International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847

DMA& USB INTERFACING FOR
KEYBOARD USING CYPRESS PSoC-5

Er. Harisharan Aggarwal ™ , Er. Yadwinder Singh*?
*LHOD (ECE), Guru Kashi University, Talwandi Sabo

#2(student), Guru Kashi University, Talwandi Sabo

ABSTRACT

The main objective of this paper is to make us understand the role of importance of PSoC-5in our lives and also to know about
its various applications. Here we are going to provide a complete report on the functionality and also the implementation of
various projects on Psoc-5. Our main application over which we will work on is ADC data buffering using DMA & USB Key
HID interfacing with Keyboard.In case of ADC data buffer we will see the data will buffer easily with less losses. Also we will
see how we can interface keyboard with USB HID. These are the widel applications on which we will work on. The need of
PSoC-5 in this era is incredible. The PSoC-5 has got time management skills which makes easy and error free research areas.
PSoC-5 helps systems to retain compatibility, flexibility and is also cost effective. So as to meet the demands of the fast growing
technology we need to learn the various aspects and functionality of the PSoC-5which will help to make our work and
knowledge more valuable. PSoC-5is used in wide no. of applications. It has got a lot of scope in the future as well in the
present. The applications are power management, wireless communication, automotive transportation, centre console, touch
screens, button replacement, HVAC, motor control, switches, ultrasonic parking, computer and peripherals like iPod, iPhone,
iPad accessories and thermal management. It has got a lot of scope in medical lines like making Blood Pressure monitor,
Blood glucose meter, fertility monitor and infusion pump. Our goal is to implement the applications “ADC DATA
BUFFERING USING DMA” and “USB HID INTERFACING WITH KEYBOARD”. For achieving our goal we are starting
here with small experiments. In case of ADC data buffering using DMA through PSoC-5 the data get buffer with less losses
and we get the result by the easiest way. In the other application we can interface the USB with Keyboard very easily.

1.INTRODUCTION

PSoC-5 microcontroller is plays a very widel role in many applications now a days. As for a project it covers all the
needs on a single chip.It gives a whole new concept of microcontroller as it contains both analog & digital
blocks.PSoC-5(Programmable system on chip) [9] is made by Cypress semiconductor & is to be defined as the family of
integrated circuits.

Here we are going to do study about the basic principle of Psoc-5, implementation of small projects which will
implemented in all the processor modules ie CY8C28, CY8C38 CY8C55.Further we will work on ADC data buffering
using DMA and USB HID intermediate with Keyboard as the big applications of Psoc-5.

We will work here on PSoC-5 Designer, PSoC-5 Creator, PSoC-5 Programmer for achieving the results & for further
analysing them.PSoC-5(Programmable System on Chip) represents a whole new concept in microcontroller
development. In addition to all the standard elements of 8-bit microcontrollers, PSoC-5chips feature digital and analog
programmable blocks, which themselves allow implementation of large number of peripherals.Digital blocks consist of
smaller programmable blocks that can be configured to allow different development options. Analog blocks are used for
development of analog elements, such as analog filters, comparators, instrumentational (non)inverting amplifiers, as
well as AD and DA convertors.Number of components that can be devised is primarily a function of the available
programmable blocks. Depending on the microcontroller family, PSoC-5chips have 4-16 digital blocks, and 3-12
analog programmable block

2.THEORY

We are focusing here on reading all the desired materials and the datasheet of Psoc-5. We will use the tools like PSoC-
5Creator and designer to run different programmes which are necessary to understand the functioning of both the tools.
Firstly we will simply blink the LEDs using the PWM [10] as peripheral on PSoC-5 Creator and Designer using the
development Kit. We will also repeat the project by taking different ports period and period width.

Secondly we will be implementing a project which demonstrates a 9-bit Delta Sigma ADC by measuring the voltage of
the potentiometer center tap wiper and displaying the result on the LCD on all the processor modules and all the
software.These all were the basic projects that we done for knowing the steps for performing the applications.These
basic projects that we done helps us for getting our main applications.

After doing all these minor projects we comes to know about the usage of the PSoC-5 we will directly focus on
achieving the applications of Psoc-5. In case of ADC data buffering using DMA. DMA [13] controller is uses to handle

Volume 4, Issue 3, March 2015 Page 108

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847

the data transfer without CPU intervention. DMA is useful in applications that require ADC data buffering and allows
the CPU for doing the simultaneous tasks. Here we will see the basics of 8-bit, 16-bit, and 20-bit Delta Sigma ADC
data buffering using DMA with example projects. The 20-bit example project accompanying this application note
demonstrates problems with data buffering using DMA. These problems occur when the peripheral spoke width is less
than the actual data width. The project describes how to tackle this using multiple DMA channels. The DMA is used to
move data from a source to destination without CPU intervention is the basic concept on which we will further work.In
our third application i.e. USB HID intermediate with Keyboard, We are using here Psoc-5 full speed USB interface,
where we will take the basics of USB HID development and its implementation is depends upon the knowledge by
which users get knows that how to incorporate the OUTPUT items to receive information from a host device using the
status LEDs on a keyboard taking as an example, we also send the keyboard information as an INPUT to type a
predefined string of text into a text editor.

