
DL05 User Manual

�

Manual Revisions
If you contact us in reference to this manual, remember to include the revision number.

Title: DL05 Micro PLC User Manual
Manual Number: D0–USER–M

Edition/Rev Date Description of Changes

Original 12/98 original issue

2nd Edition 2/00 added pid chapter, analog module chapter, and
memory cartridge chapter

2nd Edition,
Rev. A

7/00 added DC power

3rd Edition 11/01 removed MC and analog module chapters, corrected drum in-
struction, several minor corrections, added PLC weights, EU di-
rective additions

3rd Edition,

Rev. A

7/02 Added new discrete option modules

� i
Table of Contents

Chapter 1: Getting Started
Introduction 1–2.

The Purpose of this Manual 1–2.
Where to Begin 1–2.
Supplemental Manuals 1–2.
Technical Support 1–2.

Conventions Used 1–3.
Key Topics for Each Chapter 1–3.

DL05 Micro PLC Components 1–5.
The DL05 Micro PLC Family 1–5.

Programming Methods 1–5.
DirectSOFT Programming for Windows 1–5.
Handheld Programmer 1–6.

I/O Selection Quick Chart 1–6.

Quick Start for PLC Checkout and Programming 1–7.
Step 1: Unpack the DL05 Equipment 1–7.
Step 2: Connect Switches to Input Terminals 1–8.
Step 3: Connect the Power Wiring 1–9.
Step 4: Connect the Programming Device 1–9.
Step 5: Switch on the System Power 1–10.
Step 6: Initialize Scratchpad Memory 1–10.
Step 7: Enter a Ladder Program 1–10.

Steps to Designing a Successful System 1–11.
Step 1 :Review the Installation Guidelines 1–11.
Step 2: Understand the PLC Setup Procedures 1–11.
Step 3: Review the I/O Selection Criteria 1–11.
Step 4: Choose a System Wiring Strategy 1–11.
Step 5: Understand the System Operation 1–11.
Step 6: Review the Programming Concepts 1–12.
Step 7: Choose the Instructions 1–12.
Step 8: Understand the Maintenance and Troubleshooting Procedures 1–12.

Questions and Answers about DL05 Micro PLCs 1–13.

Chapter 2: Installation, Wiring, and Specifications
Safety Guidelines 2–2.

Plan for Safety 2–2.
Three Levels of Protection 2–2.
Orderly System Shutdown 2–3.

ii
Table of Contents

System Power Disconnect 2–3.
Emergency Stop 2–3.

Orientation to DL05 Front Panel 2–4.
Connector Removal 2–5.

Mounting Guidelines 2–6.
Unit Dimensions 2–6.
Enclosures 2–6.
Panel Layout & Clearances 2–7.
Using Mounting Rails 2–8.
Environmental Specifications 2–9.
Agency Approvals 2–9.

Wiring Guidelines 2–10.
Fuse Protection for Input Power 2–10.
External Power Source 2–11.
Planning the Wiring Routes 2–11.
Fuse Protection for Input and Output Circuits 2–12.
I/O Point Numbering 2–12.

System Wiring Strategies 2–13.
PLC Isolation Boundaries 2–13.
Connecting Operator Interface Devices 2–14.
Connecting Programming Devices 2–14.
Sinking / Sourcing Concepts 2–15.
I/O “Common” Terminal Concepts 2–16.
Connecting DC I/O to “Solid State” Field Devices 2–17.
Solid State Input Sensors 2–17.
Solid State Output Loads 2–17.
Relay Output Wiring Methods 2–19.
Surge Suppresion For Inductive Loads 2–20.
Prolonging Relay Contact Life 2–21.
DC Input Wiring Methods 2–22.
DC Output Wiring Methods 2–23.
High-Speed I/O Wiring Methods 2–24.

Glossary of Specification Terms 2–25.

Wiring Diagrams and Specifications 2–26.
D0–05AR I/O Wiring Diagram 2–26.
D0–05AR General Specifications 2–27.
AC Input Specifications X0 – X7 2–27.
Relay Output Specifications Y0 – Y5 2–27.
D0–05DR I/O Wiring Diagram 2–28.
D0–05DR General Specifications 2–29.
DC Input Specifications 2–29.
Relay Output Specifications 2–29.
D0–05AD I/O Wiring Diagram 2–30.
D0–05AD General Specifications 2–31.
AC Input Specifications 2–31.
DC Output Specifications 2–31.
D0–05DD I/O Wiring Diagram 2–32.

iii
Table of Contents

D0–05DD General Specifications 2–33.
DC Input Specifications 2–33.
DC Output Specifications 2–33.
D0–05AA I/O Wiring Diagram 2–34.
D0–05AA General Specifications 2–35.
AC Input Specifications 2–35.
AC Output Specifications 2–35.
D0–05DA I/O Wiring Diagram 2–36.
D0–05DA General Specifications 2–37.
DC Input Specifications 2–37.
AC Output Specifications 2–37.
D0–05DR–D I/O Wiring Diagram 2–38.
D0–05DR–D General Specifications 2–39.
DC Input Specifications 2–39.
Relay Output Specifications 2–39.
D0–05DD–D I/O Wiring Diagram 2–40.
D0–05DD–D General Specifications 2–41.
DC Input Specifications 2–41.
DC Output Specifications 2–41.

D0–16ND3 DC Input 2–43.

D0–10TD1 DC Output 2–44.

D0–16TD1 DC Output 2–45.

D0–10TD2 DC Output 2–46.

D0–16TD2 DC Output 2–47.

D0–07CDR DC Input and Output 2–48.

D0–08TR Relay Output 2–49.

D0–08CDD1 DC Input and Output 2–50.

I/O Addressing 2–51.
Module I/O Points and Addressing 2–51.

Chapter 3: High-Speed Input and Pulse Output Features
Introduction 3–2.

Built-in Motion Control Solution 3–2.
Availability of HSIO Features 3–2.
Dedicated High-Speed I/O Circuit 3–3.
Wiring Diagrams for Each HSIO Mode 3–3.

Choosing the HSIO Operating Mode 3–4.
Understanding the Six Modes 3–4.
Default Mode 3–4.
Configuring the HSIO Mode 3–5.
Configuring Inputs X0 – X2 3–5.

Mode 10: High-Speed Counter 3–6.
Purpose 3–6.

iv
Table of Contents

Functional Block Diagram 3–6.
Wiring Diagram 3–7.
Interfacing to Counter Outputs 3–7.
Setup for Mode 10 3–8.
Presets and Special Relays 3–8.
Preset Data Starting Location 3–9.
Using Fewer than 24 Presets 3–9.
Equal Relay Numbers 3–9.
Calculating Your Preset Values 3–10.
X Input Configuration 3–10.
Writing Your Control Program 3–11.
Program Example: Counter Without Preset 3–12.
Program Example Cont’d 3–13.
Counter With Presets Program Example 3–14.
Counter With Preload Program Example 3–16.
Troubleshooting Guide for Mode 10 3–17.

Mode 20: Quadrature Counter 3–18.
Purpose 3–18.
Functional Block Diagram 3–18.
Quadrature Encoder Signals 3–18.
Wiring Diagram 3–19.
Interfacing to Encoder Outputs 3–19.
Setup for Mode 20 3–20.
X Input Configuration 3–20.
Writing Your Control Program 3–21.
Quadrature Counter w/Preload Program Example 3–21.
Program Example Cont’d 3–22.
Counter Preload Program Example 3–23.
Troubleshooting Guide for Mode 20 3–23.

Mode 30: Pulse Output 3–24.
Purpose 3–24.
Functional Block Diagram 3–25.
Wiring Diagram 3–26.
Interfacing to Drive Inputs 3–26.
Motion Profile Specifications 3–27.
Physical I/O Configuration 3–27.
Logical I/O Functions 3–27.
Setup for Mode 30 3–28.
Profile / Velocity Select Register 3–28.
Profile Parameter Table 3–29.
Trapezoidal Profile 3–29.
Registration Profile 3–29.
Velocity Profile 3–29.
Choosing the Profile Type 3–30.
Trapezoidal Profile Defined 3–30.
Registration and Home Search Profiles Defined 3–30.
Velocity Profile Defined 3–30.
Trapezoidal Profile Operation 3–31.

v
Table of Contents

Trapezoidal Profile Applications 3–31.
Trapezoidal Profile Program Example 3–32.
Program Example Cont’d 3–33.
Preload Position Value 3–33.
Registration Profile Operation 3–34.
Registration Applications 3–34.
Registration Profile Program Example 3–35.
Program Example Cont’d 3–36.
Home Search Program Example 3–37.
Velocity Profile Operation 3–39.
Velocity Profile Applications 3–39.
Velocity Profile Program Example 3–40.
Program Example Cont’d 3–41.
Pulse Output Error Codes 3–42.
Troubleshooting Guide for Mode 30 3–42.

Mode 40: High-Speed Interrupts 3–44.
Purpose 3–44.
Functional Block Diagram 3–44.
Setup for Mode 40 3–45.
Interrupts and the Ladder Program 3–45.
External Interrupt Timing Parameters 3–46.
Timed Interrupt Parameters 3–46.
X Input / Timed INT Configuration 3–46.
Independent Timed Interrupt 3–46.
External Interrupt Program Example 3–47.
Timed Interrupt Program Example 3–48.

Mode 50: Pulse Catch Input 3–49.
Purpose 3–49.
Functional Block Diagram 3–49.
Pulse Catch Timing Parameters 3–49.
Setup for Mode 50 3–50.
X Input Configuration 3–50.
Pulse Catch Program Example 3–51.

Mode 60: Discrete Inputs with Filter 3–52.
Purpose 3–52.
Functional Block Diagram 3–52.
Input Filter Timing Parameters 3–52.
Setup for Mode 60 3–53.
X Input Configuration 3–53.
Filtered Inputs Program Example 3–54.

Chapter 4: CPU Specifications and Operation
Introduction 4–2.

DL05 CPU Features 4–2.

CPU Specifications 4–3.

CPU Hardware Setup 4–4.

vi
Table of Contents

Communication Port Pinout Diagrams 4–4.
Connecting the Programming Devices 4–5.
CPU Setup Information 4–5.
Status Indicators 4–6.
Mode Switch Functions 4–6.
Changing Modes in the DL05 PLC 4–7.
Mode of Operation at Power-up 4–7.
Auxiliary Functions 4–8.
Clearing an Existing Program 4–8.
Initializing System Memory 4–8.
Setting Retentive Memory Ranges 4–9.
Using a Password 4–10.

CPU Operation 4–11.
CPU Operating System 4–11.
Program Mode 4–12.
Run Mode 4–12.
Read Inputs 4–13.
Service Peripherals and Force I/O 4–13.
Update Special Relays and Special Registers 4–14.
Solve Application Program 4–14.
Write Outputs 4–15.
Diagnostics 4–15.

I/O Response Time 4–15.
Is Timing Important for Your Application? 4–15.
Normal Minimum I/O Response 4–15.
Normal Maximum I/O Response 4–16.
Improving Response Time 4–17.

CPU Scan Time Considerations 4–18.
Reading Inputs 4–18.
Writing Outputs 4–18.
Application Program Execution 4–19.

PLC Numbering Systems 4–20.
PLC Resources 4–20.
V–Memory 4–21.
Binary-Coded Decimal Numbers 4–21.
Hexadecimal Numbers 4–21.

Memory Map 4–22.
Octal Numbering System 4–22.
Discrete and Word Locations 4–22.
V Memory Locations for Discrete Memory Areas 4–22.
Input Points (X Data Type) 4–23.
Output Points (Y Data Type) 4–23.
Control Relays (C Data Type) 4–23.
Timers and Timer Status Bits (T Data type) 4–23.
Timer Current Values (V Data Type) 4–24.
Counters and Counter Status Bits (CT Data type) 4–24.
Counter Current Values (V Data Type) 4–24.

vii
Table of Contents

Word Memory (V Data Type) 4–25.
Stages (S Data type) 4–25.
Special Relays (SP Data Type) 4–25.

DL05 System V-memory 4–26.
System Parameters and Default Data Locations (V Data Type) 4–26.
DL05 Memory Map 4–28.

X Input Bit Map 4–29.

Y Output Bit Map 4–29.

Stage Control / Status Bit Map 4–29.

Control Relay Bit Map 4–30.

Timer Status Bit Map 4–31.

Counter Status Bit Map 4–31.

Network Configuration and Connections 4–32.
Configuring the DL05’s Comm Ports 4–32.
Networking DL05 to DL05 RS–232C 4–32.
Networking PC to DL05s RS–422 4–33.
Networking DL05 Master to Other PLCs 4–33.
MODBUS Port Configuration 4–34.
DirectNET Port Configuration 4–35.

Network Slave Operation 4–36.
MODBUS Function Codes Supported 4–36.
Determining the MODBUS Address 4–36.
If Your Host Software Requires the Data Type and Address... 4–37.
Example 1: V2100 4–38.
Example 2: Y20 4–38.
Example 3: T10 Current Value 4–38.
Example 4: C54 4–38.
If Your MODBUS Host Software Requires an Address ONLY 4–39.
Example 1: V2100 584/984 Mode 4–40.
Example 2: Y20 584/984 Mode 4–40.
Example 3: T10 Current Value 484 Mode 4–40.
Example 4: C54 584/984 Mode 4–40.
Determining the DirectNET Address 4–40.

Network Master Operation 4–41.
Step 1: Identify Master Port # and Slave # 4–42.
Step 2: Load Number of Bytes to Transfer 4–42.
Step 3: Specify Master Memory Area 4–43.
Step 4: Specify Slave Memory Area 4–43.
Communications from a Ladder Program 4–44.
Multiple Read and Write Interlocks 4–44.

Chapter 5: Standard RLL Instructions
Introduction 5–2.

viii
Table of Contents

Using Boolean Instructions 5–4.
END Statement 5–4.
Simple Rungs 5–4.
Normally Closed Contact 5–4.
Contacts in Series 5–5.
Midline Outputs 5–5.
Parallel Elements 5–5.
Joining Series Branches in Parallel 5–6.
Joining Parallel Branches in Series 5–6.
Combination Networks 5–6.
Comparative Boolean 5–6.
Boolean Stack 5–7.
Immediate Boolean 5–8.

Boolean Instructions 5–9.
Store (STR) 5–9.
Store Not (STRN) 5–9.
Or (OR) 5–10.
Or Not (ORN) 5–10.
And (AND) 5–11.
And Not (ANDN) 5–11.
And Store (AND STR) 5–12.
Or Store (OR STR) 5–12.
Out (OUT) 5–13.
Or Out (OR OUT) 5–13.
Not (NOT) 5–14.
Positive Differential (PD) 5–14.
Store Positive Differential (STRPD) 5–15.
Store Negative Differential (STRND) 5–15.
Or Positive Differential (ORPD) 5–16.
Or Negative Differential (ORND) 5–16.
And Positive Differential (ANDPD) 5–17.
And Negative Differential (ANDND) 5–17.
Set (SET) 5–18.
Reset (RST) 5–18.
Pause (PAUSE) 5–19.

Comparative Boolean 5–20.
Store If Equal (STRE) 5–20.
Store If Not Equal (STRNE) 5–20.
Or If Equal (ORE) 5–21.
Or If Not Equal (ORNE) 5–21.
And If Equal (ANDE) 5–22.
And If Not Equal (ANDNE) 5–22.
Store (STR) 5–23.
Store Not (STRN) 5–23.
Or (OR) 5–24.
Or Not (ORN) 5–24.
And (AND) 5–25.
And Not (ANDN) 5–25.

ix
Table of Contents

Immediate Instructions 5–26.
Store Immediate (STRI) 5–26.
Store Not Immediate (STRNI) 5–26.
Or Immediate (ORI) 5–26.
Or Not Immediate (ORNI) 5–26.
OR Immediate Instructions Cont’d 5–27.
And Immediate (ANDI) 5–27.
And Not Immediate (ANDNI) 5–27.
Out Immediate (OUTI) 5–28.
Or Out Immediate (OROUTI) 5–28.
Set Immediate (SETI) 5–29.
Reset Immediate (RSTI) 5–29.

Timer, Counter and Shift Register Instructions 5–30.
Using Timers 5–30.
Timer (TMR) and Timer Fast (TMRF) 5–31.
Timer Example Using Discrete Status Bits 5–32.
Timer Example Using Comparative Contacts 5–32.
Accumulating Timer (TMRA) Accumulating Fast Timer (TMRAF) 5–33.
Accumulating Timer Example using Discrete Status Bits 5–34.
Accumulator Timer Example Using Comparative Contacts 5–34.
Using Counters 5–35.
Counter (CNT) 5–36.
Counter Example Using Discrete Status Bits 5–37.
Counter Example Using Comparative Contacts 5–37.
Stage Counter (SGCNT) 5–38.
Stage Counter Example Using Discrete Status Bits 5–39.
Stage Counter Example Using Comparative Contacts 5–39.
Up Down Counter (UDC) 5–40.
Up / Down Counter Example Using Discrete Status Bits 5–41.
Up / Down Counter Example Using Comparative Contacts 5–41.
Shift Register (SR) 5–42.

Accumulator / Stack Load and Output Data Instructions 5–43.
Using the Accumulator 5–43.
Copying Data to the Accumulator 5–43.
Changing the Accumulator Data 5–44.
Using the Accumulator Stack 5–45.
Using Pointers 5–46.
Load (LD) 5–48.
Load Double (LDD) 5–49.
Load Formatted (LDF) 5–50.
Load Address (LDA) 5–51.
Out (OUT) 5–52.
Out Double (OUTD) 5–52.
Out Formatted (OUTF) 5–53.
Pop (POP) 5–53.
Pop Instruction Continued 5–54.

Logical Instructions (Accumulator) 5–55.
And (AND) 5–55.

x
Table of Contents

And Double (ANDD) 5–56.
Or (OR) 5–57.
Or Double (ORD) 5–58.
Exclusive Or (XOR) 5–59.
Exclusive Or Double (XORD) 5–60.
Compare (CMP) 5–61.
Compare Double (CMPD) 5–62.

Math Instructions 5–63.
Add (ADD) 5–63.
Add Double (ADDD) 5–64.
Subtract (SUB) 5–65.
Subtract Double (SUBD) 5–66.
Multiply (MUL) 5–67.
Multiply Double (MULD) 5–68.
Divide (DIV) 5–69.
Divide Double (DIVD) 5–70.
Increment (INC) 5–71.
Decrement (DEC) 5–71.
Increment Binary (INCB) 5–72.
Decrement Binary (DECB) 5–72.
Add Binary (ADDB) 5–73.
Subtract Binary (SUBB) 5–74.
Multiply Binary (MULB) 5–75.
Divide Binary (DIVB) 5–76.

Bit Operation Instructions 5–77.
Sum (SUM) 5–77.
Shift Left (SHFL) 5–77.
Shift Right (SHFR) 5–79.
Encode (ENCO) 5–80.
Decode (DECO) 5–81.

Number Conversion Instructions (Accumulator) 5–82.
Binary (BIN) 5–82.
Binary Coded Decimal (BCD) 5–83.
Invert (INV) 5–84.
ASCII to HEX (ATH) 5–85.
HEX to ASCII (HTA) 5–86.
Gray Code (GRAY) 5–88.
Shuffle Digits (SFLDGT) 5–89.
Shuffle Digits Block Diagram 5–89.

Table Instructions 5–91.
Move (MOV) 5–91.
Move Memory Cartridge / Load Label (MOVMC), (LDLBL) 5–92.
Copy Data From a Data Label Area to V Memory 5–93.

CPU Control Instructions 5–94.
No Operation (NOP) 5–94.
End (END) 5–94.
Stop (STOP) 5–94.

xi
Table of Contents

Reset Watch Dog Timer (RSTWT) 5–95.

Program Control Instructions 5–96.
For / Next (FOR) (NEXT) 5–96.
Goto Subroutine (GTS) (SBR) 5–98.
Subroutine Return (RT) 5–98.
Subroutine Return Conditional (RTC) 5–98.
Master Line Set (MLS) 5–101.
Master Line Reset (MLR) 5–101.
Understanding Master Control Relays 5–101.
MLS/MLR Example 5–102.

Interrupt Instructions 5–103.
Interrupt (INT) 5–103.
Interrupt Return (IRT) 5–103.
Interrupt Return Conditional (IRTC) 5–103.
Enable Interrupts (ENI) 5–103.
Disable Interrupts (DISI) 5–104.
External Interrupt Program Example 5–104.
Timed Interrupt Program Example 5–105.
Independent Timed Interrupt 5–105.

Message Instructions 5–106.
Fault (FAULT) 5–106.
Fault Example 5–106.
Data Label (DLBL) 5–107.
ASCII Constant (ACON) 5–107.
Numerical Constant (NCON) 5–107.
Data Label Example 5–108.
Print Message (PRINT) 5–109.

Network Instructions 5–113.
Read from Network (RX) 5–113.
Write to Network (WX) 5–115.

Chapter 6: Drum Instruction Programming
Introduction 6–2.

Purpose 6–2.
Drum Terminology 6–2.
Drum Chart Representation 6–3.
Output Sequences 6–3.

Step Transitions 6–4.
Drum Instruction Types 6–4.
Timer-Only Transitions 6–4.
Timer and Event Transitions 6–5.
Event-Only Transitions 6–6.
Counter Assignments 6–6.
Last Step Completion 6–7.

Overview of Drum Operation 6–8.

xii
Table of Contents

Drum Instruction Block Diagram 6–8.
Powerup State of Drum Registers 6–9.

Drum Control Techniques 6–10.
Drum Control Inputs 6–10.
Self-Resetting Drum 6–11.
Initializing Drum Outputs 6–11.
Using Complex Event Step Transitions 6–11.

Drum Instruction 6–12.
Timed Drum with Discrete Outputs (DRUM) 6–12.
Event Drum (EDRUM) 6–14.
Handheld Programmer Drum Mnemonics 6–16.

Chapter 7: RLLPLUS Stage Programming
Introduction to Stage Programming 7–2.

Overcoming “Stage Fright” 7–2.

Learning to Draw State Transition Diagrams 7–3.
Introduction to Process States 7–3.
The Need for State Diagrams 7–3.
A 2–State Process 7–3.
RLL Equivalent 7–4.
Stage Equivalent 7–4.
Let’s Compare 7–5.
Initial Stages 7–5.
What Stage Bits Do 7–6.
Stage Instruction Characteristics 7–6.

Using the Stage Jump Instruction for State Transitions 7–7.
Stage Jump, Set, and Reset Instructions 7–7.

Stage Program Example: Toggle On/Off Lamp Controller 7–8.
A 4–State Process 7–8.

Four Steps to Writing a Stage Program 7–9.

Stage Program Example: A Garage Door Opener 7–10.
Garage Door Opener Example 7–10.
Draw the Block Diagram 7–10.
Draw the State Diagram 7–11.
Add Safety Light Feature 7–12.
Modify the Block Diagram and State Diagram 7–12.
Using a Timer Inside a Stage 7–13.
Add Emergency Stop Feature 7–14.
Exclusive Transitions 7–14.

Stage Program Design Considerations 7–15.
Stage Program Organization 7–15.
How Instructions Work Inside Stages 7–16.
Using a Stage as a Supervisory Process 7–17.
Stage Counter 7–17.

xiii
Table of Contents

Power Flow Transition Technique 7–18.
Stage View in DirectSOFT 7–18.

Parallel Processing Concepts 7–19.
Parallel Processes 7–19.
Converging Processes 7–19.
Convergence Stages (CV) 7–19.
Convergence Jump (CVJMP) 7–20.
Convergence Stage Guidelines 7–20.

RLLPLUS (Stage) Instructions 7–21.
Staget (SG) 7–21.
Initial Staget (ISG) 7–22.
JUMP (JMP) 7–22.
Not Jump (NJMP) 7–22.
Converge Stage (CV) and Converge Jump (CVJMP) 7–23.

Questions and Answers about Stage Programming 7–25.

Chapter 8: PID Loop Operation
DL05 PID Loop Features 8–2.

Main Features 8–2.
The Basics of PID Loops 8–4.

Loop Setup Parameters 8–6.
Loop Table and Number of Loops 8–6.
PID Error Flags 8–6.
Establishing the Loop Table Size and Location 8–7.
Loop Table Word Definitions 8–8.
PID Mode Setting 1 Bit Descriptions (Addr + 00) 8–9.
PID Mode Setting 2 Bit Descriptions (Addr + 01) 8–10.
Mode / Alarm Monitoring Word (Addr + 06) 8–11.
Ramp / Soak Table Flags (Addr + 33) 8–11.
Ramp/Soak Table Location (Addr + 34) 8–12.
Ramp/Soak Table Programming Error Flags (Addr + 35) 8–12.

Loop Sample Rate and Scheduling 8–13.
Loop Sample Rates Addr + 07 8–13.
Choosing the Best Sample Rate 8–13.
Programming the Sample Rate 8–14.
PID Loop Effect on CPU Scan Time 8–15.

Ten Steps to Successful Process Control 8–17.
Step 1: Know the Recipe 8–17.
Step 2: Plan Loop Control Strategy 8–17.
Step 3: Size and Scale Loop Components 8–17.
Step 4: Select I/O Modules 8–17.
Step 5: Wiring and Installation 8–18.
Step 6: Loop Parameters 8–18.
Step 7: Check Open Loop Performance 8–18.
Step 8: Loop Tuning 8–18.

xiv
Table of Contents

Step 9: Run Process Cycle 8–18.
Step 10: Save Parameters 8–18.

Basic Loop Operation 8–19.
Data Locations 8–19.
Data Sources 8–19.
Direct Access to Analog I/O 8–20.
Loop Modes 8–21.
CPU Modes and Loop Modes 8–22.
How to Change Loop Modes 8–23.
Operator Panel Control of PID Modes 8–24.
PLC Modes’ Effect on Loop Modes 8–24.
Loop Mode Override 8–24.
Bumpless Transfers 8–25.

PID Loop Data Configuration 8–26.
Loop Parameter Data Formats 8–26.
Choosing Unipolar or Bipolar Format 8–26.
Handling Data Offsets 8–27.
Setpoint (SP) Limits 8–27.
Remote Setpoint (SP) Location 8–28.
Process Variable (PV) Configuration 8–28.
Control Output Configuration 8–29.
Error Term Configuration 8–30.

PID Algorithms 8–31.
Position Algorithm 8–31.
Velocity Algorithm 8–32.
Direct-Acting and Reverse-Acting Loops 8–33.
P-I-D Loop Terms 8–34.
Using a Subset of PID Control 8–35.
Derivative Gain Limiting 8–36.
Bias Term 8–36.
Bias Freeze 8–37.

Loop Tuning Procedure 8–38.
Open-Loop Test 8–38.
Manual Tuning Procedure 8–39.
Auto Tuning Procedure 8–40.
Tuning Cascaded Loops 8–44.

PV Analog Filter 8–45.
The DL05 Built-in Analog Filter 8–45.
Creating an Analog Filter in Ladder Logic 8–46.

Feedforward Control 8–47.
Feedforward Example 8–48.

Time-Proportioning Control 8–49.
On/Off Control Program Example 8–50.

Cascade Control 8–51.
Introduction 8–51.
Cascaded Loops in the DL05 CPU 8–52.

xv
Table of Contents

Process Alarms 8–53.
PV Absolute Value Alarms 8–54.
PV Deviation Alarms 8–54.
PV Rate-of-Change Alarm 8–55.
PV Alarm Hysteresis 8–56.
Alarm Programing Error 8–56.

Ramp/Soak Generator 8–57.
Introduction 8–57.
Ramp/Soak Table 8–58.
Ramp/Soak Table Flags 8–60.
Ramp/Soak Generator Enable 8–60.
Ramp/Soak Controls 8–60.
Ramp/Soak Profile Monitoring 8–61.
Ramp/Soak Programming Errors 8–61.
Testing Your Ramp/Soak Profile 8–61.

Troubleshooting Tips 8–62.

Bibliography 8–63.

Glossary of PID Loop Terminology 8–64.

Chapter 9: Maintenance and Troubleshooting
Hardware System Maintenance 9–2.

Diagnostics 9–2.

CPU Indicators 9–6.

Communications Problems 9–7.

I/O Point Troubleshooting 9–8.

Noise Troubleshooting 9–10.

Machine Startup and Program Troubleshooting 9–11.

Appendix A: Auxiliary Functions
Introduction A–2.

Purpose of Auxiliary Functions A–2.
Accessing AUX Functions via DirectSOFT A–3.
Accessing AUX Functions via the Handheld Programmer A–3.

AUX 2* — RLL Operations A–4.
AUX 21 Check Program A–4.
AUX 22 Change Reference A–4.
AUX 23 Clear Ladder Range A–4.
AUX 24 Clear Ladders A–4.

AUX 3* — V-memory Operations A–4.
AUX 31 Clear V Memory A–4.

AUX 4* — I/O Configuration A–4.

xvi
Table of Contents

AUX 41 Show I/O Configuration A–4.

AUX 5* — CPU Configuration A–5.
AUX 51 Modify Program Name A–5.
AUX 53 Display Scan Time A–5.
AUX 54 Initialize Scratchpad A–5.
AUX 55 Set Watchdog Timer A–5.
AUX 56 CPU Network Address A–5.
AUX 57 Set Retentive Ranges A–6.
AUX 58 Test Operations A–6.
AUX 59 Bit Override A–6.
AUX 5B Counter Interface Configuration A–7.
AUX 5D Select PLC Scan Mode A–7.

AUX 6* — Handheld Programmer Configuration A–8.
AUX 61 Show Revision Numbers A–8.
AUX 62 Beeper On/Off A–8.
AUX 65 Run Self Diagnostics A–8.

AUX 7* — EEPROM Operations A–8.
Transferrable Memory Areas A–8.
AUX 71 CPU to HPP EEPROM A–8.
AUX 72 HPP EEPROM to CPU A–9.
AUX 73 Compare HPP EEPROM to CPU A–9.
AUX 74 HPP EEPROM Blank Check A–9.
AUX 75 Erase HPP EEPROM A–9.
AUX 76 Show EEPROM Type A–9.

AUX 8* — Password Operations A–9.
AUX 81 Modify Password A–9.
AUX 82 Unlock CPU A–10.
AUX 83 Lock CPU A–10.

Appendix B: DL05 Error Codes

Appendix C: Instruction Execution Times
Introduction C–2.

V-Memory Data Registers C–2.
V-Memory Bit Registers C–2.
How to Read the Tables C–2.

Instruction Execution Times C–3.
Boolean Instructions C–3.
Comparative Boolean Instructions C–4.
Immediate Instructions C–10.
Timer, Counter, and Shift Register C–10.
Accumulator Data Instructions C–11.
Logical Instructions C–12.
Math Instructions C–12.

xvii
Table of Contents

Bit Instructions C–14.
Number Conversion Instructions C–14.
Table Instructions C–14.
CPU Control Instructions C–15.
Program Control Instructions C–15.
Interrupt Instructions C–15.
Network Instructions C–15.
Message Instructions C–16.
RLLPLUS Instructions C–16.
Drum Instructions C–16.

Appendix D: Special Relays
DL05 PLC Special Relays D–2.

Startup and Real-Time Relays D–2.
CPU Status Relays D–2.
System Monitoring D–3.
Accumulator Status D–3.
HSIO Pulse Output Relay D–4.
Communication Monitoring Relays D–4.
Equal Relays for HSIO Mode 10 Counter Presets D–4.

Appendix E: DL05 Product Weights
Product Weight Table E–2.

Appendix F: European Union Directives (CE)
European Union (EU) Directives F–2.

Member Countries F–2.
Special Installation Manual F–3.
Other Sources of Information F–4.

Basic EMC Installation Guidelines F–4.
Enclosures F–4.
Suppression and Fusing F–5.
Internal Enclosure Grounding F–5.
Equi–potential Grounding F–6.
Communications and Shielded Cables F–6.
Analog and RS232 Cables F–7.
Multidrop Cables F–7.
Shielded Cables F–7.
within Enclosures F–7.
Network Isolation F–7.
DC Powered Versions F–8.
Items Specific to the DL 05 F–9.

��
Getting Started

In This Chapter. . . .
— Introduction
— Conventions Used
— DL05 Micro PLC Components
— Programming Methods
— I/O Selection Quick Chart
— Quick Start for PLC Checkout and Programming
— Steps to Designing a Successful System
— Questions and Answers about DL05 Micro PLCs

G
et

tin
g

S
ta

rt
ed

1–2
Getting Started

Introduction

Thank you for purchasing a DL05 Micro PLC. This manual shows you how to install,
program, and maintain all the Micro PLCs in the DL05 family. It also helps you
understand how to interface them to other devices in a control system.This manual
contains important information for personnel who will install DL05 PLCs, and for the
PLC programmer. If you understand PLC systems our manuals will provide all the
information you need to get and keep your system up and running.

If you already understand the DL05 Micro PLC please read Chapter 2, “Installation,
Wiring, and Specifications”, and proceed on to other chapters as needed. Be sure to
keep this manual handy for reference when you run into questions. If you are a new
DL05 customer, we suggest you read this manual completely so you can understand
the wide variety of features in the DL05 family of products. We believe you will be
pleasantly surprised with how much you can accomplish with our products

The D0–OPTIONS–M manual will be most helpful to select and use any of the
optional modules that are available for the DL05 PLC which includes the analog I/O
modules. If you have purchased operator interfaces or DirectSOFT, you will need
to supplement this manual with the manuals that are written for these products.

We realize that even though we strive to be the best, we may have arranged our
information in such a way you cannot find what you are looking for. First, check these
resources for help in locating the information:

� Table of Contents – chapter and section listing of contents, in the front
of this manual

� Appendices – reference material for key topics, near the end of this
manual

You can also check our online resources for the latest product support information:
� Internet – the address of our website is:

In Brazil: http://www.soliton.com.br
If you still need assistance, please call us at 770–844–4200. Our technical support
team will be available to work with you in answering your questions. They are
available Monday through Friday from 9:00 A.M. to 6:00 P.M. Eastern Standard
Time. If you have a comment or question about any of our products, services, or
manuals, please fill out and return the ‘Suggestions’ card that was shipped with this
manual.

The Purpose of
this Manual

Where to Begin

Supplemental
Manuals

Technical Support

G
etting S

tarted

1–3
Getting Started

Conventions Used

When you see the “light bulb” icon in the left-hand margin, the paragraph to its
immediate right will give you a special tip.
The word TIP: in boldface will mark the beginning of the text.

When you see the “notepad” icon in the left-hand margin, the paragraph to its
immediate right will be a special note.
The word NOTE: in boldface will mark the beginning of the text.

When you see the “exclamation mark” icon in the left-hand margin, the paragraph to
its immediate right will be a warning. This information could prevent injury, loss of
property, or even death (in extreme cases).
The word WARNING: in boldface will mark the beginning of the text.

The beginning of each chapter will list the
key topics that can be found in that
chapter.

1
Key Topics for
Each Chapter

G
et

tin
g

S
ta

rt
ed

1–4
Getting Started

DL05 Micro PLC Components
The DL05 Micro PLC family is a versatile
product line that provides a wide variety of
features in a very compact footprint. The
PLCs are small, yet offer many features
usually found in larger, more expensive
systems. These include a removeable
connector, and two RS-232C
communication ports.

The DL05 Micro PLC family includes eight different versions. All have the same
appearance and CPU performance. The CPU offers the same instruction set as our
popular DL240 CPU, plus several more instructions specifically designed for
machine control applications. All DL05 PLCs have two RS–232C communications
ports. Units with DC inputs have selectable high-speed input features on three input
points. Units with DC outputs offer selectable pulse output capability on the first and
second output points. All DL05 Micro PLCs offer a large amount of program memory,
a substantial instruction set and advanced diagnostics. Details of these features and
more are covered in Chapter 4, CPU Specifications and Operation. The eight types
of DL05 Micro PLCs provide a variety of Input/Output choices, listed in the following
table.

DL05
Part Number

Discrete
Input Type

Discrete
Output Type

External
Power

High-Speed
Input

Pulse
Output

D0–05AR AC Relay 95–240 VAC No No

D0–05DR DC Relay 95–240 VAC Yes No

D0–05AD AC DC 95–240 VAC No Yes

D0–05DD DC DC 95–240 VAC Yes Yes

D0–05AA AC AC 95–240 VAC No No

D0–05DA DC AC 95–240 VAC Yes No

D0–05DR–D DC Relay 12–24 VDC Yes No

D0–05DD–D DC DC 12–24 VDC Yes Yes

Programming Methods

Two programming methods are available: RLL (Relay Ladder Logic) and RLLPLUS.
RLLPLUS combines the added feature of flow chart programming (Stage�) to the
standard RLL language. Both the DirectSOFT programming package and the
handheld programmer support RLLPLUS as well as standard RLL instructions.
The DL05 Micro PLC can be programmed with one of the most advanced
programming packages in the industry ––DirectSOFT, a Windows-based software
package that supports familiar features such as cut-and-paste between
applications, point-and-click editing, viewing and editing multiple application
programs at the same time, etc.

The DL05
Micro PLC Family

DirectSOFT
Programming for
Windows

G
etting S

tarted

1–5
Getting Started

DirectSOFT universally supports the DirectLOGIC CPU families. This means you
can use the full version of DirectSOFT to program DL05, DL105, DL205, DL305,
DL405 or any new CPUs we may add to our product line. (Upgrade software may be
required for new CPUs as they become available.). A separate manual discusses
DirectSOFT programming software. DirectSOFT version 2.4 or later is needed to
program the DL05.

All DL05 Micro PLCs have built-in programming ports for use with the handheld
programmer (D2–HPP), the same programmer used with the DL105 and DL205
families. The handheld programmer can be used to create, modify and debug your
application program. A separate manual discusses the Handheld Programmer. Only
D2–HPPs with firmware version 1.09 or later will program the DL05.

I/O Selection Quick Chart

The eight versions of the DL05 have Input/Output circuits which can interface to a
wide variety of field devices. In several instances a particular Input or Output circuit
can interface to either DC or AC voltages, or both sinking and sourcing circuit
arrangements. Check this chart carefully to find the proper DL05 Micro PLC to
interface to the field devices in your application.

DL05
P t N b

INPUTS OUTPUTS
Part Number I/O type /

commons
Sink /

Source
Voltage Ranges I/O type /

commons
Sink /

Source
Voltage / Current

Ratings

D0–05AR AC / 2 – 90 – 120 VAC Relay / 2 Sink or
Source

6 – 27 VDC, 2A *
6 – 240 VAC, 2A *

D0–05DR DC / 2 Sink or
Source

12 – 24 VDC Relay / 2 Sink or
Source

6 – 27 VDC, 2A *
6 – 240 VAC, 2A *

D0–05AD AC / 2 – 90 – 120 VAC DC / 1 Sink 6 – 27 VDC, 0.5A (Y0–Y2)
6 – 27 VDC, 1.0A (Y3–Y5)

D0–05DD DC / 2 Sink or
Source

12 – 24 VDC DC / 1 Sink 6 – 27 VDC, 0.5A (Y0–Y2)
6 – 27 VDC, 1.0A (Y3–Y5)

D0–05AA AC / 2 – 90 – 120 VAC AC / 2 – 17 – 240 VAC, 47 – 63 Hz
0.5A *

D0–05DA DC / 2 Sink or
Source

12 – 24 VDC AC / 2 – 17 – 240 VAC, 47 – 63 Hz
0.5A *

D0–05DR–D DC / 2 Sink or
Source

12 – 24 VDC Relay / 2 Sink or
Source

6 – 27 VDC, 2A *
6 – 240 VAC, 2A *

D0–05DD–D DC / 2 Sink or
Source

12 – 24 VDC DC / 1 Sink 6 – 27 VDC, 0.5A (Y0–Y2)
6 – 27 VDC, 1.0A (Y3–Y5)

* See Chapter 2 Specifications for your particular DL05 version.

Handheld
Programmer

G
et

tin
g

S
ta

rt
ed

1–6
Getting Started

Quick Start for PLC Checkout and Programming

If you have experience with PLCs, or if you just want to setup a quick example, this
example is for you! This example is not intended to tell you everything you need to
start-up your system, warnings and helpful tips are in the rest of the manual. It is only
intended to give you a general picture of what you will need to do to get your system
powered-up.

Step 1: Unpack the DL05 Equipment

Unpack the DL05 and gather the parts necessary to build this demonstration
system. The recommended components are:

� DL05 Micro PLC
� AC power cord or DC power supply
� Toggle switches (see Step 2 on next page).
� Hook-up wire, 16-22 AWG
� DL05 User Manual (this manual)
� A small screwdriver, 5/8″ flat or #1 Philips type

You will need at least one of the following programming options:
� DirectSOFT Programming Software, DirectSOFT Manual, and a

programming cable (connects the DL05 to a personal computer),or
� D2–HPP Handheld Programmer (comes with programming cable), and

the Handheld Programmer Manual

G
etting S

tarted

1–7
Getting Started

Step 2: Connect Switches to Input Terminals

To finish this quick-start exercise or study other examples in this manual, you’ll need
to connect some input switches as shown below. If you have DC inputs you will need
to use the FA–24PS (24VDC) or another external 12-24VDC power supply. Be sure
to follow the instructions in the accompanying WARNING note.

Toggle Switches, UL Listed

D0–05AR, D0–05AD, D0–05AA
(AC input versions, 120VAC only)

WARNING: DO NOT wire the
toggle switches as shown to
240VAC-powered units. The
discrete inputs will only accept
120VAC nominal. Also, remove
power and unplug the DL05 when
wiring the switches. Only use
UL-approved switches rated for at
least 250VAC, 1A for AC inputs.
Firmly mount the switches before
using.

D0–05DR, D0–05DD, D0–05DA
D0–05DR–D, D0–05DD–D

+–

12–24VDC
Power Supply

Toggle Switches, UL Listed

(DC input versions, 12–24VDC)

G
et

tin
g

S
ta

rt
ed

1–8
Getting Started

Step 3: Connect the Power Wiring

Connect the power input wiring for the DL05. Observe all precautions stated earlier
in this manual. For more details on wiring, see Chapter 2 on Installation, Wiring, and
Specifications. When the wiring is complete, close the connector covers. Do not
apply power at this time.

110/220 VAC Power Input

95 – 240 VAC
L NG

12/24 VDC Power Input

+ –

12 – 24 VDC
+ –G

Step 4: Connect the Programming Device

Most programmers will use DirectSOFT programming software, installed on a
personal computer. Or, you may need the portability of the Handheld Programmer.
Both devices will connect to COM port 1 of the DL05 via the appropriate cable.

Use cable part #
D2–DSCBL

For replacement
cable, use part #

DV–1000CBL

(cable comes with HPP)

G
etting S

tarted

1–9
Getting Started

Step 5: Switch on the System Power

Apply power to the system and ensure the PWR indicator on the DL05 is on. If not,
remove power from the system and check all wiring and refer to the troubleshooting
section in Chapter 9 for assistance.

Step 6: Initialize Scratchpad Memory

It’s a good precaution to always clear the system memory (scratchpad memory) on a
new DL05. There are two ways to clear the system memory:

� In DirectSOFT, select the PLC menu, then Setup, then Initialize
Scratchpad. For additional information, see the DirectSOFT Manual.

� For the Handheld Programmer, use the AUX key and execute AUX 54.
See the Handheld Programmer Manual for additional information.

Step 7: Enter a Ladder Program

At this point, DirectSOFT programmers need to refer to the Quick Start Tutorial in
the DirectSOFT Manual. There you will learn how to establish a communications link
with the DL05 PLC, change CPU modes to Run or Program, and enter a program.
If you are learning how to program with the Handheld Programmer, make sure the
CPU is in Program Mode (the RUN LED on the front of the DL05 should be off). If the
RUN LED is on, use the MODE key on the Handheld Programmer to put the PLC in
Program Mode. Enter the following keystrokes on the Handheld Programmer.

ENT CLR

3
D

TMR
N

4
ESHFT

CLR CLR

2
C

4
E AUX ENT

NEXT
STR

$
0

A ENT

OUT
GX

0
A ENT

ENT

Clear the Program

Move to the first
address and enter
X0 contact

Enter output Y0

Enter the END
statement

END

X0

OUT
Y0

Equivalent DirectSOFT display

After entering the simple example program put the PLC in Run mode by using the
Mode key on the Handheld Programmer.
The RUN indicator on the PLC will illuminate indicating the CPU has entered the Run
mode. If not, repeat this step, ensuring the program is entered properly or refer to the
troubleshooting guide in chapter 8.
After the CPU enters the run mode, the output status indicator for Y0 should follow
the switch status on input channel X0. When the switch is on, the output will be on.

G
et

tin
g

S
ta

rt
ed

1–10
Getting Started

Steps to Designing a Successful System

Always make safety the first priority in any
system design. Chapter 2 provides
several guidelines that will help you
design a safer, more reliable system. This
chapter also includes wiring guidelines for
the various versions of the DL05 PLC.

The PLC is the heart of your automation
system. Make sure you take time to
understand the various features and setup
requirements.

There are many considerations involved
when you select your I/O type and field
devices. Take time to understand how the
various types of sensors and loads can
affect your choice of I/O type.

+

–

Input
Sensing

PLC
Input

Common

It is important to understand the various
system design options that are available
before wiring field devices and field-side
power supplies to the Micro PLC.

8 Inputs Commons

Commons6 OutputsPower Input
PLC
DL05

+ –

Loads

+24 VDC

AC
Power

Before you begin to enter a program, it is
very helpful to understand how the DL05
system processes information. This
involves not only program execution
steps, but also involves the various modes
of operation and memory layout
characteristics.

��������

	
��������������

Step 1:
Review the
Installation
Guidelines

Step 2:
Understand the
PLC Setup
Procedures

Step 3:
Review the I/O
Selection Criteria

Step 4:
Choose a System
Wiring Strategy

Step 5:
Understand the
System Operation

G
etting S

tarted

1–11
Getting Started

The DL05 PLC instruction set provides for three main approaches to solving the
application program, depicted in the figure below.

� RLL diagram-style programming is the best tool for solving boolean logic
and general CPU register/accumulator manipulation. It includes dozens
of instructions, which will also be needed to augment drums and stages.

� The Timer/Event Drum Sequencer features up to 16 steps and offers
both time and/or event-based step transitions. The DRUM instruction is
best for a repetitive process based on a single series of steps.

� Stage programming (also called RLLPlus) is based on state-transition
diagrams. Stages divide the ladder program into sections which
correspond to the states in a flow chart you draw for your process.

Push–
DOWN

Standard RLL Programming

Push–UP

UPDOWN

LOWER

RAISE

LIGHT

Timer/Event Drum Sequencer Stage Programming
(see Chapter 5) (see Chapter 6) (see Chapter 7)

X0
LDD
V1076

CMPD
K309482

SP62
OUT
Y0

After reviewing the programming concepts above, you’ll be equipped with a variety
of tools to write your application program.

Once you have installed the Micro PLC
and understand the main programming
concepts, you can begin writing your
application program. At that time you will
begin to use one of the most powerful
instruction sets available in a small PLC.

TMR T1
K30

CNT CT3
K10

Sometimes equipment failures occur
when we least expect it. Switches fail,
loads short and need to be replaced, etc.
In most cases, the majority of the
troubleshooting and maintenance time is
spent trying to locate the problem. The
DL05 Micro PLC has many built-in
features such as error codes that can help
you quickly identify problems.

Step 6:
Review the
Programming
Concepts

Step 7:
Choose the
Instructions

Step 8:
Understand the
Maintenance and
Troubleshooting
Procedures

G
et

tin
g

S
ta

rt
ed

1–12
Getting Started

Questions and Answers about DL05 Micro PLCs

Q. What is the instruction set like?
A. The instruction set is very close to our popular DL240 CPU. However, there are
significant additions, such as the drum instruction, networking, and High-Speed I/O
capabilities.

Q. Do I have to buy the full DirectSOFT programming package to program the DL05?
A. No. We offer a DL05-specific version of DirectSOFT that’s very affordable.

Q. Is the DL05 expandable?
A. No, the DL05 series are stand-alone PLCs. However, our DL205 system is
expandable, yet very compact and affordable.

Q. Does the DL05 have motion control capability?
A. Yes. The High-Speed I/O features offer either encoder inputs with high-speed
counting and presets with interrupt, or a pulse/direction output for stepper control.
Three types of motion profiles are available, which are explained in Chapter 3.

Q. Are the ladder programs stored in a removable EEPROM?
A. The DL05 contains a non-removable FLASH memory for program storage, which
may be written and erased thousands of times. You may transfer programs to/from
DirectSOFT on a PC, or the HPP (which does support a removable EEPROM).

Q. Does the DL05 contain fuses for its outputs?
A. There are no output circuit fuses. Therefore, we recommend fusing each channel,
or fusing each common. See Chapter 2 for I/O wiring guidelines.

Q. Is the DL05 Micro PLC U.L.� approved?
A. The Micro PLC has met the requirements of UL (Underwriters’ Laboratories, Inc.),
and CUL (Canadian Underwriters’ Laboratories, Inc.).

Q. Does the DL05 Micro PLC comply with European Union (EU) Directives?
A. The Micro PLC has met the requirements of the European Union Directives (CE).

G
etting S

tarted

1–13
Getting Started

Q. Which devices can I connect to the communication ports of the DL05?
A. Port 1: The port is RS-232C, fixed at 9600 baud, and uses the proprietary
K-sequence protocol. The DL05 can also connect to MODBUS and DirectNET
networks as a slave device through port 1. The port communicates with the following
devices:

� DV-1000 Data Access Unit or Optimation Operator interface panels
� DirectSOFT (running on a personal computer)
� D2-HPP handheld programmer
� Other devices which communicate via K-sequence protocol should work

with the DL05 Micro PLC. Contact the vendor for details.
A. Port 2: The port is RS-232C, with selective baud rates (300-38,400bps), address
and parity.It also supports the proprietary K-sequence protocol as well as DirectNet
and Modbus and non-sequence/print protocols.

Q. Can the DL05 accept 5VDC inputs?
A. No, 5 volts is lower than the DC input ON threshold. However, many TTL logic
circuits can drive the inputs if they are wired as open collector (sinking) inputs. See
Chapter 2 for I/O wiring guidelines.

��
Installation, Wiring,
and Specifications

����������	
���������

���	���������������

�������	�������������������	���

��������� �����������

��!��� �����������

�������"�!��� ���	�� ���

�������	������
�#���#	�������"�

��!��� ���	 	"��	����
�#���#	�����

����$%�&�'�������
��

����$%(&�'�������
��

����$%���%��������
��

����$%(��%��������
��

����$%���)��������
��

����$%(��)��������
��

����$�*��+�������
���	������
��

����$�,�+��+��	�����
��

����$�,���%�������
���	������
��

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–2

Installation, Wiring, and Specifications

Safety Guidelines

NOTE: Products with CE marks perform their required functions safely and adhere
to relevant standards as specified by CE directives provided they are used
according to their intended purpose and that the instructions in this manual are
adhered to. The protection provided by the equipment may be impaired if this
equipment is used in a manner not specified in this manual.

WARNING: Providing a safe operating environment for personnel and equipment is
your responsibility and should be your primary goal during system planning and
installation. Automation systems can fail and may result in situations that can cause
serious injury to personnel or damage to equipment. Do not rely on the automation
system alone to provide a safe operating environment. You should use external
electromechanical devices, such as relays or limit switches, that are independent of
the PLC application to provide protection for any part of the system that may cause
personal injury or damage.
Every automation application is different, so there may be special requirements for
your particular application. Make sure you follow all national, state, and local
government requirements for the proper installation and use of your equipment.

The best way to provide a safe operating environment is to make personnel and
equipment safety part of the planning process. You should examine every aspect of
the system to determine which areas are critical to operator or machine safety. If you
are not familiar with PLC system installation practices, or your company does not
have established installation guidelines, you should obtain additional information
from the following sources.

� NEMA — The National Electrical Manufacturers Association, located in
Washington, D.C., publishes many different documents that discuss
standards for industrial control systems. You can order these
publications directly from NEMA. Some of these include:
ICS 1, General Standards for Industrial Control and Systems
ICS 3, Industrial Systems
ICS 6, Enclosures for Industrial Control Systems

� NEC — The National Electrical Code provides regulations concerning
the installation and use of various types of electrical equipment. Copies
of the NEC Handbook can often be obtained from your local electrical
equipment distributor or your local library.

� Local and State Agencies — many local governments and state
governments have additional requirements above and beyond those
described in the NEC Handbook. Check with your local Electrical
Inspector or Fire Marshall office for information.

The publications mentioned provide many ideas and requirements for system
safety. At a minimum, you should follow these regulations. Also, you should use the
following techniques, which provide three levels of system control.

� Orderly system shutdown sequence in the PLC control program
� Mechanical disconnect for output module power
� Emergency stop switch for disconnecting system power

Plan for Safety

Three Levels of
Protection

Installation, W
iring,

and S
pecifications

2–3
Installation, Wiring, and Specifications

The first level of fault detection is ideally
the PLC control program, which can
identify machine problems. You must
analyze your application and identify any
shutdown sequences that must be
performed. These types of problems are
usually things such as jammed parts, etc.
that do not pose a risk of personal injury
or equipment damage.

WARNING: The control program must
not be the only form of protection for any
problems that may result in a risk of
personal injury or equipment damage.

�������
�	-.	"

����#�

+��

+��

+��	#�
/"

You should also use electromechanical devices, such as master control relays
and/or limit switches, to prevent accidental equipment startup at an unexpected
time. These devices should be installed in such a manner to prevent any machine
operations from occurring.
For example, if the machine has a jammed part the PLC control program can turn off
the saw blade and retract the arbor. However, since the operator must open the
guard to remove the part, you should also include a bypass switch that disconnects
all system power any time the guard is opened.
The machinery must provide a quick manual method of disconnecting all system
power. The disconnect device or switch must be clearly labeled “Emergency Stop”.

������#����#�����
���
���#�#����

�	-
/0�

1�����
�	���
+��	�

�	����+��	������	#��

������#����#�
������-�

1"� ��#�
���

��-����

�	����+��	������	#��

2���13���
�	����	����+��	�

��	�
��"����	����"����-��#�

After an Emergency shutdown or any other type of power interruption, there may be
requirements that must be met before the PLC control program can be restarted. For
example, there may be specific register values that must be established (or
maintained from the state prior to the shutdown) before operations can resume. In
this case, you may want to use retentive memory locations, or include constants in
the control program to ensure a known starting point.

Orderly System
Shutdown

System Power
Disconnect

Emergency Stop

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–4

Installation, Wiring, and Specifications

Orientation to DL05 Front Panel

Most connections, indicators, and labels on the DL05 Micro PLCs are located on its
front panel. The communication ports are located on the top side of the PLC. Please
refer to the drawing below.

Output Status Indicators

Input Status Indicators

Mounting tab
Communication Ports

Discrete Input Discrete Output External Power

Status
Indicators

Mode Switch

Mounting tab

Inputs Terminals Terminals
Output Circuit Power Input

(for DC output versions only)

The upper section of the connector accepts external power connections on the two
left-most terminals. From left to right, the next five terminals are one of the input
commons (C0) and input connections X1, X3, X4, and X6. The remaining four
connections are an output common (C2) and output terminals Y1, Y3, and Y5.
The lower section of the connector has the chassis ground (G) and the logic ground
(LG) on the two left-most terminals. The next two terminals are for the inputs X0 and
X2. Next is the other input common (C1) followed by inputs X5 and X7. The last four
terminals are for outputs Y0, Y2, Y4, and the second output common (C3). On DC
output units, the end terminal on the right accepts power for the output stage.

WARNING: For some applications, field device power may still be present on the
terminal block even though the Micro PLC is turned off. To minimize the risk of
electrical shock, check all field device power before you expose or remove either
connector

Installation, W
iring,

and S
pecifications

2–5
Installation, Wiring, and Specifications

All of the terminals for the DL05 are contained on one connector block. In some
instances, it may be desireable to remove the connector block for easy wiring. The
connector is designed for easy removal with just a small screwdriver. The drawing
below shows the procedure for removal at one end.

Connector Removal

1. Loosen the retention screws on each end of the connector block.

2. From the center of the connector block, pry upward with the screwdriver
until the connector is loose.

The terminal block connector on DL05 PLCs have regular screw terminals, which
will accept either standard or #1 Philips screwdriver tips. You can insert one 16 AWG
wire under a terminal, or two 18 AWG wires (one on each side of the screw). Be
careful not to overtighten; maximum torque is 6 inch/ounces.
Spare terminal block connectors and connector covers may be ordered by individual
part numbers:

Part Number Qty Per Package Description

D0–IOCON 2 DL05 I/O Terminal Block

D0–IOCVR 2 DL05 I/O Terminal Cover

Connector
Removal

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–6

Installation, Wiring, and Specifications

Mounting Guidelines
In addition to the panel layout guidelines, other specifications can affect the
definition and installation of a PLC system. Always consider the following:

� Environmental Specifications
� Power Requirements
� Agency Approvals
� Enclosure Selection and Component Dimensions

The following diagram shows the outside dimensions and mounting hole locations
for all versions of the DL05. Make sure you follow the installation guidelines to allow
proper spacing from other components.

4.8”
120mm

3.8”
95mm

2.6”
65mm

2.72”
68mm

(DIN Rail)
4.0”

100mm

3.4”
85mm

0.40”
10mm

0.20”
5mm

2 holes, 0.150” dia,
clearance for #6 screw

0.24” mounting tab
6mm

$

Your selection of a proper enclosure is important to ensure safe and proper
operation of your DL05 system. Applications of DL05 systems vary and may require
additional features. The minimum considerations for enclosures include:

� Conformance to electrical standards
� Protection from the elements in an industrial environment
� Common ground reference
� Maintenance of specified ambient temperature
� Access to equipment
� Security or restricted access
� Sufficient space for proper installation and maintenance of equipment

Unit Dimensions

Enclosures

Installation, W
iring,

and S
pecifications

2–7
Installation, Wiring, and Specifications

There are many things to consider when designing the panel layout. The following items
correspond to the diagram shown. Note: there may be additional requirements,
depending on your application and use of other components in the cabinet.

1. Mount the PLCs horizontally as shown below to provide proper ventilation.
You cannot mount the DL05 units vertically, upside down, or on a flat
horizontal surface. If you place more than one unit in a cabinet, there must
be a minimum of 7.2” (183mm) between the units.

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ

ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ

�4

/����-
ÇÇÇÇÇ
ÇÇÇÇÇ

ÇÇÇÇÇ
ÇÇÇÇÇ

2. Provide a minimum clearance of 2” (50mm) between the unit and all sides of
the cabinet. Note, remember to allow for any operator panels or other items
mounted in the door.

3. There should also be at least 3” (78mm) of clearance between the unit and
any wiring ducts that run parallel to the terminals.

Earth Ground
Panel Ground
Terminal

DL05

Power
Source

Temperature
Probe

Star Washers

Panel Ground Braid
Copper Lugs

Panel or
Single Point

GroundStar Washers

BUS Bar

�

Note: there is a minimum of 2” (30mm)
clearance between the panel door

or any devices mounted in the panel door

��

����

����

�

��

����
������

and the nearest DL05 component.

��

����

����

�

Not to Scale

Micro PLC

�

�

�

�

4. The ground terminal on the DL05 base must be connected to a single point
ground. Use copper stranded wire to achieve a low impedance. Copper
eye lugs should be crimped and soldered to the ends of the stranded wire to
ensure good surface contact.

5. There must be a single point ground (i.e. copper bus bar) for all devices in
the panel requiring an earth ground return. The single point of ground must
be connected to the panel ground termination. The panel ground
termination must be connected to earth ground. Minimum wire sizes, color
coding, and general safety practices should comply with appropriate
electrical codes and standards for your area.

Panel Layout &
Clearances

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–8

Installation, Wiring, and Specifications

6. A good common ground reference (Earth ground) is essential for proper
operation of the DL05. One side of all control and power circuits and the
ground lead on flexible shielded cable must be properly connected to Earth
ground. There are several methods of providing an adequate common
ground reference, including:
a) Installing a ground rod as close to the panel as possible.
b) Connection to incoming power system ground.

7. Evaluate any installations where the ambient temperature may approach
the lower or upper limits of the specifications. If you suspect the ambient
temperature will not be within the operating specification for the DL05
system, measures such as installing a cooling/heating source must be
taken to get the ambient temperature within the range of specifications.

8. The DL05 systems are designed to be powered by 95-240 VAC or 12–24
VDC normally available throughout an industrial environment. Electrical
power in some areas where the PLCs are installed is not always stable and
storms can cause power surges. Due to this, powerline filters are
recommended for protecting the DL05 PLCs from power surges and
EMI/RFI noise. The Automation Powerline Filter, for use with 120 VAC and
240 VAC, 1–5 Amps, is an exellent choice
However, you can use a filter of your choice.
These units install easily between the power source and the PLC.

NOTE: If you are using other components in your system, make sure you refer to the
appropriate manual to determine how those units can affect mounting dimensions.

DL05 Micro PLCs can be secured to a panel by using mounting rails. We
recommend rails that conform to DIN EN standard 50 022. They are approximately
35mm high, with a depth of 7mm. If you mount the Micro PLC on a rail, do consider
using end brackets on each side of the PLC. The end bracket helps keep the PLC
from sliding horizontally along the rail, reducing the possibility of accidentally pulling
the wiring loose.
On the bottom of the PLC is a small retaining clip. To secure the PLC to a DIN rail,
place it onto the rail and gently push up on the clip to lock it onto the rail.
To remove the PLC, pull down on the retaining clip, lift up on the PLC slightly, then
pulling it away from the rail.

Using Mounting
Rails

Installation, W
iring,

and S
pecifications

2–9
Installation, Wiring, and Specifications

'��""

*""

+��	���� ����

��&�+	�����"������� ��&�+	��������
2���'�""�5�*""�	���#����"�� ���
��&�1&����))�

NOTE: Refer to our catalog for a complete listing of DINnector connection systems.

The following table lists the environmental specifications that generally apply to
DL05 Micro PLCs. The ranges that vary for the Handheld Programmer are noted at
the bottom of this chart. Certain output circuit types may have derating curves,
depending on the ambient temperature and the number of outputs ON. Please refer
to the appropriate section in this chapter pertaining to your particular DL05 PLC.

Specification Rating

Storage temperature –4° F to 158° F (–20° C to 70° C)

Ambient operating temperature* 32° F to 131° F (0° C to 55° C)

Ambient humidity** 5% – 95% relative humidity (non–condensing)

Vibration resistance MIL STD 810C, Method 514.2

Shock resistance MIL STD 810C, Method 516.2

Noise immunity NEMA (ICS3–304)

Atmosphere No corrosive gases

Agency approvals UL, CE, FCC class A

* Operating temperature for the Handheld Programmer and the DV–1000 is 32° to 122° F (0° to 50° C)
Storage temperature for the Handheld Programmer and the DV–1000 is –4° to 158° F (–20° to70° C).
**Equipment will operate down to 5% relative humidity. However, static electricity problems occur much
more frequently at low humidity levels (below 30%). Make sure you take adequate precautions when
you touch the equipment. Consider using ground straps, anti-static floor coverings, etc. if you use the
equipment in low-humidity environments.

Some applications require agency approvals for particular components. The DL05
Micro PLC agency approvals are listed below:

� UL (Underwriters’ Laboratories, Inc.)
� CUL (Canadian Underwriters’ Laboratories, Inc.)
� CE (European Economic Union)

Environmental
Specifications

Agency Approvals

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–10

Installation, Wiring, and Specifications

Wiring Guidelines

Connect the power input wiring for the DL05. Observe all precautions stated earlier
in this manual. For more details on wiring, see Chapter 2 on Installation, Wiring, and
Specifications. When the wiring is complete, close the connector covers. Do not
apply power at this time.

110/220 VAC Power Input

95 – 240 VAC
L NG

12/24 VDC Power Input

+ –

12 – 24 VDC
+ –G

WARNING: Once the power wiring is connected, secure the terminal block cover in
the closed position. When the cover is open there is a risk of electrical shock if you
accidentally touch the connection terminals or power wiring.

There are no internal fuses for the input power circuits, so external circuit protection
is needed to ensure the safety of service personnel and the safe operation of the
equipment itself. To meet UL/CUL specifications, the input power must be fused.
Depending on the type of input power being used, follow these fuse protection
recommendations:

208/240 VAC Operation
When operating the unit from 208/240 VAC, whether the voltage source is a
step-down transformer or from two phases, fuse both the line (L) and neutral (N)
leads. The recommended fuse size is 0.375A.

110/125 VAC Operation
When operating the unit from 110/125 VAC, it is only necessary to fuse the line (L)
lead; it is not necessary to fuse the neutral (N) lead. The recommended fuse size is
0.5A.

Fuse Protection
for Input Power

Installation, W
iring,

and S
pecifications

2–11
Installation, Wiring, and Specifications

12/24 VDC Operation
When operating at these lower DC voltages, wire gauge size is just as important as
proper fusing techniques. Using large conductors minimizes the voltage drop in the
conductor. Each DL05 input power terminal can accommodate one 16 AWG wire or
two 18 AWG wires. A DC failure can maintain an arc for much longer time and
distance than AC failures. Typically, the main bus is fused at a higher level than the
branch device, which in this case is the DL05. The recommended fuse size for the
branch circuit to the DL05 is 1A (for example, a Littlefuse 312.001 or equivalent).

The power source must be capable of suppling voltage and current complying with
individual Micro PLC specifications, according to the following specifications:

Item DL05 VAC Powered Units DL05 VDC Powered Units

Input Voltage Range 110/220 VAC (95–240 VAC) 12–24 VDC (10.8–26.4 VDC)

Maximum Inrush Current 13 A, 1ms (95–240 VAC)
15 A, 1ms (240–264 VAC)

10A

Maximum Power 30 VA 20 W

Voltage Withstand (dielectric) 1 minute @ 1500 VAC between primary, secondary, field
ground

Insulation Resistance > 10 M� at 500 VDC

NOTE:The rating between all internal circuits is BASIC INSULATION ONLY.

The following guidelines provide general information on how to wire the I/O
connections to DL05 Micro PLCs. For specific information on wiring a particular PLC
refer to the corresponding specification sheet further in this chapter.

1. Each terminal connection of the DL05 PLC can accept one 16 AWG wire or
two 18 AWG size wires. Do not exceed this recommended capacity.

2. Always use a continuous length of wire. Do not splice wires to attain a
needed length.

3. Use the shortest possible wire length.
4. Use wire trays for routing where possible.
5. Avoid running wires near high energy wiring.
6. Avoid running input wiring close to output wiring where possible.
7. To minimize voltage drops when wires must run a long distance , consider

using multiple wires for the return line.
8. Avoid running DC wiring in close proximity to AC wiring where possible.
9. Avoid creating sharp bends in the wires.
10. Install the recommended powerline filter to reduce power surges and

EMI/RFI noise.

External
Power Source

Planning the
Wiring Routes

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–12

Installation, Wiring, and Specifications

Input and Output circuits on DL05 Micro PLCs do not have internal fuses. In order to
protect your Micro PLC, we suggest you add external fuses to your I/O wiring. A
fast-blow fuse, with a lower current rating than the I/O bank’s common current rating
can be wired to each common. Or, a fuse with a rating of slightly less than the
maximum current per output point can be added to each output. Refer to the Micro
PLC specification sheets further in this chapter to find the maximum current per
output point or per output common. Adding the external fuse does not guarantee the
prevention of Micro PLC damage, but it will provide added protection.

External Fuses
(shown with DIN Rail, Fuse Blocks)

All DL05 Micro PLCs have a fixed I/O configuration. It follows the same octal
numbering system used on other DirectLogic family PLCs, starting at X0 and Y0. The
letter X is always used to indicate inputs and the letter Y is always used for outputs.
The I/O numbering always starts at zero and does not include the digits 8 or 9. The
addresses are typically assigned in groups of 8 or 16, depending on the number of
points in an I/O group. For the DL05 the eight inputs use reference numbers X0 – X7.
The six output points use references Y0 – Y5.

Fuse Protection
for Input and
Output Circuits

I/O Point
Numbering

Installation, W
iring,

and S
pecifications

2–13
Installation, Wiring, and Specifications

System Wiring Strategies

The DL05 Micro PLC is very flexible and will work in many different wiring
configurations. By studying this section before actual installation, you can probably
find the best wiring strategy for your application . This will help to lower system cost,
wiring errors, and avoid safety problems.
PLC circuitry is divided into three main regions separated by isolation boundaries,
shown in the drawing below. Electrical isolation provides safety, so that a fault in one
area does not damage another. A powerline filter will provide isolation between the
power source and the power supply. A transformer in the power supply provides
magnetic isolation between the primary and secondary sides. Opto-couplers
provide optical isolation in Input and Output circuits. This isolates logic circuitry from
the field side, where factory machinery connects. Note that the discrete inputs are
isolated from the discrete outputs, because each is isolated from the logic side.
Isolation boundaries protect the operator interface (and the operator) from power
input faults or field wiring faults. When wiring a PLC, it is extremely important to avoid
making external connections that connect logic side circuits to any other.

��2

��
��

��#����	��

��-�
��

��

���#������
���

���#�������
���

��-��
��
��

���
��

��#���

Primary Side Secondary, or
Logic side

Field Side

���

�� 	""�� ���6�#���
�
�	��������	#�

����	����
7����	�

����	����
7����	�

Filter

The next figure shows the internal layout of DL05 PLCs, as viewed from the front
panel.

���
�����#�����
�����#���

��2
)���""�

����

�	��

��-�
��

��

����� 	""�� ���6�#�
���
�	��������	#�

,����#���
������
���

��""��� ��""���(����#�������
�����-�
��
��

PLC
DL05

Filter

PLC Isolation
Boundaries

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–14

Installation, Wiring, and Specifications

Operator interfaces require data and power connections. Operator interfaces with a
large CRT usually require separate AC power. However, small operator interface
devices like the popular DV-1000 Data Access Unit and the Optimation panels may
be powered directly from the DL05 Micro PLC.
Connect the DV-1000 to either communication port on the DL05 Micro PLC using the
cable shown below. A single cable contains transmit/receive data wires and +5V
power.

DL05 Micro PLC DV-1000

Use cable part no.
DV–1000CBL

RJ12
phone style

RJ12
phone style

Optimation operator interface panels require separate power and communications
connections. Connect the DL05 to the proper D-shell connector on the rear of the
Optimation panel using the cable shown below. Optimation panels require 8–30VDC
power.

DL05 Micro PLC Optimation Panel

Use cable part no.
OP–2CBL

15-pin D-shell
male

RJ12
phone style

DL05 Micro PLCs can be programmed with either a handheld programmer or with
DirectSOFT on a PC. Connect the DL05 to a PC using the cable shown below.

Use cable part no.
D2–DSCBL

9-pin D-shell
female

RJ12
phone style

DL05 Micro PLC

The D2-HPP Handheld Programmer comes with a communications cable. For a
replacement part, use the cable shown below.

For replacement
cable, use part no.

DV–1000CBL

RJ12
phone style

RJ12
phone style

(cable comes with HPP)

DL05 Micro PLC D2–HPP

Connecting
Operator Interface
Devices

Connecting
Programming
Devices

Installation, W
iring,

and S
pecifications

2–15
Installation, Wiring, and Specifications

Before going further in our study of wiring strategies, we must have a solid
understanding of “sinking” and “sourcing” concepts. Use of these terms occurs
frequently in input or output circuit discussions. It is the goal of this section to make
these concepts easy to understand, further ensuring your success in installation.
First we give the following short definitions, followed by practical applications.

Sinking = Path to supply ground (–)
Sourcing = Path to supply source (+)

First you will notice that these are only associated with DC circuits and not AC,
because of the reference to (+) and (–) polarities. Therefore, sinking and sourcing
terminology only applies to DC input and output circuits. Input and output points that
are either sinking or sourcing can conduct current in only one direction. This means it
is possible to connect the external supply and field device to the I/O point with current
trying to flow in the wrong direction, and the circuit will not operate. However, we can
successfully connect the supply and field device every time by understanding
“sourcing” and “sinking”.

For example, the figure to the right depicts
a “sinking” input. To properly connect the
external supply, we just have to connect it
so the the input provides a path to ground
(–). So, we start at the PLC input terminal,
follow through the input sensing circuit,
exit at the common terminal, and connect
the supply (–) to the common terminal. By
adding the switch, between the supply (+)
and the input, we have completed the
circuit. Current flows in the direction of the
arrow when the switch is closed.

+

–

��
��
������

���
��
��

��""��

8���9�� :

By applying the circuit principle above to the four possible combinations of
input/output sinking/sourcing types, we have the four circuits as shown below. DL05
Micro PLCs provide all except the sourcing output I/O circuit types.

+

–

��
��
������

��	�

Sinking Input Sinking Output

Sourcing Input Sourcing Output

���
��
��

��""��

+

–

���
��
�-��#�

���
���
��

��""��

+

–

��
��
������

��	�

���

��
��

��""��

+

–

���
��
�-��#�

���

���
��

��""��

Sinking / Sourcing
Concepts

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–16

Installation, Wiring, and Specifications

In order for a PLC I/O circuit to operate,
current must enter at one terminal and exit
at another. This means at least two
terminals are associated with every I/O
point. In the figure to the right, the Input or
Output terminal is the main path for the
current. One additional terminal must
provide the return path to the power
supply.

+

–

�;�
��#���

���

8�;�������:

+������	��

�����
��6�#�

�	����	��

If we had unlimited space and budget for
I/O terminals, then every I/O point could
have two dedicated terminals just as the
figure above shows. However, providing
this level of flexibility is not practical or
even necessary for most applications. So,
most Input or Output point groups on
PLCs share the return path among two or
more I/O points. The figure to the right
shows a group (or bank) of 4 input points
which share a common return path. In this
way, the four inputs require only five
terminals instead of eight.

+

–

��
��
������

���

��
���<

��""��

��
���'

��
���)

��
���%

Note: In the circuit above, the current in the common path is 4 times any channel’s
input current when all inputs are energized. This is especially important in output
circuits, where heavier gauge wire is sometimes necessary on commons.

Most DL05 input and output circuits are
grouped into banks that share a common
return path. The best indication of I/O
common grouping is on the wiring label.
The I/O common grouping bar, labeled at
the right, occurs in the section of wiring
label below it. It indicates X0, X1, X2, and
X3 share the common terminal located to
the left of X1.

The following complete label shows two banks of four inputs and two banks of three
outputs. One common is provided for each bank.

The following label is for DC output versions. One common is provided for all of the
outputs and the terminal on the bottom right accepts power for the output stage.

I/O “Common”
Terminal Concepts

Installation, W
iring,

and S
pecifications

2–17
Installation, Wiring, and Specifications

In the previous section on Sourcing and Sinking concepts, we explained that DC I/O
circuits sometimes will only allow current to flow one way. This is also true for many of
the field devices which have solid-state (transistor) interfaces. In other words, field
devices can also be sourcing or sinking. When connecting two devices in a series
DC circuit, one must be wired as sourcing and the other as sinking.
The DL05’s DC inputs are flexible in that they detect current flow in either direction,
so they can be wired as either sourcing or sinking. In the following circuit, a field
device has an open-collector NPN transistor output. It sinks current from the PLC
input point, which sources current. The power supply can be the FA-24PS +24 VDC
power supply or another supply (+12 VDC or +24VDC), as long as the input
specifications are met.

Field Device

+–

PLC DC Input

���
��

�����

��
��

��""��

��

��

8���9�� : 8���#�� :

In the next circuit, a field device has an open-emitter PNP transistor output. It
sources current to the PLC input point, which sinks the current back to ground. Since
the field device is sourcing current, no additional power supply is required.

Field Device
PLC DC Input

���
���8���#�� :

�����

��
��

��""��

=>

8���9�� :

Sometimes an application requires connecting a PLC output point to a solid state
input on a device. This type of connection is usually made to carry a low-level signal,
not to send DC power to an actuator.
The DL05’s DC outputs are sinking-only. This means that each DC output provides a
path to ground when it is energized. Also, remember that all six outputs have the
same electrical common, even though there are two common terminal screws.
Finally, recall that the DC output circuit requires power (20 – 28 VDC) from an
external power source.
In the following circuit, the PLC output point sinks current to the output common
when energized. It is connected to a sourcing input of a field device input.

Field Device

���
��

�����

��
��

��""��

=>

PLC DC Output

=���
-

+

–

8���#�� :8���9�� :

��-�

)�$),�>��

Connecting DC I/O
to “Solid State”
Field Devices

Solid State
Input Sensors

Solid State
Output Loads

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–18

Installation, Wiring, and Specifications

In the next example we connect a PLC DC output point to the sinking input of a field
device. This is a bit tricky, because both the PLC output and field device input are
sinking type. Since the circuit must have one sourcing and one sinking device, we
add sourcing capability to the PLC output by using a pull-up resistor. In the circuit
below, we connect Rpull-up from the output to the DC output circuit power input.

Field Device

Output

Ground

Input

Common

PLC DC Output

+DC pwr

+

–

(sourcing)

(sinking)

Power

(sinking)

pull-up

Supply

R

inputR

NOTE: DO NOT attempt to drive a heavy load (>25 mA) with this pull-up method.
NOTE 2: Using the pull-up resistor to implement a sourcing output has the effect of
inverting the output point logic. In other words, the field device input is energized
when the PLC output is OFF, from a ladder logic point-of-view. Your ladder program
must comprehend this and generate an inverted output. Or, you may choose to
cancel the effect of the inversion elsewhere, such as in the field device.

It is important to choose the correct value of R pull-up. In order to do so, we need to
know the nominal input current to the field device (I input) when the input is energized.
If this value is not known, it can be calculated as shown (a typical value is 15 mA).
Then use I input and the voltage of the external supply to compute R pull-up. Then
calculate the power Ppull-up (in watts), in order to size R pull-up properly.

pull-upR inputR=
supplyV – 0.7

–
inputI

inputI =
input (turn–on)V

inputR

pull-upP =
supplyV 2

pullupR

The drawing below shows the actual wiring of the DL05 Micro PLC to the supply and
pull-up resistor.

+

– Output

Common

Supply

Installation, W
iring,

and S
pecifications

2–19
Installation, Wiring, and Specifications

The D0–05AR and the D0–05DR models feature relay outputs. Relays are best for
the following applications:

� Loads that require higher currents than the solid-state DL05 outputs can
deliver

� Cost-sensitive applications
� Some output channels need isolation from other outputs (such as when

some loads require AC while others require DC)
Some applications in which NOT to use relays:

� Loads that require currents under 10 mA
� Loads which must be switched at high speed and duty cycle

Assuming relays are right for your application, we’re now ready to explore various
ways to wire relay outputs to the loads. Note that there are six normally-open SPST
relays available. They are organized with three relays per common. The figure below
shows the relays and the internal wiring of the PLC. Note that each group is isolated
from the other group of outputs.

Y0 ��" Y1 Y2 Y3 Y4 ��" Y5

In the circuit below, all loads use the same AC power supply which powers the DL05
PLC. In this example, all commons are connected together.

Output Point Wiring

Ground

Neutral

Line
Fuse or
Circuit
Breaker

In the circuit on the following page, loads for Y0 – Y2 use the same AC power supply
which powers the DL05 PLC. Loads for Y3 – Y5 use a separate DC supply. In this
example, the commons are separated according to which supply powers the
associated load.

Relay Output
Wiring Methods

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–20

Installation, Wiring, and Specifications

Output Point Wiring

Ground

Neutral

LineFuse or
Circuit
Breaker

+

–

Inductive load devices (devices with a coil) generate transient voltages when
de-energized with a relay contact. When a relay contact is closed it “bounces”, which
energizes and de-energizes the coil until the “bouncing” stops. The transient
voltages generated are much larger in amplitude than the supply voltage, especially
with a DC supply voltage.
When switching a DC-supplied inductive load the full supply voltage is always
present when the relay contact opens (or “bounces”). When switching an
AC-supplied inductive load there is one chance in 60 (60 Hz) or 50 (50 Hz) that the
relay contact will open (or “bounce”) when the AC sine wave is zero crossing. If the
voltage is not zero when the relay contact opens there is energy stored in the
inductor that is released when the voltage to the inductor is suddenly removed. This
release of energy is the cause of the transient voltages.
When inductive load devices (motors, motor starters, interposing relays, solenoids,
valves, etc.) are controlled with relay contacts, it is recommended that a surge
suppression device be connected directly across the coil of the field device. If the
inductive device has plug-type connectors, the suppression device can be installed
on the terminal block of the relay output.
Transient Voltage Suppressors (TVS or transorb) provide the best surge and
transient suppression of AC and DC powered coils, providing the fastest response
with the smallest overshoot.
Metal Oxide Varistors (MOV) provide the next best surge and transient
suppression of AC and DC powered coils.

+24 VDC –24 VDC

Module Relay Contact

–324 VDC

+24 VDC

For example, the waveform in the figure below shows the energy released when
opening a contact switching a 24 VDC solenoid. Notice the large voltage spike.

Surge Suppresion
For Inductive
Loads

Installation, W
iring,

and S
pecifications

2–21
Installation, Wiring, and Specifications

This figure shows the same circuit with a transorb (TVS) across the coil. Notice that
the voltage spike is significantly reduced.

+24 VDC –24 VDC

Module Relay Contact

–42 VDC

+24 VDC

Use the following table to help select a TVS or MOV suppressor for your application
based on the inductive load voltage.

hhVendor / Catalog Type (TVS, MOV, Diode) Inductive Load Voltage Part Number

General Instrument
Transient Voltage
Suppressors, LiteOn
Diodes; from DigiKey
Catalog; Phone:
1-800-344-4539

TVS

TVS

TVS

Diode

110/120 VAC

220/240 VAC

12/24 VDC or VAC

12/24 VDC or VAC

P6KE180CAGICT–ND

P6KE350CA

P6K30CAGICT–ND

1N4004CT–ND

Harris Metal Oxide
Varistors; from Newark
Catalog; Phone:
1-800-463-9275

MOV

MOV

110/120 VAC

220/240 VAC

V150LA20C

V250LA20C

Relay contacts wear according to the amount of relay switching, amount of spark
created at the time of open or closure, and presence of airborne contaminants.
There are some steps you can take to help prolong the life of relay contacts, such as
switching the relay on or off only when it is necessary, and if possible, switching the
load on or off at a time when it will draw the least current. Also, take measures to
suppress inductive voltage spikes from inductive DC loads such as contactors and
solenoids.
For inductive loads in DC circuits we recommend using a suppression diode as
shown in the following diagram (DO NOT use this circuit with an AC power supply).
When the load is energized the diode is reverse-biased (high impedance). When the
load is turned off, energy stored in its coil is released in the form of a negative-going
voltage spike. At this moment the diode is forward-biased (low impedance) and
shunts the energy to ground. This protects the relay contacts from the high voltage
arc that would occur just as the contacts are opening.
Place the diode as close to the inductive field device as possible. Use a diode with a
peak inverse voltage rating (PIV) at least 100 PIV, 3A forward current or larger. Use a
fast-recovery type (such as Schottky type). DO NOT use a small-signal diode such
as 1N914, 1N941, etc. Be sure the diode is in the circuit correctly before operation. If
installed backwards, it short-circuits the supply when the relay energizes.

Inductive Field Device

+ –

PLC Relay Output

���
��

��""��

��
��

��""��

��

��

Prolonging Relay
Contact Life

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–22

Installation, Wiring, and Specifications

DL05 Micro PLCs with DC inputs are particularly
flexible because they can be either sinking or
sourcing. The dual diodes (shown to the right) allow
current to flow in either direction. The inputs accept
10.8 – 26.4 VDC. The target applications are +12
VDC and +24 VDC. You can actually wire half of the
inputs as DC sinking and the other half as DC
sourcing. Inputs grouped by a common must be all
sinking or all sourcing.

PLC DC Input
��
��

��""��

In the first and simplest example below, all commons are connected together and all
inputs are sinking.

+

–
=)<�>��

In the next example, the first four inputs are sinking, and the last four are sourcing.

+

– +

–
=)<�>�� =%)�>��

DC Input Wiring
Methods

Installation, W
iring,

and S
pecifications

2–23
Installation, Wiring, and Specifications

DL05 DC output circuits are high-performance transistor switches with low
on-resistance and fast switching times. Please note the following characteristics
which are unique to the DC output type:

� There is only one electrical common for all six outputs. All six outputs
belong to one bank.

� The output switches are current-sinking only. However, you can still use
different DC voltages from one load to another.

� The output circuit inside the PLC requires external power. The supply
(–) must be connected to a common terminal, and the supply (+)
connects the the right-most terminal on the upper connector.

In the example below, all six outputs share a common supply.

Output Point Wiring

+

–
=)<�>��

In the next example below, the outputs have “split” supplies. The first three outputs
are using a +12 VDC supply, and the last three are using a +24 VDC supply.
However, you can split the outputs among any number of supplies, as long as:

� all supply voltages are within the specified range
� all output points are wired as sinking
� all source (–) terminals are connected together

+

–

+

–
=%)�>�� =)<�>��

Output Point Wiring

DC Output
Wiring Methods

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–24

Installation, Wiring, and Specifications

DL05 versions with DC type input or output points contain a dedicated High-Speed
I/O circuit (HSIO). The circuit configuration is programmable, and it processes select
I/O points independently from the CPU scan. Chapter 3 discusses the programming
options for HSIO. While the HSIO circuit has six modes, we show wiring diagrams for
two of the most popular modes in this chapter. The high-speed input interfaces to
points X0 – X2. Properly configured, the DL05 can count quadrature pulses at up to
5 kHz from an incremental encoder as shown below.

Encoder Input Wiring

+

–
12 – 24 VDC

Phase A

Phase B

Encoder

Signal Common

DL05 versions with DC type output points can use the High Speed I/O Pulse Output
feature. It can generate high-speed pulses for specialized control such as stepper
motor / intelligent drive systems. Output Y0 and Y1 can generate pulse and direction
signals, or it can generate CCW and CW pulse signals respectively. See Chapter 3
on high-speed input and pulse output options.

Signal Common

Motor Amplifier

Pulse Output Wiring
Power Input

=)<�>��

Pulse

Direction

+

–

High-Speed I/O
Wiring Methods

Installation, W
iring,

and S
pecifications

2–25
Installation, Wiring, and Specifications

Glossary of Specification Terms

Discrete Input One of eight input connections to the PLC which converts an electrical
signal from a field device to a binary status (off or on), which is read by the
internal CPU each PLC scan.

Discrete Output One of six output connections from the PLC which converts an internal
ladder program result (0 or 1) to turn On or Off an output switching device.
This enables the program to turn on and off large field loads.

I/O Common A connection in the input or output terminals which is shared by multiple
I/O circuits. It usually is in the return path to the power supply of the I/O
circuit.

Input Voltage Range The operating voltage range of the input circuit.

Maximum Voltage Maximum voltage allowed for the input circuit.

ON Voltage Level The minimum voltage level at which the input point will turn ON.

OFF Voltage Level The maximum voltage level at which the input point will turn OFF

Input Impedance Input impedance can be used to calculate input current for a particular
operating voltage.

Input Current Typical operating current for an active (ON) input.

Minimum ON Current The minimum current for the input circuit to operate reliably in the ON
state.

Maximum OFF Current The maximum current for the input circuit to operate reliably in the OFF
state.

OFF to ON Response The time the module requires to process an OFF to ON state transition.

ON to OFF Response The time the module requires to process an ON to OFF state transition.

Status Indicators The LEDs that indicate the ON/OFF status of an input or output point. All
LEDs on DL05 Micro PLCs are electrically located on the logic side of the
input or output circuit.

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–26

Installation, Wiring, and Specifications

Wiring Diagrams and Specifications

The remainder of this chapter dedicates two pages to each of the eight versions of
DL05 Micro PLCs. Each section contains a basic wiring diagram, equivalent I/O
circuits, and specification tables. Please refer to the section which describes the
particular DL05 version used in your application.

The D0–05AR Micro PLC features eight AC inputs and six relay contact outputs. The
following diagram shows a typical field wiring example. The AC external power
connection uses four terminals at the left as shown.

Output Point Wiring

Ground

Neutral

Line

Power
Input Wiring

Input Point Wiring

AC or DC
Supply

Equivalent Input Circuit

Optical

Common

Input

+V

Isolator

To other circuits in bank

AC
Supply

Fuse
or
C.B.

Derating Chart for Relay Outputs

0

2

4

6

Points

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Y0 – Y52 A

+V

To LED

Equivalent Output Circuit

COM

OUTPUT

To LED

Internal module circuitry

6–240 VAC

L

6–27 VDC
Line

+V

The eight AC input channels use terminals in the middle of the connector. Inputs are
organized into two banks of four. Each bank has a common terminal. The wiring
example above shows all commons connected together, but separate supplies and
common circuits may be used. The equivalent input circuit shows one channel of a
typical bank.

D0–05AR
I/O Wiring Diagram

Installation, W
iring,

and S
pecifications

2–27
Installation, Wiring, and Specifications

The six relay output channels use terminals on the right side of the connector.
Outputs are organized into two banks of three normally-open relay contacts. Each
bank has a common terminal. The wiring example on the last page shows all
commons connected together, but separate supplies and common circuits may be
used. The equivalent output circuit shows one channel of a typical bank. The relay
contacts can switch AC or DC voltages.

External Power Requirements 95 – 240 VAC, 30 VA maximum,

Communication Port 1
9600 baud (Fixed), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Slave)
MODBUS (Slave)

Communication Port 2
9600 baud (default), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence / print

Programming cable type D2–DSCBL

Operating Temperature 32 to 131° F (0 to 55� C)

Storage Temperature –4 to 158° F (–20 to 70� C)

Relative Humidity 5 to 95% (non-condensing)

Environmental air No corrosive gases permitted

Vibration MIL STD 810C 514.2

Shock MIL STD 810C 516.2

Noise Immunity NEMA ICS3–304

Terminal Type Removable

Wire Gauge One AWG16 or two AWG18, AWG24 minimum

Input Voltage Range (Min. - Max.) 80 – 132 VAC, 47 - 63 Hz

Operating Voltage Range 90 – 120 VAC, 47 -63 Hz

Input Current 8 mA @ 100 VAC at 50 Hz
10 mA @ 100 VAC at 60 Hz

Max. Input Current 12 mA @ 132 VAC at 50 Hz
15 mA @ 132 VAC at 60 Hz

Input Impedance 14K� @50 Hz, 12K� @60 Hz

ON Current/Voltage >6 mA @ 75 VAC

OFF Current/Voltage <2 mA @ 20 VAC

OFF to ON Response < 40 mS

ON to OFF Response < 40 mS

Status Indicators Logic Side

Commons 4 channels / common x 2 banks

Output Voltage Range (Min. – Max.) 5 – 264 VAC (47 -63 Hz), 5 – 30 VDC

Operating Voltage Range 6 – 240 VAC (47 -63 Hz), 6 – 27 VDC

Output Current 2A / point, 6A / common

Max. leakage current 0.1 mA @264VAC

Smallest Recommended Load 5 mA @5 VDC

OFF to ON Response < 15 mS

ON to OFF Response < 10 mS

Status Indicators Logic Side

Commons 3 channels / common x 2 banks

Fuses None (external recommended)

D0–05AR
General
Specifications

AC Input
Specifications
X0 – X7

Relay Output
Specifications
Y0 – Y5

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–28

Installation, Wiring, and Specifications

These micro PLCs feature eight DC inputs and six relay contact outputs. The
following diagram shows a typical field wiring example. The AC external power
connection uses four terminals at the left as shown.

Output Point Wiring

Ground

Neutral

Line

Power
Input Wiring

Input Point Wiring

AC or DC
Supply

DC
Supply

Fuse
or
C.B.

Derating Chart for Relay Outputs

0

2

4

6

Points

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Y0 – Y52 A

Equivalent Output Circuit

COM

OUTPUT

To LED

Internal module circuitry

6–240 VAC

L

6–27 VDC
Line

+V

Equivalent Circuit,
Standard Inputs (X3 – X7)

Optical

Common

Input

+V

Isolator

+V

To LED
+

–

The eight DC input channels use terminals in the middle of
the connector. Inputs are organized into two banks of four.
Each bank has an isolated common terminal, and may be
wired as either sinking or sourcing inputs. The wiring
example above shows all commons connected together,
but separate supplies and common circuits may be used.
The equivalent circuit for standard inputs is shown above,
and the high-speed input circuit is shown to the left.

Input

Equivalent Circuit, High-
Speed Inputs (X0 – X2)

Optical

Common

+V

Isolator

+

–
To LED

To all other output circuits

The six output channels use terminals on the right side of the connector. Outputs are
organized into two banks of three normally-open relay contacts. Each bank has a
common terminal. The wiring example above shows all commons connected
together, but separate supplies and common circuits may be used. The equivalent
output circuit shows one channel of a typical bank. The relay contacts can switch AC
or DC voltages.

D0–05DR
I/O Wiring Diagram

Installation, W
iring,

and S
pecifications

2–29
Installation, Wiring, and Specifications

External Power Requirements 95 – 240 VAC, 30 VA maximum,

Communication Port 1
9600 baud (Fixed), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Slave)
MODBUS (Slave)

Communication Port 2
9600 baud (default), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence / print

Programming cable type D2–DSCBL

Operating Temperature 32 to 131° F (0 to 55� C)

Storage Temperature –4 to 158° F (–20 to 70� C)

Relative Humidity 5 to 95% (non-condensing)

Environmental air No corrosive gases permitted

Vibration MIL STD 810C 514.2

Shock MIL STD 810C 516.2

Noise Immunity NEMA ICS3–304

Terminal Type Removable

Wire Gauge One AWG16 or two AWG18, AWG24 minimum

Parameter High–Speed Inputs, X0 – X2 Standard DC Inputs X3 – X7

Min. - Max. Voltage Range 10.8 – 26.4 VDC 10.8 – 26.4 VDC

Operating Voltage Range 12 -24 VDC 12 -24 VDC

Peak Voltage 30 VDC (5 kHz maximum frequency) 30 VDC

Minimum Pulse Width 100 �s N/A

ON Voltage Level > 10 VDC > 10 VDC

OFF Voltage Level < 2.0 VDC < 2.0 VDC

Input Impedance 1.8 k� @ 12 – 24 VDC 2.8 k� @ 12 – 24 VDC

Max. Input Current 6mA @12VDC
13mA @24VDC

4mA @12VDC
8.5mA @24VDC

Minimum ON Current >5 mA >4 mA

Maximum OFF Current < 0.5 mA <0.5 mA

OFF to ON Response <100 �s 2 – 8 mS, 4 mS typical

ON to OFF Response < 100 �s 2 – 8 mS, 4 mS typical

Status Indicators Logic side Logic side

Commons 4 channels / common x 2 bank

Output Voltage Range (Min. - Max.) 5 -264 VAC (47 -63 Hz), 5 - 30 VDC

Operating Voltage 6 -240 VAC (47 -63 Hz), 6 - 27 VDC

Output Current 2A / point
6A / common

Maximum Voltage 264 VAC, 30 VDC

Max leakage current 0.1 mA @264 VAC

Smallest Recommended Load 5 mA

OFF to ON Response < 15 mS

ON to OFF Response < 10 mS

Status Indicators Logic Side

Commons 3 channels / common x 2 banks

Fuses None (external recommended)

D0–05DR
General
Specifications

DC Input
Specifications

Relay Output
Specifications

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–30

Installation, Wiring, and Specifications

The D0–05AD Micro PLC features eight AC inputs and six DC outputs. The following
diagram shows a typical field wiring example. The AC external power connection
uses four terminals at the left as shown.

Ground

Neutral

Line

Power
Input Wiring

Input Point Wiring

AC or DC
Supply

Fuse
or
C.B.

+

–
=)<�>��

Output Point Wiring

Derating Chart for DC Outputs

0

2

4

6

Points

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Y0 – Y51 A

Equivalent Output Circuit

Optical
Isolator

COM

OUTPUT

6–27+

Internal module circuitry

L

+V

+

24VDC

VDC

+V

To LED

Equivalent Input Circuit

Optical

Common

Input

+V

Isolator

To other circuits in bank

+V

To LED

The eight AC input channels use terminals in the middle of the connector. Inputs are
organized into two banks of four. Each bank has an isolated common terminal. The
wiring example above shows all commons connected together, but separate
supplies and common circuits may be used. The equivalent input circuit shows one
channel of a typical bank.
The six current sinking DC output channels use terminals on the right side of the
connector. All outputs actually share the same electrical common. Note the
requirement for external power on the end (right-most) terminal. The equivalent
output circuit shows one channel of the bank of six.

D0–05AD
I/O Wiring Diagram

Installation, W
iring,

and S
pecifications

2–31
Installation, Wiring, and Specifications

External Power Requirements 95 – 240 VAC, 30 VA maximum,

Communication Port 1
9600 baud (Fixed), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Slave)
MODBUS (Slave)

Communication Port 2
9600 baud (default), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence / print

Programming cable type D2–DSCBL

Operating Temperature 32 to 131° F (0 to 55� C)

Storage Temperature –4 to 158° F (–20 to 70� C)

Relative Humidity 5 to 95% (non-condensing)

Environmental air No corrosive gases permitted

Vibration MIL STD 810C 514.2

Shock MIL STD 810C 516.2

Noise Immunity NEMA ICS3–304

Terminal Type Removable

Wire Gauge One AWG16 or two AWG18, AWG24 minimum

Input Voltage Range (Min. - Max.) 80 – 132 VAC, 47 - 63 Hz

Operating Voltage Range 90 – 120 VAC, 47 - 63 Hz

Input Current 8 mA @ 100 VAC (50Hz)
10 mA @ 100 VAC (60Hz)

Max. Input Current 12 mA @ 132 VAC (50Hz)
15 mA @ 132 VAC (60Hz)

Input Impedance 14K� @50 Hz, 12K� @60 Hz

ON Current/Voltage >6 mA @ 75 VAC

OFF Current/Voltage <2 mA @ 20 VAC

OFF to ON Response < 40 mS

ON to OFF Response < 40 mS

Status Indicators Logic Side

Commons 4 channels / common x 2 banks

Parameter Pulse Outputs, Y0 – Y1 Standard Outputs, Y2 – Y5

Min. - Max. Voltage Range 5 – 30 VDC 5 – 30 VDC

Operating Voltage 6 – 27 VDC 6 – 27 VDC

Peak Voltage < 50 VDC (7 kHz max. frequency) < 50 VDC

On Voltage Drop 0.3 VDC @ 1A 0.3 VDC @ 1A

Max Current (resistive) 0.5 A / pt. (1A / point for standard pt.) 1.0 A / point

Max leakage current 15 �A @ 30 VDC 15 �A @ 30 VDC

Max inrush current 2 A for 100 mS 2 A for 100 mS

Extenal DC power required 20 - 28 VDC max 150mA 20 - 28 VDC max 150mA

OFF to ON Response <10 �S < 10 �S

ON to OFF Response <30 �S < 60 �S

Status Indicators Logic Side Logic Side

Commons 6 channels / common x 1 banks

Fuses None None

D0–05AD
General
Specifications

AC Input
Specifications

DC Output
Specifications

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–32

Installation, Wiring, and Specifications

These micro PLCs feature eight DC inputs and six DC outputs. The following
diagram shows a typical field wiring example. The AC external power connection
uses four terminals at the left as shown.

Equivalent Output CircuitDerating Chart for DC Outputs

0

2

4

6

Points

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Y0 – Y51 A

Ground

Neutral

Line

Power
Input Wiring

Input Point Wiring

DC
Supply

Fuse
or
C.B.

+

–
=)<�>��

Output Point Wiring

Optical
Isolator

COM

OUTPUT

6–27+

Internal module circuitry

L

+V

+

24VDC

VDC

+V

To LED

Equivalent Circuit,
Standard Inputs (X3 – X7)

Optical

Common

Input

+V

Isolator

+V

To LED
+

–

The eight DC input channels use terminals in the middle of
the connector. Inputs are organized into two banks of four.
Each bank has an isolated common terminal, and may be
wired as either sinking or sourcing inputs. The wiring
example above shows all commons connected together,
but separate supplies and common circuits may be used.
The equivalent circuit for standard inputs is shown above,
and the high-speed input circuit is shown to the left.

Input

Equivalent Circuit, High-
Speed Inputs (X0 – X2)

Optical

Common

+V

Isolator

+

–
To LED

To all other output circuits

The six current sinking DC output channels use terminals on the right side of the
connector. All outputs actually share the same electrical common. Note the
requirement for external power on the end (right-most) terminal. The equivalent
output circuit shows one channel of the bank of six.

