ or [-\w]+, but the

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/84eb438c96/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/84eb438c96

5.4 Building Tag Detail Webpage 131

character set is imprecise. The - character is reserved for specifying ranges, such as
[A-Z]+, which will match any capital alphabet character. To specify the - character,
we have to escape it with a slash: the [A\-Z]+ pattern will match a string of any
length than contains only the letters A, Z, or -. However, as you may have guessed, if
the dash is specified at the the beginning or end of a character set, Python is smart
enough to realize that you mean the character rather than a range. Even so, this can be
ambiguous to other programmers, and it’s best to always escape the dash when you
want to match the - character.

This regular expression matches all of the URLs we actually want, but it will not pass the
value of the slug to the tag detail() function view. To do so, we can use a named group.
Python regular expressions identify named groups with the text (?P<name>pattern),
where name is the name of the group and pattern is the actual regular expression pattern. In
a URL pattern, Django takes any named group and passes its value to the view the URL
pattern points to. In our case, we want our named group to use the pattern we just
built—[\w\-]+—and to be called slug. We thus have (?P<slug>[\w\-]+).

Our full regular expression has become r'ˆtag/(?P<slug>[\w\-]+)/$'. This
regular expression will match a slug and pass its value to the view the URL pattern points to.
We can now build our URL pattern.

We are building a URL pattern for our tag detail() view, which exists in the
views.py file in our organizer app. We first import the view via a Python import and
then create a URL pattern by calling url() and passing the regular expression and the view.
Example 5.9 shows the resulting URL configuration in suorganizer/urls.py.

Example 5.9: Project Code
suorganizer/urls.py in 5b18131069

16 from django.conf.urls import include, url
. ...

19 from organizer.views import homepage, tag_detail
. ...

24 url(r'ˆtag/(?P<slug>[\w\-]+)/$',
25 tag_detail,
26),

If we request http://127.0.0.1:8000/tag/django or the Django runserver,
Django will select our new URL pattern and call tag detail(request,
slug='django').

The regular expression pattern and view pointer are not the only parameters we can pass
to url(). It is possible, and highly recommended, to specify the keyword argument name
for URL patterns. The utility of specifying name is the ability to refer to a URL pattern in
Django, a practice we discuss in Chapter 6: Integrating Models, Templates, Views, and URL
Configurations to Create Links between webpages. This practice not only is useful in
Django but also allows me to refer to URL patterns in the book without ambiguity.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5b18131069/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5b18131069
http://127.0.0.1:8000/tag/django

132 Chapter 5 Creating Webpages with Controllers in Django

It is possible to name a URL pattern whatever you wish. However, I strongly
recommend you namespace your names, allowing for easy reference without conflict across
your site. In this book, I use the name of the app, the name of the model being used, and
the display type for the object type. We thus name the URL pattern
organizer tag detail. Our final URL pattern is shown in Example 5.10.

Example 5.10: Project Code
suorganizer/urls.py in 79c8d40d8a

24 url(r'ˆtag/(?P<slug>[\w\-]+)/$',
25 tag_detail,
26 name='organizer_tag_detail'),

Info
When I refer to namespaces, I mean it in an informal sense: it’s simply a string that we
structure in a particular way. I am not referring to the actual URL namespace tool
Django provides that we will use in Chapter 19: Basic Authentication.

Consider all the code we have avoided writing by writing our URL pattern intelligently.
At the end of Section 5.4.1, we were considering parsing the raw URL path string (passed
to the view via request.path info) to find the slug value of our tag. Thanks to
Django’s smart URL configuration, simply by providing a named group to our regular
expression pattern, we can pass values in the URL directly to the view.

5.5 Generating 404 Errors for Invalid Queries
As things stand, we can use the command line to start our development server (Example
5.11) and see the fruits of our labor.

Example 5.11: Shell Code

$./manage.py runserver

If you navigate to the address of a valid Tag, you will be greeted by a simple HTML page
built from our template. For example, http://127.0.0.1:8000/tag/django/ will
display a simple page about our Django tag. However, what happens if you browse to a URL
built with an invalid tag slug, such as http://127.0.0.1:8000/tag/nonexistent/?

You’ll be greeted by a page of Django debug information, as shown in Figure 5.4.
Django is displaying a page informing you that Python has thrown an exception. The

title of the page, “DoesNotExist at /tag/nonexistent/,” tells us that the URL we asked for
does not exist. The subtitle, “Tag matching query does not exist” tells us that the database
query for our Tag could not find a row in the database that matched what we desired (in
this case, we queried Tag.objects.get(slug iexact='nonexistent')). What’s

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/79c8d40d8a/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/79c8d40d8a
http://127.0.0.1:8000/tag/django/
http://127.0.0.1:8000/tag/nonexistent/

5.5 Generating 404 Errors for Invalid Queries 133

more, below the initial readout presented in Figure 5.4, you’ll find a Python traceback,
shown in Figure 5.5, where Django informs us that the Python exception type being raised
is DoesNotExist.

Of the four functions in the traceback, three are in Django’s source code and therefore
(most likely) are not the problem. The second item in the traceback, however, is in
/organizer/views.py and reveals that the code throwing the exception is tag =
Tag.objects.get(slug iexact=slug), on line 17. This does not mean the code is
wrong (it isn’t!), simply that the problem originates there. The problem, as stated in the top
half of the page, is that there is no Tag object with slug “nonexistent” in the database.

This message is obviously not what we want users to be greeted with in the event of a
malformed URL. The standard return for such in websites is an HTTP 404 error. Let us

Figure 5.4: Django Error Message

Figure 5.5: Django Error Traceback

134 Chapter 5 Creating Webpages with Controllers in Django

return to our function view in /organizer/views.py and augment it so that it returns
a proper HTTP error rather than throwing a Python exception.

Django supplies two ways to create an HTTP 404 error. The first is with the
HttpReponseNotFound class, and the second is with the Http404 exception.

The HttpReponseNotFound class is a subclass of the HttpResponse class. Like
its superclass, HttpReponseNotFound expects to be passed the HTML content it is
asked to display. The key difference is that returning an HttpResponse object results
in Django returning an HTTP 200 code (Resource Found), whereas returning a
HttpReponseNotFound object results in an HTTP 404 code (Resource Not Found).

The Http404 is an exception and as such is meant to be raised rather then returned.
In contrast to the HttpReponseNotFound class, it does not expect any data to be passed,
relying instead on the default 404 HTML page, which we build in Chapter 29: Deploy!
when we deploy our site.

Consider that our code is currently raising a DoesNotExist. We therefore have to
catch this exception and then proceed with an HTTP 404 error. It is thus more appropriate
and more Pythonic to use an exception, meaning our code in Example 5.12 will use the
Http404 exception. Start by importing this in the file, by adding Http404 to the second
import line (the one for HttpResponse). The import code should now read as shown in
Example 5.12.

Example 5.12: Project Code
organizer/views.py in 294dabd8cc

1 from django.http.response import (
2 Http404, HttpResponse)

To catch the DoesNotExist exception, we surround our model manager query with a
Python try...except block. Should the query raise a DoesNotExist exception for a
Tag object, we then raise the newly imported Http404. This leaves us with the code
shown in Example 5.13.

Example 5.13: Project Code
organizer/views.py in 294dabd8cc

17 def tag_detail(request, slug):
18 try:
19 tag = Tag.objects.get(slug--iexact=slug)
20 except Tag.DoesNotExist:
21 raise Http404
22 template = loader.get_template(
23 'organizer/tag_detail.html')
24 context = Context({'tag': tag})
25 return HttpResponse(template.render(context))

Had we opted to use HttpReponseNotFound, we might have coded as in
Example 5.14.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/294dabd8cc/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/294dabd8cc
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/294dabd8cc/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/294dabd8cc

5.6 Shortening the Development Process with Django View Shortcuts 135

Example 5.14: Python Code

this code not optimal!
try:

tag = Tag.objects.get(slug--iexact=slug)
except Tag.DoesNotExist:

return HttpReponseNotFound('<h1>Tag not found!</h1>')

Raising an exception rather than returning a value is considered better Python practice
because raise() was built explicitly for this purpose. What’s more, it allows us to create a
single 404.html page in Chapter 29, further maintaining the DRY principle.

Note that some developers might try to use the code shown in Example 5.15.

Example 5.15: Python Code

this code is incorrect!
tag = Tag.objects.get(slug--iexact=slug)
if not tag:

return HttpReponseNotFound('<h1>Tag not found!</h1>')

The code is incorrect: it will not catch the DoesNotExist exception raised by the
model manager query. A try...except block is required.

If you browse to http://127.0.0.1:8000/tag/nonexistent on the development
server now, you will be treated to an HTTP 404 page, which is our desired behavior.

The error in this section is different from a nonmatching URL. If you browse to
http://127.0.0.1:8000/nopath/, Django will tell you it couldn’t match the URL to
a URL pattern and, in production, will return a 404 error automatically. The issue we
solved here was when the URL did match but the view did not behave as expected.

5.6 Shortening the Development Process with
Django View Shortcuts

We now have a two-function view in /organizer/views.py, which currently reads as
shown in Example 5.16.

Example 5.16: Project Code
organizer/views.py in 294dabd8cc

1 from django.http.response import (
2 Http404, HttpResponse)
3 from django.template import Context, loader

http://127.0.0.1:8000/tag/nonexistent
http://127.0.0.1:8000/nopath/
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/294dabd8cc/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/294dabd8cc

136 Chapter 5 Creating Webpages with Controllers in Django

4
5 from .models import Tag
6
7
8 def homepage(request):
9 tag_list = Tag.objects.all()
10 template = loader.get_template(
11 'organizer/tag_list.html')
12 context = Context({'tag_list': tag_list})
13 output = template.render(context)
14 return HttpResponse(output)
15
16
17 def tag_detail(request, slug):
18 try:
19 tag = Tag.objects.get(slug--iexact=slug)
20 except Tag.DoesNotExist:
21 raise Http404
22 template = loader.get_template(
23 'organizer/tag_detail.html')
24 context = Context({'tag': tag})
25 return HttpResponse(template.render(context))

That is a lot of code for two simple webpages. We also have a lot of duplicate code in
each function, which is not in keeping with the DRY philosophy. Luckily for developers,
Django provides shortcut functions to ease the development process and to significantly
shorten code such as the preceding.

5.6.1 Shortening Code with get object or 404()
Our first shortcut, get object or 404(), is a complete replacement for the
try...except block that currently exists in our tag detail() function.

Let’s start by importing it into our /organizer/views.py file, as in Example 5.17.

Example 5.17: Project Code
organizer/views.py in 5705e49877

2 from django.shortcuts import get_object_or_404

We can then delete the following lines, as in Example 5.18.

Example 5.18: Project Code
organizer/views.py in 294dabd8cc

18 try:
19 tag = Tag.objects.get(slug--iexact=slug)
20 except Tag.DoesNotExist:
21 raise Http404

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5705e49877/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5705e49877
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/294dabd8cc/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/294dabd8cc

5.6 Shortening the Development Process with Django View Shortcuts 137

We replace the content in Example 5.18 with the code in Example 5.19.

Example 5.19: Project Code
organizer/views.py in 5705e49877

18 tag = get_object_or_404(
19 Tag, slug--iexact=slug)

The get object or 404() shortcut expects to have the model class and the desired
query passed as arguments and will return the object if it finds one. If not, it raises
Http404, just as we had programmed before. Because we are passing in the Tag object and
using exactly the same query, the behavior of our shortened code is exactly the same as that
of our original code.

Our tag detail() thus reads as in Example 5.20.

Example 5.20: Project Code
organizer/views.py in 5705e49877

17 def tag_detail(request, slug):
18 tag = get_object_or_404(
19 Tag, slug--iexact=slug)
20 template = loader.get_template(
21 'organizer/tag_detail.html')
22 context = Context({'tag': tag})
23 return HttpResponse(template.render(context))

5.6.2 Shortening Code with render to response()
Most views must do the following:

1. Load a template file as a Template object.

2. Create a Context from a dictionary.

3. Render the Template with the Context.

4. Instantiate an HttpResponse object with the rendered result.

Django supplies not one but two shortcuts to perform this process for us. The first is the
render to response() shortcut. The shortcut replaces the behavior that we currently
have in our views, performing all four tasks listed above. Let’s start by importing it, adding it
to the end of our pre-existing shortcut import, as shown in Example 5.21.

Example 5.21: Project Code
organizer/views.py in 5ff3dee4fa

1 from django.shortcuts import (
2 get_object_or_404, render_to_response)

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5705e49877/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5705e49877
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5705e49877/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5705e49877
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5ff3dee4fa/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5ff3dee4fa

138 Chapter 5 Creating Webpages with Controllers in Django

We can now use render to response() to shorten our code. In our homepage()
view, for instance, we can remove the code shown in Example 5.22.

Example 5.22: Project Code
organizer/views.py in 5705e49877

7 def homepage(request):
8 tag_list = Tag.objects.all()
9 template = loader.get_template(
10 'organizer/tag_list.html')
11 context = Context({'tag_list': tag_list})
12 output = template.render(context)

The code in Example 5.22 is easily replaced with the code in Example 5.23.

Example 5.23: Project Code
organizer/views.py in 5ff3dee4fa

7 def homepage(request):
8 return render_to_response(
9 'organizer/tag_list.html',
10 {'tag_list': Tag.objects.all()})

Observe how we pass in the same path to the template and a simple dictionary with the
(identical) values to populate the template. The shortcut does the rest for us: the behaviors
in the preceding two code examples are exactly the same.

The process to shorten tag detail() is exactly the same. We start by removing the
code in Example 5.24.

Example 5.24: Project Code
organizer/views.py in 5705e49877

20 template = loader.get_template(
21 'organizer/tag_detail.html')
22 context = Context({'tag': tag})
23 return HttpResponse(template.render(context))

Then, in Example 5.25, we write a call to render to response(), passing in the
same values seen in the previous code: the same template path and the same dictionary
passed to our Context instantiation.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5705e49877/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5705e49877
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5ff3dee4fa/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5ff3dee4fa
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5705e49877/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5705e49877

5.6 Shortening the Development Process with Django View Shortcuts 139

Example 5.25: Project Code
organizer/views.py in 5ff3dee4fa

16 return render_to_response(
17 'organizer/tag_detail.html',
18 {'tag': tag})

Our entire file has been reduced to the code shown in Example 5.26.

Example 5.26: Project Code
organizer/views.py in 5ff3dee4fa

1 from django.shortcuts import (
2 get_object_or_404, render_to_response)
3
4 from .models import Tag
5
6
7 def homepage(request):
8 return render_to_response(
9 'organizer/tag_list.html',

10 {'tag_list': Tag.objects.all()})
11
12
13 def tag_detail(request, slug):
14 tag = get_object_or_404(
15 Tag, slug--iexact=slug)
16 return render_to_response(
17 'organizer/tag_detail.html',
18 {'tag': tag})

The code in Example 5.26 was the original way to shorten code and, while still
frequently seen on the Internet and in older projects, is no longer the best way to shorten
a simple view. Instead, you’ll want to use render().

5.6.3 Shortening Code with render()
Before introducing the render to response() shortcut, our /organizer/views.py
read as shown in Example 5.27.

Example 5.27: Project Code
organizer/views.py in 4d36d603db

1 from django.http.response import HttpResponse
2 from django.shortcuts import get_object_or_404
3 from django.template import Context, loader

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5ff3dee4fa/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5ff3dee4fa
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5ff3dee4fa/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5ff3dee4fa
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/4d36d603db/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/4d36d603db

140 Chapter 5 Creating Webpages with Controllers in Django

4
5 from .models import Tag
6
7
8 def homepage(request):
9 tag_list = Tag.objects.all()
10 template = loader.get_template(
11 'organizer/tag_list.html')
12 context = Context({'tag_list': tag_list})
13 output = template.render(context)
14 return HttpResponse(output)
15
16
17 def tag_detail(request, slug):
18 tag = get_object_or_404(
19 Tag, slug__iexact=slug)
20 template = loader.get_template(
21 'organizer/tag_detail.html')
22 context = Context({'tag': tag})
23 return HttpResponse(template.render(context))

Example 5.27 is sufficient for the simple views we are currently building but will prove
to be inadequate in the long run. Specifically, we are not using Django context processors.

At the moment, our views are rendering Template instances with Context instances
and passing the result to an HttpResponse object. The problem with this approach
is that sometimes Django needs to make changes to the values within the Context objects.
To enable Django to make changes to data that render a Template, we must use a
RequestContext instead of a Context object. When a Template renders
with a RequestContext, Django uses the HttpRequest object to add data to the
RequestContext, providing information not available to Context. To do so, Django
calls the context processors, which are simply functions that are listed in the TEMPLATES
options of /suorganizer/settings.py (Example 5.28).

Example 5.28: Project Code
suorganizer/settings.py in 4d36d603db

58 TEMPLATES = [{
. ...
64 'OPTIONS': {
65 'context_processors': [
66 'django.template.context_processors.debug',
67 'django.template.context_processors.request',
68 'django.contrib.auth.context_processors.auth',
69 'django.contrib.messages.context_processors.messages',
70],
71 },
72 }]

At the moment, enabling context processors is of no use to us, but in Chapter 9, we
build views and templates that rely on Django context processors. However, it behooves us
to examine them now, as they provide insight into our new shortcut.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/4d36d603db/suorganizer/settings.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/4d36d603db

5.6 Shortening the Development Process with Django View Shortcuts 141

To make the change to using context processors, we need only change each use of
Context to RequestContext. The only difference is that RequestContext needs the
HttpRequest object, as it intends to pass it to all the context processors. We therefore pass
request to RequestContext before the dictionary of values. Our code now reads as
shown in Example 5.29.