Figure2.1 CY8C55 Family Processor Module[3]

3.METHODEOLOGY

Here we will covers the next level of Human Interface Devices (HID) [11] USB development on PSoC-53 / PSoC-55
discussing OUTPUT items using a keyboard. Weare using here Psoc-5's full speed USB interface, where we will take
the basics of USB HID development and its implementation is depends upon the knowledge by which users get
knowsthat how to incorporate the OUTPUT items to receive information from a host device using the status LEDs on a
keyboard taking as an example, we also send the keyboard information as an INPUT to type a predefined string of text
into a text editor.

Human Interface Devices (HID) [12]are the devices which enable the consumers to easily interface with and control
their PCs. almost all of the HIDs send information to the host. Keyboards and mice are the most common
examples.However, there is often PC have needs to send the information to the peripheral and for receiving the
information is from the host that is accomplished with an Output Report.

Output Items in the HID Report Descriptor must be configured properly for receiving this Output Report
properlyconfiguring the Output items.The transferring result can take the form of a LED on a keyboard.The Keyboard
requires the interaction from the host to provide the information to it. In a keyboard the Input has taken from the keys
that the user presses and Output taken from the LEDs on the keyboard by which the information will display (such as
checking if the caps lock is enabled or not).

For understanding the Output Items in greater detail, the Report Descriptor will uses for a 104-key keyboard. In Figure
3.1 it will shows HID Report Discriminator in which by expanding the parameters we will able to get output. The
chosen organization of the report descriptor follows the required format for a boot interface, which we are discussing in
the Boot Interface section. However, the report descriptor can be organized in various ways and still function as a
keyboard with LEDs.

HID Report Descriptars

= e [Eeuboard with LED =
USSGE_PAGE [(Genorc Deskiop Controls] =1
USASGEE (Kewboard] o9 0=
= COLLECTION pplication] 21 01

S= USAGE__PAGE [(KevboardA/Kevpad)] os oF
USSAGE_RIMHIFUE [224) 19 EO OO
S G E_kASss<IbA L kA [Z311] =9 E¥ OO
LOGICAL RAIRIEA LR (O] 15 oo
LOGICS L kA4S kAL A (1] == o1

RFREFORT_SI=ZE (1] FE a1
FREFORT_COLUMT (=] a5 0=
TR LT Mo ot =1 n>

Flgure 3.1 Keyboard Report Descriptor

TS =S E _FPeisE (Eerboardr Eeooe=al [= =g
1= Ea oo

== o1 D e
=]

P cmra L=

e T
LSS E_ oS e [Keybc-arcl/KeyDacl] os oF T
[=1

=51
S S E e kA L [1-::1] == es
I LT =1 oo

Figure3.2 Sectioned Keyboard Report Descriptor

Volume 4, Issue 3, March 2015 Page 109

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847

Bytes are sent to the host as an Input Item and one byte is received from the host as an Output Item. There are eight
bytes which are sent to the host and are firstly organized with modifier keys.They are followed by general keys which
are shown in Table 3.1A modifier key is uses which is a key and with the help of it the functions of a general key are to
be modifies for performing the alternative functions.Modifier keys on the keyboard include the shift, alt, and GUI keys.
All other remaining keys are considered as general keys. The format in which this information is transferred to the host
is shown in Table

Table3.1. (Keyboard Input Report Table)

Bwvtz | Information

MModifier Kevs

Fezerved (For OEM uze)
Eeyveode |

Kevcode 2

Eeveode 3

Kevcode 4

Eeveode 3

Keveode 6

There are only seven bytes of useful information when we sent information is of 8-byte packet. This is because of the
reserved byte (Byte 1) shown in Table 3.2 It is intended for OEM [14] use and is not used in most applications. There is
to be a reserved key that may be used on a keyboard which contains a non-standard key and performs a function that is
specific to that PC. We can see it in laptops and tablet computers.

In most of the keyboards that are purchased in the consumer market, the reserved byte remains a constant value of 0x00
and the remaining bytes in the configuration are the general keys. In a given transaction six available bytes of
information indicate that up to six key codes can be sent to the PC and it will enables up to six simultaneous key
presses. The order of the key codes in the array does not have any significance.When we compare the newly received
report from the previous report the sorting is accomplished then.

