
 

 

DML Reference Guide for COBOL 
Release 18.5.00, 3rd Edition 

CA IDMS™ 

 

 

 

 



 

 

 

This  Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to 
as  the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This 

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or 
duplicated, in whole or in part, without the prior wri tten consent of CA.   

If you are a  licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make 
available a  reasonable number of copies of the Documentation for internal use by you and your employees in connection with 
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.  

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable 

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to 
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.  

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY 
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, 

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST 
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE 
POSSIBILITY OF SUCH LOSS OR DAMAGE.  

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such 

l icense agreement is not modified in any way by the terms of this notice.  

The manufacturer of this Documentation is CA.  

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions 

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or 
their successors.  

Copyright © 2014 CA. Al l  rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to 
their respective companies.  

 



 

 

CA Technologies Product References 

This document references the following CA products: 

■ CA IDMS™/DB 

■ CA IDMS™/DC 

■ CA IDMS™ UCF 

■ CA IDMS™ DC/UCF 

■ CA IDMS™ DDS 
 

Contact CA Technologies 

Contact CA Support 

For your convenience, CA Technologies provides one site where you can access the 
information that you need for your Home Office, Small Business, and Enterprise CA 
Technologies products. At http://ca.com/support, you can access the following 
resources: 

■ Online and telephone contact information for technical assistance and customer 
services 

■ Information about user communities and forums  

■ Product and documentation downloads  

■ CA Support policies and guidelines  

■ Other helpful resources appropriate for your product 

Providing Feedback About Product Documentation 

If you have comments or questions about CA Technologies product documentation, you 
can send a message to techpubs@ca.com. 

To provide feedback about CA Technologies product documentation, complete our 
short customer survey which is available on the CA Support website at 

http://ca.com/docs.  
 

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs


 

 

Documentation Changes 

The following documentation updates were made for the 18.5.00, 2nd and 3rd Edition 
releases of this documentation: 

■ IDMS-STATUS Routine (see page 60), Sample Batch Program as Output from the 
DML Compiler (see page 369), Sample Batch Program from the COBOL Precompiler  

(see page 387)—Updated the code in the context of IDMS-STATUS. 

■ Executing Programs (see page 25)—Added information about the TRUNC option. 

■ Features Supported by CA IDMS (see page 503)—Added a reference to the 
information about the TRUNC option. 

■ 18-Byte IDMS Block (see page 518), 18-Byte IDMS DC Block (see 
page 519),Communications Blocks (see page 33)—Updated the tables and field 
descriptions. 

■ Copying and Pasting COBOL Code from this Guide (see page 13)—Added this section 
containing the recommendation to copy COBOL code from the HTML version of this 
guide to preserve indention. 

The following documentation updates were made for the 18.5.00 release of this 

documentation: 

■ IDMS STATUS Routine (see page 60)—Routine updated to display last dbkey, page 
group, and database-key format. 

■ ACCEPT DB-KEY FROM CURRENCY (see page 106)—The description of this 
statement was updated with information on the PAGE-INFO parameter. 

■ READY (see page 272)—The description of the FORCE option was added.  

■ ERROR-STATUS Condition Names (see page 59)—This new section was previously 

available in the Programming Quick Reference Guide. 

■ Online Debugger Syntax (see page 527)—This new appendix was previously 
available in the Programming Quick Reference Guide. 

■ ACCEPT TRANSACTION STATISTICS (see page 113)—Added a sample of the 
TRANSACTION-STATISTICS to the description of the INTO parameter. 

■ WORKING-STORAGE and LINKAGE SECTIONS (see page 76)—Added the 
TRANSACTION-STATISTICS parameter. 

 



 

Contents  5  

 

Contents 
 

Chapter 1: Introduction 13 

Copying and Pasting COBOL Code from this Guide................................................................................................................ 13 

Syntax Diagram Conventions ..................................................................................................................................................... 13 

Chapter 2: Introduction to CA IDMS Data Manipulation Language 17 

Programming in the CA IDMS Environment ............................................................................................................................ 19 

Accessing the Database....................................................................................................................................................... 19 

Programming in the Online Environment........................................................................................................................ 21 

Compiling and Executing CA IDMS Programs.......................................................................................................................... 22 

Compiling Programs............................................................................................................................................................. 23 

Executing Programs ............................................................................................................................................................. 25 

Callable Services and Common Facilities ................................................................................................................................. 26 

Callable Services ................................................................................................................................................................... 26 
Common Facilities ................................................................................................................................................................ 27 

Chapter 3: Precompiler Options 29 

Dictionary Ready Override.......................................................................................................................................................... 29 

Dictionary Ready Override.................................................................................................................................................. 30 