Example 5.29: Project Code
organizer/views.py in c392ab707a

1 from django.http.response import HttpResponse
2 from django.shortcuts import get_object_or_404
3 from django.template import RequestContext, loader
4
5 from .models import Tag
6
7
8 def homepage(request):
9 tag_list = Tag.objects.all()

10 template = loader.get_template(
11 'organizer/tag_list.html')
12 context = RequestContext(
13 request,
14 {'tag_list': tag_list})
15 output = template.render(context)
16 return HttpResponse(output)
17
18
19 def tag_detail(request, slug):
20 tag = get_object_or_404(
21 Tag, slug--iexact=slug)
22 template = loader.get_template(
23 'organizer/tag_detail.html')
24 context = RequestContext(
25 request,
26 {'tag': tag})
27 return HttpResponse(template.render(context))

Understanding and using RequestContext or Context has a direct effect on our
choice of shortcuts. Prior to Django 1.3, developers would force the
render to response() shortcut to use the RequestContext object by coding as
shown in Example 5.30.

Example 5.30: Python Code

return render_to_response(
'path/to/template.html',
data_dictionary,
context_instance=RequestContext(request))

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/c392ab707a/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/c392ab707a

142 Chapter 5 Creating Webpages with Controllers in Django

Many examples online and older projects continue to use this method. However, starting
in Django 1.3 (released March 2011), developers should instead use the render() shortcut,
which is identical to render to response() except that it uses a RequestContext
object instead of a Context object and therefore takes the HttpRequest object as a third
argument. Specifically, render() does the following:

1. Loads a template file as a Template object

2. Creates a RequestContext from a dictionary (with HttpRequest)

3. Calls all the context processors in the project, adding or modifying data to the
RequestContext

4. Renders the Template with the RequestContext

5. Instantiates an HttpResponse object with the rendered result

The render() shortcut thus replaces the project code from Example 5.30, taking three
arguments: request, the path to the template file, and the dictionary used to build the
RequestContext object. We can follow the same replacement steps used for
render to response() in the case of render(). Example 5.31 shows the resulting
/organizer/views.py.

Example 5.31: Project Code
organizer/views.py in d2ecb7f70d

1 from django.shortcuts import (
2 get_object_or_404, render)
3
4 from .models import Tag
5
6
7 def homepage(request):
8 return render(
9 request,
10 'organizer/tag_list.html',
11 {'tag_list': Tag.objects.all()})
12
13
14 def tag_detail(request, slug):
15 tag = get_object_or_404(
16 Tag, slug--iexact=slug)
17 return render(
18 request,
19 'organizer/tag_detail.html',
20 {'tag': tag})

Using RequestContext is slower than using Context, and therefore render() is
slower than render to response() (when without the context argument).
Nonetheless, most developers now use render() out of the box, choosing to prioritize
ease of programming over performance. Using Context or render to response(),

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/d2ecb7f70d/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/d2ecb7f70d

5.7 URL Configuration Internals: Adhering to App Encapsulation 143

particularly in young projects with few users, could be considered a pre-optimization,
limiting functionality in favor of performance. In addition, context processors are not
typically the bottleneck on a website. By the same token, if a context processor is ever
needed on a view using Context or render to response(), more work will be
required to get the context processor working, particularly if the developer is unclear as to
where the problem lies. It is therefore not a bad idea to start with RequestContext and
render() and replace them if necessary (and if possible!). We reinforce this notion in
Chapter 19 when we opt to use variables created by context processors on every webpage.

In keeping with this logic and with current trends, the rest of the book relies on
render() as the de facto view shortcut.

As we move forward, please keep in mind that while similar, render to response()
and render() have very different uses, and many of the examples online should be using
render() instead of render to response(), making this latter shortcut a common
pitfall for beginners when building forms (Chapter 9) or when using the contributed library.

5.7 URL Configuration Internals: Adhering
to App Encapsulation

We currently have two function views, now masterfully shortened, and two URL patterns,
creating two webpages. However, our URL configuration is in direct violation of app
encapsulation in Django. The URL patterns that direct users to the two webpages generated
by the organizer app exist in a file that is for the project: the URLs are in a file under
suorganizer/, as opposed to a file within the organizer/ directory.

The practical goal of this section is to refactor our URL configuration so that our
Django website adheres to the app encapsulation standard. However, to do so, we must learn
much more about the URL configuration. The instructional goal of this section is to teach
you exactly how URL patterns are used and built in Django.

5.7.1 Introspecting URL Patterns
We’ve discovered that a URL configuration is a list of URL patterns, stored by convention
in a variable named urlpatterns. What I (and others) casually refer to as a URL pattern is
actually a RegexURLPattern object. Each call to url() instantiates a
RegexURLPattern; a URL configuration is thus a list of RegexURLPattern objects
stored in a variable named urlpatterns.

Each RegexURLPattern is instantiated by a call to url() (see Example 5.32), which
takes as mandatory arguments (1) a regular expression pattern and (2) a reference to a view.
As an optional argument, it’s possible to pass (3) a Python dictionary, where each key value
is passed to the view as keyword arguments. We will see this in action before the end of the
chapter and then again in Chapter 19. Finally, url() will accept (4) a named argument
name, where we can specify the name of the RegexURLPattern. We’ve named our
second URL pattern organizer tag detail, but the utility of names won’t be clear
until Chapter 6.

144 Chapter 5 Creating Webpages with Controllers in Django

Example 5.32: Python Code

url(regular_expression,
view,
optional_dictionary_of_extra_values,
name=a_name)

Ghosts of Django Past
Prior to Django 1.8, it was possible to point to a view using a string that acted as a
Python namespace (similar to imports). For example, we could have used the line in
Example 5.33.

Example 5.33: Python Code

url(r'ˆ$', 'organizer.views.homepage')

What’s more, while the urlpatterns variable was still a simple list, it was
convention (but not necessary) to create and process the list using a call to the
patterns() function, as in Example 5.34.

Example 5.34: Python Code

urlpatterns = patterns('',
url(regular_expression, view),

)

The first argument to patterns was the string prefix, which worked in tandem with
namespace strings. For instance, the URL configurations in Example 5.35 and
Example 5.36 are equivalent.

Example 5.35: Python Code

urlpatterns = patterns('',
url(regular_expression,

'organizer.views.homepage'),
)

Example 5.36: Python Code

urlpatterns = patterns('organizer.views',
url(regular_expression,

'homepage'),
)

The use of patterns and namespace strings in URL patterns are deprecated and
should not be used. Use direct Python imports (what we are currently using) instead.

5.7 URL Configuration Internals: Adhering to App Encapsulation 145

Django uses the ROOT URLCONF setting in settings.py to find the URL
configuration for the project. It does so as soon as the server starts (along with settings). This
makes Django fast, as the entire regular expression pattern-matching scheme is stored in
memory once, but it also means that if you change the URL configuration or any settings,
you must restart the Django server (unless you’re running the development server, which
anticipates changes).

Because a URL configuration is a list, the order of URL patterns matters, particularly
when the URLs matched by regular expression patterns overlap. In Chapter 6, we will see
an example of overlapping URLs and how order comes into play.

While we now understand the basics of URL patterns and configurations, we’re still
missing a key concept: how to connect different URL configurations.

5.7.2 Using include to Create a Hierarchy of URL
Configurations

The second argument passed to url() need not point at a view: it can point at another
URL configuration, thanks to the include() function. This capability allows us to create
a separate URL configuration in each Django app and have a URL pattern in the site-wide
URL configuration point to each one. In effect, the full URL configuration is not a simple
list but is actually a tree, where the leaves of the tree are webpages (see Figure 5.6).

When a URL pattern points to a URL configuration, the regular expression pattern acts
as a URI prefix. For instance, if the path r'ˆblog/' points to a URL configuration, then
all of the URL patterns in that URL configuration will effectively have that URI prefixed
to their own regular expression.

This functionality comes with an important pitfall: regular expression patterns in URL
patterns that point to URL configurations must be treated as partial regular expression
patterns: we cannot use the $ character to close the pattern, or it will prevent the use of the
ensuing patterns. If a URL pattern with the regular expression pattern r'ˆfirst/$' points

Regular Expression
Patterns

Regular Expression
Patterns

Regular Expression
Patterns

Reference to
View Functions

Reference to
View Functions

Reference to
View Functions

Site-Wide URL Configuration

App URL Configuration

App URL Configuration

Figure 5.6: URL Configuration Tree

146 Chapter 5 Creating Webpages with Controllers in Django

to a URL configuration with the regular expression pattern r'ˆsecond/$', Django will
effectively (but not actually, as we’ll discuss shortly) combine them for the result of
r'ˆfirst/$second/$'. Instead of matching /first/second/ as desired, Django will
only match /first/. To properly build this URL pattern, the first regular expression must
remove the $, reading r'ˆfirst/', so that the combination results in
r'ˆfirst/second/$', as in Example 5.37.

Example 5.37: Python Code

app/urls.py
urlpatterns = patterns(

url(r'ˆsecond/$',
a_view),

)

project/urls.py
import app.urls as app_url_config

urlpatterns = patterns(
url(r'ˆfirst/', # there is no '$' here!

include(app_url_config)),
)

Django is not actually combining regular expressions but rather truncating the URL path
it receives. For this reason, the ˆ can still be used in r'ˆsecond/$'. When a user requests
/first/second/, Django removes the first /, resulting in a request for first/second/.
Django then uses regular expression pattern r'ˆfirst/' to match first/second/. This
explains why we cannot use the $: r'ˆfirst/' will match first/second/, but
r'ˆfirst/$' will not. Once Django has selected this URL pattern, it uses the regular
expression pattern r'ˆfirst/' to truncate the path from first/second/ to second/,
allowing the regular expression pattern r'ˆsecond/$' to match this new path.

Given Django’s behavior, a second pitfall is the omission of slashes in intermediate paths.
Django only removes the root slash of any URL path. If we use a regular expression pattern
r'ˆfirst' (no slash or $) to point a URL pattern to a URL configuration containing a
URL pattern with a regular expression pattern r'ˆsecond/$', it will match not
/first/second/ but instead /firstsecond/, which is probably not desirable.

What’s more, the behavior described above provides us with the reason to always use
the ˆ regular expression character at the beginning of every regular expression pattern.
Without it, we stand to erroneously match URL paths. If we are now using r'ˆfirst/'
and r'second/$' (no ˆ), it will validly match /first/whoops/second/, which is
probably not what we want either.

We don’t actually apply most of this information until we build our blog URL
configuration. For our organizer app, we don’t want to prefix our path with anything yet.
(We will in Chapter 11: Bending the Rules: The Contact Us Webpage when we want the

5.7 URL Configuration Internals: Adhering to App Encapsulation 147

path /tag/ and /startup/, not /organizer/tag/ or /organizer/startup/.) The
prefix we use now is therefore empty.

Start by creating a new file, /organizer/urls.py. In it, we create a new URL
configuration. We import the url() function to create RegexURLPattern objects. We
then create a urlpatterns list to allow Django to find our URL configuration. We can
then call url() with the same parameters as the ones currently in /suorganizer/
urls.py. We end up with a /organizer/urls.py file which reads as in Example 5.38.

Example 5.38: Project Code
organizer/urls.py in 18f1a2d3bc

1 from django.conf.urls import url
2
3 from .views import homepage, tag_detail
4
5 urlpatterns = [
6 url(r'ˆ$', homepage),
7 url(r'ˆtag/(?P<slug>[\w\-]+)/$',
8 tag_detail,
9 name='organizer_tag_detail'),

10]

To direct Django to this new URL configuration, we need to point our root URL
configuration file to this new file using the include() function, already included in the
Python imports. To start, we need to import the URLs from our organizer app. To avoid
name-space clashes, we use the as keyword to rename the urls module organizer
urls. We can then simply point include() to this Python reference. We do this by using
the ˆ regular expression pattern character, shown in Example 5.39.

Example 5.39: Project Code
suorganizer/urls.py in 18f1a2d3bc

16 from django.conf.urls import include, url
17 from django.contrib import admin
18
19 from organizer import urls as organizer_urls
20
21 urlpatterns = [
22 url(r'ˆadmin/', include(admin.site.urls)),
23 url(r'ˆ', include(organizer_urls)),
24]

If you are still running the development server, it will automatically detect the changes
made and reload your URL configuration. If not, restart it by invoking runserver on the
command line, as shown in Example 5.40.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/18f1a2d3bc/organizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/18f1a2d3bc
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/18f1a2d3bc/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/18f1a2d3bc

148 Chapter 5 Creating Webpages with Controllers in Django

Example 5.40: Shell Code

$./manage.py runserver

With the development server running, you can now browse to 127.0.0.1:8000 to see
our homepage() view and 127.0.0.1:8000/tag/mobile/ to demonstrate our
tag detail() view. Consider that while our URL configuration has changed, the URLs
we are able to use have not. We have refactored code, not added new behavior.

5.8 Implementing the Views and URL
Configurations to the Rest of the Site

We now have a fundamental understanding of URL configurations and views and have two
fully functional webpages using the best tools at our disposal. With these tools, we will now
build the rest of the webpages in our site.

5.8.1 Restructuring Our homepage() View
Before we build out new views, it is in our best interest to change our homepage() view
to give it a more sensible name and URL path.

Given that it is a list of Tag objects, we should replace the URL pattern so that it
matches tag/ as the URL path and provide it with a name, organizer tag list, as
demonstrated in Example 5.41 in /organizer/urls.py.

Example 5.41: Project Code
organizer/urls.py in 1f86398a5e

1 from django.conf.urls import url
2
3 from .views import tag_detail, tag_list
4
5 urlpatterns = [
6 url(r'ˆtag/$',
7 tag_list,
8 name='organizer_tag_list'),
9 url(r'ˆtag/(?P<slug>[\w\-]+)/$',
10 tag_detail,
11 name='organizer_tag_detail'),
12]

Note that we use ˆ and $ in the URL pattern starting on line 6 to carefully define the
start and end of the URL path.

In our /organizer/views.py file, we thus need to rename our homepage() view
to tag list(), as in Example 5.42. We make no other changes.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/1f86398a5e/organizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/1f86398a5e

5.8 Implementing the Views and URL Configurations to the Rest of the Site 149

Example 5.42: Project Code
organizer/views.py in 1f86398a5e

16 def tag_list(request):
17 return render(
18 request,
19 'organizer/tag_list.html',
20 {'tag_list': Tag.objects.all()})

Given our changes, http://127.0.0.1:8000/ is no longer a valid URL. Django
notes the result of our changes by displaying the list of valid URL patterns, indicating that
we may browse to http://127.0.0.1:8000/tag/ or http://127.0.0.1:8000/
tag/<slug>/, such as http://127.0.0.1:8000/tag/mobile/, to display valid
pages.

5.8.2 Building a Startup List Page
In /organizer/urls.py, we begin by creating a URL pattern for a startup list page, as
shown in Example 5.43. Our new URL pattern will direct requests for URL path
startup/ to the function view startup list().

Example 5.43: Project Code
organizer/urls.py in 69767312bf

3 from .views import (
4 startup_list, tag_detail, tag_list)
. ...
6 urlpatterns = [
7 url(r'ˆstartup/$',
8 startup_list,
9 name='organizer_startup_list'),
. ...

16]

In /organizer/views.py, we may follow the example of our Tag object list view
when building one for Startup objects. In Example 5.44, we load and render the template
we built for this purpose and pass in all of the Startup objects in the database to the name
of the template variable, which we earlier named startup list.

Example 5.44: Project Code
organizer/views.py in 69767312bf

4 from .models import Startup, Tag
. ...
7 def startup_list(request):
8 return render(
9 request,
10 'organizer/startup_list.html',
11 {'startup_list': Startup.objects.all()})

Remember to add the imports, as shown in Examples 5.43 and 5.44!

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/1f86398a5e/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/1f86398a5e
http://127.0.0.1:8000/
http://127.0.0.1:8000/tag/
http://127.0.0.1:8000/tag/mobile/
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/69767312bf/organizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/69767312bf
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/69767312bf/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/69767312bf
http://127.0.0.1:8000/tag/<slug>/
http://127.0.0.1:8000/tag/<slug>/

150 Chapter 5 Creating Webpages with Controllers in Django

5.8.3 Building a Startup Detail Page
As we did for our tag detail() view, we will now build a startup detail() view.
The function will show a single Startup object, directed to in the URL by the slug field
of the model. Our function view thus must take not only a request argument but also a
slug argument. In /organizer/views.py, enter the code shown in Example 5.45.

Example 5.45: Project Code
organizer/views.py in bb3aa7eb88

7 def startup_detail(request, slug):
8 startup = get_object_or_404(
9 Startup, slug--iexact=slug)
10 return render(
11 request,
12 'organizer/startup_detail.html',
13 {'startup': startup})

As before, we use the slug value passed by the URL configuration to query the
database via the Django-provided get object or 404, which will display an HTTP 404
page in the event the slug value passed does not match one in the database. We then use
render() to load a template and pass the startup object yielded by our query to the
template, to be rendered via the template variable of the same name.

In /organizer/urls.py, we direct Django to our new view by adding the URL
pattern shown in Example 5.46.

Example 5.46: Project Code
organizer/urls.py in bb3aa7eb88

3 from .views import (
4 startup_detail, startup_list, tag_detail,
5 tag_list)
. ...
7 urlpatterns = [
. ...
11 url(r'ˆstartup/(?P<slug>[\w\-]+)/$',
12 startup_detail,
13 name='organizer_startup_detail'),
. ...
20]

Note again the ˆ and $ characters that define the beginning and end of our URL path
and how our use of regular expression named groups allows us to pass the slug portion of
the URL directly to our view as a keyword argument. We make sure, as always, to name the
URL pattern.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/bb3aa7eb88/organizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/bb3aa7eb88
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/bb3aa7eb88/organizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/bb3aa7eb88

5.8 Implementing the Views and URL Configurations to the Rest of the Site 151

5.8.4 Connecting the URL Configuration to Our Blog App
We’ve created the four display webpages in our organizer app. We will now build two
pages in our blog app. To maintain app encapsulation, we must first create an app-specific
URL configuration file and then point a URL pattern in the site-wide URL configuration
to it.