D0–05DD
I/O Wiring Diagram

Installation, W
iring,

and S
pecifications

2–33
Installation, Wiring, and Specifications

External Power Requirements 95 – 240 VAC, 30 VA maximum,

Communication Port 1
9600 baud (Fixed), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Slave)
MODBUS (Slave)

Communication Port 2
9600 baud (default), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence / print

Programming cable type D2–DSCBL

Operating Temperature 32 to 131° F (0 to 55� C)

Storage Temperature –4 to 158° F (–20 to 70� C)

Relative Humidity 5 to 95% (non-condensing)

Environmental air No corrosive gases permitted

Vibration MIL STD 810C 514.2

Shock MIL STD 810C 516.2

Noise Immunity NEMA ICS3–304

Terminal Type Removable

Wire Gauge One AWG16 or two AWG18, AWG24 minimum

Parameter High–Speed Inputs, X0 – X2 Standard DC Inputs X3 – X7

Min. - Max. Voltage Range 10.8 – 26.4 VDC 10.8 – 26.4 VDC

Operating Voltage Range 12 – 24 VDC 12 – 24 VDC

Peak Voltage 30 VDC (5 kHz maximum frequency) 30 VDC

Minimum Pulse Width 100 �s N/A

ON Voltage Level > 9.0 VDC > 9.0 VDC

OFF Voltage Level < 2.0 VDC < 2.0 VDC

Max. Input Current 6mA @12VDC, 13mA @24VDC 4mA @12VDC, 8.5mA @24VDC

Input Impedance 1.8 k� @ 12 – 24 VDC 2.8 k� @ 12 – 24 VDC

Minimum ON Current >5 mA >4 mA

Maximum OFF Current < 0.5 mA <0.5 mA

OFF to ON Response <100 �S 2 – 8 mS, 4 mS typical

ON to OFF Response < 100 �S 2 – 8 mS, 4 mS typical

Status Indicators Logic side Logic side

Commons 4 channels / common x 2 banks

Parameter Pulse Outputs, Y0 – Y1 Standard Outputs, Y3 – Y5

Min. - Max. Voltage Range 5 – 30 VDC 5 – 30 VDC

Operating Voltage 6 – 27 VDC 6 – 27 VDC

Peak Voltage < 50 VDC (7 kHz max. frequency) < 50 VDC

On Voltage Drop 0.3 VDC @ 1 A 0.3 VDC @ 1 A

Max Current (resistive) 0.5 A / pt., 1A / pt. as standard pt. 1.0 A / point

Max leakage current 15 �A @ 30 VDC 15 �A @ 30 VDC

Max inrush current 2 A for 100 mS 2 A for 100 mS

External DC power required 20 - 28 VDC Max 150mA 20 - 28 VDC Max 150mA

OFF to ON Response < 10 �s < 10 �s

ON to OFF Response < 30 �s < 60 �s

Status Indicators Logic Side Logic Side

Commons 6 channels / common x 1 banks

Fuses None (external recommended)

D0–05DD
General
Specifications

DC Input
Specifications

DC Output
Specifications

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–34

Installation, Wiring, and Specifications

The D0–05AA Micro PLC features eight AC inputs and six AC outputs. The following
diagram shows a typical field wiring example. The AC external power connection
uses four terminals at the left as shown.

Equivalent Output Circuit

Output Point Wiring

Ground

Neutral

Line

Power
Input Wiring

Input Point Wiring

AC
Supply

AC
Supply

Fuse
or
C.B.

Derating Chart for AC Outputs

0

2

4

6

Points

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Y0 – Y50.5 A
Optical

COM

Isolator
OUTPUT

To LED

Internal module circuitry

COM
17–240

L

VAC

Line

+V

Equivalent Input Circuit

Optical

Common

Input

+V

Isolator

To other circuits in bank

+V

To LED

The eight AC input channels use terminals in the middle of the connector. Inputs are
organized into two banks of four. Each bank has an isolated common terminal. The
wiring example above shows all commons connected together, but separate
supplies and common circuits may be used. The equivalent input circuit shows one
channel of a typical bank.
The six output channels use terminals on the right side of the connector. Outputs are
organized into two banks of three triac switches. Each bank has a common terminal.
The wiring example above shows all commons connected together, but separate
supplies and common circuits may be used. The equivalent output circuit shows one
channel of a typical bank.

D0–05AA
I/O Wiring Diagram

Installation, W
iring,

and S
pecifications

2–35
Installation, Wiring, and Specifications

External Power Requirements 95 – 240 VAC, 30 VA maximum,

Communication Port 1
9600 baud (Fixed), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Slave)
MODBUS (Slave)

Communication Port 2
9600 baud (default), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence / print

Programming cable type D2–DSCBL

Operating Temperature 32 to 131° F (0 to 55� C)

Storage Temperature –4 to 158° F (–20 to 70� C)

Relative Humidity 5 to 95% (non-condensing)

Environmental air No corrosive gases permitted

Vibration MIL STD 810C 514.2

Shock MIL STD 810C 516.2

Noise Immunity NEMA ICS3–304

Terminal Type Removable

Wire Gauge One AWG16 or two AWG18, AWG24 minimum

Input Voltage Range (Min. - Max.) 80 – 132 VAC, 47 - 63 Hz

Operating Voltage Range 90 – 120 VAC, 47 - 63 Hz

Input Current 8 mA @100 VAC at 50 Hz
10 mA @100 VAC at 60 Hz

Max. Input Current 12 mA @132 VAC at 50 Hz
15 mA @132 VAC at 60 Hz

Input Impedance 14K� @50 Hz, 12K� @60Hz

ON Current/Voltage > 6 mA @ 75 VAC

OFF Current/Voltage < 2 mA @ 20 VAC

OFF to ON Response < 40 mS

ON to OFF Response < 40 mS

Status Indicators Logic Side

Commons 4 channels / common x 2 banks

Output Voltage Range (Min. - Max.) 15 – 264 VAC, 47 – 63 Hz

Operating Voltage 17 – 240 VAC, 47 – 63 Hz

On Voltage Drop 1.5 VAC (>50mA)
4.0 VAC (<50mA)

Max Current 0.5 A / point, 1.5 A / common

Max leakage current <4 mA @ 264 VAC

Max inrush current 10 A for 10 mS

Minimum Load 10 mA

OFF to ON Response 1 mS

ON to OFF Response 1 mS +1/2 cycle

Status Indicators Logic Side

Commons 3 channels / common x 2 banks

Fuses None (external recommended)

D0–05AA
General
Specifications

AC Input
Specifications

AC Output
Specifications

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–36

Installation, Wiring, and Specifications

The D0–05DA Micro PLC features eight DC inputs and six AC outputs. The following
diagram shows a typical field wiring example. The AC external power connection
uses four terminals at the left as shown.

Output Point Wiring

Ground

Neutral

Line

Power
Input Wiring

Input Point Wiring

AC
Supply

DC
Supply

Fuse
or
C.B.

Derating Chart for AC Outputs

0

2

4

6

Points

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Y0 – Y50.5 A

Equivalent Output Circuit

Optical

COM

Isolator
OUTPUT

To LED

Internal module circuitry

17–240

L

VAC

Line

+V

Equivalent Circuit,
Standard Inputs (X3 – X7)

Optical

Common

Input

+V

Isolator

+V

To LED
+

–

The eight DC input channels use terminals in the middle
of the connector. Inputs are organized into two banks of
four. Each bank has an isolated common terminal, and
may be wired as sinking or sourcing inputs. The wiring
example above shows all commons connected together,
but separate supplies and common circuits may be used.
The equivalent circuit for standard inputs is shown
above, and the high-speed input circuit is shown to the
left.

Input

Equivalent Circuit, High-
Speed Inputs (X0 – X2)

Optical

Common

Isolator

+

–
To LED

To all other output circuits

+V

The six output channels use terminals on the right side of the connector. Outputs are
organized into two banks of three triac switches. Each bank has a common terminal.
The wiring example above shows all commons connected together, but separate
supplies and common circuits may be used. The equivalent output circuit shows one
channel of a typical bank.

D0–05DA
I/O Wiring Diagram

Installation, W
iring,

and S
pecifications

2–37
Installation, Wiring, and Specifications

External Power Requirements 95 – 240 VAC, 30 VA maximum,

Communication Port 1
9600 baud (Fixed), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Slave)
MODBUS (Slave)

Communication Port 2
9600 baud (default), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence/print

Programming cable type D2–DSCBL

Operating Temperature 32 to 131° F (0 to 55� C)

Storage Temperature –4 to 158° F (–20 to 70� C)

Relative Humidity 5 to 95% (non-condensing)

Environmental air No corrosive gases permitted

Vibration MIL STD 810C 514.2

Shock MIL STD 810C 516.2

Noise Immunity NEMA ICS3–304

Terminal Type Removable

Wire Gauge One AWG16 or two AWG18, AWG24 minimum

Parameter High–Speed Inputs, X0 – X2 Standard DC Inputs X3 – X7

Input Voltage Range 10.8 – 26.4 VDC 10.8 – 26.4 VDC

Operating Voltage Range 12 – 24 VDC 12 – 24 VDC

Maximum Voltage 30 VDC (5 kHz maximum frequency) 30 VDC

Minimum Pulse Width 100 �S N/A

ON Voltage Level > 10 VDC > 10 VDC

OFF Voltage Level < 2.0 VDC < 2.0 VDC

Input Impedance 1.8 k� @ 12 – 24 VDC 2.8 k� @ 12 – 24 VDC

Minimum ON Current >5 mA >4 mA

Maximum OFF Current < 0.5 mA <0.5 mA

OFF to ON Response <100 �S 2 – 8 mS, 4 mS typical

ON to OFF Response < 100 �S 2 – 8 mS, 4 mS typical

Status Indicators Logic side Logic side

Commons 4 channels / common x 2 bank

Output Voltage Range (Min. - Max.) 15 – 264 VAC, 47 – 63 Hz

Operating Voltage 17 – 240 VAC, 47 – 63 Hz

On Voltage Drop 1.5 VAC @> 50mA, 4 VAC @< 50mA

Max Current 0.5 A / point, 1.5 A / common

Max leakage current < 4 mA @ 264 VAC, 60Hz

Max inrush current 10 A for 10 mS

Minimum Load 10 mA

OFF to ON Response 1 mS

ON to OFF Response 1 mS +1/2 cycle

Status Indicators Logic Side

Commons 3 channels / common x 2 banks

Fuses None (external recommended)

D0–05DA
General
Specifications

DC Input
Specifications

AC Output
Specifications

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–38

Installation, Wiring, and Specifications

These micro PLCs feature eight DC inputs and six relay contact outputs. The
following diagram shows a typical field wiring example. The DC external power
connection uses three terminals at the left as shown.

Output Point Wiring

Ground
Power

Input Wiring

Input Point Wiring

AC or DC
Supply

DC
Supply

Derating Chart for Relay Outputs

0

2

4

6

Points

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Y0 – Y52 A

Equivalent Output Circuit

COM

OUTPUT

To LED

Internal module circuitry

6–240 VAC

L

6–27 VDC
Line

+V

Equivalent Circuit,
Standard Inputs (X3 – X7)

Optical

Common

Input

+V

Isolator

+V

To LED
+

–

Fuse
+

–
12–24 VDC

+ –

12–24 V

20 W max.
–––––––––

The eight DC input channels use terminals in the middle of
the connector. Inputs are organized into two banks of four.
Each bank has an isolated common terminal, and may be
wired as either sinking or sourcing inputs. The wiring
example above shows all commons connected together,
but separate supplies and common circuits may be used.
The equivalent circuit for standard inputs is shown above,
and the high-speed input circuit is shown to the left.

Input

Equivalent Circuit, High-
Speed Inputs (X0 – X2)

Optical

Common

+V

Isolator

+

–
To LED

To all other output circuits

The six output channels use terminals on the right side of the connector. Outputs are
organized into two banks of three normally-open relay contacts. Each bank has a
common terminal. The wiring example above shows all commons connected
together, but separate supplies and common circuits may be used. The equivalent
output circuit shows one channel of a typical bank. The relay contacts can switch AC
or DC voltages.

D0–05DR–D
I/O Wiring Diagram

Installation, W
iring,

and S
pecifications

2–39
Installation, Wiring, and Specifications

External Power Requirements 12 – 24 VDC, 20 W maximum,

Communication Port 1
9600 baud (Fixed), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Slave)
MODBUS (Slave)

Communication Port 2
9600 baud (default), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence / print

Programming cable type D2–DSCBL

Operating Temperature 32 to 131° F (0 to 55� C)

Storage Temperature –4 to 158° F (–20 to 70� C)

Relative Humidity 5 to 95% (non-condensing)

Environmental air No corrosive gases permitted

Vibration MIL STD 810C 514.2

Shock MIL STD 810C 516.2

Noise Immunity NEMA ICS3–304

Terminal Type Removable

Wire Gauge One AWG16 or two AWG18, AWG24 minimum

Parameter High–Speed Inputs, X0 – X2 Standard DC Inputs X3 – X7

Min. - Max. Voltage Range 10.8 – 26.4 VDC 10.8 – 26.4 VDC

Operating Voltage Range 12 -24 VDC 12 -24 VDC

Peak Voltage 30 VDC (5 kHz maximum frequency) 30 VDC

Minimum Pulse Width 100 �s N/A

ON Voltage Level > 10 VDC > 10 VDC

OFF Voltage Level < 2.0 VDC < 2.0 VDC

Input Impedance 1.8 k� @ 12 – 24 VDC 2.8 k� @ 12 – 24 VDC

Max. Input Current 6mA @12VDC
13mA @24VDC

4mA @12VDC
8.5mA @24VDC

Minimum ON Current >5 mA >4 mA

Maximum OFF Current < 0.5 mA <0.5 mA

OFF to ON Response <100 �s 2 – 8 mS, 4 mS typical

ON to OFF Response < 100 �s 2 – 8 mS, 4 mS typical

Status Indicators Logic side Logic side

Commons 4 channels / common x 2 bank

Output Voltage Range (Min. - Max.) 5 -264 VAC (47 -63 Hz), 5 - 30 VDC

Operating Voltage 6 -240 VAC (47 -63 Hz), 6 - 27 VDC

Output Current 2A / point
6A / common

Maximum Voltage 264 VAC, 30 VDC

Max leakage current 0.1 mA @264 VAC

Smallest Recommended Load 5 mA

OFF to ON Response < 15 mS

ON to OFF Response < 10 mS

Status Indicators Logic Side

Commons 3 channels / common x 2 banks

Fuses None (external recommended)

D0–05DR–D
General
Specifications

DC Input
Specifications

Relay Output
Specifications

In
st

al
la

tio
n,

 W
iri

ng
,

an
d

S
pe

ci
fic

at
io

ns
2–40

Installation, Wiring, and Specifications

These micro PLCs feature eight DC inputs and six DC outputs. The following
diagram shows a typical field wiring example. The DC external power connection
uses four terminals at the left as shown.

Equivalent Output CircuitDerating Chart for DC Outputs

0

2

4

6

Points

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Y0 – Y51 A

Ground
Power

Input Wiring

Input Point Wiring

DC
Supply

Fuse

+

–
=)<�>��

Output Point Wiring

Optical
Isolator

COM

OUTPUT

6–27+

Internal module circuitry

L

+V

+

24VDC

VDC

+V

To LED

Equivalent Circuit,
Standard Inputs (X3 – X7)

Optical

Common

Input

+V

Isolator

+V

To LED
+

–

12–24 VDC
+

–

12–24 V

20 W max.

–+

–––––––––

The eight DC input channels use terminals in the middle of
the connector. Inputs are organized into two banks of four.
Each bank has an isolated common terminal, and may be
wired as either sinking or sourcing inputs. The wiring
example above shows all commons connected together,
but separate supplies and common circuits may be used.
The equivalent circuit for standard inputs is shown above,
and the high-speed input circuit is shown to the left.

Input

Equivalent Circuit, High-
Speed Inputs (X0 – X2)

Optical

Common

+V

Isolator

+

–
To LED

To all other output circuits

The six current sinking DC output channels use terminals on the right side of the
connector. All outputs actually share the same electrical common. Note the
requirement for external power on the end (right-most) terminal. The equivalent
output circuit shows one channel of the bank of six.

D0–05DD–D
I/O Wiring Diagram

Installation, W
iring,

and S
pecifications

2–41
Installation, Wiring, and Specifications

External Power Requirements 12 – 24 VDC, 20 W maximum,

Communication Port 1
9600 baud (Fixed), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Slave)
MODBUS (Slave)

Communication Port 2
9600 baud (default), 8 data bits, 1 stop bit,
odd parity

K–Sequence (Slave)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence / print

Programming cable type D2–DSCBL

Operating Temperature 32 to 131° F (0 to 55� C)

Storage Temperature –4 to 158° F (–20 to 70� C)

Relative Humidity 5 to 95% (non-condensing)

Environmental air No corrosive gases permitted

Vibration MIL STD 810C 514.2

Shock MIL STD 810C 516.2

Noise Immunity NEMA ICS3–304

Terminal Type Removable

Wire Gauge One AWG16 or two AWG18, AWG24 minimum

Parameter High–Speed Inputs, X0 – X2 Standard DC Inputs X3 – X7

Min. - Max. Voltage Range 10.8 – 26.4 VDC 10.8 – 26.4 VDC

Operating Voltage Range 12 – 24 VDC 12 – 24 VDC

Peak Voltage 30 VDC (5 kHz maximum frequency) 30 VDC

Minimum Pulse Width 100 �s N/A

ON Voltage Level > 9.0 VDC > 9.0 VDC

OFF Voltage Level < 2.0 VDC < 2.0 VDC

Max. Input Current 6mA @12VDC, 13mA @24VDC 4mA @12VDC, 8.5mA @24VDC

Input Impedance 1.8 k� @ 12 – 24 VDC 2.8 k� @ 12 – 24 VDC

Minimum ON Current >5 mA >4 mA

Maximum OFF Current < 0.5 mA <0.5 mA

OFF to ON Response <100 �S 2 – 8 mS, 4 mS typical

ON to OFF Response < 100 �S 2 – 8 mS, 4 mS typical

Status Indicators Logic side Logic side

Commons 4 channels / common x 2 banks

Parameter Pulse Outputs, Y0 – Y1 Standard Outputs, Y3 – Y5

Min. - Max. Voltage Range 5 – 30 VDC 5 – 30 VDC

Operating Voltage 6 – 27 VDC 6 – 27 VDC

Peak Voltage < 50 VDC (7 kHz max. frequency) < 50 VDC

On Voltage Drop 0.3 VDC @ 1 A 0.3 VDC @ 1 A

Max Current (resistive) 0.5 A / pt., 1A / pt. as standard pt. 1.0 A / point

Max leakage current 15 �A @ 30 VDC 15 �A @ 30 VDC

Max inrush current 2 A for 100 mS 2 A for 100 mS

External DC power required 20 - 28 VDC Max 150mA 20 - 28 VDC Max 150mA

OFF to ON Response < 10 �s < 10 �s

ON to OFF Response < 30 �s < 60 �s

Status Indicators Logic Side Logic Side

Commons 6 channels / common x 1 banks

Fuses None (external recommended)

D0–05DD–D
General
Specifications

DC Input
Specifications

DC Output
Specifications

In
st

al
la

tio
n,

 W
iri

ng

In
st

al
la

tio
n

an
d

S
af

et
y

G
ui

de
lin

es
an

d
S

pe
ci

fic
at

io
ns

2–42
Installation, Wiring, and Specifications

D0–10ND3 DC Input
Inputs per module 10 (sink/source)

Input voltage range 10.8–26.4 VDC

Operating voltage range 12–24 VDC

Peak voltage 30.0 VDC

Input current Typical:
4.0 mA @ 12 VDC4.0 mA @ 12 VDC
8.5 mA @ 24 VDC

Maximum input current 11 mA @ 26.4 VDC

Input impedance 2.8k� @ 12–24 VDC

ON voltage level > 10.0 VDC

OFF voltage level < 2.0 VDC

Minimum ON current 3.5 mA

Maximum OFF current 0.5 mA

OFF to ON response 2–8 ms, typical 4 ms

ON to OFF response 2–8 ms, typical 4 ms

Status indicators Module activity:
one green LED

Commons per module 2 non–isolated

Fuse N/A

Base power required (5V) Typical 35 mA (all pts. ON)

Optical
COM Isolator

Configuration shown is current sinking

INPUT

12–24VDC

V+

To LED

Internal module circuitry

COM

+

Derating Chart

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Equivalent circuit

Note: The DL05 must have firmware version V4.10 (or later) for this module to function properly.

Installation and
S

afety G
uidelines

Installation, W
iring,

and S
pecifications

2–43
Installation, Wiring, and Specifications

D0–16ND3 DC Input
Inputs per module 16 (sink/source)

Input voltage range 20–28 VDC

Operating voltage range 24 VDC

Peak voltage 30.0 VDC

Input current Typical:
4.0 mA @ 24 VDC

Maximum input current 6 mA @ 28 VDC

Input impedance 4.7k� @ 24 VDC

ON voltage level > 19.0 VDC

OFF voltage level < 7.0 VDC

Minimum ON current 3.5 mA

Maximum OFF current 1.5 mA

OFF to ON response 2–8 ms, typical 4 ms

ON to OFF response 2–8 ms, typical 4 ms

Status indicators Module activity:
one green LED

Commons per module 4 non–isolated

Fuse N/A

Base power required Typical 35 mA (all pts. ON)

Equivalent input circuit

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Derating Chart
Wiring for ZL–CM056

Use Ziplink ZL–CBL056 cable and ZL–CM056 connector
module or build your own cables using 24–pin Molex Micro
Fit 3.0 receptacle, part number 43025, or compatible.

Configuration shown is
for current sinking

Configuration shown is for current sinking

Note: The DL05 must have firmware version V4.10

(or later) for this module to function properly.

In
st

al
la

tio
n,

 W
iri

ng

In
st

al
la

tio
n

an
d

S
af

et
y

G
ui

de
lin

es
an

d
S

pe
ci

fic
at

io
ns

2–44
Installation, Wiring, and Specifications

D0–10TD1 DC Output
Outputs per module 10 (sinking)

Operating voltage range 6–27 VDC

Output voltage range 5–30 VDC

Peak voltage 50.0 VDC

Maximum output current 0.3 A/point, 1.5 A/common

Minimum output current 0.5 mA

Maximum leakage current 15 �A @ 30.0 VDC

ON voltage drop 0.5 VDC @ 0.3 A

Maximum inrush current 1 A for 10 msMaximum inrush current 1 A for 10 ms

OFF to ON response < 10 �s

ON to OFF response < 60 �s

Status indicators Module activity:
one green LED

Commons per module 2 non–isolated
(5 points/common)

Fuse N/A

External DC power required 20–28 VDC max.
200 mA (all pts. on)

Base power required (5V) Max. 150 mA (all pts. ON)

Derating Chart

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Equivalent circuit

Note: The DL05 must have firmware version V4.10 (or later) for this module to function properly.

Installation and
S

afety G
uidelines

Installation, W
iring,

and S
pecifications

2–45
Installation, Wiring, and Specifications

D0–16TD1 DC Output
Outputs per module 16 (sinking)

Operating voltage range 6–27 VDC

Output voltage range 5–30 VDC

Peak Voltage 50.0 VDC

Maximum output current 0.1 A/point, 0.8 A/common

Minimum output current 0.5 mA

Maximum leakage current 15 �A @ 30.0 VDC

On voltage drop 0.5 VDC @ 0.1 A

Maximum inrush current 1 A for 10 ms

OFF to ON response < 0.5 ms

ON to OFF response < 0.5 ms

Status indicators Module activity:
one green LED

Commons per module 2 isolated (8 points/common)

Fuse N/A

External DC power required 20–28 VDC max. 70 mA
(all pts. on)

Base power required (5V) Max. 200 mA (all pts. ON)

Equivalent input circuit

Derating Chart
Wiring for ZL–CM056

Use Ziplink ZL–CBL056 cable and ZL–CM056 connector
module or build your own cables using 24–pin Molex Micro
Fit 3.0 receptacle, part number 43025, or compatible.

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

6–27
VDC6–27 VDC

24 VDC

Note: The DL05 must have firmware version V4.10

(or later) for this module to function properly.

In
st

al
la

tio
n,

 W
iri

ng

In
st

al
la

tio
n

an
d

S
af

et
y

G
ui

de
lin

es
an

d
S

pe
ci

fic
at

io
ns

2–46
Installation, Wiring, and Specifications

D0–10TD2 DC Output
Outputs per module 10 (sourcing)

Operating voltage range 12–24 VDC

Output voltage range 10.8–26.4 VDC

Peak voltage 50.0 VDC

Maximum output current 0.3 A/point, 1.5 A/common

Minimum output current 0.5 mA

Maximum leakage current 1.5 �A @ 30.0 VDC

ON voltage drop 1.0 VDC @ 0.3 A

Maximum inrush current 1 A for 10 ms

OFF to ON response < 10 �s

ON to OFF response < 60 �s

Status indicators Module activity:
one green LED

Commons per module 2 non–isolated
(5 points/common)

Fuse N/A

Base power required (5V) Max. 150 mA (all pts. ON)

Equivalent circuit

Derating Chart

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Note: The DL05 must have firmware version V4.10 (or later) for this module to function properly.

Installation and
S

afety G
uidelines

Installation, W
iring,

and S
pecifications

2–47
Installation, Wiring, and Specifications

D0–16TD2 DC Output
Outputs per module 16 (sourcing)

Operating voltage range 12–24 VDC

Output voltage range 10.8–26.4 VDC

Peak Voltage 50.0 VDC

Maximum output current 0.1 A/point, 0.8 A/common

Minimum output current 0.5 mA

Maximum leakage current 1.5 �A @ 26.4 VDC

ON voltage drop 1.0 VDC @ 0.3 A

Maximum inrush current 1 A for 10 ms

OFF to ON response < 0.5 ms

ON to OFF response < 0.5 ms

Status indicators Module activity:
one green LED

Commons per module 2 non–isolated
(8 points/common)

Fuse N/A

Base power required (5V) Max. 200 mA (all pts. ON)

Equivalent input circuit

Derating Chart
Wiring for ZL–CM056

Use Ziplink ZL–CBL056 cable and ZL–CM056 connector
module or build your own cables using 24–pin Molex Micro
Fit 3.0 receptacle, part number 43025, or compatible.

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Note: The DL05 must have firmware version V4.10

(or later) for this module to function properly.

In
st

al
la

tio
n,

 W
iri

ng

In
st

al
la

tio
n

an
d

S
af

et
y

G
ui

de
lin

es
an

d
S

pe
ci

fic
at

io
ns

2–48
Installation, Wiring, and Specifications

D0–07CDR DC Input and Output
Input Specification

Inputs per module 4 (sink/source)

Operating voltage range 12–24 VDC

Input voltage range 10.8–26.4 VDC

Peak voltage 30.0 VDC

Maximum input current 11 mA @ 26.4 VDC

Input current Typical: 4 mA @ 12 VDC
8.5 mA @ 24 VDC

Input impedance 2.8k� @ 12–24 VDC

ON voltage level > 10.0 VDC

OFF voltage level < 2.0 VDC

Minimum ON current 3.5 mA

Maximum OFF current 0.5 mA

ON to OFF response 2–8 ms, typical 4 ms

OFF to ON response 2–8 ms, typical 4 ms

Commons 1 (4 points / common)

Output Specification

Outputs per module 3

Operating voltage range 6–27 VDC / 6–240 VAC

Output type Relay, form A, SPST

Peak voltage 30.0 VDC/264 VAC

Maximum current (resistive) 1 A/point, 4 A/common

Minimum load current 5 mA @ 5 VDC

Maximum leakage current 0.1 mA @ 264 VAC

ON voltage drop N/A

Maximum inrush current Output: 3 A for 10 ms
Common: 10 A for 10 ms

OFF to ON response < 15 ms

ON to OFF response < 10 ms

Status indicators Module activity:
one green LED

Commons 1 (3 points/common)

Fuse N/A

Base power required (5 V) Max. 200 mA (all points ON)

Input Derating Chart

Equivalent input circuit

Equivalent output circuit

Output Derating Chart

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Configuration shown is for current sinking

Note: The DL05 must have firmware version V4.10 (or later) for this module to function properly.

Installation and
S

afety G
uidelines

Installation, W
iring,

and S
pecifications

2–49
Installation, Wiring, and Specifications

D0–08TR Relay Output
Outputs per module 8

Operating voltage range 6–27 VDC/6–240 VAC

Output type Relay, form A, SPST

Peak voltage 30.0 VDC/264 VAC

Maximum current (resistive) 1 A/point, 4 A/common

Minimum load current 0.5 mA

Maximum leakage current 0.1 mA @ 264 VAC

ON voltage drop N/AON voltage drop N/A

Maximum inrush current Output: 3 A for 10 ms
Common: 10 A for 10 ms

OFF to ON response < 15 ms

ON to OFF response < 10 ms

Status indicators Module activity:
one green LED

Commons per module 2 isolated
(4 points/common)

Fuse N/AFuse N/A

Base power required (5 V) Maximum 280 mA (all pts. ON)

Equivalent circuit

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Derating Chart

Note: The DL05 must have firmware version V4.10 (or later) for this module to function properly.

In
st

al
la

tio
n,

 W
iri

ng

In
st

al
la

tio
n

an
d

S
af

et
y

G
ui

de
lin

es
an

d
S

pe
ci

fic
at

io
ns

2–50
Installation, Wiring, and Specifications

D0–08CDD1 DC Input and Output
Input Specification

Inputs per module 4 (sink/source)

Operating voltage range 10.8–26.4 VDC

Input voltage range 12–24 VDC

Peak voltage 30.0 VDC

Maximum input current 11 mA @ 26.4 VDC

Input current Typical: 4 mA @ 12 VDC
8.5 mA @ 24 VDC

Input impedance 2.8k� @ 12–24 VDC

ON voltage level > 10.0 VDC

OFF voltage level < 2.0 VDC

Minimum ON current 3.5 mA

Maximum OFF current 0.5 mA

ON to OFF response 2–8 ms, typical 4 ms

OFF to ON response 2–8 ms, typical 4 ms

Commons 2 non–isolated (4 pts./common)

Output Specification

Outputs per module 4 (sinking)

Operating voltage range 6–27 VDC

Output voltage range 5–30 VDC

Peak voltage 50.0 VDC

Maximum output current 0.3 A/point, 1.2 A/common

Minimum output current 0.5 mA

Maximum leakage current 1.5 �A @ 30.0 VDC

ON voltage drop 0.5 VDC @ 0.3 A

Maximum inrush current 1 A for 10 ms

OFF to ON response < 10 �s

ON to OFF response < 60 �s

Status indicators Module activity:
one green LED

Commons 2 non–isolated (4 pts./common)

Fuse N/A

Base power required (5 V) Max. 200 mA (all points ON)

External DC power required
(24V)

20–28 VDC, maximum 80 mA
(all pts. ON)

Output Derating Chart
Input Derating Chart

Equivalent output circuit

Equivalent input circuit

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

� 	� ��
� �� �� ��

Ambient Temperature (°C/°F)

� �� � � 	�� 	�� 	
	

�°
�°

Configuration shown is for current sinking

Note: The DL05 must have firmware version V4.10 (or later) for this module to function properly.

Installation and
S

afety G
uidelines

Installation, W
iring,

and S
pecifications

2–51
Installation, Wiring, and Specifications

I/O Addressing

Each option module has a set number of I/O points. This holds true for both the
discrete modules and the analog modules. The following chart shows the number of
I/O points per module when used in the DL05 PLC.

DC Input Modules I/O Points Slot 1 I/O Address

D0–10ND3 10 Input X100 – X107 and X110 – X111

D0–16ND 16 Input X100 – X107 and X110 – X117

DC Output Modules I/O Points Slot 1 I/O Address

D0–10TD1 10 Output Y100 – Y107 and Y110 – Y111

D0–16TD1 16 Output Y100 – Y107 and Y110 – Y117

D0–10TD2 10 Output Y100 – Y107 and Y110 – Y111

D0–16TD2 16 Output Y100 – Y107 and Y110 – Y117

Relay Output Modules I/O Points Slot 1 I/O Address

D0–08TR 8 Output Y100 – X107

Combination Modules I/O Points Slot 1 I/O Address

D0–07CDR 4 Input, 3 Output X100 – X103 and Y100 – Y102

D0–08CDD1 4 Input, 4 Output X100 – X103 and Y100 – Y103

Module I/O Points
and Addressing

��
High-Speed Input and
Pulse Output Features

����������	
���������

�������������

���������������������
�	���������

�����������������
����������

�������������	�	����������

����������� �!������
��

�������"���������
���������
�

�������#��� �!����	������
��

�������$���%�!�������
���

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–2

High-speed Input and Pulse Output Features

Introduction

Many machine control applications
require various types of simple
high-speed monitoring and control. These
applications usually involve some type of
motion control, or high-speed interrupts
for time-critical events. The DL05 Micro
PLC solves this traditionally expensive
problem with built-in CPU enhancements.
Let’s take a closer look at the available
high-speed I/O features.

The available high-speed input features are:
� High Speed Counter (5 kHz max.) with up to 24 counter presets and

built-in interrupt subroutine, counts up only, with reset
� Quadrature encoder inputs to measure counts and clockwise or counter

clockwise direction (5 kHz max.), counts up or down, with reset
� High-speed interrupt input for immediate response to critical or

time-sensitive tasks
� Pulse catch feature to monitor one input point, having a pulse width as

small as 100�S (0.1ms)
� Programmable discrete filtering (both on and off delay up to 99ms) to

ensure input signal integrity (this is the default mode for inputs X0–X2)
The available pulse output features are:

� Single-axis programmable pulse output (7 kHz max.) with three profile
types, including trapezoidal moves, registration, and velocity control

IMPORTANT: Please note the following restrictions on availability of features:
� High-speed input options are available only on DL05s with DC inputs.
� Pulse output options are available only on DL05s with DC outputs.
� Only one HSIO feature may be in use at one time. You cannot use a

high–speed input feature and the pulse output at the same time.

DL05
Part Number

Discrete
Input Type

Discrete
Output Type

High-Speed
Input

Pulse
Output

D0–05AR AC Relay No No

D0–05DR DC Relay Yes No

D0–05AD AC DC No Yes

D0–05DD DC DC Yes Yes

D0–05AA AC AC No No

D0–05DA DC AC Yes No

D0–05DR–D DC Relay Yes No

D0–05DD–D DC DC Yes Yes

Built-in Motion
Control Solution

Availability of
HSIO Features

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–3

High-Speed Input and Pulse Output Features

The internal CPU’s main task is to execute the ladder program and read/write all I/O
points during each scan. In order to service high-speed I/O events, the DL05
includes a special circuit which is dedicated to a portion of the I/O points. Refer to the
DL05 block diagram in the figure below.

���
���������

��
���������

� &

'�(���������
���

$�(����������
���

PLC
DL05

High-Speed
I/O Circuit

)��*�)�

+�,�+�

)�*�)-

+��*�+#

The high-speed I/O circuit (HSIO) is dedicated to the first three inputs (X0 – X2) and
the first two outputs (Y0 – Y1). We might think of this as a “CPU helper”. In the default
operation (called “Mode 60”) the HSIO circuit just passes through the I/O signals to
or from the CPU, so that all eight inputs behave equally and all six outputs behave
equally. When the CPU is configured in any other HSIO Mode, the HSIO circuit
imposes a specialized function on the portion of inputs and outputs shown. The
HSIO circuit operates independently of the CPU program scan. This provides
accurate measurement and capturing of high-speed I/O activity while the CPU is
busy with ladder program execution.

After choosing the appropriate HSIO mode for your application, you’ll need to refer to
the section in this chapter for that specific mode. Each section includes wiring
diagram(s) to help you connect the High-Speed I/O points correctly to field devices.
An example of the quadrature counter mode diagram is shown below.

Encoder Input Wiring

+

–
12 – 24 VDCPhase A

Phase B

Encoder

Signal Common

Dedicated High-
Speed I/O Circuit

Wiring Diagrams
for Each HSIO
Mode

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–4

High-speed Input and Pulse Output Features

Choosing the HSIO Operating Mode

The High-Speed I/O circuit operates in one of 6 basic modes as listed in the table
below. The number in the left column is the mode number (later, we’ll use these
numbers to configure the PLC). Choose one of the following modes according to the
primary function you want from the dedicated High-Speed I/O circuit. You can simply
use all eight inputs and six outputs as regular I/O points with Mode 60.

Mode
Number

Mode Name Mode Features

10 High-Speed
Counter

5 kHz counter with 24 presets and reset input,
counts up only, causes interrupt on preset

20 Quadrature
Counter

Channel A / Channel B 5 kHz quadrature input,
counts up and down

30 Pulse Output Stepper control – pulse and direction signals,
programmable motion profile (7kHz max.)

40 High-Speed
Interrupt

Generates an interrupt based on input transition
or time

50 Pulse Catch Captures narrow pulses on a selected input

60 Discrete/Filtered
Input

Rejects narrow pulses on selected inputs

In choosing one of the six high-speed I/O modes, the I/O points listed in the table
below operate only as the function listed. If an input point is not specifically used to
support a particular mode, it usually operates as a filtered input by default. Similarly,
output points operate normally unless Pulse Output mode is selected.

Physical I/O Point Usage

DC Input Points DC Output Points

Mode X0 X1 X2 Y0 Y1

High-Speed
Counter

Counter clock Filtered Input Filtered Input
or Reset Cnt

Regular Output Regular Output

Quadrature
Counter

Phase A Input Phase B Input Filtered Input
or Reset Cnt

Regular Output Regular Output

High-Speed
Interrupt

Interrupt Input Filtered Input Filtered Input Regular Output Regular Output

Pulse Catch Pulse Input Filtered Input Filtered Input Regular Output Regular Output

Pulse Output Filtered Input Filtered Input Filtered Input, Pulse
or

CW Pulse

Direction
or

CCW Pulse

Filtered Input Filtered Input Filtered Input Filtered Input Regular Output Regular Output

Mode 60 (Filtered Inputs) is the default mode. The DL05 is initialized to this mode at
the factory, and any time you reset V-memory scratchpad. In the default condition,
X0–X2 are filtered inputs (10 mS delay) and Y0–Y1 are standard outputs.

Understanding the
Six Modes

Default Mode

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–5

High-Speed Input and Pulse Output Features

If you have chosen a mode suited to the high-speed I/O needs of your application,
we’re ready to proceed to configure the PLC to operate accordingly. In the block
diagram below, notice the V-memory detail in the expanded CPU block. V-memory
location V7633 determines the functional mode of the high-speed I/O circuit. This is
the most important V-memory configuration value for HSIO functions!

���
���������

��
���������

� &

PLC
DL05

������
���
�.��������

)��*�)�

+�,�+�

)�*�)-

+��*�+#

/�0�0�1

V7633 xxxx
�������!���

�.���	�	

The contents of V7633 is a 16-bit word, to be entered in binary–coded decimal. The
figure below defines what each 4-bit BCD digit of the word represents.

0�# �" �� ��

Memory Location V7633
�� �� 123456789Bits

000 00010100

HSIO Mode Setup (BCD)

0 0 0 0

00 = Not Used
10 = High-Speed Counting Mode
20 = Quadrature Counting Mode
30 = Pulse Output Train

0

40 = High-Speed Interrupts
50 = Pulse Catching
60 = Discrete Filtered Inputs (default)

5

0

00

Bits 8 - 15 are not used
in V7633.

Bits 0 – 7 define the mode number 00, 10.. 60 previously referenced in this chapter.
The example data “2050” shown selects Mode 50 – Pulse Catch (BCD = 50). The
DL05 PLC ignores bits 8 - 15 in V7633.

In addition to configuring V7633 for the
HSIO mode, you’ll need to program the
next three locations in certain modes
according to the desired function of input
points X0 – X2. Other memory locations
may require configuring, depending on the
HSIO mode (see the corresponding
section for particular HSIO modes).

/�0�0�1

V7633 xxxxMode
V7634 xxxxX0
V7635 xxxxX1
V7636 xxxxX2

Configuring the
HSIO Mode

Configuring
Inputs X0 – X2

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–6

High-speed Input and Pulse Output Features

Mode 10: High-Speed Counter

The HSIO circuit contains one high-speed counter. A single pulse train from an
external source (X0) clocks the counter on each signal leading edge. The counter
counts only upwards, from 0 to 99999999. The counter compares the current count
with up to 24 preset values, which you define. The purpose of the presets is to quickly
cause an action upon arrival at specific counts, making it ideal for such applications
as cut-to-length. It uses counter registers CT76 and CT77 in the CPU.
Refer to the block diagram below. When the lower byte of HSIO Mode register V7633
contains a BCD “10”, the high-speed up counter in the HSIO circuit is enabled. X0
automatically becomes the “clock” input for the high-speed counter, incrementing it
upon each off-to-on transition. The external reset input on X2 is the default
configuration for Mode 10. Input X1 is the filtered input, available to the ladder
program.

���
���������

��
���������

� &

PLC
DL05

)�

+�,�+�

)�*�)-

+��*�+#

/�0�0�1

V7633 0010
�������!���

�.���	�	
HSIO

��&2�34

�56 4����

)�)�

%�5�34

Instead of using X2 as a dedicated reset input, you can configure X2 as a normal
filtered input. In this way, the counter reset must be generated in ladder logic.

���
���������

��
���������

� &

PLC
DL05

)�

+�,�+�

)�*�)-

+��*�+#

/�0�0�1

V7633 0010
�������!���

�.���	�	HSIO

��&2�34

�56 4����

)�,�)�

%�5�34

Next, we will discuss how to program the high-speed counter and its presets.

Purpose

Functional Block
Diagram

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–7

High-Speed Input and Pulse Output Features

A general wiring diagram for counters/encoders to the DL05 in HSIO Mode 10 is
shown below. Many types of pulse-generating devices may be used, such as
proximity switches, single-channel encoders, magnetic or optical sensors, etc.
Devices with sinking outputs (NPN open collector) are probably the best choice for
interfacing. If the counter sources to the inputs, it must output 12 to 24 VDC. Note
that devices with 5V sourcing outputs will not work with DL05 inputs.

Counter Input Wiring
Signal Common

Signal

+–

����"�/(����

!1

The DL05’s DC inputs are flexible in that they detect current flow in either direction,
so they can be wired to a counter with either sourcing or sinking outputs. In the
following circuit, a counter has open-collector NPN transistor outputs. It sinks
current from the PLC input point, which sources current. The power supply can be
the FA–24PS or another supply (+12VDC or +24VDC), as long as the input
specifications are met.

Counter Output

+–

X0 Input

���
��

7����

��
��

��00��

����"�/(����

!1

8���9���: 8�������:

In the next circuit, an encoder has open-emitter PNP transistor outputs. It sources
current to the PLC input point, which sinks the current back to ground. Since the
encoder sources current, no additional power supply is required. However, note that
the encoder output must be 12 to 24 volts (5V encoder outputs will not work).

X0 Input

���
���8�������:

7����

��
��

��00��

;�������"/(�

8���9���:

Counter Output

Wiring Diagram

Interfacing to
Counter Outputs

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–8

High-speed Input and Pulse Output Features

Recall that V7633 is the HSIO Mode Select register. Refer to the diagram below. Use
BCD 10 in the lower byte of V7633 to select the High-Speed Counter Mode. The
DL05 does not use bits 8 - 15 in V7633.

0�# �" �� ��

Memory Location V7633
�� �� 123456789Bits

000 00010000

HSIO Mode Setup (BCD)

0 0 0 0

10 = High-Speed Counter

0 0 01

0

Bits 8 - 15 are not used
in V7633.

Choose the most convenient method of programming V7633 from the following:
� Include load and out instructions in your ladder program
� DirectSOFT’s memory editor or Data View
� Use the Handheld Programmer D2–HPP

We recommend using the first method above so that the HSIO setup becomes an
integral part of your application program. An example program later in this section
shows how to do this.
The goal of counting is to do a special action when the count reaches a preset value.
Refer to the figure below. The counter features 24 presets, which you can program.
A preset is a number you derive and store so that the counter will constantly compare
the current count with the preset. When the two are equal, a special relay contact is
energized and program execution jumps to the interrupt routine. We recommend
using the special relay(s) in the interrupt service routine to cause any immediate
action you desire. After the interrupt service routine is complete, the CPU returns to
the ladder program, resuming program execution from the point of interruption. The
compare function is ready for the next preset event.

)�,���������!��9

CPU Scan

������

4����

)�,��<���	!�����

�����

/	!��

���������	��
�����
V2320 0000
V2322 0000
V2324 0000

V2326 0000

1000
2000
2500

3175

V2376 0921 0000

��
��
&
�	��

5	���
 ��	0
3<�������

���
��
&
�	��

(���
������=
 ����>

SPxxx

�2�

����
�����
�
4������
 ��	0

�4�

=

�����
����������

Setup for Mode 10

Presets and
Special Relays

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–9

High-Speed Input and Pulse Output Features

V7630 is a pointer location which points to
the beginning of the Preset Data Table.
The default starting location for the Preset
Data Table is V2320 (default after
initializing scratchpad V-memory).
However, you may change this by
programming a different value in V7630.
Use the LDA and OUT instructions as
shown:

 �����(�	

V2000 0000
V2002 0000
V2004 0000
V2006 0000

1000
2000
2500
3175

V2076 0000 0000

V7630 2000

 ������	?!�� �����

LDA
O2000

Load the octal address,
convert to hex, leave
result in accumulator.

OUT
V7630

Output this address to
V7630, the location of the
pointer to the Preset data.

When using fewer than 24 preset
registers, the HSIO looks for “0000 FFFF”
(use LDD Kffff) in the next preset location
to indicate the last preset has been
reached. The example to the right uses
four presets. The 0000 FFFF in
V2331-V2330 indicates the previous
preset was the last.

 �����(�	

V2320 0000
V2322 0000
V2324 0000
V2326 0000

1000
2000
2500
3175

V2330 0000 FFFF

NOTE: Each successive preset must be greater than the previous preset value. If a
preset value is less than a lower-numbered preset value, the CPU cannot compare
for that value, since the counter can only count upwards.

The following table lists all 24 preset register default locations. Each occupies two
16-bit V-memory registers. The corresponding special relay contact number is in the
next column. We might also call these “equal” relay contacts, because they are true
(closed) when the present high-speed counter value is equal to the preset value.
Each contact remains closed until the counter value equals the next preset value.

Preset Preset
V-memory Regis-

ter

Special
Relay

Number

Preset Preset
V-memory Regis-

ter

Special
Relay

Number

1 V2321 / V2320 SP540 13 V2351 / V2350 SP554

2 V2323 / V2322 SP541 14 V2353 / V2352 SP555

3 V2325 / V2324 SP542 15 V2355 / V2354 SP556

4 V2327 / V2326 SP543 16 V2357 / V2356 SP557

5 V2331 / V2330 SP544 17 V2361 / V2360 SP560

6 V2333 / V2332 SP545 18 V2363 / V2362 SP561

7 V2335 / V2334 SP546 19 V2365 / V2364 SP562

8 V2337 / V2336 SP547 20 V2367 / V2366 SP563

9 V2341 / V2340 SP550 21 V2371 / V2370 SP564

10 V2343 / V2342 SP551 22 V2373 / V2372 SP565

11 V2345 / V2344 SP552 23 V2375 / V2374 SP566

12 V2347 / V2346 SP553 24 V2377 / V2376 SP567

Preset Data
Starting Location

Using Fewer than
24 Presets

Equal Relay
Numbers

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–10

High-speed Input and Pulse Output Features

The preset values occupy two data words each. They can range in value from 0000
0000 to 9999 9999, just like the high-speed counter value. All 24 values are absolute
values, meaning that each one is an offset from the counter zero value.
The preset values must be individually derived for each application. In the industrial
lathe diagram below, the PLC monitors the position of the lead screw by counting
pulses. At points A, B, and C along the linear travel, the cutter head pushes into the
work material and cuts a groove.

 5�
�������	!�5	���

��	�

@ A �

������
(�B���

)�,���������!��9

����

The timing diagram below shows the duration of each equal relay contact closure.
Each contact remains on until the next one closes. All go off when the counter resets.

Equal Relays

SP540

SP541

SP542

A B C

NOTE: Each successive preset must be two numbers greater than the previous
preset value. In the industrial lathe example, B>A+1 and C>B+1.

The configurable discrete input options for High-Speed Counter Mode are listed in
the table below. Input X0 is dedicated for the counter clock input. Input X1 can be a
normal or filtered input. The section on Mode 60 operation at the end of this chapter
describes programming the filter time constants. Input X2 can be configured as the
counter reset, with or without the interrupt option. The interrupt option allows the
reset input (X2) to cause an interrupt like presets do, but there is no SP relay contact
closure (instead, X2 will be on during the interrupt routine, for 1 scan). Or finally, X2
may be left simply as a filtered input.

Calculating Your
Preset Values

X Input
Configuration

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–11

High-Speed Input and Pulse Output Features

Input Configuration
Register

Function Hex Code
Required

X0 V7634 Counter Clock 0001

X1 V7635 Filtered Input xx06, xx = filter time
0 - 99 ms (BCD)

X2 V7636 Counter Reset (no interrupt) 0007* (default)
0207*

Counter Reset (with interrupt) 0107*
0307*

FIltered Input xx06, xx = filter time
0 - 99 ms (BCD)

*With the counter reset, you have the option of a normal reset or a faster reset.
However, the fast reset does not recognize changed preset values during program
execution. When ‘0007’ or ‘0107’ are set in V7636 and preset values are changed
during program execution, the DL05 recognizes the changed preset values at the
time of the reset. When ‘0207’ or ‘0307’ are set in V7636 the CPU does not check for
changed preset values, so the DL05 has a faster reset time.

You may recall that the counter instruction is a standard instruction in the DL05
instruction set. Refer to the figure below. The mnemonic for the counter is UDC
(up-down counter).The DL05 can have up to 128 counters, labeled CT0 through
CT177. The high speed counter in the HSIO circuit is accessed in ladder logic by
using UDC CT76. It uses counter registers CT76 and CT77 exclusively when the
HSIO mode 10 is active (otherwise, CT76 and CT77 are available for standard
counter use). The HSIO counter needs two registers because it is a double-word
counter. It has three inputs as shown. The first input (Enable) allows counting when
active. The middle input is a dummy and has no fuction other than it is required by the
built-in compiler. The bottom signal is the reset. The Dummy Input must be off while
the counter is counting.

Reset Input

UDC CT76

Kxxxxxxxx

Enable Input

Dummy Input

Reset Input

UDC CTxx

Kxxxxxxxx

UP Count

DOWN Count

Standard Counter Function HSIO Counter Function

� Counts UP and DOWN � Counts UP only

� Reset input is internal only � Reset may be internal or external
� Preload counter by write to value � Can use Dummy Input to change count

Writing Your
Control Program

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–12

High-speed Input and Pulse Output Features

The next figure shows how the HSIO counter will appear in a ladder program. Note
that the Enable Interrupt (ENI) command must execute before the counter value
reaches the first preset value. We do this at powerup by using the first scan relay.
When using the counter but not the presets and interrupt, we can omit the ENI.

DirectSOFT

4�C����

 �����4	����
�*DDDDDDDDReset Input

UDC CT76

Kxxxxxxxx

Enable Input

Dummy Input

ENI
SP1

XX

XX

XX

When the enable input is energized, the high-speed counter will respond to pulses
on X0 and increment the counter at CT76 – CT77. The reset input contact behaves in
a logical OR fashion with the physical reset input X2 (when selected). So,the high
speed counter can receive a reset form either the contact(s) on the reset rung in the
ladder, OR the external reset X2 if you have configured X2 as an external reset.
The following example is the simplest way to use the high-speed counter, which
does not use the presets and special relays in the interrupt routine. The program
configures the HSIO circuit for Mode 10 operation, so X0 is automatically the counter
clock input. It uses the Compare-double (CMPD) instruction to cause action at
certain count values. Note that this allows you to have more than 24 “presets”.Then it
configures X2 to be the external reset of the counter.

Program Example:
Counter Without
Preset

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–13

High-Speed Input and Pulse Output Features

SP0
LD
K10

Load constant K10 into the accumulator. This
selects Mode 10 as the HSIO mode.

OUT
V7633

Output the constant K10 to V7633, the
location of HSIO Mode select register.

LD
K1

Load the constant required to configure X0 as
the counter clock.

OUT
V7634

Output the constant K1 to V7634, the location of
the setup parameter for X0.

First Scan Only

DirectSOFT

UDC CT76

Kxxxxxxxx
SP1

SP1

SP1

END END coil marks the end of the main program.

CT76 is the HSIO counter. The first rung’s SP1
always enables the counter. The dummy input in
the middle is always off. The third rung’s Reset
input is always off, because we will use the
external reset.

LD
K7

Load the constant required to configure X2 as
an external reset without interrupt.

OUT
V7636

Output the constant K7 to V7636, the location of
the setup parameter for X2.

LD
K1006

Load the constant required to configure input
as filtered inputs.

OUT
V7635

Output the constant K1006 to V7635, the location
of setup parameter for X1.

Mode 10

Configure
Inputs

SP1
LDD
V1076

Load the current count of the HSIO counter in
V1076 and V1077 into the accumulator

CMPD
K309482

Use the Compare-double instruction to compare
the double word in the accumulator to the constant
K309482

SP62

OUT The execution of the above CMPD instruction turns
on special relay contact SP62 if the current count
is greater than the comparison number (K309482).

Y0

The compare double instruction above uses the current count of the HSIO counter to
turn on Y0. This technique can make more than 24 comparisons, but it is scan-time
dependent. However, use the 24 built-in presets with the interrupt routine if your
application needs a very fast response time, as shown in the next example.

Program
Example Cont’d

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–14

High-speed Input and Pulse Output Features

The following example shows how to program the HSIO circuit to trigger on three
preset values. You may recall the industrial lathe example from the beginning of this
chapter. This example program shows how to control the lathe cutter head to make
three grooves in the work-piece at precise positions. When the lead screw turns, the
counter device generates pulses which the DL05 can count. The three preset
variables A, B, and C represent the positions (number of pulses) corresponding to
each of the three grooves.

�������	!�5	���

������

A

 �����(�	 V2320 0000
V2322 0000
V2324 0000
V2326 0000

1500
3780
4850
FFFF

B C

A
B
C

(�B���
��	�

5�	�����E��������	�

)"�*���������	����	����
+��*�5�	�����E�0���
+��*���������	����!�����

)��*���������	���<�������.�
@�����0����

SP0
LD
K10

Load constant K10 into the accumulator. This
selects Mode 10 as the HSIO mode.

OUT
V7633

Output this address to V7633, the location of
HSIO Mode select register.

LD
K107

Load the constant required to configure X2 as
an external reset with interrupt.

OUT
V7636

Output the constant to V7636, the location of the
setup parameter for X2.

Select Mode 10

DirectSOFT
SP0

ENI
Enable Interrupts before reaching a preset
generates an interrupt. Special Relay SP0 is on
during the first CPU scan.

LDD
K1500

Load the preset A value into the accumulator.

OUTD
V2320

Output the accumulator contents to the memory
location for preset 1.

LDD
K3780

Load the preset B value into the accumulator.

OUTD
V2322

Output the accumulator contents to the memory
location for preset 2.

Load Presets

SP0

LDA
O2320

Load the octal address O2320 into the
accumulator. This instruction automatically
converts the address into hex.

OUT
V7630

Output this address to V7630, the location of
the pointer to the Preset Table.

LD
K1

Load the constant required to configure X0 as
the counter clock.

OUT
V7634

Output the constant K1 to V7634, the location of
the setup parameter for X0.

Counter With
Presets
Program Example

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–15

High-Speed Input and Pulse Output Features

UDC CT76

Kxxxxxxxx
SP1

SP1

SP1

END END coil marks the end of the main program.

INT O0

CT76 is the HSIO counter. The first rung’s SP1
always enables the counter. The dummy input in
the middle is off (unused in this example).

IRT Return from the interrupt service routine.

Y0SP540
Inside the interrupt service routine, we turn OFF the
lead screw motor immediately.

The INT label marks the beginning of the interrupt
service routine program.

RSTI

X3

RST Input X3 energizes when the groove has finished
cutting. So, we retract the cutter head.

Y1

X4

SET Turn lead screw on again, after cutter head has
retracted.

Y0

LDD
K4850

Load the preset C value into the accumulator.

OUTD
V2324

Output the accumulator contents to the memory
location for preset 3.

LDD
Kffff

Load the constant Kffff into the accumulator. This
value represents the end of the preset list.

OUTD
V2326

Output the accumulator contents to the memory
location for preset 4 (end of preset marker).

SP541

SP542

These special “equal” relays turn on individually as
the corresponding preset is reached. In this
application, each results in the cutting of a groove
(Y1), so they are logically ORed together.

Preset 1

Preset 2

Preset 3

SETI
Y1

SP0

X2

SETI Input X2 will be energized inside the interrupt
routine if X2 external interrupt was the source.

C10

The third rung’s Reset input is normally off,
because we will use the external reset. You can
optionally reset the counter value on each powerup
using the SP0 contact.

Some applications will require a different type of action at each preset. It is possible
for the interrupt routine to distinguish one preset event from another, by turning on a
unique output for each equal relay contact SPxxx. We can determine the source of
the interrupt by examining the equal relay contacts individually, as well as X2. The X2
contact will be on (inside the interrupt routine only) if the interrupt was caused by the
external reset, X2 input.

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–16

High-speed Input and Pulse Output Features

The following example shows how you can preload the current count with another
value. When the preload command input (X4 in this example) is energized, we
disable the counter from counting with C0. Then we write the value K3000 to the
count register (V1076-V1077). We preload the current count of the counter with
K3000. When the preload command (X4) is turned off, the counter resumes counting
any pulses, but now starting from K3000.

SP0
LD
K10

Load constant K10 into the accumulator. This
selects Mode 10 as the HSIO mode.

OUT
V7633

Output this address to V7633, the location of
HSIO Mode select register.

LD
K107

Load the constant required to configure X2 as
an external reset with interrupt.

OUT
V7636

Output the constant to V7636, the location of the
setup parameter for X2.

Select Mode 10

DirectSOFT

SET Set C0 on at powerup to enable counting.

C0

X4

RST

When the preload request is made, the user turns
on X4. First we disable counting by resetting C0,
the counter’s enable input.

UDC CT76

K99999999
C1

C0

C2

CT76 is the HSIO counter. The first rung’s C0
contact enables the counter. The dummy input is in
the middle.

C0

PD
Generate a preload counter input pulse, which
causes the counter to preload from V1076-V1077.

C1

SP0

LDD
K3000

Load the BCD value K3000 into the
accumulator.

OUTD
V1076

Output the constant to V1076/V1077, the location
of the accumulated count for CT76.

END END coil marks the end of the main program.

C1C0

SET
C0

Enable the counter by setting C0, when the
preolad pulse on C1 has occurred (C1 is off).

LD
K1

Load the constant required to configure X0 as
the counter clock.

OUT
V7634

Output the constant K1 to V7634, the location of
the setup parameter for X0.

The third rung’s Reset input is normally off,
because we will use the external reset. You can
optionally reset the counter value on each powerup
using the SP0 contact.

Counter With
Preload
Program Example

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–17

High-Speed Input and Pulse Output Features

If you’re having trouble with Mode 10 operation, please study the following
symptoms and possible causes. The most common problems are listed below.

Symptom: The counter does not count.
Possible causes:

1. Field sensor and wiring – Verify that the encoder, proximity switch,or
counter actually turns on and illuminates the status LED for X0. The
problem could be due to sinking-sourcing wiring problem, etc. Remember
to check the signal ground connection. Also verify that the pulse on-time is
long enough for the PLC to recognize it.

2. Configuration – use the Data View window to check the configuration
parameters. V7633 must be set to 10, and V7634 must be set to 1 to enable
the HSIO counter mode.

3. Stuck in reset – check the input status of the reset input, X2. If X2 is on, the
counter will not count because it is being held in reset.

4. Ladder program – make sure you are using counter CT76 in your
program. The top input is the enable signal for the counter. It must be on
before the counter will count. The middle input is the dummy input. The
bottom input is the counter reset, and must be off during counting.

Symptom: The counter counts but the presets do not function.
Possible causes:

1. Configuration – Ensure the preset values are correct. The presets are
32-bit BCD values having a range of 0 to 99999999. Make sure you write all
32 bits to the reserved locations by using the LDD and OUTD instructions.
Use only even–numbered addresses, from V2320 to V2376. If using less
than 24 presets, be sure to place “0000FFFF” in the location after the last
preset used.

2. Interrupt routine – Only use Interrupt #0. Make sure the interrupt has been
enabled by executing an ENI instruction prior to needing the interrupt. The
interrupt routine must be placed after the main program, using the INT label
and ending with an interrupt return IRT.

3. Special relays – Check the special relay numbers in your program. Use
SP540 for Preset 1, SP541 for Preset 2, etc. Remember that only one
special equal relay contact is on at a time. When the counter value reaches
the next preset, the SP contact which is on now goes off and the next one
turns on.

Symptom: The counter counts up but will not reset.
Possible causes:

1. Check the LED status indicator for X2 to make sure it is active when you
want a reset. Or, if you are using an internal reset, use the status mode of
DirectSOFT to monitor the reset input to the counter.

Troubleshooting
Guide for Mode 10

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–18

High-speed Input and Pulse Output Features

Mode 20: Quadrature Counter

The counter in the HSIO circuit can count two quadrature signal pulses instead of a
single pulse train (mode 10 operation). Quadrature signals are commonly generated
from incremental encoders, which may be rotary or linear. The quadrature counter
has two ranges from 0 to 99999999 or -8388608 to 8388607. Using CT76 and CT77,
the quadrature counter can count at up to a 5 kHz rate. Unlike Mode 10 operation,
Mode 20 operation can count UP or DOWN, but does not feature automated preset
values or “interrupt on external reset” capability. However, you have the standard
ladder instruction preset of CT76.
The diagram below shows HSIO functionality in Mode 20. When the lower byte of
HSIO Mode register V7633 contains a BCD “20”, the quadrature counter in the HSIO
circuit is enabled. Input X0 is dedicated to the Phase A quadrature signal, and input
X1 receives Phase B signal. X2 is dedicated to reset the counter to zero value when
energized.

���
���������

��
���������

� &

PLC
DL05

)�

+�,�+�

)�*�)-

+��*�+#

/�0�0�1

V7633 0020
�������!���

�.���	�	
HSIO

��&2�34

 �	��
@

 �	��
A

)�

4����

)�

Quadrature encoder signals contain position and direction information, while their
frequency represents speed of motion. Phase A and B signals shown below are
phase-shifted 90 degrees, thus the quadrature name. When the rising edge of
Phase A precedes Phase B’s leading edge (indicates clockwise motion by
convention), the HSIO counter counts UP. If Phase B’s rising edge precedes Phase
A’s rising edge (indicates counter-clockwise motion), the counter counts DOWN.

90° phase shift

Phase A

Phase B

5�	�����3��������	!

Phase A

Phase B

5�	�����3��������	!

Clockwise sequence

Counterclockwise sequence

one cycle

Purpose

Functional Block
Diagram

Quadrature
Encoder Signals

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–19

High-Speed Input and Pulse Output Features

A general wiring diagram for encoders to the DL05 in HSIO Mode 20 is shown below.
Encoders with sinking outputs (NPN open collector) are probably the best choice for
interfacing. If the encoder sources to the inputs, it must output 12 to 24 VDC. Note
that encoders with 5V sourcing outputs will not work with DL05 inputs.

Encoder Input Wiring

+

–
12 – 24 VDC

Phase A

Phase B

Encoder

Signal Common

The DL05’s DC inputs are flexible in that they detect current flow in either direction,
so they can be wired to an encoder with either sourcing or sinking outputs. In the
following circuit, an encoder has open-collector NPN transistor outputs. It sinks
current from the PLC input point, which sources current. The power supply can be
the +24VDC auxiliary supply or another supply (+12VDC or +24VDC), as long as the
input specifications are met.

Encoder Output,
(one phase)

+–

Phase A or B Input

���
��

7����

��
��

��00��

����"�/(����

!1

8���9���: 8�������:

In the next circuit, an encoder has open-emitter PNP transistor outputs. It sources
current to the PLC input point, which sinks the current back to ground. Since the
encoder sources current, no additional power supply is required. However, note that
the encoder output must be 12 to 24 volts (5V encoder outputs will not work).

Phase A or B Input

���
���8�������:

7����

��
��

��00��

;�������"/(�

8���9���:

Encoder Output,
(one phase)

Wiring Diagram

Interfacing to
Encoder Outputs

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–20

High-speed Input and Pulse Output Features

Recall that V7633 is the HSIO Mode Select register. Refer to the diagram below. Use
BCD 20 in the lower byte of V7633 to select the High-Speed Counter Mode. The
DL05 does not use bits 8 - 15 in V7633.

0�# �" �� ��

Memory Location V7633
�� �� 123456789Bits

000 00001000

HSIO Mode Setup (BCD)

0 0 0 0

20 = Quadrature Counter

0 0 02

0

Bits 8 - 15 are not used
in V7633.

Choose the most convenient method of programming V7633 from the following:
� Include load and out instructions in your ladder program
� DirectSOFT’s memory editor
� Use the Handheld Programmer D2–HPP

We recommend using the first method above so that the HSIO setup becomes an
integral part of your application program. An example program later in this section
shows how to do this.

The configurable discrete input options for High-Speed Counter Mode are listed in
the table below. Input X0 is dedicated for Phase A, and input X1 is for Phase B. Input
X2 is the reset input to the quadrature counter, but it does not cause an interrupt. The
section on Mode 60 operation at the end of this chapter describes programming the
filter time constants.

Input Configuration
Register

Function Hex Code
Required

X0 V7634 Phase A 0002 (default)
quadrature, absolute
0 to 99999999

0012
quadrature, absolute
-8388608 to 8388607

X1 V7635 Phase B 0000

X2 V7636 Counter Reset (no interrupt) 0007

Discrete filtered input 1006

Setup for Mode 20

X Input
Configuration

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–21

High-Speed Input and Pulse Output Features

You may recall that the Up-Down counter instruction is standard in the DL05
instruction set. Refer to the figure below. The mnemonic for the counter is UDC
(up-down counter).The DL05 can have up to 128 counters, labeled CT0 through
CT177. The quadrature counter in the HSIO circuit is accessed in ladder logic by
using UDC CT76. It uses counter registers CT76 and CT77 exclusively when the
HSIO mode 20 is active (otherwise, CT76 and CT77 are available for standard
counter use). The HSIO counter needs two registers because it is a double-word
counter. It also has three inputs as shown, but they are redefined. The first input is
the enable signal, the middle is a preload (write), and the bottom is the reset. The
enable input must be on before the counter will count. The enable input must be off
during a preload.

Reset Input

UDC CT76

Kxxxxxxxx

Enable Input

Dummy Input

Reset Input

UDC CTxx

Kxxxxxxxx

UP Count

DOWN Count

Standard Counter Function HSIO Counter Function

� Counts UP and DOWN � Counts UP and DOWN (from X0, X1)

� Reset input is internal only � Reset may be internal or external
� Preload counter by write to value � Can use Dummy Input to change count

The next figure shows the how the HSIO quadrature counter will appear in a ladder
program.

 �����4	����
�*DDDDDDDD

Reset Input

UDC CT76

Kxxxxxxxx

Enable Input

Dummy Input

When the enable input is energized, the counter will respond to quadrature pulses
on X0 and X1, incrementing or decrementing the counter at CT76 – CT77. The reset
input contact behaves in a logical OR fashion with the physical reset input X2. This
means the quadrature counter can receive a reset from either the contact(s) on the
reset rung in the ladder, OR the external reset X2.

Since presets are not available in quadrature counting, this mode is best suited for
simple counting and measuring. The example program on the following page shows
how to configure the quadrature counter. The program configures the HSIO circuit
for Mode 20 operation, so X0 is Phase A and X1 is Phase B clock inputs.

Writing Your
Control Program

Quadrature
Counter w/Preload
Program Example

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–22

High-speed Input and Pulse Output Features

SP0
LD
K20

Load constant K20 into the accumulator. This selects
Mode 20 as the HSIO mode.

OUT
V7633

Output this address to V7633, the location of the HSIO
Mode select register.

LD
K2

Load the constant required to configure X0 as Phase A
input.

OUT
V7634

Output the constant to V7634, the location of the setup
register for X0.

DirectSOFT

UDC CT76

Kxxxxxxxx
C1

C0

C2

END END coil marks the end of the main program..

CT76 is the HSIO quadrature counter. The first rung’s SP1
always enables the counter. The dummy input is used by
the built-in compiler.

LD
K0

Load the constant required to configure X1 as Phase B
input.

OUT
V7635

Output the constant to V7635, the location of the setup
register for X1.

LD
K7

Load the constant required to configure X2 as an external
reset.

OUT
V7636

Output the constant to V7636, the location of the setup
register for X2.

SET Set C0 on at powerup to enable counting.
C0

SP0

Select Mode 20

The third rung’s Reset input is normally off,
because we will use the external reset. You can
optionally reset the counter value on each powerup
using the SP0 contact.

SP1
LDD
V1076

Load the current value of the counter into the accumulator
on each scan.

CMPD
K44292

Compare the value in the accumulator with the constant
K44292. If they are equal, the SP61 contact will be
turned on.

Select Mode 20

Set Y0 to ON when the counter reaches or exceeds
our comparison value while COUNTING UP.

* Note: You can reset Y0 later in the program by using the RST insturuction.

SP61

SET
Y0

*

SP62

SP61

SET
Y1

*

SP60

Set Y1 to ON when the counter reaches or goes below
our comparison value while COUNTING DOWN.

To preload the counter, just add the following example rungs to the program above.

Program
Example Cont’d

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–23

High-Speed Input and Pulse Output Features

X4

RST

When the preload request is made, the user turns
on X4. First we disable counting by resetting C0,
the counter’s enable input.

C0

PD
Generate a preload counter input pulse, which
causes the counter to preload from V1076-V1077.

C1

LDD
K3000

Load the BCD value K3000 into the
accumulator.

OUTD
V1076

Output the constant to V1076/V1077, the location
of the accumulated pulse count.

Preload counter

C1C0

SET
C0

Enable the counter by setting C0, when the
preload pulse on C1 has occurred (C1 is off).

If you’re having trouble with Mode 20 operation, please study the following
symptoms and possible causes. The most common problems are listed below.

Symptom: The counter does not count.
Possible causes:

1. Field sensor and wiring – Verify that the encoder or other field device
inputs actually turn on and illuminates the status LEDs for X0 and X1. A
standard incremental encoder will visibly, alternately turn on the LEDs for
X0 and X1 when rotating slowly (1 RPM). Or, the problem could be due to a
sinking-sourcing wiring problem, etc. Remember to check the signal
ground connection. Also verify that the pulse on-time, duty cycle, voltage
level, and frequency are within the input specifications.

2. Configuration – make sure all of the configuration parameters are correct.
V7633 must be set to 20, and V7634 must be set to “0002” to enable the
Phase A input, and V7635 must be set to “0000” to enable the Phase B
input.

3. Stuck in reset – check the input status of the reset input, X2. If X2 is on, the
counter will not count because it is being held in reset.

4. Ladder program – make sure you are using counter CT76 in your
program. The top input is the enable signal for the counter. It must be on
before the counter will count. The middle input is the dummy input and must
be off for the counter to count. The bottom input is the counter reset, and
must be off during counting.

Symptom: The counter counts in the wrong direction (up instead of down, and visa-versa).
Possible causes:

1. Channel A and B assignment – It’s possible that Channel A and B
assignments of the encoder wires is backwards from the desired
rotation/counting orientation. Just swap the X0 and X1 inputs, and the
counting direction will be reversed.

Symptom: The counter counts up and down but will not reset.
Possible causes:

1. Check the LED status indicator for X2 to make sure it is active when you
want a reset. Also verify the configuration register V7636 for X2 is set to 7.
Or, if you are using an internal reset, use the status mode of DirectSOFT to
monitor the reset input to the counter.

Counter Preload
Program Example

Troubleshooting
Guide for Mode 20

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–24

High-speed Input and Pulse Output Features

Mode 30: Pulse Output

The HSIO circuit in Mode 30 generates
output pulse trains suitable for open-loop
control of a single-axis motion positioning
system. It generates pulse (stepper
increment) and direction signals which
you can connect to motor drive systems
and perform various types of motion
control. Using Mode 30 Pulse Output, you
can select from three profile types detailed
later in this chapter:

Trapezoidal Profile

��0�

@���! (���!

/�!����1

� Trapezoidal – Accel Slope to Target Velocity to Decel Slope
� Registration – Velocity to Position Control on Interrupt (also used for

home search moves)
� Velocity Control – Speed and Direction only

The HSIO circuit becomes a high-speed pulse generator (up to 7 kHz) in Mode 30.
By programming acceleration and deceleration values, position and velocity target
values, the HSIO function automatically calculates the entire motion profile. The
figure below shows the DL05 generating pulse and direction signals to the drive
amplifier of a stepper positioning system. The pulses accomplish the profile
independently and without interruption to ladder program execution in the CPU.

Drive
Amplifier

Stepper
Motor

Pulse

Direction

DL05 Micro PLC

In the figure above, the DL05 generates
pulse and direction signals. Each pulse
represents the smallest increment of
motion to the positioning system (such as
one step or micro-step to a stepper
system). Alternatively, the HSIO Pulse
Output Mode may be configured to deliver
counter clock-wise (CCW) and clock-wise
(CW) pulse signals as shown to the right.

CCW Pulse

CW Pulse

Drive
Amplifier

NOTE: The pulse output is designed for open loop stepper motor systems. This, plus
its minimum velocity of 40 pps make it unsuitable for servo motor control.

Purpose

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–25

High-Speed Input and Pulse Output Features

The diagram below shows HSIO functionality in Mode 30. When the lower byte of
HSIO Mode register V7633 contains a BCD “30”, the pulse output capability in the
HSIO circuit is enabled. The pulse outputs use Y0 and Y1 terminals on the output
connector. Remember that the outputs can only be DC type to operate.

���
���������

��
���������

� &

PLC
DL05

+�

)�*�)-

+��*�+#

/�0�0�1

V7633 xx30
�������!���

+��� �!�	�� ��������/	!��

 &5�3�732�

)�������
4�����	����
 �F�!����!1

)�,�)�,�)�

�����
�

+�

� ���"�� �F�!����0
!���

+�����	�� �F�!�

HSIO

)���%�!�������
��

8 �!���.��G: 8(��������.���G:

%�5�34

IMPORTANT NOTE: In Pulse Output Mode, Y0 and Y1 references are redefined or
are used differently in two ways. Physical references refer to terminal screws, while
logical references refer to I/O references in the ladder program. Please read the
items below to understand this very crucial point.

Notice the I/O point assignment and usage in the above diagram:
� X0 and X1 can only be filtered inputs in Pulse Output Mode, and they

are available as an input contacts to the ladder program.
� X2 behaves as an external interrupt to the pulse generator for

registration profiles. In other profile modes, it can be used as a filtered
input just like X1 (registration mode configuration shown above).

� References “Y0” and “Y1” are used in two different ways. At the discrete
output connector, Y0 and Y1 terminals deliver the pulses to the motion
system. The ladder program uses logical references Y0 and Y1 to
initiate “Start Profile” and “Load Position Value” HSIO functions in Mode
30.

Hopefully, the above discussion will explain why some I/O reference names have
dual meanings in Pulse Output Mode. Please read the remainder of this section
with care, to avoid confusion about which actual I/O function is being discussed.

Functional Block
Diagram

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–26

High-speed Input and Pulse Output Features

The generalized wiring diagram below shows pulse outputs Y0 and Y1 connected to
the drive amplifier inputs of a motion control system.

Signal Common

Motor Amplifier

Pulse Output Wiring
Power Input

;�"�/(�

Pulse

Direction

+

–

The pulse signals from Y0 and Y1 outputs will typically go to drive input circuits as
shown above. Remember that the DL05’s DC outputs are sinking-only. It will be
helpful to locate equivalent circuit schematics of the drive amplifier. The following
diagram shows how to interface to a sourcing drive input circuit.

Drive Input

���
��

7����

��
��

��00��

;/

Y0, Y1 Pulse Output

;(��
E

+

–

8�������:8���9���:

 �E�

The following circuit shows how to interface to a sinking drive input using a pullup
resistor. Please refer to Chapter 2 to learn how to calculate and install Rpullup.

Drive Input

���
��

7����

��
��

��00��

Y0, Y1 Pulse Output

;(��
E

+

–

8�������:

8���9���:

 �E�

8���9���:

�!!�

��

!1

4

��
��4

Wiring Diagram

Interfacing to
Drive Inputs

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–27

High-Speed Input and Pulse Output Features

The motion control profiles generated in Pulse Output Mode have the following
specifications:

Parameter Specification

Profiles Trapezoidal – Accel Slope / Target Velocity / Decel Slope

Registration – Velocity to Position Control on Interrupt

Velocity Control – Speed and Direction only

Position Range –88388608 to 88388607

Positioning Absolute / relative command

Velocity Range 40 Hz to 7 kHz

V-memory registers V2320 to V2325 (Profile Parameter Table)

Current Position CT76 and CT77 (V1076 and V1077)

The configurable discrete I/O options for Pulse Output Mode are listed in the table
below. The CPU uses SP 104 contact to sense “profile complete”. V7637 is used to
select pulse/direction or CCW/CW modes for the pulse outputs. Input X2 is
dedicated as the external interrupt for use in registration mode.

Physical
Input

Configuration
Register

Function Hex Code
Required

– V7637 Y0 = Pulse
Y1 = Direction

0103

Y0 = CW Pulse
Y1 = CCW Pulse

0003

X0 V7634 Discrete filtered input xx06, xx = filter time
0 99 (BCD)X1 V7635 Discrete filtered input 0 - 99 ms (BCD)

X2 V7636 Discrete filtered input

The following logical I/O references define functions that allow the HSIO to
communicate with the ladder program.

Logical
I/O

Function

SP 104 Profile Complete – the HSIO turns on SP104 to the CPU when the
profile completes. Goes back off when Start Profile (Y0) turns on.

Y0 Start Profile – the ladder program turns on Y0 to start motion. If
turned off before the move completes, motion stops. Turning it on
again will start another profile, unless the current position equals
the target position.

Y1 Preload Position Value – if motion is stopped and Start Profile is off,
you can load a new value in CT76/CT77, and turn on Y1. At that
transition, the value in CT76/CT77 becomes the current position.

Motion Profile
Specifications

Physical I/O
Configuration

Logical I/O
Functions

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–28

High-speed Input and Pulse Output Features

Recall that V7633 is the HSIO Mode Select register. Refer to the diagram below. Use
BCD 30 in the lower byte of V7633 to select the High-Speed Counter Mode. The
DL05 does not use bits 8 - 15 in V7633.

0�# �" �� ��

Memory Location V7633
�� �� 123456789Bits

000 00011000

HSIO Mode Setup (BCD)

0 0 0 0

30 = Pulse Output

0 0 03

0

Bits 8 - 15 are not used
in V7633.

Choose the most convenient method of programming V7633 from the following:
� Include load and out instructions in your ladder program
� DirectSOFT’s memory editor
� Use the Handheld Programmer D2–HPP

We recommend using the first method above so that the HSIO setup becomes an
integral part of your application program. An example program later in this section
shows how to do this.

The first location in the Profile Parameter Table stores two key pieces of information.
The upper four bits (12–15) select the type of profile required. The lower 12 bits
(0–11) select the Target Velocity.

0�# �" �� ��

Memory Location V2320 (default)
�� �� 123456789Bits

000 00000000

Target Velocity ValueProfile Select (BCD)

0 1 1 1

0 = Trapezoidal Profile, Absolute Position
8 = Trapezoidal Profile, Relative Position

Range = 4 to 700, representing
40 Hz to 7 kHz pulse rate

0 7 00

0

9 = Registration Profile, Relative Position
2 = Velocity Profile

The ladder program must program this location before initiating any of the three
profiles. The LD and OUT instruction will write all 16 bits, so be sure to fully specify
the full four-digit BCD value for the Position / Velocity Select Register each time.
The absolute and relative selection determines how the HSIO circuit will interpret
your specified target position. Absolute position targets are referenced to zero.
Relative position targets are referenced to the current position (previous target
position). You may choose whichever reference method that is most convenient for
your application.

Setup for Mode 30

Profile / Velocity
Select Register

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–29

High-Speed Input and Pulse Output Features

V7630 is a pointer location which points to
the beginning of the Profile Parameter
Table. The default starting location for the
profile parameter table is V2320.
However, you may change this by
programming a different value in V7630.
Remember to use the LDA (load address)
instruction, converting octal into hex.
The HSIO uses the next V-memory
register past the bottom of the profile
parameter table to indicate profile errors.
See the error table at the end of this
section for error code definitions.

 �F�!�� 		0�����	?!�

V2320 xxxx

V2321 xxxx
V2323 xxxx
V2324 xxxx

xxxx

V7630 2320

 �F�!���	?!�� �����

V2325 xxxx

V2326 00xx

 �!������
���3������

V-Memory Function Range Units

V2320, bits 12–15 Trapezoidal Profile 0=absolute,
8=relative

–

V2320, bits 0–11 Target Velocity Value 4 to 700 x 10 pps

V2321/ 2322 Target Position Value –8388608 to
8388607

Pulses

V2323 Starting Velocity 4 to 100 x 10 pps

V2324 Acceleration Time 1 to 100 x 100 mS

V2325 Deceleration Time 1 to 100 x 100 mS

V2326 Error Code (see end of section) –

V-Memory Function Range Units

V2320, bits 12–15 Registration Profile 9=relative –

V2320, bits 0–11 Target Velocity Value 4 to 700 x 10 pps

V2321/ 2322 Target Position Value –8388608 to
8388607

Pulses

V2323 Starting Velocity 4 to 100 x 10 pps

V2324 Acceleration Time 1 to 100 x 100 mS

V2325 Deceleration Time 1 to 100 x 100 mS

V2326 Error Code (see end of section) –

V-Memory Function Range Units

V2320 Velocity Profile 2000 only –

V2321/ 2322 Direction Select 80000000=CCW,
0=CW

Pulses

V2323 Velocity 4 to 700 x 10 pps

V2326 Error Code (see end of section) –

Profile
Parameter Table

Trapezoidal Profile

Registration Profile

Velocity Profile

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–30

High-speed Input and Pulse Output Features

Pulse Output Mode generates three types of motion profiles. Most applications use
one type for most moves. However, each move can be different if required.

� Trapezoidal – Accel Slope to Target Velocity to Decel Slope
� Registration – Velocity to Position Control on Interrupt
� Velocity Control – Speed and Direction only

The trapezoidal profile is the most
common positioning profile. It moves the
load to a pre-defined target position by
creating a move profile. The acceleration
slope is applied at the starting position.
The deceleration slope is applied
backwards from the target position. The
remainder of the move in the middle is
spent traveling at a defined velocity.

Trapezoidal Profile

Time

Accel Decel

Velocity

Start position Target position

Fixed Velocity

Trapezoidal profiles are best for simple point-to-point moves, when the distance
between the starting and ending positions of the move is known in advance.

Registration profiles solve a class of
motion control problems. In some
applications, product material in work
moves past a work tool such as a drill
station. Shown to the right, registration
marks on the scrap area of the work-piece
allow a machine tool to register its position
relative to the rectangle, to drill properly.
Home search moves allow open-loop
motion systems to re-calibrate (preload)
the current position value at powerup.
Registration profiles are a combination of
velocity and position control modes. The
move begins by accelerating to a
programmed velocity. The velocity is
sustained and the move is of indefinite
duration. When an external interrupt
signal occurs (due to registration
sensing), the profile switches from velocity
to position control. The move ends by
continuing motion a pre-defined distance
past the interrupt point (such as a drill hole
location). The deceleration ramp is
applied in advance of the target position.

Registration Profile

Accel Decel

Velocity

Interrupt

Velocity
Control

Position
Control

Registration marks

Finished part area
Scrap
Area

Target position

direction of motion

The velocity profile controls only the
direction and speed of motion. There is no
target position specified, so the move can
be of indefinite length. Only the first
velocity value needs to be defined. The
remaining velocity values can be created
while motion is in progress. Arrows in the
profile shown indicate velocity changes.

Velocity Profile

Time

Velocity

Choosing the
Profile Type

Trapezoidal
Profile Defined

Registration and
Home Search
Profiles Defined

Velocity Profile
Defined

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–31

High-Speed Input and Pulse Output Features

Trapezoidal Profile Operation

The trapezoidal profile is best suited for simple point-to-point moves, when the target
position is known in advance. Starting velocities must be within the range of 40 pps to
1k pps. The remainder of the profile parameters are in the profile parameter table.

Trapezoidal Profile

Time

Accel Decel

Velocity

Start position Target position

Target Velocity

Starting
Velocity

Start

Profile
Complete

Y0

SP104

The time line of signal traces below the profile indicates the order of events.
The HSIO uses logical output Y0 as the Start input to the HSIO, which starts the
profile. Immediately the HSIO turns off the Profile Complete signal (SP104), so the
ladder program can monitor the progress of the move. Typically a ladder program
will monitor this bit so it knows when to initiate the next profile move.
If you are familiar with motion control, you’ll notice that we do not have to specify the
direction of the move. The HSIO function examines the target position relative to the
current position, and automatically outputs the correct direction information to the
motor drive.
Notice that the motion accelerates immediately to the starting velocity. This segment
is useful in stepper systems so we can jump past low speed areas when low-torque
problems or a resonant point in the motor might cause a stall. (When a stepper motor
stalls, we have lost the position of the load in open-loop positioning systems).
However, is is preferable not to make the starting velocity too large, because the
stepper motor will also “slip” some pulses due to the inertia of the system.
When you need to change the current position value, use logical Y1 output coil to
load a new value into the HSIO counter. If the ladder program loads a new value in
CT76/CT77 (V1076/V1077), then energizing Y1 will copy that value into the HSIO
circuit counter. This must occur before the profile begins, because the HSIO ignores
Y1 during motion.

Trapezoidal Profile
Applications

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–32

High-speed Input and Pulse Output Features

The trapezoidal profile we want to perform is drawn and labeled in the following
figure. It consists of a non-zero starting velocity, and moderate target velocity.

Trapezoidal Profile

Time

Accel = 2 sec Decel = 4 sec

Velocity

Start position Target position = 5000

Target Velocity = 1 kHz

Starting
Velocity = 40

The following program will realize the profile drawn above, when executed. The
beginning of the program contains all the necessary setup parameters for Pulse
Output Mode 30. We only have to do this once in the program, so we use first-scan
contact SP0 to trigger the setup.

SP0
LD
K30

Load constant K30 into the accumulator. This selects
Mode 30 as the HSIO mode.

OUT
V7633

Output the constant to V7633, the location of the HSIO
Mode select register.

LDA
O2320

Load the octal address of the beginning of the Profile
Parameter Table. The LDA instruction converts this to a
hex number in the accumulator.

OUT
V7630

Output this address to V7630, the location of the pointer
to the Profile Parameter Table.

DirectSOFT

Mode 30

LD
K1006

Load the constant K1006 which is required to select
filtered inputs with a 10 mS filter time constant.

OUT
V7635

Output this constant to V7635, configuring X1.

Filtered Inputs

OUT
V7636

Output this constant to V7636, configuring X2.

LD
K103

Load the constant K103 which is required to select
pulse and direction for physical Y0 and Y1 functions,
respectively (use K3 if your application needs CCW
and CW).

OUT
V7637

Output this constant to V7637, configuring the pulse
output type.

Select Pulse /
Direction

Locate Parameter
Table (optional)

Trapezoidal Profile
Program Example

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–33

High-Speed Input and Pulse Output Features

Profile / Target
Velocity

LD
K100

Load the constant K100 which is required to select
Trapzoidal Profile, absolute positioning, and a target
velocity of 1 kHz.

OUT
V2320

Output this constant to V2320, the location of the Profile
Select / Starting Velocity setup register.

Target Position

SP0

LDD
K5000

Load the constant K5000 which selects a target
position of 5000 pulses. Don’t forget to use double
word size (8-digit BCD position value).

OUTD
V2321

Output this constant to V2321 and V2322, the location of
the Target Position double-word register.

OUT
V2323

Output this constant to V2323, the location of the starting
velocity parameter register.

LD
K4

Load the constant K4 which is required to select a
starting velocity of 40 Hz (4 x 10 pps).

Starting Velocity

OUT
V2324

Output this constant to V2324, the location of the
acceleration parameter register.

LD
K20

Load the constant K20 which is required to select an
acceleration time of 2 seconds (20 x 100 mS).

Acceleration

OUT
V2325

Output this constant to V2325, the location of the
deceleration parameter register.

LD
K40

Load the constant K40 which is required to select a
deceleration time of 4 seconds (40 x 100 mS).

Deceleration

X3

OUT
We use a spare filtered input to allow the operator
to start the profile. When the operator turns X3 ON,
then OFF, logical output Y0 starts the profile.

Y0

Start Profile

SP 104

OUT
SP104 is the logical output of the HSIO to indicate
the move is complete. We use Y2 to energize an
annunciator that the profile has finished.

Y2
Profile Complete

At any time you can write (preload) a new position into the current position value.
This often done after a home search (see the registration example programs).

Profile / Target
Velocity

LDD
K1000

Load the constant K1000 as the new current position
value.

OUTD
V1076

Output this constant to V1076/V1077 (CTA76/CTA77). the
location of the current position value.

SP0

PD Turn on Y1 for 1 scan. The off-to-on transition
causes the HSIO to preload the current position
with the value in

Y1

Program
Example Cont’d

Preload
Position Value

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–34

High-speed Input and Pulse Output Features

Registration Profile Operation

1. In a typical application shown to the
right, product material in work moves past
a work tool such as a drill. Registration
marks on the scrap area of the work-piece
allow a machine tool to register its position
relative to the rectangle, to drill properly.

2. In other examples of registration, the
work piece is stationary and the tool
moves. A drill bit may approach the
surface of a part in work, preparing to drill
a hole of precise depth. However, the drill
bit length gradually decreases due to tool
wear. A method to overcome this is to
detect the moment of contact with the part
surface on each drill, moving the bit into
the part a constant distance after contact. Detect contact

Finished part area Scrap
Area

Registration marks
direction of motion

3. The home search move allows a motion system to calibrate its position on
startup. In this case, the positioning system makes an indefinite move and waits for
the load to pass by a home limit switch. This creates an interrupt at the moment when
the load is in a known position. We then stop motion and preload the position value
with a number which equates to the physical “home position”.
The registration profile begins with only velocity control. When an interrupt pulse
occurs on physical input X2, the starting position is declared to be the present count
(current load position). The velocity control switches to position control, moving the
load to the target position. Note that the minimum starting velocity is 40 pps. This
instantaneous velocity accommodates stepper motors that can stall at low speeds.

Registration Profile

Time

Accel Decel

Velocity

Start
position

Target
position

Target Velocity

Starting
Velocity

Start

External Interrupt

Y0

X2

Profile Complete SP104

The time line of signal traces below the profile indicates the order of events. The
CPU uses logical output Y0 to start the profile. Immediately the HSIO turns off the
Profile Complete signal (SP104), so the ladder program can monitor the move’s
completion by sensing the signal’s on state.

Registration
Applications

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–35

High-Speed Input and Pulse Output Features

The registration profile we want to perform is drawn and labeled in the following
figure. It consists of a non-zero starting velocity, and moderate target velocity.

Registration Profile

Time

Accel = 2 sec Decel = 4 sec

Velocity

Start position Target position = 5000

Target Velocity = 1 kHz

Starting
Velocity = 40

The following program will realize the profile drawn above, when executed. The first
program rung contains all the necessary setup parameters. We only have to do this
once in the program, so we use first-scan contact SP0 to trigger the setup.

SP0
LD
K30

Load constant K30 into the accumulator. This selects
Mode 30 as the HSIO mode.

OUT
V7633

Output this constant to V7633, the location of the HSIO
Mode select register.

LDA
O2320

Load the octal address of the beginning of the Profile
Parameter Table. The LDA instruction converts this to a
hex number in the accumulator.

OUT
V7630

Output this address to V7630, the location of the pointer
to the Profile Parameter Table.

DirectSOFT

Mode 30

LD
K2006

Load the constant K2006 which is required to select X1
as a filtered input with a 20 mS filter time constant.Filtered Inputs

OUT
V7635

Output this constant to V7635, configuring X1.

LD
K103

Load the constant K103 which is required to select
pulse and direction for physical Y0 and Y1 functions,
respectively (your application may use CCW and CW).

OUT
V7637

Output this constant to V7637, configuring the pulse
output type.

Select Pulse /
Direction

LD
K1006

Load the constant K1006 which is required to select the
external interrupt.

OUT
V7636

Output this constant to V7636, configuring X2, the
registration interrupt input.

Locate Parameter
Table (optional)

Registration Profile
Program Example

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–36

High-speed Input and Pulse Output Features

Start Profile

Profile / Target
Velocity

LD
K9100

Load the constant K9100 which is required to select
Registration Profile, relative positioning, and a target
velocity of 1 kHz (9xxx times 10 pps).

OUT
V2320

Output this constant to V2320, the location of the Profile
Select / Starting Velocity setup register.

Target Position

SP0

LDD
K5000

Load the constant K5000 which selects a target
position of 5000 pulses. Don’t forget to use double
word size (8-digit BCD position value).

OUTD
V2321

Output this constant to V2321 and V2322, the location of
the Target Position double-word register.

OUT
V2323

Output this constant to V2323, the location of the starting
velocity parameter register.

LD
K4

Load the constant K4 which is required to select a
starting velocity of 40 Hz (4 x 10 pps).

Starting Velocity

OUT
V2324

Output this constant to V2324, the location of the
acceleration parameter register.

LD
K20

Load the constant K20 which is required to select an
acceleration time of 2 seconds (20 x 100 mS).

Acceleration

OUT
V2325

Output this constant to V2325, the location of the
deceleration parameter register.

LD
K40

Load the constant K40 which is required to select a
deceleration time of 4 seconds (40 x 100 mS).

Deceleration

X3

SET We use an input to allow the operator to start the
profile. X3 is a momentary Start switch. When the
operator turns X3 ON, logical output Y0 starts the
profile.

Y0

SP104

OUT SP104 is the logical output of the HSIO to indicate
the move is complete. We use Y2 to energize an
annunciator that the profile has finished. This won’t
occur until after the interrupt from X2 has occurred
and the profile is complete.

Y2

Profile Complete

PD
C0

C0

RST
Y0

The profile will begin when the start input (X3) is given. Then the motion begins an
indefinite move, which lasts until an external interrupt on X2 occurs. Then the motion
continues on for 5000 more pulses before stopping.

Program
Example Cont’d

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–37

High-Speed Input and Pulse Output Features

One of the more challenging aspects of motion control is the establishment of actual
position at powerup. This is especially true for open-loop systems which do not have
a position feedback device. However, a simple limit switch located at an exact
location on the positioning mechanism can provide “position feedback” at one point.
For most stepper control systems, this method is a good and economical solution.

������
2�0?������1���0

����

5�	�

��G�!�0���8)�: �G�!�0���8)�:��0��!�0���8)�:

� ���� ���� ����*����*����*����

5�0����E������

 ������������1���0

In the drawing above, the load moves left or right depending on the CCW/CW
direction of motor rotation. The PLC ladder program senses the CCW and CW limit
switches to stop the motor, before the load moves out-of-bounds and damages the
machine. The home limit switch is used at powerup to establish the actual position.
The numbering system is arbitrary, depending on a machine’s engineering units.
At powerup, we do not know whether the load is located to the left or to the right of the
home limit switch. Therefore, we will initiate a home search profile, using the
registration mode. The home limit switch is wired to X2, causing the interrupt. We
choose an arbitrary initial search direction, moving in the CW (left-to-right) direction.

� If the home limit switch closes first, then we stop and initialize the
position (this value is typically “0”, but it may be different if preferred).

� However, if the CW limit switch closes first, we must reverse the motor
and move until the home limit switch closes, stopping just past it.

In the latter case, we repeat the first move, because we always need to make the
final approach to the home limit switch from the same direction, so that the final
physical position is the same in either case!

SP0
LD
K30

Selects Mode 30 as
the HSIO mode.

OUT
V7633

LDA
O2320

OUT
V7630

Configure the address
of the parameter table.

DirectSOFT

Mode 30

LD
K103

Configure the Y0 and Y1
pulse outputs for pulse
and direction, respectively.

OUT
V7637

Select Pulse /
Direction

Locate
Parameter
Table (optional)

LD
K2006

The constant K2006
selects a 20 mS filter
time constant.

OUT
V7635

Output this constant to
V7635, configuring X1.

LD
K1006

The constant K1006
selects a 10 mS filter
time constant.

OUT
V7636

Output this constant to
V7636, configuring X2, the
registration interrupt input.

Filtered Inputs

Home Search
Program Example

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–38

High-speed Input and Pulse Output Features

Profile / Target Velocity

LD
K9100

Select Registration Profile,
relative positioning, and a
target velocity of 1000 pps
(9xxx times 10 pps).

OUT
V2320

Target Position

SP0

LDD
K50

The constant K50 selects
a target position of 50
pulses (CW direction).

OUTD
V2321

OUT
V2323

LD
K4

The constant K4 selects a
starting velocity of 40 Hz
(4 x 10 pps).

Starting Velocity

OUT
V2324

LD
K20

The constant K20 selects
an acceleration time of 2
seconds (20 x 100 mS).

Acceleration

OUT
V2325

We’ll choose the same for
the deceleration value.

Deceleration

C10

SET

Turn on Start Profile,
searching for either the
home limit or the CW limit
(depends on our starting
position).

Y0

Search in CW direction

C0

RST
Y0

LDD
K80000200

The constant –K200
selects a target
position of –200
pulses, which is in
the CCW direction.OUTD

V2321

CW Limit found

C3 X2

RST
Y0

LDD
K0

Load the constant
K0 for our initialized
position.

OUTD
V1076

Output this constant
to C1076/V1077.

SET
Go CW back to
home.

C4

Home Limit found, CW search direction

Turn off Start Profile.

SET
The CW limit has
been reached.

C1

C0

RST
Y0

Home Limit found, CW search direction

Turn off Start Profile.
Turn off Start Profile.

SET
C0

Set C0 to indicate the CW
home search has begun.

C0

C1 X3

X7

SET
C10

Start the home search
when X7 turns on.

C1
TMR

K5

Add a timer to
create a slight
delay before
reversing motor.

T0

T0

SET
C2

CCW delay done.

SET Start profile again.
Y0

C2

SET
C3

LDD
K50

Load a small
positive position
count (go CW).

OUTD
V2321

CCW past home

CCW past home

C3 X2

C4
TMR

K5

Add a timer to
create a slight
delay before
reversing motor.

T1

T1

SET
C5

CW delay done.

SET Start profile again.
Y0

C1 C3 X2

C5

The home search profile will execute specific parts of the program, based on the
order of detection of the limit switches. Ladder logic sets C0 to initiate a home search
in the CW direction. If the CW limit is encountered, the program searches for home in
the CCW direction, passes it slightly, and does the final CW search for home. After
reaching home, the last ladder rung preloads the current position to “0”.

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–39

High-Speed Input and Pulse Output Features

Velocity Profile Operation

The velocity profile is best suited for applications which involve motion but do not
require moves to specific points. Conveyor speed control is a typical example.

Velocity Profile

Time

Velocity

Start

Profile
Complete

Y0

SP104

The time line of signal traces below the profile indicates the order of events.
Assuming the velocity is set greater than zero, motion begins when the Start input
(Y0) energizes. Since there is no end position target, the profile is considered in
progress as long as the Start input remains active. The profile complete logical input
to ladder logic (X0) correlates directly to the Start input status when velocity profiles
are in use.
While the Start input is active, the ladder program can command a velocity change
by writing a new value to the velocity register (V2323 by default). The full speed
range of 40 Hz to 7 kHz is available. Notice from the drawing that there are no
acceleration or deceleration ramps between velocity updates. This is how velocity
profiling works with the HSIO. However, the ladder program can command more
gradual velocity changes by incrementing or decrementing the velocity value more
slowly. A counter or timer can be useful in creating your own
acceleration/deceleration ramps. Unless the load must do a very complex move, it is
easier to let the HSIO function generate the accel/decel ramps by selecting the
trapezoidal or registration profiles instead.
Unlike the trapezoidal and registration profiles, you must specify the desired
direction of travel with velocity profiles. Load the direction select register
(V2321/V2322 by default) with 8000 0000 hex for CCW direction, or 0 for CW
direction.