Table 3.2(Modifier Key Index)

b]| ba]| = S

=

Bit K ew Dlodifier
Salues
o Left Ctxd OO0 GO0 1
1 Left SINE QOO0 OO10
2 Left Alt QO0o0O 0100
3 Left GUIOWINlAppls QOO0 1000
leta)
EY Fuight Ctrl OoOo1 OO0
= Fight Shift OO 10 Gooo
& Fuaight Alt 0100 CGooo
T Fight 1000 QOO0
GUIICWIinApple
Ieta)

In Table 3.2 We can see that each modifier key has a corresponding bit associated with it.It means in a bit field of
information the modifier keys are stored. The HID Usage Tables shows that the Usage values for the modifier keys are
in the range from EO-E7. However, it is also to be seen that the usage values are not sent as array data. The modifier
keys are to be sent as variable data and it means that each individual bit in the 8-bit value is corresponds to one of the
modifier keys. The Usage Minimum/Maximums are then used to link the modifier key information in the bit field to
the proper Usage value with the Usage Minimum/Maximum.
The difference between Array and Variable becomes more relevant in this keyboard application.We can differentiate
them as follows:
“Array versus Variable: Array means only controls that are currently active are reported such as a button being pressed.
Variable means that the data reported is the current state of every control regardless if a button is pressed or not.”
According to the USB HID Usage table, the usage values for the LEDs are provided in Table 3.3 LED information is an
Absolute Item, which means that the Output Report must include the state of each LED with ‘0’ meaning off and ‘1’
meaning on.The LEDs are not relative items, which means that a ‘0’ represents no change and ‘1’ represents a change
in state.

Table 3.3(LED Indicator Index)
LED
MNum Lock
Caps Locks
Scrol Lock
Compose
Eenz

w

o] de | L b =]

to Constant

Volume 4, Issue 3, March 2015 Page 110

International Journal of Application or Innovation in Engineering & Management (1JAIEM)

Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847
When referencing the Report Descriptor the first Input item is from top down and for the modifier keys (Shift, Alt, and
GUI). These keys are configured in a Variable configuration to implement a bit field. The Input Item configuration for
Keyboard modifier keys is shown in Figure 3.1

Item Yalue {(INPUT {(¥Yar) &1 02)
Eit D | & Data) Constant
Eit 1 CF Aaray %} “ariable
Eit 2 (&) Absolute () Relative
Eit 2 (&) Mo'wrap O wirap
Eit4 (%) Linear) Mon Linear
Eit 5 | (#) Preferned State > Mo Preferred
BitE (& Mo Mull Position 3 Mull State
Eit 7
Bit 8 | (=) Bit Field) Buffersd Bytes

Figure 3.1 Input Item for Keyboard Modifier Keys
The entire byte is padded with zeros and configured as a constant for reserving the second byte in the data structure.By
setting bit 0 to a value to ‘1’ we declaring this byte as a constant. (By following figure 3.2 we can see it easily and this
is done because each report is byte aligned.)

Item ¥alue (INPUT {Con, Yar) &1 03)
BitD |2 Data &) Constant
Eit 1 0 Aaray {#) “ariable
Bit 2 % Absolute) RAelative
Bit 3 | % MNowrap 3 Wrap
Bit 4 | (=) Linear 3 Mon Linear
EBit5 | &= Prefered State 3 Mo Preferred
Bit & & Mo Mull Position 3 Mull State
Bit 7
Bit & =3 Bit Field 3 Buffered Bytes

Figure 3.2 Input Item for Reserving Second Byte
The next step in configuring the Descriptor is to configure the Output Item for the LEDs on the keyboard. Here two
things are very important and they are:The prefix value is ‘91 signifying an Output Item with one byte to follow and
this is because the Item is an Output Item. We can modified the Bit 7 and it is not the case with any Input Item.It has
reason that this value only applies to Output and Feature Items. Bit 7 is set to ‘0’ signifying that the bit is non-volatile
which means the device only alters the value with host interaction. It is important to note that bit 1 is set to be variable.

For a bit field configuration the Item will again configure.

Item Yalue (OUTPUT {¥ar) 91 02)

BitO (%) Data) Constant

Bit1 () Amray (=) Wariable

Bit2 %) Abzolute () Relative

Bit3 (& Mo'wrap) “Wwrap

Bitd (%) Linear () Mon Linear
Bit5 (%) Prefered State () Mo Preferred
BitE % Mo Mull Position 3 Mull State

Bit 7 | (&) MonYolatile) Wolatile

Bit8 (% Bit Field () Buffered Bytes

Figure 3.3 Output Item for LEDs
Because all information is byte aligned thus only five bits out of the total eight bits are used for LED information and
we can easily see in Figure 3.4, the remaining three bits are reserved by padding the bits with a value of ‘0’ by setting
those bits to remain constant. This is done by setting bit 0 in the Output Item to a value of “1’.