Start by creating /blog/urls.py and coding the very basic requirements for a URL
configuration. This will yield the code shown in Example 5.47.

Example 5.47: Project Code
blog/urls.py in 02dabec093

1 urlpatterns = [
2]

In /suorganizer/urls.py we can direct Django to our blog app URL
configuration thanks to include(), as shown in Example 5.48.

Example 5.48: Project Code
suorganizer/urls.py in 02dabec093

19 from blog import urls as blog_urls
. ...

22 urlpatterns = [
. ...

24 url(r'ˆblog/', include(blog_urls)),
. ...

26]

Remember that the full URL configuration is actually a tree. If a URL pattern points to
another URL configuration, Django will pass the next URL configuration a truncated
version of the URL path. We can thus continue to use the ˆ regular expression character to
match the beginning of strings, but we cannot use the $ to match the end of a string. When
the user requests the blog post webpage, he or she will request /blog/2013/1/
django-training/. Django will remove the root slash and match the URL path in the
request to the URL pattern above, as the regular expression r'ˆblog/' matches the path.
Django will use the regular expression pattern r'ˆblog/' to truncate the path to
2013/1/django-training/. This is the path it will forward to the blog URL
configuration and is what we want our post detail view to match.

Before we create a blog post detail view, let us first program a list view for posts.

5.8.5 Building a Post List Page
With our blog app connected via URL configuration, we can now add URL patterns. Let’s
start with a list of blog posts.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/02dabec093/blog/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/02dabec093
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/02dabec093/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/02dabec093

152 Chapter 5 Creating Webpages with Controllers in Django

In /blog/views.py, our function view is straightforward, as you can see in
Example 5.49.

Example 5.49: Project Code
blog/views.py in 928c982c03

1 from django.shortcuts import render
2
3 from .models import Post
4
5
6 def post_list(request):
7 return render(
8 request,
9 'blog/post_list.html',
10 {'post_list': Post.objects.all()})

We wish to list our blog posts at /blog/. However, this is already the URL path
matched by our call to include in suorganizer/urls.py. When a user requests
/blog/, Django will remove the root /, and match the URL pattern we just built. Django
will then use r'ˆblog/' to truncate the path from blog/ to the empty string (i.e.,
nothing). We are thus seeking to display a list of blog posts when Django forwards our blog
app the empty string. In Example 5.50, we match the empty string with the regular
expression pattern r'ˆ$'.

Example 5.50: Project Code
blog/urls.py in 928c982c03

1 from django.conf.urls import url
2
3 from .views import post_list
4
5 urlpatterns = [
6 url(r'ˆ$',
7 post_list,
8 name='blog_post_list'),
9]

5.8.6 Building a Post Detail Page
The final view left to program is our detail view of a single Post object. Programming the
view and URL pattern for this view is a little bit trickier than our other views: the URL for
each Post object is based not only on the slug but also on the date of the object, making
the regular expression pattern and query to the database a little more complicated. Recall
that we are enforcing this behavior in our Post model via the unique for month
attribute on the slug.

Take http://site.django-unleashed.com/blog/2013/1/django-
training/ as an example. After include() in our root URL configuration truncates

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/928c982c03/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/928c982c03
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/928c982c03/blog/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/928c982c03
http://site.django-unleashed.com/blog/2013/1/django-training/
http://site.django-unleashed.com/blog/2013/1/django-training/

5.8 Implementing the Views and URL Configurations to the Rest of the Site 153

blog/ from the URL path, our blog app URL configuration will receive 2013/1/
django-training/. Our regular expression pattern must match a year, month, and slug
and pass each one as a value to our view.

The year is four digits, and our named group is thus (?P<year>\d{4}). A month may
have one or two digits, so our named group is (?P<month>\d{1,2}). Finally, and as
before, our slug is any set of alphanumeric, underscore, or dash characters with length
greater than one, so we write our named group as (?P<slug>[\w\-]+). We separate
each part of the URL path with a / and wrap the string with ˆ and $ to signify the
beginning and end of the URL path to match. The string containing our regular expression
is thus r'ˆ(?P<year>\d{4})/(?P<month>\d{1,2})/(?P<slug>[\w\-]+)/$'.

To direct Django to a view in /blog/views.py, we may write the call in Example
5.51 to url().

Example 5.51: Project Code
blog/urls.py in cb5dd59383

3 from .views import post_detail, post_list
. ...
5 urlpatterns = [
. ...
9 url(r'ˆ(?P<year>\d{4})/'

10 r'(?P<month>\d{1,2})/'
11 r'(?P<slug>[\w\-]+)/$',
12 post_detail,
13 name='blog_post_detail'),
14]

Warning!
In Example 5.51, we are passing one regular expression pattern, despite that there
appears to be three. Python allows strings to be split into string fragments as long as
there is only whitespace between the string fragments. Note how lines 9 and 10 do
not end with a comma, while line 11 does. This is because the strings on lines 9, 10,
and 11 are all a single string to Python, split this way to fit on the pages of this book.
The r preceding the string fragments makes each fragment a raw string.

Our function view will thus accept four parameters: request, year, month, and slug.
In Example 5.52, in /blog/views.py, start by changing the import to include

get object or 404, which we will need for our detail page.

Example 5.52: Project Code
blog/views.py in cb5dd59383

1 from django.shortcuts import (
2 get_object_or_404, render)

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/cb5dd59383/blog/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/cb5dd59383
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/cb5dd59383/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/cb5dd59383

154 Chapter 5 Creating Webpages with Controllers in Django

We must now build a query for the database. Our Post model contains a pub date
field, which we could compare to a datetime.date, but we don’t have the necessary
information to build one (we lack the day). For the occasion, Django provides DateField
and DateTimeField objects with special field lookups that break each field down by its
constituents, allowing us to query pub date year and pub date month to filter results.
In the case of our example URL, http://site.django-unleashed.com/blog/
2013/1/django-training/, this functionality allows us to write the query shown in
Example 5.53.

Example 5.53: Python Code

Post.objects
.filter(pub--date--year=2014)
.filter(pub--date--month=11)
.get(slug--iexact='django-training')

While the query to our Post model manager will work, it is more desirable to use the
get object or 404 to minimize developer-written code. Recall that get object
or 404 wants a model class and a query string as parameters. Django does not limit the
number of query strings passed to get object or 404, allowing developers to pass as
many as necessary. Given n arguments, the first n-1 will call filter(), while the nth
will result in a call to get(). Practically, this means Django will re-create the query in
Example 5.53 for us exactly, with the call shown in Example 5.54.

Example 5.54: Project Code
blog/views.py in cb5dd59383

8 post = get_object_or_404(
9 Post,
10 pub_date--year=year,
11 pub_date--month=month,
12 slug=slug)

The rest of our view is exactly like any other. The view passes the HttpRequest object,
a dictionary, and a string to render(). The render() shortcut uses the HttpRequest
object and the dictionary to build a RequestContext object. The string passes a path to
the template file, allowing render() to load the template and render the template with the
RequestContext object. The shortcut then returns an HttpResponse object to the
view, which the view passes on to Django. Our final view is thus shown in Example 5.55.

Example 5.55: Project Code
blog/views.py in cb5dd59383

7 def post_detail(request, year, month, slug):
8 post = get_object_or_404(

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/cb5dd59383/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/cb5dd59383
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/cb5dd59383/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/cb5dd59383
http://site.django-unleashed.com/blog/2013/1/django-training/
http://site.django-unleashed.com/blog/2013/1/django-training/

5.9 Class-Based Views 155

9 Post,
10 pub_date--year=year,
11 pub_date--month=month,
12 slug=slug)
13 return render(
14 request,
15 'blog/post_detail.html',
16 {'post': post})

5.9 Class-Based Views
Warning!
This section deals with Python methods and HTTP methods. I will refer to Python
methods simply as methods and to HTTP methods as HTTP methods, typically
referring to the actual HTTP method in capitals (such as the HTTP GET method or
the HTTP OPTIONS method).

Any Python callable that accepts an HttpRequest object as argument and returns an
HttpResponse object is deemed a view in Django. So far, we’ve stuck exclusively to using
Python functions to create views. Prior to Django 1.3, this was the only recommended way
to create views. However, starting in version 1.3, Django introduced a class to allow
developers to create view objects.

Django introduced a class to create view objects because coding the class for the view is
actually rather tricky and prone to security issues. For this reason, despite the ability to use
any Python callable as a view, developers stick to using the Django recommended class or
else simply use functions.

The class itself is simply called View, and developers refer to classes that inherit View as
class-based views (CBVs). These classes behave exactly like function views but come with
several unexpected benefits.

To begin, let’s replace our Post list function view with a class-based view. Example 5.56
shows our current view.

Example 5.56: Project Code
blog/views.py in cb5dd59383

19 def post_list(request):
20 return render(
21 request,
22 'blog/post_list.html',
23 {'post_list': Post.objects.all()})

We are not going to change the logic of the function. However, the function must
become a method belonging to a class (which implies the addition of the self parameter,
required for Python methods). We may name the class whatever we wish, so we shall call it

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/cb5dd59383/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/cb5dd59383

156 Chapter 5 Creating Webpages with Controllers in Django

PostList, but for reasons discussed shortly, the name of the method must be get(), as
shown in Example 5.57.

Example 5.57: Project Code
blog/views.py in d9b8e788d5

3 from django.views.generic import View
. ...
20 class PostList(View):
21
22 def get(self, request):
23 return render(
24 request,
25 'blog/post_list.html',
26 {'post_list': Post.objects.all()})

The import of View typically causes beginners confusion because it implies that View is
generic, leading people to confuse View and class-based views with generic class-based views
(GCBVs). GCBVs are not the same as CBVs, and making a distinction between the two is crucial.
We wait until Chapter 17 and Chapter 18 to deal with GCBVs. For the moment, know that
we are building CBVs and that they are different from GCBVs.

Our PostList class inherits from the View class we imported, imbuing it with
(currently unseen) behavior.

The significance of the name of the method get() is that it refers to the HTTP method
used to access it (a primer on HTTP methods is provided in Appendix A). Therefore, our
method will be called only if the user’s browser issues an HTTP GET request to a URL that
is matched by our URL pattern. To contrast, if an HTTP POST request is made, Django
will attempt to call the post() method, which will result in an error because we have not
programmed such a method. We’ll come back to this shortly.

In /blog/urls.py, import the PostList class and then change the URL pattern
pointer to the pattern shown in Example 5.58.

Example 5.58: Project Code
blog/urls.py in d9b8e788d5

3 from .views import PostList, post_detail
. ...
. urlpatterns = [
. ...
. url(r'ˆ$',
. PostList.as_view(),
. name='blog_post_list'),
. ...
.]

The as view() method is provided by the inheritance of the View superclass and
ensures that the proper method in our CBV is called. When Django receives an HTTP

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/d9b8e788d5/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/d9b8e788d5
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/d9b8e788d5/blog/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/d9b8e788d5

5.9 Class-Based Views 157

GET request to a URL that matches the regular expression in our URL pattern,
as view() will direct Django to the get() method we programmed. We’ll take a much
closer look at exactly how shortly.

5.9.1 Comparing Class-Based Views to Functions Views
A CBV can do everything a function view can do. We’ve not seen the use of the URL
pattern dictionary previously, and so we’ll now take the opportunity to use a dictionary in
both a function view and a CBV to demonstrate similarities. The practical purpose of our
dictionary is to override the base template of our view (which we defined in Chapter 4 in
the template as parent template), and the learning purpose is to familiarize you with
the URL pattern dictionary and CBVs.

To start, we add the dictionary to both blog URL patterns, as shown in Example 5.59.

Example 5.59: Project Code
blog/urls.py in d3030ee8d3

5 urlpatterns = [
6 url(r'ˆ$',
7 PostList.as_view(),
8 {'parent_template': 'base.html'},
9 name='blog_post_list'),

10 url(r'ˆ(?P<year>\d{4})/'
11 r'(?P<month>\d{1,2})/'
12 r'(?P<slug>[\w\-]+)/$',
13 post_detail,
14 {'parent_template': 'base.html'},
15 name='blog_post_detail'),
16]

In our post detail function view, shown in Example 5.60, we must add a named
parameter that’s the same as the key in the dictionary (if we had several keys, we’d add
several parameters).

Example 5.60: Project Code
blog/views.py in d3030ee8d3

8 def post_detail(request, year, month,
9 slug, parent_template=None):

To follow through with our example, we need to pass the argument to our template. In
Example 5.61, we add parent template to the context dictionary defined in the
render() shortcut.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/d3030ee8d3/blog/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/d3030ee8d3
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/d3030ee8d3/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/d3030ee8d3

158 Chapter 5 Creating Webpages with Controllers in Django

Example 5.61: Project Code
blog/views.py in d3030ee8d3

15 return render(
16 request,
17 'blog/post_detail.html',
18 {'post': post,
19 'parent_template': parent_template})

The process for using the dictionary is almost identical to a CBV. We first add a new
parameter to the get() method and then pass the new argument to render(), as shown
in Example 5.62.

Example 5.62: Project Code
blog/views.py in d3030ee8d3

22 class PostList(View):
23
24 def get(self, request, parent_template=None):
25 return render(
26 request,
27 'blog/post_list.html',
28 {'post_list': Post.objects.all(),
29 'parent_template': parent_template})

The modification illustrates a key point with CBVs: the view is entirely encapsulated by
the class methods. The CBV is a container for multiple views, organized according to
HTTP methods. At the moment, illustrating this more directly is impossible, but we revisit
the concept in depth in Chapter 9. The bottom line at the moment is that any modification
you might make to a function view occurs at the method level of a CBV.

We’re not actually interested in overriding the base templates of our views and so should
revert the few changes we’ve made in this section.

5.9.2 Advantages of Class-Based Views
The key advantages and disadvantages of CBVs over function views are exactly the same
advantages and disadvantages that classes and objects have over functions: encapsulating data
and behavior is typically more intuitive but can easily grow in complexity, which comes at
the cost of functional purity.

A staple of object-oriented programming (OOP) is the use of instance variables, typically
referred to as attributes in Python. For instance, we can usually better adhere to DRY in
classes by defining important values as attributes. In PostList, we replace the string in
render() with an attribute (which contains the same value), as shown in Example 5.63.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/d3030ee8d3/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/d3030ee8d3
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/d3030ee8d3/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/d3030ee8d3

5.9 Class-Based Views 159

Example 5.63: Project Code
blog/views.py in ac3db8b26b

20 class PostList(View):
21 template_name = 'blog/post_list.html'
22
23 def get(self, request):
24 return render(
25 request,
26 self.template_name,
27 {'post_list': Post.objects.all()})

At the moment, this does us little good on the DRY side of things, but it does offer us a
level of control that function views do not offer. Quite powerfully, CBVs allow for existing
class attributes to be overridden by values passed to as view(). Should we wish to change
the value of the template name class attribute, for example, we need only pass it as a
named argument to as view() in the blog post list URL pattern, as shown in
Example 5.64.

Example 5.64: Project Code
blog/urls.py in 78947978fd

6 url(r'ˆ$',
7 PostList.as_view(
8 template_name='blog/post_list.html'),
9 name='blog_post_list'),

Even if the template name attribute is unset, the view will still work as expected
because of the value passed to as view(), as shown in Example 5.65.

Example 5.65: Project Code
blog/views.py in 78947978fd

20 class PostList(View):
21 template_name = ''

However, if the template name attribute is undefined (we never set it in the class
definition), then as view will ignore it.

In the event that template name is unset and the developer forgets to pass it, we
should be raising an ImproperlyConfigured exception. We will see its use in
Chapter 17.

Once again, we’re not actually interested in the advantages presented by the changes
made in this section, and so I will revert all of the changes made here in the project code.

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/ac3db8b26b/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/ac3db8b26b
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/78947978fd/blog/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/78947978fd
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/78947978fd/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/78947978fd

160 Chapter 5 Creating Webpages with Controllers in Django

5.9.3 View Internals
CBVs also come with several much subtler advantages. To best understand these advantages,
it’s worth diving into the internals of View and seeing exactly what we’re inheriting when
we create a CBV.

The easiest place to start is with as view(). In a URL pattern, we use as view() to
reference the CBV. Example 5.66 shows an example generic URL pattern.

Example 5.66: Python Code

url(r'ˆ(?P<slug>[\w\-]+)/$',
CBV.as_view(class_attribute=some_value),
{'dict_key': 'dict_value'},
name='app_model_action')

The as view() method is a static class method (note that we call PostList.as
view() and not PostList().as view()) and acts as a factory; as view() returns a
view (a method on the instance of PostList). Its main purpose is to define a (nested)
function that acts as an intermediary view: it receives all the data, figures out which CBV
method to call (using the HTTP method), and then passes all the data to that method, as
shown in Example 5.67.

Example 5.67: Python Code

grossly simplified for your benefit
@classonlymethod
def as_view(cls, **initkwargs)

def view(request, *args, **kwargs)
magic!

return view

In Example 5.67, the cls parameter will be the CBV. In our blog post list URL
pattern, as view() will be called with cls set to PostList. When we passed
template name to as view() in blog post list, initkwargs received a dictionary
in which template name was a key. Example 5.68 shows the result.

Example 5.68: Python Code

as_view(
cls=PostList,
initkwargs={

'template_name': 'blog/post_list.html',
})

5.9 Class-Based Views 161

To best behave like a view, the nested view() method first instantiates the CBV as the
self variable (demonstrating exactly how flexible Python is as a language). The view()
method then sets a few attributes (removed from the example code) and calls the
dispatch() method on the newly instantiated object, as shown in Example 5.69.