Velocity Profile
Applications

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–40

High-speed Input and Pulse Output Features

The velocity profile we want to perform is drawn and labeled in the following figure.
Each velocity segment is of indefinite length. The velocity only changes when ladder
logic (or other device writing to V-memory) updates the velocity parameter.

Velocity Profile

Time

Velocity

The following program uses dedicated discrete inputs to load in new velocity values.
This is a fun program to try, because you can create an infinite variety of profiles with
just two or three input switches. The intent is to turn on only one of X1, X2, or X3 at a
time. The beginning of the program contains all the necessary setup parameters for
Pulse Output Mode 30. We only have to do this once in the program, so we use
first-scan contact SP0 to trigger the setup.

SP0
LD
K30

Load constant K30 into the accumulator. This selects
Mode 30 as the HSIO mode.

OUT
V7633

Output this constant to V7633, the location of the HSIO
Mode select register.

LDA
O2320

Load the octal address of the beginning of the Profile
Parameter Table. The LDA instruction converts this to
hex number in the accumulator.

OUT
V7630

Output this address to V7630, the location of the pointer
to the Profile Parameter Table.

DirectSOFT

Mode 30

LD
K1006

Load the constant K1006 which is required to select
filtered inputs with a 10 mS filter time constant.

OUT
V7635

Output this constant to V7635, configuring X1.

Filtered Inputs

OUT
V7636

Output this constant to V7636, configuring X2.

LD
K103

Load the constant K103 which is required to select
pulse and direction for physical Y0 and Y1 functions,
respectively (your application may use CCW and CW).

OUT
V7637

Output this constant to V7637, configuring the pulse
output type.

Select Pulse /
Direction

Locate Parameter
Table (optional)

Velocity Profile
Program Example

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–41

High-Speed Input and Pulse Output Features

Profile / Target
Velocity

LD
K2000

Load the constant K2000 which is required to select
Velocity Profile. This data word contains no velocity
information in the case of velocity mode.

OUT
V2320

Output this constant to V2320, the location of the Profile
Select setup register.

Select Direction

SP0

LDD
K80000000

Load the constant K80000000 which selects CCW
direction for Velocity Profiles. Don’t forget to use double
word size (8-digit BCD position value).

OUTD
V2321

Output this constant to V2321 and V2322, the location of
the Target Position double-word register.

OUT
V2323

Output this constant to V2323, the location of the velocity
parameter register. After the program is running, we can
write here again, using discrete input switches.

LD
K10

Load the constant K10 which is required to select an
initial velocity of 100 pps (uses x10 multiplier).

Set Velocity

X1

OUT We use a spare filtered input to allow the operator
to start the profile. When the operator turns X1 ON
and leaves it on, logical output Y0 starts the profile.

Y0

Start Profile

LD
K50

OUT
V2323

X2

Output this constant to V2323, the location of the velocity
parameter register. The speed will change immediately.

Load the constant K50 which is required to select a
velocity of 500 pps when the operator closes X2.

Go Slow

LD
K200

OUT
V2323

X3

Output this constant to V2323, the location of the velocity
parameter register. The speed will change immediately.

Load the constant K200 which is required to select a
velocity of 2000 pps when the operator closes X3.

Go Moderately

LD
K600

OUT
V2323

X4

Output this constant to V2323, the location of the velocity
parameter register. The speed will change immediately.

Load the constant K600 which is required to select a
velocity of 6000 pps when the operator closes X4.

Go Fast

Program
Example Cont’d

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–42

High-speed Input and Pulse Output Features

The Profile Parameter Table starting at V2320 (default location) defines the profile.
Certain numbers will result in a error when the HSIO attempts to use the parameters
to execute a move profile. When an error occurs, the HSIO writes an error code in
V2326.

Error Code Error Description

0000 No error

0010 Requested profile type code is invalid (must use 0, 1, 2, 8, or 9)

0020 Target Velocity is not in BCD

0021 Target Velocity is specified to be less than 40 pps

0022 Target Velocity is specified to be greater than 7,000 pps

0030 Target Position value is not in BCD

0040 Starting Velocity is not in BCD

0041 Starting Velocity is specified to be less than 40 pps

0042 Starting Velocity is specified to be greater than 1,000 pps

0050 Acceleration Time is not in BCD

0051 Acceleration Time is zero

0052 Acceleration Time is greater than 10 seconds

0060 Deceleration Time is not in BCD

0061 Deceleration Time is zero

0062 Deceleration Time is greater than 10 seconds

Most errors can be corrected by rechecking the Profile Parameter Table values. The
error is automatically cleared at powerup and at Program-to-Run Mode transitions.

If you’re having trouble with Mode 30 operation, please study the following
symptoms and possible causes. The most common problems are listed below:

Symptom: The stepper motor does not rotate.
Possible causes:

1. Configuration – Verify that the HSIO actually generates pulses on outputs
Y0 and Y1. Watch the status LEDs for Y0 and Y1 when you start a motion
profile. If the LEDs flicker on and off or are steadily on, the configuration is
probably correct.

2. Programming error – If there are no pulses on Y0 or Y1 you may have a
programming error. Check the contents of V2326 for an error code that may
be generated when the PLC attempts to do the move profile. Error code
descriptions are given above.

3. Check target value – The profile will not pulse if the count value is equal to
the target value (ex. count =0, target=0)

Pulse Output Error
Codes

Troubleshooting
Guide for Mode 30

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–43

High-Speed Input and Pulse Output Features

4. Wiring – Verify the wiring to the stepper motor is correct. Remember the
signal ground connection from the PLC to the motion system is required.

5. Motion system – Verify that the drive is powered and enabled. To verify the
motion system is working, you can use Mode 60 operation (normal PLC
inputs/outputs) as shown in the test program below. With it, you can
manually control Y0 and Y1 with X0 and X1, respectively. Using an input
simulator is ideal for this type of manual debugging. With the switches you
can single-step the motor in either direction. If the motor will not move with
this simple control, Mode 30 operation will not be possible until the problem
with the motor drive system or wiring is corrected.

SP0
LD
K60

Load constant K60 into the accumulator. This
selects Mode 60 as the HSIO mode.

OUT
V7633

Output the constant to V7633, the location of the
HSIO Mode select register.

DirectSOFT

Mode 60

OUT
V7635

Output this constant to V7635, configuring X1.

Filtered Inputs

OUT
V7636

Output this constant to V7636, configuring X2.

LD
K1006

Load the constant K1006 which is required to configure
filtered inputs with a time constant of 10 mS.

OUT
V7634

Output this constant to V7634, configuring X0.

END END coil marks the end of the main program..

X0

OUT Use a switch on X0 input to manually control output Y0.

Y0

X1

OUT Use a switch on X1 input to manually control output Y1.

Y1

6. Memory Error – HSIO configuration parameters are stored in the CPU
system memory. Corrupted data in this memory area can sometimes
interfere with proper HSIO operation. If all other corrective actions fail,
initializing the scratchpad memory may solve the problem. With
DirectSOFT, select the PLC menu, then Setup, then Initialize Scratchpad.

Symptom: The motor turns in the wrong direction.
Possible causes:

1. Wiring – If you have selected CW and CCW type operation, just swap the
wires on Y0 and Y1 outputs.

2. Direction control – If you have selected Pulse and Direction type
operation, just change the direction bit to the opposite state.

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–44

High-speed Input and Pulse Output Features

Mode 40: High-Speed Interrupts

The HSIO Mode 40 provides a high-speed interrupt to the ladder program. This
capability is provided for your choice of the following application scenarios:

� An external event needs to trigger an interrupt subroutine in the CPU.
Using immediate I/O instructions in the subroutine is typical.

� An interrupt routine needs to occur on a timed basis which is different
from the CPU scan time (either faster or slower). The timed interrupt is
programmable, from 5 to 999 mS.

The HSIO circuit creates the high-speed interrupt to the CPU. The following diagram
shows the external interrupt option, which uses X0. In this configuration X1 and X2
are normal filtered inputs.

���
���������

��
���������

� &

PLC
DL05

)�

+�,�+�

)�*�)-

+��*�+#

/�0�0�1

V7633 0040
�������!���

�.���	�	HSIO

�����
�

)�,�)�

�����
�

%�5�34

Alternately, you may configure the HSIO circuit to generate interrupts based on a
timer, as shown below. In this configuration, inputs X0 through X2 are filtered inputs.

���
���������

��
���������

� &

PLC
DL05

+�,�+�

)�*�)-

+��*�+#

/�0�0�1

V7633 0040
�������!���

�.���	�	HSIO

��0�

)�,�)�,�)�

�����
������
�

%�5�34

Purpose

Functional Block
Diagram

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–45

High-Speed Input and Pulse Output Features

Recall that V7633 is the HSIO Mode Select register. Refer to the diagram below. Use
BCD 40 in the lower byte of V7633 to select the High-Speed Counter Mode. The
DL05 does not use bits 8 - 15 in V7633.

0�# �" �� ��

Memory Location V7633
�� �� 123456789Bits

000 00000100

HSIO Mode Setup (BCD)

0 0 0 0

40 = High-Speed Interrupt

0 0 04

0

Bits 8 - 15 are not used
in V7633.

Choose the most convenient method of programming V7633 from the following:
� Include load and out instructions in your ladder program
� DirectSOFT’s memory editor
� Use the Handheld Programmer D2–HPP

We recommend using the first method above so that the HSIO setup becomes an
integral part of your application program. An example program later in this section
shows how to do this.
Refer to the drawing below. The source of the interrupt may be external (X0), or the
HSIO timer function. The setup parameter in V7634 serves a dual purpose:,

� It selects between the two interrupt sources, external (X0) or an internal
timer.

� In the case of the timer interrupt, it programs the interrupt timebase
between 5 and 999 mS.

The resulting interrupt uses label INT 0 in the ladder program. Be sure to include the
Enable Interrupt (ENI) instruction at the beginning of your program. Otherwise, the
interrupt routine will not be executed.

)�,�3<���	!������
�

CPU Scan

�����
��������.
��0����!���

V7634 xxx4

��
��
&
�	��

5	���
 ��	0
3<�������

��
��
&
�	��

current
instruction

�2�

�����
�
4������
 ��	0

�4�

TIMER

Setup for Mode 40

Interrupts and the
Ladder Program

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–46

High-speed Input and Pulse Output Features

Signal pulses at X0 must meet certain timing criteria to guarantee an interrupt will
result. Refer to the timing diagram below. The input characteristics of X0 are fixed (it
is not a programmable filtered input). The minimum pulse width is 0.1 mS. There
must be some delay before the next interrupt pulse arrives, such that the interrupt
period cannot be smaller than 0.5 mS.

Time

External
Interrupt X0

0.1 mS minimum

0.5 mS minimum

When the timed interrupt is selected, the HSIO generates the interrupt to ladder
logic. There is no interrupt “pulse width” in this case, but the interrupt period can be
adjusted from 5 to 999 mS.

Time

Timed
Interrupt

5 mS to 999 mS

The configurable discrete input options for High-Speed Interrupt Mode are listed in
the table below. Input X0 is the external interrupt when “0004” is in V7634. If you
need a timed interrupt instead, then V7634 contains the interrupt time period, and
input X0 becomes a filtered input (uses X1’s filter time constant by default). Inputs
X1, and X2, can only be filtered inputs, having individual configuration registers and
filter time constants. However, X0 will have the same filter time constant as X1 when
the timed interrupt is selected.

Input Configuration
Register

Function Hex Code
Required

X0 V7634 External Interrupt 0004 (default)

Uses X1’s time
setting in V7635

Filtered Input (when
timed interrupt is in use)

xxx4, xxx = INT timebase
5 - 999 ms (BCD)

X1 V7635 Filtered Input xx06 (xx = filter time)
0 - 99 ms (BCD)

X2 V7636 Filtered Input xx06 (xx = filter time)
0 - 99 ms (BCD)

Interrupt O1 is also available as an interrupt. This interrupt is independent of the
HSIO features. Interrupt O1 uses an internal timer that is configured in V memory
location V7647. The interrupt period can be adjusted from 5 to 9999 mS. Once the
interrupt period is set and the interrupt is enabled in the program, the CPU will
continuously call the interrupt routine based on the time setting in V7647.

Input Configuration
Register

Function Hex Code
Required

– V7647 High-Speed
Timed Interrupt

xxxx (xxxx = timer setting)
5 - 9999 mS (BCD)

External Interrupt
Timing Parameters

Timed Interrupt
Parameters

X Input / Timed
INT Configuration

Independent Timed
Interrupt

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–47

High-Speed Input and Pulse Output Features

The following program selects Mode 40, then selects the external interrupt option.
Inputs X1 and X2 are configured as filtered inputs with a 10 mS time constant. The
program is otherwise generic, and may be adapted to your application.

SP0
LD
K40

Load constant K40 into the accumulator. This
selects Mode 40 as the HSIO mode.

OUT
V7633

Output this constant to V7633, the location of the
HSIO Mode select register.

DirectSOFT

Mode 40

LD
K1006

Load the constant K1006 which is required to select
filtered inputs with a 10 mS filter time constant.

OUT
V7635

Output this constant to V7635, configuring X1.

Filtered Inputs

OUT
V7636

Output this constant to V7636, configuring X2.

LD
K4

Load the constant K4 which is required to select the
external interrupt option. X0 is the interrupt input.

OUT
V7634

Output this constant to V7634, configuring the
external interrupt option for X0.

External Interrupt

INT Enable ENI Enable Interrupts at the beginning of the program.

END END coil marks the end of the main program..

INT O0

IRT Return to the main ladder program.

The INT label marks the beginning of the interrupt
service routine program.

Main Program Insert Main Program rungs here for your application.

Interrupt Routine Insert interrupt service routine rungs here for your
application.

Use the pulse catch input to set output Y0 on.

SP1

SETI
Y5

RST Reset output Y0.

Y5

External Interrupt
Program Example

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–48

High-speed Input and Pulse Output Features

The following program selects Mode 40, then selects the timed interrupt option, with
an interrupt period of 100 mS.

Time

Timed
Interrupt

100 mS

Inputs X0, X1, and X2, are configured as filtered inputs with a 10 mS time constant.
Note that X0 uses the time constant from X1. The program is otherwise generic, and
may be adapted to your application.

SP0
LD
K40

Load constant K40 into the accumulator. This
selects Mode 40 as the HSIO mode.

OUT
V7633

Output this constant to V7633, the location of the
HSIO Mode select register.

DirectSOFT

Mode 40

LD
K1006

Load the constant K1006 which is required to select
filtered inputs with a 10 mS filter time constant.

OUT
V7635

Output this constant to V7635, configuring X1 and X0.

Filtered Inputs

OUT
V7636

Output this constant to V7636, configuring X2.

LD
K1004

Load the constant K1004 which is required to select
the timed interrrupt option, with a period of 100 mS.

OUT
V7634

Output this constant to V7634, configuring the timed
interrupt for 100 mS period.

Timed Interrupt

INT Enable ENI Enable Interrupts at the beginning of the program.

END END coil marks the end of the main program..

INT O0

IRT Return to the main ladder program.

The INT label marks the beginning of the interrupt
service routine program.

Main Program
Insert Main Program rungs here for your application.

Interrupt Routine Insert interrupt service routine rungs here for your
application.

SP1
LD
K1

Load constant K1 into the accumulator.

ADD
V2000

OUT
V2000

Add the value in the accumulator with the value in
memory location V2000.

Output the result into memory location V2000.

Timed Interrupt
Program Example

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–49

High-Speed Input and Pulse Output Features

Mode 50: Pulse Catch Input

The HSIO circuit has a pulse-catch mode of operation. It monitors the signal on input
X0, preserving the occurrence of a narrow pulse. The purpose of the pulse catch
mode is to enable the ladder program to “see” an input pulse which is shorter in
duration than the current scan time. The HSIO circuit latches the input event on input
X0 for one scan. This contact automatically goes off after one scan.
Refer to the block diagram below. When the lower byte of HSIO Mode register V7633
contains a BCD “50”, the pulse catch mode in the HSIO circuit is enabled. X0
automatically becomes the pulse catch input, which sets the latch on each rising
edge. The HSIO resets the latch at the end of the next CPU scan. Inputs X1 and X2
are available as filtered discrete inputs.

���
���������

��
���������

� &

PLC
DL05

)�

+�,�+�

)�*�)-

+��*�+#

/�0�0�1

V7633 0050
�������!���

�.���	�	HSIO

5@���

��� 4����

)�,�)���	�

%�5�34

Signal pulses at X0 must meet certain timing criteria to guarantee a pulse capture
will result. Refer to the timing diagram below. The input characteristics of X0 are
fixed (it is not a programmable filtered input). The minimum pulse width is 0.1 mS.
There must be some delay before the next pulse arrives, such that the pulse period
cannot be smaller than 0.5 mS. If the pulse period is smaller than 0.5 mS, the next
pulse will be considered part of the current pulse.

Time

Pulse
Input X0

0.1 mS minimum

0.5 mS minimum

Note that the pulse catch and filtered input functions are opposite in nature. The
pulse catch feature on X0 seeks to capture narrow pulses, while the filter input
feature on X1 and X2 seeks to reject narrow pulses.

Purpose

Functional Block
Diagram

Pulse Catch
Timing Parameters

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–50

High-speed Input and Pulse Output Features

Recall that V7633 is the HSIO Mode Select register. Refer to the diagram below. Use
BCD 50 in the lower byte of V7633 to select the High-Speed Counter Mode. The
DL05 does not use bits 8 - 15 in V7633.

0�# �" �� ��

Memory Location V7633
�� �� 123456789Bits

000 00010100

HSIO Mode Setup (BCD)

0 0 0 0

50 = Pulse Catch Input

0 0 05

0

Bits 8 - 15 are not used
in V7633.

Choose the most convenient method of programming V7633 from the following:
� Include load and out instructions in your ladder program
� DirectSOFT’s memory editor
� Use the Handheld Programmer D2–HPP

We recommend using the first method above so that the HSIO setup becomes an
integral part of your application program. An example program later in this section
shows how to do this.

The configurable discrete input options for Pulse Catch Mode are listed in the table
below. Input X0 is the pulse input, and must have “0005” loaded into it configuration
register V7634. Inputs X1 and X2 can only be filtered inputs. Each input has its own
configuration register and filter time constant.

Input Configuration
Register

Function Hex Code
Required

X0 V7634 Pulse Catch Input 0005

X1 V7635 Filtered Input xx06 (xx = filter time)
0 - 99 ms (BCD)

X2 V7636 Filtered Input xx06 (xx = filter time)
0 - 99 ms (BCD)

Setup for Mode 50

X Input
Configuration

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–51

High-Speed Input and Pulse Output Features

The following program selects Mode 50, then programs the pulse catch code for X0.
Inputs X1 and X2 are configured as filtered inputs with 10 and 30 mS time constants
respectively. The program is otherwise generic, and may be adapted to your
application.

SP0
LD
K50

Load constant K50 into the accumulator. This
selects Mode 50 as the HSIO mode.

OUT
V7633

Output this constant to V7633, the location of the
HSIO Mode select register.

DirectSOFT

Mode 50

LD
K1006

Load the constant K1006 which is required to select
filtered inputs with a 10 mS filter time constant.

OUT
V7635

Output this constant to V7635, configuring X1.

Filtered Inputs

OUT
V7636

Output this constant to V7636, configuring X2.

LD
K5

Load the constant K5 which is required to configure X0
as the pulse catch input.

OUT
V7634

Output this constant to V7634, configuring the pulse
catch option for X0.

Pulse Catch

END END coil marks the end of the main program..

Main Program

Use the pulse catch input to set output Y0 on. This will
work even for a very short pulse on X0.

LD
K3006

Load the constant K3006 which is required to select
filtered inputs with a 30 mS filter time constant.

X0

SET
Y0

Pulse Catch
Program Example

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–52

High-speed Input and Pulse Output Features

Mode 60: Discrete Inputs with Filter

The last mode we will discuss for the HSIO circuit is Mode 60, Discrete Inputs with
Filter. The purpose of this mode is to allow the input circuit to reject narrow pulses
and accept wide ones, as viewed from the ladder program. This is useful in
especially noisy environments or other applications where pulse width is important.
In all other modes in this chapter, X0 to X2 usually support the mode functions as
special inputs. Only spare inputs operate as filtered inputs by default. Now in Mode
60, all three inputs X0 through X2 function only as discrete filtered inputs.
Refer to the block diagram below. When the lower byte of HSIO Mode register V7633
contains a BCD “60”, the input filter in the HSIO circuit is enabled. Each input X0
through X2 has its own filter time constant. The filter circuit assigns the outputs of the
filters as logical references X0 through X2.

���
���������

��
���������

� &

PLC
DL05

)�

+�,�+�

)�*�)-

+��*�+#

/�0�0�1

V7633 0060
�������!���

�.���	�	HSIO

%�5�34�)�*)�

)�)�

Signal pulses at inputs X0 – X2 are filtered by using a delay time. In the figure below,
the input pulse on the top line is longer than the filter time. The resultant logical input
to ladder is phase-shifted (delayed) by the filter time on both rising and falling edges.
In the bottom waveforms, the physical input pulse width is smaller than the filter time.
In this case, the logical input to the ladder program remains in the OFF state (input
pulse was filtered out).

Time

Physical Input X0

Filter Time

Logical Input X0

Physical Input X0

Logical Input X0

Filter Time

Purpose

Functional Block
Diagram

Input Filter
Timing Parameters

H
igh-S

peed Input and
P

ulse O
utput F

eatures
3–53

High-Speed Input and Pulse Output Features

Recall that V7633 is the HSIO Mode Select register. Refer to the diagram below. Use
BCD 60 in the lower byte of V7633 to select the High-Speed Counter Mode. The
DL05 does not use bits 8 - 15 in V7633.

0�# �" �� ��

Memory Location V7633
�� �� 123456789Bits

000 00001100

HSIO Mode Setup (BCD)

0 0 0 0

60 = Discrete Filtered Inputs

0 0 06

0

Bits 8 - 15 are not used
in V7633.

Choose the most convenient method of programming V7633 from the following:
� Include load and out instructions in your ladder program
� DirectSOFT’s memory editor
� Use the Handheld Programmer D2–HPP

We recommend using the first method above so that the HSIO setup becomes an
integral part of your application program. An example program later in this section
shows how to to this.

The configurable discrete input options for Discrete Filtered Inputs Mode are listed
in the table below. The filter time constant (delay) is programmable from 0 to 99 mS
(the input acts as a normal discrete input when the time constant is set to 0). The
code for this selection occupies the upper byte of the configuration register in BCD.
We combine this number with the required “06” in the lower byte to get “xx06”, where
xx = 0 to 99. Input X0, X1, and X2 can only be filtered inputs. Each input has its own
configuration register and filter time constant.

Input Configuration
Register

Function Hex Code
Required

X0 V7634 Filtered Input xx06 (xx = filter delay time)
0 - 99 ms (BCD)

X1 V7635 Filtered Input xx06 (xx = filter delay time)
0 - 99 ms (BCD)

X2 V7636 Filtered Input xx06 (xx = filter delay time)
0 - 99 ms (BCD)

Setup for Mode 60

X Input
Configuration

H
ig

h-
S

pe
ed

 In
pu

t a
nd

P
ul

se
 O

ut
pu

t F
ea

tu
re

s
3–54

High-speed Input and Pulse Output Features

The following program selects Mode 60, then programs the filter delay time
constants for inputs X0, X1, and X2. Each filter time constant is different, for
illustration purposes. The program is otherwise generic, and may be adapted to your
application.

SP0
LD
K60

Load constant K60 into the accumulator. This
selects Mode 60 as the HSIO mode.

OUT
V7633

Output the constant to V7633, the location of the
HSIO Mode select register.

DirectSOFT

Mode 60

LD
K2006

Load the constant K2006 which is required to select
filtered inputs with a 20 mS filter time constant.

OUT
V7635

Output this constant to V7635, configuring X1.

Filtered Inputs

OUT
V7636

Output this constant to V7636, configuring X2.

LD
K1006

Load the constant K1006 which is required to configure
filtered inputs with a time constant of 10 mS.

OUT
V7634

Output this constant to V7634, configuring X0.

END END coil marks the end of the main program..

Main Program Insert Main Program rungs here for your application.

LD
K5006

Load the constant K5006 which is required to select
filtered inputs with a 50 mS filter time constant.

Filtered Inputs
Program Example

��
CPU Specifications
and Operation

In This Chapter. . . .
— Introduction
— CPU Specifications
— CPU Hardware Setup
— CPU Operation
— Program Mode Operation
— Run Mode Operation
— I/O Response Time
— CPU Scan Time Considerations
— PLC Numbering Systems
— Memory Map
— DL05 System V-Memory
— X Input Bit Map
— Y Output Bit Map
— Stage� Control / Status Bit Map
— Control Relay Bit Map
— Timer Status Bit Map
— Counter Status Bit Map
— Network Configuration
— Network Slave Operation
— Network Master Operation

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–2

CPU Specifications and Operation

Introduction

The Central Processing Unit (CPU) is the heart of the Micro PLC. Almost all PLC
operations are controlled by the CPU, so it is important that it is set up correctly. This
chapter provides the information needed to understand:

� Steps required to set up the CPU
� Operation of ladder programs
� Organization of Variable Memory

Output CircuitInput Circuit

CPU
2 Comm.

Ports

Main
Power
Supply

To Programming Device
or Operator Interface

8 Discrete Inputs Commons Commons6 Discrete Outputs
Power
Input

PLC
DL05

NOTE: The High-Speed I/O function (HSIO) consists of dedicated but configurable
hardware in the DL05. It is not considered part of the CPU, because it does not
execute the ladder program. For more on HSIO operation, see Chapter 3.

The DL05 Micro PLC which has 6K words of memory comprised of 2.0K of ladder
memory and 4K words of V-memory (data registers). Program storage is in the
FLASH memory which is a part of the CPU board in the PLC. In addition, there is
RAM with the CPU which will store system parameters, V-memory, and other data
which is not in the application program. The RAM is backed up by a
“super-capacitor”, storing the data for several hours in the event of a power outage.
The capacitor automatically charges during powered operation of the PLC.
The DL05 supports fixed I/O which includes eight discrete input points and six output
points. No provision for expansion beyond these fourteen I/O points is available in
the DL05 model PLCs.
Over 120 different instructions are available for program development as well as
extensive internal diagnostics that can be monitored from the application program or
from an operator interface. Chapters 5, 6, and 7 provide detailed descriptions of the
instructions.
The DL05 provides two built-in RS232C communication ports, so you can easily
connect a handheld programmer, operator interface, or a personal computer without
needing any additional hardware.

DL05
CPU Features

C
P

U
 S

pecifications
and O

peration
4–3

CPU Specifications and Operation

CPU Specifications
Feature DL05

Total Program memory (words) 6K

Ladder memory (words) 2048

Total V-memory (words) 4096

User V-memory (words) 3968

Non-volatile V Memory (words) 128

Contact execution (boolean) 2.0uS

Typical scan (boolean) 2.7–3.2mS

RLL Ladder style Programming Yes

RLL and RLLPLUS Programming Yes

Run Time Edits Yes

Scan Variable / fixed

Handheld programmer Yes

DirectSOFT programming for Windows Yes

Built-in communication ports (RS232C) Yes

FLASH Memory Standard on CPU

Local Discrete I/O points available 14

Local Analog input / output channels maximum None

High-Speed I/O (quad., pulse out, interrupt, pulse catch, etc.) Yes, 2

I/O Point Density 8 inputs, 6 outputs

Number of instructions available (see Chapter 5 for details) 129

Control relays 512

Special relays (system defined) 512

Stages in RLLPLUS 256

Timers 128

Counters 128

Immediate I/O Yes

Interrupt input (external / timed) Yes

Subroutines Yes

For/Next Loops Yes

Math Integer

Drum Sequencer Instruction Yes

Time of Day Clock/Calendar No

Internal diagnostics Yes

Password security Yes

System error log No

User error log No

Battery backup No (built–in super–cap)

Yes, with mem cartridge

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–4

CPU Specifications and Operation

CPU Hardware Setup

Cables are available that allow you to quickly and easily connect a Handheld
Programmer or a personal computer to the DL05 PLCs. However, if you need to
build your own cables, use the pinout diagrams shown. The DL05 PLCs require an
RJ-12 phone plug to fit the built-in jacks.
The Micro PLC has two built-in RS232C communication ports. Port 1 is generally
used for connecting to a D2-HPP, DirectSOFT, operator interface, MODBUS
slave, or a DirectNET slave. . The baud rate is fixed at 9600 baud for port 1. Port 2
can be used to connect to a D2-HPP, DirectSOFT, operator interface, MODBUS
master/slave, or a DirectNET master/slave. Port 2 has a range of speeds from
300 baud to 38.4K baud.

Port 1 Pin Descriptions
1 0V Power (–) connection (GND)
2 5V Power (+) connection
3 RXD Receive Data (RS232C)
4 TXD Transmit Data (RS232C
5 5V Power (+) conection
6 0V Power (–) connection (GND)

6-pin Female
Modular Connector

Port 2 Pin Descriptions
1 0V Power (–) connection (GND)
2 5V Power (+) connection
3 RXD Receive Data (RS232C)
4 TXD Transmit Data (RS232C
5 RTS Request to Send
6 0V Power (–) connection (GND)

1 2 3 4 5 6

Top View

1 1

Communication Port 1

Com 1 Connects to HPP, DirectSOFT,
operator interfaces, etc.
6-pin, RS232C
9600 Baud (Fixed)
Parity - odd (default)
Station address 1 (fixed)
8 data bits
1 start, 1 stop bit
Asynchronous, Half-duplex, DTE
Protocol: (Auto-Select)

K sequence (Slave only)
DirectNET (Slave only)
MODBUS (Slave only)

Communication Port 2

Com 2 Connects to HPP, DirectSOFT,
operator interfaces, etc.
6-pin, RS232C
Communication speed (baud)

300, 600, 1200, 2400, 4800,
9600, 19200, 38400

Parity - odd (default), even, none
Station address 1 (default)
8 data bits
1 start, 1 stop bit
Asynchronous, Half-duplex, DTE
Protocol: (Auto-Select)

K sequence (Slave only)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence/Print

Communication
Port Pinout
Diagrams

C
P

U
 S

pecifications
and O

peration
4–5

CPU Specifications and Operation

If you’re using a Personal Computer with the DirectSOFT programming package,
you can connect the computer to either of the DL05’s programming ports. For an
engineering office environment (typical during program development), this is the
preferred method of programming.

Use cable part no.
D2–DSCBL

The Handheld programmer is connected to the CPU with a handheld programmer
cable. This device is ideal for maintaining existing installations or making small
program changes. The handheld programmer is shipped with a cable, which is
approximately 6.5 feet (200 cm) long.

For replacement
cable, use part no.

DV–1000CBL

Even if you have years of experience using PLCs, there are a few things you need to
do before you can start entering programs. This section includes some basic things,
such as changing the CPU mode, but it also includes some things that you may
never have to use. Here’s a brief list of the items that are discussed.

� Selecting and Changing the CPU Modes
� Using Auxiliary Functions
� Clearing the program (and other memory areas)
� How to initialize system memory
� Setting retentive memory ranges

The following paragraphs provide the setup information necessary to get the CPU
ready for programming. They include setup instructions for either type of
programming device you are using. The D2–HPP Handheld Programmer Manual
provides the Handheld keystrokes required to perform all of these operations. The
DirectSOFT Manual provides a description of the menus and keystrokes required
to perform the setup procedures via DirectSOFT.

Connecting the
Programming
Devices

CPU Setup
Information

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–6

CPU Specifications and Operation

Status Indicators

Mode Switch

The status indicator LEDs on the CPU front panels have specific functions which can
help in programming and troubleshooting.

Indicator Status Meaning

PWR ON Power good

OFF Power failure

RUN ON CPU is in Run Mode

OFF CPU is in Stop or program Mode

CPU ON CPU self diagnostics error

OFF CPU self diagnostics good

TX1 ON Data is being transmitted by the CPU - Port 1

OFF No data is being transmitted by the CPU - Port 1

RX1 ON Data is being received by the CPU - Port 1

OFF No data is being received by the CPU - Port 1

TX2 ON Data is being transmitted by the CPU - Port 2

OFF No data is being transmitted by the CPU - Port 2

RX2 ON Data is being received by the CPU - Port 2

OFF No data is being received by the CPU - Port 2

The mode switch on the DL05 PLC provides positions for enabling and disabling
program changes in the CPU. Unless the mode switch is in the TERM position, RUN
and STOP mode changes will not be allowed by any interface device, (handheld
programmer, DirectSOFT programing package or operator interface). Programs
may be viewed or monitored but no changes may be made. If the switch is in the
TERM position and no program password is in effect, all operating modes as well as
program access will be allowed through the connected programming or monitoring
device.

Status Indicators

Mode Switch
Functions

C
P

U
 S

pecifications
and O

peration
4–7

CPU Specifications and Operation

Modeswitch Position CPU Action

RUN (Run Program) CPU is forced into the RUN mode if no errors are encountered. No
changes are allowed by the attached programming/monitoring device.

TERM (Terminal) RUN, PROGRAM and the TEST modes are available. Mode and
program changes are allowed by the programming/monitoring device.

STOP CPU is forced into the STOP mode. No changes are allowed by the
programming/monitoring device.

There are two ways to change the CPU mode. You can use the CPU mode switch to
select the operating mode, or you can place the mode switch in the TERM position
and use a programming device to change operating modes. With the switch in this
position, the CPU can be changed between Run and Program modes. You can use
either DirectSOFT or the Handheld Programmer to change the CPU mode of
operation. With DirectSOFT you use a menu option in the PLC menu. With the
Handheld Programmer, you use the MODE key.

Menu Options
MODE

Key

The DL05 CPU will normally power-up in the mode that it was in just prior to the
power interruption. For example, if the CPU was in Program Mode when the power
was disconnected, the CPU will power-up in Program Mode (see warning note
below).

WARNING: Once the super capacitor has discharged, the system memory
may not retain the previous mode of operation. When this occurs, the PLC can
power-up in either Run or Program Mode if the mode switch is in the term
position. There is no way to determine which mode will be entered as the
startup mode. Failure to adhere to this warning greatly increases the risk of
unexpected equipment startup.

Changing Modes in
the DL05 PLC

Mode of Operation
at Power-up

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–8

CPU Specifications and Operation

Many CPU setup tasks involve the use of Auxiliary (AUX) Functions. The AUX
Functions perform many different operations, ranging from clearing ladder memory,
displaying the scan time, copying programs to EEPROM in the handheld
programmer, etc. They are divided into categories that affect different system
parameters. Appendix A provides a description of the AUX functions.
You can access the AUX Functions from DirectSOFT or from the D2–HPP
Handheld Programmer. The manuals for those products provide step-by-step
procedures for accessing the AUX Functions. Some of these AUX Functions are
designed specifically for the Handheld Programmer setup, so they will not be
needed (or available) with the DirectSOFT package. The following table shows a list
of the Auxiliary functions for the Handheld Programmer.

AUX 2* — RLL Operations 5B HSIO Configuration

21 Check Program 5D Scan Control Setup

22 Change Reference AUX 6* — Handheld Programmer
Configuration

23 Clear Ladder Range 61 Show Revision Numbers

24 Clear All Ladders 62 Beeper On / Off

AUX 3* — V-Memory Operations 65 Run Self Diagnostics

31 Clear V Memory AUX 7* — EEPROM Operations

AUX 4* — I/O Configuration 71 Copy CPU memory to HPP EEPROM

41 Show I/O Configuration 72 Write HPP EEPROM to CPU

AUX 5* — CPU Configuration 73 Compare CPU to HPP EEPROM

51 Modify Program Name 74 Blank Check (HPP EEPROM)

53 Display Scan Time 75 Erase HPP EEPROM

54 Initialize Scratchpad 76 Show EEPROM Type (CPU and
HPP)

55 Set Watchdog Timer AUX 8* — Password Operations

56 Set Communication Port 2 81 Modify Password

57 Set Retentive Ranges 82 Unlock CPU

58 Test Operations 83 Lock CPU

59 Override Setup

Before you enter a new program, be sure to always clear ladder memory. You can
use AUX Function 24 to clear the complete program.
You can also use other AUX functions to clear other memory areas.

� AUX 23 — Clear Ladder Range
� AUX 24 — Clear all Ladders
� AUX 31 — Clear V Memory

The DL05 Micro PLC maintain system parameters in a memory area often referred
to as the “scratchpad”. In some cases, you may make changes to the system setup
that will be stored in system memory. For example, if you specify a range of Control
Relays (CRs) as retentive, these changes are stored in system memory.
AUX 54 resets the system memory to the default values.

Auxiliary Functions

Clearing an
Existing Program

Initializing System
Memory

C
P

U
 S

pecifications
and O

peration
4–9

CPU Specifications and Operation

WARNING: You may never have to use this feature unless you want to clear any
setup information that is stored in system memory. Usually, you’ll only need to
initialize the system memory if you are changing programs and the old program
required a special system setup. You can usually load in new programs without ever
initializing system memory.

Remember, this AUX function will reset all system memory. If you have set special
parameters such as retentive ranges, etc. they will be erased when AUX 54 is used.
Make sure you that you have considered all ramifications of this operation before
you select it.

The DL05 PLCs provide certain ranges of retentive memory by default. The default
ranges are suitable for many applications, but you can change them if your
application requires additional retentive ranges or no retentive ranges at all. The
default settings are:

Memory Area
DL05

Memory Area
Default Range Available Range

Control Relays C400 – C777 C0 – C777

V Memory V1400 – V7777 V0 – V7777

Timers None by default T0 – T177

Counters CT0 – CT177 CT0 – CT177

Stages None by default S0 – S377

You can use AUX 57 to set the retentive ranges. You can also use DirectSOFT

menus to select the retentive ranges. Appendix A contains detailed information
about auxiliary

WARNING: The DL05 PLCs do not have battery back-up (unless the memory
cartridge, D0–01MC, is installed) The super capacitor will retain the values in the
event of a power loss, but only for a short period of time, depending on conditions.

Setting Retentive
Memory Ranges

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–10

CPU Specifications and Operation

The DL05 PLCs allow you to use a password to help minimize the risk of
unauthorized program and/or data changes. Once you enter a password you can
“lock” the PLC against access. Once the CPU is locked you must enter the password
before you can use a programming device to change any system parameters.
You can select an 8-digit numeric password. The Micro PLCs are shipped from the
factory with a password of 00000000. All zeros removes the password protection. If
a password has been entered into the CPU you cannot just enter all zeros to remove
it. Once you enter the correct password, you can change the password to all zeros to
remove the password protection.

WARNING: Make sure you remember your password. If you forget your password
you will not be able to access the CPU. The Micro PLC must be returned to the
factory to have the password removed.

You can use the D2–HPP Handheld
Programmer or DirectSOFT to enter a
password. The following diagram shows how
you can enter a password with the Handheld
Programmer.

D2–HPP

��������

��������

DirectSOFT

								

��������

CLR CLR AUX
8

I
1

B ENT

X X ENTX

Select AUX 81

Enter the new 8-digit password

Press CLR to clear the display

There are three ways to lock the CPU once the password has been entered.
1. If the CPU power is disconnected, the CPU will be automatically locked

against access.
2. If you enter the password with DirectSOFT, the CPU will be automatically

locked against access when you exit DirectSOFT.
3. Use AUX 83 to lock the CPU.

When you use DirectSOFT, you will be prompted for a password if the CPU has
been locked. If you use the Handheld Programmer, you have to use AUX 82 to
unlock the CPU. Once you enter AUX 82, you will be prompted to enter the
password.

Using a Password

C
P

U
 S

pecifications
and O

peration
4–11

CPU Specifications and Operation

CPU Operation

Achieving the proper control for your equipment or process requires a good
understanding of how DL05 CPUs control all aspects of system operation. There are
four main areas to understand before you create your application program:

� CPU Operating System — the CPU manages all aspects of system
control. A quick overview of all the steps is provided in the next section.

� CPU Operating Modes — The two primary modes of operation are
Program Mode and Run Mode.

� CPU Timing — The two important areas we discuss are the I/O
response time and the CPU scan time.

� CPU Memory Map — DL05 CPUs offer a wide variety of resources,
such as timers, counters, inputs, etc. The memory map section shows
the organization and availability of these data types.

At powerup, the CPU initializes the
internal electronic hardware. Memory
initialization starts with examining the
retentive memory settings. In general, the
contents of retentive memory is
preserved, and non-retentive memory is
initialized to zero (unless otherwise
specified).
After the one-time powerup tasks, the
CPU begins the cyclical scan activity. The
flowchart to the right shows how the tasks
differ, based on the CPU mode and the
existence of any errors. The “scan time” is
defined as the average time around the
task loop. Note that the CPU is always
reading the inputs, even during program
mode. This allows programming tools to
monitor input status at any time.
The outputs are only updated in Run
mode. In program mode, they are in the off
state.
Error detection has two levels. Non-fatal
errors are reported, but the CPU remains
in its current mode. If a fatal error occurs,
the CPU is forced into program mode and
the outputs go off.

YES

Power up

Initialize hardware

Initialize various memory
based on retentive

configuration

Update input

Service peripheral

PGM
Mode?

RUN

Execute program

Update output

Do diagnostics

��

NO

NO
Fatal error

Force CPU into
PGM mode

OK?

Report error, set flag
register, turn on LED

YES

Update Special Relays

CPU Operating
System

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–12

CPU Specifications and Operation

In Program Mode, the CPU does not
execute the application program or update
the output points. The primary use for
Program Mode is to enter or change an
application program. You also use
program mode to set up the CPU
parameters, such as HSIO features,
retentive memory areas, etc.
You can use a programming device, such
as DirectSOFT or the D2–HPP Handheld
Programmer to place the CPU in Program
Mode.

Download
Program

In Run Mode, the CPU executes the
application program and updates the I/O
system. You can perform many operations
during Run Mode. Some of these include:
� Monitor and change I/O point status
� Update timer/counter preset values
� Update Variable memory locations

Run Mode operation can be divided into
several key areas. For the vast majority of
applications, some of these execution
segments are more important than others.
For example, you need to understand how
the CPU updates the I/O points, handles
forcing operations, and solves the
application program. The remaining
segments are not that important for most
applications.
You can use DirectSOFT or the D2–HPP
Handheld Programmer to place the CPU
in Run Mode.

Read Inputs

Solve the Application Program

Write Outputs

Diagnostics

Update Special Relays

Service Peripherals

Normal Run mode scan

You can also edit the program during Run Mode. The Run Mode Edits are not
“bumpless” to the outputs. Instead, the CPU maintains the outputs in their last state
while it accepts the new program information. If an error is found in the new program,
then the CPU will turn all the outputs off and enter the Program Mode. This feature is
discussed in more detail in Chapter 9.

WARNING: Only authorized personnel fully familiar with all aspects of the
application should make changes to the program. Changes during Run Mode
become effective immediately. Make sure you thoroughly consider the impact of any
changes to minimize the risk of personal injury or damage to equipment.

Program Mode

Run Mode

C
P

U
 S

pecifications
and O

peration
4–13

CPU Specifications and Operation

The CPU reads the status of all inputs, then stores it in the image register. Input
image register locations are designated with an X followed by a memory location.
Image register data is used by the CPU when it solves the application program.
Of course, an input may change after the CPU has just read the inputs. Generally,
the CPU scan time is measured in milliseconds. If you have an application that
cannot wait until the next I/O update, you can use Immediate Instructions. These do
not use the status of the input image register to solve the application program. The
Immediate instructions immediately read the input status directly from the I/O
modules. However, this lengthens the program scan since the CPU has to read the
I/O point status again. A complete list of the Immediate instructions is included in
Chapter 5.

After the CPU reads the inputs from the input modules, it reads any attached
peripheral devices. This is primarily a communications service for any attached
devices. For example, it would read a programming device to see if any input, output,
or other memory type status needs to be modified. There are two basic types of
forcing available with the DL05 CPUs.

� Forcing from a peripheral – not a permanent force, good only for one
scan

� Bit Override – holds the I/O point (or other bit) in the current state. Valid
bits are X, Y, C, T, CT, and S. (These memory types are discussed in
more detail later in this chapter).

Regular Forcing — This type of forcing can temporarily change the status of a
discrete bit. For example, you may want to force an input on, even though it is really
off. This allows you to change the point status that was stored in the image register.
This value will be valid until the image register location is written to during the next
scan. This is primarily useful during testing situations when you need to force a bit on
to trigger another event.

Bit Override — Bit override can be enabled on a point-by-point basis by using AUX
59 from the Handheld Programmer or, by a menu option from within DirectSOFT.
Bit override basically disables any changes to the discrete point by the CPU. For
example, if you enable bit override for X1, and X1 is off at the time, then the CPU will
not change the state of X1. This means that even if X1 comes on, the CPU will not
acknowledge the change. So, if you used X1 in the program, it would always be
evaluated as “off” in this case. Of course, if X1 was on when the bit override was
enabled, then X1 would always be evaluated as “on”.
There is an advantage available when you use the bit override feature. The regular
forcing is not disabled because the bit override is enabled. For example, if you
enabled the Bit Override for Y0 and it was off at the time, then the CPU would not
change the state of Y0. However, you can still use a programming device to change
the status. Now, if you use the programming device to force Y0 on, it will remain on
and the CPU will not change the state of Y0. If you then force Y0 off, the CPU will
maintain Y0 as off. The CPU will never update the point with the results from the
application program or from the I/O update until the bit override is removed.
The following diagram shows a brief overview of the bit override feature. Notice the
CPU does not update the Image Register when bit override is enabled.

Read Inputs

Service Peripherals
and Force I/O

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–14

CPU Specifications and Operation

Input Update

Result of Program
Solution

OFF

Image Register (example)

Y1Y2...Y128
ONON...OFF

C0C1C2...C377
OFFOFFON...OFF

Y0
OFF

X1X2...X128
ONON...OFF

X0

Bit Override OFF Force from
Programmer

Input Update

Result of Program
Solution

Bit Override ONForce from
Programmer

WARNING: Only authorized personnel fully familiar with all aspects of the
application should make changes to the program. Make sure you thoroughly
consider the impact of any changes to minimize the risk of personal injury or damage
to equipment.

There are certain V-memory locations that contain Special Relays and other
dedicated register information. This portion of the execution cycle makes sure these
locations get updated on every scan. Also, there are several different Special
Relays, such as diagnostic relays, etc., that are also updated during this segment.

The CPU evaluates each instruction in the
application program during this segment
of the scan cycle. The instructions define
the relationship between the input
conditions and the desired output
response. The CPU uses the output
image register area to store the status of
the desired action for the outputs. Output
image register locations are designated
with a Y followed by a memory location.
The actual outputs are updated during the
write outputs segment of the scan cycle.
There are immediate output instructions
available that will update the output points
immediately instead of waiting until the
write output segment. A complete list of
the Immediate instructions is provided in
Chapter 5.
The internal control relays (C), the stages
(S), and the variable memory (V) are also
updated in this segment.

Read Inputs

Solve the Application Program

Write Outputs

Diagnostics

Update Special Relays

Service Peripherals

Normal Run mode scan

You may recall that you can force various types of points in the system. (This was
discussed earlier in this chapter.) If any I/O points or memory data have been forced,
the output image register also contains this information.

Update Special
Relays and Special
Registers

Solve Application
Program

C
P

U
 S

pecifications
and O

peration
4–15

CPU Specifications and Operation

Once the application program has solved the instruction logic and constructed the
output image register, the CPU writes the contents of the output image register to the
corresponding output points. Remember, the CPU also made sure that any forcing
operation changes were stored in the output image register, so the forced points get
updated with the status specified earlier.

During this part of the scan, the CPU performs all system diagnostics and other tasks
such as calculating the scan time and resetting the watchdog timer. There are many
different error conditions that are automatically detected and reported by the DL05
PLCs. Appendix B contains a listing of the various error codes.
Probably one of the more important things that occurs during this segment is the
scan time calculation and watchdog timer control. The DL05 CPU has a “watchdog”
timer that stores the maximum time allowed for the CPU to complete the solve
application segment of the scan cycle. If this time is exceeded the CPU will enter the
Program Mode and turn off all outputs. The default value set from the factory is 200
ms. An error is automatically reported. For example, the Handheld Programmer
would display the following message “E003 S/W TIMEOUT” when the scan overrun
occurs.
You can use AUX 53 to view the minimum, maximum, and current scan time. Use
AUX 55 to increase or decrease the watchdog timer value.

I/O Response Time

I/O response time is the amount of time required for the control system to sense a
change in an input point and update a corresponding output point. In the majority of
applications, the CPU performs this task in such a short period of time that you may
never have to concern yourself with the aspects of system timing. However, some
applications do require extremely fast update times. In these cases, you may need to
know how to to determine the amount of time spent during the various segments of
operation.
There are four things that can affect the I/O response time.

� The point in the scan cycle when the field input changes states
� Input Off to On delay time
� CPU scan time
� Output Off to On delay time

The next paragraphs show how these items interact to affect the response time.

The I/O response time is shortest when the input changes just before the Read
Inputs portion of the execution cycle. In this case the input status is read, the
application program is solved, and the output point gets updated. The following
diagram shows an example of the timing for this situation.

Write Outputs

Diagnostics

Is Timing Important
for Your
Application?

Normal Minimum
I/O Response

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–16

CPU Specifications and Operation

Solve
Program

Read
Inputs

Write
Outputs

Solve
ProgramScan

Solve
Program

Field Input

Input
Off/On Delay

CPU Reads
Inputs

Output
Off/On Delay

I/O Response Time

Scan

Solve
Program

CPU Writes
Outputs

In this case, you can calculate the response time by simply adding the following
items:

Input Delay + Scan Time + Output Delay = Response Time

The I/O response time is longest when the input changes just after the Read Inputs
portion of the execution cycle. In this case the new input status is not read until the
following scan. The following diagram shows an example of the timing for this
situation.

Solve
Program

Read
Inputs

Write
Outputs

Solve
ProgramScan

Solve
Program

Field Input

Input
Off/On Delay

CPU Reads
Inputs

Output
Off/On Delay

I/O Response Time

Scan

Solve
Program

CPU Writes
Outputs

In this case, you can calculate the response time by simply adding the following
items:

Input Delay +(2 x Scan Time) + Output Delay = Response Time

Normal Maximum
I/O Response

C
P

U
 S

pecifications
and O

peration
4–17

CPU Specifications and Operation

There are a few things you can do the help improve throughput.
� You can choose instructions with faster execution times
� You can use immediate I/O instructions (which update the I/O points

during the program execution)
� You can use the HSIO Mode 50 Pulse Catch features designed to

operate in high-speed environments. See the Chapter 3 for details on
using this feature.

Of these three things the Immediate I/O instructions are probably the most important
and most useful. The following example shows how an immediate input instruction
and immediate output instruction would affect the response time.

Solve
Program

Read
Input

Immediate

Normal
Write

Outputs

Solve
ProgramScan

Solve
Program

Field Input

Input
Off/On Delay

Output
Off/On Delay

I/O Response Time

Scan

Solve
Program

Normal
Read
Input

Write
Output

Immediate

In this case, you can calculate the response time by simply adding the following
items.

 Input Delay + Instruction Execution Time + Output Delay = Response Time

The instruction execution time would be calculated by adding the time for the
immediate input instruction, the immediate output instruction, and any other
instructions in between the two.

NOTE: Even though the immediate instruction reads the most current status from
I/O, it only uses the results to solve that one instruction. It does not use the new
status to update the image register. Therefore, any regular instructions that follow
will still use the image register values. Any immediate instructions that follow will
access the I/O again to update the status.

Improving
Response Time

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–18

CPU Specifications and Operation

CPU Scan Time Considerations

The scan time covers all the cyclical tasks
that are performed by the operating
system. You can use DirectSOFT or the
Handheld Programmer to display the
minimum, maximum, and current scan
times that have occurred since the
previous Program Mode to Run Mode
transition. This information can be very
important when evaluating the
performance of a system.
As we’ve shown previously there are
several segments that make up the scan
cycle. Each of these segments requires a
certain amount of time to complete. Of all
the segments, the following are the most
important.
� Input Update
� Peripheral Service
� Program Execution
� Output Update
� Timed Interrupt Execution
The only one you really have the most
control over is the amount of time it takes
to execute the application program. This is
because different instructions take
different amounts of time to execute. So, if
you think you need a faster scan, then you
can try to choose faster instructions.
Your choice of I/O type and peripheral
devices can also affect the scan time.
However, these things are usually dictated
by the application.
The following paragraphs provide some
general information on how much time
some of the segments can require.

YES

Power up

Initialize hardware

Initialize various memory
based on retentive

configuration

Update input

Service peripheral

PGM
Mode?

RUN

Execute program

Update output

Do diagnostics

��

NO

NO
Fatal error

Force CPU into
PGM mode

OK?

Report error, set flag
register, turn on LED

YES

Update Special Relays

The time required during each scan to read the input status is 40 �S. Don’t confuse
this with the I/O response time that was discussed earlier.

The time required to write the output status is 629 �S. Don’t confuse this with the I/O
response time that was discussed earlier.

Reading Inputs

Writing Outputs

C
P

U
 S

pecifications
and O

peration
4–19

CPU Specifications and Operation

The CPU processes the program from address 0 to the END instruction. The CPU
executes the program left to right and top to bottom. As each rung is evaluated the
appropriate image register or memory location is updated. The time required to
solve the application program depends on the type and number of instructions used,
and the amount of execution overhead.
Just add the execution times for all the instructions in your program to determine to
total execution time. Appendix C provides a complete list of the instruction execution
times for the DL05 Micro PLC. For example, the execution time for running the
program shown below is calculated as follows:

X0 X1 Y0
OUT

C0

C100 LD
K10

C101 OUT V2002

C102 LD
K50

C103 OUT V2006

X5 X10 Y3
OUT

END

Instruction Time

STR X0 2 �s
OR C0 1.6 �s
ANDN X1 1.6 �s
OUT Y0 6.8 �s
STRN C100 2.3 �s
LD K10 42.7 �s
STRN C101 2.3 �s
OUT V2002 16.6 �s
STRN C102 2.3 �s
LD K50 42.7 �s
STRN C103 2.3 �s
OUT V2006 16.6 �s
STR X5 2 �s
ANDN X10 1.6 �s
OUT Y3 6.8 �s
END 24 �s

SUBTOTAL 174.2 �s

Overhead DL05
Minimum 0.66 mS
Maximum 2.5 ms

TOTAL TIME = (Program execution time + Overhead) x 1.1

The program above takes only 174.2 �s to execute during each scan. The DL05
spends 0.1ms, on internal timed interrupt management, for every 1ms of instruction
time. The total scan time is calculated by adding the program execution time to the
overhead (shown above)and multiplying the result (ms) by 1.1. “Overhead” includes
all other housekeeping and diagnostic tasks. The scan time will vary slightly from
one scan to the next, because of fluctuation in overhead tasks.

Program Control Instructions — the DL05 PLCs have an interrupt routine feature
that changes the way a program executes. Since this instruction interrupts normal
program flow, it will have an effect on the program execution time. For example, a
timed interrupt routine with a 10 mS period interrupts the main program execution
(before the END statement) every 10 mS, so the CPU can execute the interrupt
routine. Chapter 5 provides detailed information on interrupts.

Application
Program Execution

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–20

CPU Specifications and Operation

PLC Numbering Systems

If you are a new PLC user or are using
PLCDirect PLCs for the first time, please
take a moment to study how our PLCs use
numbers. You’ll find that each PLC
manufacturer has their own conventions
on the use of numbers in their PLCs. We
want to take just a moment to familiarize
you with how numbers are used in
PLCDirect PLCs. The information you
learn here applies to all of our PLCs!

1482
0402

1001011011
7

3
3A9

? ?
?

?
BCD

binary

decimal

octal

hexadecimal

ASCII

1011

–961428

177 ?

–300124
A 72B ?

As any good computer does, PLCs store and manipulate numbers in binary form:
just ones and zeros. So why do we have to deal with numbers in so many different
forms? Numbers have meaning, and some representations are more convenient
than others for particular purposes. Sometimes we use numbers to represent a size
or amount of something. Other numbers refer to locations or addresses, or to time. In
science we attach engineering units to numbers to give a particular meaning.
PLCs offer a fixed amount of resources, depending on the model and configuration.
We use the word “resources” to include variable memory (V-memory), I/O points,
timers, counters, etc. Most modular PLCs allow you to add I/O points in groups of
eight. In fact, all the resources of our PLCs are counted in octal. It’s easier for
computers to count in groups of eight than ten, because eight is an even power of 2.

Octal means simply counting in groups of
eight things at a time. In the figure to the
right, there are eight circles. The quantity
in decimal is “8”, but in octal it is “10” (8 and
9 are not valid in octal). In octal, “10”
means 1 group of 8 plus 0 (no individuals).

Decimal 1 2 3 4 5 6 7 8

Octal 1 2 3 4 5 6 7 10

In the figure below, we have two groups of eight circles. Counting in octal we have
“20” items, meaning 2 groups of eight, plus 0 individuals Don’t say “twenty”, say
“two–zero octal”. This makes a clear distinction between number systems.

Decimal 1 2 3 4 5 6 7 8

Octal 1 2 3 4 5 6 7 10

9 10 11 12 13 14 15 16

11 12 13 14 15 16 17 20

After counting PLC resources, it’s time to access PLC resources (there’s a
difference). The CPU instruction set accesses resources of the PLC using octal
addresses. Octal addresses are the same as octal quantities, except they start
counting at zero. The number zero is significant to a computer, so we don’t skip it.

Our circles are in an array of square
containers to the right. To access a
resource, our PLC instruction will address
its location using the octal references
shown. If these were counters, “CT14”
would access the black circle location.

0 1 2 3 4 5 6 7

2 X

1 X

X

X=

PLC Resources

C
P

U
 S

pecifications
and O

peration
4–21

CPU Specifications and Operation

Variable memory (called “V-memory”) stores data for the ladder program and for
configuration settings. V-memory locations and V-memory addresses are the same
thing, and are numbered in octal. For example, V2073 is a valid location, while
V1983 is not valid (“9” and “8” are not valid octal digits).
Each V-memory location is one data word wide, meaning 16 bits. For configuration
registers, our manuals will show each bit of a V-memory word. The least significant
bit (LSB) will be on the right, and the most significant bit (MSB) on the left. We use the
word “significant”, referring to the relative binary weighting of the bits.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1

MSB LSB

V-memory data
(binary)

V-memory address
(octal)

V2017

V-memory data is 16-bit binary, but we rarely program the data registers one bit at a
time. We use instructions or viewing tools that let us work with decimal, octal, and
hexadecimal numbers. All these are converted and stored as binary for us.
A frequently-asked question is “How do I tell if a number is octal, BCD, or hex”? The
answer is that we usually cannot tell just by looking at the data... but it does not really
matter. What matters is: the source or mechanism which writes data into a
V-memory location and the thing which later reads it must both use the same data
type (i.e., octal, hex, binary, or whatever). The V-memory location is just a storage
box... that’s all. It does not convert or move the data on its own.
Since humans naturally count in decimal (10 fingers, 10 toes), we prefer to enter and
view PLC data in decimal as well. However, computers are more efficient in using
pure binary numbers. A compromise solution between the two is Binary-Coded
Decimal (BCD) representation. A BCD digit ranges from 0 to 9, and is stored as four
binary bits (a nibble). This permits each V-memory location to store four BCD digits,
with a range of decimal numbers from 0000 to 9999.

0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0

4 9 3 6

V-memory storage

BCD number

In a pure binary sense, a 16-bit word can represent numbers from 0 to 65535. In
storing BCD numbers, the range is reduced to only 0 to 9999. Many math
instructions use Binary-Coded Decimal (BCD) data, and DirectSOFT and the
handheld programmer allow us to enter and view data in BCD.

Hexadecimal numbers are similar to BCD numbers, except they utilize all possible
binary values in each 4-bit digit. They are base-16 numbers so we need 16 different
digits. To extend our decimal digits 0 through 9, we use A through F as shown.

8 9 10 11 12 13 14 150 1 2 3 4 5 6 7

8 9 A B C D E F0 1 2 3 4 5 6 7

Decimal

Hexadecimal

A 4-digit hexadecimal number can represent all 65536 values in a V-memory word.
The range is from 0000 to FFFF (hex). PLCs often need this full range for sensor
data, etc. Hexadecimal is just a convenient way for humans to view full binary data.

1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0

A 7 F 4

V-memory storage

Hexadecimal number

V–Memory

Binary-Coded
Decimal Numbers

Hexadecimal
Numbers

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–22

CPU Specifications and Operation

Memory Map

With any PLC system, you generally have many different types of information to
process. This includes input device status, output device status, various timing
elements, parts counts, etc. It is important to understand how the system represents
and stores the various types of data. For example, you need to know how the system
identifies input points, output points, data words, etc. The following paragraphs
discuss the various memory types used in DL05 Micro PLCs. A memory map
overview for the CPU follows the memory descriptions.

All memory locations and resources are
numbered in Octal (base 8). For example,
the diagram shows how the octal
numbering system works for the discrete
input points. Notice the octal system does
not contain any numbers with the digits 8
or 9.

X0 X1 X2 X3 X4 X5 X6 X7

X10 X11

As you examine the different memory
types, you’ll notice two types of memory
in the DL05, discrete and word memory.
Discrete memory is one bit that can be
either a 1 or a 0. Word memory is referred
to as V memory (variable) and is a 16-bit
location normally used to manipulate
data/numbers, store data/numbers, etc.
Some information is automatically stored
in V memory. For example, the timer
current values are stored in V memory. 0 11 0 1 0 0 0 0 0 0 1 0 0 1 0

X0

Discrete – On or Off, 1 bit

Word Locations – 16 bits

The discrete memory area is for inputs, outputs, control relays, special relays,
stages, timer status bits and counter status bits. However, you can also access the
bit data types as a V-memory word. Each V-memory location contains 16
consecutive discrete locations. For example, the following diagram shows how the X
input points are mapped into V-memory locations.

X0X1X2X3X4X5X6X7

0123456789101112131415 V40400Bit #

8 Discrete (X) Input Points

These discrete memory areas and their corresponding V memory ranges are listed
in the memory area table for DL05 Micro PLCs on the following pages.

Octal Numbering
System

Discrete and Word
Locations

V Memory
Locations for
Discrete Memory
Areas

C
P

U
 S

pecifications
and O

peration
4–23

CPU Specifications and Operation

The discrete input points are noted by an
X data type. There are 8 discrete input
points and 256 discrete input addresses
available with DL05 CPUs. In this
example, the output point Y0 will be
turned on when input X0 energizes.

Y0
OUT

X0

The discrete output points are noted by a
Y data type. There are 6 discrete outputs
and 256 discrete output addresses
available with DL05 CPUs. In this
example, output point Y1 will be turned
on when input X1 energizes.

Y1
OUT

X1

Control relays are discrete bits normally
used to control the user program. The
control relays do not represent a real
world device, that is, they cannot be
physically tied to switches, output coils,
etc. They are internal to the CPU.
Because of this, control relays can be
programmed as discrete inputs or
discrete outputs. These locations are
used in programming the discrete
memory locations (C) or the
corresponding word location which
contains 16 consecutive discrete
locations.
In this example, memory location C5 will
energize when input X6 turns on. The
second rung shows a simple example of
how to use a control relay as an input.

C5
OUT

X6

Y10
OUT

C5

Y20
OUT

Timer status bits reflect the relationship
between the current value and the preset
value of a specified timer. The timer
status bit will be on when the current
value is equal or greater than the preset
value of a corresponding timer.
When input X0 turns on, timer T1 will
start. When the timer reaches the preset
of 3 seconds (K of 30) timer status
contact T1 turns on. When T1 turns on,
output Y12 turns on. Turning off X0
resets the timer.

Y12
OUT

T1

TMR T1
K30

X0

Input Points
(X Data Type)

Output Points
(Y Data Type)

Control Relays
(C Data Type)

Timers and
Timer Status Bits
(T Data type)

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–24

CPU Specifications and Operation

V1 K100

As mentioned earlier, some information
is automatically stored in V memory. This
is true for the current values associated
with timers. For example, V0 holds the
current value for Timer 0, V1 holds the
current value for Timer 1, etc.
The primary reason for this is
programming flexibility. The example
shows how you can use relational
contacts to monitor several time intervals
from a single timer.

TMR T1
K1000

X0

V1 K30 Y2
OUT

V1 K50 Y3
OUT

V1 K75 Y4
OUT

Counter status bits that reflect the
relationship between the current value
and the preset value of a specified
counter. The counter status bit will be on
when the current value is equal to or
greater than the preset value of a
corresponding counter.

Y2
OUT

CT3

X0
CNT CT3

K10

X1

Each time contact X0 transitions from off to on, the counter increments by one. (If X1
comes on, the counter is reset to zero.) When the counter reaches the preset of 10
counts (K of 10) counter status contact CT3 turns on. When CT3 turns on, output Y2
turns on.

V1003 K8

Just like the timers, the counter current
values are also automatically stored in V
memory. For example, V1000 holds the
current value for Counter CT0, V1001
holds the current value for Counter CT1,
etc.
The primary reason for this is
programming flexibility. The example
shows how you can use relational
contacts to monitor the counter values.

V1003 K1 Y2
OUT

V1003 K3 Y3
OUT

V1003 K5 Y4
OUT

X0
CNT CT3

K10

X1

Timer Current
Values
(V Data Type)

Counters and
Counter Status
Bits
(CT Data type)

Counter Current
Values
(V Data Type)

C
P

U
 S

pecifications
and O

peration
4–25

CPU Specifications and Operation

Word memory is referred to as V memory
(variable) and is a 16-bit location
normally used to manipulate
data/numbers, store data/numbers, etc.
Some information is automatically stored
in V memory. For example, the timer
current values are stored in V memory.
The example shows how a four-digit
BCD constant is loaded into the
accumulator and then stored in a
V-memory location.

0 10 0 1 0 0 1 1 0 1 0 0 0 1 0

Word Locations – 16 bits

X0
LD

K1345

OUT V2000

1 3 4 5

Stages are used in RLLPLUS programs to
create a structured program, similar to a
flowchart. Each program Stage�
denotes a program segment. When the
program segment, or Stage�, is active,
the logic within that segment is executed.
If the Stage� is off, or inactive, the logic
is not executed and the CPU skips to the
next active Stage�. (See Chapter 7 for a
more detailed description of RLLPLUS

programming.)
Each Stage� also has a discrete status
bit that can be used as an input to
indicate whether the Stage� is active or
inactive. If the Stage� is active, then the
status bit is on. If the Stage� is inactive,
then the status bit is off. This status bit
can also be turned on or off by other
instructions, such as the SET or RESET
instructions. This allows you to easily
control stages throughout the program.

Ladder Representation

ISG
S0000

Start S1
JMP

SG
S0001

Present S2
JMP

Part

X1

X0

S6
JMP

Present
Part

X1

SG
S0002

Clamp
SET

S3
JMP

Locked
Part

X2

S400

Wait forStart

Check for a Part

Clamp the part

S500
JMP

Special relays are discrete memory
locations with pre-defined functionality.
There are many different types of special
relays. For example, some aid in
program development, others provide
system operating status information, etc.
Appendix D provides a complete listing of
the special relays.
In this example, control relay C10 will
energize for 50 ms and de-energize for
50 ms because SP5 is a pre–defined
relay that will be on for 50 ms and off for
50 ms.

C10
OUT

SP5

SP4: 1 second clock
SP5: 100 ms clock
SP6: 50 ms clock

Word Memory
(V Data Type)

Stages
(S Data type)

Special Relays
(SP Data Type)

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–26

CPU Specifications and Operation

DL05 System V-memory

The DL05 PLCs reserve several V-memory locations for storing system parameters
or certain types of system data. These memory locations store things like the error
codes, High-Speed I/O data, and other types of system setup information.

System
V-memory

Description of Contents Default Values / Ranges

V2320–V2377 The default location for multiple preset values for the High-Speed Counter N/A

V7620–V7627

V7620

V7621

V7622

V7623

V7624

V7625

V7626

V7627

Locations for DV–1000 operator interface parameters

Sets the V-memory location that contains the value.

Sets the V-memory location that contains the message.

Sets the total number (1 – 16) of V-memory locations to be displayed.

Sets the V-memory location that contains the numbers to be displayed.

Sets the V-memory location that contains the character code to be displayed.

Contains the function number that can be assigned to each key.

Powerup operational mode.

Change preset value.

V0 – V2377

V0 – V2377

1 – 16

V0 – V2377

V0 – V2377

V-memory location for X,
Y, or C points used.

0, 1, 2, 12, 3

0000 to 9999

V7630 Starting location for the multi–step presets for channel 1. The default value is
2320, which indicates the first value should be obtained from V2320. Since
there are 24 presets available, the default range is V2320 – V2377. You can
change the starting point if necessary.

Default: V2320
Range: V0 – V2320

V7631–V7632 Reserved N/A

V7633 Sets the desired function code for the high speed counter, interrupt, pulse
catch, pulse train, and input filter. Location can also be used to set the
power-up in Run Mode option.

Default: 0060
Lower Byte Range:
Range: 10 – Counter

20 – Quadrature
30 – Pulse Out
40 – Interrupt
50 – Pulse Catch
60 – Filtered
 discrete In.

Upper Byte Range:
Bits 8–12, 14, 15: Unused

Bit 13: Power–up in RUN,
only if Mode Switch is in
TERM position.

V7634 X0 Setup Register for High-Speed I/O functions Default: 1006

V7635 X1 Setup Register for High-Speed I/O functions Default: 1006

V7636 X2 Setup Register for High-Speed I/O functions Default: 1006

V7637–V7646 Reserved N/A

V7647 Timed Interrupt Default: 0000
Range: 0003–03E7h

(3–9999ms)

V7650–V7654 Reserved N/A

V7655 Port 2: Setup for the protocol, time-out, and the response delay time. Default: 00E0

V7656 Port 2: Setup for the station number, baud rate, STOP bit, and parity. Default: 8501

System Parameters
and Default Data
Locations
(V Data Type)

C
P

U
 S

pecifications
and O

peration
4–27

CPU Specifications and Operation

System
V-memory

Description of Contents Default Values / Ranges

V7657 Port 2: Setup completion code used to notify the completion of the parameter
setup.

Default: 0A00

V7660 Scan control setup: Keeps the scan control mode. Default: 0000

V7661 Setup timer over counter: Counts the times the actual scan time exceeds the
user setup time.

N/A

V7662–V7717 Reserved N/A

V7720–V7722 Locations for DV–1000 operator interface parameters. N/A

V7720 Titled Timer preset value pointer N/A

V7721 Title Counter preset value pointer N/A

V7722 HiByte-Titled Timer preset block size, LoByte-Titled Counter preset block size N/A

V7723–V7750 Reserved N/A

V7751 Fault Message Error Code — stores the 4-digit code used with the FAULT
instruction when the instruction is executed.

N/A

V7752–V7754 Reserved N/A

V7755 Error code — stores the fatal error code.

V7756 Error code — stores the major error code.

V7757 Error code — stores the minor error code.

V7760–V7762 Reserved

V7763 Program address where syntax error exists N/A

V7764 Syntax error code N/A

V7765 Scan — stores the total number of scan cycles that have occurred since the
last Program Mode to Run Mode transition.

N/A

V7766–V7774 Reserved N/A

V7775 Scan — stores the current scan time (milliseconds). N/A

V7776 Scan — stores the minimum scan time that has occurred since the last
Program Mode to Run Mode transition (milliseconds).

N/A

V7777 Scan — stores the maximum scan time that has occurred since the last
Program Mode to Run Mode transition (milliseconds).

N/A

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–28

CPU Specifications and Operation

Memory Type Discrete Memory
Reference

(octal)

Word Memory
Reference

(octal)

Qty.
Decimal

Symbol

Input Points
(See note 1)

X0 – X377 V40400 - V40417 256

Output Points
(See note 1)

Y0 – Y377 V40500 – V40517 256

Control Relays C0 – C777 V40600 - V40637 512

Special Relays SP0 – SP777 V41200 – V41237 512

Timers T0 – T177 V41100 – V41107 128

Timer Current
Values

None V0 – V177 128

Timer Status Bits T0 – T177 V41100 – V41107 128

Counters CT0 – CT177 V41140 – V41147 128

Counter
Current Values

None V1000 – V1177 128

Counter Status
Bits

CT0 – CT177 V41140 – V41147 128

Data Words None V1200 – V7377 3968 None specific, used with many
instructions

Data Words
Non–volatile

None V7400 – V7577 128 None specific, used with many
instructions

Stages S0 – S377 V41000 – V41017 256

System
parameters

None V7600 – V7777 128 None specific, used for various
purposes

1 – The DL05 systems are limited to 8 discrete inputs and 6 discrete outputs with the present available hardware, but 256 point addresses exist.

DL05 Memory Map

X0

Y0

C0C0

SP0

TMR T0
K100

V0 K100

T0

CNT CT0

K10

V1000 K100

CT0

SG
S 001

S0

C
P

U
 S

pecifications
and O

peration
4–29

CPU Specifications and Operation

X Input Bit Map
This table provides a listing of individual Input points associated with each V-memory address bit for the
DL05’s eight physical inputs. Actual available references are X0 to X377 (V40400 – V40417).

MSB DL05 Input (X) Points LSB
Address

17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0
Address

– – – – – – – – 007 006 005 004 003 002 001 000 V40400

Y Output Bit Map
This table provides a listing of individual output points associated with each V-memory address bit for the
DL05’s six physical outputs. Actual available references are Y0 to Y377 (V40500 – V40517).

MSB DL05 Output (Y) Points LSB
Address

17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0
Address

– – – – – – – – – – 005 004 003 002 001 000 V40500

Stage Control / Status Bit Map
This table provides a listing of individual Stage� control bits associated with each V-memory address bit.

MSB DL05 Stage (S) Control Bits LSB
Address

17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0
Address

017 016 015 014 013 012 011 010 007 006 005 004 003 002 001 000 V41000

037 036 035 034 033 032 031 030 027 026 025 024 023 022 021 020 V41001

057 056 055 054 053 052 051 050 047 046 045 044 043 042 041 040 V41002

077 076 075 074 073 072 071 070 067 066 065 064 063 062 061 060 V41003

117 116 115 114 113 112 111 110 107 106 105 104 103 102 101 100 V41004

137 136 135 134 133 132 131 130 127 126 125 124 123 122 121 120 V41005

157 156 155 154 153 152 151 150 147 146 145 144 143 142 141 140 V41006

177 176 175 174 173 172 171 170 167 166 165 164 163 162 161 160 V41007

217 216 215 214 213 212 211 210 207 206 205 204 203 202 201 200 V41010

237 236 235 234 233 232 231 230 227 226 225 224 223 222 221 220 V41011

257 256 255 254 253 252 251 250 247 246 245 244 243 242 241 240 V41012

277 276 275 274 273 272 271 270 267 266 265 264 263 262 261 260 V41013

317 316 315 314 313 312 311 310 307 306 305 304 303 302 301 300 V41014

337 336 335 334 333 332 331 330 327 326 325 324 323 322 321 320 V41015

357 356 355 354 353 352 351 350 347 346 345 344 343 342 341 340 V41016

377 376 375 374 373 372 371 370 367 366 365 364 363 362 361 360 V41017

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–30

CPU Specifications and Operation

Control Relay Bit Map
This table provides a listing of the individual control relays associated with each V-memory address bit.

MSB DL05 Control Relays (C) LSB
Address

17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0
Address

017 016 015 014 013 012 011 010 007 006 005 004 003 002 001 000 V40600

037 036 035 034 033 032 031 030 027 026 025 024 023 022 021 020 V40601

057 056 055 054 053 052 051 050 047 046 045 044 043 042 041 040 V40602

077 076 075 074 073 072 071 070 067 066 065 064 063 062 061 060 V40603

117 116 115 114 113 112 111 110 107 106 105 104 103 102 101 100 V40604

137 136 135 134 133 132 131 130 127 126 125 124 123 122 121 120 V40605

157 156 155 154 153 152 151 150 147 146 145 144 143 142 141 140 V40606

177 176 175 174 173 172 171 170 167 166 165 164 163 162 161 160 V40607

217 216 215 214 213 212 211 210 207 206 205 204 203 202 201 200 V40610

237 236 235 234 233 232 231 230 227 226 225 224 223 222 221 220 V40611

257 256 255 254 253 252 251 250 247 246 245 244 243 242 241 240 V40612

277 276 275 274 273 272 271 270 267 266 265 264 263 262 261 260 V40613

317 316 315 314 313 312 311 310 307 306 305 304 303 302 301 300 V40614

337 336 335 334 333 332 331 330 327 326 325 324 323 322 321 320 V40615

357 356 355 354 353 352 351 350 347 346 345 344 343 342 341 340 V40616

377 376 375 374 373 372 371 370 367 366 365 364 363 362 361 360 V40617

417 416 415 414 413 412 411 410 407 406 405 404 403 402 401 400 V40620

437 436 435 434 433 432 431 430 427 426 425 424 423 422 421 420 V40621

457 456 455 454 453 452 451 450 447 446 445 444 443 442 441 440 V40622

477 476 475 474 473 472 471 470 467 466 465 464 463 462 461 460 V40623

517 516 515 514 513 512 511 510 507 506 505 504 503 502 501 500 V40624

537 536 535 534 533 532 531 530 527 526 525 524 523 522 521 520 V40625

557 556 555 554 553 552 551 550 547 546 545 544 543 542 541 540 V40626

577 576 575 574 573 572 571 570 567 566 565 564 563 562 561 560 V40627

617 616 615 614 613 612 611 610 607 606 605 604 603 602 601 600 V40630

637 636 635 634 633 632 631 630 627 626 625 624 623 622 621 620 V40631

657 656 655 654 653 652 651 650 647 646 645 644 643 642 641 640 V40632

677 676 675 674 673 672 671 670 667 666 665 664 663 662 661 660 V40633

717 716 715 714 713 712 711 710 707 706 705 704 703 702 701 700 V40634

737 736 735 734 733 732 731 730 727 726 725 724 723 722 721 720 V40635

757 756 755 754 753 752 751 750 747 746 745 744 743 742 741 740 V40636

777 776 775 774 773 772 771 770 767 766 765 764 763 762 761 760 V40637

C
P

U
 S

pecifications
and O

peration
4–31

CPU Specifications and Operation

Timer Status Bit Map
This table provides a listing of individual timer contacts associated with each V-memory address bit.

MSB DL05 Timer (T) Contacts LSB
Address

17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0
Address

017 016 015 014 013 012 011 010 007 006 005 004 003 002 001 000 V41100

037 036 035 034 033 032 031 030 027 026 025 024 023 022 021 020 V41101

057 056 055 054 053 052 051 050 047 046 045 044 043 042 041 040 V41102

077 076 075 074 073 072 071 070 067 066 065 064 063 062 061 060 V41103

117 116 115 114 113 112 111 110 107 106 105 104 103 102 101 100 V41104

137 136 135 134 133 132 131 130 127 126 125 124 123 122 121 120 V41105

157 156 155 154 153 152 151 150 147 146 145 144 143 142 141 140 V41106

177 176 175 174 173 172 171 170 167 166 165 164 163 162 161 160 V41107

Counter Status Bit Map
This table provides a listing of individual counter contacts associated with each V-memory address bit.

MSB DL05 Counter (CT) Contacts LSB
Address

17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0
Address

017 016 015 014 013 012 011 010 007 006 005 004 003 002 001 000 V41140

037 036 035 034 033 032 031 030 027 026 025 024 023 022 021 020 V41141

057 056 055 054 053 052 051 050 047 046 045 044 043 042 041 040 V41142

077 076 075 074 073 072 071 070 067 066 065 064 063 062 061 060 V41143

117 116 115 114 113 112 111 110 107 106 105 104 103 102 101 100 V41144

137 136 135 134 133 132 131 130 127 126 125 124 123 122 121 120 V41145

157 156 155 154 153 152 151 150 147 146 145 144 143 142 141 140 V41146

177 176 175 174 173 172 171 170 167 166 165 164 163 162 161 160 V41147

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–32

CPU Specifications and Operation

Network Configuration and Connections

This section describes how to configure the CPU’s built-in networking ports for either
MODBUS or DirectNET. This will allow you to connect the DL05 PLC system directly
to MODBUS networks using the RTU protocol, or to other devices on a DirectNET
network. MODBUS host systems must be capable of issuing the MODBUS
commands to read or write the appropriate data. For details on the MODBUS
protocol, check with your MODBUS supplier for the lastest version of the Gould
MODBUS Protocol reference Guide. For more details on DirectNET, order our
DirectNET manual, part number DA–DNET–M.

Communication Port 1

Com 1 Connects to HPP, DirectSOFT,
operator interfaces, etc.
6-pin, RS232C
9600 Baud (Fixed)
Parity - odd (default)
Station address 1 (fixed)
8 data bits
1 start, 1 stop bit
Asynchronous, Half-duplex, DTE
Protocol: (Auto-Select)

K sequence (Slave only)
DirectNET (Slave only)
MODBUS (Slave only)

Communication Port 2

Com 2 Connects to HPP, DirectSOFT,
operator interfaces, etc.
6-pin, RS232C
Communication speed (baud)

300, 600, 1200, 2400, 4800,
9600, 19200, 38400

Parity - odd (default), even, none
Station address 1 (default)
8 data bits
1 start, 1 stop bit
Asynchronous, Half-duplex, DTE
Protocol: (Auto-Select)

K sequence (Slave only)
DirectNET (Master/Slave)
MODBUS (Master/Slave)
Non-sequence/Print

You will need to make sure the network connection is a 3-wire RS–232 type.
Normally, the RS–232 signals are used for for communications between two devices
with distances up to a maximum of 15 meters.

DL05
PORT 2

6-pin Female
Modular Connector

1 2 3 4 5 6

Port 2 Pin Descriptions
1 0V Power (–) connection (GND)
2 5V Power (+) conection
3 RXD Receive Data (RS232C)
4 TXD Transmit Data (RS232C
5 RTS Request to Send
6 0V Power (–) connection (GND)

Networking
DL05 to DL05
RS–232C

DL05
PORT 1 or 2

1 0V 0V 1

TXD 4
RXD 33 RXD

4 TXD

Port 1 Pin Descriptions
1 0V Power (–) connection (GND)
2 5V Power (+) conection
3 RXD Receive Data (RS232C)
4 TXD Transmit Data (RS232C
5 5V Power (+) conection
6 0V Power (–) connection (GND)

Configuring
the DL05’s
Comm Ports

C
P

U
 S

pecifications
and O

peration
4–33

CPU Specifications and Operation

4 TXD

Networking
PC to DL05s
RS–422

GND

TXD+

RXD–

RXD+

TXD–

6-pin Female
Modular Connector

1 2 3 4 5 6

DL05
PORT 21 or 6 0V 0V 1 or 6

TXD 4

RXD 33 RXD
GND

RXD+

TXD–

F2–UNICON

FA–ISONET

0V 0V 1

TXD 4

RXD 3RXD

TXD

RTS 5RTS

1 or 6 0V 0V 1 or 6

TXD 4

RXD 33 RXD

4 TXD

F2–UNICON

TXD+

RXD–

GND

RXD+

TXD–

TXD+

RXD–

DL05
PORT 2

Networking
DL05 Master
to Other PLCs

GND

TXD+

RXD–

RXD+

TXD–

DL05
PORT 21 or 6 0V 0V 1 or 6

TXD 4

RXD 33 RXD

4 TXD

GND

RXD+

TXD–

F2–UNICON

FA–ISONET

1 or 6 0V 0V 1 or 6

TXD 4

RXD 33 RXD

4 TXD

5V 22 CTS

1 0V 0V 1

TXD 4

RXD 33 RXD

4 TXD

F2–UNICON

TXD+

RXD–

GND

RXD+

TXD–

TXD+

RXD–

DL240
PORT 2

DL05
PORT 2

Note: When using the DL05 on a multi-drop
network, the RTS ON Delay time must be set
to at least 5ms and the RTS OFF Delay time
must be set to at least 2ms. If you encounter
problems, the time can be increased.

2 CTS 5V 2

5 5V

2 CTS

RTS 5

5V 2

5 5V RTS 5

5 5V RTS 5

5V 22 CTS

5 5V RTS 5

5V 22 CTS

5 5V RTS 5

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–34

CPU Specifications and Operation

In DirectSOFT, choose the PLC menu, then Setup, then “Secondary Comm Port”.
� Port: From the port number list box at the top, choose “Port 2”.
� Protocol: Click the check box to the left of “MODBUS” (use AUX 56 on

the HPP, andselect “MBUS”), and then you’ll see the dialog box below.

Setup Communication Ports

Port: Port 2

K-sequence
DirectNET

Non-sequence
MODBUS

Protocol:

Station Number: 1

Baud Rate: 38400

Close

Help

Timeout: 800 mS

RTS ON Delay Time: 5 mS

Stop Bits: 1

Parity: None

RTS OFF Delay Time: 2 mS

� Timeout: amount of time the port will wait after it sends a message to get
a response before logging an error.

� RTS ON / OFF Delay Time: The RTS ON Delay Time specifies the time
the DL05 waits to send the data after it has raised the RTS signal line.
The RTS OFF Delay Time specifies the time the DL05 waits to release
the RTS signal line after the data has been sent. When using the DL05 on
a multi-drop network, the RTS ON Delay time must be set to at least 5ms
and the RTS OFF Delay time must be set to at least 2ms. If you
encounter problems, the time can be increased.

� Station Number: For making the CPU port a MODBUS� master, choose
“1”. The possible range for MODBUS slave numbers is from 1 to 247, but
the DL05 network instructions used in Master mode will access only
slaves 1 to 99. Each slave must have a unique number. At powerup, the
port is automatically a slave, unless and until the DL05 executes ladder
logic network instructions which use the port as a master. Thereafter, the
port reverts back to slave mode until ladder logic uses the port again.

� Baud Rate: The available baud rates include 300, 600, 1200, 2400,
4800, 9600, 19200, and 38400 baud. Choose a higher baud rate initially,
reverting to lower baud rates if you experience data errors or noise
problems on the network. Important: You must configure the baud rates of
all devices on the network to the same value. Refer to the appropriate
product manual for details.

� Stop Bits: Choose 1 or 2 stop bits for use in the protocol.
� Parity: Choose none, even, or odd parity for error checking.

Then click the button indicated to send the Port configuration to
the CPU, and click Close.

MODBUS Port
Configuration

C
P

U
 S

pecifications
and O

peration
4–35

CPU Specifications and Operation

In DirectSOFT, choose the PLC menu, then Setup, then “Secondary Comm Port”.
� Port: From the port number list box, choose “Port 2 ”.
� Protocol: Click the check box to the left of “DirectNET” (use AUX 56 on

the HPP, then select “DNET”), and then you’ll see the dialog box below.
Setup Communication Ports

Port: Port 2

K-sequence
DirectNET

Non-sequence
MODBUS

Protocol:

Station Number: 1

Baud Rate: 38400

Close

Help

Timeout: 800 mS

RTS ON Delay Time: 5 mS

Stop Bits: 1

Parity: None

Format: Hex

RTS OFF Delay Time: 2 mS

� Timeout: amount of time the port will wait after it sends a message to
get a response before logging an error.

� RTS ON / OFF Delay Time: The RTS ON Delay Time specifies the time
the DL05 waits to send the data after it has raised the RTS signal line.
The RTS OFF Delay Time specifies the time the DL05 waits to release
the RTS signal line after the data has been sent. When using the DL05
on a multi-drop network, the RTS ON Delay time must be set to at least
5ms and the RTS OFF Delay time must be set to at least 2ms. If you
encounter problems, the time can be increased.

� Station Number: For making the CPU port a DirectNET master,
choose “1”. The allowable range for DIrectNET slaves is from 1 to 90
(each slave must have a unique number). At powerup, the port is
automatically a slave, unless and until the DL05 executes ladder logic
instructions which attempt to use the port as a master. Thereafter, the
port reverts back to slave mode until ladder logic uses the port again.

� Baud Rate: The available baud rates include 300, 600, 1200, 2400,
4800, 9600, 19200, and 38400 baud. Choose a higher baud rate initially,
reverting to lower baud rates if you experience data errors or noise
problems on the network. Important: You must configure the baud rates
of all devices on the network to the same value.

� Stop Bits: Choose 1 or 2 stop bits for use in the protocol.
� Parity: Choose none, even, or odd parity for error checking.
� Format: Choose between hex or ASCII formats.

Then click the button indicated to send the Port configuration to
the CPU, and click Close.

DirectNET Port
Configuration

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–36

CPU Specifications and Operation

Network Slave Operation
This section describes how other devices on a network can communicate with a CPU
port that you have configured as a DirectNETslave or MODBUS slave (DL05). A
MODBUS host must use the MODBUS RTU protocol to communicate with the DL05 as
a slave. The host software must send a MODBUS function code and MODBUS address
to specify a PLC memory location the DL05 comprehends. The DirectNET host uses
normal I/O addresses to access applicable DL05 CPU and system. No CPU ladder logic
is required to support either MODBUS slave or DirectNET slave operation.
The MODBUS function code determines whether the access is a read or a write, and
whether to access a single data point or a group of them. The DL05 supports the
MODBUS function codes described below.

MODBUS
Function Code

Function DL05 Data Types
Available

01 Read a group of coils Y, CR, T, CT

02 Read a group of inputs X, SP

05 Set / Reset a single coil Y, CR, T, CT

15 Set / Reset a group of coils Y, CR, T, CT

03, 04 Read a value from one or more registers V

06 Write a value into a single register V

16 Write a value into a group of registers V

There are typically two ways that most host software conventions allow you to
specify a PLC memory location. These are:

� By specifying the MODBUS data type and address
� By specifying a MODBUS address only.

MODBUS Function
Codes Supported

Determining the
MODBUS Address

C
P

U
 S

pecifications
and O

peration
4–37

CPU Specifications and Operation

Many host software packages allow you to specify the MODBUS data type and the
MODBUS address that corresponds to the PLC memory location. This is the easiest
method, but not all packages allow you to do it this way.

The actual equation used to calculate the address depends on the type of PLC data
you are using. The PLC memory types are split into two categories for this purpose.

� Discrete – X, SP, Y, CR, S, T, C (contacts)
� Word – V, Timer current value, Counter current value

In either case, you basically convert the PLC octal address to decimal and add the
appropriate MODBUS address (if required). The table below shows the exact
equation used for each group of data.

DL05 Memory Type QTY
(Dec.)

PLC Range
(Octal)

MODBUS
Address Range

(Decimal)

MODBUS
Data Type

For Discrete Data Types Convert PLC Addr. to Dec. + Start of Range + Data Type

Inputs (X) 256 X0 – X377 2048 – 2303 Input

Special Relays (SP) 512 SP0 – SP777 3072 – 3583 Input

Outputs (Y) 256 Y0 – Y377 2048 – 2303 Coil

Control Relays (CR) 512 C0 – C777 3072 – 4583 Coil

Timer Contacts (T) 128 T0 – T177 6144 – 6271 Coil

Counter Contacts (CT) 128 CT0 – CT177 6400 – 6527 Coil

Stage Status Bits (S) 256 S0 – S377 5120 – 5375 Coil

For Word Data Types Convert PLC Addr. to Dec. + Data Type

Timer Current Values (V) 128 V0 – V177 0 – 127 Input Register

Counter Current Values (V) 128 V1000 – V1177 512 – 639 Input Register

V Memory, user data (V) 3968 V1200 – V7377 640 – 3839 Holding Register

V Memory, non-volatile (V) 128 V7600 – V7777 3968 – 4095 Holding Register

If Your Host Software
Requires the Data
Type and Address...

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–38

CPU Specifications and Operation

The following examples show how to generate the MODBUS address and data type
for hosts which require this format.

Find the MODBUS address for User V
location V2100.

1. Find V memory in the table.

2. Convert V2100 into decimal (1088).

3. Use the MODBUS data type from the table.

PLC Address (Dec.) + Data Type

V2100 = 1088 decimal
1088 + Hold. Reg. = Holding Reg. 1088

V Memory, user data (V) 3200 V1200 – V7377 640 – 3839 Holding Register

Find the MODBUS address for output Y20.

1. Find Y outputs in the table.

2. Convert Y20 into decimal (16).

3. Add the starting address for the range
(2048).

4. Use the MODBUS data type from the table.

PLC Addr. (Dec) + Start Addr. + Data Type

Y20 = 16 decimal
16 + 2048 + Coil = Coil 2064

Outputs (Y) 256 Y0 – Y377 2048 – 2303 Coil

Find the MODBUS address to obtain the
current value from Timer T10.

1. Find Timer Current Values in the table.

2. Convert T10 into decimal (8).

3. Use the MODBUS data type from the table.

PLC Address (Dec.) + Data Type

T10 = 8 decimal
8 + Input Reg. = Input Reg. 8

Timer Current Values (V) 128 V0 – V177 0 – 127 Input Register

Find the MODBUS address for Control Relay
C54.

1. Find Control Relays in the table.

2. Convert C54 into decimal (44).

3. Add the starting address for the range
(3072).

4. Use the MODBUS data type from the table.

PLC Addr. (Dec) + Start Addr. +Data Type

C54 = 44 decimal
44 + 3072 + Coil = Coil 3116

Control Relays (CR) 512 C0 – C777 3072 – 3583 Coil

Example 1: V2100

Example 2: Y20

Example 3: T10 Current
Value

Example 4: C54

C
P

U
 S

pecifications
and O

peration
4–39

CPU Specifications and Operation

Some host software does not allow you to specify the MODBUS data type and
address. Instead, you specify an address only. This method requires another step to
determine the address, but it’s still fairly simple. Basically, MODBUS also separates
the data types by address ranges as well. So this means an address alone can
actually describe the type of data and location. This is often referred to as “adding the
offset”. One important thing to remember here is that two different addressing
modes may be available in your host software package. These are:

� 484 Mode
� 584/984 Mode

We recommend that you use the 584/984 addressing mode if your host
software allows you to choose. This is because the 584/984 mode allows access
to a higher number of memory locations within each data type. If your software only
supports 484 mode, then there may be some PLC memory locations that will be
unavailable. The actual equation used to calculate the address depends on the type
of PLC data you are using. The PLC memory types are split into two categories for
this purpose.

� Discrete – X, SP, Y, CR, S, T, C (contacts)
� Word – V, Timer current value, Counter current value

In either case, you basically convert the PLC octal address to decimal and add the
appropriate MODBUS addresses (as required). The table below shows the exact
equation used for each group of data.

DL05 Memory Type QTY
(Dec.)

PLC Range
(Octal)

MODBUS
Address Range

(Decimal)

484 Mode
Address

584/984
Mode

Address

MODBUS
Data Type

For Discrete Data Types ... Convert PLC Addr. to Dec. + Start of Range + Appropriate Mode Address

Inputs (X) 256 X0 – X377 2048 – 2303 1001 10001 Input

Special Relays (SP) 512 SP0 – SP777 3072 – 3583 1001 10001 Input

Outputs (Y) 256 Y0 – Y377 2048 – 2303 1 1 Coil

Control Relays (CR) 512 C0 – C777 3072 – 3583 1 1 Coil

Timer Contacts (T) 128 T0 – T177 6144 – 6271 1 1 Coil

Counter Contacts (CT) 128 CT0 – CT177 6400 – 6527 1 1 Coil

Stage Status Bits (S) 256 S0 – S377 5120 – 5375 1 1 Coil

For Word Data Types Convert PLC Addr. to Dec. + Appropriate Mode Address

Timer Current Values (V) 128 V0 – V377 0 – 127 3001 30001 Input Reg.

Counter Current Values (V) 128 V1000 – V1177 512 – 639 3001 30001 Input Reg

V Memory, user data (V) 3200 V1400 – V7377 768 – 3839 4001 40001 Hold Reg.

V Memory, non-volatile (V) 128 V7400 – V7577 3840 – 3967 4001 40001 Hold Reg.

V Memory, system (V) 256 V7600 – V7777 3968 – 4095 4001 40001 Hold Reg.

If Your MODBUS
Host Software
Requires an
Address ONLY

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–40

CPU Specifications and Operation

The following examples show how to generate the MODBUS addresses for hosts
which require this format.

Find the MODBUS address for User V
location V2100.

1. Find V memory in the table.

2. Convert V2100 into decimal (1088).

3. Add the MODBUS starting address for the
mode (40001).

PLC Address (Dec.) + Mode Address

V2100 = 1088 decimal
1088 + 40001 = 41089

V Memory, system (V) 128 V1200 – V7377 3480 – 3735 4001 40001 Hold Reg.

Find the MODBUS address for output Y20.

1. Find Y outputs in the table.

2. Convert Y20 into decimal (16).

3. Add the starting address for the range
(2048).

4. Add the MODBUS address for the mode
(1).

PLC Addr. (Dec) + Start Addr. + Mode

Y20 = 16 decimal
16 + 2048 + 1 = 2065

Outputs (Y) 256 Y0 – Y377 2048 – 2303 1 1 Coil

Find the MODBUS address to obtain the
current value from Timer T10.

1. Find Timer Current Values in the table.

2. Convert T10 into decimal (8).

3. Add the MODBUS starting address for the
mode (3001).

PLC Address (Dec.) + Mode Address

T10 = 8 decimal
8 + 3001 = 3009

Timer Current Values (V) 128 V0 – V177 0 – 127 3001 30001 Input Reg.

Find the MODBUS address for Control Relay
C54.

1. Find Control Relays in the table.

2. Convert C54 into decimal (44).

3. Add the starting address for the range
(3072).

4. Add the MODBUS address for the mode
(1).

PLC Addr. (Dec) + Start Address + Mode

C54 = 44 decimal
44 + 3072 + 1 = 3117

Control Relays (CR) 512 C0 – C777 3072 – 3583 1 1 Coil

Addressing the memory types for DirectNET slaves is very easy. Use the ordinary
native address of the slave device itself. To access a slave PLC’s memory address
V2000 via DirectNET, for example, the network master will request V2000 from the
slave.

Example 1: V2100
584/984 Mode

Example 2: Y20
584/984 Mode

Example 3: T10 Current
Value
484 Mode

Example 4: C54
584/984 Mode

Determining the
DirectNET Address

C
P

U
 S

pecifications
and O

peration
4–41

CPU Specifications and Operation

Network Master Operation

This section describes how the DL05 can communicate on a MODBUS or DirectNET
network as a master. For MODBUS networks, it uses the MODBUS RTU protocol,
which must be interpreted by all the slaves on the network. Both MODBUS and
DirectNet are single master/multiple slave networks. The master is the only member
of the network that can initiate requests on the network. This section teaches you how
to design the required ladder logic for network master operation.

Slave #1 Slave #3

Master

MODBUS RTU Protocol, or DirectNET

Slave #2

When using the DL05 PLC as the master station, simple RLL instructions are used
to initiate the requests. The WX instruction initiates network write operations, and
the RX instruction initiates network read operations. Before executing either the WX
or RX commands, we will need to load data related to the read or write operation
onto the CPU’s accumulator stack. When the WX or RX instruction executes, it uses
the information on the stack combined with data in the instruction box to completely
define the task, which goes to the port.

Slave

Master

WX (write)

RX (read)

Network

The following step-by-step procedure will provide you the information necessary to
set up your ladder program to receive data from a network slave.

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–42

CPU Specifications and Operation

The first Load (LD) instruction identifies
the communications port number on the
network master (DL05) and the address of
the slave station. This instruction can
address up to 99 MODBUS slaves, or 90
DirectNET slaves. The format of the word
is shown to the right. The “F2” in the upper
byte indicates the use of the right port of
the DL05 PLC, port number 2. The lower
byte contains the slave address number in
BCD (01 to 99).

2 0 1F

Internal port (hex)

Port number (BCD)
Slave address (BCD)

LD
KF201

The second Load (LD) instruction
determines the number of bytes which will
be transferred between the master and
slave in the subsequent WX or RX
instruction. The value to be loaded is in
BCD format (decimal), from 1 to 128
bytes.

6 4 (BCD)

of bytes to transfer

LD
K64

The number of bytes specified also depends on the type of data you want to obtain.
For example, the DL05 Input points can be accessed by V-memory locations or as X
input locations. However, if you only want X0 – X27, you’ll have to use the X input
data type because the V-memory locations can only be accessed in 2-byte
increments. The following table shows the byte ranges for the various types of
DirectLOGIC products.