Item Yalue (OUTPUT {Con, ¥ar) 91 03}
EitO |) Data (*) Constant
Eit 1) Aurrap (&) Waniable
Eit 2 (&) Abzolute) Relative
Eit2 | (&) Mo'wrap) wirap
Eit 4 | (&) Linear 3 Mon Linear
Eit5 | (%) Prefered State) Mo Preferred
EitE | (=) Mo MNull Position 0 Mull State
Eit 7 | (=) MonYolatile 3 wolatile
Eit2 | (&) BitField (3 Buffered Bytes

Figure 3.4 Output Item for Padding LEDs

Volume 4, Issue 3, March 2015 Page 111

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847

The final Input Item to configure is for the general (hon-modifier) keys. The HID specification requires these keys to be

configured with an Array and Absolute configuration.
Item Yalue (INPUT {3 &1 00}

Eit0 | (%) Data () Constant

Bit1 | (=) Amay () Wariable

Eit2 | (&) Absolute () Relative

Bit3 (%) Mo'wWrap () whap

Eit4 | (=) Linsar) Man Linear
Eit5 | (3 Prefemed State) Mo Prefered
EitE | (%) Mo Mull Position 3 Mull State
Bit 7

BitS | (5 BitField O Buffered Bytes

Figure 3.5 Input Item for General Keyboard Button
For its functionality we have to understand the each block of the Report Descriptor and how the information is
interpreted, the next step is to study the Report Descriptor in detail .

Sie USAGE_PAGE [Kewboard/Keypad] 05 07
//Sets Usage Min and hax For keyboard contral keps. Example: 225 = Left Control
AfFor additional walues. see Table 12 of USE HID Usage Tables
USAGE_FIMIMMUR [224] 13 EOQOQ
USAGE_Aes<it UM [237] 29 E¥ 00
AeDefines Min value for modifier key press will be '0° and b ax value will be 10
LOGICAL_FAIMIFUR (0] 15 00
LOGICAL_FAXIMUM 1) 2501
AfDefines that each control key is represented by 1 bit.
Se= REPORT_SIZE (11 7501
AfDefines that there are 2 data helds [bit field]
ﬁ REFORT_COUMT (2] 9502
AfDefines that the control key information iz an Input [Send to PC)
se= INPUT [War] 2102
SR eserves and pads the byte following the modifier keps
REPORT_COUMT (1] 39501
REFPORT_SIZE (2] 7502
INPUT [Corn, % ar] 8103
AfDefines that the LED = are represented by 1 hit
ﬁ REPORT_SIZE (11 7501

Figure 3.6 Commented Keyboard Report Descriptor

Table 3.4. (ALT+CTRL+DEL Example)
dtep Modiisr Byis Array Byte
Left All Cown oooocoiod Ox00
Right Carl Down ooo40100 Ox00
CDielzte Down aooio1ad Qusl
Dielzbe Up aooioiad Ox00
Right 3 Up Qooooiod D00
Left Alt Up Oooooaan Ox00

It is a PC user desires to enter a PC’s BIOS upon boot up to edit it. For getting this, the USB HID Specification defines
a boot protocol for keyboard. These protocols are predefined and the device is required to conform to the specifications
to be a boot device. The boot protocol supports up to eight bytes of information.BIOS can ignores anything over these
eight bytes[11]. It is a very important point that in actually BIOS does not read the report descriptor because of the
predefined standard, the BIOS have expectations of the information in a certain format. Because of this reason a HID
device such as a keyboard can have two interfaces. These interfaces are: one is the boot interfaces and the other is USB
aware interfaces. In first kind of interfaces i.e. the boot interface, the requirement of a hard coded Report Descriptor is
not necessary here.

This is the project which act as a keyboard and it will type the messages also will displays the status of num lock, caps
lock, and scroll lock.

Here we are going to introduce the user to a HID device and it consists of both an Input and Output transfer. The
project acts as a keyboard that types messages and displays.For getting our application we have to do following steps:
For this project, we will start by opening PSoC-5Creator and thus create an empty project named ‘Project_1 Keyboard’.
After the project has been created and PSoC-5Creator is completely loaded, we will place the following components
into the schematic entry page (TopDesigncysch).

Character LCD

(1) USBFS

(2) Digital Input Pins

(3) Digital Output Pins

USBFS_1 LCD_Char_1

USBFES Character LCD
Type_Input [0} = [o] Caps_Lock
Caps_Lock Key [o] ~—{o] Scroll__Lock

o] Num_ Lock

Figure 3.7 PSoC-5Creator Components for Keyboard

Volume 4, Issue 3, March 2015 Page 112

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847

These pins required certain changing in settings.Thus for the Input Pins, we will open the pin configuration customizer
and be sure to uncheck the “HW Connection’ box and thus changing their drive mode to *Resistive Pull Down’ which is
done by clicking on the ‘General’ tab in the pin customizer menu. For the Digital Output Pins, open the configuration
menu, uncheck the “‘HW Connection’ box, and change their drive mode to “Strong’.

When the components are placed, we go to the Workspace Explorer window and thus double click on
MyFirstKeyboardHID.cydwr. Click on the ‘Clocks’ tab and then double click on one of the clocks to open the GUI
clock configuration window.We will make the following changes to the clock as shown in Figure 3.7.

IMO — 24 MHz

ILO — 100 kHz

PLL — Input: IMO, Desired: 48 MHz

Master Clock — PLL Out

USB Clock — IMO x2

PLL_OUT (33,000 MHz) -
© Fisq (D Divider

) || S

Figure 3.8 System Clock Configuration Window.