Example 5.69: Python Code

still quite simplified
@classonlymethod
def as_view(cls, **initkwargs)

def view(request, *args, **kwargs)
self = cls(**initkwargs)
...
return self.dispatch(request, *args, **kwargs)

return view

For clarity’s sake, I want to reiterate that passing undefined attributes to as view() will
result in problems because as view() specifically checks for the existence of these
attributes and raises an TypeError if it cannot find the attribute, as shown in
Example 5.70.

Example 5.70: Python Code

still quite simplified
@classonlymethod
def as_view(cls, **initkwargs)

for key in initkwargs:
...
if not hasattr(cls, key):

raise TypeError(...)
def view(request, *args, **kwargs)

self = cls(**initkwargs)
...
return self.dispatch(request, *args, **kwargs)

return view

If as view() is the heart of View, then dispatch() is the brain. The dispatch()
method, returned by view(), is actually where the class figures out which method to use.
dispatch() anticipates the following developer-defined methods: get(), post(),
put(), patch(), delete(), head(), options(), trace(). In our PostList
example, we defined a get() method. If a get() method is defined, View will
automatically provide a head() method based on the get() method. In all cases, View
implements an options() method for us (the HTTP OPTIONS method is used to see
which methods are valid at that path).

In the event the CBV receives a request for a method that is not implemented, then
dispatch() will call the http method not allowed() method, which simply returns

162 Chapter 5 Creating Webpages with Controllers in Django

an HttpResponseNotAllowed object. The HttpResponseNotAllowed class is a
subclass of HttpResponse and raises an HTTP 405 “Method Not Allowed” code,
informing the user that that HTTP method is not handled by this path.

This behavior is subtle but very important: by default, function views are not technically
compliant with HTTP methods. At the moment, all of our views are programmed to
handle GET requests, the most basic of requests. However, if someone were to issue a PUT
or TRACE request to our pages, only the PostList CBV will behave correctly by raising a
405 error. All of the other views (function views) will behave as if a GET request had been
issued.

If we wanted, we could use the require http methods function decorator to set
which HTTP methods are allowed on each of our function views. The decorator works as
you might expect: you tell it which HTTP methods are valid, and any request with other
methods will return an HTTP 405 error. For example, to limit the use of GET and HEAD
methods on our Post detail view, we can add the decorator, as demonstrated in
Example 5.71.

Example 5.71: Project Code
blog/views.py in 34baa4dfc3

3 from django.views.decorators.http import \
4 require_http_methods
. ...
10 @require_http_methods(['HEAD', 'GET'])
11 def post_detail(request, year, month, slug):

Info
The use of @require http methods([’GET’, ’HEAD’]) is common enough
that Django provides a shortcut decorator called require safe to help shorten your
code by just a bit.

Even so, the decorator doesn’t provide automatic handling of OPTIONS, and organizing
multiple views according to HTTP method results in simpler code, as we shall see in
Chapter 9.

5.9.4 Class-Based Views Review
A CBV is simply a class that inherits View and meets the basic requirements of being a
Django view: a view is a Python callable that always accepts an HttpRequest object and
always returns an HttpResponse object.

The CBV organizes view behavior for a URI or set of URIs (when using named groups
in a regular expression pattern) according to HTTP methods. Specifically, View is built such
that it expects us to define any of the following: get(), post(), put(), patch(),
delete(), trace(). We could additionally define head(), options(), but View will
automatically generate these for us (for head() to be automatically generated, we must
define get()).

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/34baa4dfc3/blog/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/34baa4dfc3

5.10 Redirecting the Homepage 163

Internally, the CBV actually steps through multiple view methods for each view. The
as view() method used in URL patterns accepts initkwargs and acts as a factory by
returning an actual view called view(), which uses the initkwargs to instantiate our
CBV and then calls dispatch() on the new CBV object. dispatch() selects one of the
methods defined by the developer, based on the HTTP method used to request the URI. In
the event that the method is undefined, the CBV raises an HTTP 405 error.

In a nutshell, as view() is a view factory, while the combination of view(),
dispatch(), and any of the developer-defined methods (get(), post(), etc.) are the
actual view. Much like a function view, any of these view methods must accept an
HttpRequest object, a URL dictionary, and any regular expression group data (such as
slug). In turn, the full combined chain (view(), dispatch(), etc.) must return an
HttpResponse object.

At first glance, CBVs are far more complex than function views. However, CBVs are
more clearly organized, allow for shared behavior according to OOP, and better adhere to
the rules of HTTP out of the box. We will further expand on these advantages, returning to
the topic first in Chapter 9.

Our understanding of views will change in Chapter 9 and Chapter 17, but at the
moment, the rule of thumb is as follows: if the view shares behavior with another view, use
a CBV. If not, you have the choice between a CBV and a function view with a
require http methods decorator, and the choice is pure preference. I personally stick
with CBVs because I find the automatic addition of the HTTP OPTIONS method
appealing, but many opt instead to use function views.

5.10 Redirecting the Homepage
If you run Django’s development server and navigate to the root of the website, you’ll
discover that we’ve missed a spot, as shown in Example 5.72.

Example 5.72: Shell Code

$./manage.py runserver

Browsing to http://127.0.0.1:8000/ will display an error page telling us the URL
configuration doesn’t have a route for this page. While we’ve created a very detailed and
clean URL configuration for all of our URLs, we’ve omitted the homepage, the root of our
website.

We want to show the list of blog posts on the homepage. There are several ways we can
go about doing so.

5.10.1 Directing the Homepage with URL Configurations
The first and perhaps most obvious way would be to create a new URL pattern to send the
route to the view we have already built. In /suorganizer/urls.py, we could add the
URL pattern shown in Example 5.73 to the URL configuration.

http://127.0.0.1:8000/

164 Chapter 5 Creating Webpages with Controllers in Django

Example 5.73: Project Code
suorganizer/urls.py in 3ddb5f3810

20 from blog.views import PostList
. ...
23 urlpatterns = [
24 url(r'ˆ$',
25 PostList.as_view()),
. ...
29]

The regular expression pattern: ˆ starts the pattern, while $ ends the pattern. This
matches '', which is what the root of the URL is to Django, given that it always strips the
first /.

Similarly, given that the PostList view is the root of the blog URL configuration, the
URL pattern could also be as shown in Example 5.74.

Example 5.74: Project Code
suorganizer/urls.py in 4dc1d03a79

23 url(r'ˆ$', include(blog_urls)),

Neither of the solutions presented above is desirable, as they both corrupt the cleanliness
and simplicity of our site URLs. In the first instance, http://site.django-
unleashed.com/blog/ and http://site.django-unleashed.com/ are now
exactly the same. In the second case, we have created an entire branch of URLs, which is far
worse. Not only are http://site.django-unleashed.com/blog/ and http://
site.django-unleashed.com/ the same page, but so is http://site.django-
unleashed.com/blog/2013/1/django-training/ and http://site.django-
unleashed.com/2013/1/django-training/ (note the missing blog/ in the second
URL path). This will effectively create a duplicate of every URL the blog already matched.

Our website should maintain a clean URL scheme. Short of creating a separate
homepage view, directing our homepage to an existing view as above is undesirable.

5.10.2 Redirecting the Homepage with Views
Rather than simply displaying a webpage on our homepage, we will instead redirect the user
to the desired URL. In this instance, http://site.django-unleashed.com/ will
redirect to http://site.django-unleashed.com/blog/, which is the
post list() view.

To redirect a URL, we need a view. This creates a minor problem: we are redirecting our
site-wide homepage with a view, which at this point exists only in app directories. However,
this code does not belong in either our organizer or blog apps. Although Django does not

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/3ddb5f3810/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/3ddb5f3810
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/4dc1d03a79/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/4dc1d03a79
http://site.django-unleashed.com/blog/
http://site.django-unleashed.com/
http://site.django-unleashed.com/blog/
http://site.django-unleashed.com/blog/
http://site.django-unleashed.com/blog/
http://site.django-unleashed.com/
http://site.django-unleashed.com/
http://site.django-unleashed.com/
http://site.django-unleashed.com/blog/2013/1/django-training/
http://site.django-unleashed.com/blog/2013/1/django-training/
http://site.django-unleashed.com/2013/1/django-training/
http://site.django-unleashed.com/2013/1/django-training/

5.10 Redirecting the Homepage 165

anticipate the need for site-wide views.py, nothing is stopping us from creating
/suorganizer/views.py. Inside, we write the code shown in Example 5.75.

Example 5.75: Project Code
suorganizer/views.py in 2e8036623d

1 from django.http import HttpResponseRedirect
2
3
4 def redirect_root(request):
5 return HttpResponseRedirect('/blog/')

The HttpResponseRedirect class is a subclass of HttpResponse with special
properties, just like HttpResponseNotFound. Given a URL path, it will redirect the page
using an HTTP 302 code (temporary redirect). Should you wish for an HTTP 301 code
(permanent redirect), you could instead use HttpResponsePermanentRedirect. Note
that doing so in development can result in unexpected behavior because the browser will
typically cache this response, resulting in difficulties should you change the behavior.

In /suorganizer/urls.py, we can import the new view and replace our previous
URL pattern with the one in Example 5.76.

Example 5.76: Project Code
suorganizer/urls.py in 2e8036623d

22 from .views import redirect_root
23
24 urlpatterns = [
25 url(r'ˆ$', redirect_root),
. ...

29]

Running the deployment server with $./manage.py runserver and navigating
a browser to http://127.0.0.1:8000/ will result in a redirect to http://
127.0.0.1:8000/blog/.

The behavior is what we desire, but our implementation could be improved. Instead of
using HttpResponseRedirect, we can use a Django shortcut, redirect(). Our
/suorganizer/views.py will now look like Example 5.77.

Example 5.77: Project Code
suorganizer/views.py in 5fb0dff63a

1 from django.shortcuts import redirect
2
3
4 def redirect_root(request):
5 return redirect('/blog/')

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/2e8036623d/suorganizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/2e8036623d
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/2e8036623d/suorganizer/urls.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/2e8036623d
http://127.0.0.1:8000/
https://github.com/jambonrose/DjangoUnleashed-1.8/blob/5fb0dff63a/suorganizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/5fb0dff63a
http://127.0.0.1:8000/blog/
http://127.0.0.1:8000/blog/

166 Chapter 5 Creating Webpages with Controllers in Django

The code in Example 5.77 will work exactly as if we were still using
HttpResponseRedirect, with an HTTP 302 code. Should we wish to switch
to an HTTP 301 code, we could pass permanent=True to the shortcut, as in:
redirect('/blog/', permanent=True).

The advantage to redirect() is that, unlike HttpResponseRedirect, it does not need a
URL path (currently used in Example 5.77). To better adhere to the DRY principle, we can
instead use the name of the URL pattern we wish to redirect to, as shown in Example 5.78.

Example 5.78: Project Code
suorganizer/views.py in ba8c7c5e89

4 def redirect_root(request):
5 return redirect('blog_post_list')

The shortcut in Example 5.78 is exactly what we want, but it may be a little opaque.
Unlike the shortcuts we’ve seen before, we don’t currently understand everything going on
under the hood. Specifically, we don’t know how the shortcut builds a proper URL path
from the URL pattern. We will see exactly how to do this in the next chapter and revisit
this shortcut then.

Note that our way of redirecting, with a site-wide function view, is not the way you
would redirect in an actual project. Our method is in direct violation of DRY, but we won’t
be able to fix that until Chapter 17.

In short, the behavior above is exactly what we want, and the code is the best we can
write given our current knowledge. Please keep this function and behavior in mind going
forward, as we will revisit it in Chapter 6 and replace it in Chapter 17.

5.11 Putting It All Together
In Chapter 5, we examined Django views and URL configurations, which make up the
Controller of Django’s Model-View-Controller architecture. The Controller acts as the glue
between the Model and View. In Django, the Controller receives, selects, processes, and
then returns data.

A Django view is any callable that receives an HttpRequest object (with any other
additional arguments) and returns an HttpResponse object. Originally, Django
recommended using functions as views, but modern Django also provides a canonical way
of creating classes to create object views.

To make writing views easier, Django supplies shortcut functions. We saw three
shortcuts, starting with get object or 404(), which gets an object according to a model
class and query while accounting for the possibility that the query will not match a row in
the database, in which case it raises a Http404 exception. We then saw the
render to response() and render(). Both load a template, render the template with
a context, and instantiate an HttpReponse object with the result. However, the render()
shortcut uses a RequestContext instead of a Context object, allowing Django to run
context processors on the RequestContext, effectively adding values for the template to

https://github.com/jambonrose/DjangoUnleashed-1.8/blob/ba8c7c5e89/suorganizer/views.py
https://github.com/jambonrose/DjangoUnleashed-1.8/commit/ba8c7c5e89

5.11 Putting It All Together 167

use during the rendering phase. This added functionality is key to certain views and
functionality, and thus render() has become the favored shortcut, even if it is marginally
slower than render to response().

To direct Django to the views the developer writes, Django provides the URL
configuration mechanism. The URL configuration is contained in a file pointed to by the
project settings. Inside the file, Django expects (by convention) to find the urlpatterns
variable, which is a list of RegexURLPattern objects. Each RegexURLPattern object is
created by a call to url(), which expects at the very least (1) a regular expression pattern
and (2) a reference to a Python callable. A call to url() may also optionally be called with
(3) a dictionary of values that are passed as keywords to the view that the resulting
RegexURLPattern points to. Finally, url() can receive (4) the keyword argument name,
which sets the name of the RegexURLPattern, a feature that will become crucial in the
next chapter.

URL configurations may be connected using include(). A URL pattern may include
another URL configuration, allowing for the creation of a URL scheme that is a tree,
where the root URL configuration specified in the Django project settings is the root of the
tree. This feature furthermore allows for app encapsulation, allowing each app to define its
own URL patterns, extending those of the project, which include() achieves by
truncating the regular expression match from the URL path requested of Django.

In short, the URL configuration directs Django to the view thanks to URL pattens,
which contains the logic required to make a webpage.

This page intentionally left blank

Index

Symbols and Numbers

{{.}}, {%.%}, {#.#} (Delimiters), in template
project code, 80

200 (Request Valid), HTTP response codes,
758

400 (Bad Request), HTTP response codes,
727–728, 758

403 (Forbidden), HTTP response codes,
483, 485–487, 727–728, 758

404 (Invalid Query), HTTP response codes,
132–135, 758

500 (Internal Server Error), HTTP response
codes, 727–728, 741, 758

A
About page, 356–359. See also Flatpages app
Abstract syntax tree (AST), 773
AbstractUser, User model inheriting

from, 559–560
Accounts. See User accounts
Activation

cleaning up URL patterns, 545
creating user accounts, 517, 529–535
resending account activation, 538–544

Actor model, signals and, 660
Add page, configuring admin app, 596–604
Add view, admin app for providing for

models. See Creation pages (add view)
Add-ons. See Backing services (add-ons)
Admin actions, creating, 616–618
Admin app

adding change password page, 604–612
adding information to list view, 589–592
adding Profile to UserAdmin, 613–615
changing passwords, 504

configuring add and edit pages, 584–588,
596–604

configuring for User model, 593
configuring list of Post objects, 581–584
configuring list page, 593–596
creating admin actions, 616–618
creating user apps, 464–465
importing and registering app models

with, 580
interactions with, 578–579
introduction to, 577
modifying admin controls for blog posts,

581
permissions and, 559
summary of, 618
URL pattern conflict and, 468
working with flatpages form, 355

Admin library. See Admin app
Admin pages, optimizing, 679
Admin panel, 617–618
Aggregate functions, performing database

calculations with, 591
all(), manager methods, 81
Alphanumeric characters. See

Characters/character sets
Amazon, deployment services, 726
Anonymous users, User model, 462–463
API, options for interacting with email

services, 743–745
App registry, listing available apps, 282
AppConfig object, loading, 650–651
Apps. See also by individual types

adding static content to, 374–376
adding to projects, 353
building app-generic templates, 108–109
connecting to new apps in
settings.py, 19–21

contributed apps, 328

780 Index

Apps (continued)
creating, 13, 17–19
loading AppConfig objects for, 650–651
refactoring code to adhere to app

encapsulation standard, 143
selecting third-party apps for project,

751–752
using app-generic templates, 109–112

Apps objects, interacting directly with,
650–651

Archiving blog posts
adding behaviors for indexing archive,

414–415
adding behaviors for monthly archive,

408
adding behaviors for yearly archive, 401
linking to monthly archive, 414
selecting dates for yearly archive, 402–403
sitemap for, 715–718
template for monthly archive, 410–413
template for yearly archive, 404–408
views and URL configurations for

monthly archive, 408–410
views and URL configurations for yearly

archive of, 403–404
Arguments, template, 690
as manager() method, in QuerySet class,

624
as view() method, inspecting internals of

class-based views, 160–162
ASCII character set, 772
asctime variable, in logging, 453
AST (abstract syntax tree), 773
Atom feeds, 707–714
Attributes

advantages of class-based views, 158
for feeds, 709
of fields in Django Post model, 38
ordering attribute, 594
ordering lists by date, 48
organizing data by, 33–34
priority attribute of webpages, 717–718

Auth app
adding login and logout features to,

458–463
anatomy of, 457–458, 476, 545–547
creating user apps, 464–465
groups, 480–482

introduction to, 451
permissions. See Permissions
UserCreationForm, 527–529
UserManager, 561

Authentication
adding login and logout features to auth

app, 458–463
anatomy of auth app, 457–458
creating user apps, 464–465
forcing, 484
introduction to, 451
logging configuration, 452–455
post-authentication redirection, 471–472
sessions and cookies and, 456–457
starting projects and, 752
summary of, 472
views for making login and logout pages,