Comment Generation.................................................................................................................................................................. 30 

List Generation ............................................................................................................................................................................. 30 

Log Suppression............................................................................................................................................................................ 31 

Chapter 4: Communications Blocks and Error Detection 33 

Communications Blocks .............................................................................................................................................................. 33 

IDMS Communications Block ............................................................................................................................................. 34 

LRC Block................................................................................................................................................................................ 40 

IDMS-DC Communications Block....................................................................................................................................... 42 

ERROR-STATUS Field and Codes ................................................................................................................................................ 48 

DB Status Codes............................................................................................................................................................................ 48 

Major DB Status Codes........................................................................................................................................................ 48 

Minor DB Status Codes........................................................................................................................................................ 49 
DC Status Codes............................................................................................................................................................................ 54 

Major DC Status Codes........................................................................................................................................................ 54 

Minor DC Status Codes........................................................................................................................................................ 55 

ERROR-STATUS Condition Names ............................................................................................................................................. 59 



 

 

6  DML Reference Guide for COBOL 

 

Error Detec tion ............................................................................................................................................................................. 59 

IDMS-STATUS Routine ......................................................................................................................................................... 60 

AUTOSTATUS Protocols....................................................................................................................................................... 63 

USER-DEFINED Protocols .................................................................................................................................................... 65 

Chapter 5: Precompiler-Directive Statements 67 

IDENTIFICATION DIVISION .......................................................................................................................................................... 68 

ENVIRONMENT DIVISION............................................................................................................................................................ 69 

DATA DIVISION ............................................................................................................................................................................. 72 

FILE SECTION ......................................................................................................................................................................... 73 

SCHEMA SECTION................................................................................................................................................................. 73 

MAP SECTION........................................................................................................................................................................ 74 
WORKING-STORAGE and LINKAGE SECTIONS ................................................................................................................. 76 

PROCEDURE DIVISION ................................................................................................................................................................. 85 

Chapter 6: Data Manipulation Language Statements 89 

About Data Manipulation Language (DML) ............................................................................................................................. 92 

ABEND ..........................................................................................................................................................................................100 

ACCEPT .........................................................................................................................................................................................101 

ACCEPT BIND ADDRESS .............................................................................................................................................................103 

ACCEPT DATABASE STATISTICS  ................................................................................................................................................104 

ACCEPT DB-KEY FROM CURRENCY ..........................................................................................................................................106 

ACCEPT DB-KEY RELATIVE TO CURRENCY ..............................................................................................................................108 

ACCEPT page-info-location .......................................................................................................................................................110 

ACCEPT PROCEDURE CONTROL LOCATION ...........................................................................................................................112 

ACCEPT TRANSACTION STATISTICS  .........................................................................................................................................113 

ATTACH ........................................................................................................................................................................................119 

BIND MAP ....................................................................................................................................................................................121 

BIND PROCEDURE ......................................................................................................................................................................123 

BIND RECORD..............................................................................................................................................................................124 
BIND RUN-UNIT ..........................................................................................................................................................................126 

BIND TASK....................................................................................................................................................................................129 

BIND TRANSACTION STATISTICS ..............................................................................................................................................130 

CHANGE PRIORITY......................................................................................................................................................................131 

CHECK TERMINAL .......................................................................................................................................................................132 

COMMIT.......................................................................................................................................................................................135 

CONNECT .....................................................................................................................................................................................136 

DC RETURN ..................................................................................................................................................................................139 

DELETE QUEUE............................................................................................................................................................................143 

DELETE SCRATCH ........................................................................................................................................................................144 

DELETE TABLE..............................................................................................................................................................................146 



 

 

Contents  7  

 

DEQUEUE .....................................................................................................................................................................................148 

DISCONNECT ...............................................................................................................................................................................149 

Disconnecting a Record from a Set .........................................................................................................................................150 

END LINE TERMINAL SESSION ..................................................................................................................................................152 

END TRANSACTION STATISTICS ...............................................................................................................................................152 

ENDPAGE .....................................................................................................................................................................................154 

ENQUEUE .....................................................................................................................................................................................154 

ERASE............................................................................................................................................................................................157 

ERASE (LRF)..................................................................................................................................................................................163 

FIND/OBTAIN ..............................................................................................................................................................................165 

FIND/OBTAIN CALC/DUPLICATE ..............................................................................................................................................165 

FIND/OBTAIN CURRENT ............................................................................................................................................................167 
FIND/OBTAIN DB-KEY ................................................................................................................................................................170 

FIND/OBTAIN OWNER ...............................................................................................................................................................173 

FIND/OBTAIN WITHIN SET USING SORT KEY .........................................................................................................................176 

FIND/OBTAIN WITHIN SET/AREA.............................................................................................................................................179 