DL 05 / 205 / 350 / 405 Memory Bits per unit Bytes

V memory

T / C current value

16

16

2

2

Inputs (X, SP) 8 1

Outputs
(Y, C, Stage, T/C bits)

8 1

Scratch Pad Memory 8 1

Diagnostic Status 8 1

DL330 / 340 Memory Bits per unit Bytes

Data registers

T / C accumulator

8

16

1

2

I/O, internal relays, shift register
bits, T/C bits, stage bits

1 1

Scratch Pad Memory 8 1

Diagnostic Status(5 word R/W) 16 10

Step 1:
Identify Master
Port # and Slave #

Step 2:
Load Number of
Bytes to Transfer

C
P

U
 S

pecifications
and O

peration
4–43

CPU Specifications and Operation

The third instruction in the RX or WX
sequence is a Load Address (LDA)
instruction. Its purpose is to load the
starting address of the memory area to be
transferred. Entered as an octal number,
the LDA instruction converts it to hex and
places the result in the accumulator.
For a WX instruction, the DL05 CPU
sends the number of bytes previously
specified from its memory area beginning
at the LDA address specified.
For an RX instruction, the DL05 CPU
reads the number of bytes previously
specified from the slave, placing the
received data into its memory area
beginning at the LDA address specified.

6 0 00 (octal)

LDA
O40600

4

Starting address of
 master transfer area

V40600MSB LSB

015
V40601MSB LSB

015

NOTE: Since V memory words are always 16 bits, you may not always use the whole
word. For example, if you only specify 3 bytes and you are reading Y outputs from the
slave, you will only get 24 bits of data. In this case, only the 8 least significant bits of
the last word location will be modified. The remaining 8 bits are not affected.

The last instruction in our sequence is the
WX or RX instruction itself. Use WX to
write to the slave, and RX to read from the
slave. All four of our instructions are
shown to the right. In the last instruction,
you must specify the starting address and
a valid data type for the slave.

LD
KF201

LD
K64

LDA
O40600

RX
Y0

SP116

� DirectNET slaves – specify the same address in the WX and RX
instruction as the slave’s native I/O address

� MODBUS DL405, DL205, or DL05 slaves – specify the same address
in the WX and RX instruction as the slave’s native I/O address

� MODBUS 305 slaves – use the following table to convert DL305
addresses to MODBUS addresses

DL305 Series CPU Memory Type–to–MODBUS Cross Reference (excluding 350 CPU)

PLC Memory type PLC base
address

MODBUS
base addr.

PLC Memory Type PLC base
address

MODBUS
base addr.

TMR/CNT Current Values R600 V0 TMR/CNT Status Bits CT600 GY600

I/O Points IO 000 GY0 Control Relays CR160 GY160

Data Registers R401,
R400

V100 Shift Registers SR400 GY400

Stage Status Bits (D3–330P only) S0 GY200

Step 3:
Specify Master
Memory Area

Step 4:
Specify Slave
Memory Area

C
P

U
 S

pe
ci

fic
at

io
ns

an
d

O
pe

ra
tio

n
4–44

CPU Specifications and Operation

Typically network communications will
last longer than 1 scan. The program must
wait for the communications to finish
before starting the next transaction.

Port Communication Error

LD
KF201

LD
K0003

LDA
O40600

RX
Y0

SP116

Port Busy

SP117

SET
Y1

Port 2, which can be a master, has two Special Relay contacts associated with it (see
Appendix D for comm port special relays).One indicates “Port busy”(SP116), and
the other indicates ”Port Communication Error”(SP117). The example above shows
the use of these contacts for a network master that only reads a device (RX). The
“Port Busy” bit is on while the PLC communicates with the slave. When the bit is off
the program can initiate the next network request.
The “Port Communication Error” bit turns on when the PLC has detected an error.
Use of this bit is optional. When used, it should be ahead of any network instruction
boxes since the error bit is reset when an RX or WX instruction is executed.

If you are using multiple reads and writes
in the RLL program, you have to interlock
the routines to make sure all the routines
are executed. If you don’t use the
interlocks, then the CPU will only execute
the first routine. This is because each port
can only handle one transaction at a time.
In the example to the right, after the RX
instruction is executed, C0 is set. When
the port has finished the communication
task, the second routine is executed and
C0 is reset.
If you’re using RLLPLUS Stage
Programing, you can put each routine in a
separate program stage to ensure proper
execution and switch from stage to stage
allowing only one of them to be active at a
time.

Interlocking Relay

LD
KF201

LD
K0003

LDA
O40600

RX
Y0

SP116

SET
C100

C100

LD
KF201

LD
K0003

LDA
O40400

WX
Y0

SP116

RST
C100

C100

Interlocking
Relay

Communications
from a
Ladder Program

Multiple Read and
Write Interlocks

��
Standard RLL
Instructions

����������	
���������

�������	�������������

�����
		����������	�

��������	��������������

���������������	����������������������������

���������	�������	��� �	��	���!��
���"	�	������������

�� ����	��������������#�������	��$

��%	��������������

������!
�	�����������������#�������	��$

��&��'������������������������#�������	��$

���	'��������������

���()�������������������

��(��	��������������������

�������
�������������

��%���	��������������

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–2 Standard RLL Instructions

Introduction

DL05 Micro PLCs offer a wide variety of instructions to perform many different types
of operations. This chapter shows you how to use each standard Relay Ladder Logic
(RLL) instruction. In addition to these instructions, you may also need to refer to the
Drum instruction in Chapter 6, or the Stage programming instructions in Chapter 7.

There are two ways to quickly find the instruction you need.

� If you know the instruction category (Boolean, Comparative Boolean, etc.)
just use the title at the top of the page to find the pages that discuss the
instructions in that category.

� If you know the individual instruction name, use the following table to find
the page(s) that discusses the instruction.

Instruction Page

ACON 5–107

ADDB 5–73

ADD 5–63

ADDD 5–64

AND 5–11, 5–25,
5–55

AND STR 5–12

ANDD 5–56

ANDE 5–22

ANDI 5–27

ANDN 5–11, 5–25

ANDND 5–17

ANDNE 5–22

ANDNI 5–27

ANDPD 5–17

ATH 5–85

BCD 5–83

BIN 5–82

CMP 5–61

CMPD 5–62

CNT 5–36

CV 7–23

CVJMP 7–23

DEC 5–71

DECB 5–72

DECO 5–81

DISI 5–104

DIV 5–69

DIVB 5–76

DIVD 5–70

DLBL 5–107

DRUM 6–12

EDRUM 6–2, NO TAG

Instruction Page

ENCO 5–80

END 5–94

ENI 5–103

FAULT 5–106

FOR 5–96

GRAY 5–88

GTS 5–98

HTA 5–86

INC 5–71

INCB 5–72

INT 5–103

INV 5–84

IRT 5–103

IRTC 5–103

ISG 7–22

JMP 7–22

LD 5–48

LDA 5–51

LDD 5–49

LDF 5–50

LDLBL 5–92

MLR 5–101

MLS 5–101

MOV 5–91

MOVMC 5–92

MUL 5–67

MULB 5–75

MULD 5–68

NCON 5–107

NEXT 5–96

NJMP 7–22

NOP 5–94

NOT 5–14

Instruction Page

OR 5–10, 5–24,
5–57

OR OUT 5–13

ORE 5–21

ORI 5–26

ORN 5–10, 5–24

ORND 5–16

ORNE 5–21

OR OUTI 5–28

OR STR 5–12

ORD 5–58

ORNI 5–26

OROUTI 5–28

ORPD 5–16

OUT 5–13, 5–52

OUTD 5–52

OUTF 5–53

OUTI 5–28

PAUSE 5–19

PD 5–14

POP 5–53

PRINT 5–109

RST 5–18

RSTI 5–29

RSTWT 5–95

RT 5–98

RTC 5–98

RX 5–113

SBR 5–98

SET 5–18

SETI 5–29

SFLDGT 5–89

SG 7–21

SGCNT 5–38

S
tandard

R
LL Instructions

5–3Instruction Set

Instruction Page

SHFL 5–77

SHFR 5–79

SR 5–42

STOP 5–94

STR 5–9, 5–23

STRE 5–20

STRI 5–26

STRN 5–9, 5–23

Instruction Page

STRND 5–15

STRNE 5–20

STRNI 5–26

STRPD 5–15

SUB 5–65

SUBB 5–74

SUBD 5–66

SUM 5–77

Instruction Page

TMR 5–31

TMRA 5–33

TMRAF 5–33

TMRF 5–31

UDC 5–40

WX 5–115

XOR 5–59

XORD 5–60

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–4 Standard RLL Instructions

Boolean Instructions

Using Boolean Instructions

Do you ever wonder why so many PLC manufacturers always quote the scan time
for a 1K boolean program? Simple. Most all programs utilize many boolean
instructions. These are typically very simple instructions designed to join input and
output contacts in various series and parallel combinations. Since the DirectSOFT

package allows you to use graphic symbols to build the program, you don’t
absolutely have to know the mnemonics of the instructions. However, it may helpful
at some point, especially if you ever have to troubleshoot the program with a
Handheld Programmer.The following paragraphs show how these instructions are
used to build simple ladder programs.

All DL05 programs require an END statement as the last instruction. This tells the
CPU that this is the end of the program. Normally, any instructions placed after the
END statement will not be executed. There are exceptions to this such as interrupt
routines, etc. Chapter 5 discusses the instruction set in detail.

OUT

Y0X0

END

����������	
�	�
�����
��������
����	���

You use a contact to start rungs that contain both contacts and coils. The boolean
instruction that does this is called a Store or, STR instruction. The output point is
represented by the Output or, OUT instruction. The following example shows how to
enter a single contact and a single output coil.

OUT

Y0X0

END

DirectSOFT Example Handheld Mnemonics

STR X0
OUT Y0
END

Normally closed contacts are also very common. This is accomplished with the
Store Not or, STRN instruction. The following example shows a simple rung with a
normally closed contact.

OUT

Y0X0

END

DirectSOFT Example Handheld Mnemonics

STRN X0
OUT Y0
END

END Statement

Simple Rungs

Normally Closed
Contact

S
tandard

R
LL Instructions

5–5Standard RLL Instructions

Boolean Instructions

Use the AND instruction to join two or more contacts in series. The following
example shows two contacts in series and a single output coil. The instructions used
would be STR X0, AND X1, followed by OUT Y0.

OUT

Y0X0

END

X1

DirectSOFT Example Handheld Mnemonics

STR X0
AND X1
OUT Y0
END

Sometimes it is necessary to use midline outputs to get additional outputs that are
conditional on other contacts. The following example shows how you can use the
AND instruction to continue a rung with more conditional outputs.

OUT

Y0X0

END

X1

DirectSOFT Example Handheld Mnemonics

STR X0
AND X1
OUT Y0
AND X2
OUT Y1
AND X3
OUT Y2
END

X2

OUT

Y1

X3

OUT

Y2

You also have to join contacts in parallel. The OR instruction allows you to do this.
The following example shows two contacts in parallel and a single output coil. The
instructions would be STR X0, OR X1, followed by OUT Y0.

OUT

Y0X0

END

X1

DirectSOFT Example Handheld Mnemonics

STR X0
OR X1
OUT Y0
END

Contacts in Series

Midline Outputs

Parallel Elements

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–6 Standard RLL Instructions

Boolean Instructions

Quite often it is necessary to join several groups of series elements in parallel. The
Or Store (ORSTR) instruction allows this operation. The following example shows a
simple network consisting of series elements joined in parallel.

OUT

Y0X0

END

X2

X1

X3

DirectSOFT Example Handheld Mnemonics

STR X0
AND X1
STR X2
AND X3
ORSTR
OUT Y0
END

You can also join one or more parallel branches in series. The And Store (ANDSTR)
instruction allows this operation. The following example shows a simple network
with contact branches in series with parallel contacts.

OUT

Y0X0

END

X1

X2

DirectSOFT Example Handheld Mnemonics

STR X0
STR X1
OR X2
ANDSTR
OUT Y0
END

You can combine the various types of series and parallel branches to solve most any
application problem. The following example shows a simple combination network.

OUT

Y0X0

END

X2

X3X1 X4

X5

X6

Some PLC manufacturers make it really difficult to do a simple comparison of two
numbers. Some of them require you to move the data all over the place before you
can actually perform the comparison. The DL05 Micro PLCs provide Comparative
Boolean instructions that allow you to quickly and easily solve this problem. The
Comparative Boolean provides evaluation of two 4-digit values using boolean
contacts. The valid evaluations are: equal to, not equal to, equal to or greater than,
and less than.

In the following example when the value
in V-memory location V1400 is equal to
the constant value 1234, Y3 will
energize.

Y3
OUT

V1400 K1234

Joining Series
Branches in
Parallel

Joining Parallel
Branches in Series

Combination
Networks

Comparative
Boolean

S
tandard

R
LL Instructions

5–7Standard RLL Instructions

Boolean Instructions

There are limits to how many elements you can include in a rung. This is because the
DL05 PLCs use an 8-level boolean stack to evaluate the various logic elements. The
boolean stack is a temporary storage area that solves the logic for the rung. Each
time the program encounters a STR instruction, the instruction is placed on the top of
the stack. Any other STR instructions already on the boolean stack are pushed down
a level. The ANDSTR, and ORSTR instructions combine levels of the boolean stack
when they are encountered. An error will occur during program compilation if the
CPU encounters a rung that uses more than the eight levels of the boolean stack.
The following example shows how the boolean stack is used to solve boolean logic.

�����������������

STR X0 STR X1 STR X2
� ������

�

�

!

"

#

$

� ������

� ������

�

!

"

#

$

� ������

� ������

� ������

!

"

#

$

AND X3
� ���������

� ������

� ������

!

"

#

$

ORSTR
�

� ������

�

$

OUT

Y0X0 X1

X2 X3

X4

X5

STR

OR

AND

ORSTR

ANDSTR

Output
STR

STR

AND

� �����%�����������������&

AND X4
�

� ������

�

$

�����!����� �����%�����������������&

ORNOT X5
�

� ������

�

$

ANDSTR
�������������!����� ������%�����������������&�

�

�

$

�

�

�

�

�

�

�

�

Boolean Stack

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–8 Standard RLL Instructions

Boolean Instructions

The DL05 Micro PLCs can usually complete an operation cycle in a matter of
milliseconds. However, in some applications you may not be able to wait a few
milliseconds until the next I/O update occurs. The DL05 PLCs offer Immediate input
and outputs which are special boolean instructions that allow reading directly from
inputs and writing directly to outputs during the program execution portion of the
CPU cycle. You may recall that this is normally done during the input or output
update portion of the CPU cycle. The immediate instructions take longer to execute
because the program execution is interrupted while the CPU reads or writes the I/O
point. This function is not normally done until the read inputs or the write outputs
portion of the CPU cycle.

NOTE: Even though the immediate input instruction reads the most current status
from the input point, it only uses the results to solve that one instruction. It does not
use the new status to update the image register. Therefore, any regular instructions
that follow will still use the image register values. Any immediate instructions that
follow will access the I/O again to update the status. The immediate output
instruction will write the status to the I/O and update the image register.

���''

���''

()*��+��

Read Inputs

Diagnostics

,�����,	�������-
���

The CPU reads the inputs from the local
base and stores the status in an input
image register.

X0 Y0

X0X1X2...X11
OFFOFFON...OFF

Solve the Application Program

Read Inputs from Specialty I/O

Write Outputs

Write Outputs to Specialty I/O

����

���''

Immediate instruction does not use the
input image register, but instead reads
the status from the module immediately. I/O Point X0 Changes�

Immediate Boolean

S
tandard

R
LL Instructions

5–9Standard RLL Instructions

Boolean Instructions

Boolean Instructions

The Store instruction begins a new rung
or an additional branch in a rung with a
normally open contact. Status of the
contact will be the same state as the
associated image register point or
memory location.

Aaaa

The Store Not instruction begins a new
rung or an additional branch in a rung
with a normally closed contact. Status of
the contact will be opposite the state of
the associated image register point or
memory location.

Aaaa

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

Special Relay SP 0–777

In the following Store example, when input X1 is on, output Y2 will energize.

STR
$

1
B ENT

OUT
GX

2
C ENT

Handheld Programmer KeystrokesDirectSOFT

Y2

OUT

X1

In the following Store Not example, when input X1 is off output Y2 will energize.

STRN
SP

1
B ENT

OUT
GX

2
C ENT

Y2

OUT

X1

Handheld Programmer KeystrokesDirectSOFT

Store
(STR)

Store Not
(STRN)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–10 Standard RLL Instructions

Boolean Instructions

The Or instruction logically ors a normally
open contact in parallel with another
contact in a rung. The status of the
contact will be the same state as the
associated image register point or
memory location.

Aaaa

The Or Not instruction logically ors a
normally closed contact in parallel with
another contact in a rung. The status of
the contact will be opposite the state of
the associated image register point or
memory location.

Aaaa

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

Special Relay SP 0–777

In the following Or example, when input X1 or X2 is on, output Y5 will energize.

STR
$

1
B ENT

OR
Q

2
C ENT

OUT
GX

5
F ENT

Y5

OUT

X1

X2

Handheld Programmer KeystrokesDirectSOFT

In the following Or Not example, when input X1 is on or X2 is off, output Y5 will
energize.

STR
$

1
B ENT

2
C ENT

OUT
GX

5
F ENT

ORN
R

X1 Y5

OUT

X2

Handheld Programmer KeystrokesDirectSOFT

Or
(OR)

Or Not
(ORN)

S
tandard

R
LL Instructions

5–11Standard RLL Instructions

Boolean Instructions

The And instruction logically ands a
normally open contact in series with
another contact in a rung. The status of
the contact will be the same state as the
associated image register point or
memory location.

Aaaa

The And Not instruction logically ands a
normally closed contact in series with
another contact in a rung. The status of
the contact will be opposite the state of
the associated image register point or
memory location.

Aaaa

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

Special Relay SP 0–777

In the following And example, when input X1 and X2 are on output Y5 will energize.

STR
$

1
B ENT

2
C ENT

OUT
GX

5
F ENT

AND
V

Y5

OUT

X1 X2

Handheld Programmer KeystrokesDirectSOFT

In the following And Not example, when input X1 is on and X2 is off output Y5 will
energize.

ANDN
W

STR
$

1
B ENT

2
C ENT

OUT
GX

5
F ENT

X1 Y5

OUT

X2

Handheld Programmer KeystrokesDirectSOFT

And
(AND)

And Not
(ANDN)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–12 Standard RLL Instructions

Boolean Instructions

The And Store instruction logically ands
two branches of a rung in series. Both
branches must begin with the Store
instruction.

OUT

� �

The Or Store instruction logically ors two
branches of a rung in parallel. Both
branches must begin with the Store
instruction.

OUT

�

�

In the following And Store example, the branch consisting of contacts X2, X3, and X4
have been anded with the branch consisting of contact X1.

STR
$

1
B ENT

STR
$ ENT

2
C

AND
V ENT

3
D

OR
Q ENT

4
E

ANDST
L ENT

OUT
GX

5
F ENT

Y5

OUT

X1 X2

X4

X3

Handheld Programmer KeystrokesDirectSOFT

In the following Or Store example, the branch consisting of X1 and X2 have been
ored with the branch consisting of X3 and X4.

STR
$

1
B ENT

STR
$ ENT

AND
V ENT

OUT
GX

5
F ENT

2
C

3
D

AND
V ENT

4
E

ORST
M ENT

Y5

OUT

X1 X2

X3 X4

Handheld Programmer KeystrokesDirectSOFT

And Store
(AND STR)

Or Store
(OR STR)

S
tandard

R
LL Instructions

5–13Standard RLL Instructions

Boolean Instructions

The Out instruction reflects the status of
the rung (on/off) and outputs the discrete
(on/off) state to the specified image
register point or memory location.

Aaaa
OUT

Multiple Out instructions referencing the same discrete location should not be used
since only the last Out instruction in the program will control the physical output
point. Instead, use the next instruction, the Or Out.

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

In the following Out example, when input X1 is on, output Y2 and Y5 will energize.

STR
$

1
B ENT

OUT
GX

2
C ENT

OUT
GX ENT

5
F

Y2

OUT

X1

Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

The Or Out instruction allows more than
one rung of discrete logic to control a
single output. Multiple Or Out
instructions referencing the same output
coil may be used, since all contacts
controlling the output are logically ORed
together. If the status of any rung is on,
the output will also be on.

A aaa
OR OUT

Operand Data Type DL05 Range

A aaa

Inputs X 0–177

Outputs Y 0–177

Control Relays C 0–777

In the following example, when X1 or X4 is on, Y2 will energize.

STR
$

1
B ENT

STR
$ ENT

4
E

Y2

OR OUT

X1

Y2

OR OUT

X4

Handheld Programmer KeystrokesDirectSOFT

INST#
O

5
F

3
D ENT ENT

2
C ENT

2
C ENT

INST#
O

5
F

3
D ENT ENT

Out
(OUT)

Or Out
(OR OUT)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–14 Standard RLL Instructions

Boolean Instructions

The Not instruction inverts the status of
the rung at the point of the instruction.

In the following example when X1 is off, Y2 will energize. This is because the Not
instruction inverts the status of the rung at the Not instruction.

Y2

OUT

X1

Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

SHFT
TMR

N
INST#
O

MLR
T ENT

OUT
GX

2
C ENT

NOTE: DirectSOFT Release 1.1i and later supports the use of the NOT instruction.
The above example rung is merely intended to show the visual representation of the
NOT instruction. The rung cannot be created or displayed in DirectSOFT versions
earlier than 1.1i.

The Positive Differential instruction is
typically known as a one shot. When the
input logic produces an off to on
transition, the output will energize for one
CPU scan.

A aaa
PD

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

In the following example, every time X1 makes an off to on transition, C0 will
energize for one scan.

STR
$

1
B ENT

SHFT
CV

P
3

DSHFT
0

A ENT

C0

PD

X1

Handheld Programmer KeystrokesDirectSOFT

Not
(NOT)

Positive
Differential
(PD)

S
tandard

R
LL Instructions

5–15Standard RLL Instructions

Boolean Instructions

The Store Positive Differential instruction
begins a new rung or an additional branch
in a rung with a normally open contact.
The contact closes for one CPU scan
when the state of the associated image
register point makes an Off-to-On
transition. Thereafter, the contact remains
open until the next Off-to-On transition
(the symbol inside the contact represents
the transition). This function is sometimes
called a “one-shot”.

Aaaa

The Store Negative Differential instruction
begins a new rung or an additional branch
in a rung with a normally closed contact.
The contact closes for one CPU scan
when the state of the associated image
register point makes an On-to-Off
transition. Thereafter, the contact remains
open until the next On-to-Off transition
(the symbol inside the contact represents
the transition).

Aaaa

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

In the following example, each time X1 is makes an Off-to-On transition, Y4 will
energize for one scan.

Y4

OUT

DirectSOFT

X1
STR

$
CV

P

ENT
OUT

GX

3
DSHFT

1
B ENT

Handheld Programmer Keystrokes

4
E

In the following example, each time X1 is makes an On-to-Off transition, Y4 will
energize for one scan.

Y4

OUT

DirectSOFT

X1
STR

$
TMR

N

ENT
OUT

GX

3
DSHFT

1
B ENT

Handheld Programmer Keystrokes

4
E

Store Positive
Differential
(STRPD)

Store Negative
Differential
(STRND)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–16 Standard RLL Instructions

Boolean Instructions

The Or Positive Differential instruction
logically ors a normally open contact in
parallel with another contact in a rung. The
status of the contact will be open until the
associated image register point makes an
Off-to-On transition, closing it for one CPU
scan. Thereafter, it remains open until
another Off-to-On transition.

Aaaa

The Or Negative Differential instruction
logically ors a normally open contact in
parallel with another contact in a rung. The
status of the contact will be open until the
associated image register point makes an
On-to-Off transition, closing it for one CPU
scan. Thereafter, it remains open until
another On-to-Off transition.

Aaaa

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

In the following example, Y 5 will energize whenever X1 is on, or for one CPU scan
when X2 transitions from Off to On.

Y5

OUT

X1

DirectSOFT

X2

STR
$

CV
P

ENT
OUT

GX

3
DSHFT

1
B ENT

Handheld Programmer Keystrokes

5
F

OR
Q

2
C ENT

In the following example, Y 5 will energize whenever X1 is on, or for one CPU scan
when X2 transitions from On to Off.

X1 Y5

OUT

DirectSOFT

X2

STR
$

TMR
N

ENT
OUT

GX

3
DSHFT

1
B ENT

Handheld Programmer Keystrokes

5
F

OR
Q

2
C ENT

Or Positive
Differential
(ORPD)

Or Negative
Differential
(ORND)

S
tandard

R
LL Instructions

5–17Standard RLL Instructions

Boolean Instructions

The And Positive Differential instruction
logically ands a normally open contact in
parallel with another contact in a rung. The
status of the contact will be open until the
associated image register point makes an
Off-to-On transition, closing it for one CPU
scan. Thereafter, it remains open until
another Off-to-On transition.

Aaaa

The And Negative Differential instruction
logically ands a normally open contact in
parallel with another contact in a rung. The
status of the contact will be open until the
associated image register point makes an
On-to-Off transition, closing it for one CPU
scan. Thereafter, it remains open until
another On-to-Off transition.

Aaaa

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

In the following example, Y5 will energize for one CPU scan whenever X1 is on and
X2 transitions from Off to On.

Y5

OUT

X1

DirectSOFT

X2 STR
$

CV
P

ENT
OUT

GX

3
DSHFT

1
B ENT

Handheld Programmer Keystrokes

5
F

OR
Q

2
C ENT

In the following example, Y5 will energize for one CPU scan whenever X1 is on and
X2 transitions from On to Off.

X1 Y5

OUT

DirectSOFT

X2
STR

$

TMR
N

ENT
OUT

GX

3
DSHFT

1
B ENT

Handheld Programmer Keystrokes

5
F

OR
Q

2
C ENT

And Positive
Differential
(ANDPD)

And Negative
Differential
(ANDND)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–18 Standard RLL Instructions

Boolean Instructions

The Set instruction sets or turns on an
image register point/memory location or
a consecutive range of image register
points/memory locations. Once the
point/location is set it will remain on until it
is reset using the Reset instruction. It is
not necessary for the input controlling the
Set instruction to remain on.

A aaa
SET

aaa

���-�����
	�	��.������

The Reset instruction resets or turns off
an image register point/memory location
or a range of image registers
points/memory locations. Once the
point/location is reset it is not necessary
for the input to remain on.

A aaa
RST

aaa

���-�����
	�	��.������

Operand Data Type DL05 Range

A aaa

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

In the following example when X1 is on, Y2 through Y5 will energize.

SET

X1 Y2 Y5

Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

SET
X ENT

2
C

5
F

In the following example when X1 is on, Y2 through Y5 will be reset or de–energized.

STR
$

1
B ENT

RST
S

2
C

RST

X1 Y2 Y5

Handheld Programmer KeystrokesDirectSOFT

ENT
5

F

Set
(SET)

Reset
(RST)

S
tandard

R
LL Instructions

5–19Standard RLL Instructions

Boolean Instructions

aaaaaaY

The Pause instruction disables the
output update on a range of outputs. The
ladder program will continue to run and
update the image register. However, the
outputs in the range specified in the
Pause instruction will be turned off at the
output points.

PAUSE

Operand Data Type DL05 Range

aaa

Outputs Y 0–377

In the following example, when X1 is ON, Y3–Y5 will be turned OFF. The execution of
the ladder program will not be affected.
DirectSOFT

PAUSE

X1 Y5 Y7

Since the D2–HPP Handheld Programmer does not have a specific Pause key, you
can use the corresponding instruction number for entry (#960), or type each letter of
the command.

STR
$

1
B ENT

Handheld Programmer Keystrokes

5
F ENT

INST#
O

9
J

6
G

0
A ENT ENT

3
D

In some cases, you may want certain output points in the specified pause range to
operate normally. In that case, use Aux 58 to over-ride the Pause instruction.

Pause
(PAUSE)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–20 Standard RLL Instructions

Comparative Boolean Instructions

Comparative Boolean

V aaa

The Store If Equal instruction begins a
new rung or additional branch in a rung
with a normally open comparative
contact. The contact will be on when
 Vaaa =Bbbb .

B bbb

V aaa

The Store If Not Equal instruction begins
a new rung or additional branch in a rung
with a normally closed comparative
contact. The contact will be on when
Vaaa � Bbbb.

B bbb

Operand Data Type DL05 Range

B aaa bbb

V memory V All (See page 4–28) All (See page 4–28)

Pointer P All (See page 4–28) All (See page 4–28)

Constant K –– 0–9999

In the following example, when the value in V memory location V2000 = 4933 , Y3 will
energize.

V2000 K4933 Y3

OUT

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT

4
E

2
C

0
A

0
A

0
A

4
E

9
J

3
D

3
D ENT

OUT
GX ENT

3
D

In the following example, when the value in V memory location V2000 � 5060, Y3
will energize.

Y3

OUT

V2000 K5060

DirectSOFT Handheld Programmer Keystrokes

SHFT

OUT
GX ENT

3
D

4
E

2
C

0
A

0
A

0
A

STRN
SP

5
F

0
A ENT

6
G

0
A

Store If Equal
(STRE)

Store If Not Equal
(STRNE)

S
tandard

R
LL Instructions

5–21Standard RLL Instructions

Comparative Boolean Instructions

V aaa

The Or If Equal instruction connects a
normally open comparative contact in
parallel with another contact. The
contact will be on when Vaaa = Bbbb. B bbb

V aaa

The Or If Not Equal instruction connects
a normally closed comparative contact in
parallel with another contact. The
contact will be on when Vaaa � Bbbb. B bbb

Operand Data Type DL05 Range

B aaa bbb

V memory V All (See page 4–28) All (See page 4–28)

Pointer P All (See page 4–28) All (See page 4–28)

Constant K –– 0–9999

In the following example, when the value in V memory location V2000 = 4500 or
V2002 = 2345 , Y3 will energize.

2
C

3
D

4
E

5
F ENT

4
E

5
F ENT

0
A

0
A

Y3

OUT

V2002 K2345

V2000 K4500

DirectSOFT Handheld Programmer Keystrokes

SHFT
4

E
2

C
0

A
0

A
0

A
STR

$

OR
Q SHFT

4
E

2
C

0
A

0
A

2
C

OUT
GX ENT

3
D

In the following example, when the value in V memory location V2000 = 3916 or
V2002 � 050, Y3 will energize.

2
C

5
F ENT

0
A

0
A

3
D

9
J ENT

1
B

6
G

4
E

Y3

OUT

V2000 K3916

V2002 K2500

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT

2
C

0
A

0
A

0
A

ORN
R SHFT

4
E

2
C

0
A

0
A

2
C

OUT
GX ENT

3
D

Or If Equal
(ORE)

Or If Not Equal
(ORNE)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–22 Standard RLL Instructions

Comparative Boolean Instructions

V aaa

The And If Equal instruction connects a
normally open comparative contact in
series with another contact. The contact
will be on when Vaaa = Bbbb.

B bbb

V aaa

The And If Not Equal instruction connects
a normally closed comparative contact in
series with another contact. The contact
will be on when Vaaa � Bbbb

B bbb

Operand Data Type DL05 Range

A/B aaa bbb

V memory V All (See page 4–28) All (See page 4–28)

Pointer P All (See page 4–28) All (See page 4–28)

Constant K –– 0–9999

In the following example, when the value in V memory location V2000 = 5000 and
V2002 = 2345, Y3 will energize.

2
C

3
D

4
E

5
F ENT

5
F

0
A ENT

0
A

0
A

2
C

STR
$ SHFT

4
E

0
A

0
A

0
A

AND
V SHFT

4
E

2
C

0
A

0
A

2
C

OUT
GX ENT

3
D

Y3

OUT

V2002 K2345V2000 K5000

DirectSOFT Handheld Programmer Keystrokes

In the following example, when the value in V memory location V2000 = 2550 and
V2002 � 050, Y3 will energize.

2
C

2
C

2
C

STR
$ SHFT

4
E

2
C

0
A

0
A

0
A

5
F ENT

5
F

0
A

ANDN
W SHFT

4
E

2
C

0
A

0
A

5
F ENT

0
A

0
A

OUT
GX

Y3

OUT

V2000 K2550 V2002 K2500

DirectSOFT Handheld Programmer Keystrokes

ENT
3

D

And If Equal
(ANDE)

And If Not Equal
(ANDNE)

S
tandard

R
LL Instructions

5–23Standard RLL Instructions

Comparative Boolean Instructions

The Comparative Store instruction
begins a new rung or additional branch in
a rung with a normally open comparative
contact. The contact will be on when
Aaaa � Bbbb.

A aaa B bbb

The Comparative Store Not instruction
begins a new rung or additional branch in
a rung with a normally closed
comparative contact. The contact will be
on when Aaaa < Bbbb.

A aaa B bbb

Operand Data Type DL05 Range

A/B aaa bbb

V memory V All (See page 4–28) All (See page 4–28)

Pointer P All (See page 4–28) All (See page 4–28)

Constant K –– 0–9999

Timer T 0–177

Counter CT 0–177

In the following example, when the value in V memory location V2000 � 1000, Y3
will energize.

ENT
3

D

Y3

OUT

V2000 K1000

DirectSOFT Handheld Programmer Keystrokes

STR
$

ENT

OUT
GX

SHFT
AND

V
2

C
0

A
0

A
0

A

1
B

0
A

0
A

0
A

In the following example, when the value in V memory location V2000 < 4050, Y3 will
energize.

ENT
3

D

0
A ENT

0
A

4
E

5
F

Y3

OUT

V2000 K4050

DirectSOFT Handheld Programmer Keystrokes

OUT
GX

STRN
SP SHFT

AND
V

2
C

0
A

0
A

0
A

Store
(STR)

Store Not
(STRN)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–24 Standard RLL Instructions

Comparative Boolean Instructions

The Comparative Or instruction
connects a normally open comparative
contact in parallel with another contact.
The contact will be on when Aaaa �
Bbbb.

A aaa B bbb

The Comparative Or Not instruction
connects a normally open comparative
contact in parallel with another contact.
The contact will be on when Aaaa < Bbbb. A aaa B bbb

Operand Data Type DL05 Range

A/B aaa bbb

V memory V All (See page 4–28) All (See page 4–28)

Pointer P All (See page 4–28) All (See page 4–28)

Constant K –– 0–9999

Timer T 0–177

Counter CT 0–177

In the following example, when the value in V memory location V2000 = 6045 or
V2002 � 2345, Y3 will energize.

2
C

3
D

4
E

5
F ENT

6
G

0
A

Y3

OUT

V2000 K6045

V2002 K2345

DirectSOFT Handheld Programmer Keystrokes

SHFT
4

E
2

C
0

A
0

A
0

A

ENT

STR
$

OR
Q

OUT
GX ENT

3
D

4
E

5
F

SHFT
AND

V
2

C
0

A
0

A
2

C

In the following example when the value in V memory location V2000 = 1000 or
V2002 < 050, Y3 will energize.

ENT
3

D

2
C

5
F ENT

0
A

0
A

ENT
1

B
0

A
0

A
0

A

4
E

Y3

OUT

V2000 K1000

V2002 K2500

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT

2
C

0
A

0
A

0
A

ORN
R

OUT
GX

SHFT
AND

V
2

C
0

A
0

A
2

C

Or
(OR)

Or Not
(ORN)

S
tandard

R
LL Instructions

5–25Standard RLL Instructions

Comparative Boolean Instructions

The Comparative And instruction
connects a normally open comparative
contact in series with another contact.
The contact will be on when Aaaa �
Bbbb.

A aaa B bbb

The Comparative And Not instruction
connects a normally open comparative
contact in parallel with another contact.
The contact will be on when Aaaa <
Bbbb.

A aaa B bbb

Operand Data Type DL05 Range

A/B aaa bbb

V memory V All (See page 4–28) All (See page 4–28)

Pointer P All (See page 4–28) All (See page 4–28)

Constant K –– 0–9999

Timer T 0–177

Counter CT 0–177

In the following example, when the value in V memory location V2000 = 5000, and
V2002 � 2345, Y3 will energize.

ENT
3

D

2
C

3
D

4
E

5
F ENT

ENT
0

A
0

A
5

F
0

A

2
CY3

OUT

V2000 K5000 V2002 K2345

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT

4
E

0
A

0
A

0
A

AND
V

OUT
GX

SHFT
AND

V
2

C
0

A
0

A
2

C

In the following example, when the value in V memory location V2000 = 7000 and
V2002 < 050, Y3 will energize.

2
C

5
F ENT

0
A

0
A

7
H ENT

0
A

0
A

0
A

2
C

Y3

OUT

V2000 K7000 V2002 K2500

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT

4
E

2
C

0
A

0
A

0
A

ANDN
W

OUT
GX SHFT

AND
Y ENT

3
D

SHFT
AND

V
2

C
0

A
0

A

And
(AND)

And Not
(ANDN)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–26 Standard RLL Instructions

Immediate Instructions

Immediate Instructions

aaaX

The Store Immediate instruction begins a
new rung or additional branch in a rung.
The status of the contact will be the same
as the status of the associated input point
at the time the instruction is executed. The
image register is not updated.

aaaX

The Store Not Immediate instruction
begins a new rung or additional branch in
a rung. The status of the contact will be
opposite the status of the associated input
point at the time the instruction is
executed. The image register is not
updated.

Operand Data Type DL05 Range

aaa

Inputs X 0–377

In the following example, when X1 is on, Y2 will energize.

ENT
2

C

1
B ENTX1 Y2

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$ SHFT

8
I

OUT
GX

In the following example when X1 is off, Y2 will energize.

ENT
2

C

1
B ENT

X1 Y2

OUT

Handheld Programmer KeystrokesDirectSOFT

STRN
SP SHFT

8
I

OUT
GX

aaaX

The Or Immediate connects two contacts
in parallel. The status of the contact will be
the same as the status of the associated
input point at the time the instruction is
executed. The image register is not
updated.

aaaX

The Or Not Immediate connects two
contacts in parallel. The status of the
contact will be opposite the status of the
associated input point at the time the
instruction is executed. The image
register is not updated.

Store
Immediate
(STRI)

Store Not
Immediate
(STRNI)

Or Immediate
(ORI)

Or Not Immediate
(ORNI)

S
tandard

R
LL Instructions

5–27Standard RLL Instructions

Immediate Instructions

Operand Data Type DL05 Range

aaa

Inputs X 0–377

In the following example, when X1 or X2 is on, Y5 will energize.

1
B ENT

ENT
2

C

ENT
5

F

X1

X2

Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$

OR
Q SHFT

8
I

OUT
GX

In the following example, when X1 is on or X2 is off, Y5 will energize.

ENT
5

F

ENT
2

C

1
B ENT

X1

X2

Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$

SHFT
8

I
ORN

R

OUT
GX

aaaX

The And Immediate connects two
contacts in series. The status of the
contact will be the same as the status of
the associated input point at the time the
instruction is executed. The image
register is not updated.

aaaX

The And Not Immediate connects two
contacts in series. The status of the
contact will be opposite the status of the
associated input point at the time the
instruction is executed. The image
register is not updated.

Operand Data Type DL05 Range

aaa

Inputs X 0–377

In the following example, when X1 and X2 are on, Y5 will energize.

OUT
GX

X1 X2 Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

AND
V SHFT

8
I ENT

2
C

ENT
5

F

In the following example, when X1 is on and X2 are off, Y5 will energize.

X1 X2 Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$

ANDN
W SHFT

8
I

OUT
GX

1
B ENT

ENT
2

C

ENT
5

F

OR Immediate
Instructions Cont’d

And Immediate
(ANDI)

And Not Immediate
(ANDNI)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–28 Standard RLL Instructions

Immediate Instructions

Y aaa

The Out Immediate instruction reflects the
status of the rung (on/off) and outputs the
discrete (on/off) status to the specified
module output point and the image register
at the time the instruction is executed. If
multiple Out Immediate instructions
referencing the same discrete point are
used it is possible for the module output
status to change multiple times in a CPU
scan. See Or Out Immediate.

OUTI

The Or Out Immediate instruction has
been designed to use more than 1 rung of
discrete logic to control a single output.
Multiple Or Out Immediate instructions
referencing the same output coil may be
used, since all contacts controlling the
output are ored together. If the status of
any rung is on at the time the instruction is
executed, the output will also be on.

OROUTI

Y aaa

Operand Data Type DL05 Range

aaa

Outputs Y 0–377

In the following example, when X1 is on, output point Y2 on the output module will
turn on. For instruction entry on the Handheld Programmer, you can use the
instruction number (#350) as shown, or type each letter of the command.

1
B ENTX1 Y2

OUTI

DirectSOFT Handheld Programmer Keystrokes

STR
$

INST#
O

5
F

3
D

0
A ENT ENT

2
C ENT

In the following example, when X1 or X4 is on, Y2 will energize.

STR
$

X1

X4

Y2

OR OUTI

Y2

OR OUTI

DirectSOFT Handheld Programmer Keystrokes

STR
$

1
B ENT

ENT
4

E

INST#
O

5
F

3
D

0
A ENT ENT

2
C ENT

INST#
O

5
F

3
D

0
A ENT ENT

2
C ENT

Out Immediate
(OUTI)

Or Out Immediate
(OROUTI)

S
tandard

R
LL Instructions

5–29Standard RLL Instructions

Immediate Instructions

The Set Immediate instruction
immediately sets, or turns on an output or
a range of outputs in the image register
and the corresponding output point(s) at
the time the instruction is executed. Once
the outputs are set it is not necessary for
the input to remain on. The Reset
Immediate instruction can be used to
reset the outputs.

aaaY aaa
SETI

aaaY aaa

The Reset Immediate instruction
immediately resets, or turns off an output
or a range of outputs in the image register
and the output point(s) at the time the
instruction is executed. Once the outputs
are reset it is not necessary for the input to
remain on.

RSTI

Operand Data Type DL05 Range

aaa

Outputs Y 0–377

In the following example, when X1 is on, Y2 through Y5 will be set on in the image
register and on the corresponding output points.

1
B ENTX1 Y2

SETI

Y5

DirectSOFT Handheld Programmer Keystrokes

STR
$

SET
X SHFT

8
I ENT

2
C

5
F

In the following example, when X1 is on, Y5 through Y22 will be reset (off) in the
image register and on the corresponding output module(s).

1
B ENTX1 Y2

RSTI

Y5

DirectSOFT Handheld Programmer Keystrokes

STR
$

SHFT
8

I
RST

S ENT
2

C
5

F

Set Immediate
(SETI)

Reset
Immediate
(RSTI)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–30 Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

Timer, Counter and Shift Register Instructions

Timers are used to time an event for a desired length of time. The single input timer
will time as long as the input is on. When the input changes from on to off the timer
current value is reset to 0. There is a tenth of a second and a hundredth of a second
timer available with a maximum time of 999.9 and 99.99 seconds respectively. There
is a discrete bit associated with each timer to indicate that the current value is equal
to or greater than the preset value. The timing diagram below shows the relationship
between the timer input, associated discrete bit, current value, and timer preset.

TMR T1
K30

X1

X1

T1

1 2 3 4 5 6 7 80

0 10 20 30 40 50 60 0Current
Value

�����������	

T1 Y0
OUT

Seconds

1/10 Seconds

There are those applications that need an accumulating timer, meaning it has the
ability to time, stop, and then resume from where it previously stopped. The
accumulating timer works similarly to the regular timer, but two inputs are required.
The start/stop input starts and stops the timer. When the timer stops, the elapsed
time is maintained. When the timer starts again, the timing continues from the
elapsed time. When the reset input is turned on, the elapsed time is cleared and the
timer will start at 0 when it is restarted. There is a tenth of a second and a hundredth
of a second timer available with a maximum time of 9999999.9 and 999999.99
seconds respectively. The timing diagram below shows the relationship between the
timer input, timer reset, associated discrete bit, current value, and timer preset.

X1

X1

T0

1 2 3 4 5 6 7 80

0 10 10 20 30 40 50 0Current
Value

TMRA T0
K30

X2

X2

���	����	

�	��	��	��

Seconds

1/10 Seconds

Using Timers

S
tandard

R
LL Instructions

5–31Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

T aaa

aaaT

The Timer instruction is a 0.1 second single
input timer that times to a maximum of
999.9 seconds. The Timer Fast instruction
is a 0.01 second single input timer that
times up to a maximum of 99.99 seconds.
These timers will be enabled if the input
logic is true (on) and will be reset to 0 if the
input logic is false (off).
Instruction Specifications
Timer Reference (Taaa): Specifies the
timer number.
Preset Value (Bbbb): Constant value (K)
or a V memory location.
Current Value: Timer current values are
accessed by referencing the associated V
or T memory location*. For example, the
timer current value for T3 physically
resides in V-memory location V3.
Discrete Status Bit: The discrete status
bit is referenced by the associated T
memory location. Operating as a “timer
done bit”, it will be on if the current value is
equal to or greater than the preset value.
For example, the discrete status bit for
Timer 2 is TA2.

TMR
B bbb

�����	 �������

TMRF
B bbb

�����	 �������

The timer discrete status bit and the
current value are not specified in the timer
instruction.

NOTE: Timer preset constants (K) may be changed by using a handheld
programmer, even when the CPU is in Run Mode. Therefore, a V-memory preset is
required only if the ladder program must change the preset.

Operand Data Type DL05 Range

A/B aaa bbb

Timers T 0–177 ––

V memory for preset
values V –– 1200–7377

7400–7577

Pointers (preset only) P –– 1200–7377
7400–7577

Constants
(preset only) K –– 0–9999

Timer discrete status
bits T/V 0–177 or V41100–41107

Timer current values V /T* 0–177

NOTE: * With the HPP, both the Timer discrete status bits and current value are
accessed with the same data reference. DirectSOFT uses separate references,
such as “T2” for discrete status bit for Timer T2, and “TA2” for the current value of
Timer T2.

You can perform functions when the timer reaches the specified preset using the
discrete status bit. Or, use comparative contacts to perform functions at different
time intervals, based on one timer. The examples on the following page show these
two methods of programming timers.

Timer (TMR) and
Timer Fast (TMRF)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–32 Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

In the following example, a single input timer is used with a preset of 3 seconds. The
timer discrete status bit (T2) will turn on when the timer has timed for 3 seconds. The
timer is reset when X1 turns off, turning the discrete status bit off and resetting the
timer current value to 0.

STR
$

TMR
N

2
C

STR
$ SHFT

MLR
T

2
C ENT

OUT
GX

Handheld Programmer Keystrokes

X1
TMR T2

K30

T2 Y0

OUT

X1

T2

1 2 3 4 5 6 7 80

0 10 20 30 40 50 60 0Current
Value

Y0

Timing DiagramDirectSOFT

������������

Seconds

1
B ENT

3
D

0
A ENT

ENT
0

A

In the following example, a single input timer is used with a preset of 4.5 seconds.
Comparative contacts are used to energize Y3, Y4, and Y5 at one second intervals
respectively. When X1 is turned off the timer will be reset to 0 and the comparative
contacts will turn off Y3, Y4, and Y5.

1
B ENT

Handheld Programmer Keystrokes

X1
TMR T20

K45

TA20 K10

TA20 K20

TA20 K30

Y4

OUT

Y3

OUT

Y5

OUT

X1

Y3

1 2 3 4 5 6 7 80

0 10 20 30 40 50 60 0Current
Value

Y4

Timing Diagram

Y5

T2

DirectSOFT

������������

Seconds

STR
$

TMR
N

2
C ENT

0
A

4
E

5
F

STR
$ SHFT

MLR
T

2
C

0
A

1
B ENT

OUT
GX ENT

3
D

STR
$ SHFT

MLR
T

2
C

0
A ENT

OUT
GX ENT

2
C

4
E

STR
$ SHFT

MLR
T

2
C

0
A ENT

OUT
GX ENT

3
D

5
F

0
A

0
A

0
A

Timer Example
Using Discrete
Status Bits

Timer Example
Using Comparative
Contacts

S
tandard

R
LL Instructions

5–33Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

T aaa

T aaa

The Accumulating Timer is a 0.1 second
two input timer that will time to a maximum
of 9999999.9. The Accumulating Fast
Timer is a 0.01 second two-input timer that
will time to a maximum of 99999.99. Each
one uses two timer registers in V-memory.
These timers have two inputs, an enable
and a reset. The timer starts timing when
the enable is on and stops when the
enable is off (without resetting the count).
The reset will reset the timer when on and
allow the timer to time when off.
Instruction Specifications
Timer Reference (Taaa): Specifies the
timer number.
Preset Value (Bbbb): Constant value (K)
or a V memory location.
Current Value: Timer current values are
accessed by referencing the associated V
or T memory location*. For example, the
timer current value for T3 resides in
V-memory location V3.
Discrete Status Bit: The discrete status
bit is accessed by referencing the
associated T memory location. Operating
as a “timer done bit” ,it will be on if the
current value is equal to or greater than
the preset value. For example the discrete
status bit for timer 2 would be T2.

TMRA
B bbb

Enable

Reset

�����	 �������

TMRAF
B bbb

Enable

Reset

�����	 �������

The timer discrete status bit and the
current value are not specified in the
timer instruction.

NOTE: The accumulating type timer uses two consecutive V-memory locations
for the 8-digit value, and therefore two consecutive timer locations. For example, if
TMR 1 is used, the next available timer number is TMR 3.

Operand Data Type DL05 Range

A/B aaa bbb

Timers T 0–176 ––

V memory for preset
values V –– 1200–7377

7400–7577

Pointers (preset only) P –– 1200–7377
7400–7577

Constants
(preset only) K –– 0–99999999

Timer discrete status
bits T/V 0–176 or V41100–41107

Timer current values V /T* 0–176

NOTE: * With the HPP, both the Timer discrete status bits and current value are
accessed with the same data reference. DirectSOFT uses separate references,
such as “T2” for discrete status bit for Timer T2, and “TA2” for the current value of
Timer T2.

The following examples show two methods of programming timers. One performs
functions when the timer reaches the preset value using the discrete status bit, or
use comparative contacts to perform functions at different time intervals.

Accumulating
Timer (TMRA)

Accumulating Fast
Timer (TMRAF)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–34 Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

In the following example, a two input timer (accumulating timer) is used with a preset
of 3 seconds. The timer discrete status bit (T6) will turn on when the timer has timed
for 3 seconds. Notice in this example that the timer times for 1 second , stops for one
second, then resumes timing. The timer will reset when C10 turns on, turning the
discrete status bit off and resetting the timer current value to 0.

Handheld Programmer Keystrokes

X1

T6

TMRA T6

K30
C10

Y7

OUT

X1

C10

1 2 3 4 5 6 7 80

0 10 10 20 30 40 50 0Current
Value

T6

Timing DiagramDirectSOFT

������������

Seconds

Handheld Programmer Keystrokes (cont)

STR
$

STR
$ SHFT ENT

2
C

1
B

0
A

TMR
N SHFT

0
A

3
D

0
A ENT

STR
$ SHFT

MLR
T ENT

OUT
GX ENT

0
A

6
G

1
B

1
B ENT

6
G

In the following example, a single input timer is used with a preset of 4.5 seconds.
Comparative contacts are used to energized Y3, Y4, and Y5 at one second intervals
respectively. The comparative contacts will turn off when the timer is reset.

Handheld Programmer Keystrokes

TA20 K10

TA20 K20

TA20 K30

Y4

OUT

Y3

OUT

Y5

OUT

X1

TMRA T20

K45
C10

X1

C10

1 2 3 4 5 6 7 80

0 10 10 20 30 40 50 0Current
Value

Timing Diagram

Y3

Y4

Y5

T20

DirectSOFT

Handheld Programmer Keystrokes (cont)

������������

Seconds

STR
$ SHFT

MLR
T

2
C

0
A ENT

OUT
GX ENT

2
C

4
E

STR
$ SHFT

MLR
T

2
C

0
A

ENT

OUT
GX ENT

3
D

5
F

STR
$

1
B ENT

ENT
4

E
5

F

STR
$ SHFT

MLR
T

2
C

0
A

1
B ENT

OUT
GX ENT

3
D

STR
$ SHFT ENT

2
C

1
B

0
A

2
C

0
A

TMR
N SHFT

0
A

0
A

0
A

0
A

Accumulating
Timer Example
using Discrete
Status Bits

Accumulator Timer
Example Using
Comparative
Contacts

S
tandard

R
LL Instructions

5–35Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

Counters are used to count events . The counters available are up counters,
up/down counters, and stage counters (used with RLLPLUS programming).
The up counter has two inputs, a count input and a reset input. The maximum count
value is 9999. The timing diagram below shows the relationship between the counter
input, counter reset, associated discrete bit, current value, and counter preset.

X1
X1

CT1

1 2 3 4 0Current
Value

CNT CT1
K3

X2X2

���	��������	

��

���	

���	�

The up down counter has three inputs, a count up input, count down input and reset
input. The maximum count value is 99999999. The timing diagram below shows the
relationship between the counter input, counter reset, associated discrete bit,
current value, and counter preset.

X1
X1

CT2

1 2 1 2 3 0Current
Value

X2X2

UDC CT2
K3

X3
X3

���	��������	

��

����

���	

���	�

The stage counter has a count input and is reset by the RST instruction. This
instruction is useful when programming using the RLLPLUS structured programming.
The maximum count value is 9999. The timing diagram below shows the relationship
between the counter input, associated discrete bit, current value, counter preset and
reset instruction.

X1X1

CT2

1 2 3 4 0Current
Value

SGCNT CT2
K3

RST
CT2

���	��������	

��

���	�

Using Counters

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–36 Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

CT aaa

The Counter is a two input counter that
increments when the count input logic
transitions from off to on. When the counter
reset input is on the counter resets to 0.
When the current value equals the preset
value, the counter status bit comes on and
the counter continues to count up to a
maximum count of 9999. The maximum
value will be held until the counter is reset.
Instruction Specifications
Counter Reference (CTaaa): Specifies
the counter number.
Preset Value (Bbbb): Constant value (K)
or a V memory location.
Current Values: Counter current values
are accessed by referencing the
associated V or CT memory locations*.
The V-memory location is the counter
location + 1000. For example, the counter
current value for CT3 resides in V memory
location V1003.

CNT
B bbb

Count

Reset

�����	

���	����

The counter discrete status bit and the
current value are not specified in the
counter instruction.

Discrete Status Bit: The discrete status bit is accessed by referencing the
associated CT memory location. It will be on if the value is equal to or greater than the
preset value. For example the discrete status bit for counter 2 would be CT2.

NOTE: Counter preset constants (K) may be changed by using a programming
device, even when the CPU is in Run Mode. Therefore, a V-memory preset is
required only if the ladder program must change the preset.

Operand Data Type DL05 Range

A/B aaa bbb

Counters CT 0–177 ––

V memory
(preset only) V –– 1200–7377

7400–7577

Pointers (preset only) P –– 1200–7377
7400–7577

Constants
(preset only) K –– 0–9999

Counter discrete
status bits CT/V 0–177 or V41140–41147

Counter current
values V/CT* 0–177

NOTE: * With the HPP, both the Counter discrete status bits and current value are
accessed with the same data reference. DirectSOFT uses separate references,
such as “CT2” for discrete status bit for Counter CT2, and “CTA2” for the current
value of Counter CT2.

Counter
(CNT)

S
tandard

R
LL Instructions

5–37Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

In the following example, when X1 makes an off to on transition, counter CT2 will
increment by one. When the current value reaches the preset value of 3, the counter
status bit CT2 will turn on and energize Y7. When the reset C10 turns on, the counter
status bit will turn off and the current value will be 0. The current value for counter
CT2 will be held in V memory location V1002.

2
C

Handheld Programmer Keystrokes

CT2

X1

CNT CT2

K3
C10

Y7

OUT

X1

Y10

1 2 3 4 0Current
Value

C10

Counting diagramDirectSOFT

STR
$

1
B ENT

3
D ENT

STR
$ SHFT ENT

2
C

1
B

0
A

CNT
GY

STR
$ SHFT ENT

OUT
GX ENT

0
A

1
B

2
C

MLR
T

2
C

Handheld Programmer Keystrokes (cont)

SHFT

In the following example, when X1 makes an off to on transition, counter CT2 will
increment by one. Comparative contacts are used to energize Y3, Y4, and Y5 at
different counts. When the reset C10 turns on, the counter status bit will turn off and
the counter current value will be 0, and the comparative contacts will turn off.

Handheld Programmer Keystrokes

X1

CNT CT2

K3
C10

X1

Y3

1 2 3 4 0Current
Value

C10

Counting diagram

CTA2 K1

CTA2 K2

CTA2 K3

Y4

OUT

Y3

OUT

Y5

OUT

Y4

Y5

DirectSOFT

Handheld Programmer Keystrokes (cont)

STR
$ SHFT

ENT

OUT
GX ENT

2
C

4
E

STR
$ SHFT

2
C

ENT

OUT
GX ENT

3
D

5
F

STR
$

1
B ENT

2
C

STR
$ SHFT

1
B ENT

OUT
GX ENT

3
D

STR
$ SHFT ENT

2
C

1
B

0
A

CNT
GY ENT

3
D

MLR
T

2
C

2
C

MLR
T

2
C

2
C

MLR
T

2
CSHFT

SHFT

SHFT

Counter Example
Using Discrete
Status Bits

Counter Example
Using Comparative
Contacts

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–38 Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

CT aaa

The Stage Counter is a single input counter
that increments when the input logic
transitions from off to on. This counter
differs from other counters since it will hold
its current value until reset using the RST
instruction. The Stage Counter is designed
for use in RLLPLUS programs but can be
used in relay ladder logic programs. When
the current value equals the preset value,
the counter status bit turns on and the
counter continues to count up to a
maximum count of 9999. The maximum
value will be held until the counter is reset.

Instruction Specifications
Counter Reference (CTaaa): Specifies
the counter number.
Preset Value (Bbbb): Constant value (K)
or a V memory location.
Current Values: Counter current values
are accessed by referencing the
associated V or CT memory locations*.
The V-memory location is the counter
location + 1000. For example, the counter
current value for CT3 resides in V memory
location V1003.
Discrete Status Bit: The discrete status
bit is accessed by referencing the
associated CT memory location. It will be
on if the value is equal to or greater than the
preset value. For example the discrete
status bit for counter 2 would be CT2.

SGCNT
B bbb

�����	

���	����

The counter discrete status bit and the
current value are not specified in the
counter instruction.

Operand Data Type DL05 Range

A/B aaa bbb

Counters CT 0–177 ––

V memory
(preset only) V –– 1200–7377

7400–7577

Pointers (preset only) P –– 1200–7377
7400–7577

Constants
(preset only) K –– 0–9999

Counter discrete
status bits CT/V 0–177 or V41140–41147

Counter current
values V/CT* 1000–1177

NOTE: * With the HPP, both the Counter discrete status bits and current value are
accessed with the same data reference. DirectSOFT uses separate references,
such as “CT2” for discrete status bit for Counter CT2, and “CTA2” for the current
value of Counter CT2.

Stage Counter
(SGCNT)

S
tandard

R
LL Instructions

5–39Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

In the following example, when X1 makes an off to on transition, stage counter CT7
will increment by one. When the current value reaches 3, the counter status bit CT7
will turn on and energize Y7. The counter status bit CT7 will remain on until the
counter is reset using the RST instruction. When the counter is reset, the counter
status bit will turn off and the counter current value will be 0. The current value for
counter CT7 will be held in V memory location V1007.

3
D

7
H

Handheld Programmer Keystrokes

X1

C5 CT7

SGCNT CT7
K3

RST

X1

Y10

1 2 3 4 0Current
Value

RST
CT7

CT7 Y7

OUT

Counting diagramDirectSOFT

STR
$

1
B ENT

CNT
GY

STR
$ SHFT ENT

OUT
GX ENT

0
A

1
B

2
C

MLR
T

7
H

STR
$ SHFT ENT

2
C

5
F

RST
S SHFT

2
C

7
H ENT

SHFT
RST

S
6

G SHFT

ENT

Handheld Programmer Keystrokes (cont)

SHFT

SHFT

SHFT
MLR

T

In the following example, when X1 makes an off to on transition, counter CT2 will
increment by one. Comparative contacts are used to energize Y3, Y4, and Y5 at
different counts. Although this is not shown in the example, when the counter is reset
using the Reset instruction, the counter status bit will turn off and the current value
will be 0. The current value for counter CT2 will be held in V memory location V1002.

Handheld Programmer Keystrokes

X1

X1

Y3

1 2 3 4 0Current
Value

Counting diagram

CT2 K1

CT2 K2

CT2 K3

Y4

OUT

Y3

OUT

Y5

OUT

Y4

Y5

SGCNT CT2
K10

DirectSOFT

Handheld Programmer Keystrokes (cont)

STR
$

1
B ENT

CNT
GYSHFT

RST
S

6
G SHFT

ENT
2

C
1

B
0

A

STR
$ SHFT

1
B ENT

OUT
GX ENT

3
D

MLR
T

2
C

2
C

STR
$ SHFT

ENT

OUT
GX ENT

2
C

4
E

STR
$ SHFT

2
C

ENT

OUT
GX ENT

3
D

5
F

MLR
T

2
C

2
C

MLR
T

2
CSHFT

SHFT

SHFT

Stage Counter
Example Using
Discrete Status
Bits

Stage Counter
Example Using
Comparative
Contacts

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–40 Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

CT aaa
This Up/Down Counter counts up on each
off to on transition of the Up input and
counts down on each off to on transition of
the Down input. The counter is reset to 0
when the Reset input is on. The count
range is 0–99999999. The count input not
being used must be off in order for the
active count input to function.

Instruction Specification
Counter Reference (CTaaa): Specifies
the counter number.
Preset Value (Bbbb): Constant value (K)
or two consecutive V memory locations.
Current Values: Current count is a double
word value accessed by referencing the
associated V or CT memory locations*.
The V-memory location is the counter
location + 1000. For example, the counter
current value for CT5 resides in V memory
location V1005 and V1006.
Discrete Status Bit: The discrete status
bit is accessed by referencing the
associated CT memory location.
Operating as a “counter done bit” it will be
on if the value is equal to or greater than the
preset value. For example the discrete
status bit for counter 2 would be CT2.

UDC
B bbb

Up

Down

Reset

Caution: The UDC uses two
V memory locations for the 8 digit
current value. This means that the
UDC uses two consecutive
counter locations. If UDC CT1 is
used in the program, the next
available counter is CT3.

Preset

Counter #

The counter discrete status bit and the
current value are not specified in the
counter instruction.

Operand Data Type DL05 Range

A/B aaa bbb

Counters CT 0–176 ––

V memory
(preset only) V –– 1200–7377

7400–7577

Pointers (preset only) P –– 1200–7377
7400–7577

Constants
(preset only) K –– 0–99999999

Counter discrete
status bits CT/V 0–176 or V41140–41147

Counter current
values V/CT* 0–176

NOTE: * With the HPP, both the Counter discrete status bits and current value are
accessed with the same data reference. DirectSOFT uses separate references,
such as “CT2” for discrete status bit for Counter CT2, and “CTA2” for the current
value of Counter CT2.

Up Down Counter
(UDC)

S
tandard

R
LL Instructions

5–41Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

In the following example if X2 and X3 are off ,when X1 toggles from off to on the
counter will increment by one. If X1 and X3 are off the counter will decrement by one
when X2 toggles from off to on. When the count value reaches the preset value of 3,
the counter status bit will turn on. When the reset X3 turns on, the counter status bit
will turn off and the current value will be 0.

3
D ENT

Handheld Programmer Keystrokes

X1

UDC CT2
K3

X2

X3

CT2 Y7

OUT

X1

CT2

1 2 1 2 3 0Current
Value

X2

X3

Counting DiagramDirectSOFT

Handheld Programmer Keystrokes (cont)

STR
$

1
B ENT

STR
$

2
C

STR
$

3
D

SHFT
ISG

U
3

D
2

C
2

C

ENT

ENT
STR

$ SHFT ENT

OUT
GX ENT

0
A

1
B

2
C

MLR
T

2
CSHFT

In the following example, when X1 makes an off to on transition, counter CT2 will
increment by one. Comparative contacts are used to energize Y3 and Y4 at different
counts. When the reset (X3) turns on, the counter status bit will turn off, the current
value will be 0, and the comparative contacts will turn off.

AND
V

Handheld Programmer Keystrokes

X1

UDC CT2
V2000

X2

X3

X1

X2

X3

Counting Diagram

CTA2 K1

CTA2 K2 Y4

OUT

Y3

OUT

Y3

1 2 3 4 0Current
Value

Y4

DirectSOFT

Handheld Programmer Keystrokes (cont)

STR
$

1
B ENT

STR
$

2
C

STR
$

3
D

SHFT
ISG

U
3

D
2

C
2

C

ENT

ENT

SHFT ENT
2

C
0

A
0

A
0

A

STR
$ SHFT

1
B ENT

OUT
GX ENT

3
D

MLR
T

2
C

2
C

STR
$ SHFT

ENT

OUT
GX ENT

MLR
T

2
C

2
C

2
C

4
E

SHFT

SHFT

Up / Down Counter
Example Using
Discrete Status
Bits

Up / Down Counter
Example Using
Comparative
Contacts

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–42 Standard RLL Instructions

Timer, Counter, and Shift Register Instructions

The Shift Register instruction shifts data
through a predefined number of control
relays. The control ranges in the shift
register block must start at the beginning
of an 8 bit boundary use 8-bit blocks.
The Shift Register has three contacts.
� Data — determines the value (1 or

0) that will enter the register
� Clock — shifts the bits one position

on each low to high transition
� Reset —resets the Shift Register to

all zeros.

SR

aaaFrom A

bbbTo B

DATA

CLOCK

RESET

With each off to on transition of the clock input, the bits which make up the shift
register block are shifted by one bit position and the status of the data input is placed
into the starting bit position in the shift register. The direction of the shift depends on
the entry in the From and To fields. From C0 to C17 would define a block of sixteen
bits to be shifted from left to right. From C17 to C0 would define a block of sixteen
bits, to be shifted from right to left. The maximum size of the shift register block
depends on the number of available control relays. The minimum block size is 8
control relays.

Operand Data Type DL05 Range

A/B aaa bbb

Control Relay C 0–777 0–777

Data Input

Clock Input

Reset Input

Shift Register Bits

C0 C17
��	� �����
���	

1 0-1-0 0

0 0-1-0 0

0 0-1-0 0

1 0-1-0 0

0 0-1-0 0

0 0 1

Inputs on Successive Scans

��������	����� ��������	������

X1

X2

SR

C0From

C17
X3

To

Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

STR
$

2
C

STR
$

3
D

SHFT

ENT

ENT

RST
S

ORN
R SHFT

0
A

1
B

7
H ENT

SHFT

Shift Register
(SR)

S
tandard

R
LL Instructions

5–43Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

Accumulator / Stack Load and Output Data Instructions

The accumulator in the DL05 internal CPUs is a 32 bit register which is used as a
temporary storage location for data that is being copied or manipulated in some
manor. For example, you have to use the accumulator to perform math operations
such as add, subtract, multiply, etc. Since there are 32 bits, you can use up to an
8-digit BCD number. The accumulator is reset to 0 at the end of every CPU scan.
The Load and Out instructions and their variations are used to copy data from a
V-memory location to the accumulator, or, to copy data from the accumulator to V
memory. The following example copies data from V-memory location V2000 to
V-memory location V2010.

�����
LD

V2000

X1

Copy data from V2000 to the
lower 16 bits of the accumu-
lator

Copy data from the lower 16 bits
of the accumulator to V2010

OUT

V2010

�����

Acc.

� � � �

� � � �

� � � � � � � �

Unused accumulator bits
are set to zero

Since the accumulator is 32 bits and V memory locations are 16 bits the Load Double
and Out Double (or variations thereof) use two consecutive V-memory locations or 8
digit BCD constants to copy data either to the accumulator from a V-memory
address or from a V-memory address to the accumulator. For example if you wanted
to copy data from V2000 and V2001 to V2010 and V2011 the most efficient way to
perform this function would be as follows:

LDD

V2000

Copy data from V2000 and
V2001 to the accumulator

Copy data from the accumulator to
V2010 and V2011

OUTD

V2010

�����

Acc.

�����

� � � 	

� � � 	

	
 � � � � � 	

X1 �����

	
 � �

�����

	
 � �

Using the
Accumulator

Copying Data to
the Accumulator

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–44 Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

Instructions that manipulate data also use the accumulator. The result of the
manipulated data resides in the accumulator. The data that was being manipulated
is cleared from the accumulator. The following example loads the constant value
4935 into the accumulator, shifts the data right 4 bits, and outputs the result to
V2010.

LD

K4935

X1

Load the value 4935 into the
accumulator

Shift the data in the accumulator
4 bits (K4) to the right

Output the lower 16 bits of the ac-
cumulator to V2010

0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1

Constant

V2010

0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Shifted out of
accumulator

� � � �

� � � �

SHFR

K4

OUT

V2010

� � � �

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The upper 16 bits of the accumulator
will be set to 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

Some of the data manipulation instructions use 32 bits. They use two consecutive V
memory locations or an 8 digit BCD constant to manipulate data in the accumulator.
In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the
accumulator is added with the value in V2006 and V2007 using the Add Double
instruction. The value in the accumulator is copied to V2010 and V2011 using the
Out Double instruction.

	
 � � � � � 	

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

ADDD

V2006

Add the value in the
accumulator with the value
in V2006 and V2007

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

�����

�����

� � � 	

� �
 �

�����

	
 � �

�����

�
 � �

�����	�������
�

�������������

� � � � � � � 	+

� �
 ��
 � �Acc.

Changing the
Accumulator Data

S
tandard

R
LL Instructions

5–45Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

The accumulator stack is used for instructions that require more than one parameter
to execute a function or for user defined functionality. The accumulator stack is used
when more than one Load instruction is executed without the use of an Out
instruction. The first load instruction in the scan places a value into the accumulator.
Every Load instruction thereafter without the use of an Out instruction places a value
into the accumulator and the value that was in the accumulator is placed onto the
accumulator stack. The Out instruction nullifies the previous load instruction and
does not place the value that was in the accumulator onto the accumulator stack
when the next load instruction is executed. Every time a value is placed onto the
accumulator stack the other values in the stack are pushed down one location. The
accumulator is eight levels deep (eight 32 bit registers). If there is a value in the
eighth location when a new value is placed onto the stack, the value in the eighth
location is pushed off the stack and cannot be recovered.

Acc.Load the value 3245 into the accumu-
lator

Load the value 5151 into the accumu-
lator, pushing the value 3245 onto the
stack

Load the value 6363 into the accumu-
lator, pushing the value 5151 to the 1st
stack location and the value 3245 to
the 2nd stack location

LD

K3245

X1

LD

K5151

LD

K6363

Constant � � � �

� � � � � � � �

Acc. � � � � � � � �

Current Acc. value

Previous Acc. value
� � � � � � � �Level 1

� � � � � � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

� � � � � � � �Level 1

� � � � � � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

Acc.

Constant � � � �

� � � � � � � �

Acc. � � � � � � � �

Current Acc. value

Previous Acc. value

� � � � � � � �Level 1

� � � � � � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

Acc.

Constant 	 � 	 �

� � � � 	 � 	 �

Acc. � � � � � � � �

Current Acc. value

Previous Acc. value

Bucket

Bucket

Bucket

The POP instruction rotates values upward through the stack into the accumulator.
When a POP is executed the value which was in the accumulator is cleared and the
value that was on top of the stack is in the accumulator. The values in the stack are
shifted up one position in the stack.

Using the
Accumulator Stack

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–46 Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

Acc.

POP the 1st value on the stack into the
accumulator and move stack values
up one location

POPX1

POP

POP

V2000 � � � �

� � � � � � � �

Acc. � � � � � � � �

Previous Acc. value

Current Acc. value

� � � � �
 � �Level 1

� � � �
 � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

� � � �
 � � �Level 1

� � � � � � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

� � � � � � � �Level 1

� � � � � � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

POP the 1st value on the stack into the
accumulator and move stack values
up one location

POP the 1st value on the stack into the
accumulator and move stack values
up one location

OUT

V2000

OUT

V2001

Acc.

V2001 �
 � �

� � � � � � � �

Acc. � � � � �
 � �

Previous Acc. value

Current Acc. value

Acc.

V2002
 � � �

� � � � �
 � �

Acc. � � � �
 � � �

Previous Acc. value

Current Acc. value

OUT

V2002

Copy data from the accumulator to
V2000

Copy data from the accumulator to
V2001.
Copy data from the accumulator to

Copy data from the accumulator to
V2002

Many of the DL05 series instructions will allow V-memory pointers as a operand
(commonly known as indirect addressing). Pointers allow instructions to obtain data
from V-memory locations referenced by the pointer value.

NOTE: DL05 V-memory addressing is in octal. However, the pointers reference a
V-memory location with values viewed as HEX. Use the Load Address (LDA)
instruction to move an address into the pointer location. This instruction performs the
Octal to Hexadecimal conversion automatically.

In the following simple example we are using a pointer operand in a Load instruction.
V-memory location 2000 is being used as the pointer location. V2000 contains the
value 440 which the CPU views as the Hex equivalent of the Octal address
V-memory location V2100. The CPU will copy the data from V2100 which in this
example contains the value 2635 into the lower word of the accumulator.

Using Pointers

S
tandard

R
LL Instructions

5–47Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

V1400 (P1400) contains the value 440
HEX. 440 HEX. = 2100 Octal which
contains the value 2635.

LD

P2000

X1

OUT

V2200

Copy the data from the lower 16 bits of
the accumulator to V2200.

�����

� � � �

V2076 � � � �

V2077 � � � �

V2100 � 	 � �

V2101 � � � �

V2102 � � � �

V2103 � � � �

V2104 � � � �

V2105 � � � �

V2200 � 	 � �

V2201 � � � �

� 	 � �

�

�

Accumulator

The following example is identical to the one above with one exception. The LDA
(Load Address) instruction automatically converts the Octal address to Hex.

V2000 (P2000) contains the value 440
Hex. 440 Hex. = 2100 Octal which
contains the value 2635

LDA

O 2100

X1

OUT

V 2000

Copy the data from the lower 16 bits of
the accumulator to V2000

�����

� � � �

V2076 � � � �

V2077 � � � �

V2100 � 	 � �

V2101 � � � �

V2102 � � � �

V2103 � � � �

V2104 � � � �

V2105 � � � �

�

�

V2200 � 	 � �

V2201 � � � �

�

�

LD

P 2000

OUT

V 2200

Copy the data from the lower 16 bits of
the accumulator to V2200

Load the lower 16 bits of the
accumulator with Hexadecimal
equivalent to Octal 2100 (440)

�����

Acc.

� � � �

� � � �

� � � � � � � �

2100 Octal is converted to Hexadecimal
440 and loaded into the accumulator

Accumulator

� � � � � 	 � �

Unused accumulator bits
are set to zero

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–48 Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

LD
A aaa

The Load instruction is a 16 bit instruction
that loads the value (Aaaa), which is either
a V memory location or a 4 digit constant,
into the lower 16 bits of the accumulator.
The upper 16 bits of the accumulator are
set to 0.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All V mem. (See page 4–28)

Constant K 0–FFFF

Discrete Bit Flags Description

SP53 on when the pointer is outside of the available range.

SP70 on when the value loaded into the accumulator by any instruction is zero.

SP76 on when the result in the accumulator is negative.

NOTE: Two consecutive Load instructions will place the value of the first load
instruction onto the accumulator stack.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator and output to V2010.

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

OUT

V2010

Copy the value in the lower
16 bits of the accumulator to
V2010 �����

Acc.

�����

� � � �

� � � �

� � � � � � � �

DirectSOFT

The unused accumulator
bits are set to zero

1
B

2
C

0
A

0
A

0
A ENT

Handheld Programmer Keystrokes

STR
$

SET
X

SHFT
ANDST
L

3
D

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

Load
(LD)

S
tandard

R
LL Instructions

5–49Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

LDD
A aaa

The Load Double instruction is a 32 bit
instruction that loads the value (Aaaa),
which is either two consecutive V memory
locations or an 8 digit constant value, into
the accumulator.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All V mem. (See page 4–28)

Constant K 0–FFFFFFFF

Discrete Bit Flags Description

SP53 on when the pointer is outside of the available range.

SP70 on when the value loaded into the accumulator by any instruction is zero.

SP76 on when the value loaded into the accumulator by any instruction is zero.

NOTE: Two consecutive Load instructions will place the value of the first load
instruction onto the accumulator stack.

In the following example, when X1 is on, the 32 bit value in V2000 and V2001 will be
loaded into the accumulator and output to V2010 and V2011.

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

Handheld Programmer Keystrokes

DirectSOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the 32 bit
accumulator

OUTD

V2010

Copy the value in the 32 bit
accumulator to V2010 and
V2011

�����

Acc.

�����

� � � 	

� � � 	

	
 � � � � � 	

�����

	
 � �

�����

	
 � �

STR
$

SHFT
ANDST
L

3
D

3
D

OUT
GX SHFT

3
D

Load Double
(LDD)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–50 Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

bbbK
LDF A aaa

The Load Formatted instruction loads
1–32 consecutive bits from discrete
memory locations into the accumulator.
The instruction requires a starting location
(Aaaa) and the number of bits (Kbbb) to be
loaded. Unused accumulator bit locations
are set to zero.

Operand Data Type DL05 Range

A aaa bbb

Inputs X 0–377 ––

Outputs Y 0–377 ––

Control Relays C 0–777 ––

Stage Bits S 0–377 ––

Timer Bits T 0–177 ––

Counter Bits CT 0–177 ––

Special Relays SP 0–777 ––

Constant K –– 1–32

Discrete Bit Flags Description

SP70 on when the value loaded into the accumulator by any instruction is zero.

SP76 on when the value loaded into the accumulator by any instruction is zero.

NOTE: Two consecutive Load instructions will place the value of the first load
instruction onto the accumulator stack.

In the following example, when C0 is on, the binary pattern of C10–C16 (7 bits) will
be loaded into the accumulator using the Load Formatted instruction. The lower 7
bits of the accumulator are output to Y0–Y6 using the Out Formatted instruction.

0
A

7
H ENT

Handheld Programmer Keystrokes

LDF C10

K7

C0

Load the status of 7
consecutive bits (C10–C16)
into the accumulator

OUTF Y0

K7

Copy the value from the
specified number of bits in
the accumulator to Y0 – Y6

�
���

�������� ��������

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

�
 �

�������� ��������

��������������������	

!""!#!#!#!""!""!""

 � � � � � � 	

!""!#!#!#!""!""!""

The unused accumulator bits are set to zero

DirectSOFT

STR
$ SHFT ENT

2
C

0
A

SHFT
ANDST
L

3
D

5
F

SHFT
2

C
1

B
0

A
7

H ENT

OUT
GX SHFT

5
F

Load
Formatted
(LDF)

S
tandard

R
LL Instructions

5–51Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

O aaa
LDA

The Load Address instruction is a 16 bit
instruction. It converts any octal value or
address to the HEX equivalent value and
loads the HEX value into the accumulator.
This instruction is useful when an address
parameter is required since all addresses
for the DL05 system are in octal.

Operand Data Type DL05 Range

aaa

Octal Address O All V mem. (See page 4–28)

Discrete Bit Flags Description

SP70 on when the value loaded into the accumulator by any instruction is zero.

SP76 on when the value loaded into the accumulator by any instruction is zero.

NOTE: Two consecutive Load instructions will place the value of the first load
instruction onto the accumulator stack.

In the following example when X1 is on, the octal number 40400 will be converted to
a HEX 4100 and loaded into the accumulator using the Load Address instruction.
The value in the lower 16 bits of the accumulator is copied to V2000 using the Out
instruction.

1
B ENT

4
E

0
A

4
E

0
A

0
A ENT

Handheld Programmer Keystrokes

DirectSOFT

LDA

O 40400

X1

Load The HEX equivalent to
the octal number into the
lower 16 bits of the
accumulator

OUT

V2000

Copy the value in lower 16
bits of the accumulator to
V2000

�����

Acc.

$%&��%�����

� � � �

� � � �

� � � � � � � �

!����

� � � � �

The unused accumulator
 bits are set to zero

STR
$

SHFT
ANDST
L

3
D

0
A

OUT
GX SHFT

AND
V

2
C

0
A

0
A ENT

0
A

Load Address
(LDA)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–52 Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

OUT
A aaa

The Out instruction is a 16 bit instruction
that copies the value in the lower 16 bits of
the accumulator to a specified V memory
location (Aaaa).

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All V mem. (See page 4–28)

Discrete Bit Flags Description

SP53 on when the pointer is outside of the available range.

In the following example, when X1 is on, the value in V2000 will be loaded into the
lower 16 bits of the accumulator using the Load instruction. The value in the lower 16
bits of the accumulator are copied to V2010 using the Out instruction.

2
C

0
A

0
A

0
A ENT

1
B ENT

Handheld Programmer Keystrokes

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

OUT

V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

�����

Acc.

�����

� � � �

� � � �

� � � � � � � �

DirectSOFT

The unused accumulator
 bits are set to zero

STR
$

SHFT
ANDST
L

3
D

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

OUTD
A aaa

The Out Double instruction is a 32 bit
instruction that copies the value in the
accumulator to two consecutive V memory
locations at a specified starting location
(Aaaa).
Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All V mem. (See page 4–28)

Discrete Bit Flags Description

SP53 on when the pointer is outside of the available range.

In the following example, when X1 is on, the 32 bit value in V2000 and V2001 will be
loaded into the accumulator using the Load Double instruction. The value in the
accumulator is output to V2010 and V2011 using the Out Double instruction.

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

1
B ENT

Handheld Programmer Keystrokes

�����

Acc.

�����

� � � 	

� � � 	

	
 � � � � � 	

�����

	
 � �

�����

	
 � �

Load the value in V2000 and
V2001 into the accumulator

LDD

OUTD

Copy the value in the
accumulator to V2010 and
V2011

V2000

X1

V2010

DirectSOFT

STR
$

SHFT
ANDST
L

3
D

3
D

OUT
GX SHFT

3
D

Out
(OUT)

Out Double
(OUTD)

S
tandard

R
LL Instructions

5–53Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

bbbK
OUTF A aaa

The Out Formatted instruction outputs
1–32 bits from the accumulator to the
specified discrete memory locations. The
instruction requires a starting location
(Aaaa) for the destination and the number
of bits (Kbbb) to be output.

Operand Data Type DL05 Range

A aaa bbb

Inputs X 0–377 ––

Outputs Y 0–377 ––

Control Relays C 0–777 ––

Constant K –– 1–32

In the following example, when C0 is on, the binary pattern of C10–C16 (7 bits) will
be loaded into the accumulator using the Load Formatted instruction. The lower 7
bits of the accumulator are output to Y0–Y6 using the Out Formatted instruction.

0
A

7
H ENT

Handheld Programmer Keystrokes

LDF C10

K7

C0

Load the status of 7
consecutive bits (C10–C16)
into the accumulator

OUTF Y0

K7

Copy the value of the
specified number of bits
from the accumulator to
Y20–Y26

�
���

�������� ��������

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

�
 �

�������� ��������

��������������������	

!""!#!#!#!""!""!""

 �� �� �� �� �� �� �	

!""!#!#!#!""!""!""

The unused accumulator bits are set to zero

Accumulator

DirectSOFT

STR
$ SHFT ENT

2
C

0
A

SHFT
ANDST
L

3
D

5
F

SHFT
2

C
1

B
0

A
7

H ENT

OUT
GX SHFT

5
F

POP

The Pop instruction moves the value from
the first level of the accumulator stack (32
bits) to the accumulator and shifts each
value in the stack up one level.

Discrete Bit Flags Description

SP63 on when the result of the instruction causes the value in the accumulator
to be zero.

Out
Formatted
(OUTF)

Pop
(POP)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–54 Standard RLL Instructions

Accumulator / Stack Load and Output Data Instructions

In the example below, when C0 is on, the value 4545 that was on top of the stack is
moved into the accumulator using the Pop instruction The value is output to V2000
using the Out instruction. The next Pop moves the value 3792 into the accumulator
and outputs the value to V2001. The last Pop moves the value 7930 into the
accumulator and outputs the value to V2002. Please note if the value in the stack
were greater than 16 bits (4 digits) the Out Double instruction would be used and 2 V
memory locations for each Out Double must be allocated.

Handheld Programmer Keystrokes

Acc.

Pop the 1st. value on the stack into the
accumulator and move stack values
up one location

POPC0

POP

POP

V2000 � � � �

� � � � � � � �

Acc. � � � � � � � �

Previous Acc. value

Current Acc. value

� � � � �
 � �Level 1

� � � �
 � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

� � � �
 � � �Level 1

� � � � � � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

� � � � � � � �Level 1

� � � � � � � �Level 2

� � � � � � � �Level 3

� � � � � � � �Level 4

� � � � � � � �Level 5

� � � � � � � �Level 6

� � � � � � � �Level 7

� � � � � � � �Level 8

Accumulator Stack

Pop the 1st. value on the stack into the
accumulator and move stack values
up one location

Pop the 1st. value on the stack into the
accumulator and move stack values
up one location

OUT

V2000

OUT

V2001

Acc.

V2001 �
 � �

� � � � � � � �

Acc. � � � � �
 � �

Previous Acc. value

Current Acc. value

Acc.

V2002
 � � �

� � � � �
 � �

Acc. � � � �
 � � �

Previous Acc. value

Current Acc. value

OUT

V2002

Copy the value in the lower 16 bits of
the accumulator to V2000

Copy the value in the lower 16 bits of
the accumulator to V2001

Copy the value in the lower 16 bits of
the accumulator to V2002

DirectSOFT

STR
$ SHFT

2
C

0
A ENT

SHFT
CV

P
INST#
O

CV
P ENT

OUT
GX SHFT

AND
V

2
C

0
A

0
A ENT

0
A

SHFT
CV

P
INST#
O

CV
P ENT

OUT
GX SHFT

AND
V

2
C

0
A ENT

0
A

1
B

SHFT
CV

P
INST#
O

CV
P ENT

OUT
GX SHFT

AND
V

2
C

0
A ENT

0
A

2
C

SHFT

SHFT

SHFT

Pop Instruction
Continued

S
tandard

R
LL Instructions

5–55Standard RLL Instructions

Accumulator Logic Instructions

Logical Instructions (Accumulator)

AND
A aaa

The And instruction is a 16 bit instruction
that logically ands the value in the lower
16 bits of the accumulator with a
specified V memory location (Aaaa). The
result resides in the accumulator. The
discrete status flag indicates if the result
of the And is zero.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP63 Will be on if the result in the accumulator is zero

SP70 on when the value loaded into the accumulator by any instruction is zero.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator using the Load instruction. The value in the accumulator is anded
with the value in V2006 using the And instruction. The value in the lower 16 bits of the
accumulator is output to V2010 using the Out instruction.

AND (V2006)

Handheld Programmer Keystrokes

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

AND

V2006

AND the value in the
accumulator with
 the value in V2006

OUT

V2010

Copy the lower 16 bits of the
accumulator to V2010

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

�����

� � � �

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The upper 16 bits of the accumulator
will be set to 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Acc.

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6A38

V2010

� � � �

DirectSOFT

STR
$

SHFT
ANDST
L

3
D

SHFT
AND

V
2

C
0

A
0

A ENT
6

G

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

AND
V

1
B ENT

2
C

0
A

0
A

0
A ENT

And
(AND)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–56 Standard RLL Instructions

Accumulator Logic Instructions

K aaa
ANDD

The And Double is a 32 bit instruction that
logically ands the value in the
accumulator with two consecutive V
memory locations or an 8 digit (max.)
constant value (Aaaa). The result
resides in the accumulator. Discrete
status flags indicate if the result of the
And Double is zero or a negative number
(the most significant bit is on).

Operand Data Type DL05 Range

aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Constant K 0–FFFFFFFF

Discrete Bit Flags Description

SP63 Will be on if the result in the accumulator is zero

SP70 Will be on is the result in the accumulator is negative

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the
accumulator is anded with 36476A38 using the And double instruction. The value in
the accumulator is output to V2010 and V2011 using the Out Double instruction.

AND 36476A38

Handheld Programmer Keystrokes

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

ANDD

K36476A38

AND the value in the
accumulator with
 the constant value
36476A38

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

�����

� � � �

0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

Acc.

V2010

� � � �

�����

	
 � �

V2011

�

 �

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1

DirectSOFT

STR
$

SHFT
ANDST
L

3
D

SHFT

OUT
GX

3
D

SHFT
3

D

AND
V SHFT

3
D

8
I

3
DSHFTSHFT

JMP
K

0
A

3
D

6
G

4
E

7
H

6
G ENT

1
B ENT

2
C

0
A

1
B

0
A ENT

2
C

0
A

0
A ENT

0
A

And Double
(ANDD)

S
tandard

R
LL Instructions

5–57Standard RLL Instructions

Accumulator Logic Instructions

OR
A aaa

The Or instruction is a 16 bit instruction
that logically ors the value in the lower 16
bits of the accumulator with a specified V
memory location (Aaaa). The result
resides in the accumulator. The discrete
status flag indicates if the result of the Or
is zero.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP63 Will be on if the result in the accumulator is zero

SP70 on when the value loaded into the accumulator by any instruction is zero.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator using the Load instruction. The value in the accumulator is ored with
V2006 using the Or instruction. The value in the lower 16 bits of the accumulator are
output to V2010 using the Out instruction.

3
D

OR (V2006)

Handheld Programmer Keystrokes

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

OR

V2006

Or the value in the
accumulator with
 the value in V2006

OUT

V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

�����

� � � �

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The upper 16 bits of the accumulator
will be set to 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Acc.

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6A38

V2010

� � � �

DirectSOFT

STR
$

1
B ENT

SHFT
ANDST
L

2
C

0
A

0
A

0
A ENT

SHFT
AND

V
2

C
0

A
0

A ENT
6

G

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

OR
Q

Or
(OR)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–58 Standard RLL Instructions

Accumulator Logic Instructions

K aaa
ORD

The Or Double is a 32 bit instruction that
ors the value in the accumulator with the
value (Aaaa), which is either two
consecutive V memory locations or an 8
digit (max.) constant value. The result
resides in the accumulator. Discrete
status flags indicate if the result of the Or
Double is zero or a negative number (the
most significant bit is on).

Operand Data Type DL05 Range

aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Constant K 0–FFFFFFFF

Discrete Bit Flags Description

SP63 Will be on if the result in the accumulator is zero

SP70 Will be on is the result in the accumulator is negative

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the
accumulator is ored with 36476A38 using the Or Double instruction. The value in the
accumulator is output to V2010 and V2011 using the Out Double instruction.

JMP
K

OR 36476A38

Handheld Programmer Keystrokes

LDD

V2000

X1

Load the value in V2000 and
V2001 into accumulator

ORD

K36476A38

OR the value in the
accumulator with
 the constant value
36476A38

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

�����

� � � �

0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

Acc.

V2010

� � � �

�����

	
 � �

V2011

� � �

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

DirectSOFT

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1

STR
$

SHFT
ANDST
L

3
D

SHFT

OUT
GX

3
D

SHFT
3

D

SHFT
3

D
OR

Q
8

I
3

DSHFTSHFT
0

A
3

D
6

G
4

E
7

H
6

G ENT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

Or Double
(ORD)

S
tandard

R
LL Instructions

5–59Standard RLL Instructions

Accumulator Logic Instructions

XOR
A aaa

The Exclusive Or instruction is a 16 bit
instruction that performs an exclusive or
of the value in the lower 16 bits of the
accumulator and a specified V memory
location (Aaaa). The result resides in the
in the accumulator. The discrete status
flag indicates if the result of the XOR is
zero.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP63 Will be on if the result in the accumulator is zero

SP70 on when the value loaded into the accumulator by any instruction is zero.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator using the Load instruction. The value in the accumulator is exclusive
ored with V2006 using the Exclusive Or instruction. The value in the lower 16 bits of
the accumulator are output to V2010 using the Out instruction.

XOR (V2006)

Handheld Programmer Keystrokes

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

XOR

V2006

XOR the value in the
accumulator with
 the value in V2006

OUT

V2010

Copy the lower 16 bits of the
accumulator to V2010

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

�����

� � � �

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The upper 16 bits of the accumulator
will be set to 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Acc.

6A38

V2010

 �
 �

DirectSOFT

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STR
$ SHFT

SET
X

1
B ENT

SHFT
ANDST
L

3
D SHFT

AND
V

2
C

0
A

0
A

0
A ENT

SHFT
AND

V
2

C
0

A
0

A ENT
6

G

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

OR
QSHFT SHFT

SET
X

Exclusive Or
(XOR)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–60 Standard RLL Instructions

Accumulator Logic Instructions

K aaa
XORD

The Exclusive OR Double is a 32 bit
instruction that performs an exclusive or
of the value in the accumulator and the
value (Aaaa), which is either two
consecutive V memory locations or an 8
digit (max.) constant. The result resides
in the accumulator. Discrete status flags
indicate if the result of the Exclusive Or
Double is zero or a negative number (the
most significant bit is on).

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Constant K 0–FFFFFFFF

Discrete Bit Flags Description

SP63 Will be on if the result in the accumulator is zero

SP70 Will be on is the result in the accumulator is negative

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the
accumulator is exclusively ored with 36476A38 using the Exclusive Or Double
instruction. The value in the accumulator is output to V2010 and V2011 using the Out
Double instruction.

JMP
KSHFTSHFT

3
D

OR
Q

XORD 36476A38

Handheld Programmer Keystrokes

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

XORD

K36476A38

XORD the value in the
accumulator with
 the constant value
36476A38

OUTD

V2010

Copy the value in the
accumulator to V2010
and V2011

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

�����

� � � �

0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

Acc.

V2010

 �
 �

�����

	
 � �

V2011

� � � �

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

DirectSOFT

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1

STR
$

SHFT
ANDST
L

3
D

3
D

SHFT
SET

X

OUT
GX SHFT

3
D

3
D

6
G

4
E

8
I

3
DSHFTSHFT

0
A

7
H

6
G ENT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

Exclusive Or
Double
(XORD)

S
tandard

R
LL Instructions

5–61Standard RLL Instructions

Accumulator Logic Instructions

CMP
A aaa

The compare instruction is a 16 bit
instruction that compares the value in the
lower 16 bits of the accumulator with the
value in a specified V memory location
(Aaaa). The corresponding status flag
will be turned on indicating the result of
the comparison.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP60 On when the value in the accumulator is less than the instruction value.

SP61 On when the value in the accumulator is equal to the instruction value.

SP62 On when the value in the accumulator is greater than the instruction
value.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example when X1 is on, the constant 4526 will be loaded into the
lower 16 bits of the accumulator using the Load instruction. The value in the
accumulator is compared with the value in V2000 using the Compare instruction.
The corresponding discrete status flag will be turned on indicating the result of the
comparison. In this example, if the value in the accumulator is less than the value
specified in the Compare instruction, SP60 will turn on energizing C30.

Handheld Programmer Keystrokes

�����

Acc.

��������

 	 � �

� �
 	

� � � �
 	 � �

LD

Compare the value in the
accumulator with the value
in V2000

Load the constant value
4526 into the lower 16 bits of
the accumulator

K4526

CMP

X1

V2000

Compared
with

SP60 C30

DirectSOFT

����������������������

� ��������������!���

STR
$

SHFT
ANDST
L

3
D SHFT

JMP
K

4
E

5
F

2
C

6
G ENT

SHFT
2

C
ORST
M

CV
P

STR
$ SHFT ENT

STRN
SP

6
G

0
A

OUT
GX SHFT

2
C

3
D

0
A ENT

1
B ENT

2
C

0
A

0
A

0
A ENTSHFT

Compare
(CMP)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–62 Standard RLL Instructions

Accumulator Logic Instructions

CMPD
A aaa

The Compare Double instruction is a
32–bit instruction that compares the
value in the accumulator with the value
(Aaaa), which is either two consecutive V
memory locations or an 8–digit (max.)
constant. The corresponding status flag
will be turned on indicating the result of
the comparison.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Constant K 0–FFFFFFFF

Discrete Bit Flags Description

SP60 On when the value in the accumulator is less than the instruction value.

SP61 On when the value in the accumulator is equal to the instruction value.

SP62 On when the value in the accumulator is greater than the instruction
value.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the
accumulator is compared with the value in V2010 and V2011 using the CMPD
instruction. The corresponding discrete status flag will be turned on indicating the
result of the comparison. In this example, if the value in the accumulator is less than
the value specified in the Compare instruction, SP60 will turn on energizing C30.

Handheld Programmer Keystrokes

LDD

Compare the value in the
accumulator with the value
in V2010 and V2011

Load the value in V2000 and
V2001 into the accumulator

V2000

CMPD

X1

V2010

Compared
with

SP60 C30

�����

Acc.

�����

� � � �

	 � � �

 	 � � � � � �

�����

 	 � �

�����

� � � �

DirectSOFT

STR
$

SHFT
ANDST
L

3
D

SHFT
2

C
ORST
M

CV
P

STR
$ SHFT ENT

STRN
SP

6
G

0
A

OUT
GX SHFT

2
C

3
D

0
A ENT

3
D

3
D

1
B ENT

ENT

2
C

0
A

0
A ENT

2
C

0
A

0
A

0
A

1
BSHFT

Compare Double
(CMPD)

S
tandard

R
LL Instructions

5–63Standard RLL Instructions

Math Instructions

Math Instructions

ADD
A aaa

Add is a 16 bit instruction that adds a
BCD value in the accumulator with a
BCD value in a V memory location
(Aaaa). The result resides in the
accumulator.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator
to be zero.

SP66 On when the 16 bit addition instruction results in a carry.

SP67 On when the 32 bit addition instruction results in a carry.

SP70 On anytime the value in the accumulator is negative.

SP75 On when a BCD instruction is executed and a NON–BCD number was
encountered.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator using the Load instruction. The value in the lower 16 bits of the
accumulator are added to the value in V2006 using the Add instruction. The value in
the accumulator is copied to V2010 using the Out instruction.

DirectSOFT

Handheld Programmer Keystrokes

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

ADD

V2006

Add the value in the lower
16 bits of the accumulator
with the value in V2006

OUT

V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

�����

�����

� � � �

	 � � �

� � � � � � � �

+ � � � �

Acc. 	 � � �

������

�����������

The unused accumulator
bits are set to zero

SHFT
ANDST
L

3
D

STR
$

SHFT
0

A
3

D
3

D

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

0
A ENT

6
G

Add
(ADD)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–64 Standard RLL Instructions

Math Instructions

ADDD
A aaa

Add Double is a 32 bit instruction that
adds the BCD value in the accumulator
with a BCD value (Aaaa), which is either
two consecutive V memory locations or
an 8–digit (max.) BCD constant. The
result resides in the accumulator.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Constant K 0–99999999

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator
to be zero.

SP66 On when the 16 bit addition instruction results in a carry.

SP67 On when the 32 bit addition instruction results in a carry.

SP70 On anytime the value in the accumulator is negative.

SP75 On when a BCD instruction is executed and a NON–BCD number was
encountered.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the
accumulator is added with the value in V2006 and V2007 using the Add Double
instruction. The value in the accumulator is copied to V2010 and V2011 using the
Out Double instruction.

� 	 � � � � � �

DirectSOFT

Handheld Programmer Keystrokes

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

ADDD

V2006

Add the value in the
accumulator with the value
in V2006 and V2007

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

�����

�����

� � � �

� � 	 �

�����

� 	 � �

�����

� 	 � �

��������������	�

�����������

� � � � � � � �+

� � 	 �� 	 � �Acc.

STR
$

1
B

SHFT
0

A
3

D
3

D

SHFT
ANDST
L

3
D

3
D

3
D

OUT
GX SHFT

3
D

AND
V

2
C

0
A

1
B

0
A ENTSHFT

ENT

2
C

0
A

0
A ENT

6
G

2
C

0
A

0
A

0
A ENT

Add Double
(ADDD)

S
tandard

R
LL Instructions

5–65Standard RLL Instructions

Math Instructions

SUB
A aaa

Subtract is a 16 bit instruction that
subtracts the BCD value (Aaaa) in a V
memory location from the BCD value in
the lower 16 bits of the accumulator. The
result resides in the accumulator.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator
to be zero.

SP64 On when the 16 bit subtraction instruction results in a borrow.

SP65 On when the 32 bit subtraction instruction results in a borrow.

SP70 On anytime the value in the accumulator is negative.

SP75 On when a BCD instruction is executed and a NON–BCD number was
encountered.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator using the Load instruction. The value in V2006 is subtracted from the
value in the accumulator using the Subtract instruction. The value in the accumulator
is copied to V2010 using the Out instruction.