465–471
Authentication, extending functionality of

anatomy of auth app, 545–547
building forms, 527–529
changing passwords, 503–506
cleaning up URL patterns, 544–545
creating user accounts, 517
disabling user accounts, 513–516
introduction to, 501
mixins for sending and logging emails,

518–527
password views, 501–503
resending account activation, 538–544
resetting passwords, 506–513
summary of, 547
templates for creating accounts, 535–538
views for creating and activating

accounts, 529–535
Author, adding to blog posts, 572–576
Automatons, forms as, 190

B
Back-end programming, 5–6
Backing services (add-ons)

caching with memcache, 745–748
Heroku, 726–727
logging service, 741–743
overview of, 741
sending email with Postmark email

service provider, 743–745

Index 781

Base classes, Manager class as, 623
BaseUserManager, UserManager

inheriting from, 561–562
BDD (behavior-driven development), 753
Behaviors

anticipating behavior overrides, 388–392
extending pagination behavior with

GCBVs, 423–425
organizing data by, 33–34
signals for handling. See Signals

Behaviors, generic
in GCBVs, 385–388
for indexing blog post archive, 414–415
linking to monthly archive of blog posts,

414
for monthly archive of blog posts, 408
overview of, 401
selecting dates for yearly archive of blog

posts, 402–403
template for monthly archive of blog

posts, 410–413
template for yearly archive of blog posts,

404–408
views and URL configurations for

monthly archive of blog posts, 408–410
views and URL configurations for yearly

archive of blog posts, 403–404
for yearly archive of blog posts, 401

Berners-Lee, Sir Tim, 35
Binding data, to forms, 190
Blog app (start up organizer)

adding author to blog posts, 572–576
adding styles to, 381
adding URL pattern dictionary, 157–158
in app registry, 282
automatically assigning Tag objects to
Post instances, 655–660

blog post archive sitemap, 715–718
building detail view for blog posts,

152–155
building page for listing blog posts,

151–152
class mixins for applying permissions to

blog post, 495–496
class-based views in, 155–157
completing Post model for running,

38–40
configuring list of Post objects, 581–584

connecting to new apps in
settings.py, 19–21

connecting URL configuration to, 151
creating apps with manage.py, 17–19
creating custom managers, 622–624
creating links on object detail pages,

184–186
creating new project and apps, 13
custom template tag for displaying related

blog posts, 690–697
custom template tag for listing latest blog

posts, 701–706
displaying future posts in template,

497–499
generating project structure, 14–15
group permissions and, 481–482
importing decorator into, 494–495
inspecting internals of class-based views,

160–162
linking list pages to detail pages, 178
migration use with, 280
modifying admin controls for blog posts,

581
Post sitemap, 715–718
preparing deployment settings, 730–734
project specifications, 12–13, 749–751
redirecting homepages and, 163–164,

186–187
replacing CBVs with GCBVs, 397
root project directory, 15
selecting Django and Python versions,

11–12
summary, 21–22
template for list of blog posts, 101–102
template for single blog post, 100–101
viewing project installation via
manage.py, 15–17

Blog posts. See Posts, blog
Booleans, using with permissions, 495
Bound forms

displaying unbound and invalid forms,
242

values in tag form.html, 216–217
Bug fixes, source code and versioning and,

324
Buttons, for linking to object creation forms,

379

782 Index

C
@cache page() decorator, 684
@cached property decorator, 664–665
Caching

entire webpages, 682–684
information, 662
limiting database queries, 663
with memcache, 745–748
permissions, 481
properties, 664–665
template files, 680–681
template variables, 665–667

Canonical URLs, 173
cap first(), importing tools from Django,

633
CAPTCHA system, controlling account

reset and activation, 539
Case sensitivity

cap first(), 633
string capitalization criteria, 68–71

CBGVs (class-based generic views).
See GCBVs (generic class-based views)

CBVs (class-based views)
advantages of, 158–159
building ContactView, 304–306
class mixins, 254–256
comparing with function views, 125,

157–158
comparing with GCBVs, 394
comparing with views, 125
converting function views to, 337–338,

384–385
creating with get and post methods,

302
generic. See GCBVs (generic class-based

views)
inspecting internals of, 160–162
multiple inheritance in Python and, 762
overview of, 155–157
replacing tag create() with
TagCreate CBV, 246–249

review of, 162–163
starting projects and, 753
webpages and, 316

Change password page, adding to admin app,
604–612

Change view (edit pages). See Edit pages
(change view)

Characters/character sets
ASCII and Unicode, 772
defining regular expression for character

matching, 130–131
reversing regular expressions patterns

with, 171–172
URL reversal and, 170–171

check command
checking production settings, 738
running before migration, 50

check unique(), validation tool, 636–637,
640–641

Class mixins
ActivationMailFormMixin, 542
applying permissions to blog post,

495–496
BasePostFeedMixin, 709
deleting Startup and Tag objects,

273–274
GCBVs compared with, 383
making PostGetMixin generic,

432–438
PageLinkMixin, 419
PostGetMixin, 429–432
ProfileGetObjectMixin, 553
for sending and logging emails,

authentication, extending functionality
of, 518–527

transforming into GCBV, 394–395
Class-based generic views. See GCBVs

(generic class-based views)
Classes. See also by individual types

adding methods to models, 45–47
attaching managers to model classes, 59
base classes, 623
controlling model behavior using nested

meta classes, 47–49
creating models and, 37–38
for feeds, 708
mapping Python classes to database tables,

64
mixins. See Class mixins
multiple inheritance in Python, 762–763
reasons for using for generic views,

393–394
Classy Class-Based Views tool, 400, 418

Index 783

Clean methods
creating clean method for Tag model
name field, 198–199

creating clean method for Tag model
slug field, 199–201

validation techniques, 197–198
clean value(), validation tool, 636–637,

640–641
Cleaned data

compared with raw data, 192
demonstrating use of TagForm in shell,

193–197
implementing save() method with
TagForm, 192–193

validation of contact form, 303
CLI (command-line interface), Heroku

logging into Heroku, 738
overview of, 728

Clients, HTTP, 757
Cloud computing

deployment options, 725–726
separating state from behavior, 729

Codebases. See Libraries (codebases)
Columns, table, 765
Compilation, 773–774
Conditions, replacing with variables,

218–220
Contact Us webpage (contact app)

building contact form, 302–304
creating a contact app, 300–301
creating contact webpage, 301–302
Django functionality in, 326
reasons for not using GCBVs, 400–401
splitting urls.py file into smaller

modules, 308–310
summary of, 308–310
template for displaying contact form,

306–308
URL pattern and view for interacting

with contact form, 304–306
ContactView CBV, building for Contact

Us app, 304–306
Contenttypes app

authentication and, 451
creating ContentType model

from, 478
keeping track of app content types,

473–476

Context
making changes to values in Context

objects, 140–143
for rendered templates, 318
using templates in Python Context class,

112–116
Contrib directory, 325–327
Contributed apps

contributed Library (contrib), 328
enabling flatpages and, 353
staticfiles contributed app, 373

Contributed Library (contrib)
contrib directory, 325–327
contributed apps, 328
creating app to interact with, 365
introduction to, 323
overview of, 19
source code and versioning and,

323–325
staticfiles contributed app, 373
summary of, 329
translation framework and, 328–329

Controller, in MVC architecture
advantages of Models and Views over

controller, 27
building website using only Controller,

23
developer preferences, 687
function of, 8–9
URL configuration and view interaction,

121–122
views. See views (Django)

Controls, modifying admin controls for blog
posts, 581

Cookies
authentication and, 451
security of, 456–457

Core app
creating for data migration in flatpages

app, 365–366
creating user apps, 464–465

coverage tool, testing with, 777
Create, in CUD

creating NewsLink objects in a view,
252–254

creating Post objects in a view, 249–250
creating Startup objects in a view,

251–252

784 Index

Create, in CUD (continued)
custom template tag for displaying create

or update forms, 697–701
template for creating StartupForm,
NewsLinkForm, and PostForm,
227–229

template for creating Tag objects,
211–213

create superuser(), 562–563
CreateAccount view, views for creating

and activating accounts, 529–530
CreateModel

blog migration and, 55
creating Post model, 51–53

createsuperuser command, 645–647
createtag command, 628–630
createuser command

handle() and, 638–643
importing tools from Django, 633–634
interactive and noninteractive, 630–633
prompting developer for password

(getpass), 644–645
try.except block in interactive code,

643–644
validation tools, 636–637

Creation pages (add view)
admin app for providing for models, 581
building generic object, 394–395
configuring admin app, 584–588

cross-site request forgery. See CSRF
(cross-site request forgery)

CRUD (created, read, updated, destroyed)
data management, 189
organizing URLs and, 750–751

Cryptography
creating user accounts, 517
resetting passwords and, 507

CSRF (cross-site request forgery)
creating Tag objects and, 212–213
issuing POST requests and, 268–270
protecting against, 769–770
tokens, 505

@csrf protect decorator
disabling user accounts, 514
resending account activation, 541

CSS (Cascading Style Sheets)
adding to websites, 373
applying styles to fieldsets, 597

building custom template tag, 695–696
creating CSS files in directories, 374
creating stylesheet for entire website, 376
in custom template tag for displaying

create or update forms, 699
in display of webpages, 6
Espresso tool, 777
integrating CSS content into sites,

377–381
CUD (create, update, delete)

adding CUD webpages for objects, 189
admin app and, 577

Custom
decorators, 488–495
managers, 622–624
template filters, 688–689
template tags. See Template tags, custom

Custom user, overriding authentication
adding author to blog posts, 572–576
creating manager for, 561–563
creating user profile, 550
extending User model, 558–561
integrating forms and templates, 566–567
introduction to, 549
Profile model, 550–552
ProfileDetail view, 552–555
ProfileUpdate, 555–557
PublicProfileDetail, 557–558
replacing old auth versions of User

model, 564–566
summary of, 576
User migration, 568–572

D
Data

accessing, 34–35
binding to forms, 190
cleaned vs. raw, 192
connecting with through relations, 65–68
CRUD (created, read, updated,

destroyed), 189
data in memory vs. data in database,

64–65
natural, 625
normalization of, 766
organizing into models, 32–34, 36
serialization of, 622, 625–626

Index 785

Data migrations
creating core app for, 365–366
creating Profile model, 551
for flatpages app, 369–370
overview of, 280
post data, 287–288
for sites app, 365–369
startup data, 285–287
for swappable models, 565
tag data, 280–284
User model, 568–572

database injection attacks, ORM protecting
against, 769

Database managers, 765
Databases

building query for, 154
caching properties for optimization,

664–665
creating or modifying via migrations,

53–55
creating using migrate command, 16
data in memory vs. data in database,

64–65
interacting with via managers, 58–63
interacting with via models, 56–58
limiting queries, 663
optimizing, 679–680
performing calculations with aggregate

functions, 591
reasons for using, 32
relational, 765–767
schema of, 279
selecting for deployment, 729
selecting when starting project, 753
tools for communicating with, 10

Datacenters, for deployment, 725
date template filter, for customizing output,

95–96
DATE FORMAT argument, 95–96
DateDetailView GCBV, applied to
PostDetail, 426–429

db.models package, 622
DDOS (distributed denial-of-service)

attacks, 661
DEBUG, creating error pages, 727–728
debug-toolbar

caching template variables, 665–667
as profiling tool, 662

viewing global state of webpage, 667
viewing queries for loading blog posts,

697
Decorators. See also by individual types

in auth app, 476
for caching, 684
custom, 488–495
protecting views, 484–487
Python, 761–762

Delete, in CUD
deleting NewsLink objects, 271–272
deleting Post objects, 269–271
deleting Startup objects, 273, 275–276
deleting Tag objects, 226–227, 273–275
displaying delete confirmation forms, 701
overview of, 268–269

Delete information, admin app providing,
581

Delimiters ({{.}}), in template project code,
80

Denial-of-service (DOS) attacks, 661
Dependencies

in data migration, 366
Django and, 626

Deployment
adding backing services (add-ons), 741
caching with memcache, 745–748
checking production settings, 738
creating error pages, 727–728
to Heroku, 738–741
introduction to, 725–726
logging service for, 741–743
preparing for, 726–727
running development server, 735
running foreman’s server, 735–737
sending email with Postmark, 743–745
settings, 730–735
summary of, 745–748
tools for, 728–729

Deprecated features, source code and
versioning and, 324

Design consistency, template inheritance for,
102

Detail pages
adding URL pattern, 130–132
anticipating behavior overrides, 388–392
building for blog posts, 152–155
building for generic object, 384–388

786 Index

Detail pages (continued)
building for startup, 150
building for tags, 128–130
creating links for, 178–181
creating links on, 184–186
linking list pages to, 177–178
overriding authentication, 552–555,

557–558
reasons for using classes for generic views,

393–394
replacing links with
get absolute url(), 181–184

upgrading website using GCBVs,
426–429

DetailView
generic behavior in GCBVs, 385–388
reasons for using classes for generic views,

393–394
switching from custom GCBV to Django

provided GCBV, 392
Development

development-friendly optimization tools,
684

preferences for controllers and views, 687
running development server, 339, 735
shortcuts for shorter development

process, 135–136
test-driven and behavior-driven, 753

Development operations (devops), 726
dev.py

preparing deployment settings, 730–732
running development server, 735

Diamond inheritance problem, 762–763
Dictionaries, sitemap dictionary, 716
DiNucci, Darcy, 189
Directories

blog project (start up organizer), 19–21
contrib directory, 325–327
creating CSS files in, 374
for fixtures, 624
Hello World page and, 24–25
for templates, 78, 103

Distributed denial-of-service (DDOS)
attacks, 661

Django Contributed Library. See
Contributed Library (contrib)

django-admin command-line tool, 14
django-admin.py script, 14

django-toolbelt, for deployment,
728–729

DNS (domain name system), 43
DOS (denial-of-service) attacks, 661
DRY (Don’t Repeat Yourself) principle

advantages of class-based views, 158–159
avoiding duplication of attribute use, 419
building links and, 169
creating URL paths for navigation menu,

176–177
Django following, 11
migrations and, 279
shortening code and, 136
working with static content, 375

DTL (Django Template Language)
controlling markup with templates, 318
creating templates, 73
custom template tags, 687
security features, 770
as template engine, 78
template short-circuiting, 663–664

Dummy cache, 684
Dynamic websites

building, 6–8
overview of, 5–6

Dynos (workers), Heroku, 726–727

E
Edit pages (change view)

admin app providing, 581
configuring admin app, 584–588, 596–604

Email
configuring, 300–301
message framework indicating status of,

306
sending, 304
sending and logging using mixins,

518–527
sending using programming method, 303
sending with Postmark, 743–745

EmptyPage exception, in pagination,
336–337, 342–343

Encapsulation
clean apps and, 78
refactoring code to adhere to standard,

143
utility of app encapsulation, 27–28

Index 787

Encryption, 770
Engine, DTL as template engine for Django,

78
error(), for storing messages, 532
Escaping text, HTML rules for, 80
Espresso tool, for CSS code, 777
Event handling, with signals, 649
Exceptions (errors)

Bad Request (HTTP 400), 727–728, 758
creating error pages, 727–728
displaying form errors, 213–216
Forbidden (HTTP 403), 483, 485–487,

727–728, 758
Internal Server Error (HTTP 500),

727–728, 741, 758
Invalid Query (HTTP 404), 132–135, 758
log mail error(), 522, 524
NoReverseMatch exceptions, 174–175
pagination, 336–337
source code and versioning and, 325
validation techniques, 197–198

execute() method, overriding, 634
Explicit relative import, Tag model and,

75–76

F
Feeds. See News feeds
Fields

adding relational, 40–42
adding SlugField, 289–293
admin app manipulating, 585–586
controlling behavior of, 42–45
creating clean method for Tag model,

198–201
for forms vs. for models, 191–192
generating IDs and labels for, 220–221
hidden, 447
limiting in queries, 672–673
looping over, 222
Post model, 33–34, 36–38
structuring data and, 318

fieldsets attribute, add and edit pages, 596
Files

caching template files, 680–682
creating CSS files in directories, 374
loading template files, 112
splitting into smaller modules, 308–310

Filters
building custom template filter, 688–689
controlling variable output with, 86–89
log filters, 454–455
safe filter, 364–365
types of controls in DTL, 318
using date template filter for

customizing output, 95–96
using linebreaks template filter for

formatting paragraphs, 97–99
using urlize template filter for

automatic linking, 96–97
Finite-state machines, 190
Fixes, source code and versioning and, 324
Fixtures

data handling and, 622
overview of, 624–627

flake8 tool, checking syntax with, 777
Flatpages app

anatomy of, 355
creating About page, 356–359
creating core app for data migration,

365–366
creating template for, 355–356
data migration for, 369–370
disabling middleware and switching back

to URL configuration, 362
displaying FlatPage objects via

middleware, 360–362
displaying FlatPage objects via URL

configuration, 359–360
Django functionality in, 326
enabling, 353–355
introduction to, 353
linking to FlatPage objects, 363
replacing flatpages with GCBVs, 398–399
security implications, 363–365
summary of, 370

FlyData logging service, 742
fold (reduce) tool, 675
force str(), importing tools from Django,

633
Foreign keys

database relations, 34
one-to many relationships and, 475
unique identifiers, 766

Foreman’s server, running, 735–737
Form class, 302

788 Index

form tag, HTML, 318
formatting

linebreaks template filter for
formatting paragraphs, 97–99

for templates, 77–78
Forms

auth app anatomy and, 545–546
AuthenticationForm, 458
building, 527–529
contact form, 302–304
creating user accounts, 517
displaying create or update forms,

697–701
displaying delete confirmation forms, 701
flatpages form, 355
hidden fields in, 447
integrating forms and templates, 566–567
interacting with data via, 318–319
making relations optional on, 295–296
password form, 503–506
states, 235–236
tag form, 211–213
understanding expected behavior,