The next step is to configure the pin configuration for the project. For this we have to click on the ‘Pins’ tab located in
Project 1 — Keyboardcydwr and change the pins to resemble Figure 3.8. It is important for us to remember that the USB
pins are always located at P15[6] and P15[7] whereas the other pins can be moved if desired. The following pinout is
configured to work with the project:

Aliaz M ame Fir Lock
WUSEFS_1:Dm' PF1E[7]
WUSEFE_1:Dph PF1E[E]

EO|O

WLCD_ Char 1:LCDPorth [&:0] PE[S5:0]

|
Caps_ Laock FLlE] v |
Scroll Leck P1[7] :
Nun_Lock PL[5] .i
Type Input rO[7] v:
Caps_ Lock Hey POLE] w |

Figure 3.9 PSoC-5Creator Pin Configuration (Keyboard)
In next step, the USB component needs to be configured using the USB Wizard. But there is to be addition of an OUT
EP. Then we will double click on the USBFS component for opening the Configuration Wizard. Configure the Vender
ID (VID) and Product ID (PID) to be 0x4B4 and O0xE013. We will also fill in the Manufacture and Product strings. The
strings shown in Figure 3.9 can be used or other strings can be chosen. We can also change the values for the VID and
PID. For demonstration purposes any value can be used but if entering production or distributing the example project,

our own VID must be assigned from the USB Implementers Forum.
Configure 'USBFS* &

Name: USBFS_1

iptor | String Descriptor | HID Descriptor | Adwance d | Built-in 4P
E3 | E3 add Configuration |

Device Attributes
Wendor ID Ox [4B4

or | Product D Oz EM3

Device Releass 0x |0

Device Class

Device Subclass

Manufacturing String
Praduct Sting |Keyboard IE3
Seria Humber Sting | Iv]
Endpoirt Memory Manaosment

@ Manual [default)

) DA w/Manusl Memary Mgmt

E
Figure 3.10 USB Device Descriptor Setup

Volume 4, Issue 3, March 2015 Page 113

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org

Volume 4, Issue 3, March 2015

ISSN 2319 - 4847

Our next step is to be the selection of ‘Configuration Descriptor’ and the window changes as shown in Figure below.
Since the project is bus powered, limit the maximum current that can be supplied to the device. It is important to
specify a value that is appropriate for the device. Here we are using 20 mA which is more than sufficient.

Configure "USBFS' [E3=]
Name: USEFS_1
Device Descriptor | String Descriptar | HID Descriptar | Advanced | Built-in 4
[Descriptor Roat E3l | B3l Add tnterface |
vice Descriptor
- Configuration Deseriptar Configuration Attibutes
=148 Interface Descriptar Configuration sting ~
= @R Alernate Setting 0

<@l HID Class Descriptor | Max Power [ma] 20 =

£al Endpaint Descriptar 1

2B Erdpoint Descriptor || Devies Power Bus Powere d ~

R=mote Wakeup Enabled [e]

Figure 3.11 USB Device Descriptor Setup
Thus configure the interface descriptor. For doing this, we will click on Alternate Setting 0.We have also need to set
the Class type to HID. This inform us about the host,”that the attached device is a HID”. It is to be shown in figure

below.Here it is necessary to know that the ‘Subclass’ is set for ‘No SubClass’. If a Boot Interface is required, the user
must change the subclass to ‘Boot Interface’.

Configure "USBFS' E]
M ame: U5BFS_1
Device Descriptor String Descriptor " HID Descriptor | Advanced | Built-in 4b
1= | Deseriptor Root B | B3 Add Endpaint |
= M Device Descriptor
= B Configuration Descriptor Interface dtributes
e
= ,ﬂ J_ntellace Descriptar [g vl
=) j Altemate Setting (1 -
£a HID Class Descriptor Interface Nurber 0
el Endpoint Descriptor .
4@ Endpoint Deserptor Altemate Settings 0
Class HID 3¢
Subclass | Mo subclass v‘

Figure 3.12 USB Interface Descriptor Setup
With the interface a HID report descriptor must be associated and for this purpose we have to create the HID Report
Descriptor.For doing this we will click on HID descriptor tab in the dialog.Thus we get the following window as shown
in Figure 3.12.0n this window we will do the require addition that are necessary for our application. After completion

of the report descriptor, we will return to the HID Class Descriptor menu as shown in Figure 3.13 and thus set the HID
Report to the name of the HID Report that was just created.

| Canfigare SDFS

(52 §

Device Descrptor | Sting Descriptor. | HID Descriptor — Advanced | Bukt-n 1

b
N 0=

SMID T List b

BliMLIM -

Phism Vilss (LIGAGE_MAXEMUSS (101} 29 65}

S END_COLLECTRON €0

[omssren |

S J
Figure 3.13 USB HID Report Descriptor Setup

oo | cenem |

Volume 4, Issue 3, March 2015 Page 114

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org

Volume 4, Issue 3, March 2015 ISSN 2319 - 4847
Configure "USBFS'
Hame 1JSBFS_1
Device Descriptor | String Descriptor | HID ﬁescr\ptor 1 tevanced | Bk 4 b
g Descriptor ook | x| ‘
=] L‘ Device Descriptor
= 3 Configuration Descriptor Device Aftrbutes
[= :ﬂ Interface D escriptar r ;
=@ Aliemate Selting D Desciptor Type | Report |
A - - = i
; HID Elfass Desc.nplnr Courly Code [NotSuppted]
@ Endpoint Descriptor ; s L
1@ Endpaint Descriptor | HID Repat Keyboard wih LEDs |