DirectSOFT

Handheld Programmer Keystrokes

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

SUB

V2006

Subtract the value in V2006
from the value in the lower
16 bits of the accumulator

OUT

V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

�����

� �

�
������

�����������

�

�

�

�

�����

� 	 �

� � �

� � � � 	 �

� � �

Acc. � � �

The unused accumulator
bits are set to zero

SHFT
ANDST
L

3
D

STR
$

SHFT SHFT
AND

V
2

C
0

A
0

A ENT
6

G

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

RST
S

ISG
U

1
B

1
B ENT

2
C

0
A

0
A

0
A ENT

Subtract
(SUB)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–66 Standard RLL Instructions

Math Instructions

SUBD
A aaa

Subtract Double is a 32 bit instruction that
subtracts the BCD value (Aaaa), which is
either two consecutive V memory
locations or an 8-digit (max.) constant,
from the BCD value in the accumulator.
The result resides in the accumulator.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Constant K 0–99999999

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator
to be zero.

SP64 On when the 16 bit subtraction instruction results in a borrow.

SP65 On when the 32 bit subtraction instruction results in a borrow.

SP70 On anytime the value in the accumulator is negative.

SP75 On when a BCD instruction is executed and a NON–BCD number was
encountered.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in V2006 and
V2007 is subtracted from the value in the accumulator. The value in the accumulator
is copied to V2010 and V2011 using the Out Double instruction.

DirectSOFT

Handheld Programmer Keystrokes

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

SUBD

V2006

The in V2006 and V2007 is
subtracted from the value in
the accumulator

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

� � �� � � �

� 	 �� � � �

�����������

�

� � � � � � 	 �

�

��������������	�

�����

�

�

�����

� � �

�����

�����

� � � �

� 	 � � 	 �

ACC.

STR
$

SHFT

SHFT
ANDST
L

3
D

3
D

3
D

OUT
GX SHFT

3
D

RST
S

ISG
U

1
B

1
B ENT

2
C

0
A

0
A ENT

6
G

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

SHFT

Subtract Double
(SUBD)

S
tandard

R
LL Instructions

5–67Standard RLL Instructions

Math Instructions

MUL
A aaa

Multiply is a 16 bit instruction that
multiplies the BCD value (Aaaa), which is
either a V memory location or a 4–digit
(max.) constant, by the BCD value in the
lower 16 bits of the accumulator The
result can be up to 8 digits and resides in
the accumulator.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Constant K 0–9999

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator
to be zero.

SP70 On anytime the value in the accumulator is negative.

SP75 On when a BCD instruction is executed and a NON–BCD number was
encountered.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator using the Load instruction. The value in V2006 is multiplied by the value
in the accumulator. The value in the accumulator is copied to V2010 and V2011
using the Out Double instruction.

DirectSOFT

Handheld Programmer Keystrokes

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

MUL

V2006

The value in V2006 is
multiplied by the value in the
accumulator

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

� � �� � � �

� � �

�����������

�

� � � � � � � �

�

������

�����

�

�

�����

� � �

�����

� � � �

� �

The unused accumulator
bits are set to zero

Acc.

STR
$

SHFT
ANDST
L

3
D

SHFT
ORST
M

ISG
U

ANDST
L

OUT
GX SHFT

3
D

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

0
A ENT

6
G

2
C

0
A

1
B

0
A ENT

Multiply
(MUL)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–68 Standard RLL Instructions

Math Instructions

MULD
A aaa

Multiply Double is a 32 bit instruction that
multiplies the 8-digit BCD value in the
accumulator by the 8-digit BCD value in
the two consecutive V-memory locations
specified in the instruction. The lower 8
digits of the results reside in the
accumulator. Upper digits of the result
reside in the accumulator stack.

Operand Data Type DL05 Range

A aaa

Vmemory V All (See p. 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

SP75 On when a BCD instruction is executed and a NON–BCD number was encountered.

NOTE: Status flags are valid only until another instruction uses the same flag.

In the following example, when X1 is on, the constant Kbc614e hex will be loaded
into the accumulator. When converted to BCD the number is ”12345678”. That
numberis stored in V1400 and V1401. After loading the constant K2 into the
accumulator, we multiply it times 12345678, which is 24691356.

DirectSOFT Display

Handheld Programmer Keystrokes

LDD

Kbc614e

X1 Load the hex equivalent
of 12345678 decimal into
the accumulator.

BCD Convert the value to
BCD format. It will
occupy eight BCD digits
(32 bits).

OUTD

V1400

Output the number to
V1400 and V1401 using
the OUTD instruction. 3 5 62 4 6 9

6 7 8

(Accumulator)

�

1 2 3 4 5 6 7 8

1

(Accumulator)

V1500

1

5

V1400

3 5 6

V1403

2 4 6 9

2

Acc.

LD

K2

Load the constant K2
into the accumulator.

MULD

V1400

Multiply the accumulator
contents (2) by the
8-digit number in V1400
and V1401.

OUTD

V1402

Move the result in the
accumulator to V1402
and V1403 using the
OUTD instruction.

2 3 41

V1401

SHFT

SHFT

SHFT

SHFT

SHFT

SHFT

SHFT

SHFT

1
B

OUT
GX

ENT
ANDST
L

3
D

ORST
M

ANDST
L

STR
$

3
D

JMP
K

1
B

2
C

1
B

6
G

4
E ENT

1
B

2
C

3
D ENT

ENT

ENT

ENT
3

D

3
D

3
D

ISG
U

1
B

4
E

0
A

0
A

2
C

ANDST
L

1
B

4
E

0
A

0
A

OUT
GX

3
D

1
B

4
E

0
A

2
C

SHFT

SHFT
JMP

K

Multiply Double
(MULD)

S
tandard

R
LL Instructions

5–69Standard RLL Instructions

Math Instructions

DIV
A aaa

Divide is a 16 bit instruction that divides
the BCD value in the accumulator by a
BCD value (Aaaa), which is either a V
memory location or a 4-digit (max.)
constant. The first part of the quotient
resides in the accumulator and the
remainder resides in the first stack
location.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Constant K 1–9999

Discrete Bit Flags Description

SP53 On when the value of the operand is larger than the accumulator can work
with.

SP63 On when the result of the instruction causes the value in the accumulator
to be zero.

SP70 On anytime the value in the accumulator is negative.

SP75 On when a BCD instruction is executed and a NON–BCD number was
encountered.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator using the Load instruction. The value in the accumulator will be divided
by the value in V2006 using the Divide instruction. The value in the accumulator is
copied to V2010 using the Out instruction.
DirectSOFT

Handheld Programmer Keystrokes

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

DIV

V2006

The value in the
accumulator is divided by
the value in V2006

OUT

V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

�����

�

�
������

������������

�

�����

� � �

� � �

� � � � � �

� �

Acc. � � �

The unused accumulator
bits are set to zero

� � �� � � � �

�����������������������������
��������������

STR
$

SHFT
ANDST
L

3
D

SHFT
3

D
8

I
AND

V

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

0
A ENT

6
G

Divide
(DIV)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–70 Standard RLL Instructions

Math Instructions

DIVD
A aaa

Divide Double is a 32 bit instruction that
divides the BCD value in the accumulator
by a BCD value (Aaaa), which must be
obtained from two consecutive V memory
locations. (You cannot use a constant as
the parameter in the box.) The first part of
the quotient resides in the accumulator
and the remainder resides in the first stack
location.

Operand Data Type DL05 Range

A aaa

Vmemory V All (See p. 4–28)

Pointer P All (See p. 4–28)

Discrete Bit Flags Description

SP53 On when the value of the operand is larger than the accumulator can work with.

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

SP75 On when a BCD instruction is executed and a NON–BCD number was encountered.

NOTE: Status flags are valid only until another instruction uses the same flag.

In the following example, when X1 is on, the value in V1400 and V1401 will be loaded
into the accumulator using the Load Double instruction. The value in the
accumulator is divided by the value in V1420 and V1421 using the Divide Double
instruction. The first part of the quotient resides in the accumulator an the remainder
resides in the first stack location. The value in the accumulator is copied to V1500
and V1501 using the Out Double instruction.

DirectSOFT Display

Handheld Programmer Keystrokes

LDD

V1400

X1

Load the value in V1400 and
V1401 into the accumulator

DIVD

V1420

The value in the accumulator
is divided by the value in
V1420 and V1421

OUTD

V1500

Copy the value in the
accumulator to V1500
and V1501

0 0 00 0 0 3

0 0 00 1 5 0

0 (Accumulator)

(V1421 and V1420)

0

� 0

1 5 0 0 0 0 0

0

V1500

V1400

0

0 0 0

V1401

V1501

0 0 0 3

0 0 0 0 0 5 0

0 0 00 0 0 0 0

First stack location contains
 the remainder

The unused accumulator
bits are set to zero

Acc.

SHFT

SHFT

SHFT

1
B ENT

ANDST
L

3
D

STR
$

3
D

ENT

ENT
3

D

3
D

1
B

4
E

0
A

0
A

8
I

AND
V

1
B

5
F

0
A

0
A

OUT
GX

1
B

4
E

0
A

2
C ENT

Divide Double
(DIVD)

S
tandard

R
LL Instructions

5–71Standard RLL Instructions

Math Instructions

A aaa
INC

The Increment instruction increments a
BCD value in a specified V memory location
by “1” each time the instruction is executed.

A aaa
DEC

The Decrement instruction decrements a
BCD value in a specified V memory location
by “1” each time the instruction is executed.

Operand Data Type DL05 Range

A aaa

Vmemory V All (See p. 4–28)

Pointer P All (See p. 4–28)

Discrete Bit Flags Description

SP63 on when the result of the instruction causes the value in the accumulator to be zero.

SP75 on when a BCD instruction is executed and a NON–BCD number was encountered.

NOTE: Status flags are valid only until another instruction uses the same flag.

In the following increment example, when C5 is on the value in V1400 increases by
one.

Handheld Programmer Keystrokes

DirectSOFT Display

C5 INC

V1400

Increment the value in
V1400 by “1”.

V1400

8 9 3 5

V1400

8 9 3 6

STR
$

8
I

TMR
N

1
B

4
E

2
C

SHFT

5
F

0
A

0
A

ENT

2
C

In the following decrement example, when C5 is on the value in V1400 is decreased
by one.

Handheld Programmer Keystrokes

DirectSOFT Display

C5 DEC

V1400

Decrement the value in
V1400 by “1”.

V1400

8 9 3 5

V1400

8 9 3 4

STR
$

1
B

4
E

2
C

SHFT

5
F

0
A

0
A

ENT

2
C

4
E

3
D

Increment
(INC)

Decrement
(DEC)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–72 Standard RLL Instructions

Math Instructions

A aaa
INCB

The Increment Binary instruction
increments a binary value in a specified V
memory location by “1” each time the
instruction is executed.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP63 on when the result of the instruction causes the value in the accumulator
to be zero.

In the following example when C5 is on, the binary value in V2000 is increased by 1.
Handheld Programmer KeystrokesDirectSOFT

C5 INCB

V2000

Increment the binary value
in the accumulator by“1”

�����

� �

�����

� � !

STR
$

2
C

5
FSHFT ENT

SHFT
8

I
TMR

N
2

C
1

B
2

C
0

A
0

A
0

A ENT

A aaa
DECB

The Decrement Binary instruction
decrements a binary value in a specified V
memory location by “1” each time the
instruction is executed.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP63 on when the result of the instruction causes the value in the accumulator
to be zero.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example when C5 is on, the value in V2000 is decreased by 1.

Handheld Programmer Keystrokes
DirectSOFT

C5 DECB

V2000

Decrement the binary value
in the accumulator by“1”

�����

� �

�����

� � "

STR
$

2
C

5
FSHFT ENT

SHFT
2

C
3

D
4

E
1

B
2

C
0

A
0

A
0

A ENT

Increment Binary
(INCB)

Decrement Binary
(DECB)

S
tandard

R
LL Instructions

5–73Standard RLL Instructions

Math Instructions

ADDB
A aaa

Add Binary is a 16 bit instruction that adds
the unsigned 2’s complement binary value
in the lower 16 bits of the accumulator with
an unsigned 2’s complement binary value
(Aaaa), which is either a V memory
location or a 16-bit constant. The result
can be up to 32 bits (unsigned 2’s
complement) and resides in the
accumulator.

Operand Data Type DL05 Range

A aaa

Vmemory V All (See p. 4–28)

Pointer P All V mem (See p. 4–28)

Constant K 0–FFFF

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP66 On when the 16 bit addition instruction results in a carry.

SP67 On when the 32 bit addition instruction results in a carry.

SP70 On anytime the value in the accumulator is negative.

SP73 On when a signed addition or subtraction results in a incorrect sign bit.

NOTE: Status flags are valid only until another instruction uses the same flag.

In the following example, when X1 is on, the value in V1400 will be loaded into the
accumulator using the Load instruction. The binary value in the accumulator will be
added to the binary value in V1420 using the Add Binary instruction. The value in the
accumulator is copied to V1500 and V1501 using the Out instruction.

DirectSOFT Display

Handheld Programmer Keystrokes

LD

V1400

X1

Load the value in V1400 into the
lower 16 bits of the accumulator

ADDB

V1420

The binary value in the
accumulator is added to the
binary value in V1420

OUTD

V1500

Copy the value in the lower
16 bits of the accumulator to
V1500 and V1501

V1500

(V1420)+ 1

1

(Accumulator)00

1

0

V1400

A 0 5

C C 9

0 0 0 A 0 5

2 C 4

Acc. C C 9

The unused accumulator
bits are set to zero

STR
$ SHFTENT

SHFT

ANDST
L

3
D

4
E

1
B

OUT
GX

0
A

0
A

0
A

1
B ENT

3
D

3
D

1
B

4
E

2
C

0
A

1
B ENT SHFT

3
D

5
F

0
A

0
A

1
B ENT

Add Binary
(ADDB)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–74 Standard RLL Instructions

Math Instructions

SUBB
A aaa

Subtract Binary is a 16 bit instruction that
subtracts the unsigned 2–s complement
binary value (Aaaa), which is either a V
memory location or a 16-bit 2’s
complement binary value, from the binary
value in the accumulator. The result
resides in the accumulator.

Operand Data Type DL05 Range

A aaa

Vmemory V All (See p. 4–28)

Pointer P All (See p. 4–28)

Constant K 0–FFFF

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP64 On when the 16 bit subtraction instruction results in a borrow.

SP65 On when the 32 bit subtraction instruction results in a borrow.

SP70 On anytime the value in the accumulator is negative.

NOTE: Status flags are valid only until another instruction uses the same flag.

In the following example, when X1 is on, the value in V1400 will be loaded into the
accumulator using the Load instruction. The binary value in V1420 is subtracted
from the binary value in the accumulator using the Subtract Binary instruction. The
value in the accumulator is copied to V1500 using the Out instruction.

DirectSOFT Display

Handheld Programmer Keystrokes

LD

V1400

X1

Load the value in V1400 into the
lower 16 bits of the accumulator

SUBB

V1420

The binary value in V1420 is
subtracted from the value in
the accumulator

OUT

V1500

Copy the value in the lower 16
bits of the accumulator to V1500

V1500

(V1420)

0

�

1 (Accumulator)

0

1

0

0

V1400

0 2 4

6 1 9

0 0 0 0 2 4

A 0 B

Acc. 6 1 9

The unused accumulator
bits are set to zero

STR
$

SHFT
ANDST
L

3
D

SHFT
RST

S
ISG

U

OUT
GX SHFT

1
B ENT

4
E

2
C

0
A ENTSHFT

1
B

1
B

1
B

3
D

5
F

0
A

0
A ENT

1
B

4
E

0
A

0
A ENT

1
B

Subtract Binary
(SUBB)

S
tandard

R
LL Instructions

5–75Standard RLL Instructions

Math Instructions

MULB
A aaa

Multiply Binary is a 16 bit instruction that
multiplies the unsigned 2’s complement
binary value (Aaaa), which is either a V
memory location or a 16-bit unsigned 2’s
complement binary constant, by the16-bit
binary value in the accumulator The result
can be up to 32 bits and resides in the
accumulator.

Operand Data Type DL05 Range

A aaa

Vmemory V All (See p. 4–28)

Pointer P All (See p. 4–28)

Constant K 1–FFFF

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

NOTE: Status flags are valid only until another instruction uses the same flag.

In the following example, when X1 is on, the value in V1400 will be loaded into the
accumulator using the Load instruction. The binary value in V1420 is multiplied by
the binary value in the accumulator using the Multiply Binary instruction. The value in
the accumulator is copied to V1500 using the Out instruction.
DirectSOFT Display

Handheld Programmer Keystrokes

LD

V1400

X1

Load the value in V1400 into the
lower 16 bits of the accumulator

MULB

V1420

The binary value in V1420 is
multiplied by the binary
value in the accumulator

OUTD

V1500

Copy the value in the lower
16 bits of the accumulator to
V1500 and V1501

�

0 (Accumulator)

0

0

0

(V1420)

V1400

A 0 1

0 0 0 A 0 1

0 2 E

The unused accumulator
bits are set to zero

2 E0 0 0 1 C

C

C

V1500

C 2 E

V1501

0 0 0 1

Acc.

STR
$

SHFT
ANDST
L

3
D

SHFT
ISG

U

OUT
GX SHFT

1
B ENT

4
E

2
C

0
A ENT

1
B

1
B

3
D

5
F

0
A

0
A ENT

1
B

4
E

0
A

0
A ENT

1
B

ANDST
L

ORST
M

Multiply Binary
(MULB)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–76 Standard RLL Instructions

Math Instructions

DIVB
A aaa

Divide Binary is a 16 bit instruction that
divides the unsigned 2’s complement
binary value in the accumulator by a
binary value (Aaaa), which is either a V
memory location or a 16-bit unsigned 2’s
complement binary constant. The first part
of the quotient resides in the accumulator
and the remainder resides in the first stack
location.

Operand Data Type DL05 Range

A aaa

Vmemory V All (See p. 4–28)

Pointer P All (See p. 4–28)

Constant K 0–FFFF

Discrete Bit Flags Description

SP53 On when the value of the operand is larger than the accumulator can work with.

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

NOTE: Status flags are valid only until another instruction uses the same flag.

In the following example, when X1 is on, the value in V1400 will be loaded into the
accumulator using the Load instruction. The binary value in the accumulator is
divided by the binary value in V1420 using the Divide Binary instruction. The value in
the accumulator is copied to V1500 using the Out instruction.

DirectSOFT Display

Handheld Programmer Keystrokes

LD

V1400

X1

Load the value in V1400 into the
lower 16 bits of the accumulator

DIVB

V1420

The binary value in the
accumulator is divided by
the binary value in V1420

OUT

V1500

Copy the value in the lower 16
bits of the accumulator to V1500

V1500

0 (Accumulator)F

� 0

0

F

(V1420)

0

V1400

A 0 1

3 2 0

0 0 0 A 0 1

0 5 0

Acc. 3 2 0

The unused accumulator
bits are set to zero

0 0 00 0 0 0 0

First stack location contains
 the remainder

STR
$

SHFT
ANDST
L

3
D

SHFT
ISG

U

OUT
GX SHFT

1
B ENT

4
E

2
C

0
A ENT

1
B

1
B

3
D

5
F

0
A

0
A ENT

1
B

4
E

0
A

0
A ENT

1
B

3
D

8
I

Divide Binary
(DIVB)

S
tandard

R
LL Instructions

5–77Standard RLL Instructions

Bit Operation Instructions

Bit Operation Instructions

SUM

The Sum instruction counts number of bits
that are set to “1” in the accumulator. The
HEX result resides in the accumulator.

In the following example, when X1 is on, the value formed by discrete locations
X10–X17 is loaded into the accumulator using the Load Formatted instruction. The
number of bits in the accumulator set to “1” is counted using the Sum instruction. The
value in the accumulator is copied to V1500 using the Out instruction.

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

Handheld Programmer Keystrokes

DirectSOFT Display

LDF X10

K8

X1

Load the value represented by
discrete locations X10–X17
into the accumulator

SUM

Sum the number of bits in
the accumulator set to “1”

OUT

V1500

Copy the value in the lower
16 bits of the accumulator
to V1500

X10X11X12X13

ONONOFFON

X14X15X16X17

OFFOFFONON

0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

V1500

Acc.

0 0 0 5

0 0 0 0 0 0 0 5

The unused accumulator
bits are set to zero

ENT

STR
$

SHFT
ANDST
L

3
D

5
F

SHFT
RST

S
ISF

U
ORST
M

OUT
GX

1
B ENT

0
A

8
I ENT

1
B

0
A ENT

SHFT

1
B

5
F

0
A

SHFL
A aaa

Shift Left is a 32 bit instruction that shifts
the bits in the accumulator a specified
number (Aaaa) of places to the left. The
vacant positions are filled with zeros and
the bits shifted out of the accumulator are
discarded.

Sum
(SUM)

Shift Left
(SHFL)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–78 Standard RLL Instructions

Bit Operation Instructions

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Constant K 1–32

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The bit pattern in the
accumulator is shifted 2 bits to the left using the Shift Left instruction. The value in the
accumulator is copied to V2010 and V2011 using the Out Double instruction.

2
C ENT

Handheld Programmer Keystrokes

DirectSOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

SHFL

K2

The bit pattern in the
accumulator is shifted 2 bit
positions to the left

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

V2010

1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

� � � �

� � � �

1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

V2011

� � � �

� � � � 	 � � �

Shifted out of the
 accumulator

V2000V2001

STR
$

SHFT
ANDST
L

3
D

3
D

SHFT
RST

S
7

H
5

F
ANDST
L

OUT
GX SHFT

3
D

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

SHFT

S
tandard

R
LL Instructions

5–79Standard RLL Instructions

Bit Operation Instructions

SHFR
A aaa

Shift Right is a 32 bit instruction that shifts
the bits in the accumulator a specified
number (Aaaa) of places to the right. The
vacant positions are filled with zeros and
the bits shifted out of the accumulator are
lost.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Constant K 1–32

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The bit pattern in the
accumulator is shifted 2 bits to the right using the Shift Right instruction. The value in
the accumulator is copied to V2010 and V2011 using the Out Double instruction.

Handheld Programmer Keystrokes

DirectSOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

SHFR

K2

The bit pattern in the
accumulator is shifted 2 bit
positions to the right

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

V2010

0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

� � � �

� � � �

0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

V2011

� � � �

Constant � � � � 	 � � �

Shifted out of the
 accumulator

V2001 V2000

STR
$

SHFT
ANDST
L

3
D

3
D

SHFT
RST

S
7

H
5

F
2

C ENT

OUT
GX SHFT

3
D

ORN
RSHFT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

Shift Right
(SHFR)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–80 Standard RLL Instructions

Bit Operation Instructions

ENCO

The Encode instruction encodes the bit
position in the accumulator having a value
of 1, and returns the appropriate binary
representation. If the most significant bit is
set to 1 (Bit 31), the Encode instruction
would place the value HEX 1F (decimal
31) in the accumulator. If the value to be
encoded is 0000 or 0001, the instruction
will place a zero in the accumulator. If the
value to be encoded has more than one bit
position set to a “1”, the least significant “1”
will be encoded and SP53 will be set on.

Discrete Bit Flags Description

SP53 On when the value of the operand is larger than the accumulator can work
with.

NOTE: The status flags are only valid until another instruction that uses the same
flags is executed.

In the following example, when X1 is on, The value in V2000 is loaded into the
accumulator using the Load instruction. The bit position set to a “1” in the
accumulator is encoded to the corresponding 5 bit binary value using the Encode
instruction. The value in the lower 16 bits of the accumulator is copied to V2010
using the Out instruction.

Handheld Programmer Keystrokes

DirectSOFT

LD

V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

ENCO

Encode the bit position set
to “1” in the accumulator to a
5 bit binary value

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

����

� � � �

Bit postion 12 is
converted
to binary

Copy the value in the lower 16 bits
of the accumulator to V2010

OUT

V2010

����

� � � �

Binary value
for 12.

STR
$

1
B ENT

SHFT

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

4
E

TMR
N

2
C

INST#
O ENT

SHFT
ANDST
L

3
D

2
C

0
A

0
A

0
A ENT

Encode
(ENCO)

S
tandard

R
LL Instructions

5–81Standard RLL Instructions

Bit Operation Instructions

DECO

The Decode instruction decodes a 5 bit
binary value of 0–31 (0–1F HEX) in the
accumulator by setting the appropriate bit
position to a 1. If the accumulator contains
the value F (HEX), bit 15 will be set in the
accumulator. If the value to be decoded is
greater than 31, the number is divided by
32 until the value is less than 32 and then
the value is decoded.

In the following example when X1 is on, the value formed by discrete locations
X10–X14 is loaded into the accumulator using the Load Formatted instruction. The
five bit binary pattern in the accumulator is decoded by setting the corresponding bit
position to a “1” using the Decode instruction.

Handheld Programmer Keystrokes

DirectSOFT

LDF X10

K5

X1

Load the value in
represented by discrete
locations X10–X14 into the
accumulator

DECO

Decode the five bit binary
pattern in the accumulator
and set the corresponding
bit position to a “1”

�����������	

�����

���

��

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

The binary vlaue
is converted to
bit position 11.

STR
$ ENT

SHFT
ANDST
L

3
D

5
F

1
B

1
B

0
A ENT

5
F

SHFT
2

C
INST#
O ENT

3
D

4
E

Decode
(DECO)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–82 Standard RLL Instructions

Number Conversion Instructions

Number Conversion Instructions (Accumulator)

BIN

The Binary instruction converts a BCD
value in the accumulator to the equivalent
binary value. The result resides in the
accumulator.

In the following example, when X1 is on, the value in V2000 and V2001 is loaded into
the accumulator using the Load Double instruction. The BCD value in the
accumulator is converted to the binary (HEX) equivalent using the BIN instruction.
The binary value in the accumulator is copied to V2010 and V2011 using the Out
Double instruction. (The handheld programmer will display the binary value in
V2010 and V2011 as a HEX value.)

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

SP75 on when a BCD instruction is executed and a NON–BCD number was encountered.

STR
$

0
A

OUT
GX SHFT

3
D

2
C

0
A

1
B ENT

� � � � � � � �

����������

Handheld Programmer Keystrokes

DirectSOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

BIN

Convert the BCD value in
the accumulator to the
binary equivalent value

1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 18 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Acc.

� � � � � 	 �

����������

BCD Value

Binary Equivalent Value

0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

�����
�

�
�

�
�

�
�
�

�
	
�

	
�
�

�
�
�
�

�
�
�
�

�
�

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
	
	
�
�

�
�
�
�
�
�

�
�
�
�
�
�

	
�
�
�
�
�

�
�
�
�
	
�
�

�
�

�
�
	
�

�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
	
	
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
	
�
	
�

	
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Copy the binary value in the
accumulator to V2010 and V2011

OUTD

V2010

���������������������
� !��"�# ������

28529 = 16384 + 8192 + 2048 + 1024 + 512 + 256 + 64 + 32 + 16 + 1

1
B ENT

SHFT
ANDST
L

3
D

3
D

2
C

0
A

0
A

0
A ENT

SHFT
1

B
8

I
TMR

N ENT

Binary
(BIN)

S
tandard

R
LL Instructions

5–83Standard RLL Instructions

Number Conversion Instructions

BCD

The Binary Coded Decimal instruction
converts a binary value in the accumulator
to the equivalent BCD value. The result
resides in the accumulator.

In the following example, when X1 is on, the binary (HEX) value in V2000 and V2001
is loaded into the accumulator using the Load Double instruction. The binary value in
the accumulator is converted to the BCD equivalent value using the BCD instruction.
The BCD value in the accumulator is copied to V2010 and V2011 using the Out
Double instruction.

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

3
D

Handheld Programmer Keystrokes

DirectSOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

BCD

Convert the binary value in
the accumulator to the BCD
equivalent value

0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

� � � � � � � �

����������

BCD Equivalent Value

Binary Value

1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0Acc.

�����
�

�
�

�
�

�
�
�

�
	
�

	
�
�

�
�
�
�

�
�
�
�

�
�

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
	
	
�
�

�
�
�
�
�
�

�
�
�
�
�
�

	
�
�
�
�
�

�
�
�
�
	
�
�

�
�

�
�
	
�

�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
	
	
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
	
�
	
�

	
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Copy the BCD value in the
accumulator to V2010 and V2011

OUTD

V2010

���$%&������
� !��"�# �
��������"������

� � � � � 	 �

����������

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 18 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

16384 + 8192 + 2048 + 1024 + 512 + 256 + 64 + 32 + 16 + 1 = 28529

STR
$

1
B ENT

SHFT
ANDST
L

3
D

3
D

2
C

0
A

0
A

0
A ENT

SHFT
1

B ENT

OUT
GX SHFT

2
C

0
A

1
B

0
A ENT

2
C

3
D

Binary Coded
Decimal
(BCD)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–84 Standard RLL Instructions

Number Conversion Instructions

INV

The Invert instruction inverts or takes the
one’s complement of the 32 bit value in the
accumulator. The result resides in the
accumulator.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the
accumulator is inverted using the Invert instruction. The value in the accumulator is
copied to V2010 and V2011 using the Out Double instruction.

Handheld Programmer Keystrokes

DirectSOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

INV

Invert the binary bit pattern
in the accumulator

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

� � � 	 � � 	 �

����������

����������

1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 11 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

� $ � ' � & ' �

STR
$

SHFT
ANDST
L

3
D

3
D

SHFT ENT

OUT
GX SHFT

3
D

8
I

TMR
N

AND
V

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

Invert
(INV)

S
tandard

R
LL Instructions

5–85Standard RLL Instructions

Number Conversion Instructions

aaa
ATH

V

The ASCII TO HEX instruction converts a
table of ASCII values to a specified table of
HEX values. ASCII values are two digits
and their HEX equivalents are one digit.
This means an ASCII table of four V memory locations would only require two V
memory locations for the equivalent HEX table. The function parameters are loaded
into the accumulator stack and the accumulator by two additional instructions.
Listed below are the steps necessary to program an ASCII to HEX table function.
The example on the following page shows a program for the ASCII to HEX table
function.
Step 1: — Load the number of V memory locations for the ASCII table into the first
level of the accumulator stack.

Step 2: — Load the starting V memory location for the ASCII table into the
accumulator. This parameter must be a HEX value.

Step 3: — Specify the starting V memory location (Vaaa) for the HEX table in the
ATH instruction.

Helpful Hint: — For parameters that require HEX values when referencing memory
locations, the LDA instruction can be used to convert an octal address to the HEX
equivalent and load the value into the accumulator.

Operand Data Type DL05 Range

aaa

Vmemory V All (See p. 4–28)

Discrete Bit Flags Description

SP53 On when the value of the operand is larger than the accumulator can work with.

In the example on the following page, when X1 is ON the constant (K4) is loaded into
the accumulator using the Load instruction and will be placed in the first level of the
accumulator stack when the next Load instruction is executed. The starting location
for the ASCII table (V1400) is loaded into the accumulator using the Load Address
instruction. The starting location for the HEX table (V1600) is specified in the ASCII
to HEX instruction. The table below lists valid ASCII values for ATH conversion.

ASCII Values Valid for ATH Conversion

ASCII Value Hex Value ASCII Value Hex Value

30 0 38 8

31 1 39 9

32 2 41 A

33 3 42 B

34 4 43 C

35 5 44 D

36 6 45 E

37 7 46 F

ASCII to HEX
(ATH)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–86 Standard RLL Instructions

Number Conversion Instructions

DirectSOFT Display

Handheld Programmer Keystrokes

LD

K4

X1 Load the constant value
into the lower 16 bits of the
accumulator. This value
defines the number of V
memory location in the
ASCII table

LDA

O 1400

Convert octal 1400 to HEX
300 and load the value into
the accumulator

ATH

V1600

V1600 is the starting
location for the HEX table

ASCII TABLE
Hexadecimal
Equivalents

1234

33 34V1400

5678

31 32V1401

37 38V1402

35 36V1403

V1600

V1601

STR
$

SHFT
ANDST
L

3
D SHFT

JMP
K

4
E ENT

SHFT
ANDST
L

3
D

0
A

0
A

0
A ENT

SHFT

1
B ENT

0
A

0
A ENT

1
B

4
E

0
A

MLR
T

7
H

1
B

6
G

aaaV
HTA

The HEX to ASCII instruction converts a
table of HEX values to a specified table of
ASCII values. HEX values are one digit and
their ASCII equivalents are two digits.

This means a HEX table of two V memory locations would require four V memory
locations for the equivalent ASCII table. The function parameters are loaded into the
accumulator stack and the accumulator by two additional instructions. Listed below
are the steps necessary to program a HEX to ASCII table function. The example on
the following page shows a program for the HEX to ASCII table function.
Step 1: — Load the number of V memory locations in the HEX table into the first level
of the accumulator stack.

Step 2: — Load the starting V memory location for the HEX table into the
accumulator. This parameter must be a HEX value.

Step 3: — Specify the starting V memory location (Vaaa) for the ASCII table in the
HTA instruction.

Helpful Hint: — For parameters that require HEX values when referencing memory
locations, the LDA instruction can be used to convert an octal address to the HEX
equivalent and load the value into the accumulator.

HEX to ASCII
(HTA)

S
tandard

R
LL Instructions

5–87Standard RLL Instructions

Number Conversion Instructions

Operand Data Type DL05 Range

aaa

Vmemory V All (See p. 4–28)

Discrete Bit Flags Description

SP53 On when the value of the operand is larger than the accumulator can work with.

In the following example, when X1 is ON the constant (K2) is loaded into the
accumulator using the Load instruction. The starting location for the HEX table
(V1500) is loaded into the accumulator using the Load Address instruction. The
starting location for the ASCII table (V1400) is specified in the HEX to ASCII
instruction.
DirectSOFT Display

Handheld Programmer Keystrokes

LD

K2

X1

Load the constant value into
the lower 16 bits of the
accumulator. This value
defines the number of V
locations in the HEX table.

LDA

O 1500

Convert octal 1500 to HEX
340 and load the value into
the accumulator

HTA

V1400

V1400 is the starting
location for the ASCII table.
The conversion is executed
by this instruction.

ASCII TABLE
Hexadecimal
Equivalents

1234

33 34 V1400

5678

31 32 V1401

37 38 V1402

35 36 V1403

V1500

V1501

STR
$

SHFT
ANDST
L

3
D SHFT

JMP
K

4
E ENT

SHFT
ANDST
L

3
D

0
A

0
A

0
A ENT

SHFT

1
B ENT

0
A

0
A ENT

1
B

5
F

0
A

MLR
T

7
H

1
B

4
E

The table below lists valid ASCII values for HTA conversion.

ASCII Values Valid for HTA Conversion

Hex Value ASCII Value Hex Value ASCII Value

0 30 8 38

1 31 9 39

2 32 A 41

3 33 B 42

4 34 C 43

5 35 D 44

6 36 E 45

7 37 F 46

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–88 Standard RLL Instructions

Number Conversion Instructions

GRAY

The Gray code instruction converts a 16 bit
gray code value to a BCD value. The BCD
conversion requires 10 bits of the
accumulator. The upper 22 bits are set to
“0”. This instruction is designed for use
with devices (typically encoders) that use
the grey code numbering scheme. The
Gray Code instruction will directly convert
a gray code number to a BCD number for
devices having a resolution of 512 or 1024
counts per revolution. If a device having a
resolution of 360 counts per revolution is to
be used you must subtract a BCD value of
76 from the converted value to obtain the
proper result. For a device having a
resolution of 720 counts per revolution you
must subtract a BCD value of 152.

In the following example, when X1 is ON the binary value represented by X10–X27 is
loaded into the accumulator using the Load Formatted instruction. The gray code
value in the accumulator is converted to BCD using the Gray Code instruction. The
value in the lower 16 bits of the accumulator is copied to V2010.

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

Handheld Programmer Keystrokes

DirectSOFT

LDF K16

X10

X1

Load the value represented
by X10–X27 into the lower
16 bits of the accumulator

GRAY

Convert the 16 bit grey code
value in the accumulator to a
BCD value

OUT

V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

0000000000

Gray Code BCD

0000000001

0000000011

0000000010

0000000110

0000000111

0000000101

0000000100

1000000001

1000000000

0000

0001

0002

0003

0004

0005

0006

0007

1022

1023

�

�

�

�

�

�

X10X11X12

ONOFFON

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

X25X26X27

OFFOFFOFF
� � � �

V2010

0 0 0 6

STR
$

SHFT
ANDST
L

3
D

5
F

SHFT
6

G
ORN

R
0

A
MLS

Y ENT

OUT
GX SHFT

AND
V

2
C

0
A

1
B

0
A ENT

ENT
1

B

1
B

0
A ENT

1
B

6
G

Gray Code
(GRAY)

S
tandard

R
LL Instructions

5–89Standard RLL Instructions

Number Conversion Instructions

SFLDGT

The Shuffle Digits instruction shuffles a
maximum of 8 digits rearranging them in a
specified order. This function requires
parameters to be loaded into the first level
of the accumulator stack and the
accumulator with two additional
instructions. Listed below are the steps
necessary to use the shuffle digit function.
The example on the following page shows
a program for the Shuffle Digits function.

Step 1:— Load the value (digits) to be shuffled into the first level of the accumulator
stack.

Step 2:— Load the order that the digits will be shuffled to into the accumulator.

Note:— If the number used to specify the order contains a 0 or 9–F, the
corresponding position will be set to 0.
See example on the next page.

Note:—If the number used to specify the order contains duplicate numbers, the
most significant duplicate number is valid. The result resides in the accumulator.
See example on the next page.

Step 3:— Insert the SFLDGT instruction.

Discrete Bit Flags Description

SP63 On when the result of the instruction causes the value in the accumulator to be zero.

SP70 On anytime the value in the accumulator is negative.

There are a maximum of 8 digits that can
be shuffled. The bit positions in the first
level of the accumulator stack defines the
digits to be shuffled. They correspond to
the bit positions in the accumulator that
define the order the digits will be shuffled.
The digits are shuffled and the result
resides in the accumulator.

Digits to be
shuffled (first stack location)

Specified order (accumulator)

D E F 09 A B C

3 6 5 41 2 8 7

Result (accumulator)

0 D A 9B C E F

4 3 2 18 7 6 5Bit Positions

Shuffle Digits
(SFLDGT)

Shuffle Digits
Block Diagram

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–90 Standard RLL Instructions

Number Conversion Instructions

In the following example when X1 is on, The value in the first level of the accumulator
stack will be reorganized in the order specified by the value in the accumulator.

Example A shows how the shuffle digits works when 0 or 9 –F is not used when
specifying the order the digits are to be shuffled. Also, there are no duplicate
numbers in the specified order.

Example B shows how the shuffle digits works when a 0 or 9–F is used when
specifying the order the digits are to be shuffled. Notice when the Shuffle Digits
instruction is executed, the bit positions in the first stack location that had a
corresponding 0 or 9–F in the accumulator (order specified) are set to “0”.

Example C shows how the shuffle digits works when duplicate numbers are used
specifying the order the digits are to be shuffled. Notice when the Shuffle Digits
instruction is executed, the most significant duplicate number in the order specified
is used in the result.

D E F 09 A B C

Handheld Programmer Keystrokes

DirectSOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

LDD

V2006

Load the value in V2006 and
V2007 into the accumulator

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

SFLDGT

Shuffle the digits in the first
level of the accumulator
stack based on the pattern
in the accumulator. The
result is in the accumulator.

V2010

Acc.

0 D A 9

9 A B C D E F 0

V2011

B C E F

Acc.

3 6 5 4

1 2 8 7 3 6 5 4

1 2 8 7

Acc.B C E F 0 D A 9

V2000V2001

V2006V2007

C B A 90 F E D

V2010

Acc.

E D A 9

0 F E D C B A 9

V2011

0 0 0 0

Acc.

0 0 2 1

0 0 4 3 0 0 2 1

0 0 4 3

Acc.0 0 0 0 E D A 9

V2000V2001

V2006V2007

D E F 09 A B C

V2010

Acc.

9 A B C

9 A B C D E F 0

V2011

0 0 0 0

Acc.

4 3 2 1

4 3 2 1 4 3 2 1

4 3 2 1

Acc.0 0 0 0 9 A B C

V2000V2001

V2006V2007

A B C

Original
bit
Positions

4 3 2 18 7 6 5 4 3 2 18 7 6 5 4 3 2 18 7 6 5

Specified
order

4 3 2 18 7 6 5 4 3 2 18 7 6 5 4 3 2 18 7 6 5

New bit
Positions

4 3 2 18 7 6 5 4 3 2 18 7 6 5 4 3 2 18 7 6 5

STR
$

SHFT
ANDST
L

3
D

3
D

SHFT
ANDST
L

3
D

3
D

SHFT
RST

S
5

F
ANDST
L

3
D

6
G

MLR
T ENT

OUT
GX SHFT

3
D

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

0
A ENT

6
G

2
C

0
A

1
B

0
A ENT

SHFT

S
tandard

R
ll Instructions

5–91Standard RLL Instructions

Table Instructions

Table Instructions

The Move instruction moves the values
from a V memory table to another
V memory table the same length. The
function parameters are loaded into the
first level of the accumulator stack and the
accumulator by two additional
instructions. Listed below are the steps
necessary to program the Move function.

V aaa
MOV

� Step 1:— Load the number of V memory locations to be moved into the
first level of the accumulator stack. This parameter is a HEX value (K40
max, 100 octal).

� Step 2:— Load the starting V memory location for the locations to be
moved into the accumulator. This parameter is a HEX value.

� Step 3:— Insert the MOVE instruction which specifies starting V
memory location (Vaaa) for the destination table.

Helpful Hint: — For parameters that require HEX values when referencing memory
locations, the LDA instruction can be used to convert an octal address to the HEX
equivalent and load the value into the accumulator.

Operand Data Type DL05 Range

aaa

V memory V All (See page 4–28)

Pointer P All (See page 4–28)

Discrete Bit Flags Description

SP53 On when the value of the operand is larger than the accumulator can work with.

In the following example, when X1 is on, the constant value (K6) is loaded into the
accumulator using the Load instruction. This value specifies the length of the table
and is placed in the first stack location after the Load Address instruction is
executed. The octal address 2000 (V2000), the starting location for the source table
is loaded into the accumulator. The destination table location (V2030) is specified in
the Move instruction.

DirectSOFT

LD

K6

X1 Load the constant value 6
(HEX) into the lower 16 bits
of the accumulator

LDA

O 2000

Convert octal 2000 to HEX
400 and load the value into
the accumulator

MOV

V2030

Copy the specified table
locations to a table
beginning at location V2030

V2030� � � �

V2031� � � �

V2032� � � �

V2033� � � �

V2034	 � 	 �

V2035� � � �

V2036

V2037

�

�

�

�

V2026

V2027

V2000� � � �

V2001� � � �

V2002� � � �

V2003� � � �

V2004	 � 	 �

V2005� � � �

V2006

V2007

�

�

�

�

Handheld Programmer Keystrokes

STR
$

SHFT
ANDST
L

3
D SHFT

JMP
K

6
G ENT

SHFT
ANDST
L

3
D

0
A

2
C

0
A

0
A

0
A ENT

SHFT
ORST
M

INST#
O

1
B ENT

2
C

0
A

0
A ENT

3
D

AND
V

Move
(MOV)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–92 Standard RLL Instructions

Table Instructions

V aaa
MOVMC

The Move Memory Cartridge and the Load Label
instructions are used to copy data from program
ladder memory to V memory. The Load Label
instruction is used with the MOVMC instruction
when copying data from program ladder memory to
V memory.
To copy data from the program ladder memory to V
memory, the function parameters are loaded into the
first two levels of the accumulator stack and the
accumulator by two additional instructions. Listed
below are the steps necessary to program the Move
Memory Cartridge and Load Label functions.

LDLBL
aaaK

� Step 1:— Load the number of words to be copied into the second level
of the accumulator stack.

� Step 2:— Load the offset for the data label area in ladder memory and
the beginning of the V memory block into the first level of the stack.

� Step 3:— Load the source data label (LDLBL Kaaa) into the
accumulator when copying data from ladder memory to V memory. This
is the source location of the value.

� Step 4:— Insert the MOVMC instruction which specifies destination in
V-memory (Vaaa). This is the copy destination.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Move Memory
Cartridge /
Load Label

(MOVMC), (LDLBL)

S
tandard

R
ll Instructions

5–93Standard RLL Instructions

Table Instructions

In the example to the right, data is copied from a Data Label Area to V memory.
When X1 is on, the constant value (K4) is loaded into the accumulator using the
Load instruction. This value specifies the length of the table and is placed in the
second stack location after the next Load and Load Label (LDLBL) instructions
are executed. The constant value (K0) is loaded into the accumulator, specifying
the offset for the source and destination data. It is placed in the first stack location
after the LDLBL instruction is executed. The source address where data is being
copied from is loaded into the accumulator using the LDLBL instruction. The
MOVMC instruction specifies the destination starting location and executes the
copying of data from the Data Label Area to V memory.

DirectSOFT

LD

K4

X1

Load the value 4 into the
accumulator specifying the
number of locations to be
copied.

LD

K0

Load the value 0 into the
accumulator specifying the
offset for source and
destination locations

LDLBL

K1

Load the value 1 into the
accumulator specifying the
Data Label Area K1 as the
starting address of the data
to be copied.

MOVMC

V2000

V2000 is the destination
starting address for the data
to be copied.

� � � �

� �

� � � �

� �

� � � �

� �

	 	 � �

� �

�

�

�

�

V2001� � � �

V2002� � � �

V2003	 	 � �

V2004

�

�

�

�

V2000� � � �

���������������
����������
������� ��!�
"#$��%&�'�#

��(����

Handheld Programmer Keystrokes

STR
$

SHFT
ANDST
L

3
D SHFT

JMP
K ENT

SHFT
ANDST
L

3
D

ANDST
L

1
B

ANDST
L

SHFT
ORST
M

AND
V

INST#
O

ORST
M

2
C

1
B ENT

ENT
1

B

2
C

0
A

0
A

0
A ENT

SHFT
ANDST
L

3
D SHFT

JMP
K

0
A ENT

4
E

Copy Data From a
Data Label Area to
V Memory

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–94 Standard RLL Instructions

CPU Control Instructions

CPU Control Instructions

The No Operation is an empty (not
programmed) memory location.

NOP

DirectSOFT Handheld Programmer Keystrokes

NOP
SHFT

TMR
N

INST#
O

CV
P ENT

The End instruction marks the termination
point of the normal program scan. An End
instruction is required at the end of the
main program body. If the End instruction
is omitted an error will occur and the CPU
will not enter the Run Mode. Data labels,
subroutines and interrupt routines are
placed after the End instruction. The End
instruction is not conditional; therefore, no
input contact is allowed.

END

DirectSOFT Handheld Programmer Keystrokes

END
SHFT

4
E

TMR
N

3
D ENT

The Stop instruction changes the
operational mode of the CPU from Run to
Program (Stop) mode. This instruction is
typically used to stop PLC operation in an
error condition.

STOP

In the following example, when C0 turns on, the CPU will stop operation and switch
to the program mode.
DirectSOFT Handheld Programmer Keystrokes

STOP

C0
STR

$ SHFT ENT
2

C
0

A

SHFT
RST

S
MLR

T
INST#
O

CV
P ENTSHFT

Discrete Bit Flags Description

SP16 On when the DL05 goes into the TERM_PRG mode.

SP53 On when the DL05 goes into the PRG mode.

No Operation
(NOP)

End
(END)

Stop
(STOP)

S
tandard

R
LL Instructions

5–95Standard RLL Instructions

CPU Control Instructions

The Reset Watch Dog Timer instruction
resets the CPU scan timer. The default
setting for the watch dog timer is 200ms.
Scan times very seldom exceed 200ms,
but it is possible. For/next loops,
subroutines, interrupt routines, and table
instructions can be programmed such that
the scan becomes longer than 200ms.
When instructions are used in a manner
that could exceed the watch dog timer
setting, this instruction can be used to
reset the timer.

RSTWT

A software timeout error (E003) will occur and the CPU will enter the program
mode if the scan time exceeds the watch dog timer setting. Placement of the
RSTWT instruction in the program is very important. The instruction has to be
executed before the scan time exceeds the watch dog timer’s setting.
If the scan time is consistently longer than the watch dog timer’s setting, the
timeout value may be permanently increased from the default value of 200ms by
AUX 55 on the HPP or the appropriate auxiliary function in your programming
package. This eliminates the need for the RSTWT instruction.

In the following example the CPU scan timer will be reset to 0 when the RSTWT
instruction is executed. See the For/Next instruction for a detailed example.
DirectSOFT Handheld Programmer Keystrokes

RSTWT

SHFT
ORN

R
RST

S
MLR

T
ANDN
W

MLR
T ENT

Reset Watch Dog
Timer
(RSTWT)

S
ta

nd
ar

d
R

ll
In

st
ru

ct
io

ns
5–96 Standard RLL Instructions

Program Control Instructions

Program Control Instructions

The For and Next instructions are used to
execute a section of ladder logic between
the For and Next instruction a specified
numbers of times. When the For
instruction is enabled, the program will
loop the specified number of times. If the
For instruction is not energized the section
of ladder logic between the For and Next
instructions is not executed.
For / Next instructions cannot be nested.
The normal I/O update and CPU
housekeeping is suspended while
executing the For / Next loop. The program
scan can increase significantly, depending
on the amount of times the logic between
the For and Next instruction is executed.
With the exception of immediate I/O
instructions, I/O will not be updated until
the program execution is completed for
that scan. Depending on the length of time
required to complete the program
execution, it may be necessary to reset the
watch dog timer inside of the For / Next
loop using the RSTWT instruction.

A aaa
FOR

NEXT

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Constant K 1–9999

For / Next
(FOR)
(NEXT)

S
tandard

R
LL Instructions

5–97Standard RLL Instructions

Program Control Instructions

In the following example, when X1 is on, the application program inside the For /
Next loop will be executed three times. If X1 is off the program inside the loop will not
be executed. The immediate instructions may or may not be necessary depending
on your application. Also, The RSTWT instruction is not necessary if the For / Next
loop does not extend the scan time larger the Watch Dog Timer setting. For more
information on the Watch Dog Timer, refer to the RSTWT instruction.

X1
DirectSOFT

Handheld Programmer Keystrokes

K3

FOR

RSTWT

X20 Y5

OUT

NEXT

1 2 3

STR
$

SHFT
5

F
INST#
O

ORN
R

SHFT
ORN

R
RST

S
MLR

T
ANDN
W

MLR
T ENT

STR
$ SHFT

8
I

2
C

0
A ENT

OUT
GX

SHFT
TMR

N
4

E
SET

X
MLR

T ENT

1
B ENT

3
D ENT

5
F ENT

S
ta

nd
ar

d
R

ll
In

st
ru

ct
io

ns
5–98 Standard RLL Instructions

Program Control Instructions

K aaa

The Goto Subroutine instruction allows a
section of ladder logic to be placed outside
the main body of the program execute only
when needed. There can be a maximum
of 64 GTS instructions and 64 SBR
instructions used in a program. The GTS
instructions can be nested up to 8 levels.
An error E412 will occur if the maximum
limits are exceeded. Typically this will be
used in an application where a block of
program logic may be slow to execute and
is not required to execute every scan. The
subroutine label and all associated logic is
placed after the End statement in the
program. When the subroutine is called
from the main program, the CPU will
execute the subroutine (SBR) with the
same constant number (K) as the GTS
instruction which called the subroutine.
By placing code in a subroutine it is only
scanned and executed when needed
since it resides after the End instruction.
Code which is not scanned does not
impact the overall scan time of the
program.

GTS

K aaaSBR

Operand Data Type DL05 Range

aaa

Constant K 1–FFFF

When a Subroutine Return is executed in
the subroutine the CPU will return to the
point in the main body of the program from
which it was called. The Subroutine Return
is used as termination of the subroutine
which must be the last instruction in the
subroutine and is a stand alone instruction
(no input contact on the rung).

RT

The Subroutine Return Conditional
instruction is a optional instruction used
with a input contact to implement a
conditional return from the subroutine. The
Subroutine Return (RT) is still required for
termination of the Subroutine.

RTC

Goto Subroutine
(GTS)
(SBR)

Subroutine Return
(RT)

Subroutine Return
Conditional
(RTC)

S
tandard

R
LL Instructions

5–99Standard RLL Instructions

Program Control Instructions

In the following example, when X1 is on, Subroutine K3 will be called. The CPU will
jump to the Subroutine Label K3 and the ladder logic in the subroutine will be
executed. If X35 is on the CPU will return to the main program at the RTC instruction.
If X35 is not on Y0–Y17 will be reset to off and then the CPU will return to the main
body of the program.

DirectSOFT Display

Handheld Programmer Keystrokes

SBR K3

X1 K3

GTS

END

Y5

OUTI

�

�

�

X20

Y10

OUTI

X21

X35

RTC

X35

RSTI

Y0 Y17

RT

K10
LD

C0

STR
$

SHFT
6

G
MLR

T
RST

S

SHFT
RST

S
1

B
ORN

R

STR
$ SHFT

8
I

2
C

0
A ENT

OUT
GX

STR
$

SHFT
8

I
3

D ENT
5

F

OUT
GX

SHFT
ORN

R
MLR

T ENT

SHFT
4

E
TMR

N
3

D ENT

1
B ENT

3
D ENT

3
D ENT

5
F ENT

ENT
1

B
0

A

SHFT

�

�

SHFT
8

I

SHFT
8

I

2
C

STR
$ SHFT

8
I

2
C ENT

1
B

STRN
SP

RST
S SHFT

8
I

0
A

1
B

7
H ENT

SHFT
8

I
3

D ENT
5

F

SHFT
ORN

R
MLR

T ENT

S
ta

nd
ar

d
R

ll
In

st
ru

ct
io

ns
5–100 Standard RLL Instructions

Program Control Instructions

In the following example, when X1 is on, Subroutine K3 will be called. The CPU will
jump to the Subroutine Label K3 and the ladder logic in the subroutine will be
executed. The CPU will return to the main body of the program after the RT
instruction is executed.
DirectSOFT

Handheld Programmer Keystrokes

SBR K3

X1 K3

GTS

END

Y5

OUT

�

�

�

X20

Y10

OUT

X21

RT

�

�

STR
$

SHFT
6

G
MLR

T
RST

S

SHFT
RST

S
1

B
ORN

R

STR
$ SHFT

8
I

2
C

0
A ENT

OUT
GX

STR
$ SHFT

8
I

2
C ENT

1
B

OUT
GX

SHFT
ORN

R
MLR

T ENT

SHFT
4

E
TMR

N
3

D ENT

1
B ENT

3
D ENT

3
D ENT

5
F ENT

ENT
1

B
0

A

SHFT

S
tandard

R
LL Instructions

5–101Standard RLL Instructions

Program Control Instructions

K aaa

The Master Line Set instruction allows the
program to control sections of ladder logic
by forming a new power rail controlled by
the main left power rail. The main left rail is
always master line 0. When a MLS K1
instruction is used, a new power rail is
created at level 1. Master Line Sets and
Master Line Resets can be used to nest
power rails up to seven levels deep.

MLS

Operand Data Type DL05 Range

aaa

Constant K 1–7

K aaa

The Master Line Reset instruction marks
the end of control for the corresponding
MLS instruction. The MLR reference is one
less than the corresponding MLS.

MLR

Operand Data Type DL05 Range

aaa

Constant K 0–7

The Master Line Set (MLS) and Master Line Reset (MLR) instructions allow you to
quickly enable (or disable) sections of the RLL program. This provides program
control flexibility. The following example shows how the MLS and MLR instructions
operate by creating a sub power rail for control logic.

X0

X1

X2

OUT

Y7

X3

MLS

MLR

MLS

MLR

���������	���
��������������������������������
�����������������

���������	���
��	���
�������������
���������������������������
���������

��	������������	��	�� ���!�������������������
	�"	�����	������#

X10

K1

K2

K0 K1

Master Line Set
(MLS)

Master Line Reset
(MLR)

Understanding
Master Control
Relays

S
ta

nd
ar

d
R

ll
In

st
ru

ct
io

ns
5–102 Standard RLL Instructions

Program Control Instructions

In the following MLS/MLR example logic between the first MLS K1 (A) and MLR K0
(B) will function only if input X0 is on. The logic between the MLS K2 (C) and MLR K1
(D) will function only if input X10 and X0 is on. The last rung is not controlled by either
of the MLS coils.

K1

MLS

X0

C0

OUT

X1

C1

OUT

X2

Y0

OUT

X3

K2

MLS

X10

Y1

OUT

X5

Y2

OUT

X4

K1

MLR

C2

OUT

X5

Y3

OUT

X6

K0

MLR

Y4

OUT

X7

$

�

%

&

DirectSOFT Handheld Programmer Keystrokes

STR
$ ENT

0
A

MLS
Y

1
B ENT

STR
$

1
B ENT

OUT
GX SHFT ENT

2
C

0
A

STR
$ ENT

2
C

OUT
GX SHFT ENT

2
C

1
B

STR
$ ENT

3
D

OUT
GX ENT

0
A

STR
$ ENT

0
A

1
B

MLS
Y ENT

2
C

STR
$ ENT

5
F

OUT
GX ENT

1
B

STR
$ ENT

OUT
GX ENT

4
E

2
C

MLR
T

1
B ENT

STR
$ ENT

5
F

OUT
GX SHFT ENT

2
C

2
C

STR
$ ENT

OUT
GX ENT

6
G

3
D

MLR
T ENT

0
A

STR
$ ENT

OUT
GX

4
E

7
H

ENT
2

C

MLS/MLR Example

S
tandard

R
LL Instructions

5–103Standard RLL Instructions

Interrupt Instructions

Interrupt Instructions

O

The Interrupt instruction allows a section of
ladder logic to be placed below the main
body of the program and executed only
when needed. High-Speed I/O Modes 10,
20, and 40 can generate an interrupt. With
Mode 40, you may select an external
interrupt (input X0), or a time-based
interrupt (5–999 mS).

INT

1INT

Typically, interrupts are used in an application when a fast response to an input is
needed or a program section must execute faster than the normal CPU scan. The
interrupt label and all associated logic must be placed after the End statement in the
program. When an interrupt occurs, the CPU will complete execution of the current
instruction it is processing in ladder logic, then execute the interrupt routine. After
interrupt routine execution, the ladder program resumes from the point at which it
was interrupted.
See Chapter 3, the section on Mode 40 (Interrupt) Operation for more details on
interrupt configuration. In the DL05, only one hardware interrupt is available.

Operand Data Type DL05 Range

Constant O 0, 1

An Interrupt Return is normally executed as
the last instruction in the interrupt routine. It
returns the CPU to the point in the main
program from which it was called. The
Interrupt Return is a stand-alone
instruction (no input contact on the rung).

IRT

The Interrupt Return Conditional
instruction is a optional instruction used
with an input contact to implement a
condtional return from the interrupt
routine. The Interrupt Return is required to
terminate the interrupt routine.

IRTC

The Enable Interrupt instruction is placed in
the main ladder program (before the End
instruction), enabling the interrupt. The
interrupt remains enabled until the program
executes a Disable Interrupt instruction.

ENI

Interrupt
(INT)

Interrupt Return
(IRT)

Interrupt Return
Conditional
(IRTC)

Enable Interrupts
(ENI)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–104 Standard RLL Instructions

Interrupt Instructions

A Disable Interrupt instruction in the main
body of the application program (before
the End instruction) will disable the
interupt (either extenal or timed). The
interrupt remains disabled until the
program executes an Enable Interrupt
instruction.

DISI

In the following example, we do some initialization on the first scan, using the
first-scan contact SP0. The interrupt feature is the HSIO Mode 40. Then we
configure X0 as the external interrupt by writing to its configuration register, V7634.
See Chapter 3, Mode 40 Operation for more details.
During program execution, when X2 is on the interrupt is enabled. When X2 is off the
interrupt will be disabled. When an interrupt signal (X0) occurs the CPU will jump to
the interrupt label INT O 0. The application ladder logic in the interrupt routine will be
performed. The CPU will return to the main body of the program after the IRT
instruction is executed.

DirectSOFT

INT O 0

X2

ENI

DISI

�

�

�

X2

END

Y5

SETI

X1

Y7

SETI

X3

IRT

Handheld Programmer Keystrokes

�

�

8
I

ORN
R

MLR
T

STR
$ SHFT

8
I

1
B ENT

SHFT
8

I
5

F ENT

STR
$ SHFT

8
I

3
D ENT

SHFT
8

I ENT
7

H

SHFT
4

E
TMR

N
3

D ENT

STR
$ ENT

2
C

SHFT
4

E
TMR

N
8

I ENT

STRN
SP ENT

2
C

SHFT
8

I
TMR

N
MLR

T
0

A ENT

SHFT ENT

SHFT ENT
3

D
8

I
RST

S
8

I

SET
X

SET
X

LD
K40

SP0 Load the constant value
(K40) into the lower 16 bits
of the accumulator

OUT
V7633

Copy the value in the lower
16 bits of the accumulator to
V7633

LD
K4

Load the constant value (K4)
into the lower 16 bits of the
accumulator

OUT
V7634

Copy the value in the lower
16 bits of the accumulator to
V7634

STR
$

SHFT
ANDST
L

3
D SHFT

OUT
GX SHFT

AND
V ENT

JMP
K ENT

7
H

6
G

3
D

4
E

SHFT
ANDST
L

3
D SHFT

0
A

OUT
GX SHFT

AND
V ENT

JMP
K

4
E ENT

7
H

6
G

3
D

3
D

4
E

SHFT ENT
STRN
SP

0
A

Disable Interrupts
(DISI)

External Interrupt
Program Example

S
tandard

R
LL Instructions

5–105Standard RLL Instructions

Interrupt Instructions

In the following example, we do some initialization on the first scan, using the
first-scan contact SP0. The interrupt feature is the HSIO Mode 40. Then we
configure the HSIO timer as a 10 mS interrupt by writing K104 to the configuration
register for X0 (V7634). See Chapter 3, Mode 40 Operation for more details.
When X4 turns on, the interrupt will be enabled. When X4 turns off, the interrupt will
be disabled. Every 10 mS the CPU will jump to the interrupt label INT O 0. The
application ladder logic in the interrupt routine will be performed. If X3 is not on
Y0–Y7 will be reset to off and then the CPU will return to the main body of the
program.

DirectSOFT

INT O0

X4

ENI

DISI

�

�

X4

END

Y5

SETI

X2

X3

RSTI

Y0 Y7

IRT

Handheld Programmer Keystrokes

LD

K40

X1 Load the constant value
(K40) into the lower 16 bits
of the accumulator

OUT

V7633

Copy the value in the lower
16 bits of the accumulator to
V7633

STR
$

SHFT
ANDST
L

3
D SHFT

0
A

OUT
GX SHFT

AND
V ENT

JMP
K

1
B ENT

7
H

6
G

3
D

4
E

STR
$

SHFT
4

E
TMR

N
8

I ENT

STRN
SP

SHFT ENT
3

D
8

I
RST

S
8

I

8
I

ORN
R

MLR
T

STR
$ SHFT

8
I

2
C ENT

SHFT
8

I
5

F ENT

SHFT
8

I ENT

SHFT
8

I ENT
0

A

SHFT
4

E
TMR

N
3

D ENT

SHFT
8

I
TMR

N
MLR

T ENT

SHFT ENT

0
A

1
B ENT

ENT

ENT

4
E

4
E

7
H

3
D

SET
X

SET
X

STRN
SP

LD

K104

Load the constant value
(K10) into the lower 16 bits
of the accumulator

OUT

V7634

Copy the value in the lower
16 bits of the accumulator to
V7634

SHFT
ANDST
L

3
D SHFT

0
A

OUT
GX SHFT

AND
V ENT

JMP
K

4
E ENT

7
H

6
G

3
D

3
D

4
E

�

�

Interrupt O1 is also available as an interrupt. This interrupt is independent of the
HSIO features. Interrupt O1 uses an internal timer that is configured in V memory
location V7647. The interrupt period can be adjusted from 5 to 9999 mS. Once the
interrupt period is set and the interrupt is enabled in the program, the CPU will
continuously call the interrupt routine based on the time setting in V7647.

Input Configuration
Register

Function Hex Code
Required

– V7647 High-Speed
Timed Interrupt

xxxx (xxxx = timer setting)
5 - 9999 mS (BCD)

Timed Interrupt
Program Example

Independent Timed
Interrupt

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–106 Standard RLL Instructions

Message Instructions

Message Instructions

FAULT
A aaa

The Fault instruction is used to display a
message on the handheld programmer or
in the DirectSOFT status bar. The
message has a maximum of 23 characters
and can be either V memory data,
numerical constant data or ASCII text.

To display the value in a V memory location, specify the V memory location in the
instruction. To display the data in ACON (ASCII constant) or NCON (Numerical
constant) instructions, specify the constant (K) value for the corresponding data
label area.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Constant K 1–FFFF

Discrete Bit Flags Description

SP50 On when the FAULT instruction is executed.

In the following example when X1 is on,
the message SW 146 will display on the
handheld programmer. The NCONs use
the HEX ASCII equivalent of the text to
be displayed. (The HEX ASCII for a blank
is 20, a 1 is 31, 4 is 34 ...)

SW 146

DirectSOFT

DLBL
K1

�

�

END

FAULT
K1

X1

�

�

ACON
A SW

NCON
K 2031

NCON
K 3436

Handheld Programmer Keystrokes

�

�

STR
$

SHFT
4

E
TMR

N
3

D ENT

SHFT
3

D
ANDST
L

1
B

ANDST
L

1
B ENT

SHFT
0

A
2

C
INST#
O

TMR
N

SHFT
TMR

N
2

C
INST#
O

TMR
N

SHFT
TMR

N
2

C
INST#
O

TMR
N

1
B ENT

ENT

ENT
3

D
3

D
4

E
6

G

ENT
3

D
2

C
0

A
1

B

RST
S

ANDN
W

SHFT
ISG

U
MLR

T
ANDST
L

5
F

0
A

1
B ENT

Fault
(FAULT)

Fault Example

S
tandard

R
LL Instructions

5–107Standard RLL Instructions

Message Instructions

K aaaDLBL

The Data Label instruction marks the
beginning of an ASCII / numeric data area.
DLBLs are programmed after the End
statement. A maximum of 64 DLBL
instructions can be used in a program.
Multiple NCONs and ACONs can be used
in a DLBL area.

Operand Data Type DL05 Range

aaa

Constant K 1–FFFF

A aaa
ACON

The ASCII Constant instruction is used
with the DLBL instruction to store ASCII
text for use with other instructions. Two
ASCII characters can be stored in an
ACON instruction. If only one character is
stored in a ACON a leading space will be
inserted.

Operand Data Type DL05 Range

aaa

ASCII A 0–9 A–Z

K aaa
NCON

The Numerical Constant instruction is
used with the DLBL instruction to store the
HEX ASCII equivalent of numerical data
for use with other instructions. Two digits
can be stored in an NCON instruction.

Operand Data Type DL05 Range

aaa

Constant K 0–FFFF

Data Label
(DLBL)

ASCII Constant
(ACON)

Numerical
Constant
(NCON)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–108 Standard RLL Instructions

Message Instructions

In the following example, an ACON and two NCON instructions are used within a
DLBL instruction to build a text message. See the FAULT instruction for information
on displaying messages. The DV-1000 Manual also has information on displaying
messages.
DirectSOFT

Handheld Programmer Keystrokes

DLBL

K1

�

�

END

�

ACON

A SW

NCON

K 2031

NCON

K 3436

�

�

SHFT
4

E
TMR

N
3

D ENT

SHFT
3

D
ANDST
L

1
B

ANDST
L

1
B ENT

SHFT
0

A
2

C
INST#
O

TMR
N

SHFT
TMR

N
2

C
INST#
O

TMR
N

SHFT
TMR

N
2

C
INST#
O

TMR
N

ENT
3

D
3

D
4

E
6

G

ENT
3

D
2

C
0

A
1

B

ENT
RST

S
ANDN
W

Data Label
Example

S
tandard

R
LL Instructions

5–109Standard RLL Instructions

Message Instructions

PRINT

The Print Message instruction prints the
embedded text or text/data variable
message to the specified communications
port (Port 2 on the DL05 CPU), which must
have the communications port configured.

A aaa

“Hello, this is a PLC message”

 Data Type DL05 Range

A aaa

Constant K 2

You may recall from the CPU specifications in Chapter 3 that the DL05’s ports are
capable of several protocols. Port 1 cannot be configured for the non-sequence
portocol. To configure port 2 using the Handheld Programmer, use AUX 56 and
follow the prompts, making the same choices as indicated below on this page. To
configure a port in DirectSOFT, choose the PLC menu, then Setup, then Setup
Secondary Comm Port.

� Port: From the port number list box at the top, choose “Port 2”.
� Protocol: Click the check box to the left of “Non-sequence”, and then

you’ll see the dialog box shown below.

� Baud Rate: Choose the baud rate that matches your printer.
� Stop Bits, Parity: Choose number of stop bits and parity setting to

match your printer.
� Memory Address: Choose a V-memory address for DirectSOFT to use

to store the port setup information. You will need to reserve 9 words in
V-memory for this purpose. Select “Always use for printing” if it applies.

Then click the button indicated to send the Port 2 configuration
to the CPU, and click Close. Then see Chapter 3 for port wiring
information, in order to connect your printer to the DL05.

Print Message
(PRINT)

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–110 Standard RLL Instructions

Message Instructions

Port 2 on the DL05 has standard RS232 levels, and should work with most printer
serial input connections.

Text element – this is used for printing character strings. The character strings are
defined as the character (more than 0) ranged by the double quotation marks. Two
hex numbers preceded by the dollar sign means an 8-bit ASCII character code. Also,
two characters preceded by the dollar sign is interpreted according to the following
table:

Character code Description

1 $$ Dollar sign ($)

2 $” Double quotation (”)

3 $L or $l Line feed (LF)

4 $N or $n Carriage return line feed (CRLF)

5 $P or $p Form feed

6 $R or $r Carriage return (CR)

7 $T or $t Tab

The following examples show various syntax conventions and the length of the
output to the printer.
Example:
” ” Length 0 without character
”A” Length 1 with character A
” ” Length 1 with blank
” $” ” Length 1 with double quotation mark
” $ R $ L ” Length 2 with one CR and one LF
” $ 0 D $ 0 A ” Length 2 with one CR and one LF
” $ $ ” Length 1 with one $ mark

In printing an ordinary line of text, you will need to include double quotation marks
before and after the text string. Error code 499 will occur in the CPU when the print
instruction contains invalid text or no quotations. It is important to test your PRINT
instruction data during the application development.
The following example prints the message to port 2. We use a PD contact, which
causes the message instruction to be active for just one scan. Note the $N at the end
of the message, which produces a carriage return / line feed on the printer. This
prepares the printer to print the next line, starting from the left margin.

X1 Print the message to Port 2 when
X1 makes an off-to-on transition.

PRINT K2

“Hello, this is a PLC message.$N”

S
tandard

R
LL Instructions

5–111Standard RLL Instructions

Message Instructions

V-memory element – this is used for printing V-memory contents in the integer
format or real format. Use V-memory number or V-memory number with “:” and data
type. The data types are shown in the table below. The Character code must be
capital letters.

NOTE: There must be a space entered before and after the V-memory address to
separate it from the text string. Failure to do this will result in an error code 499.

Character code Description

1 none 16-bit binary (decimal number)

2 : B 4 digit BCD

3 : D 32-bit binary (decimal number)

4 : D B 8 digit BCD

Example:
V2000 Print binary data in V2000 for decimal number
V2000 : B Print BCD data in V2000
V2000 : D Print binary number in V2000 and V2001 for decimal number
V2000 : D B Print BCD data in V2000 and V2001

Example: The following example prints a message containing text and a variable.
The “reactor temperature” labels the data, which is at V2000. You can use the : B
qualifier after the V2000 if the data is in BCD format, for example. The final string
adds the units of degrees to the line of text, and the $N adds a carriage return / line
feed.

X1 Print the message to Port 2
when X1 makes an off-to-on
transition.

PRINT K2

“Reactor temperature = ” V2000 “deg. $N”∧ ∧

Message will read:
Reactor temperature = 0156 deg

∧ represents a space

V-memory text element – this is used for printing text stored in V-memory. Use the
% followed by the number of characters after V-memory number for representing the
text. If you assign “0” as the number of characters, the print function will read the
character count from the first location. Then it will start at the next V-memory location
and read that number of ASCII codes for the text from memory.
Example:
V2000 % 16 16 characters in V2000 to V2007 are printed.
V2000 % 0 The characters in V2001 to Vxxxx (determined by the number

in V2000) will be printed.

S
ta

nd
ar

d
R

LL
 In

st
ru

ct
io

ns
5–112 Standard RLL Instructions

Message Instructions

Bit element – this is used for printing the state of the designated bit in V-memory or a
relay bit. The bit element can be assigned by the designating point (.) and bit number
preceded by the V-memory number or relay number. The output type is described as
shown in the table below.

Data format Description

1 none Print 1 for an ON state, and 0 for an
OFF state

2 : BOOL Print “TRUE” for an ON state, and
“FALSE” for an OFF state

3 : ONOFF Print “ON” for an ON state, and “OFF”
for an OFF state

Example:
V2000 . 15 Prints the status of bit 15 in V2000, in 1/0 format
C100 Prints the status of C100 in 1/0 format
C100 : BOOL Prints the status of C100 in TRUE/FALSE format
C100 : ON/OFF Prints the status of C00 in ON/OFF format
V2000.15 : BOOL Prints the status of bit 15 in V2000 in TRUE/FALSE format

The maximum numbers of characters you can print is 128. The number of characters
for each element is listed in the table below:

Element type Maximum
Characters

Text, 1 character 1

16 bit binary 6

32 bit binary 11

4 digit BCD 4

8 digit BCD 8

Floating point (real number) 12

Floating point (real with exponent) 12

V-memory/text 2

Bit (1/0 format) 1

Bit (TRUE/FALSE format) 5

Bit (ON/OFF format) 3

The handheld programmer’s mnemonic is “PRINT”, followed by the DEF field.

Special relay flags SP116 and SP117 indicate the status of the DL05 CPU ports
(busy, or communications error). See the appendix on special relays for a
description.

NOTE: You must use the appropriate special relay in conjunction with the PRINT
command to ensure the ladder program does not try to PRINT to a port that is still
busy from a previous PRINT or WX or RX instruction.

S
tandard R

LL
Instructions

5–113Standard RLL Instructions

Network Instructions

Network Instructions

A aaa

The Read from Network instruction
causes the master device on a network to
read a block of data from a slave device on
the same network. The function
parameters are loaded into the
accumulator and the first and second level
of the stack. Listed below are the program
steps necessary to execute the Read from
Network function.

RX

Step 1: — Load the slave address (0–90 BCD) into the low byte and “F2” into the
high byte of the accumulator (the next two instructions push this word down to the
second layer of the stack).

Step 2: — Load the number of bytes to be transferred into the accumulator (the
next instruction pushes this word onto the top of the stack).

Step 3: — Load the starting Master CPU address into the accumulator. This is the
memory location where the data read from the slave will be put. This parameter
requires a HEX value.

Step 4: — Insert the RX instruction which specifies the starting V memory location
(Aaaa) where the data will be read from in the slave.

Helpful Hint: — For parameters that require HEX values, the LDA instruction can
be used to convert an octal address to the HEX equivalent and load the value into
the accumulator.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All V mem. (See page 4–28)

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

Special Relay SP 0–777

Program Memory $ 0–2047 (2K program mem.)

Read from Network
(RX)

S
ta

nd
ar

d
R

LL
In

st
ru

ct
io

ns
5–114 Standard RLL Instructions

Network Instructions

In the following example, when X1 is on and the port busy relay SP116 (see special
relays) is not on, the RX instruction will access port 2 operating as a master. Ten
consecutive bytes of data (V2000 – V2004) will be read from a CPU at station
address 5 and copied into V memory locations V2300–V2304 in the CPU with the
master port.
DirectSOFT

Handheld Programmer Keystrokes

LD

KF205

X1

The constant value KF205
specifies the port number (2)
and the slave address (5)

LD

K10

The constant value K10
specifies the number of
bytes to be read

LDA

O 2300

Octal address 2300 is
converted to 4C0 HEX and
loaded into the accumulator.
V2300 is the starting
location for the Master CPU
where the specified data will
be read into

RX

V2000

V2000 is the starting
location in the for the Slave
CPU where the specified
data will be read from

V20018 5 3 4

V20021 9 3 6

V20039 5 7 1

V20041 4 2 3

�

�

�

�

V1777X X X X

V20003 4 5 7

Master
CPU

SP116

V2005X X X X

V2301 8 5 3 4

V2302 1 9 3 6

V2303 9 5 7 1

V2304 1 4 2 3

�

�

�

�

V2277 X X X X

V2300 3 4 5 7

V2305 X X X X

Slave
CPU

STR
$

SHFT
ANDST
L

3
D SHFT

JMP
K

SHFT
ANDST
L

3
D

ANDN
W SHFT

STRN
SP

1
B

1
B

6
G ENT

1
B

0
A ENT

0
A

SHFT
ORN

R
SET

X

1
B ENT

2
C

3
D

0
A

0
A ENT

2
C

0
A

0
A

0
A ENT

SHFT
ANDST
L

3
D SHFT

JMP
K

0
A ENT

2
C

5
FSHFT SHFT

5
F

S
tandard R

LL
Instructions

5–115Standard RLL Instructions

Network Instructions

A aaa
WX

The Write to Network instruction is used to
write a block of data from the master
device to a slave device on the same
network. The function parameters are
loaded into the accumulator and the first
and second level of the stack. Listed below
are the program steps necessary to
execute the Write to Network function.

Step 1: — Load the slave address (0–90 BCD) into the low byte and “F2” into the
high byte of the accumulator (the next two instructions push this word down to the
second layer of the stack).

Step 2: — Load the number of bytes to be transferred into the accumulator (the
next instruction pushes this word onto the top of the stack).

Step 3: — Load the starting Master CPU address into the accumulator. This is the
memory location where the data will be written from. This parameter requires a
HEX value.

Step 4: — Insert the WX instruction which specifies the starting V memory location
(Aaaa) where the data will be written to in the slave.

Helpful Hint: — For parameters that require HEX values, the LDA instruction can
be used to convert an octal address to the HEX equivalent and load the value into
the accumulator.

Operand Data Type DL05 Range

A aaa

V memory V All (See page 4–28)

Pointer P All V mem. (See page 4–28)

Inputs X 0–377

Outputs Y 0–377

Control Relays C 0–777

Stage S 0–377

Timer T 0–177

Counter CT 0–177

Special Relay SP 0–777

Program Memory $ 0–2048 (2K program mem.)

Write to Network
(WX)

S
ta

nd
ar

d
R

LL
In

st
ru

ct
io

ns
5–116 Standard RLL Instructions

Network Instructions

In the following example when X1 is on and the module busy relay SP116 (see
special relays) is not on, the WX instruction will access port 2 operating as a master.
Ten consecutive bytes of data is read from the Master CPU and copied to V memory
locations V2000–V2004 in the slave CPU at station address 5.
DirectSOFT

Handheld Programmer Keystrokes

LD

KF205

X1

The constant value KF205
specifies the port number (2)
and the slave address (5)

LD

K10

The constant value K10
specifies the number of
bytes to be written

LDA

O 2300

WX

V2000

V2000 is the starting
location in the for the Slave
CPU where the specified
data will be written to

V20018 5 3 4

V20021 9 3 6

V20039 5 7 1

V20041 4 2 3

�

�

�

�

V1777X X X X

V20003 4 5 7

Master
CPU

SP116

V2005X X X X

V2301 8 5 3 4

V2302 1 9 3 6

V2303 9 5 7 1

V2304 1 4 2 3

�

�

�

�

V2277 X X X X

V2300 3 4 5 7

V2305 X X X X

Slave
CPU

Octal address 2300 is
converted to 4C0 HEX and
loaded into the accumulator.
V2300 is the starting
location for the Master CPU
where the specified data will
be read from.

STR
$

SHFT
ANDST
L

3
D SHFT

JMP
K

SHFT
ANDST
L

3
D

ANDN
W SHFT

STRN
SP

1
B

1
C

6
E ENT

1
B

0
A ENT

SHFT

0
A

5
F

2
C

3
D

0
A

0
A ENT

SHFT

SHFT

2
C

0
A

0
A

0
A ENT

SET
X

ANDN
W

SHFT
ANDST
L

3
D SHFT

JMP
K

0
A ENT

2
C

5
F

1
B ENT

��
Drum Instruction
Programming

����������	
���������

�������������

�����
��	��������

������������������
�	����

�����������������������

����������������

�����������������

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–2
Drum Instruction Programming

Introduction

The Event Drum (EDRUM) instruction in the DL05 CPU electronically simulates an
electro-mechanical drum sequencer. The instruction offers enhancements to the
basic principle, which we describe first.
Drum instructions are best suited for repetitive processes that consist of a finite
number of steps. They can do the work of many rungs of ladder logic with elegant
simplicity. Therefore, drums can save a lot of programming and debugging time.
We introduce some terminology associated with the drum instruction by describing
the original mechanical drum shown below. The mechanical drum generally has
pegs on its curved surface. The pegs are populated in a particular pattern,
representing a set of desired actions for machine control. A motor or solenoid rotates
the drum a precise amount at specific times. During rotation, stationary wipers sense
the presence of pegs (present = on, absent = off). This interaction makes or breaks
electrical contact with the wipers, creating electrical outputs from the drum. The
outputs are wired to devices on a machine for On/Off control.
Drums usually have a finite number of positions within one rotation, called steps.
Each step represents some process step. At powerup, the drum resets to a
particular step. The drum rotates from one step to the next based on a timer, or on
some external event. During special conditions, a machine operator can manually
increment the drum step using a jog control on the drum’s drive mechanism. The
contact closure of each wiper generates a unique on/off pattern called a sequence,
designed for controlling a specific machine. Because the drum is circular, it
automatically repeats the sequence once per rotation. Applications vary greatly, and
a particular drum may rotate once per second, or as slowly as once per week.

Drum

Outputs

Wipers

Pegs

Electronic drums provide the benefits of mechanical drums and more. For example,
they have a preset feature that is impossible for mechanical drums: The preset
function lets you move from the present step directly to any other step on command!

Purpose

Drum Terminology

D
rum

 Instruction
P

rogram
m

ing
6–3

Drum Instruction Programming

For editing purposes, the electronic drum is presented in chart form in DirectSOFT
and in this manual. Imagine slicing the surface of a hollow drum cylinder between
two rows of pegs, then pressing it flat. Now you can view the drum as a chart as
shown below. Each row represents a step, numbered 1 through 16. Each column
represents an output, numbered 0 through 15 (to match word bit numbering). The
solid circles in the chart represent pegs (On state) in the mechanical drum, and the
open circles are empty peg sites (Off state).

 1
STEP

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

 1 2 3 4 5 6 7 8 9101112131415 0
OUTPUTS

The mechanical drum sequencer derives its name from sequences of control
changes on its electrical outputs. The following figure shows the sequence of On/Off
controls generated by the drum pattern above. Compare the two, and you will find
that they are equivalent! If you can see their equivalence, you are well on your way to
understanding drum instruction operation.

0 0
1

1 0
1

2 0
1

3 0
1

4 0
1

5 0
1

6 0
1

7 0
1

8 0
1

9 0
1

10 0
1

11 0
1

12 0
1

13 0
1

14 0
1

15 0
1

Output
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Step

Drum Chart
Representation

Output Sequences

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–4
Drum Instruction Programming

Step Transitions

There are two types of Drum instructions in the DL05 CPU:
� Timed Drum with Discrete Outputs (DRUM)
� Time and Event Drum with Discrete Outputs (EDRUM)

The two drum instructions include time-based step transitions, and the EDRUM
includes event-based transitions as well. Each drum has 16 steps, and each step
has 16 outputs. Refer to the figure below. Each output can be either an X, Y, or C coil,
offering programming flexibility. We assign Step 1 an arbitrary unique output pattern
(�= Off, �= On) as shown. When programming a drum instruction, you also
determine both the output assignment and the On/Off state (pattern) at that time. All
steps use the same output assignment, but each step may have its own unique
output pattern.
Drums move from one step to another based on time and/or an external event
(input). Each step has its own transition condition which you assign during the drum
instruction entry. The figure below shows how timer-only transitions work.

� � � � � � � � � � � � � � � �Step 1 Outputs:

� � � � � � � � � � � � � � � �Step 2 Outputs:

Has counts per
step expired?

No

Yes

Increment
count timer

Use next transition criteria

The drum stays in Step 1 for a specific duration (user-programmable). The timebase
of the timer is programmable, from 0.01 seconds to 99.99 seconds. This establishes
the resolution, or the duration of each “tick of the clock”. Each step uses the same
timebase, but has its own unique counts per step, which you program. When the
counts for Step 1 have expired, then the drum moves to Step 2. The outputs change
immediately to match the new pattern for Step 2.

The drum spends a specific amount of time in each step, given by the formula:

Time in step = 0.01 seconds X Timebase x Counts per step

Drum Instruction
Types

Timer-Only
Transitions

D
rum

 Instruction
P

rogram
m

ing
6–5

Drum Instruction Programming

For example, if you program a 5 second time base and 12 counts for Step 1, then the
drum will spend 60 seconds in Step 1. The maximum time for any step is given by the
formula:

Max Time per step = 0.01 seconds X 9999 X 9999
= 999,800 seconds = 277.7 hours = 11.6 days

NOTE: When first choosing the timebase resolution, a good rule of thumb is to make
it about 1/10 the duration of the shortest step in your drum. Then you will be able to
optimize the duration of that step in 10% increments. Other steps with longer
durations allow optimizing by even smaller increments (percentage-wise). Also,
note that the drum instruction executes once per CPU scan. Therefore, it is pointless
to specify a drum timebase that is much faster than the CPU scan time.

Step transitions may also occur based on time and/or external events. The figure
below shows how step transitions work in these cases.

Is Step event
true?

� � � � � � � � � � � � � � � �Step 1 Outputs:

� � � � � � � � � � � � � � � �Step 2 Outputs:

No

Yes

Increment
count timer

Has step
counts expired?

No

Yes

Use next transition criteria

When the drum enters Step 1, it sets the output pattern as shown. Then it begins
polling the external input programmed for that step. You can define event inputs as
X, Y, or C discrete point types. Suppose we select X0 for the Step 1 event input. If X0
is off, then the drum remains in Step 1. When X0 is On, the event criteria is met and
the timer increments. The timer increments as long as the event (X0) remains true.
When the counts for Step 1 have expired, then the drum moves to Step 2. The
outputs change immediately to match the new pattern for Step 2.

Timer and Event
Transitions

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–6
Drum Instruction Programming

Step transitions do not require both the event and the timer criteria programmed for
each step. You have the option of programming just one of the two, and even mixing
transition types among all the steps of the drum. For example, you might want Step 1
to transition on an event, Step 2 to transition on time only, and Step 3 to transition on
both time and an event. Furthermore, you may elect to use only part of the 16 steps,
and only part of the 16 outputs.

Is Step event
true?

� � � � � � � � � � � � � � � �Step 1 Outputs:

� � � � � � � � � � � � � � � �Step 2 Outputs:

No

Yes

Use next transition criteria

Each drum instruction uses the resources of four counters in the CPU. When
programming the drum instruction, you select the first counter number. The drum
also uses the next three counters automatically. The counter bit associated with the
first counter turns on when the drum has completed its cycle, going off when the
drum is reset. These counter values and the counter bit precisely indicate the
progress of the drum instruction, and can be monitored by your ladder program.

Suppose we program a timer drum to have
8 steps, and we select CT10 for the
counter number (remember, counter
numbering is in octal). Counter usage is
shown to the right. The right column holds
typical values, interpreted below.

CT10 Counts in step V1010 1528

CT11 Timer Value V1011 0200

CT12 Preset Step V1012 0001

CT13 Current Step V1013 0004

Counter Assignments

CT10 shows that we are at the 1528th count in the current step, which is step 4
(shown in CT13). If we have programmed step 4 to have 3000 counts, then the step
is just over half completed. CT11 is the count timer, shown in units of 0.01 seconds.
So, each least-significant-digit change represents 0.01 seconds. The value of 200
means that we have been in the current count (1528) for 2 seconds (0.01 x 100).
Finally, CT12 holds the preset step value which was programmed into the drum
instruction. When the drum’s Reset input is active, it presets to step 1 in this case.
The value of CT12 changes only if the ladder program writes to it, or the drum
instruction is edited and the program is restarted. Counter bit CT10 turns on when
the drum cycle is complete, and turns off when the drum is reset.

Event-Only
Transitions

Counter
Assignments

D
rum

 Instruction
P

rogram
m

ing
6–7

Drum Instruction Programming

The last step in a drum sequence may be any step number, since partial drums are
valid. Refer to the following figure. When the transition conditions of the last step are
met, the drum sets the counter bit corresponding to the counter named in the drum
instruction box (such as CT0). Then it moves to a final “drum complete” state. The
drum outputs remain in the pattern defined for the last step. Having finished a drum
cycle, the Start and Jog inputs have no effect at this point.
The drum leaves the “drum complete” state when the Reset input becomes active (or
on a program-to–run mode transition). It resets the drum complete bit (such as CT0),
and then goes directly to the appropriate step number defined as the preset step.

Are transition
conditions met?

� � � � � � � � � � � � � � � �Last step Outputs:

� � � � � � � � � � � � � � � �Complete Outputs:

No

Yes

Go to Preset Step

Set
CT0 = 1

Reset Input
Active?

No

Yes

Reset
CT0 = 0

(Timer and/or
Event criteria)

Set Drum Complete bit

Reset Drum Complete bit

Last Step
Completion

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–8
Drum Instruction Programming

Overview of Drum Operation

The drum instruction utilizes various inputs and outputs in addition to the drum
pattern itself. Refer to the figure below.

Reset

Preset Step

Jog

Timebase

Counts/Step

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Step
Control

Step
Pointer

Drum

DRUM INSTRUCTION
Block Diagram

Inputs Outputs

Final Drum
Outputs

CT0 Counts in step V1000 xxxx

CT1 Timer Value V1001 xxxx

CT2 Preset Step V1002 xxxx

CT3 Current Step V1003 xxxx

Counter #

Pattern

Counter Assignments

Events

Realtime
Inputs

 (from ladder)

Programming
Selections

Start

The drum instruction accepts several inputs for step control, the main control of the
drum. The inputs and their functions are:

� Start – The Start input is effective only when Reset is off. When Start is
on, the drum timer runs if it is in a timed transition, and the drum looks
for the input event during event transitions. When Start is off, the drum
freezes in its current state (Reset must remain off), and the drum
outputs maintain their current on/off pattern.

� Jog – The jog input is only effective when Reset is off (Start may be
either on or off). The jog input increments the drum to the next step on
each off-to-on transition (only EDRUM supports the jog input).

� Reset – The Reset input has priority over the Start input. When Reset is
on, the drum moves to its preset step. When Reset is off, then the Start
input operates normally.

� Preset Step – A step number from 1 to 16 that you define (typically is
step 1). The drum moves to this step whenever Reset is on, and
whenever the CPU first enters run mode.

Drum Instruction
Block Diagram

D
rum

 Instruction
P

rogram
m

ing
6–9

Drum Instruction Programming

� Counts/Step – The number of timer counts the drum spends in each
step. Each step has its own counts parameter. However, programming
the counts/step is optional.

� Timer Value – the current value of the counts/step timer.
� Counter # – The counter number specifies the first of four consecutive

counters which the drum uses for step control. You can monitor these to
determine the drum’s progress through its control cycle. The DL05 has
128 counters (CT0 – CT177 in octal).

� Events – Either an X, Y, C, S, T, or CT type discrete point serves as
step transition inputs. Each step has its own event. However,
programming the event is optional.

WARNING: The outputs of a drum are enabled any time the CPU is in Run Mode.
The Start Input does not have to be on, and the Reset input does not disable the
outputs. Upon entering Run Mode, drum outputs automatically turn on or off
according to the pattern of the current step of the drum. This initial step number
depends on the counter memory configuration: non-retentive versus retentive.

The choice of the starting step on powerup and program-to-run mode transitions are
important to consider for your application. Please refer to the following chart. If the
counter memory is configured as non-retentive, the drum is initialized the same way
on every powerup or program-to-run mode transition. However, if the counter
memory is configured to be retentive, the drum will stay in its previous state.

Counter Num-
ber

Function Initialization on Powerup
ber

Non-Retentive Case Retentive Case

CT(n) Current Step
Count

Initialize = 0 Use Previous (no
change)

CT(n + 1) Counter Timer
Value

Initialize = 0 Use Previous (no
change)

CT(n + 2) Preset Step Initialize = Preset Step # Use Previous (no
change)

CT(n + 3) Current Step # Initialize = Preset Step # Use Previous (no
change)

Applications with relatively fast drum cycle times typically will need to be reset on
powerup, using the non-retentive option. Applications with relatively long drum cycle
times may need to resume at the previous point where operations stopped, using the
retentive case. The default option is the retentive case. This means that if you
initialize scratchpad V-memory, the memory will be retentive.

Powerup State of
Drum Registers

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–10
Drum Instruction Programming

Drum Control Techniques

Now we are ready to put together the
concepts on the previous pages and
demonstrate general control of the drum
instruction box. The drawing to the right
shows a simplified generic drum
instruction. Inputs from ladder logic
control the Start, Jog, and Reset Inputs
(only the EDRUM instruction supports the
Jog Input). The first counter bit of the drum
(CT0, for example) indicates the drum
cycle is done.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Outputs

Steps

Setup
Info.

X0

X1

Start

Jog

X2 Reset

The timing diagram below shows an arbitrary timer drum input sequence and how
the drum responds. As the CPU enters Run mode it initializes the step number to the
preset step number (typically it is Step 1). When the Start input turns on the drum
begins running, waiting for an event and/or running the timer (depends on the setup).
After the drum enters Step 2, Reset turns On while Start is still On. Since Reset has
priority over Start, the drum goes to the preset step (Step 1). Note that the drum is
held in the preset step during Reset, and that step does not run (respond to events or
run the timer) until Reset turns off.
After the drum has entered step 3, the Start input goes off momentarily, halting the
drum’s timer until Start turns on again.

Start 0
1

Jog 0
1

Step #

Drum
Complete (CT0) 0

1

Inputs

1 1 2 1 1 2 3 3 4 ... 15 16 16 16 1 1

Drum Status

Start
drum

Reset
drum

Hold
drum

Resume
drum

Drum
Complete

Reset
drum

0
1

Outputs (x 16)

Reset 0
1

When the drum completes the last step (Step 16 in this example), the Drum
Complete bit (CT0) turns on, and the step number remains at 16. When the Reset
input turns on, it turns off the Drum Complete bit (CT0), and forces the drum to enter
the preset step.

NOTE: The timing diagram shows all steps using equal time durations. Step times
can vary greatly, depending on the counts/step programmed.

Drum
Control Inputs

D
rum

 Instruction
P

rogram
m

ing
6–11

Drum Instruction Programming

In the figure below, we focus on how the Jog input works on event drums. To the left
of the diagram, note that the off-to-on transitions of the Jog input increments the
step. Start may be either on or off (however, Reset must be off). Two jogs takes the
drum to step three. Next, the Start input turns on, and the drum begins running
normally. During step 6 another Jog input signal occurs. This increments the drum to
step 7, setting the timer to 0. The drum begins running immediately in step 7,
because Start is already on. The drum advances to step 8 normally.
As the drum enters step 14, the Start input turns off. Two more Jog signals moves the
drum to step 16. However, note that a third Jog signal is required to move the drum
through step 16 to “drum complete”. Finally, a Reset input signal arrives which forces
the drum into the preset step and turns off the drum complete bit.

Start 0
1

Reset 0
1

Step #

Drum
Complete (CT0) 0

1

Inputs

1 2 3 3 3 4 5 6,7 8 ... 14 15 16 16 16 1

Drum Status

Jog
drum

Reset
drum

Jog
drum

Drum
Complete

0
1

Outputs (x 16)

Jog 0
1

Jog
drum

Applications often require drums that
automatically start over once they
complete a cycle. This is easily
accomplished, using the drum complete
bit. In the figure to the right, the drum
instruction setup is for CT0, so we logically
OR the drum complete bit (CT0) with the
Reset input. When the last step is done,
the drum turns on CT0 which resets itself
to the preset step, also resetting CT0.
Contact X2 still works as a manual reset.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Outputs

Steps

Setup
Info.

X0

X2

Start

Reset

CT0

X1 Start

The outputs of a drum are enabled any time the CPU is in run mode. On
program-to-run mode transitions, the drum goes to the preset step, and the outputs
energize according to the pattern of that step. If your application requires all outputs
to be off at powerup, make the preset step in the drum a “reset step”, with all outputs
off.
Each event-based transition accepts only one contact reference for the event.
However, this does not limit events to just one contact. Just use a control relay
contact such as C0 for the step transition event. Elsewhere in ladder logic, you may
use C0 as an output coil, making it dependent on many other “events” (contacts).

Self-Resetting
Drum

Initializing Drum
Outputs

Using Complex
Event Step
Transitions

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–12
Drum Instruction Programming

Drum Instruction

The DL05 drum instructions may be programmed using DirectSOFT or for the
EDRUM instruction only you can use a handheld programmer (firmware version
v1.8 or later. This section covers entry using DirectSOFT for all instructions plus the
handheld mnemonics for the EDRUM instruction.
The Timed Drum with Discrete Outputs is the most basic of the DL05’s drum
instructions. It operates according to the principles covered on the previous pages.
Below is the instruction in chart form as displayed by DirectSOFT.

 1 Kdddd

DRUM CT aaa

Step Preset K bb

0.01 sec/Count K cccc

Step # Counts

 2 Kdddd
 3 Kdddd
 4 Kdddd
 5 Kdddd
 6 Kdddd
 7 Kdddd
 8 Kdddd
 9 Kdddd
10 Kdddd
11 Kdddd
12 Kdddd
13 Kdddd
14 Kdddd
15 Kdddd
16 Kdddd

Start

Reset

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff)
(Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff) (Fffff)

Discrete Output AssignmentCounter Number Step Preset
Timebase

Control
Inputs

Step Number

Counts per Step

15 0

Output Pattern
�= Off, �= On

The Timed Drum features 16 steps and 16 outputs. Step transitions occur only on a
timed basis, specified in counts per step. Unused steps must be programmed with
“counts per step” = 0 (this is the default entry). The discrete output points may be
individually assigned as X, Y, or C types, or may be left unused. The output pattern
may be edited graphically with DirectSOFT.
Whenever the Start input is energized, the drum’s timer is enabled. It stops when the
last step is complete, or when the Reset input is energized. The drum enters the
preset step chosen upon a CPU program-to-run mode transition, and whenever the
Reset input is energized.

Drum Parameters Field Data Types Ranges

Counter Number aaa – 0 – 174

Preset Step bb K 1 – 16

Timer base cccc K 0 – 99.99 seconds

Counts per step dddd K 0 – 9999

Discrete Outputs Fffff X, Y, C see page 4–28

Timed Drum with
Discrete Outputs
(DRUM)

D
rum

 Instruction
P

rogram
m

ing
6–13

Drum Instruction Programming

Drum instructions use four counters in the CPU. The ladder program can read the
counter values for the drum’s status. The ladder program may write a new preset
step number to CT(n+2) at any time. However, the other counters are for monitoring
purposes only.

Counter Number Ranges of (n) Function Counter Bit Function

CT(n) 0 – 174 Counts in step CTn = Drum Complete

CT(n+1) 1 – 175 Timer value CT(n+1) = (not used)

CT(n+2) 2 –176 Preset Step CT(n+2) = (not used)

CT(n+3) 3 –177 Current Step CT(n+3) = (not used)

The following ladder program shows the DRUM instruction in a typical ladder
program, as shown by DirectSOFT. Steps 1 through 10 are used, and twelve of the
sixteen output points are used. The preset step is step 1. The timebase runs at (K10
x 0.01) = 0.1 second per count. Therefore, the duration of step 1 is (25 x 0.1) = 2.5
seconds. In the last rung, the Drum Complete bit (CT0) turns on output Y0 upon
completion of the last step (step 10). A drum reset also resets CT0.