234–238
URL pattern and view for interacting

with, 304–306
validating, 518

Forms, controlling using views
adding URL pattern and hyperlink,

244–246
creating NewsLink objects, 252–254
creating Post objects, 249–250
creating Startup objects, 251–252
creating Tag objects, 238–244
deleting NewsLink objects, 271–272
deleting objects, 268–269
deleting Post objects, 269–271
deleting Startup objects, 273, 275–276
deleting Tag objects, 273–275
introduction to, 233–234
modifying NewsLink objects, 261–264
modifying Post objects, 257–261
replacing tag create() with
TagCreate CBV, 246–249

shortening organizer views, 254–256
summary of, 276–277
understanding expected behavior,

234–238

updating links for TagUpdate and
StartupUpdate, 267–268

updating objects, 256–257, 264–265
updating Startup objects, 266–267
updating Tag objects, 265–266

Forms, for user input
connecting TagForm to Tag model using

inheritance, 201–203
creating clean method for Tag model,

198–201
creating PostForm, 206–208
creating StartupForm and
NewsLinkForm, 208–210

creating TagForm, 190–192
demonstrating use of TagForm in shell,

193–197
implementing save() method with
TagForm, 192–193

introduction to, 189
as state machines, 190
summary of, 210
understanding ModelForm validation,

203–205
updating objects using ModelForm,

205–206
validation techniques, 197–198

Forms, templates for displaying
bound form values, 216–217
contact form, 306–308
creating for StartupForm,
NewsLinkForm, and PostForm,
227–229

creating for Tag objects, 211–213
deleting Tag objects, 226–227
displaying errors in tag form.html,

213–216
DRY principles, 218
generating field IDs and labels, 220–221
inheritance of, 229–231
introduction to, 211
looping over form fields, 222
printing forms directly, 222–224
replacing loops and conditions with

variables, 218–220
summary of, 229–231
template variables making TagForm

template dynamic, 213
updating Tag objects, 224–225

Index 789

Frameworks
in building websites, 6–8
CSS, 377–378
generating project structure, 14
message framework, 306
Python web framework, 8–11
translation framework, 328–329

Front-end programming, of webpages, 5–6
Function views (FV). See also views (Django)

adding URL pattern, 130–132
building for Tag detail, 128–130
comparing to class-based views, 125,

157–158, 160–162
converting to class-based views, 337–338,

384–385
creating tags and, 238–244
data returned by, 74
greeting()in Hello World page, 25
Invalid Query (HTTP 404) error,

132–135
limitations as generic view, 393
replacing tag create() with
TagCreate CBV, 246–249

starting projects and, 753
using slug argument with, 150
webpages and, 316

Functions, Python, 25

G
GCBVs (generic class-based views)

adding behaviors for blog post archive,
408, 414–415

adding behaviors with, 401
allow future attribute, 495
anticipating behavior overrides, 388–392
building generic object creation pages,

394–395
building object detail pages, 384
cleaning up URL patterns, 544–545
comparing with class-based views, 156,

394
converting function views to, 384–385
generic behavior, 385–388
introduction to, 383
linking to blog post archive, 414
multiple inheritance in Python and, 762

optimizing views with related content,
676–678

overriding methods, 400
reasons for using classes, 393–394
redirection with RedirectView GCBV,

398
replacing CBVs, 395–397
replacing flatpages, 398–399
review of, 418
selecting dates for yearly archive of blog

posts, 402–403
starting projects and, 753
summary of, 416
switching from custom GCBV to Django

provided GCBV, 392
templates for blog post archives, 404–408,

410–413
views and URL configurations for blog

post archive, 403–404, 408–410
when to use/when not to use, 400–401

GCBVs (generic class-based views),
upgrading website with

applying DateDetailView to
PostDetail, 426–429

automating Startup selection, 444–449
benefits of class mixins, 429–432
extending pagination behavior, 423–425
fixing URL patterns in NewsLink,

438–444
generating pagination links, 419–423
introduction to, 417
making class mixin generic, 432–438
pagination of StartupList, 421–422
pagination of TagList, 422
review of GCBVs, 418
setting template suffix for UpdateView

GCBV, 419
summary of, 449–450

Generic relations
contenttypes app and, 475–476
permissions and, 476

Generic templates
applying in Tag list, 106–108
building app-generic templates, 108–109
building site-wide generic template,

104–106
informing Django of site-wide templates,

103–104

790 Index

Generic views, reasons for using classes for,
393–394

GET method. See HTTP GET
get() method

accessing page query with, 342
creating view for modifying Post

objects, 259–261
using with TagCreate class, 247

get absolute url()
canonical URLs and, 173
inversion of control and, 192
replacing detail page links with, 181–184
returning URL path of new Tag object,

240–241
get object or 404(), 136–137
get user model(), 459
getattr(), 367
Git repository

deployment tools, 728
for project and example code, 4

Gondor deployment service, 726
Google Webmaster Central Blog, 333
greeting(), Hello World page, 25
Group model

in auth app, 476
many-to many relationships and, 480

Groups, permissions and, 480–482

H
handle(), createuser command and,

638–643
Hardcoding, navigation links, 176
has perm method, permissions, 476
Hashes

creating user accounts and, 517
resetting passwords and, 507

HEAD, HTTP, 759
Hello World page

advantages of models and views over
controller, 27

creating helloworld app, 24–25
data for, 25
displaying, 26–27
introduction to, 23–24
removing helloworld app, 27–28
summary of, 29
template benefits, 74–76
URL for, 25–26

Help, displaying help text in forms, 219
Heroku

adding backing services (add-ons), 741
caching with memcache, 745–748
CLI, 728
as deployment service, 726
deployment to, 738–741
logging service of, 741–743
preparing for deployment, 726–727

Historical (frozen) model
accessing for sites app, 367
migration system and, 282–286

Hollywood principle. See Inversion of
control

Homepage
redirecting, 186–187
redirecting with URL configurations,

163–164
redirecting with views, 164–166

homepage() view, restructuring, 148–149
Hosting services, deployment options, 725
href attribute, HTML, 375
HTML (HyperText Markup Language).

See also Forms
building links, 169, 178–181
building navigation menu, 175–176
coding templates, 78–79
Django supported output formats, 10
escaping text, 80
form tag, 318
hidden fields, 447
href attribute, 375
HTTP transferring files written in,

757–758
inheritance for design consistency, 102
web browsers and, 76
in webpage display, 6
writing templates in HTML5, 77

HTTP (HyperText Transfer Protocol)
adding state to, 456
creating URL for new webpage, 74–75
primer, 757–759
Python web framework and, 8
submitting data to websites, 235–238,

242–243
view requirements, 125–126
website basics and, 4

HTTP 200 (Request Valid), 758

Index 791

HTTP 400 (Bad Request), 727–728, 758
HTTP 403 (Forbidden), 483, 485–487,

727–728, 758
HTTP 404 (Invalid Query), 132–135, 758
HTTP 500 (Internal Server Error), 727–728,

741, 758
HTTP GET

deleting objects and, 268–269
form states and, 243, 246
function of, 759
interacting with contact forms, 305
submitting data to websites, 235–238
updating objects and, 256
view states and, 249

HTTP HEAD, 759
HTTP OPTIONS, 759
HTTP POST

deleting objects and, 268–269
forms states and, 243
function of, 759
interacting with contact form, 306
submitting data to websites, 235–238
view states and, 249
webpages for updating objects, 256

HTTP PUT, 759
HTTP requests

middleware modifying HTTP objects,
360–361

overview of, 757
Python web framework and, 8
receiving, 313
step-by-step code examination of views

and URL configuration, 126–128
tools for intervening in control flow, 319
view requirements, 125–126, 316
website basics and, 4

HTTP responses
middleware modifying HTTP objects,

360–361
overview of, 757
Python web framework and, 8
response codes, 758
step-by-step code examination of views

and URL configuration, 126–128
tools for intervening in control flow, 319
view requirements, 125–126, 316
website basics and, 4

Hyperlinks. See Links, between webpages

I
Identification, authentication and, 451
IDEs, choosing, 777
IDs, generating field IDs and labels,

220–221
if conditions, performing conditional value

checks, 218–219
Images

adding logo to websites, 377
adding to websites, 373

Importing
app models, 356, 580
decorators, 494–495
explicit relative import, 75–76
tools from Django, 633–634
view class, 156

include(), creating hierarchy of URL
configurations, 145–148

Indexing, sitemaps and, 707
Inheritance

connecting TagForm to Tag model,
201–203

for design consistency, 102
feeds from superclass, 712
fields from ModelForm, 221
forms from ModelForm, 301, 319
of group permissions, 480
manager from Manager class, 622
manger ORM from models.Model, 71
multiple inheritance in Python,

762–763
querysets from QuerySet class, 623
review of GCBVs and, 418
TagForm from ModelForm, 240
of templates, 229–231
User model from AbstractUser,

559–560
UserManager from
BaseUserManager, 561–562

init py file, in packages, 365
Input validation, 197–198
Input/output (I/O), optimization and, 662
INSTALLED APPS

connecting to new apps in
settings.py, 19–21, 650

preparing deployment settings, 730
staticfiles contributed app, 374

792 Index

Installing
Django, 776
Python, 776–777

Instance variables, 158. See also Attributes
Instantiation, of Django models, 57
Inversion of control

frameworks use of, 7
generating project structure, 14
model methods and, 192
redirection and, 241
step-by-step code examination of views

and URL configuration, 128
tools for intervening in control flow, 319
URL configuration and, 124

I/O (input/output), optimization and, 662
IP addresses, locating webpages, 5
is bound attribute, form attributes, 194
is valid attribute

form attributes, 194–195
validation techniques, 197–198, 239

isort tools, for best practices, 777

J
JavaScript, in display of webpages, 6
JSON

Django supported output formats, 10
fixtures and, 622
serialization of data and, 624
web browsers and, 76

K
Keywords, signal handlers, 656–657

L
label attribute, AppConfig object, 650
Labels, generating field IDs and labels,

220–221
Lexes, compilation and, 773
Libraries (codebases)

Admin library. See Admin app
contrib. See Contributed Library

(contrib)
frameworks compared with, 7
logging library, 452
Python, 10

linebreaks template filter, for formatting
paragraphs, 97–99

Links
adding pagination links, 379
to blog post archive, 414
to CSS stylesheets, 375, 377
displaying template links conditionally,

496–497
to FlatPage objects, 363
generating pagination links, 419–423
to object creation forms, 379
urlize template filter for automatic

linking, 96–97
Links, between webpages

adding for TagDelete and
StartupDelete, 275

adding to feeds, 710–711
adding to form view, 244–246
adding URL pattern and, 244–246
building navigation menu, 175–176
canonical URLs and, 173
creating detail page links, 178–181,

184–186
creating URL paths for navigation menu,

176–177
creating using URL query, 341
list pages to detail pages, 177–178
NoReverseMatch exceptions, 174–175
redirecting homepages and, 186–187
replacing detail page links with
get absolute url(), 181–184

reversing regular expressions patterns,
171–172

reversing URL patterns, 170–171
summary of, 187–188
updating for TagUpdate and
StartupUpdate, 267–268

Linode deployment services, 726
List pages

adding information to, 589–592
applying generic template to Tag list,

106–108
building for blog posts, 151–152
building for startup page, 149
building template for blog post app,

101–102
building template for startup objects, 99
building template for tag objects, 90–93
configuring admin app, 593–596
configuring for Post objects, 581–584

Index 793

creating according to function, 675
iterating through QuerySet to print,

81–86
linking to, 177–178
ordering by date, 48
providing for models, 581

ListView
adding information to, 589–592
generating pagination links, 421–422

loader class, using templates in, 112
Local memory cache. See also Caching

replacing with dummy cache, 684
types of caches, 682

log mail error(), 522, 524
Logentries, logging service and, 742
Loggers, 453–454
Logging

configuring, 452–455
mixins for logging email, 518–527
setting log level to critical, 525–526

logging library, 452
Logging service, adding backing services,

741–743
Logic

decoupling from presentation, 76
using template tags to add, 81

@login required decorator
creating custom decorators, 486,

488, 490
disabling user accounts, 514

Login/logout
auth app anatomy and, 546
auth app settings, 458
signals for, 652–655
views for making login and logout pages,

465–471
Logos

adding to websites, 377
style for, 378

Logout. See Login/logout
LogRecord objects

creating, 452
filtering, 454–455

Long-term support (LTS), versions and, 324
Lookups, managers and querysets using, 61
Loops

over form fields, 222
replacing with variables, 218–220

Loose coupling
actor model and, 660
in Django, 649

LTS (long-term support), versions and,
324

M
mail managers(), 304
makemigrations command

adding author to blog posts, 572
creating migrations, 50–53
ensuring unique identifier for NewsLink,

294–295
migration system and, 282
passing name argument, 285

Management commands
checking production settings (check

command), 738
creating tags (createtag), 628–630
creating users (createuser/
createsuperuser), 630

handling data, 622
locating settings (Procfile command),

739
overview of, 627–628

manage.py
creating apps, 17–19
creating migrations, 50–53
displaying Hello World page, 26–27
invoking shell, 112
viewing project installation, 15–17

Manager class, 622, 678–679
Managers

adding methods to, 621
configuring email settings, 301
creating for custom user, 561–563
custom managers and querysets,

622–624
interacting with databases, 58–63
iterating through QuerySet to print lists,

81–84
lookups, 61
mail managers(), 304
for many-to-many relationships, 65–68
methods, 60–62
model managers returning QuerySet

object, 116

794 Index

Managers (continued)
optimizing Manager classes directly,

678–679
ORM inherited from models.Model,

71
Many-to-many relationships

adding relational fields to models, 41
customizing or adding information to

relations, 55
field format, 52
forward and reverse relations, 656,

658–659
generic relations, 475–476
Group model, 480
managers for, 65–68
in relational database, 766–767

Markup languages. See also HTML
(HyperText Markup Language)

controlling markup with templates, 318
web browsers and, 76
writing templates in, 77

Memcache, caching with, 745–748
Memcached Cloud, 745
Memcachier, 745–748
Memory, data in memory vs. data in

database, 64–65
Message framework, 306
Messages, logging and, 453
Messages app

creating admin actions and, 616
displaying login/logout signals, 652–653
displaying message on login page, 517
error() for storing messages, 532
informing user of account activation

status, 534–535
loose coupling, 649
storing messages, 326

Meta classes
attributes defined in, 52
controlling model behavior using, 47–49

Method resolution order, multiple
inheritance and, 762

@method decorator()
creating custom decorators, 489–491
disabling user accounts, 514

Methods
adding to models, 45–47
anticipating behavior overrides, 388–392

for feeds, 709
HTTP GET and HTTP POST requests,

156
managers and querysets, 60–62
overriding, 400
permissions, 476
protecting HTTP methods, 484
Python methods vs. HTTP methods, 155

Middleware
caching entire webpages, 683
disabling and switching back to URL

configuration, 362
displaying FlatPage objects, 360–362
flatpages app, 355
preparing deployment settings, 730–731
sessions app, 456–457
tools for intervening in control flow, 319
view middleware, 361–362

migrate command, 16, 53–54
Migrations

adding author to blog posts, 572–573
adding slug to news link, 289–293
creating, 50–53
creating core app for data migration,

365–366
creating data migration for sites app,

365–369
for creating or modifying databases,

53–55
data migrations, 280
ensuring unique identifier for news link,

294–295
introduction to, 279–280
making relations optional on forms,

295–296
of news link data, 288
optimizing webpages and, 673–676
of post data, 287–288
schema migrations, 288
signals for, 652
of startup data, 285–287
steps in building websites, 299
summary of, 296–297
of swappable models, 565
of tag data, 280–284
understanding, 49–50
of User model, 568–572

Mixins. See Class mixins

Index 795

Mobile apps, building, 7
Mobile frameworks, 7
Model, in MVC architecture

advantages of Models and Views over
controller, 27

function of, 8–9
Model managers, ORM tool, 621
ModelForm

blank field option, 295
creating form class that inherits from, 301
fields and inheritance, 221
forms inheriting from, 319
TagForm inheriting from, 240
updating objects, 205–206
validation, 203–205

Models (Django)
accessing data, 34–35
adding methods, 45–47
adding relational fields, 40–42
auth app and, 476, 545
connecting with data through relations,

65–68
controlling behavior using nested meta

classes, 47–49
controlling field behavior, 42–45
creating migrations, 50–53
creating or modifying databases using

migration, 53–55
creating PostForm model, 206–208
creating StartupForm and
NewsLinkForm models, 208–210

data in memory vs. data in database,
64–65

in Django core, 315
extending User model, 558–561
fields, 36–38, 191–192
granting permissions to users, 478
importing from sites app, 356
instantiation of, 57
interacting with databases via, 56–58
introduction to, 31–32
managers interacting with, 58–63
migrations and, 49–50
organizing data, 32–34, 36
Post model for running start up

organizer, 38–40
Profile model, 550–552
project specifications, 750

reasons for using databases, 32
registering, 580
steps in building websites, 299
string capitalization criteria and, 68–71
structuring and communicating with

databases, 314
structuring and storing data, 317–318
summary of, 71–72
swappable, 564–565
updating objects, 205
User model, 458–463
validating, 203–205

MTV (Model-Template-View) architecture,
313, 316

Multiple inheritance, Python, 762–763
MVC (Model-View-Controller) architecture

applying to Hello World page, 23–24
custom template tags as example of

Django not adhering to, 687, 706
decoupling presentation from logic, 76
developer preferences for controllers and

views, 687
Django models and, 210
limitations of using with Django, 316
MTV architecture compared with, 313
for structure of Django projects, 8–10
URL configuration and view interaction,