FINISH ...........................................................................................................................................................................................185 

FREE STORAGE ............................................................................................................................................................................187 

GET ................................................................................................................................................................................................188 

GET QUEUE..................................................................................................................................................................................189 

GET SCRATCH ..............................................................................................................................................................................194 

GET STORAGE..............................................................................................................................................................................197 

GET TIME......................................................................................................................................................................................201 

IF ....................................................................................................................................................................................................203 

INQUIRE MAP..............................................................................................................................................................................205 

KEEP CURRENT............................................................................................................................................................................215 

KEEP LONGTERM ........................................................................................................................................................................216 

LOAD TABLE.................................................................................................................................................................................222 

MAP IN .........................................................................................................................................................................................227 

MAP OUT .....................................................................................................................................................................................232 

MAP OUTIN .................................................................................................................................................................................239 
MODIFY ........................................................................................................................................................................................243 

MODIFY (LRF)  ..............................................................................................................................................................................246 

MODIFY MAP...............................................................................................................................................................................248 

OBTAIN (LRF)  ...............................................................................................................................................................................258 

POST..............................................................................................................................................................................................261 

PUT QUEUE..................................................................................................................................................................................262 

PUT SCRATCH ..............................................................................................................................................................................265 

READ LINE FROM TERMINAL ....................................................................................................................................................267 

READ TERMINAL .........................................................................................................................................................................269 

READY ...........................................................................................................................................................................................272 

RETURN ........................................................................................................................................................................................275 



 

 

8  DML Reference Guide for COBOL 

 

ROLLBACK ....................................................................................................................................................................................278 

SEND MESSAGE...........................................................................................................................................................................280 

SET ABEND EXIT ..........................................................................................................................................................................283 

SET TIMER ....................................................................................................................................................................................284 

SNAP .............................................................................................................................................................................................288 

STARTPAGE..................................................................................................................................................................................290 

STORE ...........................................................................................................................................................................................293 

STORE (LRF)  .................................................................................................................................................................................297 

TRANSFER CONTROL..................................................................................................................................................................299 

WAIT .............................................................................................................................................................................................301 

WRITE JOURNAL .........................................................................................................................................................................303 

WRITE LINE TO TERMINAL ........................................................................................................................................................305 
WRITE LOG...................................................................................................................................................................................308 

WRITE PRINTER...........................................................................................................................................................................315 

WRITE TERMINAL .......................................................................................................................................................................319 

WRITE THEN READ TERMINAL .................................................................................................................................................322 

Logical-Record Clauses ..............................................................................................................................................................327 

WHERE..................................................................................................................................................................................327 

ON Clause ............................................................................................................................................................................332 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 337 

Compiling a COBOL Program....................................................................................................................................................337 

z/OS JCL ........................................................................................................................................................................................339 

z/VSE JCL ......................................................................................................................................................................................342 

Local Mode ..........................................................................................................................................................................344 

IDMSLBLS Procedure .........................................................................................................................................................345 

CMS Commands .........................................................................................................................................................................352 

Link-Edit Considerations ...........................................................................................................................................................355 

Passing Parameters to the Precompiler .................................................................................................................................355 

Appendix B: Sample Batch Program 359 

Sample Batch Program as Input to the DML Compiler ........................................................................................................360 

Sample Batch Program as Output from the DML Compiler  ...............................................................................................369 

Sample Batch Program from the COBOL Precompiler.........................................................................................................387 

Appendix C: Sample Online Program 405 

Application Components  ..........................................................................................................................................................405 

Application Runtime Requirements........................................................................................................................................406 

Sample Online COBOL Program as Input to the DML Precompiler ...........................................................................407 

Sample Online COBOL Program as Output from the DML Precompiler ...................................................................412 



 

 

Contents  9  

 

Sample Online COBOL Program from the COBOL Compiler .......................................................................................429 

Appendix D: CA IDMS Call Formats 453 

DB Call Formats ..........................................................................................................................................................................453 

CONTROL STATEMENTS ....................................................................................................................................................453 

MODIFICATION STATEMENTS ..........................................................................................................................................461 

RETRIEVAL STATEMENTS ..................................................................................................................................................462 

ACCEPT STATEMENTS ........................................................................................................................................................467 

LRF DML STATEMENTS ......................................................................................................................................................469 

DC Call Formats ..........................................................................................................................................................................470 

PROGRAM MANAGEMENT STATEMENTS ......................................................................................................................470 

STORAGE MANAGEMENT STATEMENTS ........................................................................................................................471 
TASK MANAGEMENT STATEMENTS ................................................................................................................................471 

TIME MANAGEMENT STATEMENTS ................................................................................................................................472 