(=] o [ew]

Figure 3.14 USB HID Class Descriptor Setup
Our final step of configuration is that we have to set the Endpoints. Because in this application the information’s are to
be sends and receives from the host and also an Input and Output endpoint are required. By default, here only one
endpoint is listed, hence for add an additional endpoint, we can select the ‘Alternative Setting 0* and then click the
‘Add Endpoint’ button. Further in next step we will select the ‘Endpoint Descriptor’ and under ‘Endpoint Attributes’,
select the Endpoint number to be EP1, the direction to be ‘IN’, and the transfer type to be ‘INT’. This is shown in
Figure 3.14. Select the second Endpoint and select the Endpoint number to be EP2, the direction to be ‘OUT’, the
transfer type to be ‘INT’, and the *‘Max Packet Size’ to be *1’. This is shown in Figure3.15.
Configure 'USBFS'

Mame: USBFS_1

Device Descriptor |~ String Descriptor "HID Descriptor | Advanced | Built-in 40
(= || Descriptor Ract x| |
= f—‘ Device Descriptor
= 3 Eonhgulalion Descriptar Endpoint Attributes

= .ﬂ Interface Descriptor
= 3 Alternate Setting 0

Endpoint Humber EPTI V.E
§ HID Class Descriptor Direction IN "'v.

il Endpoint Descriptar . —
gl Endpoint Descriptor U INT 1]
Interval 10 e
Max Packet Size g £
Figure3.15 USB Endpoint Setup (IN)
Configure 'USBFS' B=]
Mame: USEFS_1
Device Descriptor | String Descriptor | HID Descriptor | Advanced | Buit-in 4 b
= ||| Descriptor oot x|
=[] Device Descriptor
148l Configuration Descriptor Endpoint Attributes
={@l Interface Descriptor Endpoint Murber P2

=48 Altemate Setting 0

3 HID Class Descriptor Direstion ouT
£ Endpoint Diescriptor =

Bl el [E &1 =]

gl Endpoint Descriptor Transter Type INT
Interval 10
Max Packet Size 1
o [e][cowa |

Figure3.16 USB Endpoint Setup (OUT)
The main.cfile will located in the Workspace Explorer and open the file to edit it. Delete the existing code in main.cand

place the C code. After the code has been placed in the project, Build/Compile the project and program it into the
PSoC-5device.

Volume 4, Issue 3, March 2015 Page 115

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847

We will use the jumper wires to make the following connections on the PSoC-5CY8CKIT-001. If we want to change
the pin configuration from Figure 4.31,we have to sure to change the wiring configuration accordingly.

SW1 -P0[6] -Caps Lock Key

SW2 -P0O[7] -Type Constant String

LED2 -P1[5] -Num Lock LED

LED3 -P1[6] -Caps Lock LED

LEDA4 -P1[7] -Scroll Lock LED

LCD -P2[6:0] -Status Display

After the device is programmed, we will connect a USB cable from the PC to the DVK. When the device has
enumerated, we will press the Caps, Num, and Scroll Lock keys on our keyboard and then observe the changes on
LEDs and LCD accordingly. When we Press SW1 on the DVK and then observe the Caps Lock toggle. In next step we
will open a text editor on the PC and then press SW2. Observe a string of text transmitted to PC and displayed in the
text editor. We are free to edit the string in the main.cfile to type anything. The program by which we will able to
obtainour application is to be explain on Appendix.

4 RESULT ANALYSIS

In this chapter we have shown the simulation results obtained by us while working on different applications of the
Psoc-5.

ADC Data buffering using DMA

Build and program the chip

Press F5 or click the debug icon to download the program and debug.

61l woid main()
34 {
o 63 uintle ADC sampl Jorx ™ AR
6a J Insert Breakpoink
65 A% Wariable decls-,j' Break Here Once |
a6 uintd DMA Chan: @ 2dd WwatchPaint v E
&7 uints DMA TD[1]; -
o = |5 Add wakch |
=] /% DMA Configuraty *E RunTo Cursor
7o #define DMA_BYTES . Set Mext Instruction
Figure 4.1 Add watch timer.