 1 K0025

DRUM CT 0

Step Preset: K 1

0.01 sec/Count: K 10

Step # Counts

 2 K0020
 3 K1500
 4 K0045
 5 K0180
 6 K0923
 7 K1200
 8 K8643
 9 K1200
10 K4000
11
12
13
14
15
16

Start

Reset

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

() () (C30) (Y20) (C2) (Y6) (Y42) (C10)
() () (C14) (Y10) (C4) (Y5) (Y13) (C7)

DirectSOFT Display

X0

X1

Drum CompleteCT0 Y0

OUT

15 0

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–14
Drum Instruction Programming

The Event Drum (EDRUM) features time-based and event-based step transitions. It
operates according to the general principles of drum operation covered in the
beginning of this chapter. Below is the instruction as displayed by DirectSOFT.

 1 Kdddd

EDRUM CT aa

Step Preset: K bb

0.01 sec/Count: K cccc

 2 Kdddd
 3 Kdddd
 4 Kdddd
 5 Kdddd
 6 Kdddd
 7 Kdddd
 8 Kdddd
 9 Kdddd
10 Kdddd
11 Kdddd
12 Kdddd
13 Kdddd
14 Kdddd
15 Kdddd
16 Kdddd

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(Ffff) (Ffff) (Ffff) (Ffff) (Ffff) (Ffff) (Ffff) (Ffff)
(Ffff) (Ffff) (Ffff) (Ffff) (Ffff) (Ffff) (Ffff) (Ffff)

Discrete Output Assignment

Counter Number
Step Preset
Timebase

Control
Inputs

Step Number

Counts per Step

Output Pattern
�= Off, �= On

Start

Reset

Jog

Step # Counts Event

Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee
Eeeee

Event per step

15 0

The Event Drum features 16 steps and 16 discrete outputs. Step transitions occur on
timed and/or event basis. The jog input also advances the step on each off-to-on
transition. Time is specified in counts per step, and events are specified as discrete
contacts. Unused steps and events must be left blank. The discrete output points
may be individually assigned.
Whenever the Start input is energized, the drum’s timer is enabled. As long as the
event is true for the current step, the timer runs during that step. When the step count
equals the counts per step, the drum transitions to the next step. This process stops
when the last step is complete, or when the Reset input is energized. The drum
enters the preset step chosen upon a CPU program-to-run mode transition, and
whenever the Reset input is energized.

Drum Parameters Field Data Types Ranges

Counter Number aa – 0 – 174

Preset Step bb K 1 – 16

Timer base cccc K 0 – 99.99 seconds

Counts per step dddd K 0 – 9999

Event eeee X, Y, C, S, T, CT see page 4–28

Discrete Outputs ffff X, Y, C see page 4–28

Event Drum
(EDRUM)

D
rum

 Instruction
P

rogram
m

ing
6–15

Drum Instruction Programming

Drum instructions use four counters in the CPU. The ladder program can read the
counter values for the drum’s status. The ladder program may write a new preset
step number to CT(n+2) at any time. However, the other counters are for monitoring
purposes only.

Counter Number Ranges of (n) Function Counter Bit Function

CT(n) 0 – 174 Counts in step CTn = Drum Complete

C(n+1) 1 – 175 Timer value CT(n+1) = (not used)

CT(n+2) 2 –176 Preset Step CT(n+2) = (not used)

CT(n+3) 3 –177 Current Step CT(n+3) = (not used)

The following ladder program shows the EDRUM instruction in a typical ladder
program, as shown by DirectSOFT. Steps 1 through 11 are used, and all sixteen
output points are used. The preset step is step 1. The timebase runs at (K10 x 0.01) =
0.1 second per count. Therefore, the duration of step 1 is (1 x 0.1) = 0.1 second. Note
that step 1 is time-based only (event is left blank). And, the output pattern for step 1
programs all outputs off, which is a typically desirable powerup condition. In the last
rung, the Drum Complete bit (CT4) turns on output Y0 upon completion of the last
step (step 11). A drum reset also resets CT4.

 1 K0001

EDRUM CT 4

Step Preset K 1

0.01 sec/Count: K 10

 2 K0020
 3 K0150
 4 K0048
 5 K0180
 6 K0923
 7 K0120
 8 K0864
 9 K1200
10 K0400
11 K0000
12
13
14
15
16

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

(Y3) (Y7) (C30) (Y2) (C2) (Y6) (Y4) (C10)
(C34) (Y6) (C14) (Y0) (C4) (Y5) (Y1) (C7)

Step # Counts Event

Y4
X1
X2
C0
C1
X0
X5
X3
Y7
C20

Start

Jog

DirectSOFT Display

X0

X1

Drum CompleteCT4 Y0

OUT

ResetX2

15 0

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–16
Drum Instruction Programming

The EDRUM instruction may be programmed using either DirectSOFT or a
handheld programmer. This section covers entry via the handheld programmer
(Refer to the DirectSOFT manual for drum instruction entry using that tool).

First, enter Store instructions for the
ladder rungs controlling the drum’s ladder
inputs. In the example to the right, the
timer drum’s Start, Jog, and Reset inputs
are controlled by X0, X1 and X2
respectively. The required keystrokes are
listed beside the mnemonic.
These keystrokes precede the EDRUM
instruction mnemonic. Note that the
ladder rungs for Start, Jog, and Reset
inputs are not limited to being
single–contact rungs.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Outputs

Steps

Setup
Info.

X0

X1
Mask

Start

Jog

Handheld Programmer Keystrokes

Store X0

(Repeat for Store X1 and Store X2)

X2 Reset

STR
$

0
A ENT

After the Store instructions, enter the EDRUM (using Counter CT0) as shown:
Handheld Programmer Keystrokes

EDRUM CNT0 SHFT
4

E
3

D
ORN

R
ISG

U
ORST
M

0
A ENT

After entering the EDRUM mnemonic as above, the handheld programmer creates
an input form for all the drum parameters. The input form consists of approximately
fifty or more default mnemonic entries containing DEF (define) statements. The
default mnemonics are already “input” for you, so they appear automatically. Use the
NXT and PREV keys to move forward and backward through the form. Only the
editing of default values is required, thus eliminating many keystrokes. The entries
required for the basic timer drum are in the chart below.

Drum Parameters Multiple
Entries

Mnemonic / Entry Default
Mnemonic

Valid Data
Types

Ranges

Start Input – STR (plus input rung) – – –

Jog Input – STR (plus input rung) – – –

Reset Input – STR (plus input rung) – –

Drum Mnemonic – DRUM CNT aa – CT 0 – 174

Preset Step 1 bb DEF K0000 K 1 – 16

Timer base 1 cccc DEF K0000 K 1 – 9999

Output points 16 ffff DEF 0000 X, Y, C * see page
4–28

Counts per step 16 dddd DEF K0000 K 0 – 9999

Events 16 dddd DEF K0000 X, Y, C, S,
T, CT

see page
4–28

Output pattern 16 gggg DEF K0000 K 0 – FFFF

NOTE: Default entries for output points and events are “DEF 0000”, which means
they are unassigned. If you need to go back and change an assigned output as
unused again, enter “K0000”. The entry will again show as “DEF 0000”.

Handheld
Programmer
Drum Mnemonics

D
rum

 Instruction
P

rogram
m

ing
6–17

Drum Instruction Programming

Using the DRUM entry chart (two pages before), we show the method of entry for the
basic time/event drum instruction. First, we convert the output pattern for each step
to the equivalent hex number, as shown in the following example.

� � � � � � � � � � � � � � � �Step 1 Outputs:

015
0 9 1 A

 – converts to:

The following diagram shows the method for entering the previous EDRUM example
on the HHP. The default entries of the form are in parenthesis. After the drum
instruction entry (on the fourth row), the remaining keystrokes over-write the
numeric portion of each default DEF statement. NOTE: Drum editing requires
Handheld Programmer firmware version 1.7 or later.

Handheld Programmer Keystrokes

Start

(DEF K0001)

Reset

Drum Inst.

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF K0000)

Preset Step

Time Base

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

Outputs

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

Counts/
Step

skip over
unused steps

NOTE: You may use the NXT and PREV keys
to skip past entries for unused outputs or steps.

(Continued on next page)

Jog

STR
$

0
A

STR
$

1
B

STR
$

2
C

SHFT
4

E
3

D
ORN

R
ISG

U
ORST
M

0
A ENT

4
E

6
G

NEXT

NEXT

ENT

ENT

ENT

SHFT
2

C
7

H NEXT

SHFT
2

C
0

A NEXT
1

B

SHFT
MLS

Y
1

B NEXT

SHFT
MLS

Y NEXT
4

E

SHFT
MLS

Y
5

F NEXT

SHFT
MLS

Y
6

G NEXT

SHFT
2

C
4

E NEXT

SHFT
2

C
2

C NEXT

SHFT
MLS

Y NEXT
0

A

SHFT
MLS

Y NEXT
2

C

SHFT
2

C
1

B
4

E NEXT

SHFT
2

C NEXT
3

D
0

A

SHFT
MLS

Y NEXT
6

G

SHFT
MLS

Y NEXT
7

H

SHFT
2

C
3

D
4

E NEXT

SHFT
MLS

Y
1

B NEXT

1

16

1

16

5
F NEXT

2
C

0
A NEXT

1
B

5
F

0
A NEXT

4
E

5
F NEXT

1
B

8
I

0
A NEXT

9
J

2
C

3
D NEXT

1
B

0
A NEXT

2
C

8
I

6
G

4
E NEXT

1
B

2
C

0
A

0
A NEXT

4
E

0
A

0
A NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

Handheld Programmer Keystrokes cont’d

D
ru

m
 In

st
ru

ct
io

n
P

ro
gr

am
m

in
g

6–18
Drum Instruction Programming

Handheld Programmer Keystrokes cont’d

Output
Pattern

unused steps

NOTE: You may use the NXT and PREV keys
to skip past entries for unused outputs or steps.

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

skip over unused event
(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

(DEF K0000)

step 1 pattern = 0000

Last rung

Events

6
G

1

16

NEXT

SHFT
MLS

Y
4

E NEXT

SHFT
SET

X
1

B NEXT

SHFT
SET

X
2

C NEXT

SHFT
2

C
0

A NEXT

SHFT
2

C NEXT
1

B

SHFT
SET

X NEXT
0

A

SHFT
SET

X NEXT
5

F

SHFT
SET

X
3

D NEXT

SHFT
MLS

Y
7

H NEXT

SHFT
2

C
2

C
0

A NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

9
J

8
I

1
B NEXT

2
C

2
C

8
I

9
J

4
E NEXT

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

(DEF 0000)

4
E

4
E

7
H NEXT

5
F

1
B

6
G

9
J NEXT

9
J

3
D

4
E

3
D NEXT

4
E

4
E

8
I

6
G NEXT

9
J

4
E

5
F NEXT

9
J

3
D

8
I SHFT

0
A NEXT

5
F

8
I

6
G

4
E NEXT

8
I

4
E

4
E

7
H NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

1

16

Handheld Programmer Keystrokes cont’d

STR
$

CNT
GY

0
A NEXT

SHFT
MLS

Y
0

A NEXT

��
RLLPLUS

Stage Programming

����������	
���������

�������������������	������	�����

����	���������	����	����	����������	�	��

��������������	������
�����������������	����	��������

����	������	����	�
 �!����� ��"�#"����	�
������ �

��$������
�����%������	���	������	�

����	������	����	�
 �!�&�'		�������"
���

����	������	����������������	�����

��(�������)��	��*������������

��+���������	���&������	,������	������	��

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–2

RLLPLUS Stage Programming

Introduction to Stage Programming

Stage Programming provides a way to organize and program complex applications
with relative ease, when compared to purely relay ladder logic (RLL) solutions.
Stage programming does not replace or negate the use of traditional boolean ladder
programming. This is why Stage Programming is also called RLLPLUS. You won’t
have to discard any training or experience you already have. Stage programming
simply allows you to divide and organize a RLL program into groups of ladder
instructions called stages. This allows quicker and more intuitive ladder program
development than traditional RLL alone provides.
Many PLC programmers in the industry
have become comfortable using RLL for
every PLC program they write... but often
remain skeptical or even fearful of learning
new techniques such as stage
programming. While RLL is great at
solving boolean logic relationships, it has
disadvantages as well:
� Large programs can become almost

unmanageable, because of a lack of
structure.

� In RLL, latches must be tediously
created from self-latching relays.

� When a process gets stuck, it is
difficult to find the rung where the
error occurred.

� Programs become difficult to modify
later, because they do not intuitively
resemble the application problem
they are solving.

STAGE!

Y2X3

OUT

X0

RST
C0

X4

SET
Y0C1

It’s easy to see that these inefficiencies consume a lot of additional time, and time is
money. Stage programming overcomes these obstacles! We believe a few
moments of studying the stage concept is one of the greatest investments in
programming speed and efficiency a PLC programmer can make!
So, we encourage you to study stage programming and add it to your “toolbox” of
programming techniques. This chapter is designed as a self-paced tutorial on stage
programming. For best results:

� Start at the beginning and do not skip over any sections.
� Study each stage programming concept by working through each

example. The examples build progressively on each other.
� Read the Stage Questions and Answers at the end of the chapter for a

quick review.

Overcoming
“Stage Fright”

R
LL P

LU
S

S
tage P

rogram
m

ing
7–3

RLLPLUS Stage Programming

Learning to Draw State Transition Diagrams

Those familiar with ladder program
execution know that the CPU must scan
the ladder program repeatedly, over and
over. Its three basic steps are:
1. Read the inputs
2. Execute the ladder program
3. Write the outputs
The benefit is that a change at the inputs
can affect the outputs in just a few
milliseconds.

�	���
���	�

��
��� "��
���

-*�(�	� ������� %���

������	�

������� %���

)�������*

.*�(�	�

/*�(�	�

Most manufacturing processes consist of a series of activities or conditions , each
lasting for several seconds. minutes, or even hours. We might call these “process
states”, which are either active or inactive at any particular time. A challenge for RLL
programs is that a particular input event may last for just a brief instant. We typically
create latching relays in RLL to preserve the input event in order to maintain a
process state for the required duration.
We can organize and divide ladder logic into sections called “stages”, representing
process states. But before we describe stages in detail, we will reveal the secret to
understanding stage programming: state transition diagrams.
Sometimes we need to forget about the scan nature of PLCs, and focus our thinking
toward the states of the process we need to identify. Clear thinking and concise
analysis of an application gives us the best chance at writing efficient, bug-free
programs. State diagrams are just a tool to help us draw a picture of our process!
You’ll discover that if we can get the picture right, our program will also be right!

Consider the simple process shown to the
right, which controls an industrial motor.
We will use a green momentary SPST
pushbutton to turn the motor on, and a red
one to turn it off. The machine operator will
press the appropriate pushbutton for just a
second or so. The two states of our
process are ON and OFF.
The next step is to draw a state transition
diagram, as shown to the right. It shows
the two states OFF and ON, with two
transition lines in-between. When the
event X0 is true, we transition from OFF to
ON. When X1 is true, we transition from
ON to OFF.

�	���
���	�

��
��� "��
���

"�

"��

Motor01

0-

21

OFF ON

01

0-

"��
����3�	����!�21�4�"5

��	��

�	�����������������

If you’re following along, you are very close to grasping the concept and the
problem-solving power of state transition diagrams. The output of our controller is
Y0, which is true any time we are in the ON state. In a boolean sense, Y0=ON state.
Next, we will implement the state diagram first as RLL, then as a stage program. This
will help you see the relationship between the two methods in problem solving.

Introduction to
Process States

The Need for State
Diagrams

A 2–State Process

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–4

RLLPLUS Stage Programming

The state transition diagram to the right is
a picture of the solution we need to create.
The beauty of it is this: it expresses the
problem independently of the
programming language we may use to
realize it. In other words, by drawing the
diagram we have already solved the
control problem!

OFF ON

01

0-

"��
����3�	����!�21�4�"5

First, we’ll translate the state diagram to traditional RLL. Then we’ll show how easy it
is to translate the diagram into a stage programming solution.

The RLL solution is shown to the right. It
consists of a self-latching control relay,
C0. When the On pushbutton (X0) is
pressed, output coil C0 turns on and the
C0 contact on the second row latches
itself on. So, X0 sets the latch C0 on, and
it remains on after the X0 contact opens.
The motor output Y0 also has power flow,
so the motor is now on.
When the Off pushbutton (X1) is pressed,
it opens the normally-closed X1 contact,
which resets the latch. Motor output Y0
turns off when the latch coil C0 goes off.

X1X0

OUT
C0

OUT
Y0C0

Set Reset Latch

OutputLatch

The stage program solution is shown to
the right. The two inline stage boxes S0
and S1 correspond to the two states OFF
and ON. The ladder rung(s) below each
stage box belong to each respective
stage. This means that the PLC only has
to scan those rungs when the
corresponding stage is active!
For now, let’s assume we begin in the OFF
State, so stage S0 is active. When the On
pushbutton (X0) is pressed, a stage
transition occurs. The JMP S1 instruction
executes, which simply turns off the Stage
bit S0 and turns on Stage bit S1. So on the
next PLC scan, the CPU will not execute
Stage S0, but will execute stage S1!
In the On State (Stage S1), we want the
motor to always be on. The special relay
contact SP1 is defined as always on, so Y0
turns the motor on.

S1X0

JMP

SG
S0

S0X1

JMP

SG
S1

OUT
Y0

OFF State

ON State

Output

Transition

Transition

SP1 & �	6����

When the Off pushbutton (X1) is pressed, a transition back to the Off State occurs.
The JMP S0 instruction executes, which simply turns off the Stage bit S1 and turns
on Stage bit S0. On the next PLC scan, the CPU will not execute Stage S1, so the
motor output Y0 will turn off. The Off state (Stage 0) will be ready for the next cycle.

RLL Equivalent

Stage Equivalent

R
LL P

LU
S

S
tage P

rogram
m

ing
7–5

RLLPLUS Stage Programming

Right now, you may be thinking “I don’t see the big advantage to Stage
Programming... in fact, the stage program is longer than the plain RLL program”.
Well, now is the time to exercise a bit of faith. As control problems grow in complexity,
stage programming quickly out-performs RLL in simplicity, program size, etc.
For example, consider the diagram below.
Notice how easy it is to correlate the OFF
and ON states of the state transition
diagram below to the stage program at the
right. Now, we challenge anyone to easily
identify the same states in the RLL
program on the previous page!

S1X0

JMP

SG
S0

S0X1

JMP

SG
S1

OUT
Y0

OFF State

ON State

SP1

OFF ON

01

0-

At powerup and Program-to-Run Mode
transitions, the PLC always begins with all
normal stages (SG) off. So, the stage
programs shown so far have actually had
no way to get started (because rungs are
not scanned unless their stage is active).
Assume that we want to always begin in
the Off state (motor off), which is how the
RLL program works. The Initial Stage
(ISG) is defined to be active at powerup. In
the modified program to the right, we have
changed stage S0 to the ISG type. This
ensures the PLC will scan contact X0 after
powerup, because Stage S0 is active.
After powerup, an Initial Stage (ISG)
works just like any other stage!
We can change both programs so that the
motor is ON at powerup. In the RLL below,
we must add a first scan relay SP0,
latching C0 on. In the stage example to the
right, we simply make Stage S1 an initial
stage (ISG) instead of S0.

S1X0

JMP

ISG
S0

S0X1

JMP

SG
S1

OUT
Y0

Initial Stage

SP1

S1X0

JMP

SG
S0

S0X1

JMP

ISG
S1

OUT
Y0

Initial Stage

SP1

X1X0

OUT
C0

OUT
Y0C0

First Scan
SP0

Powerup in OFF State

Powerup in ON State

Powerup in ON State

Let’s Compare

Initial Stages

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–6

RLLPLUS Stage Programming

We can mark our desired powerup state
as shown to the right, which helps us
remember to use the appropriate Initial
Stages when creating a stage program. It
is permissible to have as many initial
stages as the process requires.

OFF ON

01

0-

�����

You may recall that a stage is just a section of ladder program which is either active or
inactive at a given moment. All stage bits (S0 to S377) reside in the PLC’s image
register as individual status bits. Each stage bit is either a boolean 0 or 1 at any time.
Program execution always reads ladder rungs from top to bottom, and from left to
right. The drawing below shows the effect of stage bit status. The ladder rungs below
the stage instruction continuing until the next stage instruction or the end of program
belong to stage 0. Its equivalent operation is shown on the right. When S0 is true, the
two rungs have power flow.

� If Stage bit S0 = 0, its ladder rungs are not scanned (executed).
� If Stage bit S0 = 1, its ladder rungs are scanned (executed).

SG
S0

Actual Program Appearance Functionally Equivalent Ladder

S0

)��� �����	 �����������	��*

The inline stage boxes on the left power
rail divide the ladder program rungs into
stages. Some stage rules are:
� Execution – Only logic in active

stages are executed on any scan.
� Transitions – Stage transition

instructions take effect on the next
occurrence of the stages involved.

� Octal numbering – Stages are
numbered in octal, like I/O points,
etc. So “S8” is not valid.

� Total Stages – The DL05 offers up
to 256 stages (S0 to S377 in octal).

� No duplicates – Each stage number
is unique and can be used just once.

� Any order – You can skip numbers
and sequence the stage numbers in
any order.

� Last Stage – the last stage in the
ladder program includes all rungs
from its stage box until the end coil.

SG
S0

SG
S1

SG
S2

END

What Stage Bits Do

Stage Instruction
Characteristics

R
LL P

LU
S

S
tage P

rogram
m

ing
7–7

RLLPLUS Stage Programming

Using the Stage Jump Instruction for State Transitions

The Stage JMP instruction we have used deactivates the stage in which the
instruction occurs, while activating the stage in the JMP instruction. Refer to the
state transition shown below. When contact X0 energizes, the state transition from
S0 to S1 occurs. The two stage examples shown below are equivalent. So, the
Stage Jump instruction is equal to a Stage Reset of the current stage, plus a Stage
Set instruction for the stage to which we want to transition.

S1X0

JMP

SG
S0

Equivalent S0X0

RST

SG
S0

S1

SET

S0 S1

01

Please Read Carefully – The jump instruction is easily misunderstood. The “jump”
does not occur immediately like a GOTO or GOSUB program control instruction
when executed. Here’s how it works:

� The jump instruction resets the stage bit of the stage in which it occurs.
All rungs in the stage still finish executing during the current scan, even
if there are other rungs in the stage below the jump instruction!

� The reset will be in effect on the following scan, so the stage that
executed the jump instruction previously will be inactive and bypassed.

� The stage bit of the stage named in the Jump instruction will be set
immediately, so the stage will be executed on its next occurrence. In the
left program shown below, stage S1 executes during the same scan as
the JMP S1 occurs in S0. In the example on the right, Stage S1
executes on the next scan after the JMP S1 executes, because stage
S1 is located above stage S0.

S1X0

JMP

SG
S0

Y0S1

OUT

SG
S1

S1X0

JMP

SG
S0

Y0S1

OUT

SG
S1

Executes on same
scan as Jmp

Executes on next
scan after Jmp

Note: Assume we start with Stage 0 active and stage 1 inactive for both examples.

Stage Jump, Set,
and Reset
Instructions

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–8

RLLPLUS Stage Programming

Stage Program Example: Toggle On/Off Lamp Controller

In the process shown to the right, we use
an ordinary momentary pushbutton to
control a light bulb. The ladder program
will latch the switch input, so that we will
push and release to turn on the light, push
and release again to turn it off (sometimes
called toggle function). Sure, we could just
buy a mechanical switch with the alternate
on/off action built in... However, this
example is educational and also fun!
Next we draw the state transition diagram.
A typical first approach is to use X0 for
both transitions (like the example shown
to the right). However, this is incorrect
(please keep reading).

�	���
���	�

��
��� "��
���

���� �
01 21

OFF ON

01

01

"��
����3�	����!�21�4�"5

�����

Note that this example differs from the motor example, because now we have just
one pushbutton. When we press the pushbutton, both transition conditions are met.
We would just transition around the state diagram at top speed. If implemented in
Stage, this solution would flash the light on or off each scan (obviously undesirable)!
The solution is to make the the push and the release of the pushbutton separate
events. Refer to the new state transition diagram below. At powerup we enter the
OFF state. When switch X0 is pressed, we enter the Press-ON state. When it is
released, we enter the ON state. Note that X0 with the bar above it denotes X0 NOT.

When in the ON state, another push and
release cycle similarly takes us back to the
OFF state. Now we have two unique states
(OFF and ON) used when the pushbutton is
released, which is what was required to solve
the control problem.
The equivalent stage program is shown to the
right. The desired powerup state is OFF, so
we make S0 an initial stage (ISG). In the ON
state, we add special relay contact SP1,
which is always on.
Note that even as our programs grow more
complex, it is still easy to correlate the state
transition diagram with the stage program!

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y0

OFF State

SP1

S3X0

JMP

SG
S2

SG
S3

X0

S0

JMP

X0

Push–On State

ON State

Push–Off State

01 Push–ON

ON

Push–OFF

OFF

�����
 01

0101

"��
����3�	����!�21�4�"5

Output

A 4–State Process

R
LL P

LU
S

S
tage P

rogram
m

ing
7–9

RLLPLUS Stage Programming

Four Steps to Writing a Stage Program

By now, you’ve probably noticed that we follow the same steps to solve each
example problem. The steps will probably come to you automatically if you work
through all the examples in this chapter. It’s helpful to have a checklist to guide us
through the problem solving. The following steps summarize the stage program
design procedure:

1. Write a Word Description of the application.

Describe all functions of the process in your own words. Start by listing what
happens first, then next, etc. If you find there are too many things happening at once,
try dividing the problem into more than one process. Remember, you can still have
the processes communicate with each other to coordinate their overall activity.

2. Draw the Block Diagram.

Inputs represent all the information the process needs for decisions, and outputs
connect to all devices controlled by the process.

� Make lists of inputs and outputs for the process.
� Assign I/O point numbers (X and Y) to physical inputs and outputs.

3. Draw the State Transition Diagram.

The state transition diagram describes the central function of the block diagram,
reading inputs and generating outputs.

� Identify and name the states of the process.
� Identify the event(s) required for each transition between states.
� Ensure the process has a way to re-start itself, or is cyclical.
� Choose the powerup state for your process.
� Write the output equations.

4. Write the Stage Program.

Translate the state transition diagram into a stage program.
� Make each state a stage. Remember to number stages in octal. Up to

256 total stages are available in the DL05, numbered 0 to 377 in octal.
� Put transition logic inside the stage which originates each transition (the

stage each arrow points away from).
� Use an initial stage (ISG) for any states that must be active at powerup.
� Place the outputs or actions in the appropriate stages.

You’ll notice that Steps 1 through 3 just prepare us to write the stage program in Step
4. However, the program virtually writes itself because of the preparation
beforehand. Soon you’ll be able to start with a word description of an application and
create a stage program in one easy session!

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–10

RLLPLUS Stage Programming

Stage Program Example: A Garage Door Opener

In this next stage programming example
we’ll create a garage door opener
controller. Hopefully most readers are
familiar with this application, and we can
have fun besides!
The first step we must take is to describe
how the door opener works. We will start
by achieving the basic operation, waiting
to add extra features later. Stage
programs are very easy to modify.
Our garage door controller has a motor
which raises or lowers the door on
command. The garage owner pushes and
releases a momentary pushbutton once to
raise the door. After the door is up, another
push-release cycle will lower the door.

In order to identify the inputs and outputs
of the system, it’s sometimes helpful to
sketch its main components, as shown in
the door side view to the right. The door
has an up limit and a down limit switch.
Each limit switch closes only when the
door has reach the end of travel in the
corresponding direction. In the middle of
travel, neither limit switch is closed.
The motor has two command inputs: raise
and lower. When neither input is active,
the motor is stopped.
The door command is just a simple
pushbutton. Whether wall-mounted as
shown, or a radio-remote control, all door
control commands logical OR together as
one pair of switch contacts.

����� �����������

�
� �����������

7��� (���
����

���
����	��

The block diagram of the controller is
shown to the right. Input X0 is from the
pushbutton door control. Input X1
energizes when the door reaches the full
up position. Input X2 energizes when the
door reaches the full down position. When
the door is positioned between fully up or
down, both limit switches are open.
The controller has two outputs to drive the
motor. Y1 is the up (raise the door)
command, and Y2 is the down (lower the
door) command.

�	���
���	�

��
��� "��
���

���� �
01

2-

To motor:

(���

2.
����

�
� ����
0-

����� ����
0.

Garage Door
Opener Example

Draw the Block
Diagram

R
LL P

LU
S

S
tage P

rogram
m

ing
7–11

RLLPLUS Stage Programming

Now we are ready to draw the state transition diagram. Like the previous light bulb
controller example, this application also has just one switch for the command input.
Refer to the figure below.

� When the door is down (DOWN state), nothing happens until X0
energizes. Its push and release brings us to the RAISE state, where
output Y1 turns on and causes the motor to raise the door.

� We transition to the UP state when the up limit switch (X1) energizes,
and turns off the motor.

� Then nothing happens until another X0 press-release cycle occurs. That
takes us to the LOWER state, turning on output Y2 to command the
motor to lower the door. We transition back to the DOWN state when the
down limit switch (X2) energizes.

The equivalent stage program is shown to the
right. For now, we will assume the door is
down at powerup, so the desired powerup
state is DOWN. We make S0 an initial stage
(ISG). Stage S0 remains active until the door
control pushbutton activates. Then we
transition (JMP) to Push-UP stage, S1.
A push-release cycle of the pushbutton takes
us through stage S1 to the RAISE stage, S2.
We use the always-on contact SP1 to
energize the motor’s raise command, Y1.
When the door reaches the fully-raised
position, the up limit switch X1 activates. This
takes us to the UP Stage S3, where we wait
until another door control command occurs.
In the UP Stage S3, a push-release cycle of
the pushbutton will take us to the LOWER
Stage S5, where we activate Y2 to command
the motor to lower the door. This continues
until the door reaches the down limit switch,
X2. When X2 closes, we transition from Stage
S5 to the DOWN stage S0, where we began.
NOTE: The only special thing about an initial
stage (ISG) is that it is automatically active at
powerup. Afterwards, it is just like any other.

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y1

DOWN State

SP1

S3X1

JMP

SG
S2

SG
S3

X0

S4

JMP

X0

Push–UP State

RAISE State

UP State

01 Push–UP

UP

Push–DOWN

DOWN

01LOWER

RAISE
01

0-

01

0.

"��
����3�	�����! 2.�4��"%�(2-�4�(&���

S5

JMP

SG
S4

X0

Push–DOWN State

OUT
Y2SP1

S0X2

JMP

SG
S5 LOWER State

�����

Draw the State
Diagram

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–12

RLLPLUS Stage Programming

Next we will add a safety light feature to
the door opener system. It’s best to get the
main function working first as we have
done, then adding the secondary features.
The safety light is standard on many
commercially-available garage door
openers. It is shown to the right, mounted
on the motor housing. The light turns on
upon any door activity, remaining on for
approximately 3 minutes afterwards.
This part of the exercise will demonstrate
the use of parallel states in our state
diagram. Instead of using the JMP
instruction, we’ll use the set and reset
commands.

�	���6� ����

To control the light bulb, we add an output
to our controller block diagram, shown to
the right, Y3 is the light control output.
In the diagram below, we add an additional
state called “LIGHT”. Whenever the
garage owner presses the door control
switch and releases, the RAISE or
LOWER state is active and the LIGHT
state is simultaneously active. The line to
the Light state is dashed, because it is not
the primary path.

�	���
���	�

��
��� "��
���

���� �
01 2-

(���

2.
����

�
� ����
0-

����� ����
0. 2/

�����

We can think of the Light state as a parallel process to the raise and lower state. The
paths to the Light state are not a transition (Stage JMP), but a State Set command. In
the logic of the Light stage, we will place a three-minute timer. When it expires, timer
bit T0 turns on and resets the Light stage. The path out of the Light stage goes
nowhere, indicating the Light stage just becomes inactive, and the light goes out!

01 Push–UP

UP

Push–DOWN

DOWN

01LOWER

RAISE
01

0-

01

0.

"��
����3�	�����!
2.�4��"%�(
2-�4�(&���

LIGHT

2/�4���'8�

01

01

�1

Add Safety
Light Feature

Modify the
Block Diagram and
State Diagram

R
LL P

LU
S

S
tage P

rogram
m

ing
7–13

RLLPLUS Stage Programming

The finished modified program is shown to
the right. The shaded areas indicate the
program additions.
In the Push-UP stage S1, we add the Set
Stage Bit S6 instruction. When contact X0
opens, we transition from S1 and go to two
new active states: S2 and S6. In the
Push-DOWN state S4, we make the same
additions. So, any time someone presses
the door control pushbutton, the light turns
on.
Most new stage programmers would be
concerned about where to place the Light
Stage in the ladder, and how to number it.
The good news is that it doesn’t matter!
� Just choose an unused Stage

number, and use it for the new stage
and as the reference from other
stages.

� Placement in the program is not
critical, so we place it at the end.

You might think that each stage has to be
directly under the stage that transitions to
it. While it is good practice, it is not
required (that’s good, because our two
locations for the Set S6 instruction make
that impossible). Stage numbers and how
they are used determines the transition
paths.
In stage S6, we turn on the safety light by
energizing Y3. Special relay contact SP1
is always on. Timer T0 times at 0.1 second
per count. To achieve 3 minutes time
period, we calculate:

The timer has power flow whenever stage
S6 is active. The corresponding timer bit
T0 is set when the timer expires. So three
minutes later, T0=1 and the instruction
Reset S6 causes the stage to be inactive.
While Stage S6 is active and the light is on,
stage transitions in the primary path
continue normally and independently of
Stage 6. That is, the door can go up, down,
or whatever, but the light will be on for
precisely 3 minutes.

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y1

DOWN State

SP1

S3X1

JMP

SG
S2

SG
S3

X0

S4

JMP

X0

Push–UP State

RAISE State

UP State

S5

JMP

SG
S4

X0

Push–DOWN State

OUT
Y2SP1

S0X2

JMP

SG
S5 LOWER State

OUT
Y3SP1

S6T0

RST

SG
S6 LIGHT State

TMR
K1800

T0

S6

SET

S6

SET

/��������91����#���

1�-����#�����

:4-;11�������

:4

Using a Timer
Inside a Stage

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–14

RLLPLUS Stage Programming

Some garage door openers today will
detect an object under the door. This halts
further lowering of the door. Usually
implemented with a photocell
(“electric-eye”), a door in the process of
being lowered will halt and begin raising.
We will define our safety feature to work in
this way, adding the input from the
photocell to the block diagram as shown to
the right. X3 will be on if an object is in the
path of the door.
Next, we make a simple addition to the
state transition diagram, shown in shaded
areas in the figure below. Note the new
transition path at the top of the LOWER
state. If we are lowering the door and
detect an obstruction (X3), we then jump
to the Push-UP State. We do this instead
of jumping directly to the RAISE state, to
give the Lower output Y2 one scan to turn
off, before the Raise output Y1 energizes.

�	���
���	�

��
��� "��
���

���� �
01 2-

(���

2.
����

�
� ����
0-

����� ����
0. 2/

�����

",��������
0/

01 Push–UP

UP

Push–DOWN

DOWN

01LOWER

RAISE
01

0-

01

0.�	��

LIGHT

01

01

�10/

0/

It is theoretically possible that the down limit (X2) and the obstruction input (X3)
could energize at the same moment. In that case, we would “jump” to the Push-UP
and DOWN states simultaneously, which does not make sense.
Instead, we give priority to the obstruction
by changing the transition condition to the
DOWN state to [X2 AND NOT X3]. This
ensures the obstruction event has the
priority. The modifications we must make
to the LOWER Stage (S5) logic are shown
to the right. The first rung remains
unchanged. The second and third rungs
implement the transitions we need. Note
the opposite relay contact usage for X3,
which ensures the stage will execute only
one of the JMP instructions.

OUT
Y2SP1

S0X2

JMP

SG
S5 LOWER State

X3

S2X3

JMP

to Push-UP

to DOWN

Add Emergency
Stop Feature

Exclusive
Transitions

R
LL P

LU
S

S
tage P

rogram
m

ing
7–15

RLLPLUS Stage Programming

Stage Program Design Considerations

The examples so far in this chapter used one self-contained state diagram to
represent the main process. However, we can have multiple processes
implemented in stages, all in the same ladder program. New stage programmers
sometimes try to turn a stage on and off each scan, based on the false assumption
that only one stage can be on at a time. For ladder rungs that you want to execute
each scan, just put them in a stage that is always on.
The following figure shows a typical application. During operation, the primary
manufacturing activity Main Process, Powerup Initialization, E-Stop and Alarm
Monitoring, and Operator Interface are all running. At powerup, three initial stages
shown begin operation.

Agitate

Monitor

Idle Fill Rinse Spin

E-Stop and Alarm Monitoring

Main Process

Operator Interface

Control Recipe

Status

XXX = ISG

Powerup

Powerup Initialization

In a typical application, the separate stage sequences above operate as follows:
� Powerup Initialization – This stage contains ladder rung tasks done

just once at powerup. Its last rung resets the stage, so this stage is only
active for one scan (or only as many scans that are required).

� Main Process – this stage sequence controls the heart of the process
or machine. One pass through the sequence represents one part cycle
of the machine, or one batch in the process.

� E-Stop and Alarm Monitoring – This stage is always active because it
is watching for errors that could indicate an alarm condition or require an
emergency stop. It is common for this stage to reset stages in the main
process or elsewhere, in order to initialize them after an error condition.

� Operator Interface – this is another task that must always be active
and ready to respond to an operator. It allows an operator interface to
change modes, etc. independently of the current main process step.

Although we have separate processes,
there can be coordination among them.
For example, in an error condition, the
Status Stage may want to automatically
switch the operator interface to the status
mode to show error information as shown
to the right. The monitor stage could set
the stage bit for Status and Reset the
stages Control and Recipe.

Monitor

E-Stop and
Alarm Monitoring

Operator Interface

Control Recipe

Status
���

Stage Program
Organization

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–16

RLLPLUS Stage Programming

We can think of states or stages as simply dividing up our ladder program as
depicted in the figure below. Each stage contains only the ladder rungs which are
needed for the corresponding state of the process. The logic for transitioning out of a
stage is contained within that stage. It’s easy to choose which ladder rungs are active
at powerup by using an “initial” stage type (ISG).

��	���1 ��	���-

��	���.

Most all instructions work just like they do in standard RLL. You can think of a stage
just like a miniature RLL program which is either active or inactive.
Output Coils – As expected, output coils in active stages will turn on or off outputs
according to power flow into the coil. However, note the following:

� Outputs work as usual, provided each output reference (such as “Y3”) is
used in only one stage.

� An output can be referenced from more than one stage, as long as only
one of the stages is active at a time.

� If an output coil is controlled by more than one stage simultaneously, the
active stage nearest the bottom of the program determines the final
output status during each scan. Therefore, use the OROUT instruction
instead when you want multiple stages to have a logical OR control of
an output.

One-Shot or PD coils – Use care if you must use a Positive Differential coil in a
stage. Remember that the input to the coil must make a 0–1 transition. If the coil is
already energized on the first scan when the stage becomes active, the PD coil will
not work. This is because the 0–1 transition did not occur.
PD coil alternative: If there is a task which you want to do only once (on 1 scan), it can
be placed in a stage which transitions to the next stage on the same scan.
Counter – In using a counter inside a stage, the stage must be active for one scan
before the input to the counter makes a 0–1 transition. Otherwise, there is no real
transition and the counter will not count.
The ordinary Counter instruction does have a restriction inside stages: it may not be
reset from other stages using the RST instruction for the counter bit. However, the
special Stage counter provides a solution (see next paragraph).
Stage Counter – The Stage Counter has the benefit that its count may be globally
reset from other stages by using the RST instruction. It has a count input, but no reset
input. This is the only difference from a standard counter.
Drum – Realize that the drum sequencer is its own process, and is a different
programming method than stage programming. If you need to use a drum with
stages, be sure to place the drum instruction in an ISG stage that is always active.

How Instructions
Work Inside Stages

R
LL P

LU
S

S
tage P

rogram
m

ing
7–17

RLLPLUS Stage Programming

You may recall the light bulb on-off
controller example from earlier in this
chapter. For the purpose of illustration,
suppose we want to monitor the
“productivity” of the lamp process, by
counting the number of on-off cycles
which occurs. This application will require
the addition of a simple counter, but the
key decision is in where to put the counter.

�	���
���	�

���� �
01 21

New stage programming students will
typically try to place the counter inside one the
the stages of the process they are trying to
monitor. The problem with this approach is
that the stage is active only part of the time. In
order for the counter to count, the count input
must transition from off to on at least one scan
after its stage activates. Ensuring this
requires extra logic that can be tricky.
In this case, we only need to add another
supervisory stage as shown above, to “watch”
the main process. The counter inside the
supervisor stage uses the stage bit S1 of the
main process as its count input. Stage bits
used as a contact let us monitor a process!
Note that both the Supervisor stage and the
OFF stage are initial stages. The supervisor
stage remains active indefinitely.

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y0

OFF State

SP1

S3X0

JMP

SG
S2

SG
S3

X0

S0

JMP

X0

Push–On State

ON State

Push–Off State

01 Push–ON

ON

Push–OFF

OFF

�����
 01

0101

Supervisor

�����

SGCNT

K5000

CT0

ISG
S4

S1

Main Process

Supervisor Process

Supervisor State

The counter in the above example is a special Stage Counter. Note that it does not
have a reset input. The count is reset by executing a Reset instruction, naming the
counter bit (CT0 in this case). The Stage Counter has the benefit that its count may
be globally reset from other stages. The standard Counter instruction does not have
this global reset capability. You may still use a regular Counter instruction inside a
stage... however, the reset input to the counter is the only way to reset it.

Using a Stage as a
Supervisory
Process

Stage Counter

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–18

RLLPLUS Stage Programming

Our discussion of state transitions has shown how the Stage JMP instruction makes
the current stage inactive and the next stage (named in the JMP) active. As an
alternative way to enter this in DirectSOFT, you may use the power flow method for
stage transitions.
The main requirement is that the current stage be located directly above the next
(jump-to) stage in the ladder program. This arrangement is shown in the diagram
below, by stages S0 and S1, respectively.

S1X0

JMP

SG
S0

Equivalent

X0

SG
S0

S0 S101

SG
S1

SG
S1

& ����������������	�����

������ ��
�	�������

Recall that the Stage JMP instruction may occur anywhere in the current stage, and
the result is the same. However, power flow transitions (shown above) must occur as
the last rung in a stage. All other rungs in the stage will precede it. The power flow
transition method is also achievable on the handheld programmer, by simply
following the transition condition with the Stage instruction for the next stage.
The power flow transition method does eliminate one Stage JMP instruction, its only
advantage. However, it is not as easy to make program changes as using the Stage
JMP. Therefore, we advise using Stage JMP transitions for most programmers.

The Stage View option in DirectSOFT will let you view the ladder program as a flow
chart. The figure below shows the symbol convention used in the diagrams. You may
find the stage view useful as a tool to verify that your stage program has faithfully
reproduced the logic of the state transition diagram you intend to realize.

�' ��	�� (����������
	���	��

� ���
 � ������	��

((�������	��

�	�������
�����

The following diagram is a typical stage view of a ladder program containing stages.
Note the left-to-right direction of the flow chart.

��'
�1

�'
�-

�'
�.

�'
�/

�'
�<

�'
�=

� �

�

�

�

Power Flow
Transition
Technique

Stage View in
DirectSOFT

R
LL P

LU
S

S
tage P

rogram
m

ing
7–19

RLLPLUS Stage Programming

Parallel Processing Concepts

Previously in this chapter we discussed how a state may transition to either one state
or another, called an exclusive transition. In other cases, we may need to branch
simultaneously to two or more parallel processes, as shown below. It is acceptable
to use all JMP instructions as shown, or we could use one JMP and a Set Stage bit
instruction(s) (at least one must be a JMP, in order to leave S1). Remember that all
instructions in a stage execute, even when it transitions (the JMP is not a GOTO).

S1S0

S2

S4

S3

S5

S2

JMP

SG
S1

X0

Push–On State

S4

JMP

X0

Process A

Process B

Note that if we want Stages S2 and S4 to energize exactly on the same scan, both
stages must be located below or above Stage S1 in the ladder program (see the
explanation at the bottom of page 7–7). Overall, parallel branching is easy!
Now we consider the opposite case of parallel branching, which is converging
processes. This simply means we stop doing multiple things and continue doing one
thing at a time. In the figure below, processes A and B converge when stages S2 and
S4 transition to S5 at some point in time. So, S2 and S4 are Convergence Stages.

S5

S1

S3

S2

S4

S6= Convergence Stage

Process A

Process B

While the converging principle is simple enough, it brings a new complication. As
parallel processing completes, the multiple processes almost never finish at the
same time. In other words, how can we know whether Stage S2 or S4 will finish last?
This is an important point, because we have to decide how to transition to Stage S5.

The solution is to coordinate the transition
condition out of convergence stages. We
accomplish this with a stage type
designed for this purpose: the
Convergence Stage (type CV). In the
example to the right, convergence stages
S2 and S4 are required to be grouped
together as shown. No logic is permitted
between CV stages! The transition
condition (X3 in this case) must be located
in the last convergence stage. The
transition condition only has power flow
when all convergence stages in the group
are active.

CVJMP
S5X3

CV
S2

CV
S4

Convergence
Stages

SG
S5

Parallel Processes

Converging
Processes

Convergence
Stages
(CV)

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–20

RLLPLUS Stage Programming

Recall the last convergence stage only
has power flow when all CV stages in the
group are active. To complement the
convergence stage, we need a new jump
instruction. The Convergence Jump
(CVJMP) shown to the right will transition
to Stage S5 when X3 is active (as one
might expect), but it also automatically
resets all convergence stages in the
group. This makes the CVJMP jump a
very powerful instruction. Note that this
instruction may only be used with
convergence stages.

CVJMP
S5X3

CV
S2

CV
S4

Convergence
Jump

SG
S5

The following summarizes the requirements in the use of convergence stages,
including some tips for their effective application:

� A convergence stage is to be used as the last stage of a process which
is running in parallel to another process or processes. A transition to the
convergence stage means that a particular process is through, and
represents a waiting point until all other parallel processes also finish.

� The maximum number of convergence stages which make up one
group is 16. In other words, a maximum of 16 stages can converge into
one stage.

� Convergence stages of the same group must be placed together in the
program, connected on the power rail without any other logic in
between.

� Within a convergence group, the stages may occur in any order, top to
bottom. It does not matter which stage is last in the group, because all
convergence stages have to be active before the last stage has power
flow.

� The last convergence stage of a group may have ladder logic within the
stage. However, this logic will not execute until all convergence stages
of the group are active.

� The convergence jump (CVJMP) is the intended method to be used to
transition from the convergence group of stages to the next stage. The
CVJMP resets all convergence stages of the group, and energizes the
stage named in the jump.

� The CVJMP instruction must only be used in a convergence stage, as it
is invalid in regular or initial stages.

� Convergence Stages or CVJMP instructions may not be used in
subroutines or interrupt routines.

Convergence Jump
(CVJMP)

Convergence
Stage Guidelines

R
LL P

LU
S

S
tage P

rogram
m

ing
7–21

RLLPLUS Stage Programming

RLLPLUS (Stage) Instructions

aaaS
SG

The Stage� instructions are used to
create structured RLLPLUS programs.
Stages are program segments which can
be activated by transitional logic, a jump or
a set stage that is executed from an active
stage. Stages are deactivated one scan
after transitional logic, a jump, or a reset
stage instruction is executed.

Operand Data Type DL05 Range

aaa

Stage S 0–377

The following example is a simple RLLPLUS program. This program utilizes an initial
stage, stage, and jump instructions to create a structured program.

X0

ISG S0

Y0

OUT

X1 S2

SET

SG S1

X5

X2 Y1

OUT

SG S2

X6 Y2

OUT

X7 S0

JMP

S1

JMP

S1

DirectSOFT Handheld Programmer Keystrokes

ISG
U

0
A ENT

STR
$

OUT
GX

STR
$

SET
X SHFT

RST
S

2
C ENT

STR
$

JMP
K

1
B ENT

SG
2

1
B ENT

STR
$

OUT
GX

SG
2 ENT

STR
$

OUT
GX

2
C

STR
$

AND
V SHFT

RST
S

1
B ENT

JMP
K ENT

0
A

ENT
0

A

1
B ENT

ENT
5

F

ENT
2

C

ENT
1

B

ENT

ENT

6
G

2
C

ENT
7

H

0
A ENT

Stage�
(SG)

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–22

RLLPLUS Stage Programming

aaaS
ISG

The Initial Stage� instruction is normally
used as the first segment of an RLLPLUS

program. Multiple Initial Stages are allowed
in a program. They will be active when the
CPU enters the Run mode allowing for a
starting point in the program.

Operand Data Type DL05 Range

aaa

Stage S 0–377

Initial Stages are also activated by transitional logic, a jump or a set stage executed
from an active stage.

aaaS

The Jump instruction allows the program to
transition from an active stage containing
the jump instruction to another stage
(specified in the instruction). The jump
occurs when the input logic is true. The
active stage containing the Jump will
deactivate 1 scan later.

JMP

Operand Data Type DL05 Range

aaa

Stage S 0–377

aaaS

The Not Jump instruction allows the
program to transition from an active stage
which contains the jump instruction to
another which is specified in the instruction.
The jump will occur when the input logic is
off. The active stage that contains the Not
Jump will be deactivated 1 scan after the
Not Jump instruction is executed.

NJMP

Operand Data Type DL05 Range

aaa

Stage S 0–377

In the following example, only stage ISG0 will be active when program execution.
begins. When X1 is on, program execution will jump from Initial Stage 0 to Stage 1.

Initial Stage�
(ISG)

JUMP
(JMP)

Not Jump
(NJMP)

R
LL P

LU
S

S
tage P

rogram
m

ing
7–23

RLLPLUS Stage Programming

DirectSOFT Handheld Programmer Keystrokes

ISG S0

X1
S1

JMP

SG S1

X2
Y5

OUT

X7
S2

JMP

S3

NJMP

�

�

�

ISG
U

0
A ENT

STR
$

JMP
K

1
B ENT

SG
2

1
B ENT

STR
$

OUT
GX

STR
$

JMP
K ENT

2
C

SHFT
TMR

N SHFT
JMP

K ENT
3

D

ENT
1

B

ENT
2

C

5
F ENT

ENT
7

H

X7

S aaa
CV

The Converge Stage instruction is used to
group certain stages together by defining
them as Converge Stages.
When all of the Converge Stages within a
group become active, the CVJMP
instruction (and any additional logic in the
final CV stage) will be executed. All
preceding CV stages must be active before
the final CV stage logic can be executed. All
Converge Stages are deactivated one scan
after the CVJMP instruction is executed.
Additional logic instructions are only
allowed following the last Converge Stage
instruction and before the CVJMP
instruction. Multiple CVJUMP instructions
are allowed.
Converge Stages must be programmed in
the main body of the application program.
This means they cannot be programmed in
Subroutines or Interrupt Routines.

S aaa

CVJMP

Operand Data Type DL05 Range

aaa

Stage S 0–377

Converge Stage
(CV) and Converge
Jump (CVJMP)

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–24

RLLPLUS Stage Programming

In the following example, when Converge Stages S10 and S11 are both active the
CVJMP instruction will be executed when X4 is on. The CVJMP will deactivate S10
and S11, and activate S20. Then, if X5 is on, the program execution will jump back to
the initial stage, S0.

DirectSOFT Display

ISG S0

CV S11

X3 Y3

OUT

X4 S20

CVJMP

SG S20

X0 Y0

OUT

X1 S1

JMP

S10

JMP

SG S1

X2 S11

JMP

Handheld Programmer Keystrokes

CV S10

X5 S0

JMP

ISG
U

0
A ENT

STR
$

JMP
K

1
B ENT

SG
2

1
B ENT

STR
$

OUT
GX

JMP
K ENT

SHFT

JMP
K

ENT

3
D

ENT

1
B

ENT
2

C

ENT

ENT

0
A

OUT
GX ENT

0
A

STR
$ ENT

JMP
K

1
B ENT

0
A

1
B

1
B

2
C

AND
V

1
B

0
A

SHFT ENT
2

C
AND

V
1

B
1

B

STR
$ ENT

3
D

4
E

STR
$ ENT

SHFT ENT
2

C
AND

V
0

ASHFT
JMP

K

SG
2 ENT

2
C

0
A

2
C

5
F

STR
$ ENT

0
A

R
LL P

LU
S

S
tage P

rogram
m

ing
7–25

RLLPLUS Stage Programming

Questions and Answers about Stage Programming

We include the following commonly-asked questions about Stage Programming as
an aid to new students. All question topics are covered in more detail in this chapter.

Q. What does stage programming do that I can’t do with regular RLL programs?
A. Stages allow you to identify all the states of your process before you begin
programming. This approach is more organized, because you divide up a ladder
program into sections. As stages, these program sections are active only when they
are actually needed by the process. Most processes can be organized into a
sequence of stages, connected by event-based transitions.

Q. What are Stage Bits?
A. A stage bit is just a single bit in the CPU’s image register, representing the
active/inactive status of the stage in real time. For example, the bit for Stage 0 is
referenced as “S0”. If S0 = 0, then the ladder rungs in Stage 0 are bypassed (not
executed) on each CPU scan. If S0 = 1, then the ladder rungs in Stage 0 are
executed on each CPU scan. Stage bits, when used as contacts, allow one part of
your program to monitor another part by detecting stage active/inactive status.

Q. How does a stage become active?
A. There are three ways:

� If the Stage is an initial stage (ISG), it is automatically active at powerup.
� Another stage can execute a Stage JMP instruction naming this stage,

which makes it active upon its next occurrence in the program.
� A program rung can execute a Set Stage Bit instruction (such as Set

S0).

Q. How does a stage become inactive?
A. There are three ways:

� Standard Stages (SG) are automatically inactive at powerup.
� A stage can execute a Stage JMP instruction, resetting its Stage Bit to

0.
� Any rung in the program can execute a Reset Stage Bit instruction (such

as Reset S0).

Q. What about the power flow technique of stage transitions?
A. The power flow method of connecting adjacent stages (directly above or below in
the program) actually is the same as the Stage Jump instruction executed in the
stage above, naming the stage below. Power flow transitions are more difficult to edit
in DirectSOFT, we list them separately from two preceding questions.

Q. Can I have a stage which is active for only one scan?
A. Yes, but this is not the intended use for a stage. Instead, just make a ladder rung
active for 1 scan by including a stage Jump instruction at the bottom of the rung.
Then the ladder will execute on the last scan before its stage jumps to a new one.

R
LL

 P
LU

S
S

ta
ge

 P
ro

gr
am

m
in

g
7–26

RLLPLUS Stage Programming

Q. Isn’t a Stage JMP just like a regular GOTO instruction used in software?
A. No, it is very different. A GOTO instruction sends the program execution
immediately to the code location named by the GOTO. A Stage JMP simply resets
the Stage Bit of the current stage, while setting the Stage Bit of the stage named in
the JMP instruction. Stage bits are 0 or 1, determining the inactive/active status of
the corresponding stages. A stage JMP has the following results:

� When the JMP is executed, the remainder of the current stage’s rungs
are executed, even if they reside past(under) the JMP instruction. On
the following scan, that stage is not executed, because it is inactive.

� The Stage named in the Stage JMP instruction will be executed upon its
next occurrence. If located past (under) the current stage, it will be
executed on the same scan. If located before (above) the current stage,
it will be executed on the following scan.

Q. How can I know when to use stage JMP, versus a Set Stage Bit or Reset Stage Bit?
A. These instructions are used according to the state diagram topology you have
derived:

� Use a Stage JMP instruction for a state transition... moving from one
state to another.

� Use a Set Stage Bit instruction when the current state is spawning a
new parallel state or stage sequence, or when a supervisory state is
starting a state sequence under its command.

� Use a Reset Bit instruction when the current state is the last state in a
sequence and its task is complete, or when a supervisory state is
ending a state sequence under its command.

Q. What is an initial stage, and when do I use it?
A. An initial stage (ISG) is automatically active at powerup. Afterwards, it works just
like any other stage. You can have multiple initial stages, if required. Use an initial
stage for ladder that must always be active, or as a starting point.

Q. Can I have place program ladder rungs outside of the stages, so they are always on?
A. It is possible, but it’s not good software design practice. Place ladder that must
always be active in an initial stage, and do not reset that stage or use a Stage JMP
instruction inside it. It can start other stage sequences at the proper time by setting
the appropriate Stage Bit(s).

Q. Can I have more than one active stage at a time?
A. Yes, and this is a normal occurrence for many programs. However, it is important
to organize your application into separate processes, each made up of stages. And a
good process design will be mostly sequential, with only one stage on at a time.
However, all the processes in the program may be active simultaneously.

18
PID Loop Operation

In This Chapter. . . .
— DL05 PID Loop Features
— Loop Setup Parameters
— Loop Sample Rate and Scheduling
— Ten Steps to Successful Process Control
— Basic Loop Operation
— PID Loop Data Configuration
— PID Algorithms
— Loop Tuning Procedure
— PV Analog Filter
— Feedforward Control
— Time Proportioning Control
— Cascade Control
— Process Alarms
— Ramp/Soak Generator
— Troubleshooting Tips
— Bibliography
— Glossary of PID Loop Terminology

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–2
PID Loop Operation

DL05 PID Loop Features

The DL05 process loop control offers a sophisticated set of features to address
many application needs. The main features are:

� Up to 4 loops, individual programmable sample rates
� Manual/ Automatic/Cascaded loop capability available
� Two types of bumpless transfer available
� Full-featured alarms
� Ramp/soak generator with up to 16 segments
� Auto Tuning

The DL05 CPU has process control loop capability in addition to ladder program
execution. You can select and configure up to four loops. All sensor and actuator
wiring connects directly to DL05 analog modules. All process variables, gain values,
alarm levels, etc., associated with each loop reside in a Loop Variable Table in the
CPU. The DL05 CPU reads process variable (PV) inputs during each scan. Then it
makes PID loop calculations during a dedicated time slice on each PLC scan,
updating the control output value. The control loops use a
Proportional-Integral-Derivative (PID) algorithm to generate the control output. This
chapter describes how the loops operate, and what you must do to configure and
tune the loops.

DL05
Manufacturing ProcessPID Loop Calculations

Analog Output

Analog Input

The best tool for configuring loops in the DL05 is the DirectSOFT32 programming
software, release 3.0c, or later. DirectSOFT32 uses dialog boxes to help you set up
the individual loops. After completing the setup, you can use DirectSOFT32’s PID
Trend View to tune each loop. The configuration and tuning selections you make are
stored in the DL05’s FLASH memory, which is retentive. The loop parameters also
may be saved to disk for recall later.

Main Features

P
ID

 Loop O
peration

M
aintenance

8–3
PID Loop Operation

PID Loop Feature Specifications

Number of loops Selectable, 4 maximum

CPU V-memory needed 32 words (V locations) per loop selected, 64 words if using ramp/soak

PID algorithm Position or Velocity form of the PID equation

Control Output polarity Selectable direct-acting or reverse-acting

Error term curves Selectable as linear, square root of error, and error squared

Loop update rate (time
between PID calculation)

0.05 to 99.99 seconds, user programmable

Minimum loop update rate 0.05 seconds for 1 to 4 loops,

Loop modes Automatic, Manual (operator control), or Cascade control

Ramp/Soak Generator Up to 8 ramp/soak steps (16 segments) per loop with indication of
ramp/soak step number

PV curves Select standard linear, or square-root extract (for flow meter input)

Set Point Limits Specify minimum and maximum setpoint values

Process Variable Limits Specify minimum and maximum Process Variable values

Proportional Gain Specify gains of 0.01 to 99.99

Integrator (Reset) Specify reset time of 0.1 to 999.8 in units of seconds or minutes

Derivative (Rate) Specify the derivative time from 0.01 to 99.99 seconds

Rate Limits Specify derivative gain limiting from 1 to 20

Bumpless Transfer I Automatically initialized bias and setpoint when control switches from
manual to automatic

Bumpless Transfer II Automatically set the bias equal to the control output when control switches
from manual to automatic

Step Bias Provides proportional bias adjustment for large setpoint changes

Anti-windup For position form of PID, this inhibits integrator action when the control
output reaches 0% or 100 % (speeds up loop recovery when output
recovers from saturation)

Error Deadband Specify a tolerance (plus and minus) for the error term (SP–PV), so that no
change in control output value is made

Alarm Feature Specifications

Deadband Specify 0.1% to 5% alarm deadband on all alarms

PV Alarm Points Select PV alarm settings for Low–low, Low, High, and High-high conditions

PV Deviation Specify alarms for two ranges of PV deviation from the setpoint value

Rate of Change Detect when PV exceeds a rate of change limit you specify

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–4
PID Loop Operation

The key parts of a PID control loop are shown in the block diagram below. The path
from the PLC to the Manufacturing Process and back to the PLC is the “loop” in
“closed loop control.”

Process Variable

Loop
Calculation

Manufacturing
Process

Setpoint Value

Loop Configuring
and Monitoring

Control Output

External
Disturbances

�
Error Term

+
–

PLC System

Manufacturing Process – the set of actions that adds value to raw materials. The
process can involve physical changes and/or chemical changes to the material. The
changes render the material more useful for a particular purpose, ultimately used in
a final product.
Process Variable – a measurement of some physical property of the raw materials.
Measurements are made using some type of sensor. For example, if the
manufacturing process uses an oven, you will most likely want to control
temperature. Temperature is a process variable.
Setpoint Value – the theoretically perfect quantity of the process variable, or the
desired amount which yields the best product. The machine operator knows this
value, and either sets it manually or programs it into the PLC for later automated use.
External Disturbances – the unpredictable sources of error which the control
system attempts to cancel by offsetting their effects. For example, if the fuel input is
constant an oven will run hotter during warm weather than it does during cold
weather. An oven control system must counter-act this effect to maintain a constant
oven temperature during any season. Thus, the weather (which is not very
predictable), is one source of disturbance to this process.
Error Term – the algebraic difference between the process variable and the
setpoint. This is the control loop error, and is equal to zero when the process variable
is equal to the setpoint (desired) value. A well-behaved control loop is able to
maintain a small error term magnitude.
Loop Calculation – the real-time application of a mathematical algorithm to the
error term, generating a control output command appropriate for minimizing the
error magnitude. Various control algorithms are available, and the DL05 uses the
Proportional-Integral-Derivative (PID) algorithm (more on this later).
Control Output – the result of the loop calculation, which becomes a command for
the process (such as the heater level in an oven).
Loop Configuring – operator-initiated selections which set up and optimize the
performance of a control loop. The loop calculation function uses the configuration
parameters in real time to adjust gains, offsets, etc.
Loop Monitoring – the function which allows an operator to observe the status and
performance of a control loop. This is used in conjunction with the loop configuring to
optimize the performance of a loop (minimize the error term).

The Basics of
PID Loops

P
ID

 Loop O
peration

M
aintenance

8–5
PID Loop Operation

The diagram below shows each loop element in the form of its real-world physical
component. The example manufacturing process involves a liquid in a reactor
vessel. A sensor probe measures a process variable which may be pressure,
temperature, or another parameter. The sensor signal is amplified through a
transducer, and is sent through the wire in analog form to the PLC input module.
Using a analog I/O combination module, the PLC reads the PV from its analog input.
The CPU executes the loop calculation, and writes to the analog output. This signal
goes to a device in the manufacturing process, such as a heater, valve, pump, etc.
Over time, the liquid begins to change enough to be measured on the sensor probe.
The process variable changes accordingly. The next loop calculation occurs, and
the loop cycle repeats in this manner continuously.

Loop
Calculation

Manufacturing
Process

Control Output

Process Variable

Loop Configuration
and Monitoring

The personal computer shown is used to run DirectSOFT32, the PLC programming
software for DirectLOGIC programmable controllers. DirectSOFT32, release 3.0c
or later, can program the DL05 PLC (including the PID feature). The software
features a forms-based editor to configure loop parameters. It also features a PID
loop trending screen which will be helpful during the loop tuning process. Details on
how to use that software are in the DirectSOFT32 Manual.

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–6
PID Loop Operation

Loop Setup Parameters

The DL05 PLC gets its PID loop processing instructions only from tables in
V-memory. A “PID instruction” type in RLL does not exist for the DirectLogic PLCs.
Instead, the CPU reads setup parameters from reserved V-memory locations.
Shown in the table below, you must program a value in V7640 to point to the main
loop table. Then you will need to program V7641 with the number of loops you want
the CPU to calculate. V7642 contains error flags which will be set if V7640 or V7641
are programmed improperly.

Address Setup Parameter Data type Ranges Read/Write

V7640 Loop Parameter
Table Pointer

Octal V1200 – V7377 write

V7641 Number of Loops BCD 0 – 4 write

V7642 Loop Error Flags Binary 0 or 1 read

If the number of loops is “0”, the loop controller task is turned off during the ladder
program scan. The loop controller will allow use of loops in ascending order,
beginning with 1. For example, you cannot use loop 1 and 4 while skipping 2 and 3.
The loop controller attempts to control the full number of loops specified in V7641.

The CPU reports any programming errors
of the setup parameters in V7640 and
V7641. It does this by setting the
appropriate bits in V7642 on
program-to-run mode transitions.

PID Error Flags, V7642

013456789101112131415 2Bit

If you use the DirectSOFT32 loop setup dialog box, its automatic range checking
prohibits possible setup errors. However, the setup parameters may be written using
other methods such as RLL, so the error flag register may be helpful in those cases.
The following table lists the errors reported in V7642.

Bit Error Description (0 = no error, 1 = error)

0 The starting address (in V7640) is out of the lower V-memory range.

1 The starting address (in V7640) is out of the upper V-memory range.

2 The number of loops selected (in V7641) is greater than 4.

3 The loop table extends past (straddles) the boundary at V7377. Use an
address closer to V1200.

As a quick check, if the CPU is in Run mode and V7642=0000, there are no
programming errors.

Loop Table and
Number of Loops

PID Error Flags

P
ID

 Loop O
peration

M
aintenance

8–7
PID Loop Operation

On a program -to-run mode transition, the CPU reads the loop setup parameters as
pictured below. At that moment, the CPU learns the location of the loop table and the
number of loops it configures. Then during the ladder program scan, the PID Loop
task uses the loop data to perform calculations, generate alarms, and so on. There
are some loop table parameters the CPU will read or write on every loop calculation.

READ
(at powerup)

CONFIGURE/
MONITOR

V–Memory Space

User Data

Setup Parameters

LOOP
DATA

CPU Tasks

READ/
WRITELadder

Program

PID Loop
Task

DirectSOFT32 Programming Software

V7640, V7641

The Loop Parameter table contains data
for only as many loops as you selected in
V7641. Each loop configuration occupies
32 words (0 to 37 octal) in the loop table.
For example, suppose you have an
application with 4 loops, and you choose
V2000 as the starting location. The Loop
Parameter will occupy V2000 – V2037 for
loop 1, V2040 – V2077 for loop 2 and so
on. Loop 4 occupies V2140 – V2177.

V–Memory User Data

LOOP #1V2000
32 words

LOOP #2
32 words

LOOP #3
32 words

LOOP #4
32 words

V2037
V2040

V2077

NOTE: The DL05 CPU’s PID algorithm requires DirectSOFT32 Version 3.0c (or later)
and firmware version 2.1 (or later).

Establishing the
Loop Table Size
and Location

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–8
PID Loop Operation

The parameters associated with each loop are listed in the following table. The
address offset is in octal, to help you locate specific parameters in a loop table. For
example, if a table begins at V2000, then the location of the reset (integral) term is
Addr+11, or V2011. Do not use the word# (in the first column) to calculate addresses.

Word # Address+Offset Description Format

1 Addr + 0 PID Loop Mode Setting 1 bits

2 Addr + 1 PID Loop Mode Setting 2 bits

3 Addr + 2 Setpoint Value (SP) word/binary

4 Addr + 3 Process Variable (PV) word/binary

5 Addr + 4 Bias (Integrator) Value word/binary

6 Addr + 5 Control Output Value word/binary

7 Addr + 6 Loop Mode and Alarm Status bits

8 Addr + 7 Sample Rate Setting word/BCD

9 Addr + 10 Gain (Proportional) Setting word/BCD

10 Addr + 11 Reset (Integral) Time Setting word/BCD

11 Addr + 12 Rate (Derivative) Time Setting word/BCD

12 Addr + 13 PV Value, Low-low Alarm word/binary

13 Addr + 14 PV Value, Low Alarm word/binary

14 Addr + 15 PV Value, High Alarm word/binary

15 Addr + 16 PV Value, High-high Alarm word/binary

16 Addr + 17 PV Value, deviation alarm (YELLOW) word/binary

17 Addr + 20 PV Value, deviation alarm (RED) word/binary

18 Addr + 21 PV Value, rate-of-change alarm word/binary

19 Addr + 22 PV Value, alarm hysteresis setting word/binary

20 Addr + 23 PV Value, error deadband setting word/binary

21 Addr + 24 PV low-pass filter constant word/BCD

22 Addr + 25 Loop derivative gain limiting factor setting word/BCD

23 Addr + 26 SP value lower limit setting word/binary

24 Addr + 27 SP value upper limit setting word/binary

25 Addr + 30 Control output value lower limit setting word/binary

26 Addr + 31 Control output value upper limit setting word/binary

27 Addr + 32 Remote SP Value V-Memory Address Pointer word/hex

28 Addr + 33 Ramp/Soak Setting Flag bit

29 Addr + 34 Ramp/Soak Programming Table Starting Address word/hex

30 Addr + 35 Ramp/Soak Programming Table Error Flags bits

31 Addr + 36 PV direct access, channel number word/hex

32 Addr + 37 Control output direct access, channel number word/hex

Loop Table
Word Definitions

P
ID

 Loop O
peration

M
aintenance

8–9
PID Loop Operation

The individual bit definitions of the PID Mode Setting 1 word (Addr+00) are listed in
the following table. Additional information about the use of this word is available later
in this chapter.

Bit PID Mode Setting 1 Description Read/Write Bit=0 Bit=1

0 Manual Mode Loop Operation request write – 0�1
request

1 Automatic Mode Loop Operation re-
quest

write – 0�1
request

2 Cascade Mode Loop Operation request write – 0�1
request

3 Bumpless Transfer select write Mode I Mode II

4 Direct or Reverse-Acting Loop select write Direct Reverse

5 Position / Velocity Algorithm select write Position Velocity

6 PV Linear / Square Root Extract select write Linear Sq. root

7 Error Term Linear / Squared select write Linear Squared

8 Error Deadband enable write Disable Enable

9 Derivative Gain Limit select write Off On

10 Bias (Integrator) Freeze select write Off On

11 Ramp/Soak Operation select write Off On

12 PV Alarm Monitor select write Off On

13 PV Deviation alarm select write Off On

14 PV rate-of-change alarm select write Off On

15 Loop mode is independent from CPU
mode when set

write Loop with
CPU mode

Loop

Independent
of CPU mode

PID Mode Setting 1
Bit Descriptions
(Addr + 00)

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–10
PID Loop Operation

The individual bit definitions of the PID Mode Setting 2 word (Addr+01) are listed in
the following table. Additional information about the use of this word is available later
in this chapter.

Bit PID Mode Setting 2 Description Read/Write Bit=0 Bit=1

0 Input (PV) and Control Output Range
Unipolar/Bipolar select
(See Notes 1 and 2)

write unipolar bipolar

1 Input/Output Data Format select
(See Notes 1 and 2)

write 12 bit 15 bit

2 Analog Input filter write off on

3 SP Input limit enable write disable enable

4 Integral Gain (Reset) units select write seconds minutes

5 Select Autotune PID algorithm write closed loop open loop

6 Autotune selection write PID PI only
(rate = 0)

7 Autotune start read/write autotune
done

force start

8 PID Scan Clock (internal use) read – –

9 Input/Output Data Format 16-bit select
(See Notes 1 and 2)

write not
16 bit

select
16 bit

10 Select separate data format for input and
output (See Notes 2, and 3)

write same
format

separate
formats

11 Control Output Range
Unipolar/Bipolar select
(See Notes 2, and 3)

write unipolar bipolar

12 Output Data Format select
(See Notes 2, and 3)

write 12 bit 15 bit

13 Output data format 16-bit select
(See Notes 2, and 3)

write not
16 bit

select
16 bit

14–15 Reserved for future use – – –

Note 1: If the value in bit 9 is 0, then the values in bits 0 and 1 are read. If the value in
bit 9 is 1, then the values in bits 0 and 1 are not read, and bit 9 defines the
data format (the range is automatically unipolar).

Note 2: If the value in bit 10 is 0, then the values in bits 0, 1, and 9 define the input and
output ranges and data formats (the values in bits 11, 12, and 13 are not
read). If the value in bit 10 is 1, then the values in bits 0, 1, and 9 define only
the input range and data format, and bits 11, 12, and 13 are read and define
the output range and data format.

Note 3: If bit 10 has a value of 1 and bit 13 has a value of 0, then bits 11 and 12 are
read and define the output range and data format. If bit 10 and bit 13 each
have a value of 1, then bits 11 and 12 are not read, and bit 13 defines the data
format, (the output range is automatically unipolar).

PID Mode Setting 2
Bit Descriptions
(Addr + 01)

P
ID

 Loop O
peration

M
aintenance

8–11
PID Loop Operation

The individual bit definitions of the Mode / Alarm monitoring (Addr+06) word is listed
in the following table. More details are in the PID Mode section and Alarms section.

Bit Mode / Alarm Bit Description Read/Write Bit=0 Bit=1

0 Manual Mode Indication read – Manual

1 Automatic Mode Indication read – Auto

2 Cascade Mode Indication read – Cascade

3 PV Input LOW–LOW Alarm read Off On

4 PV Input LOW Alarm read Off On

5 PV Input HIGH Alarm read Off On

6 PV Input HIGH–HIGH Alarm read Off On

7 PV Input YELLOW Deviation Alarm read Off On

8 PV Input RED Deviation Alarm read Off On

9 PV Input Rate-of-Change Alarm read Off On

10 Alarm Value Programming Error read – Error

11 Loop Calculation Overflow/Underflow read – Error

12 Loop in Auto-Tune indication read Off On

13 Auto-Tune error indication read – Error

14–15 Reserved for Future Use – – –

The individual bit definitions of the Ramp / Soak Table Flag (Addr+33) word is listed
in the following table. Further details are given in the Ramp / Soak Operation section.

Bit Ramp / Soak Flag Bit Description Read/Write Bit=0 Bit=1

0 Start Ramp / Soak Profile write – 0�1 Start

1 Hold Ramp / Soak Profile write – 0�1 Hold

2 Resume Ramp / soak Profile write – 0�1
Resume

3 Jog Ramp / Soak Profile write – 0�1 Jog

4 Ramp / Soak Profile Complete read – Complete

5 PV Input Ramp / Soak Deviation read Off On

6 Ramp / Soak Profile in Hold read Off On

7 Reserved read – –

8–15 Current Step in R/S Profile read decode as byte (hex)

Bits 8–15 must be read as a byte to indicate the current segment number of the
Ramp/Soak generator in the profile. This byte will have the values 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F, and 10, which represent segments 1 to 16 respectively. If the
byte=0, then the Ramp/Soak table is not active.

Mode / Alarm
Monitoring Word
(Addr + 06)

Ramp / Soak Table
Flags
(Addr + 33)

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–12
PID Loop Operation

Each loop that you configure has the option of using a built-in Ramp/Soak generator
dedicated to that loop. This feature generates SP values that follow a profile. To use
the Ramp Soak feature, you must program a separate table of 32 words with
appropriate values. A DirectSOFT32 dialog box makes this easy to do.
In the loop table, the Ramp / Soak Table Pointer at Addr+34 must point to the start of
the ramp/soak data for that loop. This may be anywhere in user memory, and does
not have to adjoin to the Loop Parameter table, as shown to the left. Each R/S table
requires 32 words, regardless of the number of segments programmed.
The ramp/soak table parameters are defined in the table below. Further details are in
the section on Ramp / Soak Operation in this chapter.

Addr
Offset

Step Description Addr
Offset

Step Description

+ 00 1 Ramp End SP Value + 20 9 Ramp End SP Value

+ 01 1 Ramp Slope + 21 9 Ramp Slope

+ 02 2 Soak Duration + 22 10 Soak Duration

+ 03 2 Soak PV Deviation + 23 10 Soak PV Deviation

+ 04 3 Ramp End SP Value + 24 11 Ramp End SP Value

+ 05 3 Ramp Slope + 25 11 Ramp Slope

+ 06 4 Soak Duration + 26 12 Soak Duration

+ 07 4 Soak PV Deviation + 27 12 Soak PV Deviation

+ 10 5 Ramp End SP Value + 30 13 Ramp End SP Value

+ 11 5 Ramp Slope + 31 13 Ramp Slope

+ 12 6 Soak Duration + 32 14 Soak Duration

+ 13 6 Soak PV Deviation + 33 14 Soak PV Deviation

+ 14 7 Ramp End SP Value + 34 15 Ramp End SP Value

+ 15 7 Ramp Slope + 35 15 Ramp Slope

+ 16 8 Soak Duration + 36 16 Soak Duration

+ 17 8 Soak PV Deviation + 37 16 Soak PV Deviation

The individual bit definitions of the Ramp / Soak Table Programming Error Flags
word (Addr+35) is listed in the following table. Further details are given in the PID
Loop Mode section and in the PV Alarm section later in this chapter.

Bit R/S Error Flag Bit Description Read/
Write

Bit=0 Bit=1

0 Starting Addr out of lower V-memory range read – Error

1 Starting Addr out of upper V-memory range read – Error

2–3 Reserved for Future Use – – –

4 Starting Addr in System Parameter
V-memory Range

read – Error

5–15 Reserved for Future Use – – –

Ramp/Soak
Table Location
(Addr + 34)

V–Memory Space

User Data

LOOP #1V2000

32 words

LOOP #2
32 words

V2037

Ramp/Soak #1
32 words

V3000

V2034 = 3000 Octal
Pointer to R/S table

Ramp/Soak Table
Programming Error
Flags
(Addr + 35)

P
ID

 Loop O
peration

M
aintenance

8–13
PID Loop Operation

Loop Sample Rate and Scheduling

0

The main tasks of the CPU fall into categories
as shown to the right. The list represents the
tasks done when the CPU is in Run Mode, on
each PLC scan. Note that PID loop
calculations occur after the ladder logic task.
Note: It is possible to keep the PID loops
running even when the ladder is not. This is
done by selecting direct access in
Addr + 36 and placing a 1 in bit 15 of Addr + 00.
The sample rate of a control loop is simply the
frequency of the PID calculation. Each
calculation generates a new control output
value. With the DL05 CPU, you can set the
sample rate of a loop from 50 mS to 99.99
seconds. Most loops do not require a fresh
PID calculation on every PLC scan. Some
loops may need to be calculated only once in
1000 scans.
You select the desired sample rate for each
loop, and the CPU automatically schedules
and executes PID calculations on the
appropriate scans.

Read
Inputs

Service
Peripherals

Ladder
Program

Calculate
PID Loops

Internal
Diagnostics

Write
Outputs

PLC
Scan

For any particular control loop, there is no single perfect sample rate to use. A good
sample rate is a compromise that simultaneously satisfies various guidelines:

� The desired sample rate is proportional to the response time of the PV
to a change in control output. Usually, a process with a large mass will
have a slow sample rate, but a small mass needs a faster sample rate.

� Faster sample rates provide a smoother control output and accurate PV
performance, but use more CPU processing time. Sample rates much
faster than necessary serve only to waste CPU processing power.

� Slower sample rates provide a rougher control output and less accurate
PV performance, but use less CPU processing time.

� A sample rate which is too slow will cause system instability, particularly
when a change in the setpoint or a disturbance occurs.

As a starting point, determine a sample rate for your loop which will be fast enough to
avoid control instability (which is extremely important). Follow the procedure on the
next page to find a starting sample rate:

Loop Sample Rates
Addr + 07

Choosing the Best
Sample Rate

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–14
PID Loop Operation

Determining a suitable sample rate (Addr+07):

1. Operate the process open-loop (the loop does not even need to be
configured yet). Place the CPU in run mode (and the loop in Manual mode,
if you have already configured it). Manually set the control output value so
the PV is stable and in the middle of a safe range.

2. Try to choose a time when the process will have negligible external
disturbances. Then induce a sudden 10% step change in the control value.

3. Record the rise or fall time of the PV (time between 10% to 90% points).
4. Divide the recorded rise or fall time by 10. This is the initial sample rate you

can use to begin tuning your loop.

Control
Output

PV

10% of full output range

Rise Time

10%

90%

Sample
Rate

In the figure above, suppose the measured rise time response of the PV was 25
seconds. The suggested sample rate from this measurement will be 2.5 seconds.
For illustration, the sample rate time line shows ten samples within the rise time
period. These show the frequency of PID calculations as the PV changes values. Of
course, the sample rate and PID calculations are continuous during operation.

NOTE: An excessively fast sample rate will diminish the available resolution in the
PV Rate-of-Change Alarm, because the alarm rate value is specified in terms of PV
change per sample period. For example, a 50 mS sample rate means the smallest
PV rate-of-change we can detect is 20 PV counts (least significant bit counts) per
second, or 1200 LSB counts per minute.

The Loop Parameter table for each loop has a data location for the sample rate.
Referring to the figure below, location V+07 contains a BCD number from 00.05 to
99.99 (with an implied decimal point). This represents 50 mS to 99.99 seconds. This
number may be programmed using DirectSOFT32’s PID Setup screen, or any other
method of writing to V-memory. It must be programmed before the loop will operate
properly.

Process Variable

�
Error Term

+
–

Control OutputSetpoint

X X X X

Sample Rate–V+07

Loop
Calculation

BCD
Sample Rate

00.05 to 99.99 sec

Programming the
Sample Rate

P
ID

 Loop O
peration

M
aintenance

8–15
PID Loop Operation

Since PID loop calculations are a task within the CPU scan activities, the use of PID
loops will increase the average scan time. The amount of scan time increase is
proportional to the number of loops used and the sample rate of each loop.

The execution time for a single loop
calculation depends on the number of
options selected, such as alarms, error
squared, etc. The chart to the right gives
the range of times you can expect.

PID Calculation Time

150 �S

250 �S

350 �S

Minimum

Typical

Maximum

To calculate scan time increase, we also must know (or estimate) the scan time of
the ladder (without loops). A fast scan time will increase by a smaller percentage
than a slow scan time will, when adding the same PID loop calculation load in each
case. The formula for average scan time calculation is:

Avg. Scan Time with PID loop =
Scan time without loop

Sample rate of loop
X PID calculation time + Scan time without loop

For example, suppose the estimated scan time without loop calculations is 50 mS,
and the loop sample time is 3 seconds. Now, calculate the new scan time:

Average Scan time with PID loop =
50 mS

3 sec.
X 250 �S + 50 mS = 50.004 mS

As the calculation shows, the addition of only one loop with a slow sample rate has a
very small effect on scan time. Next, expand the equation above to show the effect of
adding any number of loops:

Avg. Scan Time with PID loops =
Scan time without loop

Sample rate of nth loop
X PID calculation time + Scan time

without loops�
n=1

n=L

In the new equation above, you calculate the summation term (inside the brackets)
for each loop from 1 to L (last loop), and add the right-most term “scan time without
loops” only once at the end. Suppose you have a DL05 PLC controlling four loops.
The table below shows the data and summation term values for each loop.

Loop Number Description Sample Rate Summation Term

1 Steam Flow, Inlet valve 0.25 sec 50 �S

2 Water bath temperature 30 sec 0.42 �S

3 Dye level, main tank 10 sec 1.25 �S

4 Steam Pressure, Autoclave 1.5 sec 8.3 �S

Now adding the summation terms, plus the original scan time value, we have:

Avg. Scan Time with PID loops = + 50 mS = 50.06 mS50 �S + 0.42 �S + 1.25 �S + 8.3 �S

PID Loop Effect
on CPU Scan Time

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–16
PID Loop Operation

The DL05 CPU only does PID calculation on a particular scan for the loop(s) which
have sample time periods that are due for an update (calculation). The built-in loop
scheduler applies the following rules:

� Loops with sample rates � 2 seconds are processed at the rate of as
many loops per scan as is required to maintain each loop’s sample rate.
Specifying loops with fast sample rates will increase the PLC scan time.
So, use this capability only if you need it!

� Loops with sample rates > 2 seconds are processed at the rate of one
or fewer loops per scan, at the minimum rate required to maintain each
loop’s sample rate.

The implementation of loop calculation scheduling is shown in the flow chart below.
This is a more detailed look at the contents of the “Calculate PID Loops” task in the
CPU scan activities flow chart. The pointers “I” and “J” correspond to the slow (> 2
sec) and fast (� 2 sec) loops, respectively. The flow chart allows the J pointer to
increment from loop 1 to the last loop, if there are any fast loops specified. The I
pointer increments only once per scan, and then only when the next slow loop is due
for an update. In this way, both I and J pointers cycle from 1 to the highest loop
number used, except at different rates. Their combined activity keeps all loops
properly updated.

Loop J
Sample rate � 2 sec?

No

Yes

Loop J
PID Calculation

Loop J
Time up?

No

J > total
number of loops?

No Yes

Loop I
Time up?

Loop I
PID Calculation

Yes

I > total number
selected loops?

Yes

No

Yes

Set J = J+1 Set J = 0

Set I = I+1

Set I=0

Loop Sample Times � 2 seconds: Loop Sample Times > 2 seconds:

Begin PID loop task

End PID loop task

No

P
ID

 Loop O
peration

M
aintenance

8–17
PID Loop Operation

Ten Steps to Successful Process Control
Modern electronic controllers such as the DL05 CPU provide sophisticated process
control features. Automated control systems can be difficult to debug, because a
given symptom can have many possible causes. We recommend a careful,
step-by-step approach to bringing new control loops online:

The most important knowledge is – how to make your product. This knowledge is
the foundation for designing an effective control system. A good process “recipe”
will do the following:
� Identify all relevant Process Variables, such as temperature, pressure, or

flow rates, etc. which need precise control.
� Plot the desired Setpoint values for each process variables for the duration

of one process cycle.

This simply means choosing the method the machine will use to maintain control
over the Process Variables to follow their Setpoints. This involves many issues and
trade-offs, such as energy efficiency, equipment costs, ability to service the machine
during production, and more. You must also determine how to generate the Setpoint
value during the process, and whether a machine operator can change the SP.

Assuming the control strategy is sound, it is still crucial to properly size the actuators
and properly scale the sensors.

� Choose an actuator (heater, pump. etc.) which matches the size of the
load. An oversized actuator will have an overwhelming effect on your
process after a SP change. However, an undersized actuator will allow
the PV to lag or drift away from the SP after a SP change or process
disturbance.

� Choose a PV sensor which matches the range of interest (and control)
for our process. Decide the resolution of control you need for the PV
(such as within 2 deg. C), and make sure the sensor input value
provides the loop with at least 5 times that resolution (at LSB level).
However, an over-sensitive sensor can cause control oscillations, etc.
The DL05 provides 12–bit and 15–bit unipolar and bipolar data format
options, and a 16–bit unipolar option. This selection affects SP, PV,
Control Output and Integrator sum.

After deciding the number of loops, PV variables to measure, and SP values, you
can choose the appropriate I/O modules. Refer to the figure on the next page. In
many cases, you will be able to share input or output modules, or use a analog I/O
combination module, among several control loops. The example shown sends the
PV and Control Output signals for two loops through the same set of modules.
We offer DL05 analog input modules with 4 channels per module
that accept 0 – 20mA or 4 – 20mA signals. Also, analog input and output combination
modules are now available.

Step 1:
Know the Recipe

Step 2:
Plan Loop
Control Strategy

Step 3:
Size and Scale
Loop Components

Step 4:
Select I/O Modules

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–18
PID Loop Operation

Loop 1 Data
SP

V-memory Digital
Output

DL05 CPU

Input
Module

Channel 1 Process 1

Process 2

PV OUT

Channel 2
Loop 2 Data

SPPV OUT

Channel 3

Channel 4

Channel 1

Channel 2

After selection and procurement of all loop components and I/O module(s), you can
perform the wiring and installation. Refer to the wiring guidelines in Chapter 2 of this
Manual, and to the D0–OPTIONS–M manual. The most common wiring errors when
installing PID loop controls are:

� Reversing the polarity of sensor or actuator wiring connections.
� Incorrect signal ground connections between loop components.

After wiring and installation, choose the loop setup parameters. The easiest method
for programming the loop tables is using DirectSOFT32 (3.0c or later). This software
provides PID Setup dialog boxes which simplify the task. Note: It is important to
understand the meaning of all loop parameters mentioned in this chapter before
choosing values to enter.

With the sensor and actuator wiring done, and loop parameters entered, we must
manually and carefully check out the new control system (use Manual Mode).

� Verify that the PV value from the sensor is correct.
� If it is safe to do so, gradually increase the control output up above 0%,

and see if the PV responds (and moves in the correct direction!).

If the Open Loop Test (see Loop Tuning on page 8–38) shows the PV reading is
correct and the control output has the proper effect on the process, you can follow
the closed loop tuning procedure (see Automatic Mode on page 8–39). In this step,
you tune the loop so the PV automatically follows the SP.

If the closed loop test shows the PV will follow small changes in the SP, consider
running an actual process cycle. You will need to have completed the programming
which will generate the desired SP in real time. In this step, you may want to run a
small test batch of product through the machine, watching the SP change according
to the recipe.

WARNING: Be sure the Emergency Stop and power-down provision is readily
accessible, in case the process goes out of control. Damage to equipment and/or
serious injury to personnel can result from loss of control of some processes.

When the loop tests and tuning sessions are complete, be sure to save all loop setup
parameters to disk.

Step 5:
Wiring and
Installation

Step 6:
Loop Parameters

Step 7:
Check Open Loop
Performance

Step 8:
Loop Tuning

Step 9:
Run Process Cycle

Step 10:
Save Parameters

P
ID

 Loop O
peration

M
aintenance

8–19
PID Loop Operation

Basic Loop Operation

Each PID loop is dependent on the instructions and data values in its respective loop
table. The following diagram shows an example of the loop table locations
corresponding to the main three loop variables: SP, PV, and Control Output. The
example below begins at V2000 (you can use any memory location compatible with
Loop Table requirements). The SP, PV and Control Output are located at the
addresses shown.

Process Variable V+03

Loop
Calculation�

Error
Term+

–

Control Output V+05Setpoint V+02

Loop Table

V2002 SetpointXXXX

V2003 Process VariableXXXX

V2005 Control OutputXXXX

The data for the SP, PV, and Control Output must interface with real-world devices.
In the figure below, the sources or destinations are shown for each loop variable. The
Control Output and Process Variable values move through the analog input/output
combination module to interface with the process itself.
A few rungs of ladder logic are required to copy data from the analog module to the
loop table, or vice versa. Refer to the analog module chapter of this manual for an
example of the required ladder logic.

Process Variable V+03

Loop
Calculation�+

–

Control Output V+05Setpoint V+02

Analog
Output

Analog
Input

Setpoint Sources:

Operator Input
Ramp/soak generator
Ladder Program
Another loop’s output (cascade)

Process

The Setpoint has several possible sources, as listed above. Many applications will
use two or more of the sources at different times, depending on the loop mode. In
addition, the loop control strategy and programming method also determine how the
setpoint is generated.
When using the built-in Ramp/Soak generator or when cascading a loop, the PID
controller automatically writes the setpoint data in location V+02 for you. If you want
to use a setpoint from any other source, the ladder program must write that
setpoint to the loop table location V+02.
Each of the three main loop parameters can have only one source or destination at
any given time. During the application development, it is a good idea to draw loop
schematic diagrams showing data sources, etc., to help avoid mistakes.

Data Locations

Data Sources

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–20
PID Loop Operation

The loop controller in the DL05 PLC has the ability to directly access analog input
and output values independent of the ladder logic scan. These values represent the
process variable (PV) and the control output. The Direct Access feature makes it
possible for the loop controller to perform closed-loop control while the CPU is in
Program Mode.
The loop controller can read the analog PV value in the selected data format directly
from the desired analog input module and write the control output value in the same or
a different data format to the desired analog output. The Direct Access feature, when
enabled, accesses the analog values only once per PID calculation for each
respective loop. The ladder logic, however, may simultaneously access the same
analog input data by the standard method (LD instruction) or by the pointer method
whenever the CPU is in Run Mode.

NOTE: If PID direct access is used, do not use the analog output pointer logic to send
data to the outputs.

You may optionally configure each loop to access its analog I/O (PV and control
output) by placing proper values in the associated loop table registers. The figure
below shows the loop table parameters at V+36 and V+37 and their role in direct
access to the analog values.

���������	�
	�������

Loop
Calculation�

�����

�

�����������������������
������

Loop Table

V2036 Slot / channel number for PV0F XX

V2037 Slot / channel number for Output0F XX

0F XX

��	�������������������

��	� ��!������
���"� ���#����

You may program these loop table parameters directly, or use the appropriate
DirectSOFT32 dialog box for easy configuring. For example, a value of “0F02” in
register V2036 directs the loop controller to read the PV data from channel 1 of the
analog input module. A value of “0000” in either register tells the loop controller not to
access the corresponding analog value directly. In that case, ladder logic must
transfer the value between the loop table and the analog input module.
If the PV or control output values require some math manipulation by ladder logic,
then it will not be possible to use the direct access function of the loop controller. In
this case, ladder logic will have to perform the math and transfer the data from the
analog module as required.

NOTE: The loop controller restricts the transfer of analog data to or from the module
to one method. In other words, you must designate the analog module for direct
access or ladder logic access.

Direct Access
to Analog I/O

P
ID

 Loop O
peration

M
aintenance

8–21
PID Loop Operation

The DL05 gives you the three standard control modes: Manual, Automatic, and
Cascade. The sources of the three basic variables SP, PV, and control output are
different for each mode. An introduction to the three control modes and their signal
sources follows.

In Manual Mode, the loop is not executing PID calculations (however, loop alarms
are still active). With regard to the loop table, the CPU stops writing values to location
V+05 for that loop. It is expected that an operator or other intelligent source is
manually controlling the output, by observing the PV and writing data to V+05 as
necessary to keep the process under control. The drawing below shows the
equivalent schematic diagram of manual mode operation.

Loop
Calculation

Control Output V+05

Input from Operator Manual

Auto

In Automatic Mode, the loop operates normally and generates new control output
values. It calculates the PID equation and writes the result in location V+05 every
sample period of that loop. The equivalent schematic diagram is shown below.

Loop
Calculation

Control Output V+05

Input from Operator Manual

Auto

In Cascade Mode, the loop operates as it does in Automatic Mode, with one
important difference. The data source for the SP changes from its normal location at
V+02, using the control output value from another loop. So in Auto or Manual modes,
the loop calculation uses the data at V+02. In Cascade Mode, the loop calculation
reads the control output from another loop’s parameter table.

Process Variable

�+
–

Setpoint

Cascade

Auto/Manual

Control Output V+05

Normal SP V+02

Loop
Calculation

Control Output

Loop
Calculation

Cascaded loopAnother loop

As pictured below, A loop can be changed from one mode to another, but cannot go
from Manual Mode directly to Cascade, or vice versa. This mode change is
prohibited because a loop would be changing two data sources at the same time,
and could cause a loss of control.

Manual Automatic Cascade

Loop Modes

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–22
PID Loop Operation

The DL05 PLC has the ability to run PID calculations while the CPU is in Program
Mode. Usually, a CPU in Program Mode has halted all operations. However, a DL05
PLC in Program Mode may or may not be running PID calculations (and providing
PID control output), depending on your configuration settings. Having the ability to
run loops independent of the ladder logic makes it feasible to make a ladder logic
change while the process is still running. This is especially beneficial for large-mass
continuous processes that are difficult or costly to interrupt.
Loops that run independent of the ladder scan must have the ability to directly
access the analog module channels for the PV and control output values. The loop
controller does have this capability, which is covered in the section on direct access
of analog I/O (located prior to this section in this chapter).
The relationship between CPU modes and loop modes is depicted in the figure
below. The vertical dashed line shows the optional relationship between the mode
changes. Bit 15 of PID Mode 1 setting word (V+00) determines the selection. If set to
zero so the loop follows the CPU mode, then placing the CPU in Program Mode will
force all loops into Manual Mode. Similarly, placing the CPU in Run mode will allow
each loop to return to the mode it was in previously (which includes Manual,
Automatic, and Cascade). With this selection you automatically affect the modes of
the loops by changing the CPU mode.

Manual Automatic Cascade"� ����	�$�

��%������!����&���'���� �

"� ����	�$�

Program Run"� ����	�$�

CPU Modes:

Loop
Modes:

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Loop Mode Linking

��%������
��
� ���� ����
�!��'���� �

If Bit 15 is set to one, then the loops will run independent of the CPU mode. It is like
having two independent processors in the CPU... one is running ladders and the
other is running the process loops.

NOTE: To make changes to any loop table parameter values, the PID loop must be
in Manual Mode and the PLC must be stopped. If you have selected (as shown
above) to operate the PID loop independent of the CPU mode, then you must take
certain steps to make it possible to make loop parameter changes. You can
temporarily make the loops follow the CPU mode by changing bit 15 to 0. Then your
programming device (such as DirectSOFT32) will be able to place the loop into
Manual Mode. After you change the loop’s parameter setting, just restore bit 15 to a
value of 1 to re-establish PID operation independent of the CPU.

CPU Modes and
Loop Modes

P
ID

 Loop O
peration

M
aintenance

8–23
PID Loop Operation

The first three bits of the PID Mode 1 word
(V+00) request the operating mode of the
corresponding loop. Note: these bits are
mode change requests, not commands
(certain conditions can prohibit a
particular mode change – see next page).

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Automatic
Cascade Manual

The normal state of these mode request bits is “000”. To request a mode change, you
must SET the corresponding bit to a “1”, for one scan. The PID loop controller
automatically resets the bits back to “000” after it reads the mode change request.
Methods of requesting mode changes are:

� DirectSOFT32’s PID View – this is the easiest method. Click on one of
the radio buttons, and DirectSOFT32 sets the appropriate bit.

� HPP – Use Word Status (WD ST) to monitor the contents of V+00,
which will be a 4-digit BCD/hex value. You must calculate and enter a
new value for V+00 that ORs the correct mode bit with its current value.

� Ladder program– ladder logic can request any loop mode when the
PLC is in Run Mode. This will be necessary after application startup.

Use the program shown to the right to SET
the mode bit on (do not use an out coil). On
a 0–1 transition of X0, the rung sets the
Auto bit = 1. The loop controller resets it.

X0

SET
B2000.1

Go to Auto Mode

� Operator panel – interface the operator’s panel to ladder logic using
standard methods, then use the technique above to set the mode bit.

Since we can only request mode changes, the PID loop controller decides when to
permit mode changes and provides the loop mode status. It reports the current mode
on bits 0, 1, and 2 of the Loop Mode and Alarm Status word, location V+06 in the loop
table. The parallel request / monitoring functions are shown in the figure below. The
figure also shows the two possible mode-dependent SP sources, and the two
possible Control Output sources.

Process Variable

�
Error Term

+
–

Input from Operator

Control Output

Setpoint

Manual

Auto/Cascade

Cascade

Auto/Manual

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Automatic
Cascade Manual

Control Output
from another loop

Normal Source

Loop
Calculation

PID Mode
Control

Mode Select

Loop Mode and Alarm Status V+06

013456789101112131415 2Bit

Automatic
Cascade Manual

Mode Request Mode Monitoring

How to Change
Loop Modes

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–24
PID Loop Operation

Since the modes Manual, Auto, and Cascade are the most fundamental and
important PID loop controls, you may want to “hard-wire” mode control switches to
an operator’s panel. Most applications will need only Manual and Auto selections
(Cascade is used in a few advanced applications). Remember that mode controls
are really mode request bits, and the actual loop mode is indicated elsewhere.
The following figure shows an operator’s panel using momentary push-buttons to
request PID mode changes. The panel’s mode indicators do not connect to the
switches, but interface to the corresponding data locations.

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Operator’s Panel

Loop Mode and Alarm Status V+06

013456789101112131415 2Bit

Mode Request Mode Monitoring

Auto

Cascade

Manual

If you have selected the option for the loops to follow the PLC mode, the PLC modes
(Program, Run) interact with the loops as a group. The following summarizes this
interaction:

� When the PLC is in Program Mode, all loops are placed in Manual Mode
and no loop calculations occur. However, note that output modules
(including analog outputs) turn off in PLC Program Mode. So, actual
manual control is not possible when the PLC is in Program Mode.