121–122
MySQL, for deploying public websites in

cloud, 729

N
name attribute, AppConfig object, 650
Natural data, 625
natural key() method, of dumping data,

626–627
Navigation, pagination for. See Pagination
Navigation menu

building in HTML, 175–176
creating URL paths for, 176–177

Nested meta classes, controlling model
behavior, 47–49

@never cache() decorator, 684
News feeds

introduction to, 707
RSS and Atom formats, 707–714
summary of, 724

796 Index

News link app
adding slug to NewsLink object,

289–293
attributes of Post model, 33–34, 36
automating Startup selection in
NewsLink forms, 444–449

completing Post model, 39
creating NewsLink objects in a view,

252–254
creating NewsLinkForm, 210
creating templates for NewsLinkForm,

227–229
creating view for modifying NewsLink

objects, 261–264
deleting NewsLink objects, 271–272
ensuring unique identifier for NewsLink

objects, 294–295
fixing URL patterns, 438–444
importing and registering app models, 580
overriding methods in
NewsLinkDelete, 400

overriding with news article, 48–49
schema migrations, 288
setting template suffix for UpdateView

GCBV, 419
NewsLink objects

adding slug to, 289–293
creating, 252–254
deleting, 271–272
ensuring unique identifier for, 294–295
modifying, 261–264
schema migrations, 288

NewsLinkDelete, 400
NewsLinkForm

automating Startup selection in,
444–449

creating, 210
templates for, 227–229

NewsLinkUpdate, 419
NoReverseMatch exceptions, 174–175
Normalization of data, benefits of databases,

32
null option, compared with blank field, 295

O
obj argument, checking object-level

permissions, 482–483

Object detail pages
building, 384
creating links on, 184–186

Object-oriented programming (OOP)
advantages of class-based views, 158
origin in actor model, 660
Python as object-oriented language, 761

Object-relational mapper. See ORM
(object-relational mapper)

Objects. See also by individual types
building generic object creation pages,

394–395
buttons for linking to object creation

forms, 379
identifying by primary key, 261
linking to, 363
managers working with, 58–59
permissions, 482–483
Python, 761

One-to many relationships
adding relational fields to models, 40–41
creating with foreign keys, 766
foreign keys and, 475

One-to-one relations, 550
OOP. See Object-oriented programming

(OOP)
OPTIONS, HTTP, 759
ordering attribute

ordering lists by date, 48
use on UserAdmin list page, 594

Organizer app
adding styles to, 379–381
adding URL pattern for tag detail

function view, 131–132
admin app and, 579
in app registry, 282
app-generic templates, 109–112
building app-generic templates, 108–109
building generic object detail pages, 384
building startup detail page, 150
building startup list page, 149
building tag detail function view,

128–130
building template for list of Tag objects,

90–93
class mixins in, 254–256
creating detail page links, 178–181
creating feeds, 711–714

Index 797

creating hierarchy of URL
configurations, 145–148

creating links on object detail pages,
184–186

creating webpage with, 74–76
importing and registering app models,

580
Invalid Query (HTTP 404) error,

132–135
linking list pages to detail pages, 177–178
manage.py for creating, 17–19
migration, 280
replacing CBVs with GCBVs, 395–397
restructuring homepage() view,

148–149
reversing URL patterns, 170–171
shortening code with
get object or 404(), 136–137

shortening code with render(),
139–143

shortening code with
render to response(), 137–139

shortening organizer views, 254–256
organizer/urls.py file, 308–310
ORM (object-relational mapper)

communicating with databases, 37
connecting with data through relations,

65–68
core features at heart of Django, 621
in database communication, 190
directory location of code for, 325
identifying NewsLink objects, 261
interacting with databases via models, 56
manager object and, 58
manger ORM inherited from
models.Model, 71

protecting against database injection
attacks, 769

Output
date template filter for customizing,

95–96
I/O optimization, 662

Overrides
anticipating behavior overrides, 388–392
execute() method, 634
methods in NewsLinkDelete, 400

P
Packages

init py file in, 365
package management, 775
url package, 308–310

PageLinkMixin, generating pagination
links, 419–423

Pagination
adding pagination links, 379
extending pagination behavior, 423–425
generating pagination links, 419–423
introduction to, 331
shell use in working with, 333–337
of StartupList, 337–345, 421–422
summary of, 351
of TagList, 345–351, 422
URL options: query vs. path, 332–333

Paginator object, 339
Papertrail logging service, 741–743
Paragraphs, formatting, 97–99
Parsing, compilation and, 773
Passwords

adding change password page, 604–612
auth app and, 546
changing, 462, 503–506
forms in auth app, 503
prompting developer for (getpass),

644–645
resetting, 502, 506–513
starting projects and, 752
User model and, 459–460
user profile and, 554
views and, 501–503

Pattern matching, regular expressions for,
771–772

Performance. See also Website optimization
global changes to, 680
speed and, 661

Permission model, 476, 478
@permission required decorator, 486,

490
Permissions

adding author to blog posts, 575
admin app using, 582, 591
class mixins applied to blog post, 495–496
contenttypes and generic relations

and, 473–476

798 Index

Permissions (continued)
custom decorators and, 488–495
data migration and, 568–570
displaying future posts in template,

497–499
displaying template links conditionally,

496–497
granting to users, 478
groups in shell, 480–482
introduction to, 473
model in auth app, 476
object-level, 482–483
protecting views, 483–487
in shell, 476–480
signals for, 652
summary of, 500

User model, 559
Persistence of data, benefits of databases, 32
POST method. See HTTP POST
post() method

deleting NewsLink objects, 271–272
deleting Post objects, 269–271
modifying Post objects, 259–261
TagCreate class, 247–248

Post model, 183–184
Post objects

automatically assigning Tag objects to
instances of, 655–660

configuring list of, 581–584
creating in a view, 249–250
deleting, 269–271
migration of, 287–288
modifying, 257–261

Post sitemap, 715–718
PostAdmin

adding information to list view, 589–592
configuring add and edit pages, 584–588
configuring list of Post objects, 581–584

PostCreate, 249–250
PostDetail, 426–429
PostForm

creating, 206–208
creating Post objects in a view, 249–250
creating templates for, 227–229

PostGetMixin
benefits of, 429–432
making generic, 432–438

PostManager, 622–624

Postmark email service, 743–745
PostQuerySet, connecting PostManager

to, 623
PostreSQL

for deploying public websites in cloud,
729

selecting database when starting project,
753

Posts, blog. See also Blog app (start up
organizer)

adding author to, 572–576
adding behaviors for indexing archive of,

414–415
adding behaviors for monthly archive,

408
adding behaviors for yearly archive, 401
adding information to list view, 589–592
applying permissions to, 495–496
archive sitemap, 720–723
automatically assigning Tag objects to
Post instances, 655–660

benefits of PostGetMixin, 429–432
building detail view for, 152–155
building page for listing, 151–152
building query for database, 154
configuring add and edit pages, 584–588
configuring list of Post objects, 581–584
contributors groups permissions, 481
creating custom managers, 622–624
creating Post model, 37
creating Post objects in a view, 249–250
creating PostForm, 206–208
creating templates for PostForm,

227–229
creating via migration, 51–53
DateDetailView applied to
PostDetail, 426–429

deleting Post objects, 269–271
displaying future posts, 497–499
displaying related posts, 690–697
importing decorator into, 494–495
inspecting internals of class-based views,

160–162
iterating through QuerySet to print list of
Post objects, 84–86

linking to monthly archive of, 414
listing latest posts, 701–706
migration of Post objects, 287–288

Index 799

modifying admin controls for, 581
modifying Post objects, 257–261
organizing data, 33–34
overview of, 12
Post model, 183–184
Post sitemap, 715–718
running start up organizer, 38–40
selecting dates for yearly archive, 402–403
template for list of, 101–102
template for monthly archive of, 410–413
template for single post, 100–101
template for yearly archive of, 404–408
views and URL configurations for

monthly archive, 408–410
views and URL configurations for yearly

archive, 403–404
PostUpdate, attributes, 262–263
Prefetch object, queryset optimization,

670–672
prefetch related()

fetching relations, 669
optimizing views with related content,

676–678
prepopulated field option, admin app,

585–586
Presentation, decoupling from logic, 76
Primary keys

assigning to rows, 765–766
automatically assigning Tag objects to
Post instances, 658

automatically created for Django models,
52

database relations and, 34
identifying objects by, 261
resetting passwords and, 506–507
in sites app, 367–368

Printing forms, 222–224
Priority attribute, of webpages, 717–718
Privileges/roles, User model, 460
Procfile command, locating settings with,

739
Production settings, 730–735, 738
production.py file, 732–733
Profile model, 550–552
ProfileDetail view, 552–555
Profiles

adding to UserAdmin, 613–615
creating user profile, 550

Profile model, 550–552
ProfileDetail view, 552–555
ProfileUpdate, 555–557
PublicProfileDetail, 557–558

Profiling
analysis of computer processes, 661
querysets, 667–670
software, 662

Projects
adding static content to, 376–377
apps and, 650

Projects, starting
building project, 752
introduction to, 749
optimization and, 753–754
REST APIs and, 754
selecting database, 753
selecting third-party apps, 751–752
specification, 749–751
starting with generic views, 753
testing, 753
User model, 752
using reverse methods, 753

Properties, caching properties for
optimization, 664–665

psycopg2, deployment tools, 729
PublicProfileDetail, 557–558
published()method

Post objects, 622
QuerySet class, 623

PUT, HTTP, 759
PyCharm IDE, 777
Python

decorators, 761–762
greeting()in Hello World page, 25
installing, 776
libraries, 10
multiple inheritance, 762–763
overview of, 761
regular expressions, 772
using templates with Template,
Context, and loader classes, 112

versions, 11–12
web framework, 8–11

PythonAnywhere deployment service, 726
PyYAML package, supporting YAML use,

624

800 Index

Q
Queries. See also URL queries

building for blog post database, 154
Invalid Query (HTTP 404) error,

132–135, 758
limiting database queries, 663
limiting fields in, 672–673
pagination options, 332–333

Querysets
inheriting from QuerySet class, 623
interacting with databases, 56
iterating through to print list of Post

objects, 84–86
iterating through to print list of Startup

objects, 81–84
lookups, 61
managers returning, 623–624
methods, 60–63
model managers returning QuerySet

object, 116
optimization, 667–670
optimizing QuerySet classes directly,

678–679

R
Rackspace deployment service, 726
Raw data, compared with cleaned data, 192
@receiver() decorator, 654, 656
redirect(), 186–187, 240
Redirection

of homepage, 163–167, 186–187
inversion of control and, 241
post-authentication, 471–472
with RedirectView GCBV, 398
of webpage to new Tag object, 240

RedirectView GCBV, 398
reduce (fold) tool, 675
RegexURLPattern objects, 143. See also

URL patterns
@register decorator, 581, 593
Registration, app models, 580
Regular expressions

building detail view for blog posts, 153
matching characters, 130–131
matching URL patterns to URL

configuration, 145–146
overview of, 771–772

reversing character set patterns, 171–172
reversing URL patterns, 170–171
in URL patterns, 317

Relational databases, 765–767
Relations

adding relational fields to models, 40–42
connecting with data through r, 65–68
fetching with prefetch related(),

669
forward and reverse, 656–657
generic, 475–476
making optional on forms, 295–296
primary and foreign key, 34

Relative import, Tag model and, 75
Render

content using templates in Python classes,
112–116

templates, 318
render()

rendering templates, 242–244
shortcut functions for simplifying code,

139–143
render to response(), 137–139
RequestContext class, 140–143
@require authenticated permission

decorator, 493
requirements.txt file, for deployment,

728
REST APIs, 754
reverse()

DRY principle and, 179
redirecting homepages and, 187

Reverse methods, starting projects and, 753
Reversing URL patterns

DRY principle and, 179
NoReverseMatch exceptions, 174–175
overview of, 170–171
redirecting homepages and, 187
reversing regular expressions patterns

with character sets, 171–172
Roles/privileges, User model, 460
Rows, table, 765
RSS feeds, 707–714
RunPython operation

data migration and, 285
data migration in flatpages app, 370
data migration in sites app, 368
data migration of User model, 571

Index 801

runserver command
invoking server with, 16
running development server, 339

S
safe filter, security implications of flatpages

app, 364–365
save()

implementing with TagForm, 192–193
saving information to databases, 303
Scaling websites, 661
Schema, database, 279
Schema migrations

adding slug to NewsLink, 289–293
ensuring unique identifier for NewsLink,

294–295
making relations optional on forms,

295–296
newslink data, 288
overview of, 288

SchemaEditor, communicating with
databases, 282

Scripts, migrations as, 279
Search engines, 707, 717
Secret keys, creating, 736
Secure Hash Algorithm (SHA), 507
Secure Sockets Layer (SSL), 770
Security

authentication. See Authentication
basics of, 769–770
of data migration, 568–569
flatpages app and, 363–365
permissions. See Permissions

select related(), optimizing views with
related content, 676–678

send mail(), mixin for logging email,
521–524, 529

Serialization of data
difficulty of working with, 625–626
fixtures supporting, 622

Servers
configuring email setting for contact

app, 301
defined, 4
in generation of webpages, 6
HTTP, 757
invoking with runserver command, 16

running development server, 339,
735–737

running foreman’s servers, 735–737
viewing project installation via testing

server, 15–17
Sessions, authentication and, 451, 456–457
Sessions app, 456–457
Settings

checking production, 738
preparing deployment, 730–735

settings.py file
Blog project (start up organizer), 19–21
Hello World page, 24–25
listing project apps, 650
preparing deployment settings, 730–735
removing helloworld app, 27–28

SHA (Secure Hash Algorithm), 507
Shell

data management and, 189
demonstrating use of TagForm in,

193–197
groups in, 480–482
pagination with, 333–337
permissions in, 476–480
queryset optimization, 667–670
templates in, 112–116

Short-circuiting, template short-circuiting
for optimization, 663–664

Signals
automatically assigning Tag objects to
Post instances, 655–660

introduction to, 649–650
for login/logout actions, 652–655
loose coupling, 649
summary of, 660

Single-page applications, 6
Site model, 356
Sitemaps

for basic webpages, 723–724
for blog post, 715–718
for blog post archive, 720–723
overview of, 715
for startup, 720
summary of, 724
for tag, 718–719

Sites app
auth app reliance on, 457
creating data migration for, 365–369

802 Index

Sites app (continued)
enabling, 354
importing models from, 356
purpose of, 354–355

Site-wide content, Django allowing, 625
Site-wide templates

applying in Tag list, 106–108
building, 104–106
informing Django of, 103–104

Skeleton CSS framework, 378–381
Slicing, splitting tag list webpage, 333–334
Slugs

adding to NewsLink, 261, 289–293
building detail view for blog posts, 153
controlling field behavior, 42
creating Profile model, 551
identifying data in URL, 35
using with function view, 150

SMTP, options for interacting with email
services, 744–745

Software, profiling, 662
Source code, availability of, 323–325
Specification of project, 749–751
Speed. See Website optimization
Spreadsheets, organization of relational

databases and, 765
SQLite database

creating via migration, 53–55
creating with manage.py, 49
for small projects, 729

SSL (Secure Sockets Layer), 770
Staging servers, 735
Start up organizer. See Blog app (start up

organizer)
startproject subcommand, automating

Django behavior, 14
Startup data, migration of, 285–287
Startup model, importing and registering,

580
Startup objects

add startup data and
remove startup data, 286–287

automating selection in NewsLink forms,
444–449

building startup detail page, 150
building startup list page, 149
building template for, 93–95

converting function views to class-based
views, 384–385

creating, 251–252, 296
deleting, 273, 275–276
pagination of startup list, 337–345,

421–422
printing list from queryset, 81–84
replacing detail page links with
get absolute url(), 183

template for list of, 99
updating, 264–267

Startup sitemap, 720
startup detail page, building, 150
startup list page, building, 149
StartupCreate, 251–252
StartupDelete, 275
StartupDetail

anticipating behavior overrides, 388–392
generic behavior in GCBVs, 385–388

StartupForm
creating, 208–210
creating Startup objects, 251–252
templates for, 227–229
updating Startup objects, 266–267

StartupList, pagination of, 337–345,
421–422

StartupUpdate
setting template suffix for UpdateView

GCBV, 419
updating links, 267–268
updating objects, 264–265

State
adding to HTTP, 456
form states, 235–236

State machines, forms as, 190
Static app (staticfiles contributed app), 373,

732–733
Static content

adding to apps, 374–376
adding to projects, 376–377
integrating CSS content, 377–381
introduction to, 373
preparing deployment settings, 732–733
summary of, 381

Static websites, compared with dynamic, 5
str (), inversion of control and, 192
String method, adding to Django models,

45–47

Index 803

@stringfilter decorator, 688–689
Strings

capitalization criteria, 68–71
force str(), 633

Styles/stylesheets. See CSS (Cascading Style
Sheets)

suorganizer app. See Blog app (start up
organizer)

Superusers
create superuser(), 562–563
createsuperuser command, 645–647
permissions and, 477
User model, 462

Swappable models, 564–565

T
Tables

mapping Python classes to database tables,
64

in relational database, 765–767
Tag model

creating clean method for, 198–201
importing and registering, 580
project specifications, 750–751
relative import and, 75–76
replacing detail page links with
get absolute url(), 181–182

TagForm connecting to via inheritance,
201–203

Tag objects
adding content using template variables,

80–81
adding logic using template tags, 81
automatically assigning to Post instances,