185

187 f/* If DMA has finished the transfer +/

135 if (DMADOne flao)

139 {

140 /% Disable the DML channel */

141 CyDmacChDisable (DML Chan) ;

14z

143 /% Clear the Flag */

@ 124 DMiDone flag = 0O;
i 5o
146 }/* If statement ends heres */

Figure 4.2 including Breakpointput a breakpoint inside in (DMA done flag).
The execution stops at the breakpoint after the DMA transfers the specified number of samples from ADC to memory
and the result can be verified by monitoring the “ADCsample” array in the watch window. The outputs for 8 bit, 16
bit,20 bit and 12 bit ADC SAR as follows

TopDesign.cysch & main.c & ADC_DMA_M..y_8Bit.cydwr @ Watch 1
Name Yalue Address

[=-g¢ ADC_sam..|[500] 000000000 (4Data]
L] 0:C1 30" 000000000 [<Data)
L 0xC1 301" 000000001 (<Data]
w2 .[IxET am' 000000002 <0 5ta)
v 3 0xC1 301" 000000003 4D ata]
L 0:C1 %301 0400000004 [<Data)
@5 0xC1 301" 000000005 (4D ata)
¥ & OuC1 301" 00000000 [40ata)
‘7 0xC2 1302 000000007 (4D ata)
L] 0uC1 301" 000000008 40 ata)
¥ 3 0:C2 302" 000000003 4D ata)
¥ 10 .DREW an' 0200000004 (<D ata)
v 1 0:C1 301" 000000008 (<D ata)
¥ 12 0uC1 301" 0:0000000C (<D ata)

¥ 13 0:C1 30" 000000000 (XData)
¥ 14 0xC1 301" 0x0000000E (<D ata)
¥ 15 0xC1 301" 0:0000000F B0 tal

Figure 4.3 Result of 8bit ADC data buffering

Volume 4, Issue 3, March 2015 Page 116

International Journal of Application or Innovation in Engineering & Management (1JAIEM)

Web Site: www.ijaiem.org Email: editor@ijaiem.org

Volume 4, Issue 3, March 2015

16 bit ADC data buffering

TopDesign.cysch & main.c @ ADC_DMA_M.._16BiE.cydwr 3+ Watch 1

EN]

E-#

Value
ADC_sam.. [500]
LAl OhCH1A
| OhCA1A
v (:C418
v3 OkC417
X 04419
@5 OhCHA
¥E L7
Lo 413
v3 IEKAES
v 0:C416
¢ 10 (kC415
¢ kC414
vz (xC414
/13 :C413
‘14 OkC417
LA kL8

Address

(00000000 (XD ata)
(00000000 (<D ata)
(x00000002 (<D ata)
(x00000004 (<D ata)
(x00000006 (¥Data)
(00000008 (¥D ata)
(00000004 [¥Datal
(x0000000C [4Data)
(x0000000E [¥Datal
(x00000010 (<Data)
(400000012 (¥Data
(400000014 (XD ata
(500000016 (XD ata
(00000018 (XD ata
(00000014 ¥Datal
(x0000001C [XData]
0x0000001E [XDatal

]
]
]
)

Figure 4.4 Result of 16 bit ADC data buffering

TopDesign.cysch @ ADC_DMA_M .it_Ege.cydwr @ | main.c 3 Watch 1

20 bit ADC data buffering

Narme Walue

E-# ade_sam.. |[50]
?0 |xooocEB4C
41 |odoocessr
¢ 2 |(000CERAC
43 |Ddo0cesds
¢4 |DODICERdS
25 |DODICER4
45 |ndo0ceedc
@7 |noooceeso
25 |000CeB4C
43 |D00cesss
Y10 | DMODICEBAE
411 |0400CeR4D
Y12 |«ODOCEBAE
213 | D«ODOCEBSD
410 |Dd00CeEds
@15 |naouocesds

Address

000000003 [¥Data)
(00000003 [{Data)
(00000007 ({D1sta)
OxDD000E (<Diata)
DxDD0000F [{Dalal
000000013 {Data)
00000017 [{Data)
DDD000D1E (<Data]
DXOD0000TF [{Data)
(00000023 ({D1sta)
DxDD000027 [{Datal
DDD000ZE (<Diata]
DWDD000ZF M{Data)
| 0x00000033 (Dot
000000037 [{Data)
DOD00003E [<Diata)
CxOD00003F Dstal

Figure 4.5 Result of 20 bit ADC data buffering

12 bit SAR ADC data buffering

TopDesign.cysch & 54R ADC_D..emory cydor 8" main.c & Watch 1

Name

-3 ADC_sam.
41
v
L
V3
X
Los
Los
V7
‘8
v

Value

]

[40CKF
D

DCEF

CEF

DICEF
DCEF

[x0CHF

(x0CKF
DCEF

e

DCEF

DCEF

DCEF
DCEF

[40CKF

e

Address

Dx200078FB A0)
Ox20007BFB &)
Dx200078F4 (A0
Dx20007BFC (A0
Dx20007BFE (A0
Dx20007C00 &N
‘szuuumz (Al
Dx20007C04 (&)
Ox20007C06 (&)
Dx20007C08 &0)
Dx20007C0é (&0
Dx20007C0C (A0
Dk20007COE (A0
Dx20007C10 8N)
‘UxZDDDFET 2(80
Ox20007C14 Al
Dx20007CTR i8N

Figure 4.6 Result of 12 bit SAR ADC data buffering

ISSN 2319 - 4847

Volume 4, Issue 3, March 2015

Page 117

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847

USB HID INTERFACING
The output for USB HID intermediate with Keyboard is as follows:
==