� The only time the CPU will allow a loop mode change is during PLC run
Mode operation. As such, the CPU records the modes of all 16 loops as
the desired mode of operation. If power failure and restoration occurs
during PLC Run Mode, the CPU returns all loops to their prior mode
(which could be Manual, Auto, or Cascade).

� On a Program-to-Run mode transition, the CPU forces each loop to
return to its prior mode recorded during the last PLC Run Mode.

� You can add and configure new loops only when the PLC is in Program
Mode. New loops automatically begin in Manual Mode.

In normal conditions the mode of a loop is determined by the request to V+00, bits 0,
1, and 2. However, some conditions exist which will prevent a requested mode
change from occurring:

� A loop that is not set independent of PLC mode cannot change modes
when the PLC is in Program mode.

� A major loop of a cascaded pair of loops cannot go from Manual to Auto
until its minor loop is in Cascade mode.

In other situations, the PID loop controller will automatically change the mode of the
loop to ensure safe operation:

� A loop which develops an error condition automatically goes to Manual.
� If the minor loop of a cascaded pair of loops leaves Cascade Mode for

any reason, its major loop automatically goes to Manual Mode.

Operator Panel
Control of
PID Modes

PLC Modes’ Effect
on Loop Modes

Loop Mode
Override

P
ID

 Loop O
peration

M
aintenance

8–25
PID Loop Operation

In process control, the word “transfer” has a particular meaning. A loop transfer
occurs when we change its mode of operation, as shown below. When we change
loop modes, what we are really doing is causing a transfer of control of some loop
parameter from one source to another. For example, when a loop changes from
Manual Mode to Automatic Mode, control of the output changes from the operator to
the loop controller. When a loop changes from Automatic Mode to Cascade Mode,
control of the SP changes from its original source in Auto Mode to the output of
another loop (the major loop).

Manual Automatic CascadeMode change

Transfer

Operator
generates
loop output

PID
calculates
loop output

SP
generated

local to loop

SP
generated

remotely by
major loop

Transfer

Mode change

The basic problem of loop transfers is the two different sources of the loop parameter
being transferred will have different numerical values. This causes the PID
calculation to generate an undesirable step change, or “bump” on the control output,
thereby upsetting the loop to some degree. The “bumpless transfer” feature
arbitrarily forces one parameter equal to another at the moment of loop mode
change, so the transfer is smooth (no bump on the control output).

The bumpless transfer feature of the DL05
loop controller is available in two types:
Bumpless I, and Bumpless II. Use
DirectSOFT32’s PID Setup dialog box to
select transfer type. Or, you can use bit 3
of PID Mode 1 V+00 setting as shown.

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Bumpless Transfer I / II select

The characteristics of Bumpless I and II transfer types are listed in the chart below.
Note that their operation also depends on which PID algorithm you are using, the
position or velocity form of the PID equation. Note that you must use Bumpless
Transfer type I when using the velocity form of the PID algorithm.

Transfer
Type

Transfer
Select Bit

PID Algorithm Manual-to-Auto
Transfer Action

Auto-to-Cascade
Transfer Action

Bumpless
Transfer I

0 Position Forces Bias = Control Output
Forces SP = PV

Forces Major Loop Output =
Minor Loop PV

Velocity Forces SP = PV Forces Major Loop Output =
Minor Loop PV

Bumpless
Transfer II

1 Position Forces Bias = Control Output none
Transfer II

Velocity none none

Bumpless
Transfers

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–26
PID Loop Operation

PID Loop Data Configuration

In choosing the Process Variable range and resolution, a related choice to make is
the data format of the three main loop variables: SP, PV, and Control Output (the
Integrator sum in V+04 also uses this data format). The four data formats available
are 12 or 15 bit (right justified), signed or unsigned (MSB is sign bit in bipolar
formats). The four binary combinations of bits 0 and 1 of PID Mode 2 word V+01
choose the format. The DirectSOFT32 PID Setup dialog sets these bits
automatically when you select the data format from the menu.

Process Variable V+03

Loop
Calculation�+

–

Control Output V+05Setpoint V+02

013456789101112131415 2Bit

12 bit unipolar

12 bit bipolar

15 bit bipolar

15 bit unipolar

0 to 0FFF (0 to 4095)

0 to 0FFF, 8FFF to 8001
(0 to 4095, –4095 to –1)

0 to 32767

0 to 7FFF, FFF to 8001
(0 to 32767, –32767 to –1)

Data formats

013456789101112131415 2Bit

PID Mode 2 Setting V+01

0 0

0 1

1 0

1 1

Select data
format using
bits 0 and 1.

= sign bit

LSB

The data format is a very powerful setting, because it determines the numerical
interface between the PID loop and the PV sensor, and the Control Output device.
The Setpoint must also be in the same data format. Normally, the data format is
chosen during the initial loop configuration and is not changed again.

Choosing the data format involves deciding whether to use unipolar or bipolar
numbers. Most applications such as temperature control will use only positive
numbers, and therefore need unipolar format. Usually it is the Control Output which
determines bipolar/unipolar selection. For example, velocity control may include
control of forward and reverse directions. At a zero velocity setpoint the desired
control output is also zero. In that case, bipolar format must be used.

Unipolar Bipolar

Loop Parameter
Data Formats

Choosing Unipolar
or Bipolar Format

P
ID

 Loop O
peration

M
aintenance

8–27
PID Loop Operation

In many batch process applications, sensors or actuators interface to DL05 analog
modules using 4–20 mA signals. This signal type has a built-in 20% offset, because
the zero-point is a 4 mA instead of 0 mA. However, remember the analog modules
convert the signals into data and remove the offset at the same time. For example, a
4–20 mA signal is often converted to 0000 – 0FFF hex, or 0 to 4095 decimal. In this
case, all you need to do is choose 12-bit unipolar data format, and make sure the
ladder program copies the data appropriately between the loop table and the analog
modules.

� PV Offset – In the event you have a PV value with a 20% offset, convert
it to zero–offset by subtracting 20% of the top of its range, and multiply
by1.25.

� Control Output – In the event the Control Output is going to a device
with 20% offset, all you need to do is have the ladder program write a
value equivalent to the offset to the integrator register (V+04), before
transitioning from Manual to Auto mode. The loop will then see this
offset as a part of the process, taking care of it for you automatically.

The Setpoint in loop table location V+02 represents the desired value of the process
variable. After selecting the data format for these variables, you can set limits on the
range of SP values which the loop calculation will use. Many loops have two or more
possible sources writing the Setpoint at various times, and the limits you set will help
safeguard the process from the effects of a bad SP value.
In the figure below, the SP has a selectable limit function, enabled by PID Mode 2
Setting V+01 word, bit 3. If enabled, then locations V+26 and V+27 determine the
lower and upper SP limits, respectively. The loop calculation applies this limit
internally, so it is always possible to write any value to V+02.

Process Variable (PV)

Loop
Calculation�+

–

Control
Output

PID Mode 2 Setting V+01

013456789101112131415 2Bit

Setpoint

No
Limits

With
Limits

0

1

SP Limits enable

Loop Table

V+26 SP Lower LimitXXXX

V+27 SP Upper LimitXXXX

The loop calculation checks these SP upper and lower limits before each
calculation. This means ladder logic can change the limit settings while a process is
in progress, allowing you to keep a tighter guard band on the SP input value.

Handling
Data Offsets

Setpoint (SP)
Limits

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–28
PID Loop Operation

You may recall there are generally several possible data sources for the SP value.
The PID loop controller has the built-in ability to select between two sources
according to the current loop mode. Refer to the figure below. A loop reads its
setpoint from table location V+02 in Auto or Manual modes. If you plan to use
Cascade Mode for the loop at any time, then you must program its loop parameter
table with a remote setpoint pointer.
The Remote SP pointer resides in location V+32 in the loop table. For loops that will
be cascaded (made a minor loop), you will need to program this location with the
address of the major loop’s Control Output address. Find the starting location of the
major loop’s parameter table and add offset +05 to it.

Process Variable

�+
–

Setpoint

Cascade

Auto/Manual

Control Output V+05

Normal SP V+02

Loop
Calculation

Control Output

Loop
Calculation

Cascaded loop
Another loop

Loop Table

V+32 Remote SP PointerXXXX

(minor loop)
(major loop)

A DirectSOFT32 Loop Setup dialog box will allow you to enter the Remote SP
pointer if you know the address. Otherwise, you can enter it with a HPP or program it
through ladder logic using the LDA instruction.

The process variable input to each loop is the value the loop is ultimately trying to
control, to make it equal to the setpoint and follow setpoint changes as quickly as
possible. Most sensors for process variables have a primarily linear response curve.
Most temperature sensors are mostly linear across their sensing range. However,
flow sensing using an orifice plate technique gives a signal representing
(approximately) the square of the flow. Therefore, a square-root extract function is
necessary before using the signal in a linear control system (such as PID).
Some flow transducers are available which will do the square-root extract, but they
add cost to the sensor package. The PID loop PV input has a selectable square-root
extract function, pictured below. You can select between normal (linear) PV data,
and data needing a square-root extract by using PID Mode setting V+00 word, bit 6.

Loop
Calculation�+

–

Control Output

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Linear/Square-root PV select

0

1

Linear PV

Square-
root PV

Setpoint

Process Variable

Remote Setpoint
(SP) Location

Process Variable
(PV) Configuration

P
ID

 Loop O
peration

M
aintenance

8–29
PID Loop Operation

IMPORTANT: The scaling of the SP must be adjusted if you use PV square-root
extract, because the loop drives the output so the square root of the PV is equal to
the PV input. Divide the desired SP value by the square root of the analog span, and
use the result in the V+02 location for the SP. This does reduce the resolution of the
SP, but most flow control loops do not require a lot of precision (the recipient of the
flow is integrating the errors). Use one of the following formulas for the SP according
to the data format you are using. It’s a good idea to set the SP upper limit to the top of
the allowed range.

Data Format SP Scaling SP Range PV range

12-bit SP = PV input / 64 0 – 64 0 – 4095

15-bit SP = PV input / 181.02 0 – 181 0 – 32767

The Control Output is the numerical result of the PID calculation. All of the other
parameter choices ultimately influence the value of a loop’s Control Output for each
calculation. Some final processing selections dedicated to the Control Output are
available, shown below. At the far right of the figure, the final output may be restricted
by lower and upper limits that you program. The values for V+30 and V+31 may be
set once using DirectSOFT32’s PID Setup dialog box.
The Control Output lower and upper limits can help guard against commanding an
excessive correction to an error when a loop fault occurs (such as PV sensor signal
loss). However, do not use these limits to restrict mechanical motion that might
otherwise damage a machine (use hard-wired limit switches instead).

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Normal / Inverted Output Select

0

1

Normal Output

Inverted Output

With
Limits

Loop Table

V+30 Control Output Lower LimitXXXX

V+31 Control Output Upper LimitXXXX

The other available selection is the normal/inverted output selection (called
“forward/reverse” in DirectSOFT). Use bit 4 of the PID Mode 1 Setting V+00 word to
configure the output. Independently of unipolar or bipolar format, a normal output
goes upward on positive errors and downward on negative errors (where
Error=(SP–PV)). The inverted output reverses the direction of the output change.
The normal/inverted output selection is used to configure
direct-acting/reverse-acting loops. This selection is ultimately determined by the
direction of the response of the process variable to a change in the control output in a
particular direction. Refer to the PID Algorithms section for more on direct-acting and
reverse-acting loops.

Control Output
Configuration

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–30
PID Loop Operation

The Error term is internal to the CPUs PID loop controller, and is generated again in
each PID calculation. Although its data is not directly accessible, you can easily
calculate it by subtracting: Error = (SP–PV). If the PV square-root extract is enabled,
then Error = (SP – (sqrt(PV)). In any case, the size of the error and algebraic sign
determine the next change of the control output for each PID calculation.
Now we will superimpose some “special effects” on to the error term as described.
Refer to the diagram below. Bit 7 of the PID Mode Setting 1 V+00 word lets you select
a linear or squared error term, and bit 8 enables or disables the error deadband.

NOTE: When first configuring a loop, it’s best to use the standard error term. After
the loop is tuned, then you will be able to tell if these functions will enhance control.

Process Variable

Loop
Calculation�

Error
Term

+
–

Setpoint

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Linear/Squared Error select

0

1

Error

Error
squared

0

1

Error

Error with
Deadband

Error Deadband select

Loop Table

V+23 Error DeadbandXXXX

Error Squared – When selected, the squared error function simply squares the
error term (but preserves the original algebraic sign), which is used in the
calculation. This affects the Control Output by diminishing its response to smaller
error values, but maintaining its response to larger errors. Some situations in which
the error squared term might be useful:

� Noisy PV signal – using a squared error term can reduce the effect of
low-frequency electrical noise on the PV, which will make the control
system jittery. A squared error maintains the response to larger errors.

� Non-linear process – some processes (such as chemical pH control)
require non-linear controllers for best results. Another application is
surge tank control, where the Control Output signal must be smooth.

Error Deadband – When selected, the error deadband function takes a range of
small error values near zero, and simply substitutes zero as the value of the error. If
the error is larger than the deadband range, then the error value is used normally.
Loop parameter location V+23 must be programmed with a desired deadband
amount. Units are the same as the SP and PV units (0 to FFF in 12-bit mode, and 0 to
7FFF in 15-bit mode). The PID loop controller automatically applies the deadband
symmetrically about the zero-error point.

Error Term
Configuration

P
ID

 Loop O
peration

M
aintenance

8–31
PID Loop Operation

PID Algorithms
The Proportional–Integral–Derivative (PID) algorithm is widely used in process
control. The PID method of control adapts well to electronic solutions, whether
implemented in analog or digital (CPU) components. The DL05 CPU implements the
PID equations digitally by solving the basic equations in software. I/O modules serve
only to convert electronic signals into digital form (or vise-versa).
The DL05 features two types of PID controls: “position” and “velocity”. These terms
usually refer to motion control situations, but here we use them in a different sense:

� PID Position Algorithm – The control output is calculated so it responds
to the displacement (position) of the PV from the SP (error term).

� PID Velocity Algorithm – The control output is calculated to represent
the rate of change (velocity) for the PV to become equal to the SP.

The majority of applications will use the position form of the PID equation. If you are
not sure of which algorithm to use, try the Position Algorithm first. Use
DirectSOFT32’s PID View Setup dialog box to select the desired algorithm. Or, use
bit 5 of PID Mode 1 Setting V+00 word as shown below to select the algorithm.

Process Variable

�+
–

Setpoint

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Position / Velocity select

Loop Calculation
0

1

Position Algorithm
Control Output

Velocity Algorithm

Error

NOTE: The selection of a PID algorithm is very fundamental to control loop
operation, and is normally never changed after the initial configuration of a loop.

The Position Algorithm causes the PID equation to calculate the Control Output Mn:

�Mn = Kc * en + Ki * ei + Kr * (en – en–1) + Mo
i=1

n

In the formula above, the sum of the integral terms and the initial output are
combined into the “Bias” term, Mx. Using the bias term, we define formulas for the
Bias and Control Output as a function of sampling time:

Mn = Kc * en + Kr * (en – en–1) + Mxn.....Output for sampling time “n”

Mxo =Mo

Mxn =Ki * en + Mxn–1

Mn = Ki * �ei + Mo
i=1

n

Position Algorithm

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–32
PID Loop Operation

The position algorithm variables and related variables are:
Ts = Sample rate
Kc = Proportional gain
Ki = Kc * (Ts/Ti) coefficient of integral term
Kr = Kc * (Td/Ts) coefficient of derivative term
Ti = Reset time (integral time)
Td = Rate time (derivative time)
SPn = Set Point for sampling time “n” (SP value)
PVn = Process variable for sampling time “n” (PV)
en = SPn – PVn = Error term for sampling time “n”
M0 = Control Output for sampling time “0”
Mn = Control Output for sampling time “n”

Analysis of these equations will be found in most good text books on process control.
At a glance, we can isolate the parts of the PID Position Algorithm which correspond
to the P, I, and D terms, and the Bias as shown below.

�Mn = Kc * en + Ki * ei + Kr * (en – en–1) + Mo
i=1

n

Control
Output

Proportional
Term

Initial
Output

Integral
Term

Derivative
Term

Bias
Term

The initial output is the output value assumed from Manual mode control when the
loop transitioned to Auto Mode. The sum of the initial output and the integral term is
the bias term, which holds the “position” of the output. Accordingly, the Velocity
Algorithm discussed next does not have a bias component.

The Velocity Algorithm form of the PID equation can be obtained by transforming
Position Algorithm formula with subtraction of the equation of (n–1)th degree from
the equation of nth degree.
The velocity algorithm variables and related variables are:

Ts = Sample rate
Kc = Proportional gain
Ki = Kc * (Ts/Ti) = coefficient of integral term
Kr = Kc * (Td/Ts) = coefficient of derivative term
Ti = Reset time (integral time)
Td = Rate time (derivative time)
SPn = Set Point for sampling time “n” (SP value)
PVn = Process variable for sampling time “n” (PV)
en = SPn – PVn = Error term for sampling time “n”
Mn = Control Output for sampling time “n”

The resulting equations for the Velocity Algorithm form of the PID equation are:

�Mn = Kc * (en – en–1) + Ki * en + Kr * (en – 2*en–1 +en–2)

�Mn =Mn – Mn–1

Velocity Algorithm

P
ID

 Loop O
peration

M
aintenance

8–33
PID Loop Operation

The gain of a process determines, in part, how it must be controlled. The process
shown in the diagram below has a positive gain, which we call “direct-acting”. This
means that when the control output increases, the process variable also eventually
increases. Of course, a true process is usually a complex transfer function that
includes time delays. Here, we are only interested in the direction of change of the
process variable in response to a control output change.
Most process loops will be direct-acting, such as a temperature loop. An increase in
the heat applied increases the PV (temperature). Accordingly, direct-acting loops
are sometimes called heating loops.

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint

Process

+

Direct-Acting Loop

A “reverse-acting” loop is one in which the process has a negative gain, as shown
below. An increase in the control output results in a decrease in the PV. This is
commonly found in refrigeration controls, where an increase in the cooling input
causes a decrease in the PV (temperature). Accordingly, reverse-acting loops are
sometimes called cooling loops.

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint

Process

–

Reverse-Acting Loop

It is crucial to know whether a particular loop is direct or reverse-acting!
Unless you are controlling temperature, there is no obvious answer. In a flow control
loop, a valve positioning circuit can be configured and wired reverse-acting as easily
as direct-acting. One easy way to find out is to run the loop in Manual Mode, where
you must manually generate control output values. Observe whether the PV goes up
or down in response to a step increase in the control output.
To run a loop in Auto or Cascade Mode, the control output must be correctly
programmed (refer to the previous section on Control Output Configuration). Use
“normal output” for direct-acting loops, and “inverted output” for reverse-acting
loops. To compensate for a reverse-acting loop, the PID controller must know to
invert the control output. If you have a choice, configure and wire the loop to be
direct-acting. This will make it easier to view and interpret loop data during the loop
tuning process.

Direct-Acting and
Reverse-Acting
Loops

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–34
PID Loop Operation

You may recall the introduction of the position and velocity forms of the PID loop
equations. The equations basically show the three components of the PID
calculation. The following figure shows a schematic form of the PID calculation, in
which the control output is the sum of the proportional, integral and derivative terms.
On each calculation of the loop, each term receives the same error signal value.

Process Variable

�
Error Term

+
–

Control OutputSetpoint
�+

P

I

D

Loop Calculation

+

+

The role of the P, I, and D terms in the control task are as follows:
� Proportional – the proportional term simply responds proportionally to

the current size of the error. This loop controller calculates a
proportional term value for each PID calculation. When the error is zero,
the proportional term is also zero.

� Integral – the integrator (or reset) term integrates (sums) the error
values. Starting from the first PID calculation after entering Auto Mode,
the integrator keeps a running total of the error values. For the position
form of the PID equation, when the loop reaches equilibrium and there
is no error, the running total represents the constant output required to
hold the current position of the PV.

� Derivative – the derivative (or rate) term responds to change in the
current error value from the error used in the previous PID calculation.
Its job is to anticipate the probable growth of the error and generate a
contribution to the output in advance.

The P, I, and D terms work together as a team. To do that effectively, they will need
some additional instructions from us. The figure below shows the P, I, and D terms
contain programmable gain values kp, ki, and kd respectively. The values reside in
the loop table in the locations shown. The goal of the loop tuning process (covered
later) is to derive gain values that result in good overall loop performance.

NOTE: The proportional gain is also simply called “gain”, in PID loop terminology.

Process Variable

�
Error Term

+
–

Control OutputSetpoint
�+

P

I

D

Loop Calculation

+

+

kp

ki

kd

Loop Table

V+10 Proportional gainXX.XX

V+11 Integral gainXX.XX

V+12 Derivative gainXX.XX

P-I-D Loop Terms

P
ID

 Loop O
peration

M
aintenance

8–35
PID Loop Operation

The P, I and D gains are 4-digit BCD
numbers with values from 0000 to 9999.
They contain an implied decimal point in
the middle, so the values are actually
00.00 to 99.99. Some gain values have
units – Integral gain may be in units of
seconds or minutes, by programming the
bit shown. Derivative gain is in seconds.

�+

P

I

D

+

+

kp

ki

kd

V+10 P gainXX.XX

V+11 I gainXX.XX

V+12 D gainXX.XX

–

0=sec, 1=min.

sec. PID Mode 2 Setting V+01

013456789101112131415 2Bit

Units select

In DirectSOFT32’s trend view, you can program the gain values and units in realtime
while the loop is running. This is typically done only during the loop tuning process.
Proportional Gain – This is the most basic gain of the three. Values range from
0000 to 9999, but they are used internally as xx.xx. An entry of “0000” effectively
removes the proportional term from the PID equation. This accommodates
applications which need integral-only loops.
Integral Gain – Values range from 0001 to 9998, but they are used internally as
xx.xx. An entry of “0000” or “9999”causes the integral gain to be “�”, effectively
removing the integrator term from the PID equation. This accommodates
applications which need proportional-only loops. The units of integral gain may be
either seconds or minutes, as shown above.
Derivative Gain – Values range from 0001 to 9999, but they are used internally as
xx.xx. An entry of “0000” allows removal of the derivative term from the PID equation
(a common practice). This accommodates applications which need proportional
and/or integral-only loops. The derivative term has an optional gain limiting feature,
discussed in the next section.

NOTE: It is very important to know how to increase and decrease the gains. The
proportional and derivative gains are as one might expect... smaller numbers
produce less gains and larger numbers produce more gain. However, the integral
term has a reciprocal gain(1/Ts), so smaller numbers produce more gain and larger
numbers produce less gain. This is very important to know during loop tuning.

Each of the P, I, and D gains allows a setting to eliminate that term from the PID
equation. Many applications actually work best by using a subset of PID control. The
figure below shows the various combinations of PID control offered on the DL05. We
do not recommend using any other combination of control, because most of them
are inherently unstable.

�+

P

I

D +

+
�+

P

I
+

�P
+

�I
+

Using a Subset of
PID Control

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–36
PID Loop Operation

The derivative term is unique in that it has an optional gain-limiting feature. This is
provided because the derivative term reacts badly to PV signal noise or other causes
of sudden PV fluctuations. The function of the gain-limiting is shown in the diagram
below. Use bit 9 of PID Mode 1 Setting V+00 word to enable the gain limit.

Process Variable

�
Error Term

+
–

Control
OutputSetpoint

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Derivative gain limit select

�+

P

I

D

Loop Calculation

+

+

Derivative

Derivative,
gain-limited

0

1

Integral

Proportional

Loop Table

V+25 Derivative Gain Limit00XX

The derivative gain limit in location V+25 must have a value between 0 and 20, in
BCD format. This setting is operational only when the enable bit = 1.
The gain limit can be particularly useful during loop tuning. Most loops can tolerate
only a little derivative gain without going into wild oscillations.

In the widely-used position form of the PID equation, an important component of the
control output value is the bias term shown below. Its location in the loop table is in
V+04. the loop controller writes a new bias term after each loop calculation.

�Mn = Kc * en + Ki * ei + Kr * (en – en–1) + Mo
i=1

n

Control
Output

Proportional
Term

Initial
Output

Integral
Term

Derivative
Term

Bias TermV+04 Bias termXXXX

If we cause the error (en) to go to zero for two or more sample periods, the
proportional and derivative terms cancel. The bias term is the sum of the integral
term and the initial output (Mo). It represents the steady, constant part of the control
output value, and is similar to the DC component of a complex signal waveform.
The bias term value establishes a “working region” for the control output. When the
error fluctuates around its zero point, the output fluctuates around the bias value.
This concept is very important, because it shows us why the integrator term must
respond more slowly to errors than either the proportional or derivative terms.

Derivative Gain
Limiting

Bias Term

P
ID

 Loop O
peration

M
aintenance

8–37
PID Loop Operation

The term “reset windup” refers to an undesirable characteristic of integrator
behavior which occurs naturally under certain conditions. Refer to the figure below.
Suppose the PV signal becomes disconnected, and the PV value goes to zero.
While this is a serious loop fault, it is made worse by reset windup. Notice the bias
(reset) term keeps integrating normally during the PV disconnect, until its upper limit
is reached. When the PV signal returns, the bias value is saturated (windup) and
takes a long time to return to normal. The loop output consequently has an extended
recovery time. Until recovery, the output level is wrong and causes further problems.

PV

Output

0

Bias

Reset windup Freeze bias enabled

Recovery time Recovery time

PV loss PV loss

In the second PV signal loss episode in the figure, the freeze bias feature is enabled.
It causes the bias value to freeze when the control output goes out of bounds. Much
of the reset windup is thus avoided, and the output recovery time is much less.

For most applications, the freeze bias
feature will work with the loop as
described above. You may enable the
feature using the DirectSOFT32 PID View
setup dialog, or set bit 10 of PID Mode 1
Setting word as shown to the right.

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Bias freeze
select

NOTE: The bias freeze feature stops the bias term from changing when the control
output reaches the end of the data range. If you have set limits on the control output
other than the range (i.e, 0–4095 for a unipolar/12bit loop), the bias term still uses the
end of range for the stopping point and bias freeze will not work.

In the feedforward method discussed later in this chapter, ladder logic writes directly
to the bias term value. However, there is no conflict with the freeze bias feature,
because bias term writes due to feedforward are relatively infrequent when in use.

Bias Freeze

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–38
PID Loop Operation

Loop Tuning Procedure
This is perhaps the most important step in closed-loop process control. The goal of a
loop tuning procedure is to adjust the loop gains so the loop has optimal
performance in dynamic conditions. The quality of a loop’s performance may
generally be judged by how well the PV follows the SP after a SP step change.
Auto Tuning versus Manual Tuning – you may change the PID gain values directly
(manual tuning), or you can have the PID processing engine in the CPU
automatically calculate the gains (auto tuning). Most experienced process
engineers will have a favorite method, and the DL05 will accommodate either
preference. The use of the auto tuning can eliminate much of the trial-and-error of
the manual tuning approach, especially if you do not have a lot of loop tuning
experience. However, note that performing the auto tuning procedure will get the
gains close to optimal values, but additional manual tuning changes can take the
gain values to their optimal values.

WARNING: Only authorized personnel fully familiar with all aspects of the process
should make changes that affect the loop tuning constants. Using the loop auto tune
procedures will affect the process, including inducing large changes in the control
output value. Make sure you thoroughly consider the impact of any changes to
minimize the risk of injury to personnel or damage to equipment. The auto tune in the
DL05 is not intended to perform as a replacement for your process knowledge.

Whether you use manual or auto tuning, it is very important to verify basic
characteristics of a newly-installed process before attempting to tune it. With the
loop in Manual Mode, verify the following items for each new loop.

� Setpoint – verify the source which is to generate the setpoint can do so.
You can put the PLC in Run Mode, but leave the loop in Manual Mode.
Then monitor the loop table location V+02 to see the SP value(s). The
ramp/soak generator (if you are using it) should be tested now.

� Process Variable – verify the PV value is an accurate measurement,
and the PV data arriving in the loop table location V+03 is correct. If the
PV signal is very noisy, consider filtering the input either through
hardware (RC low-pass filter), or using a digital S/W filter.

� Control Output – if it is safe to do so, manually change the output a
small amount (perhaps 10%) and observe its affect on the process
variable. Verify the process is direct-acting or reverse acting, and check
the setting for the control output (inverted or non-inverted). Make sure
the control output upper and lower limits are not equal to each other.

� Sample Rate – while operating open-loop, this is a good time to find the
ideal sample rate (procedure give earlier in this chapter). However, if
you are going to use auto tuning, note the auto tuning procedure will
automatically calculate the sample rate in addition to the PID gains.

The discussion beginning on the following page covers the manual tuning
procedure. If want to perform only auto tuning, please skip the next section and
proceed directly to the section on auto tuning.

Open-Loop Test

P
ID

 Loop O
peration

M
aintenance

8–39
PID Loop Operation

Now comes the exciting moment when we actually close the loop (go to Auto Mode)
for the first time. Use the following checklist before switching to Auto mode:

� Monitor the loop parameters with a loop trending instrument. We
recommend using the PID view feature of DirectSOFT.

NOTE: We recommend using the PID trend view setup menu to select the vertical
scale feature to manual, for both SP/PV area and Bias/Control Output areas. The
auto scaling feature will otherwise change the vertical scale on the process
parameters and add confusion to the loop tuning process.

� Adjust the gains so the Proportional Gain = 10, Integrator Gain = 9999,
and Derivative Gain =0000. This disables the integrator and derivative
terms, and provides a little proportional gain.

� Check the bias term value in the loop parameter table (V+04). If it is not
zero, then write it to zero using DirectSOFT32 or HPP, etc.

Now we can transition the loop to Auto Mode. Check the mode monitoring bits to
verify its true mode. If the loop will not stay in Auto Mode, check the troubleshooting
tips at the end of this chapter.

CAUTION: If the PV and Control Output values begin to oscillate, reduce the gain
values immediately. If the loop does not stabilize immediately, then transfer the loop
back to Manual Mode and manually write a safe value to the control output. During
the loop tuning procedure, always be near the Emergency Stop switch which
controls power to the loop actuator in case a shutdown is necessary.

� At this point, the SP should = PV because of the bumpless transfer
feature. Increase the SP a little, in order to develop an error value. With
only the proportional gain active and the bias term=0, we can easily
check the control output value:

Control Output = (SP – PV) x proportional gain

� If the control output value changed, the loop should be getting more
energy from the actuator, heater, or other device. Soon the PV should
move in the direction of the SP. If the PV does not change, then
increase the proportional gain until it moves slightly.

� Now, add a small amount of integral gain. Remember that large
numbers are small integrator gains and small numbers are large
integrator gains! After this step, the PV should = SP, or be very close.

Until this point we have only used proportional and integrator gains. Now we can
“bump the process” (change the SP by 10%), and adjust the gains so the PV has an
optimal response. Refer to the figure below. Adjust the gains according to what you
see on the PID trend view. The critically- damped response shown gives the fastest
PV response without oscillating.

Manual Tuning
Procedure

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–40
PID Loop Operation

� Over-damped response – the gains are too small, so gradually increase
them, concentrating on the proportional gain first.

� Under-damped response – the gains are too large. Reduce the integral
gain first, and then the proportional gain if necessary.

� Critically-damped response – this is the the optimal gain setting. You
can verify that this is the best response by increasing the proportional
gain slightly. the loop then should make one or two small oscillations.

PV

10% of
SP range

SP

over-damped response

critically-damped response

under-damped response

Now you may want to add a little derivative gain to further improve the
critically-damped response above. Note the proportional and integral gains will be
very close to their final values at this point. Adding some derivative action will allow
you to increase the proportional gain slightly without causing loop oscillations. The
derivative action tends to tame the proportional response slightly, so adjust these
gains together.

Autotuning is initiated within DirectSOFT32. You can use autotuning to establish
initial PID parameter values (autotuning is not run continuously during operation).
Whenever a substantial change in loop dynamics occurs (mass of process, size of
actuator, etc.), you will need to repeat the tuning procedure to derive the new gains
that are required for optimal control.

WARNING: Only authorized personnel fully familiar with all aspects of the process
should make changes that affect the loop tuning constants. Using the loop auto
tuning procedures will affect the process, including inducing large changes in the
control output value. Make sure you thoroughly consider the impact of any changes
to minimize the risk of injury to personnel or damage to equipment. The auto tune in
the DL05 is not intended to perform as a replacement for your process knowledge.

The loop controller offers both closed-loop and open-loop methods. If you intend to
use the auto tune feature, we recommend you use the open-loop method first. This
will permit you to use the closed-loop method of auto tuning when the loop is
operational (Auto Mode) and cannot be shut down (Manual Mode). The following
sections describe how to use the auto tuning feature, and what occurs in open and
closed-loop auto tuning.

Auto Tuning
Procedure

P
ID

 Loop O
peration

M
aintenance

8–41
PID Loop Operation

The controls for the auto tuning function use three bits in the PID Mode 2 word V+01,
as shown below. DirectSOFT32 will manipulate these bits automatically when you
use the auto tune feature within DirectSOFT. Or, you may have ladder logic access
these bits directly for allowing control from another source such as a dedicated
operator interface. The individual control bits let you to start the auto tune procedure,
select PID or PI tuning, and select closed-loop or open-loop tuning. If you select PI
tuning, the auto tune procedure leaves the derivative gain at 0. The Loop Mode and
Alarm Status word V+06 reports the auto tune status as shown. Bit 12 will be on (1)
when during the auto tuning cycle, automatically returning to off (0) when done.

PID Mode 2 Setting V+01

013456789101112131415 2Bit

Auto Tune Function

Auto Tuning
Controls 0=closed loop,

1=open loop

0=PID tuning,
1=open PI tuning

Start Auto Tune
(0 to 1 transition)

013456789101112131415 2Bit

Loop Mode and Alarm Status V+06

Auto Tune
Active

Auto Tune
Error Auto Tuning

Status

Open-Loop Auto Tuning – During an open-loop auto tuning cycle, the loop
controller operates as shown in the diagram below. Before starting this procedure,
place the loop in Manual mode and ensure the PV and control output values are in
the middle of their ranges (away from the end points).

Process Variable

Loop
Calculation

Manufacturing
Process

Setpoint Value
Control
Output

�
Error Term

+
–

PLC System

Open Loop
Auto Tuning

Step Function

Process Variable

Response

NOTE: In theory, the SP value does not matter in this case, because the loop is not
closed. However, the firmware requires that the SP value be more than 205 counts
away from the PV value before starting the auto tune cycle (205 counts or more
below the SP for forward-acting loops, or 205 counts or more above the SP for
reverse-acting loops).

When auto tuning, the loop controller induces a step change on the output and
simply observes the response of the PV. From the PV response, the auto tune
function calculates the gains and the sample time. It automatically places the results
in the corresponding registers in the loop table.

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–42
PID Loop Operation

The following timing diagram shows the events which occur in the open-loop auto
tuning cycle. The auto tune function takes control of the control output and induces a
10%-of-span step change. If the PV change which the loop controller observes is
less than 2%, then the step change on the output is increased to 20%-of-span.

Tangent Rr = Slope

Process Wave
SP

PV
(%)

Base Line

Lr
(sec.)

LrRr
(%)

Time (sec)

Output Value
(%)

Step Change �m=10%

PID Cycle

Auto Tune Start Auto Tune End

PID Cycle
Auto Tune Cycle

* When Auto Tune starts, step change output �m=10%
* During Auto Tune, the controller output reached the full scale positive limit.
 Auto Tune stopped and the Auto Tune Error bit in the Alarm word bit turned on.
* When PV change is under 2%, output is changed at 20%.

Open Loop Auto Tune Cycle Wave: Step Response Method

When the loop tuning observations are complete, the loop controller computes Rr
(maximum slope in %/sec.) and Lr (dead time in sec). The auto tune function
computes the gains according to the Ziegler-Nichols equations, shown below:

P = 1.2 * �m/LrRr

I = 2.0 * Lr

D = 0.5 * Lr

PID tuning: PI tuning:

P = 0.9 * �m/LrRr

I = 3.33 * Lr

Sample Rate = 0.056 * Lr Sample Rate = 0.12 * Lr
D = 0

�m = Output step change (10% = 0.1, 20% = 0.2)

We highly recommend using DirectSOFT32 for the auto tuning interface. The
duration of each auto tuning cycle will depend on the mass of our process. A
slowly-changing PV will result in a longer auto tune cycle time. When the auto tuning
is complete, the proportional, integral, and derivative gain values are automatically
updated in loop table locations V+10, V+11, and V+12 respectively. The sample time
in V+07 is also updated automatically. You can test the validity of the values the auto
tuning procedure yields by measuring the closed-loop response of the PV to a step
change in the output. The instructions on how to do this are in the section on the
manual tuning procedure (located prior to this section on auto tuning).

P
ID

 Loop O
peration

M
aintenance

8–43
PID Loop Operation

Closed-Loop Auto Tuning – During a closed-loop auto tuning cycle, the loop
controller operates as shown in the diagram below.

Process Variable

Loop
Calculation

Manufacturing
Process

Setpoint Value
Control
Output

�
Error Term

+
–

PLC System

Closed Loop
Auto Tuning

Limit cycle wave

Process Variable

Response

When auto tuning, the loop controller imposes a square wave on the output. Each
transition of the output occurs when the PV value crosses over (or under) the SP
value. Therefore, the frequency of the limit cycle is roughly proportional to the mass
of the process. From the PV response, the auto tune function calculates the gains
and the sample time. It automatically places the results in the corresponding
registers in the loop table.
The following timing diagram shows the events which occur in the closed-loop auto
tuning cycle. The auto tune function examines the direction of the offset of the PV
from the SP. The auto tune function then takes control of the control output and
induces a full-span step change in the opposite direction. Each time the sign of the
error (SP – PV) changes, the output changes full-span in the opposite direction. This
procedes through three full cycles.

SP
PV

Output Value

PID Cycle

Auto Tune Start Auto Tune End

PID Cycle
Auto Tune Cycle

Closed Loop Auto Tune Cycle Wave: Limit Cycle Method
Xo

M

To

*Mmax = Output Value upper limit setting Mmin = Output Value lower limit setting.
* This example is direct–acting. When set at reverse–acting, output is inverted.

Process Wave

Calculation of
PID parameter

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–44
PID Loop Operation

When the loop tuning observations are complete, the loop controller computes To
(bump period) and Xo (amplitude of the PV). Then it uses these values to compute
Kpc (sensitive limit) and Tpc (period limit). From these values, the loop controller
auto tune function computes the PID gains and the sample rate according to the
Ziegler-Nichols equations shown below:

P = 0.45 * Kpc

I = 0.60 * Tpc

D = 0.10 * Tpc

PID tuning: PI tuning:

P = 0.30 *Kpc

I = 1.00 * Tpc

Sample Rate = 0.014 * Tpc Sample Rate = 0.03 * Tpc
D = 0

Kpc = 4M / (π * Xo) Tpc = 0

M = amplitude of output

Auto tuning error – if the auto tune error bit (bit 13 of Loop Mode and Alarm status
word V+06) is on, please verify the PV and SP values are within 5% of full scale
difference, as required by the auto tune function. The bit will also turn on if the
closed-loop method is in use, and the output goes to the limits of the range.

NOTE: If your PV fluctuates rapidly, you probably need to use the built-in analog filter
(see page 8–45) or create a filter in ladder logic (see example on page 8–46).

In tuning cascaded loops, we will need to de-couple the cascade relationship and
tune the loops individually, using one of the loop tuning procedures previously
covered.

1. If you are not using auto tuning, then find the loop sample rate for the
minor loop, using the method discussed earlier in this chapter. Then set
the sample rate of the major loop slower than the minor loop by a factor
of 10. Use this as a starting point.

2. Tune the minor loop first. Leave the major loop in Manual Mode, and
you will need to generate SP changes for the minor loop manually as
described in the loop tuning procedure.

3. Verify the minor loop gives a critically-damped response to a 10% SP
change while in Auto Mode. Then we are finished tuning the minor loop.

4. In this step, you will need to get the minor loop in Cascade Mode, and
then the Major loop in Auto Mode. We will be tuning the major loop with
the minor loop treated as a series component its overall process.
Therefore, do not go back and tune the minor loop again while tuning
the major loop.

5. Tune the major loop, following the standard loop tuning procedure in
this section. The response of the major loop PV is actually the overall
response of the cascaded loops together.

Tuning
Cascaded Loops

P
ID

 Loop O
peration

M
aintenance

8–45
PID Loop Operation

PV Analog Filter
A noisy PV signal can make tuning difficult and can cause the control output to be
more extreme than necessary, as the output tries to respond to the peaks and
valleys of the PV. There are two equivalent methods of filtering the PV input to make
the loop more stable. The first method is accomplished using the DL05’s built-in
filter. The second method achieves a similar result using ladder logic.
The DL05 provides a selectable first-order low-pass PV input filter which can be
particularly helpful during auto tuning, using the closed-loop method. Shown in the
figure below, we strongly recommend the use of a filter during auto tuning. You
may disable the filter after auto tuning is complete, or continue to use it if the PV input
signal is noisy.

Loop
Calculation�+

–

Control Output

PID Mode 2 Setting V+01

013456789101112131415 2Bit

PV filter
enable/disable

0

1

Unfiltered
PV

Filtered
PV

�����
��

Process Variable

Loop Table

V+24 FIlter constantXXXX

Bit 2 of PID Mode Setting 2 provides the enable/disable control for the low-pass PV
filter (0=disable, 1=enable). The roll-off frequency of the single-pole low-pass filter is
controlled by using register V+24 in the loop parameter table, the filter constant. The
data format of the filter constant value is BCD, with an implied decimal point 00X.X,
as follows:

� The filter constant has a valid range of 000.1 to 001.0.
� DirectSOFT32 converts values above the valid range to 001.0 and

values below this range to 000.1
� Values close to 001.0 result in higher roll-off frequencies, while values

closer to 000.1 result in lower roll-off frequencies.

We highly recommend using DirectSOFT32 for the auto tuning interface. The
duration of each auto tuning cycle will depend on the mass of your process. A
slowly-changing PV will result in a longer auto tune cycle time.

When the auto tuning is complete, the proportional, integral, and derivative gain
values are automatically updated in loop table locations V+10, V+11, and V+12
respectively. The sample time in V+07 is also updated automatically. You can test
the validity of the values the auto tuning procedure yields by measuring the
closed-loop response of the PV to a step change in the output. The instructions on
how to do this are in the section on the manual tuning procedure.

The DL05 Built-in
Analog Filter

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–46
PID Loop Operation

The algorithm which the built-in filter follows is:

yi = k (xi – yi–1) + yi–1

yi is the current output of the filter
xi is the current input to the filter
yi–1 is the previous output of the filter
k is the PV Analog Input Filter Factor

A similar algorithm can be built in your ladder program. Your analog inputs can be
filtered effectively using either method. The following programming example
describes the ladder logic you will need. Be sure to change the example memory
locations to those that fit your application.

Filtering can induce a 1 part in 1000 error in your output because of “rounding.” If
your process cannot tolerate a 1 part in 1000 error, do not use filtering. Because of
the rounding error, you should not use zero or full scale as alarm points. Additionally,
the smaller the filter constant the greater the smoothing effect, but the slower the
response time. Be sure a slower response is acceptable in controlling your process.

SP1
LD
K2

Output the constant to a convenient memory location that
is not in use.

If the raw analog input (V2200 in our example) is greater
than or equal to the current PV value in the PID Loop Table
(V2003), load the raw analog input into the accumulator.

Subtract the raw analog input the from Loop Table PV
value.

END END coil marks the end of the main program.

Add the adjusted difference (between the raw analog input
and the PV) back to the analog input value.

If the raw analog input is less than the current PV
value in the PID Loop Table (V2003), load the current
PV value into the accumulator.

Load the filter constant into the accumulator. To mimick
the built-in filter, use values between 1 and 10. This is
equivalent to the 0.1 to 1.0 range of the built-in filter.

OUT
V1400

Add the adjusted difference (between the raw analog
input and the PV) back to the PV.

SUB
V2200

MUL
V1400

DIV
K10

V2200
LD
V2003

ADD
V2200

OUT
V2003

V2003

SUB
V2003

MUL
V1400

DIV
K10

V2200
LD
V2200

ADD
V2003

OUT
V2003

V2003

Subtract the Loop Table PV value from the raw
analog input.

The MUL and DIV instructions have the
combined effect of multiplying by a decimal
number between 0.1 and 1.0.

The MUL and DIV instructions have the
combined effect of multiplying by a decimal
number between 0.1 and 1.0.

Replace the previous Loop Table PV value with the
new filtered analog value in the Loop Table.

Replace the previous Loop Table PV value with the
new filtered analog value in the Loop Table.

Creating an
Analog Filter in
Ladder Logic

P
ID

 Loop O
peration

M
aintenance

8–47
PID Loop Operation

Feedforward Control
Feedforward control is an enhancement to standard closed-loop control. It is most
useful for diminishing the effects of a quantifiable and predictable loop disturbance
or sudden change in setpoint. Use of this feature is an option available to you on the
DL05. However, it’s best to implement and tune a loop without feedforward, and
adding it only if better loop performance is still needed. The term “feed-forward”
refers to the control technique involved, shown in the diagram below. The incoming
setpoint value is fed forward around the PID equation, and summed with the output.

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint
�+

kf
Feedforward path

+

In the previous section on the bias term, we said that “the bias term value establishes
a “working region” or operating point for the control output. When the error fluctuates
around its zero point, the output fluctuates around the bias value.” Now, when there
is a change in setpoint, an error is generated and the output must change to a new
operating point. This also happens if a disturbance introduces a new offset in the
loop. The loop does not really “know its way” to the new operating point... the
integrator (bias) must increment/decrement until the error disappears, and then the
bias has found the new operating point.
Suppose that we are able to know a sudden setpoint change is about to occur
(common in some applications). We can avoid much of the resulting error in the first
place, if we can quickly change the output to the new operating point. If we know
(from previous testing) what the operating point (bias value) will be after the setpoint
change, we can artificially change the output directly (which is feedforward). The
benefits from using feedforward are:

� The SP–PV error is reduced during predictable setpoint changes or loop
offset disturbances.

� Proper use of feedforward will allow us to reduce the integrator gain.
Reducing integrator gain gives us an even more stable control system.

Feedforward is very easy to use in the DL05 loop controller, as shown below. The
bias term has been made available to the user in a special read/write location, at PID
Parameter Table location V+04.

Process Variable

�
Error Term

+
–

Control OutputSetpoint
�+

P

I

D

Loop Calculation

+

+

kp

ki

kd

V+04

Bias TermXXXX

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–48
PID Loop Operation

To change the bias (operating point), ladder logic only has to write the desired value
to V+04. The PID loop calculation first reads the bias value from V+04 and modifies
the value based on the current integrator calculation. Then it writes the result back to
location V+04. This arrangement creates a sort of “transparent” bias term. All you
have to do to implement feed forward control is write the correct value to the bias
term at the right time (the example below shows you how).

NOTE: When writing the bias term, one must be careful to design ladder logic to
write the value only once, at the moment when the new bias operating point is to
occur. If ladder logic writes the bias value on every scan, the loop’s integrator is
effectively disabled.

How do we know when to write to the bias term, and what value to write? Suppose we
have an oven temperature control loop, and we have already tuned the loop for
optimal performance. Refer to the figure below. We notice that when the operator
opens the oven door, the temperature sags a bit while the loop bias adjusts to the
heat loss. Then when the door closes, the temperature rises above the SP until the
loop adjusts again. Feedforward control can help diminish this effect.

PV

Bias

Oven
door

PV sags
PV excess

Closed Open Closed

First, we record the amount of bias change the loop controller generates when the
door opens or closes. Then, we write a ladder program to monitor the position of an
oven door limit switch. When the door opens, our ladder program reads the current
bias value from V+04, adds the desired change amount, and writes it back to V+04.
When the door closes, we duplicate the procedure, but subtracting desired change
amount instead. The following figure shows the results.

PV

Bias

Oven
door

Closed Open Closed

Feed-forward Feed-forward

The step changes in the bias are the result of our two feed-forward writes to the bias
term. We can see the PV variations are greatly reduced. The same technique may
be applied for changes in setpoint.

Feedforward
Example

P
ID

 Loop O
peration

M
aintenance

8–49
PID Loop Operation

Time-Proportioning Control
The PID loop controller in the DL05 CPU generates a smooth control output signal
across a numerical range. The control output value is suitable to drive an analog
output module, which connects to the process. In the process control field, this is
called continuous control, because the output is on (at some level) continuously.
While continuous control can be smooth and robust, the cost of the loop components
(such as actuators, heater amplifiers) can be expensive. A simpler form of control is
called time-proportioning control. This method uses actuators which are either on or
off (no in-between). Loop components for on/off-based control systems are lower
cost than their continuous control counterparts.
In this section, we will show you how to convert the control output of a loop to
time-proportioning control for the applications that need it. Let’s take a moment to
review how alternately turning a load on and off can control a process. The diagram
below shows a hot-air balloon following a path across some mountains. The desired
path is the setpoint. The balloon pilot turns the burner on and off alternately, which is
his control output. The large mass of air in the balloon effectively averages the effect
of the burner, converting the bursts of heat into a continuous effect: slowly changing
balloon temperature and ultimately the altitude, which is the process variable.

Time-proportioning control approximates continuous control by virtue of its
duty-cycle – the ratio of ON time to OFF time. The following figure shows an example
of how duty cycle approximates a continuous level when it is averaged by a large
process mass.

Desired
Effect

On/Off
Control Off

On

period

If we were to plot the on/off times of the burner in the hot-air balloon, we would
probably see a very similar relationship to its effect on balloon temperature and
altitude.

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–50
PID Loop Operation

The following ladder segment provides a time proportioned on/off control output. It
converts the continuous output in V2005 to on/off control using the output coil, Y0.

PV

Loop
Calculation�+

–

V2005SP Time
Proportioning ProcessY0 P

V

continuous on/off

The example program uses two timers to generate On/Off control. It makes the
following assumptions, which you can alter to fit your application:

� The loop table starts at V2000, so the control output is at V2005.
� The data format of the control output is 12-bit, unipolar (0 – FFF).
� The time base (one full cycle) for the On/Off waveform is 10 seconds.

We use a fast timer (0.01 sec/tick), counting to 1000 ticks (10 seconds).
� The On/Off control output is Y0.

The time proportioning program must match the resolution of the output (1 part in
1000) to the resolution of the time base of T0 (also 1 part in 1000).

NOTE: Some processes change too fast for time proportioning control. Consider the
speed of your process when you choose this control method. Use continuous control
for processes that change too fast for time proportioning control.

T0
LD
V2005

At the end of the 10 second period, T0 turns on, and
loads the control output value (binary) from the loop table
V+05 location, V2005.

Convert the number in the accumulator to BCD
format, to satisfy the MUL, DIV, and TMRF format
requirement.

OUT
V1400

Output our result to V1400. This is our arbitrary location
for the second timer’s preset value.

DirectSOFT32

END END coil marks the end of the main program.

T1

OUT
Y0

Using the N.C. T1 contact, invert the T1 timer output, so
the On/Off control output is on at the beginning of the
10-second timebase. Y0 turns off when T1 turns on. The
STRNE contact prevents Y0 from energizing during the
scan when T1 is resetting. Y0 goes to the actuator, heater,
etc. for the loop.

DIV
K4095

Divide the product of the previous step by 4095. This
completes the conversion of the output range from
0 – 4095 to 0 – 1000, which matches the number of
ticks in our 10 second timer range.

T0
TMRF

V1400

The second fast timer also counts in increments of
.01 seconds, so its range is also 0 – 1000. This timer’s
output, T1, turns the output coil, Y0, off when the preset
is reached.

T1

T0
TMRF

K1000

Use a fast timer (0.01 sec. resolution) for the main time
base. The K1000 provides a preset of 10 seconds. The
N.C. T0 contact makes this self-resetting. T0 is on for
one scan each 10 seconds.

T0

TA1 K0

MUL
K1000

BCD

Multiply the Control Output (BCD) by 1,000. This step
combined with the following DIV function converts the
range to 0 – 1000.

On/Off Control
Program Example

P
ID

 Loop O
peration

M
aintenance

8–51
PID Loop Operation

Cascade Control

Cascaded loops are an advanced control technique that is superior to individual loop
control in certain situations. As the name implies, cascade means that one loop is
connected to another loop. In addition to Manual (open loop) and Auto (closed loop)
Modes, the DL05 also provides Cascaded Mode.

NOTE: Cascaded loops are an advanced process control technique. Therefore we
recommend their use only for experienced process control engineers.

When a manufacturing process is complex and contains a lag time from control input
to process variable output, even the most perfectly tuned single loop around the
process may yield slow and inaccurate control. It may be the actuator operates on
one physical property, which eventually affects the process variable, measured by a
different physical property. Identifying the intermediate variable allows us to divide
the process into two parts as shown in the following figure.

Intermediate
VariableProcess A Process BControl input

Process
Variable (PV)

PROCESS

The principle of cascaded loops is simply that we add another process loop to more
precisely control the intermediate variable! This separates the source of the control
lag into two parts, as well.
The diagram below shows a cascade control system, showing that it is simply one
loop nested inside another. The inside loop is called the minor loop, and the outside
loop is called the major loop. For overall stability, the minor loop must be the fastest
responding loop of the two. We do have to add the additional sensor to measure the
intermediate variable (PV for process A). Notice the setpoint for the minor loop is
automatically generated for us, by using the output of the major loop. Once the
cascaded control is programmed and debugged, we only need to deal with the
original setpoint and process variable at the system level. The cascaded loops
behave as one loop, but with improved performance over the previous single-loop
solution.

�+
–

Setpoint Loop B
Calculation �+

–

Loop A
Calculation

Process A
(secondary)

Process B
(primary)

PV, Process A

PV, Process B

Output B/
Setpoint A

Major
Loop

Minor
Loop

External
Disturbances

External
Disturbances

Output A

One of the benefits to cascade control can be seen by examining its response to
external disturbances. Remember the minor loop is faster acting than the major
loop. Therefore, if a disturbance affects process A in the minor loop, the Loop A PID
calculation can correct the resulting error before the major loop sees the effect.

Introduction

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–52
PID Loop Operation

In the use of the term “cascaded loops”, we must make an important distinction. Only
the minor loop will actually be in the Cascade Mode. In normal operation, the major
loop must be in Auto Mode. If you have more than two loops cascaded together, the
outer-most (major) loop must be in Auto Mode during normal operation, and all inner
loops in Cascade Mode.

NOTE: Technically, both major and minor loops are “cascaded” in strict process
control terminology. Unfortunately, we are unable to retain this convention when
controlling loop modes. Remember that all minor loops will be in Cascade Mode, and
only the outer-most (major) loop will be in Auto Mode.

You can cascade together as many loops as necessary on the DL05, and you may
have multiple groups of cascaded loops. For proper operation on cascaded loops
you must use the same data range (12/15 bit) and unipolar/bipolar settings on the
major and minor loop.
To prepare a loop for Cascade Mode operation as a minor loop, you must program its
remote Setpoint Pointer in its loop parameter table location V+32, as shown below.
The pointer must be the address of the V+05 location (control output) of the major
loop. In Cascade Mode, the minor loop will ignore the its local SP register (V+02),
and read the major loop’s control output as its SP instead.

Loop Table

V+02 SPXXXX

V+03 PVXXXX

V+32 Remote SP PointerXXXX

V+02 SPXXXX

V+03 PVXXXX

V+05 Control OutputXXXXV+05 Control OutputXXXX

Loop Table

Major Loop (Auto mode) Minor Loop (Cascade Mode)

When using DirectSOFT32’s PID View to watch the SP value of the minor loop,
DirectSOFT32 automatically reads the major loop’s control output and displays it for
the minor loop’s SP. The minor loop’s normal SP location, V+02, remains
unchanged.
Now, we use the loop parameter arrangement above and draw its equivalent loop
schematic, shown below.

Process Variable

�+
–

Setpoint

Cascade

Auto/Manual

Control Output V+05

Local SP

Loop
Calculation

Control
Output

Loop
Calculation

Minor Cascaded loopMajor loop

Remote
SP

V+02

Remember that a major loop goes to Manual Mode automatically if its minor loop is
taken out of Cascade Mode.

Cascaded Loops in
the DL05 CPU

P
ID

 Loop O
peration

M
aintenance

8–53
PID Loop Operation

Process Alarms

The performance of a process control loop may be generally measured by how
closely the process variable matches the setpoint. Most process control loops in
industry operate continuously, and will eventually lose control of the PV due to an
error condition. Process alarms are vital in early discovery of a loop error condition,
and can alert plant personnel to manually control a loop or take other measures until
the error condition has been repaired.
The DL05 CPU has a sophisticated set of alarm features for each loop:

� PV Absolute Value Alarms – monitors the PV with respect to two lower
limit values and two upper limit values. It generates alarms whenever
the PV goes outside these programmed limits.

� PV Deviation Alarm – monitors the PV value as compared to the SP. It
alarms when the difference between the PV and SP exceed the
programmed alarm value.

� PV Rate-of-change Alarm – computes the rate-of-change of the PV,
and alarms if it exceeds the programmed alarm amount

� Alarm Hysteresis – works in conjunction with the absolute value and
deviation alarms to eliminate alarm “chatter” near alarm thresholds.

The alarm thresholds are fully programmable, and each type of alarm may be
independently enabled and monitored. The following diagram shows the PV
monitoring function. Bits 12, 13, and 14 of PID Mode 1 Setting V+00 word in the loop
parameter table to enable/disable the alarms. DirectSOFT32’s PID View setup
dialog screens allow easy programming, enabling, and monitoring of the alarms.
Ladder logic may monitor the alarm status by examining bits 3 through 9 of PID
Mode and alarm Status word V+06 in the loop table.

Process Variable

Loop
Calculation�

Error Term
+

–

Control OutputSetpoint

PID Mode 1 Setting

013456789101112131415 2Bit

Alarm Enable Bits

1

0

Alarm Generation

PV Value

PV Deviation

PV Rate-of-change

PID Alarm Word

013456789101112131415 2Bit

1

0
1

0

Alarm Bits

Enable Alarms Monitor Alarms

Unlike the PID calculations, the alarms are always functioning any time the CPU is in
Run Mode. The loop may be in Manual, Auto, or Cascade, and the alarms will be
functioning if the enable bit(s) as listed above are set =1.

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–54
PID Loop Operation

The PV absolute value alarms are organized as two upper and two lower alarms.
The alarm status is false as long as the PV value remains in the region between the
upper and lower alarms, as shown below. The alarms nearest the safe zone are
named High Alarm and Low Alarm. If the loop loses control, the PV will cross one of
these thresholds first. Therefore, you can program the appropriate alarm threshold
values in the loop table locations shown below to the right. The data format is the
same as the PV and SP (12-bit or 15-bit). The threshold values for these alarms
should be set to give an operator an early warning if the process loses control.

PV

High–high Alarm

High Alarm

Low Alarm
Low–low Alarm

Loop Table

V+16 High-high AlarmXXXX

V+15 High AlarmXXXX

V+14 Low AlarmXXXX

V+13 Low-low AlarmXXXX

If the process remains out of control for some time, the PV will eventually cross one
of the outer alarm thresholds, named High-high alarm and Low-low alarm. Their
threshold values are programmed using the loop table registers listed above. A
High-high or Low-low alarm indicates a serious condition exists, and needs the
immediate attention of the operator.

The PV Absolute Value Alarms are
reported in the four bits in the PID Mode
and Alarm Status word in the loop table, as
shown to the right. We highly recommend
using ladder logic to monitor these bits.
The bit-of-word instructions make this
easy to do. Additionally, you can monitor
PID alarms using DirectSOFT.

PID Mode and Alarm Status V+06

013456789101112131415 2Bit

High-high Alarm
High Alarm
Low Alarm
Low-low Alarm

The PV Deviation Alarms monitor the PV deviation with respect to the SP value. The
deviation alarm has two programmable thresholds, and each threshold is applied
equally above and below the current SP value. In the figure below, the smaller
deviation alarm is called the “Yellow Deviation”, indicating a cautionary condition for
the loop. The larger deviation alarm is called the “Red Deviation”, indicating a strong
error condition for the loop. The threshold values use the loop parameter table
locations V+17 and V+20 as shown.

SP

Red Deviation Alarm

Yellow Deviation Alarm Loop Table

V+17 Yellow Deviation AlarmXXXX

V+20 Red Deviation AlarmXXXX
Yellow Deviation Alarm

Red Deviation Alarm

Green

Yellow

Red

Yellow

Red

The thresholds define zones, which fluctuate with the SP value. The green zone
which surrounds the SP value represents a safe (no alarm) condition. The yellow
zones lie outside the green zone, and the red zones are beyond those.

PV Absolute
Value Alarms

PV Deviation
Alarms

P
ID

 Loop O
peration

M
aintenance

8–55
PID Loop Operation

The PV Deviation Alarms are reported in
the two bits in the PID Mode and Alarm
Status word in the loop table, as shown to
the right. We highly recommend using
ladder logic to monitor these bits. The
bit-of-word instructions make this easy to
do. Additionally, you can monitor PID
alarms using DirectSOFT.

PID Mode and Alarm Status V+06

013456789101112131415 2Bit

Red Deviation
Yellow Deviation

The PV Deviation Alarm can be independently enabled and disabled from the other
PV alarms, using bit 13 of the PID Mode 1 Setting V+00 word.
Remember the alarm hysteresis feature works in conjunction with both the deviation
and absolute value alarms, and is discussed at the end of this section.

One powerful way to get an early warning of a process fault is to monitor the
rate-of-change of the PV. Most batch processes have large masses and
slowly-changing PV values. A relatively fast-changing PV will result from a broken
signal wire for either the PV or control output, a SP value error, or other causes. If the
operator responds to a PV Rate-of-Change Alarm quickly and effectively, the PV
absolute value will not reach the point where the material in process would be ruined.
The DL05 loop controller provides a programmable PV Rate-of-Change Alarm, as
shown below. The rate-of-change is specified in PV units change per loop sample
time. This value is programmed into the loop table location V+21.

Loop Table

V+21 PV Rate-of-Change AlarmXXXX

PV

PV slope OK

Sample time

PV slope excessive

rate-of-change alarm

Sample time

PID Mode and Alarm Status V+06

013456789101112131415 2Bit

PV Rate of
Change Alarm

As an example, suppose the PV is temperature for our process, and we want an
alarm when the temperature changes faster than 15 degrees / minute. We must
know PV counts per degree and the loop sample rate. Then, suppose the PV value
(in V+03 location) represents 10 counts per degree, and the loop sample rate is 2
seconds. We will use the formula below to convert our engineering units to counts /
sample period:

15 degrees
Alarm Rate-of-Change =

1 minute
X

10 counts / degree

30 loop samples / min.
=

150

30
= 5 counts / sample period

From the calculation result, we would program the value 5 in the loop table for the
rate-of-change. The PV Rate-of-Change Alarm can be independently enabled and
disabled from the other PV alarms, using bit 14 of the PID Mode 1 Setting V+00 word.
The alarm hysteresis feature (discussed next) does not affect the Rate-of-Change
Alarm.

PV Rate-of-Change
Alarm

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–56
PID Loop Operation

The PV Absolute Value Alarm and PV Deviation Alarm are programmed using
threshold values. When the absolute value or deviation exceeds the threshold, the
alarm status becomes true. Real-world PV signals have some noise on them, which
can cause some fluctuation in the PV value in the CPU. As the PV value crosses an
alarm threshold, its fluctuations cause the alarm to be intermittent and annoy
process operators. The solution is to use the PV Alarm Hysteresis feature.
The PV Alarm Hysteresis amount is programmable from 1 to 200 (hex). When using
the PV Deviation Alarm, the programmed hysteresis amount must be less than the
programmed deviation amount. The figure below shows how the hysteresis is
applied when the PV value goes past a threshold and descends back through it.

Loop Table

V+22 PV Alarm HysteresisXXXX
PV

Alarm threshold

Alarm
0
1

Hysteresis

The hysteresis amount is applied after the threshold is crossed, and toward the safe
zone. In this way, the alarm activates immediately above the programmed threshold
value. It delays turning off until the PV value has returned through the threshold by
the hysteresis amount.

The PV Alarm threshold values must have
certain mathematical relationships to be
valid. The requirements are listed below. If
not met, the Alarm Programming Error bit
will be set, as indicated to the right.

PID Mode and Alarm Status V+06

013456789101112131415 2Bit

Alarm Programming Error

� PV Absolute Alarm value requirements:
Low-low < Low < High < High-high

� PV Deviation Alarm requirements:
Yellow < Red

PV Alarm
Hysteresis

Alarm
Programing Error

P
ID

 Loop O
peration

M
aintenance

8–57
PID Loop Operation

Ramp/Soak Generator

Our discussion of basic loop operation noted the setpoint for a loop will be generated
in various ways, depending on the loop operating mode and programming
preferences. In the figure below, the ramp / soak generator is one of the ways the SP
may be generated. It is the responsibility of your ladder program to ensure only one
source attempts to write the SP value at V+02 at any particular time.

Process Variable

Loop
Calculation�+

–

Control OutputSetpoint V+02

Setpoint Sources:
Operator Input
Ramp/soak generator
Ladder Program
Another loop’s output (cascade)

If the SP for your process rarely changes or can tolerate step changes, you probably
will not need to use the ramp/soak generator. However, some processes require
precisely-controlled SP value changes. The ramp / soak generator can greatly
reduce the amount of programming required for these applications.

The terms “ramp” and “soak” have special
meanings in the process control industry,
and refer to desired setpoint (SP) values in
temperature control applications. In the
figure to the right, the setpoint increases
during the ramp segment. It remains
steady at one value during the soak
segment. Time

SP

Ramp

Soak

slope

Complex SP profiles can be generated by specifying a series of ramp/soak
segments. The ramp segments are specified in SP units per second time. The soak
time is also programmable in minutes.
It is instructive to view the ramp/soak generator as a dedicated function to generate
SP values, as shown below. It has two categories of inputs which determine the SP
values generated. The ramp/soak table must be programmed in advance,
containing the values that will define the ramp/soak profile. The loop reads from the
table during each PID calculation as necessary. The ramp/soak controls are bits in a
special loop table word that control the real-time start/stop functionality of the
ramp/soak generator. The ladder program can monitor the status of the ramp soak
profile (current ramp/segment number).

Process Variable

Loop
Calculation�+

–

Setpoint Control OutputRamp/soak
Generator

Ramp/soak table

Ramp/soak controls

Introduction

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–58
PID Loop Operation

Now that we have described the general ramp/soak generator operation, we list its
specific features:

� Each loop has its own ramp/soak generator (use is optional).
� You may specify up to eight ramp/soak steps (16 segments).
� The ramp soak generator can run anytime the PLC is in Run mode. Its

operation is independent of the loop mode (Manual or Auto).
� Ramp/soak real-time controls include Start, Hold, Resume, and Jog.
� Ramp/soak monitoring includes Profile Complete, Soak Deviation (SP

minus PV), and current ramp/soak step number.

The following figure shows a SP profile consisting of ramp/soak segment pairs. The
segments are individually numbered as steps from 1 to 16. The slope of each of the
ramp may be either increasing or decreasing. The ramp/soak generator
automatically knows whether to increase or decrease the SP based on the relative
values of a ramp’s end points. These values come from the ramp/soak table.

SP
Ramp

Soak

Step 1 2
Ramp

Soak

3 4
Ramp

Soak

5 6
Ramp

Soak

13 14
Ramp

Soak

15 16

The parameters which define the
ramp/soak profile for a loop are in a
ramp/soak table. Each loop may have its
own ramp/soak table, but it is optional.
Recall the Loop Parameter table consists
a 32-word block of memory for each loop,
and together they occupy one contiguous
memory area. However, the ramp/soak
table for a loop is individually located,
because it is optional for each loop. An
address pointer in location V+34 in the
loop table specifies the starting location of
the ramp/soak table.
In the example to the right, the loop
parameter tables for Loop #1 and #2
occupy contiguous 32-word blocks as
shown. Each has a pointer to its
ramp/soak table, independently located
elsewhere in user V-memory. Of course,
you may locate all the tables in one group,
as long as they do not overlap.

V–Memory Space

User Data

LOOP #1V2000

32 words

LOOP #2
32 words

V2037

Ramp/Soak #1
32 words

V3000

V2034 =
3000 octal

Ramp/Soak #2
32 words

V3600

V2074 =
3600 octal

V2040

V2077

Ramp/Soak Table

P
ID

 Loop O
peration

M
aintenance

8–59
PID Loop Operation

The parameters in the ramp/soak table must be user-defined. the most convenient
way is to use DirectSOFT, which features a special editor for this table. Four
parameters are required to define a ramp and soak segment pair, as pictured below.

� Ramp End Value – specifies the destination SP value for the end of the
ramp. Use the same data format for this number as you use for the SP.
It may be above or below the beginning SP value, so the slope could be
up or down (we don’t have to know the starting SP value for ramp #1).

� Ramp Slope – specifies the SP increase in counts (units) per second. It
is a BCD number from 00.00 to 99.99 (uses implied decimal point).

� Soak Duration – specifies the time for the soak segment in minutes,
ranging from 000.1 to 999.9 minutes in BCD (implied decimal point).

� Soak PV Deviation – (optional) specifies an allowable PV deviation
above and below the SP value during the soak period. A PV deviation
alarm status bit is generated by the ramp/soak generator.

Ramp/Soak Table

V+00 Ramp End SP ValueXXXX

SP

Soak PV
deviation

V+01 Ramp SlopeXXXX

V+02 Soak DurationXXXX

V+03 Soak PV DeviationXXXX

Ramp End
SP Value

Soak
duration

segment becomes active

Slope

The ramp segment becomes active when the previous soak segment ends. If the
ramp is the first segment, it becomes active when the ramp/soak generator is
started, and automatically assumes the present SP as the starting SP.

Offset Step Description Offset Step Description

+ 00 1 Ramp End SP Value + 20 9 Ramp End SP Value

+ 01 1 Ramp Slope + 21 9 Ramp Slope

+ 02 2 Soak Duration + 22 10 Soak Duration

+ 03 2 Soak PV Deviation + 23 10 Soak PV Deviation

+ 04 3 Ramp End SP Value + 24 11 Ramp End SP Value

+ 05 3 Ramp Slope + 25 11 Ramp Slope

+ 06 4 Soak Duration + 26 12 Soak Duration

+ 07 4 Soak PV Deviation + 27 12 Soak PV Deviation

+ 10 5 Ramp End SP Value + 30 13 Ramp End SP Value

+ 11 5 Ramp Slope + 31 13 Ramp Slope

+ 12 6 Soak Duration + 32 14 Soak Duration

+ 13 6 Soak PV Deviation + 33 14 Soak PV Deviation

+ 14 7 Ramp End SP Value + 34 15 Ramp End SP Value

+ 15 7 Ramp Slope + 35 15 Ramp Slope

+ 16 8 Soak Duration + 36 16 Soak Duration

+ 17 8 Soak PV Deviation + 37 16 Soak PV Deviation

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–60
PID Loop Operation

Many applications do not require all 16 R/S steps. Use all zeros in the table for
unused steps. The R/S generator ends the profile when it finds ramp slope=0.
The individual bit definitions of the Ramp / Soak Table Flag (Addr+33) word is listed
in the following table.

Bit Ramp / Soak Flag Bit Description Read/Write Bit=0 Bit=1

0 Start Ramp / Soak Profile write – 0�1 Start

1 Hold Ramp / Soak Profile write – 0�1 Hold

2 Resume Ramp / soak Profile write – 0�1
Resume

3 Jog Ramp / Soak Profile write – 0�1 Jog

4 Ramp / Soak Profile Complete read – Complete

5 PV Input Ramp / Soak Deviation read Off On

6 Ramp / Soak Profile in Hold read Off On

7 Reserved read Off On

8–15 Current Step in R/S Profile read decode as byte (hex)

The main enable control to permit
ramp/soak generation of the SP value is
accomplished with bit 11 in the PID Mode 1
Setting V+00 word, as shown to the right.
The other ramp/soak controls in V+33
shown in the table above will not operate
unless this bit=1 during the entire
ramp/soak process.

PID Mode 1 Setting V+00

013456789101112131415 2Bit

Ramp/Soak
Generator Enable

The four main controls for the ramp/soak
generator are in bits 0 to 3 of the
ramp/soak settings word in the loop
parameter table. DirectSOFT32 controls
these bits directly from the ramp/soak
settings dialog. However, you must use
ladder logic to control these bits during
program execution. We recommend using
the bit-of-word instructions.

Ramp/Soak Settings V+33

013456789101112131415 2Bit

Jog
Resume
Hold
Start

Ladder logic must set a control bit to a “1” to command the corresponding function.
When the loop controller reads the ramp/soak value, it automatically turns off the bit
for you. Therefore, a reset of the bit is not required, when the CPU is in Run Mode.

The example program rung to the right
shows how an external switch X0 can turn
on, and the PD contact uses the leading
edge to set the proper control bit to start
the ramp soak profile. This uses the Set
Bit-of-word instruction.

X0

SET
B2033.0

Start R/S Generator

Ramp/Soak
Table Flags

Ramp/Soak
Generator Enable

Ramp/Soak
Controls

P
ID

 Loop O
peration

M
aintenance

8–61
PID Loop Operation

The normal state for the ramp/soak control bits is all zeros. Ladder logic must set
only one control bit at a time.

� Start – a 0-to-1 transition will start the ramp soak profile. The CPU must
be in Run Mode, and the loop can be in Manual or Auto Mode. If the
profile is not interrupted by a Hold or Jog command, it finishes normally.

� Hold – a 0-to-1 transition will stop the ramp/soak profile in its current
state, and the SP value will be frozen.

� Resume – a 0-to-1 transition cause the ramp/soak generator to resume
operation if it is in the hold state. The SP values will resume from their
previous value.

� Jog – a 0-to-1 transition will cause the ramp/soak generator to truncate
the current segment (step), and go to the next segment.

You can monitor the Ramp/Soak profile
status using other bits in the Ramp/Soak
Settings V+33 word, shown to the right.
� R/S Profile Complete – =1 when the

last programmed step is done.
� Soak PV Deviation – =1 when the

error (SP–PV) exceeds the specified
deviation in the R/S table.

� R/S Profile in Hold – =1 when the
profile was active but is now in hold.

Ramp/Soak Settings V+33

013456789101112131415 2Bit

R/S Profile Complete
Soak PV Deviation
R/S Profile in Hold

The number of the current step is available
in the upper 8 bits of the Ramp/Soak
Settings V+33 word. The bits represent a
2-digit hex number, ranging from 1 to 10.
Ladder logic can monitor these to
synchronize other parts of the program
with the ramp/soak profile. Load this word
to the accumulator and shift right 8 bits,
and you have the step number.

Ramp/Soak Settings V+33

013456789101112131415 2Bit

Current Profile Step, 2–digit hex

Value = 01 to 10 hex,
 or 1 to 16 decimal

The starting address for the ramp/soak
table must be a valid location. If the
address points outside the range of user
V-memory, one of the bits to the right will
turn on when the ramp/soak generator is
started. We recommend using
DirectSOFT32 to configure the
ramp/soak table. It automatically range
checks the addresses for you.

Ramp/Soak Table Error V+35

013456789101112131415 2Bit

Starting Address set out of
V-memory upper range

Starting Address set out
of V-memory lower range

Starting Address set in
reserved system V-memory

It’s a good idea to test your ramp/soak profile before using it to control the process.
This is easy to do, because the ramp/soak generator will run even when the loop is in
Manual Mode. Using DirectSOFT32’s PID View will be a real time-saver, because it
will draw the profile on-screen for you. Be sure to set the trending timebase slow
enough to display completed ramp-soak segment pairs in the waveform window.

Ramp/Soak Profile
Monitoring

Ramp/Soak
Programming
Errors

Testing Your
Ramp/Soak Profile

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–62
PID Loop Operation

Troubleshooting Tips

Q. The loop will not go into Automatic Mode.
A. Check the following for possible causes:

� A PV alarm exists, or a PV alarm programming error exists.
� The loop is the major loop of a cascaded pair, and the minor loop is not

in Cascade Mode.

Q. The Control Output stays at zero constantly when the loop is in Automatic Mode.
A. Check the following for possible causes:

� The Control Output upper limit in loop table location V+31 is zero.
� The loop is driven into saturation, because the error never goes to zero

value and changes (algebraic) sign.

Q. The Control Output value is not zero, but it is incorrect.
A. Check the following for possible causes:

� The gain values are entered improperly. Remember, gains are entered
in the loop table in BCD, while the SP and PV are in binary. If you are
using DirectSOFT, it displays the SP, PV, Bias and Control output in
decimal (BCD), converting it to binary before updating the loop table.

Q. The Ramp/Soak Generator does not operate when I activate the Start bit.
A. Check the following for possible causes:

� The Ramp/Soak enable bit is off. Check the status of bit 11 of loop
parameter table location V+00. It must be set =1.

� The hold bit or other bits in the Ramp/Soak control are on.
� The beginning SP value and the first ramp ending SP value are the

same, so first ramp segment has no slope and consequently has no
duration. The ramp/soak generator moves quickly to the soak segment,
giving the illusion the first ramp is not working.

� The loop is in Cascade Mode, and is trying to get the SP remotely.
� The SP upper limit value in the loop table location V+27 is too low.
� Check your ladder program to verify it is not writing to the SP location

(V+02 in the loop table). A quick way to do this is to temporarily place an
end coil at the beginning of your program, then go to PLC Run Mode,
and manually start the ramp/soak generator.

Q. The PV value in the table is constant, even though the analog module receives the PV signal.
A. Your ladder program must read the analog value from the module successfully
and write it into the loop table V+03 location. Verify the analog module is generating
the value, and the ladder is working.

Q. The Derivative gain doesn’t seem to have any affect on the output.
A. The derivative limit is probably enabled (see section on derivative gain limiting).

P
ID

 Loop O
peration

M
aintenance

8–63
PID Loop Operation

Q. The loop Setpoint appears to be changing by itself.
A. Check the following for possible causes:

� The Ramp/Soak generator is enabled, and is generating setpoints.
� If this symptom occurs on loop Manual-to-Auto Mode changes, the loop

automatically sets the SP=PV (bumpless transfer feature).
� Check your ladder program to verify it is not writing to the SP location

(V+02 in the loop table). A quick way to do this is to temporarily place an
end coil at the beginning of your program, then go to PLC Run Mode.

Q. The SP and PV values I enter with DirectSOFT32 work okay, but these values do not work
properly when the ladder program writes the data.

A. The PID View in DirectSOFT32 lets you enter SP, PV, and Bias values in decimal,
and displays them in decimal for your convenience. For example, when the data
format is 12 bit unipolar, the values range from 0 to 4095. However, the loop table
actually requires these in hex, so DirectSOFT32 converts them for you. The values
in the table range from 0 to FFF, for 12-bit unipolar format.

Q. The loop seems unstable and impossible to tune, no matter what I gains I use.
A. Check the following for possible causes:

� The loop sample time is set too long. Refer to the section near the front
of this chapter on selecting the loop update time.

� The gains are too high. Start out by reducing the derivative gain to zero.
Then reduce the integral gain, and the proportional gain if necessary.

� There is too much transfer lag in your process. This means the PV
reacts sluggishly to control output changes. There may be too much
“distance” between actuator and PV sensor, or the actuator may be
weak in its ability to transfer energy into the process.

� There may be a process disturbance that is over-powering the loop.
Make sure the PV is relatively steady when the SP is not changing.

Bibliography

Fundamentals of Process Control Theory, Second Edition
Author: Paul W. Murrill
Publisher: Instrument Society of America
ISBN 1–55617–297–4

Application Concepts of Process Control
Author: Paul W. Murrill
Publisher: Instrument Society of America
ISBN 1–55617–080–7

PID Controllers: Theory, Design, and Tuning, 2nd Edition
Author: K. Astrom and T Hagglund
Publisher: Instrument Society of America
ISBN 1–55617–516–7

Fundamentals of Temperature, Pressure, and Flow
Measurements, Third edition
Author: Robert P. Benedict
Publisher: John Wiley and Sons
ISBN 0–471–89383–8

Process / Industrial Instruments & Controls Handbook,
Fourth Edition
Author (Editor-in-Chief): Douglas M. Considine
Publisher: McGraw-Hill, Inc.
ISBN 0–07–012445–0

pH Measurement and Control, Second Edition
Author: Gregory K. McMillan
Publisher: Instrument Society of America
ISBN 1–55617–483–7

Process Control, Third Edition
Instrument Engineer’s Handbook
Author (Editor-in-Chief): Bela G. Liptak
Publisher: Chilton
ISBN 0–8019–8242–1

Process Measurement and Analysis, Third Edition
Instrument Engineer’s Handbook
Author (Editor-in-Chief): Bela G. Liptak
Publisher: Chilton
ISBN 0–8019–8197–2

P
ID

 L
oo

p
O

pe
ra

tio
n

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

8–64
PID Loop Operation

Glossary of PID Loop Terminology

Automatic Mode An operational mode of a loop, in which it makes PID calculations and updates the
loop’s control output.

Bias Freeze A method of preserving the bias value (operating point) for a control output, by inhibiting
the integrator when the output goes out-of-range. The benefit is a faster loop recovery.

Bias Term In the position form of the PID equation, it is the sum of the integrator and the initial
control output value.

Bumpless Transfer A method of changing the operation mode of a loop while avoiding the usual sudden
change in control output level. This consequence is avoided by artificially making the SP
and PV equal, or the bias term and control output equal at the moment of mode change.

Cascaded Loops A cascaded loop receives its setpoint from the output of another loop. Cascaded loops
have a major/minor relationship, and work together to ultimately control one PV.

Cascade Mode An operational mode of a loop, in which it receives its SP from another loop’s output.

Continuous Control Control of a process done by delivering a smooth (analog) signal as the control output.

Direct-Acting Loop A loop in which the PV increases in response to a control output increase. In other
words, the process has a positive gain.

Error The difference in value between the SP and PV, Error=SP – PV

Error Deadband An optional feature which makes the loop insensitive to errors when they are small. You
can specify the size of the deadband.

Error Squared An optional feature which multiplies the error by itself, but retains the original algebraic
sign. It reduces the effect of small errors, while magnifying the effect of large errors.

Feedforward A method of optimizing the control response of a loop when a change in setpoint or
disturbance offset is known and has a quantifiable effect on the bias term.

Control Output The numerical result of a PID equation which is sent by the loop with the intention of
nulling out the current error.

Derivative Gain A constant that determines the magnitude of the PID derivative term in response to the
current error.

Integral Gain A constant that determines the magnitude of the PID integral term in response to the
current error.

Major Loop In cascade control, it is the loop that generates a setpoint for the cascaded loop.

Manual Mode An operational mode of a loop, it which the PID calculations are stopped. The operator
must manually control the loop by writing to the control output value directly.

Minor Loop In cascade control, the minor loop is the subordinate loop that receives its SP from the
major loop.

On / Off Control A simple method of controlling a process, through on/off application of energy into the
system. The mass of the process averages the on/off effect for a relatively smooth PV. A
simple ladder program can convert the DL05’s continuous loop output to on/off control.

PID Loop A mathematical method of closed-loop control involving the sum of three terms based
on proportional, integral, and derivative error values. The three terms have independent
gain constants, allowing one to optimize (tune) the loop for a particular physical system.

Position Algorithm The control output is calculated so it responds to the displacement (position) of the PV
from the SP (error term)

Process A manufacturing procedure which adds value to raw materials. Process control
particularly refers to inducing chemical changes to the material in process.

Process Variable (PV) A quantitative measurement of a physical property of the material in process, which
affects final product quality and is important to monitor and control.

P
ID

 Loop O
peration

M
aintenance

8–65
PID Loop Operation

Proportional Gain A constant that determines the magnitude of the PID proportional term in response to
the current error.

PV Absolute Alarm A programmable alarm that compares the PV value to alarm threshold values.

PV Deviation Alarm A programmable alarm that compares the difference between the SP and PV values to
a deviation threshold value.

Ramp / Soak Profile A set of SP values called a profile, which is generated in real time upon each loop
calculation. The profile consists of a series of ramp and soak segment pairs, greatly
simplifying the task of programming the PLC to generate such SP sequences.

Rate Also called differentiator, the rate term responds to the changes in the error term.

Remote Setpoint The location where a loop reads its setpoint when it is configured as the minor loop in a
cascaded loop topology.

Reset Also called integrator, the reset term adds each sampled error to the previous,
maintaining a running total called the bias.

Reset Windup A condition created when the loop is unable to find equilibrium, and the persistent error
causes the integrator (reset) sum to grow excessively (windup). Reset windup causes
an extra recovery delay when the original loop fault is remedied.

Reverse-Acting Loop A loop in which the PV increases in response to a control output decrease. In other
words, the process has a negative gain.

Sampling time The time between PID calculations. The CPU method of process control is called a
sampling controller, because it samples the SP and PV only periodically.

Setpoint (SP) The desired value for the process variable. The setpoint (SP) is the input command to
the loop controller during closed loop operation.

Soak Deviation The soak deviation is a measure of the difference between the SP and PV during a soak
segment of the Ramp / Soak profile, when the Ramp / Soak generator is active.

Step Response The behavior of the process variable in response to a step change in the SP (in closed
loop operation), or a step change in the control output (in open loop operation)

Transfer To change from one loop operational mode to another (between Manual, Auto, or
Cascade). The word “transfer” probably refers to the transfer of control of the control
output or the SP, depending on the particular mode change.

Velocity Algorithm The control output is calculated to represent the rate of change (velocity) for the PV to
become equal to the SP.

��
Maintenance and
Troubleshooting

����������	
���������

���	��	����������	�����	���

����	��������

�����������	���

����������	�������������

��� !���������������������

��"�������������������

���	��������	��
�	������	����������������

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–2
Maintenance and Troubleshooting

Hardware System Maintenance

No regular or preventative maintenance is required for this product (there are no
internal batteries); however, a routine maintenance check (about every one or two
months) of your PLC and control system is good practice, and should include the
following items:

� Air Temperature – Check the air temperature in the control cabinet, so
the operating temperature range of any component is not exceeded.

� Air Filter – If the control cabinet has an air filter, clean or replace it
periodically as required.

� Fuses or breakers – Verify that all fuses and breakers are intact.
� Cleaning the Unit – Check that all air vents are clear. If the exterior

case needs cleaning, disconnect the input power, and carefully wipe the
case using a damp cloth. Do not let water enter the case through the air
vents and do not use strong detergents because this may discolor the
case.

Diagnostics

Your DL05 Micro PLC performs many pre-defined diagnostic routines with every
CPU scan. The diagnostics can detect various errors or failures in the PLC. The two
primary error classes are fatal and non-fatal.

Fatal errors are errors which may cause the system to function improperly, perhaps
introducing a safety problem. The CPU will automatically switch to Program Mode if
it is in Run Mode. (Remember, in Program Mode all outputs are turned off.) If the fatal
error is detected while the CPU is in Program Mode, the CPU will not allow you to
transition to Run Mode until the error has been corrected.
Some examples of fatal errors are:

� Power supply failure
� Parity error or CPU malfunction
� Particular programming errors

Non-fatal errors are errors that need your attention, but should not cause improper
operation. They do not cause or prevent any mode transitions of the CPU. The
application program can use special relay contacts to detect non-fatal errors, and
even take the system to an orderly shutdown or switch the CPU to Program Mode if
desired. An example of a non-fatal error is:

� Particular programming errors

The programming devices will notify you of an error if one occurs while online.
� DirectSOFT provides the error number and an error message.
� The handheld programmer displays error numbers and short

descriptions of the error.

Appendix B has a complete list of error messages in order by error number.
Many error messages point to supplemental V-memory locations which contain
related information. Special relays (SP contacts) also provide error indications.

Standard
Maintenance

Diagnostics

Fatal Errors

Non-fatal Errors

Finding Diagnostic
Information

M
aintenance

and Troubleshooting
9–3

Maintenance and Troubleshooting

The following table names the specific memory locations that correspond to certain
types of error messages.

Error Class Error Category Diagnostic
V-memory

User-Defined Error code used with FAULT instruc-
tion

V7751

System Error Fatal Error code V7755

Major Error code V7756

Minor Error code V7757

Grammatical Address where syntax error occurs V7763

Error Code found during syntax check V7764

CPU Scan Number of scans since last Program
to Run Mode transition

V7765

Current scan time (ms) V7775

Minimum scan time (ms) V7776

Maximum scan time (ms) V7777

The special relay table also includes status indicators which can indicate errors. For
a more detailed description of each of these special relays refer to Appendix D.

CPU Status Relays

SP11 Forced Run mode

SP12 Terminal Run mode

SP13 Test Run mode

SP15 Test stop mode

SP16 Terminal Program mode

SP17 Forced stop

SP20 STOP instruction was executed

SP22 Interrupt enabled

System Monitoring Relays

SP36 Override setup

SP37 Scan control error

SP40 Critical error

SP41 Non-critical error

SP42 Diagnostics error

SP44 Program memory error

SP45 I/O error

SP46 Communications error

SP50 Fault instruction was executed

SP51 Watchdog timeout

SP52 Syntax error

SP53 Cannot solve the logic

SP54 Communication error

SP56 Table instruction overrun

Accumulator Status Relays

SP60 Acc. is less than value

SP61 Acc. is equal to value

SP62 Acc. is greater than value

SP63 Acc. result is zero

SP64 Half borrow occurred

SP65 Borrow occurred

SP66 Half carry occurred

SP67 Carry occurred

SP70 Result is negative (sign)

SP71 Pointer reference error

SP73 Overflow

SP75 Data is not in BCD

SP76 Load zero

V-memory Error
Code Locations

Special Relays (SP)
Corresponding to
Error Codes

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–4
Maintenance and Troubleshooting

These errors can be generated by the CPU or by the Handheld Programmer,
depending on the actual error. Appendix B provides a more complete description of
the error codes.
The errors can be detected at various times. However, most of them are detected at
power-up, on entry to Run Mode, or when a Handheld Programmer key sequence
results in an error or an illegal request.

Error
Code

Description

E003 Software time-out

E004 Invalid instruction
(RAM parity error in the CPU)

E104 Write failed

E151 Invalid command

E311 Communications error 1

E312 Communications error 2

E313 Communications error 3

E316 Communications error 6

E320 Time out

E321 Communications error

E360 HP Peripheral port time-out

E501 Bad entry

E502 Bad address

E503 Bad command

E504 Bad reference / value

E505 Invalid instruction

E506 Invalid operation

E520 Bad operation – CPU in Run

E521 Bad operation – CPU in Test Run

E523 Bad operation – CPU in Test Program

E524 Bad operation – CPU in Program

Error
Code

Description

E525 Mode Switch not in Term position

E526 Unit is offline

E527 Unit is online

E528 CPU mode

E540 CPU locked

E541 Wrong password

E542 Password reset

E601 Memory full

E602 Instruction missing

E604 Reference missing

E620 Out of memory

E621 EEPROM Memory not blank

E622 No Handheld Programmer EEPROM

E624 V memory only

E625 Program only

E627 Bad write operation

E628 Memory type error (should be EEPROM)

E640 Mis-compare

E650 Handheld Programmer system error

E651 Handheld Programmer ROM error

E652 Handheld Programmer RAM error

DL05 Micro PLC
Error Codes

M
aintenance

and Troubleshooting
9–5

Maintenance and Troubleshooting

The following table lists program syntax and runtime error codes. Error detection
occurs during a Program-to-Run mode transition, or when you use AUX 21 – Check
Program. The CPU will also turn on SP52 and store the error code in V7755.
Appendix B provides a more complete description of the error codes.

Error Code Description

E4** No Program in CPU

E401 Missing END statement

E402 Missing LBL

E403 HP Peripheral port time-out

E404 HP Peripheral port time-out

E405 HP Peripheral port time-out

E406 Missing IRT

E412 SBR / LBL >64

E421 Duplicate stage reference

E422 Duplicate SBR/LBL reference

E423 HP Peripheral port time-out

E431 Invalid ISG/SG address

E433 Invalid ISG / SG address

E434 Invalid RTC

E435 Invalid RT

E436 Invalid INT address

E437 Invalid IRTC

Error Code Description

E438 Invalid IRT address

E440 Invalid Data Address

E441 ACON/NCON

E451 Bad MLS/MLR

E453 Missing T/C

E454 Bad TMRA

E455 Bad CNT

E456 Bad SR

E461 Stack Overflow

E462 Stack Underflow

E463 Logic Error

E464 Missing Circuit

E471 Duplicate coil reference

E472 Duplicate TMR reference

E473 Duplicate CNT reference

E499 Print instruction

Program Error
Codes

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–6
Maintenance and Troubleshooting

CPU Indicators

The DL05 Micro PLCs have indicators on the front
to help you determine potential problems with the
system. In normal runtime operation only, the RUN
and PWR indicators are on. The table below is a
quick reference to potential problems.
Indicator Status Potential Problems
PWR (LED off) 1. System voltage incorrect

2. PLC power supply faulty
RUN (LED off) 1. CPU programming error

2. (CPU in program mode)
CPU (LED on) 1. Electrical noise interference

2. Internal CPU defective

In general there are three reasons for the CPU power status LED (PWR) to be OFF:
1. Power to the unit is incorrect or is not applied.
2. PLC power supply is faulty.
3. Other component(s) have the power supply shut down.

If the voltage to the power supply is not correct, the PLC may not operate properly or
may not operate at all. Use the following guidelines to correct the problem.

WARNING: To minimize the risk of electrical shock, always disconnect the system
power before inspecting the physical wiring.

1. First, disconnect the external power.
2. Verify that all external circuit breakers or fuses are still intact.
3. Check all incoming wiring for loose connections. If you’re using a separate

termination block, check those connections for accuracy and integrity.
4. If the connections are acceptable, reconnect the system power and verify

the voltage at the DL05 power input is within specification. If the voltage is
not correct shut down the system and correct the problem.

5. If all wiring is connected correctly and the incoming power is within the
specifications, the PLC internal supply may be faulty.

The best way to check for a faulty PLC is to substitute a known good one to see if this
corrects the problem. The removable connectors on the DL05 make this relatively
easy. If there has been a major power surge, it is possible the PLC internal power
supply has been damaged. If you suspect this is the cause of the power supply
damage, consider installing an AC line conditioner to attenuate damaging voltage
spikes in the future.

PWR Indicator

M
aintenance

and Troubleshooting
9–7

Maintenance and Troubleshooting

If the CPU will not enter the Run mode (the RUN indicator is off), the problem is
usually in the application program, unless the CPU has a fatal error. If a fatal error
has occurred, the CPU LED should be on. (You can use a programming device to
determine the cause of the error.)
Both of the programming devices, Handheld Programmer and DirectSOFT, will
return an error message describing the problem. Depending on the error, there may
also be an AUX function you can use to help diagnose the problem. The most
common programming error is “Missing END Statement”. All application programs
require an END statement for proper termination. A complete list of error codes can
be found in Appendix B.

If the CPU indicator is on, a fatal error has occurred in the CPU. Generally, this is not
a programming problem but an actual hardware failure. You can power cycle the
system to clear the error. If the error clears, you should monitor the system and
determine what caused the problem. You will find this problem is sometimes caused
by high frequency electrical noise introduced into the CPU from an outside source.
Check your system grounding and install electrical noise filters if the grounding is
suspected. If power cycling the system does not reset the error, or if the problem
returns, you should replace the CPU.

Communications Problems

If you cannot establish communications with the CPU, check these items.

� The cable is disconnected.
� The cable has a broken wire or has been wired incorrectly.
� The cable is improperly terminated or grounded.
� The device connected is not operating at the correct baud rate (9600

baud).
� The device connected to the port is sending data incorrectly.
� A grounding difference exists between the two devices.
� Electrical noise is causing intermittent errors.
� The PLC has a bad communication port and should be replaced.

For problems in communicating with DirectSOFT on a personal computer, refer to
the DirectSOFT manual. It includes a troubleshooting section that can help you
diagnose PC problems in communications port setup, address or interrupt conflicts,
etc.

RUN Indicator

CPU Indicator

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–8
Maintenance and Troubleshooting

I/O Point Troubleshooting

If you suspect an I/O error, there are several things that could be causing the
problem.

� High-Speed I/O configuration error
� A blown fuse in your machine or panel (the DL05 does not have internal

I/O fuses)
� A loose terminal block
� The auxiliary 24 VDC supply has failed
� The Input or Output Circuit has failed

When troubleshooting the DL05 Micro PLCs there are a few facts you should be
aware of. These facts may assist you in quickly correcting an I/O problem.

� HSIO configuration errors are commonly mistaken for I/O point failure
during program development. If the I/O point in question is in X0–X2, or
Y0–Y1, check all parameter locations listed in Chapter 3 that apply to
the HSIO mode you have selected.

� The output circuits cannot detect shorted or open output points. If you
suspect one or more faulty points, measure the voltage drop from the
common to the suspect point. Remember when using a Digital Volt
Meter, leakage current from an output device such as a triac or a
transistor must be considered. A point which is off may appear to be on
if no load is connected the point.

� The I/O point status indicators are logic-side indicators. This means the
LED which indicates the on or off status reflects the status of the point
with respect to the CPU. On an output point the status indicators could
be operating normally while the actual output device (transistor, triac
etc.) could be damaged. With an input point, if the indicator LED is on
the input circuitry is probably operating properly. Verify the LED goes off
when the input signal is removed.

� Leakage current can be a problem when connecting field devices to an
I/O point. False input signals can be generated when the leakage
current of an output device is great enough to turn on the connected
input device. To correct this install a resistor in parallel with the input or
output of the circuit. The value of this resistor will depend on the amount
of leakage current and the voltage applied but usually a 10K to 20K�
resistor will work. Verify the wattage rating of the resistor is correct for
your application.

� Because of the removable terminal blocks on the DL05, the easiest
method to determine if an I/O circuit has failed is to replace the unit if
you have a spare. However, if you suspect a field device is defective,
that device may cause the same failure in the replacement PLC as well.
As a point of caution, you may want to check devices or power supplies
connected to the failed I/O circuit before replacing the unit with a spare.

Possible Causes

Some Quick Steps

M
aintenance

and Troubleshooting
9–9

Maintenance and Troubleshooting

Output points can be set on or off in the DL05 series CPUs. If you want to do an I/O
check out independent of the application program, follow the procedure below:

Step Action

1 Use a handheld programmer or DirectSOFT to communicate online to
the PLC.

2 Change to Program Mode.

3 Go to address 0.

4
Insert an “END” statement at address 0. (This will cause program
execution to occur only at address 0 and prevent the application pro-
gram from turning the I/O points on or off).

5 Change to Run Mode.

6 Use the programming device to set (turn) on or off the points you wish
to test.

7 When you finish testing I/O points delete the “END” statement at
address 0.

WARNING: Depending on your application, forcing I/O points may cause
unpredictable machine operation that can result in a risk of personal injury or
equipment damage. Make sure you have taken all appropriate safety precautions
prior to testing any I/O points.

BIT REF X
16P STATUS

From a clear display, use the following keystrokes

 Y 10 Y 0

Use the PREV or NEXT keys to select the Y data type

Y2X0

END

X2

X3X1 X4

X5 X7

END

Insert an END statement
at the beginning of the
program. This disables
the remainder of the
program.

STAT ENT

NEXT
0

A ENT

 Y 10 Y 0

Use arrow keys to select point, then use
ON and OFF to change the status

Y2 is now on

SHFT ON
INS

Testing Output
Points

Handheld
Programmer
Keystrokes Used
to Test an Output
Point

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–10
Maintenance and Troubleshooting

Noise Troubleshooting

Noise is one of the most difficult problems to diagnose. Electrical noise can enter a
system in many different ways and they fall into one of two categories, conducted or
radiated. It may be difficult to determine how the noise is entering the system but the
corrective actions for either of the types of noise problems are similar.

� Conducted noise is when the electrical interference is introduced into
the system by way of a attached wire, panel connection ,etc. It may
enter through an I/O circuit, a power supply connection, the
communication ground connection, or the chassis ground connection.

� Radiated noise is when the electrical interference is introduced into the
system without a direct electrical connection, much in the same manner
as radio waves.

While electrical noise cannot be eliminated it can be reduced to a level that will not
affect the system.