655–660
building, 78
coding in HTML, 78–79
controlling variable output, 86–89
converting function views to class-based

views, 384–385
createtag command, 628–630
creating, 238–244
creating Startup object without relating

to, 296
creating TagForm, 190–192
data migration and, 280–284
deleting, 273–275

demonstrating use of TagForm in shell,
193–197

implementing save() method with
TagForm, 192–193

iterating through QuerySet to print list
of, 81–86

optimizing webpages and, 673–676
pagination of tag list webpage, 345–351
splitting tag list webpage, 333–334
template for creating, 211–213
template for creating list of, 90–93
templates for deleting, 226–227
templates for updating, 224–225
updating, 264–266

Tag sitemap, 718–719
tag create() function view

creating Tag object, 238–244
replacing with TagCreate CBV,

246–249
tag detail() function view

adding URL pattern for, 130–132
coding, 128–130

TagCreate CBV
creating custom decorators, 491–492
creating Tag object, 238–244
replacing tag create(), 246–249

TagDelete

adding link for, 275
deleting Tag objects, 273–275

TagDetail

anticipating behavior overrides, 388–392
creating detail page links, 178–181
generic behavior in GCBVs, 385–388

TagForm

bound form values in tag form.html,
216–217

connecting Tag model using inheritance,
201–203

creating, 190–192
creating Tag object, 240
demonstrating use in shell, 193–197
displaying form errors in
tag form.html, 213–216

DRY principles in tag form.html, 218
implementing save() method with,

192–193
looping over form fields, 222

804 Index

TagForm (continued)
template variables making TagForm

template dynamic, 213
templates, 211
updating Tag objects, 265–266

TagList
applying generic template to, 106–108
pagination of, 422

Tags, types of controls in DTL, 318
TagUpdate

setting template suffix for UpdateView
GCBV, 419

updating links, 267–268
updating objects, 264–265

TDD (test-driven development), 753
Template class, using templates in Python

classes, 112–115
Template tags

applying generic template to Tag list,
106–108

building Tag objects, 78
building template for list of Tag objects,

90–93
function and subclass of Node class

required, 701–702
overview of, 118
syntax of, 690

Template tags, custom
building custom template filter, 688–689
for displaying create or update forms,

697–701
for displaying delete confirmation forms,

701
for displaying related blog posts, 690–697
introduction to, 687–688
for listing latest blog posts, 701–706
summary of, 706
syntax of, 690

Template variables, making TagForm
template dynamic, 213

TemplateResponse
auth’s view using, 514–516
comparing with HTTPResponse, 540

Templates
adding content using template variables,

80–81
adding stylesheets to, 375–376
advantages of, 74–76

app-generic, 109–112
applying generic template, 106–108
for blog post archive, 404–408, 410–413
building for list of Tag objects, 90–93
building for single Startup object,

93–95
building for Tag objects, 78
building generic templates, 108–109
building navigation menu, 175–176
building site-wide generic template,

104–106
caching template files, 680–681
caching template variables, 665–667
changing passwords, 503
choosing format, engine, and location

for, 77–78
coding in HTML, 78–79
controlling markup with, 318
controlling output with template filters,

86–89
creating accounts, 535–538
creating for contact app, 302
creating for flatpages app, 355–356
creating URL paths for navigation menu,

176
date template filter for customizing

output, 95–96
displaying future posts, 497–499
displaying template links conditionally,

496–497
in Django core, 315
generating URLs, 170
informing Django of site-wide templates,

103–104
inheritance for design consistency, 102
integrating with CSS, 377–381
integrating with forms, 566–567
introduction to, 73
linebreaks template filter for

formatting paragraphs, 97–99
for list of blog posts, 101–102
for list of startup objects, 99
loose coupling, 649
printing list of Post objects, 81–86
for profile update, 556
for profile views, 554–555
for public profiles, 558

Index 805

Python with Template,Context, and
loader classes, 112

resetting passwords, 502, 506, 509
setting template suffix for UpdateView

GCBV, 419
in shell, 112–116
for single blog post, 100–101
steps in building websites, 299
styling, 379
summary of, 118–119
template short-circuiting for

optimization, 663–664
understanding use and goals of, 76
urlize template filter for automatic

linking, 96–97
in views, 116–118

Templates, for displaying forms
bound form values in tag form.html,

216–217
contact form, 306–308
creating for StartupForm,
NewsLinkForm, and PostForm,
227–229

creating for Tag objects, 211–213
deleting Tag objects, 226–227
displaying form errors in
tag form.html, 213–216

DRY principles in tag form.html,
218

generating field IDs and labels, 220–221
inheritance of, 229–231
introduction to, 211
looping over form fields, 222
printing forms directly, 222–224
replacing loops and conditions with

variables, 218–220
summary of, 229–231
template variables making TagForm

template dynamic, 213
updating Tag objects, 224–225

TemplateView GCBV
for account creation and confirmation,

517
replacing flatpages with GCBVs, 398–399

Test-driven development (TDD), 753
Tests

syntax and testing tools, 777
testing projects, 753

Text
displaying help text in forms, 219
HTML rules for escaping, 80

time, HTML tag, 101
TLS (Transport Layer Security)

authentication using TLS certificates, 456
security features, 770

token generator(), 520
Tokens

calling tag as token, 704–705
compilation and, 773
CSRF, 505
resetting passwords and, 506–508
as unique identifier, 212, 456

Tools
deployment tools, 728–729
syntax and testing tools, 777

Transactional emails, 743
Translation framework, 328–329
Transport Layer Security (TLS)

authentication using TLS certificates, 456
security features, 770

truncatewords filter, 102
Try.except block, in createuser

interactive code, 643–644

U
ugettext(), 328
ugettext lazy(), 328
Unbound forms, displaying, 242
Unicode, 772
Uniform Resource Identifiers (URIs),

123–124
Unique identifiers

ensuring for NewsLink, 294–295
foreign keys, 766
tokens as, 212
URLs (Uniform Resource Locators),

34–35
Update

displaying update forms, 697–701
of links for TagUpdate and
StartupUpdate, 267–268

of objects using ModelForm, 205
overview of, 256–257
ProfileUpdate, 555–557
of Startup objects, 265–267

806 Index

Update (continued)
of Tag objects, 224–225, 264–265
view for modifying NewsLink objects,

261–264
view for modifying Post objects,

257–261
UpdateView GCBV

ProfileUpdate, 555–557
setting template suffix for, 419

URIs (Uniform Resource Identifiers),
123–124

url()

creating hierarchy of URL
configurations, 145–148

creating URL pattern, 131–132
instantiation of URL patterns, 143

URL configuration
adding URL pattern for tag detail

function view, 130–132
applying to other pages of site, 148
for blog post archive, 403–404, 408–410
building startup detail page, 150
building startup list page, 149
changing passwords, 503–506
connecting to blog app, 151
creating hierarchy of, 145–148
disabling middleware and switching back

to, 362
displaying FlatPage objects, 359–360
for feeds, 710
for Hello World page, 29
importance of order of URL patterns,

143–145
interacting with contact form, 304–306
as list of URL patterns, 317
overview of, 122–125
pagination of Tag List webpage, 346
purpose of, 122
redirecting homepage with, 163–164
step-by-step code examination of use of,

126–128
url package, 308–310
URL path

pagination of Tag List webpage, 345–351
pagination options, 332–333

URL patterns
adding, 244–246

adding for tag detail function view,
131–132

adding to form view, 244–246
cleaning up, 544–545
creating for change password page, 606
creating sitemaps for basic pages, 723–724
in Django core, 315
for feeds, 713–714
fixing news links, 438–444
importance of order of, 143–145
interacting with contact form, 304–306
loading into URL configuration, 126
NoReverseMatch exceptions, 174–175
pagination of Tag List webpage, 345–351
redirecting homepage, 163–164
reversing, 170–171
splitting urls.py file into smaller

modules, 308–310
step-by-step code examination of views

and URL configuration, 127–128
steps in building websites, 299
using URL pattern dictionary, 157–158
views for making login and logout pages,

468
webpages and, 317

URL queries
creating links, 341
pagination options, 332–333
post-authentication redirection, 471–472

url template
creating detail page links, 178–181
creating URL paths for navigation menu,

176–177
DRY principle and, 179
overview of, 170–171

urlize template filter, for automatic
linking, 96–97

URLs (Uniform Resource Locators)
canonical URLs, 173
connecting to views. See URL

configuration
creating for new webpage, 74–75
creating URL paths for navigation menu,

176–177
for Hello World page, 25–26
for identifying webpages, 4–5
Invalid Query (HTTP 404) error,

132–135

Index 807

max length parameter, 42–43
pagination options: query vs. path,

332–333
project specifications, 750–751
reversing URL patterns, 170–171
as subset of URIs, 123–124
uniquely identifiable, 34–35
using urlize template filter for

automatic linking, 96–97
urls.py file, 308–310
User accounts

creating, 517
disabling, 513–516
forms in auth app, 503
resending account activation, 538–544
templates for creating, 535–538
views for creating and activating, 529–535

User app
creating, 464–465
custom AppConfig for, 655
importing decorator from, 494

User input. See Forms
User model

configuring admin app, 593
connecting UserManager to, 563
defining, 476
extending, 558–561
groups in shell, 480–482
has perm and has perms methods, 482
migration, 568–572
overview of, 458–463
permissions, 476–480
relation to Profile model, 549–550
starting projects and, 752
swapping out older versions with new

custom version, 564–566
UserAdmin

adding change password page, 604–612
adding profile to, 613–615
configuring add and edit pages, 596–604
configuring list page, 593–596
creating admin actions, 616–618

UserCreationForm

building forms, 527–529
configuring add and edit pages, 600–604
creating Profile model, 551–552
integrating forms and templates, 566–567

views for creating and activating
accounts, 529–535

UserManager
auth app, 561
connecting to User model, 563

Usernames, User model, 459
Users

changing passwords, 504
granting permissions to, 478
listing permissions of, 482
profiles. See Profiles

V
Validation

check unique() and clean value(),
636–637, 640–641

cleaned data, 192, 303
form, 319, 518
input validation for forms, 197–198
ModelForm validation, 203–205

Validators, 197–198
Variables

adding template content using, 80–81
caching, 665–667
controlling output with template filters,

86–89
replacing loops and conditions with,

218–220
template variables making TagForm

template dynamic, 213
Versions

controlling, 776
conventions for numbering, 323–325

View, in MVC architecture
advantages of Models and Views over

controller, 27
developer preferences, 687
function of, 8–9

View class. See also CBVs (class-based views)
importing, 156
overview of, 155
webpages and, 316

View functions. See views (Django)
View middleware, 361–362
views (Django)

applying to webpages, 148
auth app and, 458, 546

808 Index

views (continued)
for blog post archive, 403–404
building detail view for blog posts,

152–155
building Tag detail function view,

128–130
class-based. See CBVs (class-based views)
comparing Django view and with view

in MVC architecture, 9
comparing with function views and

class-based views, 125
connecting URL to. See URL

configuration
core features at heart of Django, 621
creating and activating accounts, 529–535
creating user accounts, 517
disabling accounts, 513–516
in Django core, 315
greeting()in Hello World page, 25, 29
implementing ProfileDetail view,

552–555
interacting with contact form, 304–306
listing blog posts, 151–152
login() and logout(), 458
making login and logout pages, 465–471
for monthly archive of blog posts,

408–410
optimizing, 676–678
overview of, 125–126
for password interaction, 501–503
permissions protecting, 483–487
purpose of, 122
reasons for using classes for generic views,

393–394
redirecting homepage with, 164–166
replacing CBVs with GCBVs in blog app,

397
replacing CBVs with GCBVs in

organizer app, 395–397
resetting passwords, 506
restructuring homepage() view,

148–149
shortcuts for shorter development

process, 135–136
shortening code with
get object or 404(), 136–137

shortening code with render(),
139–143

shortening code with
render to response(), 137–139

step-by-step code examination of use of,
126–128

steps in building websites, 299
template use in, 116–118
URL patterns referencing, 317
webpages and, 316

views (Django), controlling forms
adding URL pattern and hyperlink,

244–246
creating NewsLink objects in, 252–254
creating Post objects in, 249–250
creating Startup objects in, 251–252
deleting NewsLink objects, 271–272
deleting objects, 268–269
deleting Post objects, 269–271
deleting Startup objects, 273, 275–276
deleting Tag objects, 273–275
implementing webpage for creating tags,

238–244
introduction to, 233–234
modifying NewsLink objects, 261–264
modifying Post objects, 257–261
replacing tag create() with
TagCreate CBV, 246–249

shortening organizer views, 254–256
summary of, 276–277
understanding expected behavior,

234–238
updating links for TagUpdate and
StartupUpdate, 267–268

updating objects, 256–257, 264–265
updating Startup objects, 266–267
updating Tag objects, 265–266

vim, choosing IDE, 777
Virtual environments, installation and, 776
Virtual private servers (VPNs), deployment

options, 725
VPNs (virtual private servers), deployment

options, 725

W
W3C (World Wide Web Consortium), 35
Web 2.0, 189

Index 809

Web browsers
contacting servers by scheme and

network location, 332
in generation of webpages, 6
for identifying webpages, 4–5

markup languages, 76
Web framework, Python, 8–11
Web Server Gateway Interfaces (WSGIs), 726
Webdesign app, 326
Webpage links. See Links, between webpages
Webpages. See also by individual types

Back-end and front-end programming
and, 5–6

caching, 682–684
creating, updating, deleting content, 577
defined, 4
generating, 317
sitemaps for basic pages, 723–724
sitemaps for dynamic pages, 715–723
URL patterns and configurations, 317
views, 316

Webpages, creating
adding URL patterns, 130–132
advantages of class-based views, 158–159
applying views and URLconfigurations

to, 148
building detail view for blog posts,

152–155
building list view for blog posts, 151–152
building startup detail page, 150
building startup list page, 149
building Tag detail webpage, 128
class-based views in, 155–157
coding tag detail() function view,

128–130
comparing class-based views to function

views, 157–158
connecting URL configuration to app,

151
creating hierarchy of URL

configurations, 145–148
examining code for views and URL

configurations, 126–128
importance of order of URL patterns,

143–145
inspecting internals of class-based views,

160–162
introduction to, 121–122

Invalid Query (HTTP 404) error,
132–135

redirecting homepage with URL
configurations, 163–164

redirecting homepage with views,
164–166

refactoring code to adhere to app
encapsulation standard, 143

restructuring homepage() view,
148–149

shortening code with
get object or 404(), 136–137

shortening code with render(), 139–143
shortening code with
render to response(), 137–139

summary of, 166–167
URL configurations, 122–125
view shortcuts for shorter development

process, 135–136
views, 125–126

Webpages, for creating form objects
adding URL pattern and hyperlink,

244–246
creating NewsLink objects in a view,

252–254
creating Post objects in a view, 249–250
creating Startup objects in a view,

251–252
overview of, 233–234, 238–244
replacing tag create() with
TagCreate CBV, 246–249

shortening organizer views, 254–256
Webpages, for deleting form objects

deleting NewsLink objects, 271–272
deleting Post objects, 269–271
deleting Startup objects, 273, 275–276
deleting Tag objects, 273–275
overview of, 268–269

Webpages, for updating form objects
overview of, 256–257
updating links for TagUpdate and
StartupUpdate, 267–268

updating Startup objects, 264–267
updating Tag objects, 264–266
view for modifying NewsLink objects,

261–264
view for modifying Post objects,

257–261

810 Index

Website optimization
caching entire webpages, 682–684
caching properties and, 664–665
caching template files, 680–681
caching template variables, 665–667
development and, 684
DTL (Django Template Language) and,

663–664
global changes to performance, 680
internal changes to database behavior,

679–680
introduction to, 661
limiting database queries, 663
limiting fields in queries, 672–673
migrations and, 673–676
optimizing admin pages, 679
optimizing Manager and QuerySet

classes directly, 678–679
optimizing querysets, 667–670
optimizing views with related content,

676–678
Prefetch object and, 670–672
profiling software, 662
starting projects and, 753–754
summary of, 685

Websites
basics of, 4–5
building dynamic, 6–8
creating, updating, deleting content,

577–578
creating stylesheet for, 376
defined, 4
deploying. See Deployment
Django core and, 313–315

dynamic, 5–6
iterative approach to building, 299
Python web framework, 8–11
scaling, 661
typically combining HTML, CSS,

JavaScript, and media, 373
upgrading using GCBVs. See GCBVs

(generic class-based views), upgrading
website with

whitenoise

deployment tools, 729
preparing deployment settings, 733

Whitespace, formatting paragraphs, 97–99
Widgets, input fields for HTML forms, 319
Workers (dynos), Heroku, 726–727
Workflow, understanding migrations, 49
World Wide Web Consortium (W3C), 35
@wraps() decorator, 489
WSGIs (Web Server Gateway Interfaces),

726

X
XML

Django supported output formats, 10
serialization of data and, 624

Y
YAML

fixtures supporting serialization of data,
622

serialization of data and, 624

	Contents
	Preface
	Acknowledgments
	About the Author
	1 Starting a New Django Project: Building a Startup Categorizer with Blog
	1.1 Introduction
	1.2 Website Basics
	1.3 Understanding Modern Websites
	1.4 Building Modern Websites: The Problems That Frameworks Solve and Their Caveats
	1.5 Django: Python Web Framework
	1.6 Defining the Project in Part I
	1.7 Creating a New Django Project and Django Apps
	1.8 Putting It All Together

	5 Creating Webpages with Controllersin Django: Views and URL Configurations
	5.1 Introduction
	5.2 The Purpose of Views and URL Configurations
	5.3 Step-by-Step Examination of Django’s Use of Views and URL Configurations
	5.4 Building Tag Detail Webpage
	5.5 Generating 404 Errors for Invalid Queries
	5.6 Shortening the Development Process with Django View Shortcuts
	5.7 URL Configuration Internals: Adhering to App Encapsulation
	5.8 Implementing the Views and URL Configurationsto the Rest of the Site
	5.9 Class-Based Views
	5.10 Redirecting the Homepage
	5.11 Putting It All Together

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