Figure 4.7 Result of USB HID Intermediate with Keyboard

5.APPLICATIONS

These all were the methodology by following the each and every steps from here we firstly implement the small projects
and further will implement our main big applications i.e “ADC DATA BUFFERING USING DMA” and third
application is “USB HID intermediate with Keyboard”.For getting these main applications implementations we will
follow the same method from these PSoC-5creator, PSoC-5designer and PSoC-5 Programmer but for these we will
firstly study what is data buffering, what is ADC data and what the meaning of DMA, how data will buffer by DMA?
In our next application i.e. USB HID intermediate with Keyboard, here we will see how we can intermediate the
keyboard with USB HID.We will provide the input from Keyboard by pressing any key on Keyboard like Caps Lock
and then output we will see on PSoC-5board by LED glowing. Hence we will comes to know that the USB HID get
intermediate with Keyboard. By knowing all these concepts and all these questions we will easily implement our
applications

6.CONCLUSION

This dissertation focuses on use of PSoC-5(Programmable System on Chip) for achieving big applications. We designed
here ADC data buffering using DMA and USB HID intermediate with Keyboard. In case of ADC data buffering using
DMA, we buffers 8 bit, 16 bit, 20 bit and 12 bit SAR ADC data using DMA very easily.USB HID intermediate with
Keyboard, we have done burning of the program on Pasco throughPSoC-5/ Miniprog 3 from PC to PSoC-5board and as
the output we can see the output on board in the form of light in LED by providing the input from Keyboard. PSoC-5is
a less time consuming device.

We started from basics projects .With the help of these basic projects we got enough information to achieve our main
applications. Firstly we have done “LED with PWM” project, thus we put some changes on it by changing the
connections and as a result we glow the LED on board. We also have done ADC to LCD display and other basic project
was Capsense. By doing these projects we got familiar with the working of cypress Kit.

This Kit is very attractive and main thing that it is very interesting. On performing the work on kit, we felt more
curiosity for doing work on it. By the use of this kit we can also make our own IC.

REFRENCES

[1] Architecture and Programming of PSoC-5microcontroller by Predrag Micakovic.

[2] Designs Guide to the Cypress PSoC-5(Embedded Technology) by Robert Ashby.

[3] CY8CKIT-001-PSOC-5DEVELOPEMENT KIT GUIDEuDoc. # 001-48651 Rev. *D January 5, 2011.

[4] Anu MD,Lakshmi Natarajan , CY8C38xx/CY8C55xx on software version of PSoC-5Creator for PSoC-53 &PSoC-
55-“Getting Started with DMA”.

[5] Using DMA with high performance peripherals to Maximize the system performance by John Manjine.

[6] Anu MD,Anup Mohan “PSoC-53 &PSoC-55 for ADC data Buffering using DMA”.

[71 USB HID intermediate with Keyboard using CY8C38xx, CY8C55xx on PSoC-53/PSoC-55 by Robert Murphy.

[8] Robert Murphy “PSoC-53 &PSoC-55 for USB Fundament

[9] RtrASSoc: an adaptable superscalar reconfigurable system-on-chip. The simulator Silva, J.L. ; Costa, R.M. ;
Jorge,G.H.R.System-on-Chip for Real-Time Applications, 2003.

Volume 4, Issue 3, March 2015 Page 118

International Journal of Application or Innovation in Engineering & Management (1JAIEM)
Web Site: www.ijaiem.org Email: editor@ijaiem.org
Volume 4, Issue 3, March 2015 ISSN 2319 - 4847

[10] The Method of data exchange between high performance PWM modulator and MCU by Maxim, D. ; Volkov, A.G.
; Makarov, D.V. Micro/Nanotechnologies and Electron Devices (EDM), 2012 IEEE 13th International Conference
Publication Year: 2012.

[11]A human-robot interface using vision-based eye gaze estimation system Dong Hyun Yoo ; Jae Heon Kim ; Do
Hyung Kim ; Myung Jin Chung Intelligent Robots and Systems, 2002. IEEE/RSJ International ConferenceYear:
2002.

[12] Microcontroller implementation of a voice command recognition system for human-machine interface in embedded
systemsBernal-Ruiz, C. ; Garcia-Tapias, F.E. ; Martin-del-Brio, B. ; Bono-Nuez, A. ; Medrano-Marques, N.J
Emerging Technologies and Factory Automation, 2005. ETFA 2005. 10th IEEE Conference in 2005.

[L3]DMA controller design using self-clocked methodology Aghdasi, F. ; Bhasin, A .AFRICON, 2004. 7th AFRICON
Conference in Africa, 2004.

[14]A Case Study to Track High Value Stillages using RFID for an Automobile OEM and its Supply Chain in the
Manufacturing IndustryAghdasi, F. ; Bhasin, A. AFRICON, 2004. 7th AFRICON Conference in Africa

Volume 4, Issue 3, March 2015 Page 119