� Most noise problems result from improper grounding of the system. A
good earth ground can be the single most effective way to correct noise
problems. If a ground is not available, install a ground rod as close to
the system as possible. Ensure all ground wires are single point
grounds and are not daisy chained from one device to another. Ground
metal enclosures around the system. A loose wire can act as a large
antenna, introducing noise into the system. Therefore, tighten all
connections in your system. Loose ground wires are more susceptible to
noise than the other wires in your system. Review Chapter 2 Installation,
Wiring, and Specifications if you have questions regarding how to
ground your system.

� Electrical noise can enter the system through the power source for the
PLC and I/O circuits. Installing an isolation transformer for all AC
sources can correct this problem. DC sources should be well-grounded
good quality supplies.

� Separate input wiring from output wiring. Never run low-voltage I/O
wiring close to high voltage wiring.

Electrical Noise
Problems

Reducing
Electrical Noise

M
aintenance

and Troubleshooting
9–11

Maintenance and Troubleshooting

Machine Startup and Program Troubleshooting

The DL05 Micro PLCs provide several features that can help you debug your
program before and during machine startup. This section discusses the following
topics which can be very helpful.

� Program Syntax Check
� Duplicate Reference Check
� Special Instructions
� Run Time Edits
� Forcing I/O Points

Even though the Handheld Programmer and DirectSOFT provide error checking
during program entry, you may want to check a program that has been modified.
Both programming devices offer a way to check the program syntax. For example,
you can use AUX 21, CHECK PROGRAM to check the program syntax from a
Handheld Programmer, or you can use the PLC Diagnostics menu option within
DirectSOFT. This check will find a wide variety of programming errors. The following
example shows how to use the syntax check with a Handheld Programmer.

1:SYN 2:DUP REF
AUX 21 CHECK PRO

Use AUX 21 to perform syntax check

BUSY

Select syntax check (default selection)

MISSING END
$00050 E401

One of two displays will appear

?
NO SYNTAX ERROR

Error Display (example)

(You may not get the busy display
if the program is not very long.)

Syntax OK display

(shows location in question)

CLR
1

B
2

C AUX ENT

ENT

See the Error Codes Section for a complete listing of programming error codes. If
you get an error, just press CLR and the Handheld will display the instruction where
the error occurred. Correct the problem and continue running the Syntax check until
the NO SYNTAX ERROR message appears.

Syntax Check

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–12
Maintenance and Troubleshooting

There are several instructions that can be used to help you debug your program
during machine startup operations.

� END
� PAUSE
� STOP

END Instruction: If you need a way to quickly disable part of the program, just insert
an END statement prior to the portion that should be disabled. When the CPU
encounters the END statement, it assumes that is the end of the program. The
following diagram shows an example.

New END disables X10 and Y1

Y0X0

END

X2

X3X1 X4

Y1X10

Normal Program

Y0X0

END

X2

X3X1 X4

Y1X10

END

PAUSE Instruction: This instruction provides a quick way to allow the inputs (or
other logic) to operate while disabling selected outputs. The output image register is
still updated, but the output circuits are not. For example, you could make this
conditional by adding an input contact or CR to control the instruction with a switch or
a programming device. Or, you could just add the instruction without any conditions
so the selected outputs would be disabled at all times.

PAUSE disables Y0 and Y1

Y0X0

END

X2

X3X1 X4

Y1X10

Normal Program

Y0X0

END

X2

X3X1 X4

Y1X10

PAUSE

Y0 – Y1

STOP Instruction: Sometimes during machine startup you need a way to quickly
turn off all the outputs and return to Program Mode. You can use the STOP
instruction. When this instruction is executed the CPU automatically exits Run Mode
and enters Program Mode. Remember, all outputs are turned off during Program
Mode. The following diagram shows an example of a condition that returns the CPU
to Program Mode.

Special
Instructions

M
aintenance

and Troubleshooting
9–13

Maintenance and Troubleshooting

STOP puts CPU in Program Mode

Y0X0

END

X2

X3X1 X4

Y1X5

Normal Program

Y0X0

END

X2

X3X1 X4

Y1X5

X7
STOP

In the example shown above, you could trigger X10 which would execute the STOP
instruction. The CPU would enter Program Mode and all outputs would be turned off.
You can also check for multiple uses of the same output coil. Both programming
devices offer a way to check for this condition.. For example, you can AUX 21,
CHECK PROGRAM to check for duplicate references from a Handheld
Programmer, or you can use the PLC Diagnostics menu option within DirectSOFT.
The following example shows how to perform the duplicate reference check with a
Handheld Programmer.

DUP COIL REF
$00024 E471

One of two displays will appear

?
NO DUP REFS

Error Display (example)

Syntax OK display

(shows location in question)

1:SYN 2:DUP REF
AUX 21 CHECK PRO

Use AUX 21 to perform syntax check

BUSY

Select duplicate reference check

(You may not get the busy
display if the program is not
very long.)

CLR
1

B
2

C AUX ENT

ENT

If you get an error, just press CLR and the Handheld will display the instruction where
the error occurred. Correct the problem and continue running the Duplicate
Reference check until no duplicate references are found.

NOTE: You can use the same coil in more than one location, especially in programs
containing Stage instructions and / or OROUT instructions. The Duplicate
Reference check will find occurrences, even though they are acceptable.

Duplicate
Reference Check

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–14
Maintenance and Troubleshooting

The DL05 Micro PLC allows you to make changes to the application program during
Run Mode. These edits are not “bumpless.” Instead, CPU scan is momentarily
interrupted (and the outputs are maintained in their current state) until the program
change is complete. This means if the output is off, it will remain off until the program
change is complete. If the output is on, it will remain on.

WARNING: Only authorized personnel fully familiar with all aspects of the
application should make changes to the program. Changes during Run Mode
become effective immediately. Make sure you thoroughly consider the impact of any
changes to minimize the risk of personal injury or damage to equipment. There are
some important operational changes during Run Time Edits.
1. If there is a syntax error in the new instruction, the CPU will not enter the Run

Mode.
2. If you delete an output coil reference and the output was on at the time, the output

will remain on until it is forced off with a programming device.
3. Input point changes are not acknowledged during Run Time Edits. So, if you’re

using a high-speed operation and a critical input comes on, the CPU may not see
the change.

Not all instructions can be edited during a Run Time Edit session. The following list
shows the instructions that can be edited.

Mnemonic Description

TMR Timer

TMRF Fast timer

TMRA Accumulating timer

TMRAF Accumulating fast timer

CNT Counter

UDC Up / Down counter

SGCNT Stage counter

STR, STRN Store, Store not

AND, ANDN And, And not

OR, ORN Or, Or not

STRE, STRNE Store equal, Store not equal

ANDE, ANDNE And equal, And not equal

ORE, ORNE Or equal, Or not equal

STR, STRN Store greater than or equal
Store less than

AND, ANDN And greater than or equal
And less than

Mnemonic Description

OR, ORN Or greater than or equal
Or less than

LD Load data (constant)

LDD Load data double (constant)

ADDD Add data double (constant)

SUBD Subtract data double (constant)

MUL Multiply (constant)

DIV Divide (constant)

CMPD Compare accumulator (constant)

ANDD And accumulator (constant)

ORD Or accumulator (constant)

XORD Exclusive or accumulator (constant)

LDF Load discrete points to accumulator

OUTF Output accumulator to discrete points

SHFR Shift accumulator right

SHFL Shift accumulator left

NCON Numeric constant

Run Time Edits

M
aintenance

and Troubleshooting
9–15

Maintenance and Troubleshooting

We’ll use the program logic shown to de-
scribe how this process works. In the ex-
ample, we’ll change X0 to C10. Note, the
example assumes you have already
placed the CPU in Run Mode.

X0 X1 Y0
OUT

C0

RUN TIME EDIT?
MODE CHANGE

Use the MODE key to select Run Time Edits

RUNTIME EDITS
MODE CHANGE

Press ENT to confirm the Run Time Edits

MODE ENT

ENT

NEXT

$00000 STR X0

Find the instruction you want to change (X0)

Press the arrow key to move to the X. Then enter the new contact (C10).

SHFT
SET

X
0

A SHFT FD REF
FIND

(Note, the RUN LED on the D2–HPP
Handheld starts flashing to indicate
Run Time Edits are enabled.)

STR C10
RUNTIME EDIT?

SHFT
1

B
2

C
0

A ENT

OR C0

Press ENT to confirm the change

ENT (Note, once you press ENT, the next
address is displayed.

NEXT

M
ai

nt
en

an
ce

an
d

Tr
ou

bl
es

ho
ot

in
g

9–16
Maintenance and Troubleshooting

There are many times, especially during machine startup and troubleshooting, that
you need the capability to force an I/O point to be either on or off. Before you use a
programming device to force any data type it is important you understand how the
DL05 CPUs process the forcing requests.

WARNING: Only authorized personnel fully familiar with the application should
make program changes. Do thoroughly consider the impact of any changes to
minimize the risk of personal injury or damage to equipment.

Bit Forcing — Bit forcing temporarily changes the status of a discrete bit. For
example, you may want to force an input on even though the program has turned it
off. This allows you to change the point status stored in the image register. The
forced value will be valid until the CPU writes to the image register location during the
next scan. This is useful you just need to force a bit on to trigger another event.

The following diagrams show a brief
example of how you could use the
D2–HPP Handheld Programmer to force
an I/O point. The example assumes you
have already placed the CPU into Run
Mode.

X0 Y0
OUT

C0

Use arrow keys to select point, then use
ON and OFF to change the status

SHFT ON
INS

 0 0 Y 1 Y

BIT REF X
16P STATUS

From a clear display, use the following keystrokes

Use the PREV or NEXT keys to select the Y data type. (Once the Y
appears, press 0 to start at Y0.)

STAT ENT

NEXT
0

A ENT

Y2 is now on

 0 0 Y 1 Y

Y7
BIT FORCE

From a blank display, use the following
keystrokes to force Y7 ON

Solid fill indicates point is on.

MLS
Y

7
HSHFT SHFT ON

INS

Y7
BIT FORCE

From a blank display, use the following
keystrokes to force Y7 OFF

No fill indicates point is off.

MLS
Y

7
HSHFT SHFT OFF

DEL

Forcing I/O Points

Bit Forcing with
Direct Access

��
Auxiliary Functions

���������		
�������

��������������

����������������	
�������

��������������
��� ��	
�������

������!�����"��#��$�%�������

������&����#'��#��$�%�������

������(����)����
*��'��%����
��#��$�%�������

������+����,,'��-��	
�������

������.����'���/�����	
�������

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–2

Introduction

Many CPU setup tasks involve the use of Auxiliary (AUX) Functions. The AUX
Functions perform many different operations, including clearing ladder memory,
displaying the scan time, and copying programs to EEPROM in the handheld
programmer. They are divided into categories that affect different system resources.
You can access the AUX Functions from DirectSOFT or from the D2–HPP
Handheld Programmer. The manuals for those products provide step-by-step
procedures for accessing the AUX Functions. Some of these AUX Functions are
designed specifically for the Handheld Programmer setup, so they will not be
needed (or available) with the DirectSOFT package. Even though this Appendix
provides many examples of how the AUX functions operate, you should supplement
this information with the documentation for your choice of programming device.
Note, the Handheld Programmer may have additional AUX functions that are not
supported with the DL05 PLCs.

AUX Function and Description DL05

AUX 2* — RLL Operations

21 Check Program �

22 Change Reference �

23 Clear Ladder Range �

24 Clear All Ladders �

AUX 3* — V-Memory Operations

31 Clear V Memory �

AUX 4* — I/O Configuration

41 Show I/O Configuration �

AUX 5* — CPU Configuration

51 Modify Program Name �

53 Display Scan Time �

54 Initialize Scratchpad �

55 Set Watchdog Timer �

56 Set Communication Port 2 �

57 Set Retentive Ranges �

58 Test Operations �

59 Override Setup �

5B HSIO Interface Configuration �

5D Scan Control Setup �

� — supported
HP — Handheld Programmer function

AUX Function and Description DL05

AUX 6* — Handheld Programmer Configura-
tion

61 Show Revision Numbers �

62 Beeper On / Off HP

65 Run Self Diagnostics HP

AUX 7* — EEPROM Operations

71 Copy CPU memory to
HPP EEPROM

HP

72 Write HPP EEPROM to CPU HP

73 Compare CPU to
HPP EEPROM

HP

74 Blank Check (HPP EEPROM) HP

75 Erase HPP EEPROM HP

76 Show EEPROM Type
(CPU and HPP)

HP

AUX 8* — Password Operations

81 Modify Password �

82 Unlock CPU �

83 Lock CPU �

Purpose of
Auxiliary Functions

A
ppendix A

A
uxiliary F

unctions
A–3

Auxilliary Functions

DirectSOFT provides various menu options during both online and offline
programming. Some of the AUX functions are only available during online
programming, some only during offline programming, and some during both online
and offline programming. The following diagram shows and example of the PLC
operations menu available within DirectSOFT.

-
����	�����

You can also access the AUX functions by using a Handheld Programmer. Plus,
remember some of the AUX functions are only available from the Handheld.
Sometimes the AUX name or description cannot fit on one display. If you want to see
the complete description, just press the arrow keys to scroll left and right. Also,
depending on the current display, you may have to press CLR more than once.

AUX 2* RLL OPERATIONS
AUX FUNCTION SELECTION

Use NXT or PREV to cycle through the menus

AUX 3* V OPERATIONS
AUX FUNCTION SELECTION

Press ENT to select sub-menus

AUX 31 CLR V MEMORY
AUX 3* V OPERATIONS

CLR AUX

NEXT

ENT

You can also enter the exact AUX number to go straight to the sub-menu.

AUX 31 CLR V MEMORY
AUX 3* V OPERATIONS

Enter the AUX number directly

CLR
3

D
1

B AUX

Accessing AUX
Functions via
DirectSOFT

Accessing AUX
Functions via the
Handheld
Programmer

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–4

AUX 2* — RLL Operations

RLL Operations auxiliary functions allow you to perform various operations on the
ladder program.
Both the Handheld and DirectSOFT automatically check for errors during program
entry. However, there may be occasions when you want to check a program that has
already been in the CPU. Two types of checks are available:

� Syntax
� Duplicate References

The Syntax check will find a wide variety of programming errors, such as missing
END statements. If you perform this check and get an error, see Appendix B for a
complete listing of programming error codes. Correct the problem and then continue
running the Syntax check until the message “NO SYNTAX ERROR appears.
Use the Duplicate Reference check to verify you have not used the same output coil
reference more than once. Note, this AUX function will also find the same outputs
even if they have been used with the OROUT instruction, which is perfectly
acceptable.
This AUX function is available on the PLC Diagnostics sub-menu from within
DirectSOFT.

There will probably be times when you need to change an I/O address reference or
control relay reference. AUX 22 allows you to quickly and easily change all
occurrences, (within an address range), of a specific instruction. For example, you
can replace every instance of X5 with X10.

There have been many times when we’ve taken existing programs and added or
removed certain portions to solve new application problems. By using AUX 23 you
can select and delete a portion of the program. DirectSOFT does not have a menu
option for this AUX function, but you can just select the appropriate portion of the
program and cut it with the editing tools.

AUX 24 clears the entire program from CPU memory. Before you enter a new
program, you should always clear ladder memory. This AUX function is available on
the PLC/Clear PLC sub-menu within DirectSOFT.

AUX 3* — V-memory Operations

AUX 31 clears all the information from the V-memory locations available for general
use. This AUX function is available on the PLC/Clear PLC sub-menu within
DirectSOFT.

AUX 4* — I/O Configuration

This AUX function allows you to display the current I/O configuration on the DL05.
Both the Handheld Programmer and DirectSOFT will show the I/O configuration.

AUX 21
Check Program

AUX 22
Change Reference

AUX 23
Clear Ladder
Range

AUX 24
Clear Ladders

AUX 31
Clear V Memory

AUX 41
Show I/O
Configuration

A
ppendix A

A
uxiliary F

unctions
A–5

Auxilliary Functions

AUX 5* — CPU Configuration
The following auxiliary AUX functions allow you to setup, view, or change the CPU
configuration.
DL05 PLCs can use a program name for the CPU program or a program stored on
EEPROM in the Handheld Programmer. (Note, you cannot have multiple programs
stored on the EEPROM.) The program name can be up to eight characters in length
and can use any of the available characters (A–Z, 0–9). AUX 51 allows you to enter a
program name. You can also perform this operation from within DirectSOFT by
using the PLC/Setup sub-menu. Once you’ve entered a program name, you can
only clear the name by using AUX 54 to reset the system memory. Make sure you
understand the possible effects of AUX 54 before you use it!

AUX 53 displays the current, minimum, and maximum scan times. The minimum
and maximum times are the ones that have occurred since the last Program Mode to
Run Mode transition. You can also perform this operation from within DirectSOFT
by using the PLC/Diagnostics sub-menu.

The CPU maintains system parameters in a memory area often referred to as the
“scratchpad”. In some cases, you may make changes to the system setup that will be
stored in system memory. For example, if you specify a range of Control Relays
(CRs) as retentive, these changes are stored.

NOTE: You may never have to use this feature unless you have made changes that
affect system memory. Usually, you’ll only need to initialize the system memory if you
are changing programs and the old program required a special system setup. You
can usually change from program to program without ever initializing system
memory.

AUX 54 resets the system memory to the default values. You can also perform this
operation from within DirectSOFT by using the PLC/Setup sub-menu.

DL05 PLCs have a “watchdog” timer that is used to monitor the scan time. The
default value set from the factory is 200 ms. If the scan time exceeds the watchdog
time limit, the CPU automatically leaves RUN mode and enters PGM mode. The
Handheld displays the following message E003 S/W TIMEOUT when the scan
overrun occurs.
Use AUX 55 to increase or decrease the watchdog timer value. You can also perform
this operation from within DirectSOFT by using the PLC/Setup sub-menu.

Since the DL05 CPU has an additional communication port, you can use the
Handheld to set the network address for port 2 and the port communication
parameters. The default settings are:

� Station address 1
� HEX mode
� Odd parity

You can use this port with either the Handheld Programmer, DirectSOFT, or, as a
communication port for DirectNET and MODBUS. Refer to DirectNET and
MODBUS manuals for additional information about communication settings
required for network operation.

AUX 51
Modify Program
Name

AUX 53
Display Scan Time

AUX 54
Initialize
Scratchpad

AUX 55
Set Watchdog
Timer

AUX 56
CPU Network
Address

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–6

NOTE: You will only need to use this procedure if you have port 2 connected to a
network. Otherwise, the default settings will work fine.

Use AUX 56 to set the network address and communication parameters. You can
also perform this operation from within DirectSOFT by using the PLC/Setup
sub-menu.

DL05 CPUs provide certain ranges of retentive memory by default. Some of the
retentive memory locations are backed up by a super-capacitor, and others are in
non-volatile FLASH memory. The FLASH memory locations are V7400 to V7577.
The default ranges are suitable for many applications, but you can change them if
your application requires additional retentive ranges or no retentive ranges at all.
The default settings are:

DL05
Memory Area Default Range Available

Range

Control Relays C400 – C777 C0 – C777

V Memory V1400 – V7777 V0 – V7777

Timers None by default T0 – T177

Counters CT0 – CT177 CT0 – CT177

Stages None by default S0 – S377

Use AUX 57 to change the retentive ranges. You can also perform this operation
from within DirectSOFT by using the PLC/Setup sub-menu.

WARNING: The DL05 CPUs do not have battery-backed RAM. The super-capacitor
will retain the values in the event of a power loss, but only up to 3 weeks. (The
retention time may be as short as 4 1/2 days in 60 degree C operating temperature.)

AUX 58 is used to override the output disable function of the Pause instruction. Use
AUX 58 to program a single output or a range of outputs which will operate normally
even when those points are within the scope of the pause instruction.

Bit override can be enabled on a point-by-point basis by using AUX 59 from the
Handheld Programmer or, by a menu option from within DirectSOFT. Bit override
basically disables any changes to the discrete point by the CPU. For example, if you
enable bit override for X1, and X1 is off at the time, then the CPU will not change the
state of X1. This means that even if X1 comes on, the CPU will not acknowledge the
change. So, if you used X1 in the program, it would always be evaluated as “off” in
this case. Of course, if X1 was on when the bit override was enabled, then X1 would
always be evaluated as “on”.
There is an advantage available when you use the bit override feature. The regular
forcing is not disabled because the bit override is enabled. For example, if you
enabled the Bit Override for Y0 and it was off at the time, then the CPU would not
change the state of Y0. However, you can still use a programming device to change
the status. Now, if you use the programming device to force Y0 on, it will remain on
and the CPU will not change the state of Y0. If you then force Y0 off, the CPU will
maintain Y0 as off. The CPU will never update the point with the results from the
application program or from the I/O update until the bit override is removed from the
point.

AUX 57
Set Retentive
Ranges

AUX 58
Test Operations

AUX 59
Bit Override

A
ppendix A

A
uxiliary F

unctions
A–7

Auxilliary Functions

The following diagram shows a brief overview of the bit override feature. Notice the
CPU does not update the Image Register when bit override is enabled.

Input Update

Result of Program
Solution

OFF

Image Register (example)

Y1Y2...Y128
ONON...OFF

C0C1C2...C377
OFFOFFON...OFF

Y0
OFF

X1X2...X128
ONON...OFF

X0

Bit Override OFF

Force from
Programmer

Input Update

Result of Program
Solution

Bit Override ON

Force from
Programmer

AUX 5B is used with the High-Speed I/O (HSIO) function to select the configuration.
You can choose the type of counter, set the counter parameters, etc. See Chapter 3
for a complete description of how to select the various counter features.

The DL05 CPU has two program scan modes: fixed and variable. In fixed mode, the
scan time is lengthened to the time you specify (in milliseconds). If the actual scan
time is longer than the fixed scan time, then the error code ’E504 BAD REF/VAL’ is
displayed. In variable scan mode, the CPU begins each scan as soon as the
previous scan’s activities complete.

AUX 5B
Counter Interface
Configuration

AUX 5D
Select PLC
Scan Mode

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–8

AUX 6* — Handheld Programmer Configuration

The following auxiliary functions allow you to setup, view, or change the Handheld
Programmer configuration.
As with most industrial control products, there are cases when additional features
and enhancements are made. Sometimes these new features only work with certain
releases of firmware. By using AUX 61 you can quickly view the CPU and Handheld
Programmer firmware revision numbers. This information (for the CPU) is also
available from within DirectSOFT from the PLC/Diagnostics sub-menu.

The Handheld has a beeper that provides confirmation of keystrokes. You can use
Auxiliary (AUX) Function 62 to turn off the beeper.

If you think the Handheld Programmer is not operating correctly, you can use AUX 65
to run a self diagnostics program. You can check the following items.

� Keypad
� Display
� LEDs and Backlight
� Handheld Programmer EEPROM check

AUX 7* — EEPROM Operations
The following auxiliary functions allow you to move the ladder program from one
area to another and perform other program maintenance tasks.
Many of these AUX functions allow you to copy different areas of memory to and
from the CPU and handheld programmer. The following table shows the areas that
may be mentioned.

Option and Memory Type DL05 Default Range

1:PGM — Program $00000 – $02047

2:V — V memory $00000 – $07777

3:SYS — System Non-selectable copies
system parameters

4:etc (All)— Program, Sys-
tem and non-volatile V-
memory only

Non-selectable

AUX 71 copies information from the CPU memory to an EEPROM installed in the
Handheld Programmer.You can copy different portions of EEPROM (HP) memory to
the CPU memory as shown in the previous table.

AUX 61
Show Revision
Numbers

AUX 62
Beeper On/Off

AUX 65
Run Self
Diagnostics

Transferrable
Memory Areas

AUX 71
CPU to HPP
EEPROM

A
ppendix A

A
uxiliary F

unctions
A–9

Auxilliary Functions

AUX 72 copies information from the EEPROM installed in the Handheld
Programmer to CPU memory in the DL05. You can copy different portions of
EEPROM (HP) memory to the CPU memory as shown in the previous table.

AUX 73 compares the program in the Handheld programmer (EEPROM) with the
CPU program. You can compare different types of information as shown previously.

AUX 74 allows you to check the EEPROM in the handheld programmer to make sure
it is blank. It’s a good idea to use this function anytime you start to copy an entire
program to an EEPROM in the handheld programmer.

AUX 75 allows you to clear all data in the EEPROM in the handheld programmer.
You should use this AUX function before you copy a program from the CPU.

You can use AUX 76 to quickly determine what size EEPROM is installed in the
Handheld Programmer.

AUX 8* — Password Operations
There are several AUX functions available that you can use to modify or enable the
CPU password. You can use these features during on-line communications with the
CPU, or, you can also use them with an EEPROM installed in the Handheld
Programmer during off-line operation. This will allow you to develop a program in the
Handheld Programmer and include password protection.

� AUX 81 — Modify Password
� AUX 82 — Unlock CPU
� AUX 83 — Lock CPU

You can use AUX 81 to provide an extra measure of protection by entering a
password that prevents unauthorized machine operations. The password must be
an eight-character numeric (0–9) code. Once you’ve entered a password, you can
remove it by entering all zeros (00000000). (This is the default from the factory.)
Once you’ve entered a password, you can lock the CPU against access. There are
two ways to lock the CPU with the Handheld Programmer.

� The CPU is always locked after a power cycle (if a password is present).
� You can use AUX 82 and AUX 83 to lock and unlock the CPU.

AUX 72
HPP EEPROM
to CPU

AUX 73
Compare HPP
EEPROM to CPU

AUX 74
HPP EEPROM
Blank Check

AUX 75
Erase HPP
EEPROM

AUX 76
Show EEPROM
Type

AUX 81
Modify Password

A
pp

en
di

x
A

A
ux

ili
ar

y
F

un
ct

io
ns

Auxiliary Functions
A–10

You can also enter or modify a password from within DirectSOFT by using the
PLC/Password sub-menu. This feature works slightly differently in DirectSOFT.
Once you’ve entered a password, the CPU is automatically locked when you exit the
software package. It will also be locked if the CPU is power cycled.

WARNING: Make sure you remember the password before you lock the CPU. Once
the CPU is locked you cannot view, change, or erase the password. If you do not
remember the password, you have to return the CPU to the factory for password
removal.

NOTE: The DL05 CPUs support multi-level password protection of the ladder
program. This allows password protection while not locking the communication port
to an operator interface. The multi-level password can be invoked by creating a
password with an upper case “A” followed by seven numeric characters (e.g.
A1234567).

AUX 82 can be used to unlock a CPU that has been password protected.
DirectSOFT will automatically ask you to enter the password if you attempt to
communicate with a CPU that contains a password.

AUX 83 can be used to lock a CPU that contains a password. Once the CPU is
locked, you will have to enter a password to gain access. Remember, this is not
necessary with DirectSOFT since the CPU is automatically locked whenever you
exit the software package.

AUX 82
Unlock CPU

AUX 83
Lock CPU

��
DL05 Error Codes

���������		
�������

�����������
�����

A
pp

en
di

x
B

E
rr

or
 C

od
es

B–2
DL05 Error Codes

DL05 Error Code Description

E003
SOFTWARE
TIME-OUT

If the program scan time exceeds the time allotted to the watchdog timer, this
error will occur. SP51 will be on and the error code will be stored in V7755. To
correct this problem use AUX 55 to extend the time allotted to the watchdog
timer.

E004
INVALID
INSTRUCTION

The CPU attempted to execute an instruction code, but the RAM contents
had a parity error. Performing a program download to the CPU in an
electrically noisy environment can corrupt a program’s contents. Clear the
CPU program memory, and download the program again.

E043
MC BATTERY LOW

The battery in the CMOS RAM cartridge is low and should be replaced.

E104
WRITE FAILED

A write to the CPU was not successful. Disconnect the power, remove the
CPU, and make sure the EEPROM is not write protected. If the EEPROM is
not write protected, make sure the EEPROM is installed correctly. If both
conditions are OK, replace the CPU.

E151
BAD COMMAND

A parity error has occurred in the application program. SP44 will be on and
the error code will be stored in V7755 .This problem may possibly be due to
electrical noise. Clear the memory and download the program again. Correct
any grounding problems. If the error returns replace the Micro PLC.

E311
HP COMM
ERROR 1

A request from the handheld programmer could not be processed by the
CPU. Clear the error and retry the request. If the error continues replace the
CPU. SP46 will be on and the error code will be stored in V7756.

E312
HP COMM
ERROR 2

A data error was encountered during communications with the CPU. Clear
the error and retry the request. If the error continues check the cabling
between the two devices, replace the handheld programmer, then if
necessary replace the CPU. The error code will be stored in V7756.

E313
HP COMM
ERROR 3

An address error was encountered during communications with the CPU.
Clear the error and retry the request. If the error continues check the cabling
between the two devices, replace the handheld programmer, then if
necessary replace the CPU. The error code will be stored in V7756.

E316
HP COMM
ERROR 6

A mode error was encountered during communications with the CPU. Clear
the error and retry the request. If the error continues replace the handheld
programmer, then if necessary replace the CPU. The error code will be stored
in V7756.

E320
HP COMM
TIME-OUT

The CPU did not respond to the handheld programmer communication
request. Check to insure cabling is correct and not defective. Power cycle the
system if the error continues replace the CPU first and then the handheld
programmer if necessary.

E321
COMM ERROR

A data error was encountered during communication with the CPU. Check to
insure cabling is correct and not defective. Power cycle the system and if the
error continues replace the CPU first and then the handheld programmer if
necessary.

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

E
rror C

odes
B–3

DL05 Error Codes

DL05 Error Code Description

E360
HP PERIPHERAL
PORT TIME-OUT

The device connected to the peripheral port did not respond to the handheld
programmer communication request. Check to insure cabling is correct and
not defective. The peripheral device or handheld programmer could be
defective.

E4**
NO PROGRAM

A syntax error exists in the application program. The most common is a
missing END statement. Run AUX21 to determine which one of the E4**
series of errors is being flagged. SP52 will be on and the error code will be
stored in V7755.

E401
MISSING END
STATEMENT

All application programs must terminate with an END statement. Enter the
END statement in appropriate location in your program. SP52 will be on and
the error code will be stored in V7755.

E402
MISSING LBL

A MOVMC or LDLBL instruction was used without the appropriate label.
Refer to the Chapter 5 for details on these instructions. SP52 will be on and
the error code will be stored in V7755.

E403
MISSING RET

A subroutine in the program does not end with the RET instruction. SP52 will
be on and the error code will be stored in V7755.

E404
MISSING FOR

A NEXT instruction does not have the corresponding FOR instruction. SP52
will be on and the error code will be stored in V7755.

E405
MISSING NEXT

A FOR instruction does not have the corresponding NEXT instruction. SP52
will be on and the error code will be stored in V7755.

E406
MISSING IRT

An interrupt routine in the program does not end with the IRT instruction.
SP52 will be on and the error code will be stored in V7755.

E412
SBR/LBL>64

There is greater than 64 SBR or DLBL instructions in the program. This error
is also returned if there is greater than 2 INT instructions used in the program.
SP52 will be on and the error code will be stored in V7755.

E421
DUPLICATE STAGE
REFERENCE

Two or more SG or ISG labels exist in the application program with the same
number. A unique number must be allowed for each Stage and Initial Stage.
SP52 will be on and the error code will be stored in V7755.

E422
DUPLICATE LBL
REFERENCE

Two or more LBL instructions exist in the application program with the same
number. A unique number must be allowed for each and label. SP52 will be
on and the error code will be stored in V7755.

E423
NESTED LOOPS

Nested loops (programming one FOR/NEXT loop inside of another) are not
allowed. SP52 will be on and the error code will be stored in V7755.

E431
INVALID ISG/SG
ADDRESS

An ISG or SG instruction must not be placed after the end statement (such as
inside a subroutine). SP52 will be on and the error code will be stored in
V7755.

A
pp

en
di

x
B

E
rr

or
 C

od
es

B–4
DL05 Error Codes

DL05 Error Code Description

E433
INVALID SBR
ADDRESS

A SBR must be programmed after the end statement, not in the main body of
the program or in an interrupt routine. SP52 will be on and the error code will
be stored in V7755.

E434
INVALID RTC
ADDRESS

A RTC must be programmed after the end statement, not in the main body of
the program or in an interrupt routine. SP52 will be on and the error code will
be stored in V7755.

E435
INVALID RT
ADDRESS

A RT must be programmed after the end statement, not in the main body of
the program or in an interrupt routine. SP52 will be on and the error code will
be stored in V7755.

E436
INVALID INT
ADDRESS

An INT must be programmed after the end statement, not in the main body of
the program. SP52 will be on and the error code will be stored in V7755.

E437
INVALID IRTC
ADDRESS

An IRTC must be programmed after the end statement, not in the main body
of the program. SP52 will be on and the error code will be stored in V7755.

E438
INVALID IRT
ADDRESS

An IRT must be programmed after the end statement, not in the main body of
the program. SP52 will be on and the error code will be stored in V7755.

E440
INVALID DATA
ADDRESS

Either the DLBL instruction has been programmed in the main program area
(not after the END statement), or the DLBL instruction is on a rung containing
input contact(s).

E441
ACON/NCON

An ACON or NCON must be programmed after the end statement, not in the
main body of the program. SP52 will be on and the error code will be stored
in V7755.

E451
BAD MLS/MLR

MLS instructions must be numbered in ascending order from top to bottom.

E453
MISSING T/C

A timer or counter contact is being used where the associated timer or
counter does not exist.

E454
BAD TMRA

One of the contacts is missing from a TMRA instruction.

E455
BAD CNT

One of the contacts is missing from a CNT or UDC instruction.

E456
BAD SR

One of the contacts is missing from the SR instruction.

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

E
rror C

odes
B–5

DL05 Error Codes

DL05 Error Code Description

E461
STACK OVERFLOW

More than nine levels of logic have been stored on the stack. Check the use
of OR STR and AND STR instructions.

E462
STACK
UNDERFLOW

An unmatched number of logic levels have been stored on the stack. Insure
the number of AND STR and OR STR instructions match the number of STR
instructions.

E463
LOGIC ERROR

A STR instruction was not used to begin a rung of ladder logic.

E464
MISSING CKT

A rung of ladder logic is not terminated properly.

E471
DUPLICATE COIL
REFERENCE

Two or more OUT instructions reference the same I/O point.

E472
DUPLICATE TMR
REFERENCE

Two or more TMR instructions reference the same number.

E473
DUPLICATE CNT
REFERENCE

Two or more CNT instructions reference the same number.

E499
PRINT
INSTRUCTION

Invalid PRINT instruct usage. Quotations and/or spaces were not entered or
entered incorrectly.

A
pp

en
di

x
B

E
rr

or
 C

od
es

B–6
DL05 Error Codes

DL05 Error Code Description

E501
BAD ENTRY

An invalid keystroke or series of keystrokes was entered into the handheld
programmer.

E502
BAD ADDRESS

An invalid or out of range address was entered into the handheld
programmer.

E503
BAD COMMAND

An invalid command was entered in the handheld programmer.

E504
BAD REF/VAL

An invalid value or reference number was entered with an instruction.

E505
INVALID
INSTRUCTION

An invalid instruction was entered into the handheld programmer.

E506
INVALID
OPERATION

An invalid operation was attempted by the handheld programmer.

E520
BAD OP–RUN

An operation which is invalid in the RUN mode was attempted by the
handheld programmer.

E521
BAD OP–TRUN

An operation which is invalid in the TEST RUN mode was attempted by the
handheld programmer.

E523
BAD OP–TPGM

An operation which is invalid in the TEST PROGRAM mode was attempted
by the handheld programmer.

E524
BAD OP–PGM

An operation which is invalid in the PROGRAM mode was attempted by the
handheld programmer.

E525
MODE SWITCH

An operation was attempted by the handheld programmer while the CPU
mode switch was in a position other than the TERM position.

E526
OFF LINE

The handheld programmer is in the OFFLINE mode. To change to the
ONLINE mode use the MODE the key.

E527
ON LINE

The handheld programmer is in the ON LINE mode. To change to the OFF
LINE mode use the MODE the key.

E528
CPU MODE

The operation attempted is not allowed during a Run Time Edit.

E540
CPU LOCKED

The CPU has been password locked. To unlock the CPU use AUX82 with the
password.

E541
WRONG
PASSWORD

The password used to unlock the CPU with AUX82 was incorrect.

E542
PASSWORD RESET

The CPU powered up with an invalid password and reset the password to
00000000. A password may be re-entered using AUX81.

E601
MEMORY FULL

Attempted to enter an instruction which required more memory than is
available in the CPU.

E602
INSTRUCTION
MISSING

A search function was performed and the instruction was not found.

A
ppendix A

D
L405 E

rror C
odes

A
ppendix B

E
rror C

odes
B–7

DL05 Error Codes

DL05 Error Code Description

E603
DATA MISSING

A search function was performed and the data was not found.

E604
REFERENCE
MISSING

A search function was performed and the reference was not found.

E620
OUT OF MEMORY

An attempt to transfer more data between the CPU and handheld
programmer than the receiving device can hold.

E621
EEPROM NOT
BLANK

An attempt to write to a non-blank EEPROM in the handheld programmer
was made. Erase the EEPROM and then retry the write.

E622
NO HPP EEPROM

A data transfer was attempted with no EEPROM (or possibly a faulty
EEPROM) installed in the handheld programmer.

E623
SYSTEM EEPROM

A function was requested with an EEPROM in the handheld programmer
which contains system information only.

E624
V-MEMORY ONLY

A function was requested with an EEPROM in the handheld programmer
which contains V-memory data only.

E625
PROGRAM ONLY

A function was requested with an EEPROM in the handheld programmer
which contains program data only.

E626
PROM MC

An attempt to transfer data from a tape to a UVPROM Memory Cartridge.
This transfer must be made using a CMOS RAM Cartridge.

E627
BAD WRITE

An attempt to write to a write-protected or faulty EEPROM in the handheld
programmer was made. Check the write protect jumper and replace the
EEPROM if necessary.

E628
EEPROM TYPE
ERROR

The wrong size EEPROM is being used in the handheld programmer. This
error occurs when the program size is larger than what the HPP can hold.

E640
COMPARE ERROR

A compare between the EEPROM handheld programmer and the CPU was
found to be in error.

E641
VOLUME LEVEL

The volume level of the cassette player is not set properly. Adjust the volume
and retry the operation.

E642
CHECKSUM ERROR

An error was detected while data was being transferred to the handheld
programmer’s Memory Cartridge. Check cabling and retry the operation.

E650
HPP SYSTEM
ERROR

A system error has occurred in the handheld programmer. Power cycle the
handheld programmer. If the error returns replace the handheld programmer.

E651
HPP ROM ERROR

A ROM error has occurred in the handheld programmer. Power cycle the
handheld programmer. If the error returns replace the handheld programmer.

E652
HPP RAM ERROR

A RAM error has occurred in the handheld programmer. Power cycle the
handheld programmer. If the error returns replace the handheld programmer.

��
Instruction
Execution Times

���������		
�������

��������������

����������������
����������
�

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–2
Instruction Execution Times

Introduction

This appendix contains several tables that provide the instruction execution times
for DL05 Micro PLCs. Many of the execution times depend on the type of data used
with the instruction. Registers may be classified into the following types:

� Data (word) Registers
� Bit Registers

Some V-memory locations are considered data registers, such as timer or counter
current values. Standard user V memory is classified as a V-memory data register.
Note that you can load a bit pattern into these types of registers, even though their
primary use is for data registers. The following locations are data registers:

Data Registers DL05

Timer Current Values V0 - V177

Counter Current Values V1000 - V1177

User Data Words V1200 - V7377
V7400 - V7577

You may recall that some of the discrete points such as X, Y, C, etc. are automatically
mapped into V memory. The following bit registers contain this data:

Bit Registers DL05

Input Points (X) V40400 - V40417

Output Points (Y) V40500 - V40517

Control Relays (C) V40600 - V40637

Stages (S) V41000 - V41017

Timer Status Bits V41100 - V41107

Counter Status Bits V41140 - V41147

Special Relays (SP) V41200 - V41237

Some instructions can have more than
one parameter. For example, the SET
instruction shown in the ladder program to
the right can set a single point or a range of
points.

X0 X1 Y0 – Y7
SET

C0

Two Data Locations Available

In these cases, execution times that depend on the amount and type of parameters.
The execution time tables list execution times for both situations, as shown below:

SET 1st #: X, Y, C, S

2nd #: X, Y, C, S (N pt)

32.2 �s

14�s+3.1�sxN

RST 1st #: X, Y, C, S

2nd #: X, Y, C, S (N pt)

34.4 �s

16+3.2xN

V-Memory Data
Registers

V-Memory Bit
Registers

How to Read the
Tables

Execution depends
on numbers of

locations and types
of data used

A
ppendix C

Inst. E
xecution Tim

es
C–3

Instruction Execution Times

Instruction Execution Times

Boolean Instructions DL05

Instruction Legal Data Types Execute Not Execute

STR X, Y, C, T, CT, S, SP 2.0 �s 2.0 �s

STRN X, Y, C, T, CT, S, SP 2.3 �s 2.3 �s

OR X, Y, C, T, CT, S, SP 1.6 �s 1.6 �s

ORN X, Y, C, T, CT, S, SP 1.9 �s 1.9 �s

AND X, Y, C, T, CT, S, SP 1.4 �s 1.4 �s

ANDN X, Y, C, T, CT, S, SP 1.6 �s 1.6 �s

ANDSTR None 1.3 �s 1.3 �s

ORSTR None 1.3 �s 1.3 �s

OUT X, Y, C 6.8 �s 6.8 �s

OROUT X, Y, C 6.7 �s 6.7 �s

NOT None 1.6 �s 1.6 �s

PD X, Y, C 52.3 �s 53.0 �s

STRPD X, Y, C, T, CT, S, SP 20.2 �s 12.9 �s

STRND X, Y, C, T, CT, S, SP 20.1 �s 13.0 �s

ORPD X, Y, C, T, CT, S, SP 20.0 �s 12.6 �s

ORND X, Y, C, T, CT, S, SP 19.8 �s 12.7 �s

ANDPD X, Y, C, T, CT, S, SP 20.0 �s 12.6 �s

ANDND X, Y, C, T, CT, S, SP 19.9 �s 12.8 �s

SET 1st #: X, Y, C, S

2nd #: X, Y, C, S (N pt)

32.2 �s

14�s+3.1�sxN

3.7 �s

4.7 �s

RST 1st #: X, Y, C, S

2nd #: X, Y, C, S (N pt)

34.4 �s

16+3.2xN

3.7 �s

4.7 �s

1st #: T, CT

2nd #: T, CT (N pt)

63.6 �s

39+6.7xN

3.7 �s

4.9 �s

PAUSE 1wd: Y

2wd: Y (N points)

23.4 �s

19.7+1.5xN

23.0 �s

19.5+1.4xN

Boolean
Instructions

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–4
Instruction Execution Times

Comparative Boolean Instructions DL05

Instruction Legal Data Types Execute Not Execute

STRE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

17.0 �s
17.0 �s
11.7 �s
42.8 �s
42.8 �s

17.0 �s
17.0 �s
11.7 �s
42.8 �s
42.8 �s

42.8 �s
42.8 �s
38.1 �s
66.8 �s
66.8 �s

42.8 �s
42.8 �s
38.1 �s
66.8 �s
66.8 �s

16.8 �s
16.8 �s
11.6 �s
42.7 �s
42.7 �s

16.8 �s
16.8 �s
11.6 �s
42.7 �s
42.7 �s

42.7 �s
42.7 �s
38.0 �s
66.7 �s
66.7 �s

42.7 �s
42.7 �s
38.0 �s
66.7 �s
66.7 �s

STRNE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

17.1 �s
17.1 �s
11.8 �s
43.0 �s
43.0 �s

17.1 �s
17.1 �s
11.8 �s
43.0 �s
43.0 �s

43.0 �s
43.0 �s
38.2 �s
67.0 �s
67.0 �s

43.0 �s
43.0 �s
38.2 �s
67.0 �s
67.0 �s

17.3 �s
17.3 �s
12.0 �s
43.1 �s
43.1 �s

17.3 �s
17.3 �s
12.0 �s
43.1 �s
43.1 �s

43.1 �s
43.1 �s
38.4 �s
67.1 �s
67.1 �s

43.1 �s
43.1 �s
38.4 �s
67.1 �s
67.1 �s

Comparative
Boolean
Instructions

A
ppendix C

Inst. E
xecution Tim

es
C–5

Instruction Execution Times

Comparative Boolean (cont.) DL05

Instruct Legal Data Types Execute Not Execute

ORE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

16.6 �s
16.6 �s
11.5 �s
42.6 �s
42.6 �s

16.6 �s
16.6 �s
11.5 �s
42.6 �s
42.6 �s

37.7 �s
37.7 �s
42.6 �s
66.5 �s
66.5 �s

37.7 �s
37.7 �s
42.6 �s
66.5 �s
66.5 �s

16.5 �s
16.5 �s
11.4 �s
42.5 �s
42.5 �s

16.5 �s
16.5 �s
11.4 �s
42.5 �s
42.5 �s

37.6 �s
37.6 �s
42.5 �s
66.4 �s
66.4 �s

37.6 �s
37.6 �s
42.5 �s
66.4 �s
66.4 �s

ORNE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

16.7 �s
16.7 �s
11.6 �s
42.7 �s
42.7 �s

16.7 �s
16.7 �s
11.6 �s
42.7 �s
42.7 �s

42.7 �s
42.7 �s
37.8 �s
66.6 �s
66.6 �s

42.7 �s
42.7 �s
37.8 �s
66.6 �s
66.6 �s

16.8 �s
16.8 �s
11.7 �s
42.9 �s
42.9 �s

16.8 �s
16.8 �s
11.7 �s
42.9 �s
42.9 �s

42.8 �s
42.8 �s
38.0 �s
66.7 �s
66.7 �s

42.8 �s
42.8 �s
38.0 �s
66.7 �s
66.7 �s

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–6
Instruction Execution Times

Comparative Boolean (cont.) DL05

Instruct Legal Data Types Execute Not Execute

ANDE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

16.6 �s
16.6 �s
11.5 �s
42.6 �s
42.6 �s

16.6 �s
16.6 �s
11.5 �s
42.6 �s
42.6 �s

42.6 �s
42.6 �s
37.7 �s
66.5 �s
66.5 �s

42.6 �s
42.6 �s
37.7 �s
66.5 �s
66.5 �s

16.5 �s
16.5 �s
11.4 �s
42.5 �s
42.5 �s

16.5 �s
16.5 �s
11.4 �s
42.5 �s
42.5 �s

42.5 �s
42.5 �s
37.6 �s
66.3 �s
66.3 �s

42.5 �s
42.5 �s
37.6 �s
66.3 �s
66.3 �s

ANDNE 1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

16.7 �s
16.7 �s
11.6 �s
42.7 �s
42.7 �s

16.7 �s
16.7 �s
11.6 �s
42.7 �s
42.7 �s

42.7 �s
42.7 �s
37.9 �s
66.6 �s
66.6 �s

42.7 �s
42.7 �s
37.9 �s
66.6 �s
66.6 �s

16.8 �s
16.8 �s
11.7 �s
42.9 �s
42.9 �s

16.8 �s
16.8 �s
11.7 �s
42.9 �s
42.9 �s

42.9 �s
42.9 �s
38.1 �s
66.8 �s
66.8 �s

42.9 �s
42.9 �s
38.1 �s
66.8 �s
66.8 �s

A
ppendix C

Inst. E
xecution Tim

es
C–7

Instruction Execution Times

Comparative Boolean (cont.) DL05

Instruc Legal Data Types Execute Not Execute

STR 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

17.0 �s
17.0 �s
11.7 �s
42.8 �s
42.8 �s

16.9 �s
16.9 �s
11.6 �s
42.7 �s
42.7 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

17.0 �s
17.0 �s
11.7 �s
42.8 �s
42.8 �s

17.0 �s
17.0 �s
11.7 �s
42.8 �s
42.8 �s

42.9 �s
42.9 �s
38.1 �s
66.8 �s
66.8 �s

42.9 �s
42.9 �s
38.1 �s
66.8 �s
66.8 �s

16.9 �s
16.9 �s
11.6 �s
42.7 �s
42.7 �s

16.9 �s
16.9 �s
11.6 �s
42.7 �s
42.7 �s

42.8 �s
42.8 �s
38.0 �s
66.7 �s
66.7 �s

42.8 �s
42.8 �s
38.0 �s
66.7 �s
66.7 �s

STRN 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

17.1 �s
17.1 �s
11.9 �s
43.0 �s
43.0 �s

17.2 �s
17.2 �s
12.0 �s
43.1 �s
43.1 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

17.1 �s
17.1 �s
11.9 �s
43.0 �s
43.0 �s

17.1 �s
17.1 �s
11.9 �s
43.0 �s
43.0 �s

43.0 �s
43.0 �s
38.3 �s
67.0 �s
67.0 �s

43.0 �s
43.0 �s
38.3 �s
67.0 �s
67.0 �s

17.2 �s
17.2 �s
12.0 �s
43.1 �s
43.1 �s

17.2 �s
17.2 �s
12.0 �s
43.1 �s
43.1 �s

43.1 �s
43.1 �s
38.4 �s
67.1 �s
67.1 �s

43.1 �s
43.1 �s
38.4 �s
67.1 �s
67.1 �s

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–8
Instruction Execution Times

Comparative Boolean (cont.) DL05

Instruc Legal Data Types Execute Not Execute

OR 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

16.6 �s
16.6 �s
11.5 �s
42.6 �s
42.6 �s

16.5 �s
16.5 �s
11.4 �s
42.5 �s
42.5 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

16.6 �s
16.6 �s
11.5 �s
42.6 �s
42.6 �s

16.6 �s
16.6 �s
11.5 �s
42.6 �s
42.6 �s

42.6 �s
42.6 �s
37.7 �s
66.5 �s
66.5 �s

42.6 �s
42.6 �s
37.7 �s
66.5 �s
66.5 �s

16.5 �s
16.5 �s
11.4 �s
42.5 �s
42.5 �s

16.5 �s
16.5 �s
11.4 �s
42.5 �s
42.5 �s

42.5 �s
42.5 �s
37.6 �s
66.4 �s
66.4 �s

42.5 �s
42.5 �s
37.6 �s
66.4 �s
66.4 �s

ORN 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

41.8 �s
41.8 �s
37.1 �s
65.9 �s
65.9 �s

41.8 �s
41.8 �s
37.1 �s
65.9 �s
65.9 �s

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

41.8 �s
41.8 �s
37.1 �s
65.9 �s
65.9 �s

41.8 �s
41.8 �s
37.1 �s
65.9 �s
65.9 �s

A
ppendix C

Inst. E
xecution Tim

es
C–9

Instruction Execution Times

Comparative Boolean (cont.) DL05

Instruc Legal Data Types Execute Not Execute

AND 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

15.6 �s
15.6 �s
10.9 �s
41.6 �s
41.6 �s

15.6 �s
15.6 �s
10.9 �s
41.6 �s
41.6 �s

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

15.6 �s
15.6 �s
10.9 �s
41.6 �s
41.6 �s

15.6 �s
15.6 �s
10.9 �s
41.6 �s
41.6 �s

41.6 �s
41.6 �s
36.9 �s
65.6 �s
65.6 �s

41.6 �s
41.6 �s
36.9 �s
65.6 �s
65.6 �s

15.6 �s
15.6 �s
10.9 �s
41.6 �s
41.6 �s

15.6 �s
15.6 �s
10.9 �s
41.6 �s
41.6 �s

41.6 �s
41.6 �s
36.9 �s
65.6 �s
65.6 �s

41.6 �s
41.6 �s
36.9 �s
65.6 �s
65.6 �s

ANDN 1st 2nd

T, CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

15.7
15.7
10.8
41.9
41.9

1st 2nd

V: Data Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

V: Bit Reg. V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Data) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

P:Indir. (Bit) V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

15.8 �s
15.8 �s
10.8 �s
41.9 �s
41.9 �s

41.8 �s
41.8 �s
37.8 �s
65.9 �s
65.9 �s

41.8 �s
41.8 �s
37.8 �s
65.9 �s
65.9 �s

15.7 �s
15.7 �s
10.8 �s
41.9 �s
41.9 �s

15.7 �s
15.7 �s
10.8 �s
41.9 �s
41.9 �s

41.8 �s
41.8 �s
37.8 �s
65.9 �s
65.9 �s

41.8 �s
41.8 �s
37.8 �s
65.9 �s
65.9 �s

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–10
Instruction Execution Times

Immediate Instructions DL05

Instruction Legal Data Types Execute Not Execute

STRI X 38.2 �s 38.2 �s

STRNI X 38.5 �s 38.5 �s

ORI X 37.7 �s 37.7 �s

ORNI X 38.2 �s 38.2 �s

ANDI X 37.7 �s 37.7 �s

ANDNI X 38.1 �s 38.1 �s

OUTI Y 77.5 �s 77.5 �s

OROUTI Y 85.7 �s 85.7 �s

SETI 1st #: Y

2nd #: Y (N pt)

68.0 �s

108.5�s+1.6�sxN

3.2 �s
4.3 �s

RSTI 1st #: Y

2nd #: Y (N pt)

66.9
10.8�s+1.7�sxN

3.3 �s
4.4 �s

Timer, Counter, and Shift Register DL05

Instruction Legal Data Types Execute Not Execute

TMR 1st 2nd

T V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

64.0 �s
64.0 �s
58.1 �s
91.0 �s
91.0 �s

59.0 �s
59.0 �s
53.1 �s
86.0 �s
86.0 �s

TMRF 1st 2nd

T V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

64.8 �s
64.8 �s
59.5 �s
92.5 �s
92.5 �s

57.3 �s
57.3 �s
52.0 �s
85.0 �s
85.0 �s

TMRA 1st 2nd

T V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

72.2 �s
72.2 �s
65.7 �s
99.2 �s
99.2 �s

66.5 �s
66.5 �s
60.0 �s
93.5 �s
93.5 �s

TMRAF 1st 2nd

T V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

71.4 �s
71.4 �s
65.2 �s
98.9 �s
98.9 �s

65.6 �s
65.6 �s
59.5 �s
93.1 �s
93.1 �s

CNT 1st 2nd

CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

79.5 �s
79.5 �s
73.7 �s
107.0 �s
107.0 �s

66.9 �s
66.9 �s
61.1 �s
94.4 �s
94.4 �s

Immediate
Instructions

Timer, Counter,
and Shift Register

A
ppendix C

Inst. E
xecution Tim

es
C–11

Instruction Execution Times

Timer, Counter, and Shift Register DL05

Instruction Legal Data Types Execute Not Execute

SGCNT 1st 2nd

CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

76.5 �s
76.5 �s
70.8 �s
106.8 �s
106.8 �s

75.3 �s
75.3 �s
69.6 �s
105.4 �s
105.4 �s

UDC 1st 2nd

CT V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

118.3 �s
118.3 �s
111.8 �s
145.0 �s
145.0 �s

101.1 �s
101.1 �s
94.6 �s
128.0 �s
128.0 �s

SR C (N points to shift) 43.4�s+25.6�sxN 31.4 �s

Accumulator / Stack Load and
Output Data Instructions

DL05

Instruction Legal Data Types Execute Not Execute

LD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

43.7 �s
43.7 �s
42.7 �s
68.7 �s
68.7 �s

3.7 �s
3.7 �s
3.7 �s
3.7 �s
3.7 �s

LDD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

47.1 �s
47.1 �s
42.8 �s
72.2 �s
72.2 �s

3.7 �s
3.7 �s
3.7 �s
3.7 �s
3.7 �s

LDF 1st 2nd

X, Y, C, S K:Constant
T, CT, SP (N pt)

65.8�s+13.9�sxN 4.9 �s

LDA O: (Octal constant for address) 42.7 �s 3.7 �s

OUT V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

16.6 �s
16.6 �s
41.8 �s
41.8 �s

3.7 �s
3.7 �s
3.7 �s
3.7 �s

OUTD V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

18.1 �s
18.1 �s
43.3 �s
43.3 �s

3.8 �s
3.8 �s
3.8 �s
3.8 �s

OUTF 1st 2nd

X, Y, C K:Constant
(N pt)

61.9�s+22�sxN 4.7 �s

POP None 41.1 �s 2.7 �s

Accumulator Data
Instructions

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–12
Instruction Execution Times

Logical (Accumulator) Instructions DL05

Instruction Legal Data Types Execute Not Execute

AND V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

23.5 �s
23.5 �s
48.3 �s
48.3 �s

3.9 �s
3.9 �s
3.9 �s
3.9 �s

ANDD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

23.3 �s
23.3 �s
19.0 �s
48.3 �s
48.3 �s

3.7 �s
3.7 �s
3.9 �s
3.9 �s
3.9 �s

OR V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

23.9 �s
23.9 �s
48.8 �s
48.8 �s

3.7 �s
3.7 �s
3.8 �s
3.8 �s

ORD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

23.8 �s
23.8 �s
19.4 �s
48.6 �s
48.6 �s

3.8 �s
3.8 �s
3.7 �s
3.7 �s
3.7 �s

XOR V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

23.5 �s
23.5 �s
48.3 �s
48.3 �s

3.9 �s
3.9 �s
3.9 �s
3.9 �s

XORD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

23.3 �s
23.3 �s
19.0 �s
48.3 �s
48.3 �s

3.7 �s
3.7 �s
3.9 �s
3.9 �s
3.9 �s

CMP V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

25.4 �s
25.4 �s
50.0 �s
50.0 �s

3.7 �s
3.7 �s
3.7 �s
3.7 �s

CMPD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

37.3 �s
37.3 �s
32.7 �s
62.0 �s
62.0 �s

3.9 �s
3.9 �s
3.7 �s
3.8 �s
3.8 �s

Math Instructions (Accumulator) DL05

Instruction Legal Data Types Execute Not Execute

ADD V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

140.7 �s
140.7 �s
185.1 �s
185.1 �s

3.7 �s
3.7 �s
3.7 �s
3.7 �s

ADDD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

152.4 �s
152.4 �s
123.2 �s
193.5 �s
193.5 �s

3.9 �s
3.9 �s
3.7 �s
3.7 �s
3.7 �s

SUB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

148.1 �s
148.1 �s
192.7 �s
192.7 �s

3.7 �s
3.7 �s
3.7 �s
3.7 �s

Logical
Instructions

Math Instructions

A
ppendix C

Inst. E
xecution Tim

es
C–13

Instruction Execution Times

Math Instructions (Accumulator) DL05

Instruction Legal Data Types Execute Not Execute

SUBD V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

157.0 �s
157.0 �s
131.4 �s
201.9 �s
201.9 �s

3.9 �s
3.9 �s
3.9 �s
3.7 �s
3.7 �s

MUL V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

305.0 �s
305.0 �s
289.1 �s
349.6 �s
349.6 �s

3.7 �s
3.7 �s
3.7 �s
3.7 �s
3.7 �s

MULD V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

1261.3 �s
1261.3 �s
1307.3 �s
1307.3 �s

3.8 �s
3.8 �s
3.7 �s
3.7 �s

DIV V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

557.1 �s
557.1 �s
530.5 �s
580.5 �s
580.5 �s

3.7 �s
3.7 �s
3.7 �s
3.7 �s
3.7 �s

DIVD V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

562.2 �s
562.2 �s
596.4 �s
596.4 �s

3.8 �s
3.8 �s
3.7 �s
3.7 �s

INC V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

35.7 �s
35.7 �s
60.2 �s
60.2 �s

3.4 �s
3.4 �s
3.4 �s
3.4 �s

DEC V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

41.4 �s
41.4 �s
64.2 �s
64.2 �s

3.3 �s
3.3 �s
3.3 �s
3.3 �s

ADDB V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

69.5 �s
69.5 �s
67.3 �s
94.2 �s
94.2 �s

3.3 �s
3.3 �s
3.3 �s
3.6 �s
3.6 �s

SUBB V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

69.3 �s
69.3 �s
67.8 �s
94.3 �s
94.3 �s

3.3 �s
3.3 �s
3.5 �s
3.2 �s
3.2 �s

MULB V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

23.4 �s
23.4 �s
19.8 �s
48.5 �s
48.5 �s

3.2 �s
3.2 �s
3.3 �s
3.2 �s
3.2 �s

DIVB V:Data Reg.
V:Bit Reg.
K:Constant
P:Indir. (Data)
P:Indir. (Bit)

76.1 �s
76.1 �s
76.9 �s
105.5 �s
105.5 �s

3.3 �s
3.3 �s
3.3 �s
3.2 �s
3.2 �s

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–14
Instruction Execution Times

Math Instructions (Accumulator) DL05

Instruction Legal Data Types Execute Not Execute

INCB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

23.0 �s
23.0 �s
46.8 �s
46.8 �s

3.4 �s
3.4 �s
3.3 �s
3.3 �s

DECB V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

23.2 �s
23.2 �s
47.5 �s
47.5 �s

2.5 �s
2.5 �s
3.4 �s
3.4 �s

Bit Instructions (Accumulator) DL05

Instruction Legal Data Types Execute Not Execute

SUM None 19.2 �s 2.3 �s

SHFR V:Data Reg. (N bits)
V:Bit Reg. (N bits)
K:Constant (N bits)

23.0 �s
23.0 �s
20.3 �s

3.4 �s
3.4 �s
3.3 �s

SHFL V:Data Reg. (N bits)
V:Bit Reg. (N bits)
K:Constant (N bits)

29.7 �s
29.7 �s
20.4 �s

3.4 �s
3.4 �s
3.3 �s

ENCO None 12.6 �s 2.3 �s

DECO None 20.3 �s 2.3 �s

Number Conversion Instructions
(Accumulator)

DL05

Instruction Legal Data Types Execute Not Execute

BIN None 75.8 �s 2.3 �s

BCD None 159.9 �s 2.2 �s

INV None 6.2 �s 2.3 �s

ATH V:Data Reg. (N bits)
V:Bit Reg. (N bits) 97�s+20�sxN 3.3 �s

HTA V:Data Reg. (N bits)
V:Bit Reg. (N bits) 98�s+27�sxN 2.1 �s

GRAY None 224.7 �s 2.3 �s

SFLDGT None 95.3 �s 2.2 �s

Table Instructions DL05

Instruction Legal Data Types Execute Not Execute

MOV V:Data Reg. / V:Bit Reg.
P:Indir. (Data) / P:Indir. (Bit)

63�s+16�sxN 3.3 �s

MOVMC Move from E2 to V:Data Reg.
Move from E2 to V:Bit Reg.

N= #of words
50�s+15�sxN 3.3 �s

LDLBL K 33.5 �s 4.2 �s

Bit Instructions

Number
Conversion
Instructions

Table Instructions

A
ppendix C

Inst. E
xecution Tim

es
C–15

Instruction Execution Times

CPU Control Instructions DL05

Instruction Legal Data Types Execute Not Execute

NOP None 1.1 �s 1.1 �s

END None 24.0 �s 24.0 �s

STOP None 10.0 �s 1.1 �s

RSTWDT None 5.9 �s 2.2 �s

NOT None 1.6 �s 1.6 �s

Program Control Instructions DL05

Instruction Legal Data Types Execute Not Execute

FOR V, K 125.9 �s 14.5 �s

NEXT None 64.4 �s 64.4 �s

GTS K 27.5 �s 14.8 �s

SBR K 1.5 �s 1.5 �s

RTC None 25.7 �s 12.1 �s

RT None 21.2 �s 21.2 �s

MLS K (1–7) 35.2 �s 35.2 �s

MLR K (0–7) 30.9 �s 30.9 �s

Interrupt Instructions DL05

Instruction Legal Data Types Execute Not Execute

ENI None 24.2 �s 2.7 �s

DISI None 9.4 �s 2.3 �s

INT O(0,1) 7.5 �s –

IRTC None 0.9 �s 1.3 �s

IRT None 6.6 �s –

Network Instructions DL05

Instruction Legal Data Types Execute Not Execute

RX X, Y, C, T, CT, SP, S, $
V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

852.0 �s
852.0 �s
852.0 �s
868.2 �s
868.2 �s

4.4 �s
4.4 �s
4.4 �s
4.2 �s
4.2 �s

WX X, Y, C, T, CT, SP, S, $
V:Data Reg.
V:Bit Reg.
P:Indir. (Data)
P:Indir. (Bit)

1614.0 �s
1614.0 �s
1614.0 �s
1630.0 �s
1630.0 �s

4.4 �s
4.4 �s
4.4 �s
4.4 �s
4.4 �s

CPU Control
Instructions

Program Control
Instructions

Interrupt
Instructions

Network
Instructions

A
pp

en
di

x
C

In
st

. E
xe

cu
tio

n
Ti

m
es

C–16
Instruction Execution Times

Message Instructions DL05

Instruction Legal Data Types Execute Not Execute

FAULT V:Data Reg.
V:Bit Reg.
K:Constant

65.0 �s
65.0 �s
204.7 �s

4.4 �s
4.4 �s
4.4 �s

DLBL K – –

NCON K – –

ACON A – –

PRINT ASCII 631.0 �s 3.6 �s

RLLPLUS Instructions DL05

Instruction Legal Data Types Execute Not Execute

ISG S 44.0 �s 41.1 �s

SG S 44.0 �s 41.1 �s

JMP S 76.0 �s 9.3 �s

NJMP S 77.4 �s 9.3 �s

CV S 42.1 �s 27.5 �s

CVJMP S 89.5 �s 17.6 �s

Drum Instructions DL05

Instruction Legal Data Types Execute Not Execute

DRUM CT 840.0 �s 339.6 �s

EDRUM CT 753.2 �s 357.0 �s

Message
Instructions

RLLPLUS

Instructions

Drum
Instructions

��
Special Relays

���������		
�������

������������	
������
����

A
pp

en
di

x
A

A
pp

en
di

x
D

S
pe

ci
al

 R
el

ay
s

D–2
Special Relays

DL05 PLC Special Relays

“Special Relays” are just contacts that are set by the CPU operating system to
indicate a particular system event has occurred. These contacts are available for
use in your ladder program. Knowing just the right special relay contact to use for a
particular situation can save lot of programming time. Since the CPU operating
system sets and clears special relay contacts, the ladder program only has to use
them as inputs in ladder logic.

SP0 First scan on for the first scan after a power cycle or program to run transition
only. The relay is reset to off on the second scan. It is useful where a
function needs to be performed only on program startup.

SP1 Always ON provides a contact to insure an instruction is executed every scan.

SP3 1 minute clock on for 30 seconds and off for 30 seconds.

SP4 1 second clock on for 0.5 second and off for 0.5 second.

SP5 100 ms clock on for 50 ms. and off for 50 ms.

SP6 50 ms clock on for 25 ms. and off for 25 ms.

SP7 Alternate scan on every other scan.

SP11 Forced run
mode

on when the mode switch is in the run position and the CPU is
running.

SP12 Terminal
run mode

on when the CPU is in the run mode.

SP13 Test
run mode

on when the CPU is in the test run mode.

SP15 Test
stop mode

on when the CPU is in the test stop mode.

SP16 Terminal
PGM mode

on when the mode switch is the the TERM position and the CPU is in
program mode.

SP17 Forced stop on when the mode switch is in the STOP position.

SP20 Forced
stop mode

on when the STOP instruction is executed.

SP22 Interrupt enabled on when interrupts have been enabled using the ENI instruction.

Startup and
Real-Time Relays

CPU Status Relays

A
ppendix D

S
pecial R

elays
D–3

Special Relays

SP36 Override setup
relay

on when the override function is used.

SP37 Scan control
error

on when the actual scan time runs over the prescribed scan time.

SP40 Critical error on when a critical error such as I/O communication loss has
occurred.

SP41 Warning on when a non critical error has occurred.

SP42 Diagnostics error on when a diagnostics error or a system error occurs.

SP44 Program
memory error

on when a memory error such as a memory parity error has
occurred.

SP45 I/O error on when an I/O error such as a blown fuse occurs.

SP46 Communications
error

on when a communication error occurs on any of the CPU ports.

SP50 Fault instruction on when a Fault Instruction is executed.

SP51 Watch Dog
timeout

on if the CPU Watch Dog timer times out.

SP52 Grammatical
error

on if a grammatical error has occurred either while the CPU is
running or if the syntax check is run. V7755 will hold the exact error
code.

SP53 Solve logic error on if CPU cannot solve the logic.

SP54 Communication
error

on whent RX, WX, RD, WT instructions are executed with the wrong
parameters.

SP56 Table instuction
overrun

on if a table instruction with a pointer is executed and the pointer
value is outside the table boundary.

SP60 Value less than on when the accumulator value is less than the instruction value.

SP61 Value equal to on when the accumulator value is equal to the instruction value.

SP62 Greater than on when the accumulator value is greater than the instruction value.

SP63 Zero on when the result of the instruction is zero (in the accumulator.)

SP64 Half borrow on when the 16 bit subtraction instruction results in a borrow.

SP65 Borrow on when the 32 bit subtraction instruction results in a borrow.

SP66 Half carry on when the 16 bit addition instruction results in a carry.

SP67 Carry when the 32 bit addition instruction results in a carry.

SP70 Sign on anytime the value in the accumulator is negative.

SP71 Pointer
reference error

on when the V-memory specified by a pointer (P) is not valid.

SP73 Overflow on if overflow occurs in the accumulator when a signed addition or
subtraction results in an incorrect sign bit.

SP75 Data error on if a BCD number is expected and a non–BCD number is
encountered.

SP76 Load zero on when any instruction loads a value of zero into the accumulator.

System Monitoring

Accumulator
Status

A
pp

en
di

x
A

A
pp

en
di

x
D

S
pe

ci
al

 R
el

ay
s

D–4
Special Relays

SP104 Profile Complete on when the pulse output profile is completed. (Mode 30)

SP116 CPU port busy
Port 2

on when port 2 is the master and sending data.

SP117 Communications
error Port 2

on when port 2 is the master and has a communication error.

SP540 Current = target value on when the counter current value equals the value in
V2320 / V2321.

SP541 Current = target value on when the counter current value equals the value in
V2322 / V2323.

SP542 Current = target value on when the counter current value equals the value in
V2324 / V2325.

SP543 Current = target value on when the counter current value equals the value in
V2326 / V2327.

SP544 Current = target value on when the counter current value equals the value in
V2330 / V2331.

SP545 Current = target value on when the counter current value equals the value in
V2332 / V2333.

SP546 Current = target value on when the counter current value equals the value in
V2334 / V2335.

SP547 Current = target value on when the counter current value equals the value in
V2336 / V2337.

SP550 Current = target value on when the counter current value equals the value in
V2340 / V2341.

SP551 Current = target value on when the counter current value equals the value in
V2342 / V2343.

SP552 Current = target value on when the counter current value equals the value in
V2344 / V2345.

SP553 Current = target value on when the counter current value equals the value in
V2346 / V2347

SP554 Current = target value on when the counter current value equals the value in
V2350 / V2351.

SP555 Current = target value on when the counter current value equals the value in
V2352 / V2353.

SP556 Current = target value on when the counter current value equals the value in
V2354 / V2355.

SP557 Current = target value on when the counter current value equals the value in
V2356 / V2357.

HSIO Pulse
Output Relay

Communication
Monitoring Relays

Equal Relays for
HSIO Mode 10
Counter Presets

A
ppendix D

S
pecial R

elays
D–5

Special Relays

SP560 Current = target value on when the counter current value equals the value in
V2360 / V2361.

SP561 Current = target value on when the counter current value equals the value in
V2362 / V2363.

SP562 Current = target value on when the counter current value equals the value in
V2364 / V2365.

SP563 Current = target value on when the counter current value equals the value in
V2366 / V2367.

SP564 Current = target value on when the counter current value equals the value in
V2370 / V2371.

SP565 Current = target value on when the counter current value equals the value in
V2372 / V2373.

SP566 Current = target value on when the counter current value equals the value in
V2374 / V2375.

SP567 Current = target value on when the counter current value equals the value in
V2376 / V2377.

��
DL05
Product Weights

���������		
�������

�����������
���������

A
pp

en
di

x
A

A
pp

en
di

x
E

P
ro

du
ct

 W
ei

gh
ts

E–2
Product Weights

Product Weight Table

PLC Weight
D0–05AR 0.60 lb. (272g)

D0–05DR 0.60 lb. (272g)

D0–05AD 0.58 lb. (263g)

D0–05DD 0.56 lb. (254g)

D0–05AA 0.60 lb. (272g)

D0–05DA 0.60 lb. (272g)

D0–05DR–D 0.56 lb. (254g)

D0–05DD–D 0.58 lb. (263g)

��
European Union
Directives (CE)

���������		
�������

������	
�����������������
����
�

�����������������������������
���
�

A
pp

en
di

x
A

A
pp

en
di

x
F

E
U

 D
ire

ct
iv

es
F–2

European Union Directives

European Union (EU) Directives

NOTE: The information contained in this section is intended as a guideline and is
based on our interpretation of the various standards and requirements. Since the
actual standards are issued by other parties and in some cases Governmental
agencies, the requirements can change over time without advance warning or notice.
Changes or additions to the standards can possibly invalidate any part of the
information provided in this section.

This area of certification and approval is absolutely vital to anyone who wants to do
business in Europe. One of the key tasks that faced the EU member countries and
the European Economic Area (EEA) was the requirement to bring several similar yet
distinct standards together into one common standard for all members. The primary
purpose of a single standard was to make it easier to sell and transport goods
between the various countries and to maintain a safe working and living
environment. The Directives that resulted from this merging of standards are now
legal requirements for doing business in Europe. Products that meet these
Directives are required to have a CE mark to signify compliance.
As of January 1, 1997, the members of the EU are Austria, Belgium, Denmark,
Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands,
Portugal, Spain, Sweden, and the United Kingdom. Iceland, Liechtenstein, and
Norway together with the EU members make up the European Economic Area
(EEA) and all are covered by the Directives.
There are several Directives that apply to our products. Directives may be amended,
or added, as required.

� Electromagnetic Compatibility Directive (EMC) — this Directive
attempts to ensure that devices, equipment, and systems have the
ability to function satisfactorily in its electromagnetic environment
without introducing intolerable electromagnetic disturbance to anything
in that environment.

� Machinery Safety Directive — this Directive covers the safety aspects
of the equipment, installation, etc. There are several areas involved,
including testing standards covering both electrical noise immunity and
noise generation.

� Low Voltage Directive — this Directive is also safety related and
covers electrical equipment that has voltage ranges of 50–1000VAC
and/or 75–1500VDC.

� Battery Directive — this Directive covers the production, recycling, and
disposal of batteries.

Certain standards within each Directive already require mandatory compliance. The
EMC Directive, which has gained the most attention, became mandatory as of
January 1, 1996. The Low Voltage Directive became mandatory as of January 1,
1997.
Ultimately, we are all responsible for our various pieces of the puzzle. As
manufacturers, we must test our products and document any test results and/or
installation procedures that are necessary to comply with the Directives. As a
machine builder, you are responsible for installing the products in a manner which
will ensure compliance is maintained. You are also responsible for testing any
combinations of products that may (or may not) comply with the Directives when
used together.

Member Countries

Applicable
Directives

Compliance

A
ppendix F

E
U

 D
irectives

F–3
European Union Directives

The end user of the products must comply with any Directives that may cover
maintenance, disposal, etc. of equipment or various components. Although we
strive to provide the best assistance available, it is impossible for us to test all
possible configurations of our products with respect to any specific Directive.
Because of this, it is ultimately your responsibility to ensure that your machinery (as
a whole) complies with these Directives and to keep up with applicable Directives
and/or practices that are required for compliance.

As of January 1, 1999, the DL05, DL205, DL305, and DL405 PLC systems
manufactured by Koyo Electronics Industries or FACTS Engineering, when properly
installed and used, conform to the Electromagnetic Compatibility (EMC), Low
Voltage Directive, and Machinery Directive requirements of the following standards.

� EMC Directive Standards Revelant to PLCs
EN50081–1 Generic emission standard for residential, commercial,

and light industry
EN50081–2 Generic emission standard for industrial environment.
EN50082–1 Generic immunity standard for residential, commercial,

and light industry
EN50082–2 Generic immunity standard for industrial environment.

� Low Voltage Directive Standards Applicable to PLCs
EN61010–1 Safety requirements for electrical equipment for

measurement, control, and laboratory use.
� Product Specific Standard for PLCs

EN61131–2 Programmable controllers, equipment requirements and
tests. This standard replaces the above generic standards for immunity
and safety. However, the generic emissions standards must still be used
in conjunction with the following standards:

EN 61000-3-2 Harmonics
EN 61000-3-2 Fluctuations

PLCDirect is currently in the process of changing their testing
procedures from the generic standards to the product specific
standards.

The installation requirements to comply with the requirements of the Machinery
Directive, EMC Directive and Low Voltage Directive are slightly more complex than
the normal installation requirements found in the United States. To help with this, we
have published a special manual which you can order:

� DA–EU–M – EU Installation Manual that covers special installation
requirements to meet the EU Directive requirements. Order this manual
to obtain the most up-to-date information.

Special Installation
Manual

A
pp

en
di

x
A

A
pp

en
di

x
F

E
U

 D
ire

ct
iv

es
F–4

European Union Directives

Although the EMC Directive gets the most attention, other basic Directives, such as
the Machinery Directive and the Low Voltage Directive, also place restrictions on the
control panel builder. Because of these additional requirements it is recommended
that the following publications be purchased and used as guidelines:

� BSI publication TH 42073: February 1996 – covers the safety and
electrical aspects of the Machinery Directive

� EN 60204–1:1992 – General electrical requirements for machinery, including
Low Voltage and EMC considerations

� IEC 1000–5–2: EMC earthing and cabling requirements
� IEC 1000–5–1: EMC general considerations

It may be possible for you to obtain this information locally; however, the official
source of applicable Directives and related standards is:

The Office for Official Publications of the European Communities
L–2985 Luxembourg; quickest contact is via the World Wide Web at
http://euro–op.eu.int/indexn.htm

Another source is:
British Standards Institution – Sales Department
Linford Wood
Milton Keynes
MK14 6LE
United Kingdom; the quickest contact is via the World Wide Web at
http://www.bsi.org.uk

Basic EMC Installation Guidelines

The simplest way to meet the safety requirements of the Machinery and Low Voltage
Directives is to house all control equipment in an industry standard lockable steel
enclosure. This normally has an added benefit because it will also help ensure that
the EMC characteristics are well within the requirements of the EMC Directive.
Although the RF emissions from the PLC equipment, when measured in the open
air, are well below the EMC Directive limits, certain configurations can increase
emission levels. Holes in the enclosure, for the passage of cables or to mount
operator interfaces, will often increase emissions.

Other Sources of
Information

Enclosures

A
ppendix F

E
U

 D
irectives

F–5
European Union Directives

DL05, DL205 and DL305 AC
powered base power supplies
require extra mains filtering to
comply with the EMC Directive
on conducted RF emissions.
All PLC equipment has been
tested with filters from
Schaffner, which reduce
emissions levels if the filters
are properly grounded (earth
ground). A filter with a current
rating suitable to supply all
PLC power supplies and AC
input modules should be
selected. We suggest the
FN2010 for DL05/DL205
systems and the FN2080 for
DL305 systems. DL405
systems do not require extra
filtering.

Earth
Terminal

Fused
Terminals

Filter

Transient
Suppressor

To AC
Input

Circuitry

Schaffner
FN2010

L N

NOTE: Very few mains filters can reduce problem emissions to negligible levels. In
some cases, filters may increase conducted emissions if not properly matched to the
problem emissions.

In order to comply with the fire risk requirements of the Low Voltage and Machinery
Directive electrical standards EN 61010–1, and EN 60204–1, by limiting the power
into “unlimited” mains circuits with power leads reversed, it is necessary to fuse both
AC and DC supply inputs. You should also install a transient voltage suppressor
across the power input connections of the PLC. Choose a suppressor such as a metal
oxide varistor, with a rating of 275VAC working voltage for 230V nominal supplies
(150VAC working voltage for 115V supplies) and high energy capacity (eg. 140
joules).

Transient suppressors must be protected by fuses and the capacity of the transient
suppressor must be greater than the blow characteristics of the fuses or circuit
breakers to avoid a fire risk. A recommended AC supply input arrangement for Koyo
PLCs is to use twin 3 amp TT fused terminals with fuse blown indication, such as
DINnectors DN–F10L terminals, or twin circuit breakers, wired to a Schaffner FN2010
filter or equivalent, with high energy transient suppressor soldered directly across the
output terminals of the filter. PLC system inputs should also be protected from voltage
impulses by deriving their power from the same fused, filtered, and surge-suppressed
supply.

A heavy-duty star earth terminal block should be provided in every cubicle for the
connection of all earth ground straps, protective earth ground connections, mains
filter earth ground wires, and mechanical assembly earth ground connections. This
should be installed to comply with safety and EMC requirements, local standards, and
the requirements found in IEC 1000–5–2.The Machinery Directive also requires that
the common terminals of PLC input modules, and common supply side of loads driven
from PLC output modules should be connected to the protective earth ground
terminal.

AC Mains Filters

Suppression and
Fusing

Internal Enclosure
Grounding

A
pp

en
di

x
A

A
pp

en
di

x
F

E
U

 D
ire

ct
iv

es
F–6

European Union Directives

Key Serial Communication Cable
Equi-potential Bond

Adequate site earth grounding must be provided for equipment containing modern
electronic circuitry. The use of isolated earth electrodes for electronic systems is
forbidden in some countries. Make sure you check any requirements for your
particular destination. IEC 1000–5–2 covers equi-potential bonding of earth grids
adequately, but special attention should be given to apparatus and control cubicles
that contain I/O devices, remote I/O racks, or have inter-system communications with
the primary PLC system enclosure. An equi-potential bond wire must be provided
alongside all serial communications cables, and to any separate items of the plant
which contain I/O devices connected to the PLC. The diagram shows an example
of four physical locations connected by a communications cable.

ÎÎÎÎ
ÎÎÎÎ

Screened
Cable

Equi-potential
Bond

Control Cubicle

To Earth
Block

Conductive
Adapter

Serial
I/O

Good quality 24 AWG minimum twisted-pair shielded cables, with overall foil and
braid shields are recommended for analog cabling and communications cabling
outside of the PLC enclosure. To date it has been a common practice to only provide
an earth ground for one end of the cable shield in order to minimize the risk of noise
caused by earth ground loop currents between apparatus. The procedure of only
grounding one end, which primarily originated as a result of trying to reduce hum in
audio systems, is no longer applicable to the complex industrial environment.
Shielded cables are also efficient emitters of RF noise from the PLC system, and can
interact in a parasitic manner in networks and between multiple sources of
interference.

Equi–potential
Grounding

Communications
and Shielded
Cables

A
ppendix F

E
U

 D
irectives

F–7
European Union Directives

The recommendation is to use shielded cables as electrostatic “pipes” between
apparatus and systems, and to run heavy gauge equi-potential bond wires
alongside all shielded cables. When a shielded cable runs through the metallic wall
of an enclosure or machine, it is recommended in IEC 1000–5–2 that the shield
should be connected over its full perimeter to the wall, preferably using a conducting
adapter, and not via a pigtail wire connection to an earth ground bolt. Shields must be
connected to every enclosure wall or machine cover that they pass through.

 Providing an earth ground for both ends of the shield for analog circuits provides the
perfect electrical environment for the twisted pair cable as the loop consists of signal
and return, in a perfectly balanced circuit arrangement, with connection to the
common of the input circuitry made at the module terminals. RS232 cables are
handled in the same way.

RS422 twin twisted pair, and RS485 single twisted pair cables also require a 0V link,
which has often been provided in the past by the cable shield. It is now
recommended that you use triple twisted pair cabling for RS422 links, and twin
twisted pair cable for RS485 links. This is because the extra pair can be used as the
0V inter-system link. With loop DC power supplies earth grounded in both systems,
earth loops are created in this manner via the inter-system 0v link. The installation
guides encourage earth loops, which are maintained at a low impedance by using
heavy equi-potential bond wires. To account for non–European installations
using single-end earth grounds, and sites with far from ideal earth ground
characteristics, we recommend the addition of 100 ohm resistors at each 0V
link connection in network and communications cables.

RXD
Master

RXDTXD 0V
+ – + –

Slave n
TXD 0V

+ – + –

Last Slave
RXD TXD0V
+ – + –

Termination

100� 100�

Termination

100�

When you run cables between PLC items within an enclosure which also contains
susceptible electronic equipment from other manufacturers, remember that these cables
may be a source of RF emissions. There are ways to minimize this risk. Standard data
cables connecting PLCs and/or operator interfaces should be routed well away from other
equipment and their associated cabling. You can make special serial cables where the
cable shield is connected to the enclosure’s earth ground at both ends, the same way as
external cables are connected.

 For safety reasons, it is a specific requirement of the Machinery Directive that a keyswitch
must be provided that isolates any network input signal during maintenance, so that
remote commands cannot be received that could result in the operation of the machinery.
The FA–ISONET does not have a keyswitch! Use a keylock and switch on your enclosure
which when open removes power from the FA–ISONET. To avoid the introduction of
noise into the system, any keyswitch assembly should be housed in its own earth
grounded steel box and the integrity of the shielded cable must be maintained.

Again, for further information on EU directives we recommend that you get a copy of
our EU Installation Manual (DA–EU–M). Also, if you are connected to the World
Wide Web, you can check the EU Commision’s official site at:
http://eur–op.eu.int/

Analog and RS232
Cables

Multidrop Cables

Shielded Cables
within Enclosures

Network Isolation

A
pp

en
di

x
A

A
pp

en
di

x
F

E
U

 D
ire

ct
iv

es
F–8

European Union Directives

Due to slightly higher emissions radiated by the DC powered versions of the DL05, and
the differing emissions performance for different DC supply voltages, the following
stipulations must be met.

� The PLC must be housed within a metallic enclosure with a minimum
amount of orifices.

� The communication cable and all I/O cables must pass through suitable
ferrite beads which must be mounted within the enclosure. The I/O
cables can be bundled together and passed through the same ferrite.

Recommended ferrite beads and split cores are detailed below. These were used in
extensive EMC tests and found to successfully attenuate radiated emissions to a
high degree.

 For I/O Bundle

Manufacturer Mfg. Part No. OD
mm

ID
mm

L
mm

1 Turn
L/25 MHz

�

1 Turn
L/100 MHz

�

2 Turn
L/25 MHz

�

2 Turn
L/100 MHz

�

RS Online 260–6795 17.5 9.5 28.5 153 210 649 632

Fair–Rite 2643665702 17.5 9.5 28.5 153 210 649 632

Wurth Elektronik 742 700 9 17.5 9.5 28.5 153 210 649 632

 For Communication Cable

RS Online 222–4416 26.6 16.6 72 132 301 547

Fair–Rite 0444167281 26.6 10.7 16.6 72 132 301 547

Richco MTFC 231114–T 26.6 10.7 16.6 72 132 301 547

DC Powered
Versions

A
ppendix F

E
U

 D
irectives

F–9
European Union Directives

� The rating between all circuits in this product are rated as basic
insulation only, as appropriate for single fault conditions.

� There is no isolation offered between the PLC and the analog inputs of
this product.

� It is the responsibility of the system designer to earth one side of all
control and power circuits, and to earth the braid of screened cables.

� This equipment must be properly installed while adhering to the
guidelines of the in house PLC installation manual DA–EU–M, and the
installation standards IEC 1000–5–1, IEC 1000–5–2 and IEC 1131–4.

� It is a requirement that all PLC equipment must be housed in a
protective steel enclosure, which limits access to operators by a lock
and power breaker. If access is required by operators or untrained
personnel, the equipment must be installed inside an internal cover or
secondary enclosure.

� It should be noted that the safety requirements of the machinery
directive standard EN60204–1 state that all equipment power circuits
must be wired through isolation transformers or isolating power
supplies, and that one side of all AC or DC control circuits must be
earthed.

� Both power input connections to the PLC must be separately fused
using 3 amp T type anti–surge fuses, and a transient suppressor fitted
to limit supply overvoltages.

� If the user is made aware by notice in the documentation that if the
equipment is used in a manner not specified by the manufacturer the
protection provided by the equipment may be impaired.

Items Specific to
the DL05

�

Index

A
Accumulating Fast Timer instruction, 5–33

Accumulating Timer instruction, 5–33

Accumulator Stack Load Instructions, 5–43

Add Binary instruction, 5–72, 5–74

Add Double instruction, 5–64

Add instruction, 5–63

Agency approvals, 2–8

Alarms, PID, 8–53

And Double instruction, 5–56

And If Equal instruction, 5–22

And If Not Equal instruction, 5–22

And Immediate instruction, 5–27

And instruction, 5–11, 5–55
comparative, 5–25

And Negative Differential instruction, 5–17

And Not Immediate instruction, 5–27

And Not instruction, 5–11
comparative, 5–25

And Positive Differential instruction, 5–17

And Store instruction, 5–12

ASCII Constant instruction, 5–106, 5–108

ASCII TO HEX instruction, 5–86

Auxiliary Functions, 4–8

Auxiliary functions, A–2

B
Bias freeze, 8–37

Binary Coded Decimal instruction, 5–82, 5–84

Binary instruction, 5–83

Bit Operation Instructions, 5–78

Boolean Instructions, 5–4, 5–9

Bumpless transfer, 8–25

C
Cables

operator interfaces, 2–14
programming, 1–9
programming devices, 2–14

Calculating Program Execution Time, 4–19

Cascade control, 8–51

Common terminals, 2–16

Communication Port Specifications, 4–32

Communication ports, 1–14
pinout diagrams, 4–4

Communications problems, 9–7

Comparative Boolean, 5–20

Compare Double instruction, 5–62

Compare instruction, 5–61

Components, 1–7

Connections
operator interface, 2–14
power input, 1–9
programming devices, 1–9, 2–14, 4–5
Solid State field devices, 2–17
toggle switches, 1–8

Connector
common terminals, 2–16
diagram, 2–16

Index–2

removal, 2–5

Control Output, 8–29

Control Relay Bit Map, 4–30

Converge Jump instruction, 7–23

Converge Stage instruction, 7–23

Convergence Stages, 7–19

Converting Number Formats
ASCII TO HEX, 5–86
Hex to ASCII, 5–87

Counter instruction, 5–36

Counter Instructions, 5–30

Counter Status Bit Map, 4–31

CPU
changing modes, 4–7
configuration, A–5
features, 4–2
hardware setup, 4–4
indicators, 9–6
instruction list, 5–2
Mode switch, 4–6
specifications, 4–3
status indicators, 4–6

CPU Indicator, 9–7

CPU Operation, 4–11

CPU Scan Time, 4–18

D
Data Label instruction, 5–106, 5–108

Decrement Binary instruction, 5–71

Derivative term, 8–34

Diagnostics, 9–2

Dimensions, 2–6

DIN rail mounting, 2–9

Direct-acting loop, 8–33

DirectNET, 4–35

Divide Double instruction, 5–70

Divide instruction, 5–69

DL05 Micro PLC
front panel, 2–4
mounting guidelines, 2–6
unit dimensions, 2–6

Drum instruction, 6–2, 6–12
chart representation, 6–3

counter assignments, 6–6
drum control techniques, 6–10
EDRUM (Event Drum), 6–14
handheld programmer mnemonics, 6–16
overview of drum operation, 6–8
powerup state, 6–9
self–resetting, 6–11
step transition, 6–4

Drum sequencer programming, 1–12

E
Emergency stop, 2–3

Enable Interrupt instruction, 5–104

Encode instruction, 5–77, 5–79, 5–81

End Instruction, 5–4

Environmental specifications, 2–8

Equal relays, 3–9, D–3, D–5

Error codes
code locations, 9–3
listing, B–2–B–9
pulse output errors, 3–43

Error term, 8–30

European Directives, F–2

Exclusive Or Double instruction, 5–60

Exclusive Or instruction, 5–59

Execution Times, C–3

F
Fatal Errors, 9–2

Fault instruction, 5–107

Feed forward control, 8–47

For instruction, 5–97

Fuse protection, 2–10

G
Goto Subroutine instruction, 5–99

Gray Code instruction, 5–89

Index–3

H
Handheld programmer, A–6

EEPROM operations, A–7

HEX TO ASCII instructions, 5–87

High–speed I/O
configuration, 3–5
discrete inputs with filter, 3–53
features, 3–2
high–speed counter, 3–6
high–speed interrupts, 3–45
I/O Point Usage, 3–4
modes, 3–4
programming, 3–11, 3–22, 3–41
pulse catch input, 3–50
pulse output, 3–25

Home search profile, 3–38

I
I/O Response Time, 4–15

I/O Type Selection, 1–6

Increment Binary instruction, 5–71

Initial Stage instruction, 7–22

Initial Stages, 7–5

Instructions
accumulator / stack Load, 5–43
bit operation, 5–78
boolean, 5–9
capable of run time edits, 9–14
comparative boolean, 5–20
drum, 6–2, 6–12
execution times, C–2, C–3, C–6
immediate, 5–26
interrupt, 5–104
list of, 5–2
logical, 5–55
math, 5–63
message, 5–107
network, 5–114
number conversion, 5–83
program control, 5–97
stage, 7–21
stage programming, 7–2
table, 5–92
timer, counter, and shift register, 5–30

Integral term, 8–34

Interrupt Instructions, 5–104

Interrupt Return Conditional instruction, 5–104

Interrupt Return instruction, 5–104

Interrupts
external, 3–47
HSIO input, 3–45
timed, 3–47

Invert instruction, 5–85

J
Jump instruction, 7–7, 7–22

L
Load Address instruction, 5–51

Load Double instruction, 5–49

Load Formatted instruction, 5–50

Load instruction, 5–48

Load Label instruction, 5–91, 5–93

Logical Instructions, 5–55

M
Maintenance, 9–2

Manual, organization, 1–4

Master Line Reset instruction, 5–102

Master Line Set instruction, 5–102

Math Instructions, 5–63

Memory
EEPROM, 1–13
FLASH, 1–13

Memory Map, 4–22, 4–28

Message Instructions, 5–107

MODBUS, 4–34, 4–41

Mode switch, 4–6

Modes
at power–up, 4–7
changing, 4–7

Motion control profile, 3–25

Mounting guidelines, 2–6
DIN rail, 2–9

Move instruction, 5–92

Move Memory Cartridge instruction, 5–91, 5–93

Index–4

Multiply Binary instruction, 5–76

Multiply Double instruction, 5–68

Multiply instruction, 5–67

N
Network Configuration and Connections, 4–32

Network Diagrams, 4–32, 4–33

Network Instructions, 5–114

Network master operation, 4–41

Network slave operation, 4–36

Next instruction, 5–97

Non–Fatal Errors, 9–2

Normally Closed Contact, 5–4

Not instruction, 5–14

Not Jump instruction, 7–22

Number Conversion Instructions, 5–83

Numbering Systems, 4–20

Numerical Constant instruction, 5–106, 5–108

O
On/Off control, 8–49

One shot, 5–14

Or Double instruction, 5–58

Or If Equal instruction, 5–21

Or If Not Equal instruction, 5–21

Or Immediate instruction, 5–26

Or instruction, 5–10, 5–57
comparative, 5–24

Or Negative Differential instruction, 5–16

Or Not Immediate instruction, 5–26

Or Not instruction, 5–10
comparative, 5–24

Or Out Immediate instruction, 5–28

Or Out instruction, 5–13

Or Positive Diffential instruction, 5–16

Or Store instruction, 5–12

Out Double instruction, 5–52

Out Formatted instruction, 5–53

Out Immediate instruction, 5–28

Out instruction, 5–13, 5–52

Output Data Instructions, 5–43

P
Panel layout, 2–7

Part Numbers, 1–5, 1–6

Password, 4–10, A–8

Pause instruction, 5–19

PID Loops
Alarms, process, 8–53
algorithms, 8–31
basic operation, 8–19
bibliography, 8–63
cascade control, 8–51
data configuration, 8–26
features, 8–2
feed forward control, 8–47
On/Off control, 8–49
Ramp/Soak generator, 8–57
sample rate, 8–13
scheduling, 8–13
setup parameters, 8–6
terminology, 8–4, 8–64
troubleshooting tips, 8–62
tuning procedure, 8–38

PID loops, auto tuning, 8–38

PLC Numbering Systems, 4–20

Pop instruction, 5–53

Position algorithm, 8–31

Positive Differential instruction, 5–14

Power indicator, 9–6

Power wiring, 1–9

Presets, 3–8
calculating values, 3–10
starting location, 3–9

Print Message instruction, 5–110

Process control, 8–17

Product Weight Table, E–2

Profiles
home search, 3–38
motion control, 3–25
registration, 3–30, 3–35
trapezoidal, 3–30, 3–32

Index–5

velocity, 3–30, 3–40

Program Control Instructions, 5–97

Program Execution Time, 4–19

Program Mode, 4–12

Programming, concepts, 1–12

Programming Methods, 1–5
examples, 1–10

Proportional term, 8–34

Q
Quick Start, 1–7

R
Ramp/soak generator, 8–57

Read from Network instruction, 5–114

Registration profile, 3–30, 3–35

Relay wiring, 2–19
prolonging contact life, 2–21

Reset Immediate instruction, 5–29

Reset instruction, 5–18

Retentive Memory Ranges, 4–9

Reverse-acting loop, 8–33

Run Indicator, 9–7

Run Mode, 4–12

Run time edits, 9–14

S
Safety guidelines, 2–2

Scratchpad memory, 1–10

Set Immediate instruction, 5–29

Set instruction, 5–18

Setpoint, 8–27

Shift Register instruction, 5–42

Shift Register Instructions, 5–30

Shift Right instruction, 5–80

Shuffle Digits instruction, 5–90

Sinking / sourcing I/O, 2–15

Special relays, 3–8, D–2

corresponding to error codes, 9–3

Specifications
CPU, 4–3
D0–05AA, 2–34
D0–05AD, 2–30
D0–05AR, 2–26
D0–05DA, 2–36
D0–05DD, 2–32
D0–05DD–D, 2–40
D0–05DR, 2–28
D0–05DR–D, 2–38
Discrete option modules, 2–42
environmental, 2–8
input power, 2–11
motion profiles, 3–28

Stage Control / Status Bit Map, 4–29

Stage Counter instruction, 5–38, 7–16

Stage instructions, 7–21

Stage programming, 1–12, 7–2
convergence, 7–19
emergency stop, 7–14
four steps to writing a stage program, 7–9
garage door opener example, 7–10
initial stages, 7–5
introduction, 7–2
jump instruction, 7–7
mutually exclusive transitions, 7–14
parallel processes, 7–12
parallel processing concepts, 7–19
power flow transition, 7–18
program organization, 7–15
questions and answers, 7–25
stage instruction characteristics, 7–6
stage view, 7–18
state transition diagrams, 7–3
supervisor process, 7–17
timer inside stage, 7–13

Standard RLL Programming, 1–12

Status Indicators, 4–6, 9–6

Store If Equal instruction, 5–20

Store If Not Equal instruction, 5–20

Store immediate instruction, 5–26

Store instruction, 5–9
comparative, 5–23

Store Negative Differential instruction, 5–15

Store Not Immediate instruction, 5–26

Store Not instruction, 5–9
comparative, 5–23

Index–6

Store Positive Differential instruction, 5–15

Subroutine Return Conditional instruction, 5–99

Subroutine Return instruction, 5–99

Subtract Binary instruction, 5–73, 5–75

Subtract double instruction, 5–66

Subtract instruction, 5–65

Sum instruction, 5–78

System design, 1–11

System V–memory, 4–26

T
Table Instructions, 5–92

Technical support, 1–2

Time-proportioning control, 8–49

Timer Fast instruction, 5–31

Timer instruction, 5–31

Timer Instructions, 5–30

Timer Status Bit Map, 4–31

Trapezoidal profile, 3–30, 3–32

Troubleshooting, 9–2
communications, 9–7
electrical noise, 9–10
error codes, B–2
I/O points, 9–8
program debug, 9–11

Troubleshooting guide
HSIO Mode 20, 3–24
HSIO Mode 30, 3–43

U
Up Down Counter instruction, 5–40

V
V–memory, 4–26

Velocity algorithm, 8–31

Velocity profile, 3–30, 3–40

W
Web site, 1–2

Wiring
counter input, 3–7
counter outputs, 3–7
DC inputs, 2–22
DC Outputs, 2–23
drive inputs, 3–27
emergency stop, 2–3
encoder, 3–3
fuse protection, 2–12
High Speed I/O, 2–24
power input, 1–9, 2–10, 2–11
pulse output, 3–27

www.soliton.com.br - e-mail: soliton@soliton.com.br
Informações sobre programação

Rua Alfredo Pujol, 1010 - Santana - São Paulo - SP.
SOLITON CONTROLES INDUSTRIAIS LTDA

Tel:11 - 6950-1834 / Fax: 11 - 6979-8980 - e-mail: vendas@soliton.com.br