SCRATCH MANAGEMENT STATEMENTS  ........................................................................................................................472 

QUEUE MANAGEMENT STATEMENTS  ............................................................................................................................473 

TERMINAL MANAGEMENT STATEMENTS  ......................................................................................................................473 

UTILITY STATEMENTS ........................................................................................................................................................475 

RECOVERY STATEMENTS...................................................................................................................................................476 

DC-BATCH ............................................................................................................................................................................477 

Appendix E: CA IDMS Keywords 479 

List of Keywords .........................................................................................................................................................................479 

Appendix F: Notes to Teleprocessing Monitor Users 483 

TP Monitor Coding Guidelines .................................................................................................................................................483 

TP monitor Coding Requirements  ...........................................................................................................................................484 

Appendix G: EMPLOYEE Database Definition 487 

IDMSRPTS Utility Report Listings.............................................................................................................................................487 

EMPLOYEE Database Structure Diagram ...............................................................................................................................501 

Appendix H: VS COBOL II Support 503 

Features Supported by CA IDMS .............................................................................................................................................503 

Features Not Supported by CA IDMS ......................................................................................................................................506 

Appendix I: Considerations for IBM Language Environment 507 

Considerations About LE Runtime...........................................................................................................................................508 



 

 

10  DML Reference Guide for COBOL 

 

Running LE-Compliant Compiler Programs Under CA IDMS/DC ........................................................................................509 

Supported LE Functions ............................................................................................................................................................513 

Unsupported LE Functions........................................................................................................................................................513 

Performance Improvements with RHDCLEFE........................................................................................................................513 

Multiple-Program Enclave ........................................................................................................................................................514 

Restrictions on Using Multiple-Program Enclaves .......................................................................................................515 

Exempting Programs from Multiple-Program Enclave ................................................................................................516 

Appendix J: 18-Byte Communications Blocks 517 

18-Byte IDMS Block....................................................................................................................................................................518 

18-Byte IDMS DC Block .............................................................................................................................................................519 

Appendix K: Optional Online COBOL Functionality 521 

COBOL II and LE COBOL Task Management ..........................................................................................................................521 

PSW Program Mask Settings  ....................................................................................................................................................524 

Loading VS COBOL Programs into XA Storage.......................................................................................................................526 

Appendix L: Online Debugger Syntax 527 

General Registers Symbols .......................................................................................................................................................527 

DC/UCF System Symbols...........................................................................................................................................................528 

Address Symbols and Markers.................................................................................................................................................528 

User Symbols...............................................................................................................................................................................529 

Program Symbols .......................................................................................................................................................................529 

Syntax: Data Field Names .................................................................................................................................................529 

Syntax: Line Numbers........................................................................................................................................................529 

Syntax: Qualifying Program Symbols ..............................................................................................................................529 

Expression Operators ................................................................................................................................................................529 

Delimiters ....................................................................................................................................................................................530 

Debugger Commands ................................................................................................................................................................530 

Syntax: AT ............................................................................................................................................................................530 
Syntax: DEBUG ....................................................................................................................................................................531 

Syntax: EXIT .........................................................................................................................................................................531 

Syntax: IOUSER ...................................................................................................................................................................531 

Syntax: LIST..........................................................................................................................................................................531 

Syntax: MENU .....................................................................................................................................................................531 

Syntax: PROMPT .................................................................................................................................................................531 

Syntax: QUALIFY .................................................................................................................................................................532 

Syntax: QUIT........................................................................................................................................................................532 

Syntax: RESUME .................................................................................................................................................................532 

Syntax: SET ..........................................................................................................................................................................532 



 

 

Contents  11  

 

Syntax: SNAP .......................................................................................................................................................................532 

Syntax: WHERE ...................................................................................................................................................................533 

Index 535 

  





 

Chapter 1: Introduction  13  

 

Chapter 1: Introduction 
 

This guide contains reference material for writing applications programs in the COBOL 
language to use CA IDMS/DB, CA IDMS/DC, and CA IDMS UCF services. 

This guide is intended to be used by COBOL programmers whose programs access CA 
IDMS databases and who want to use the DC/UCF system facil ities Programmers using 

Assembler language or PL/I should refer to CA IDMS DML Reference Guide for 
Assembler or CA IDMS DML Reference Guide for PL/I. 

 

Copying and Pasting COBOL Code from this Guide 

COBOL compiler requires that the source code is correctly indented.  

To preserve the indention of code examples in this guide, copy the code examples from 
the HTML version of the guide. Copying from the PDF format does not preserve the 
indention; it is necessary to restore the indention manually after pasting. 

 

Syntax Diagram Conventions 

The syntax diagrams presented in this guide use the following notation conventions: 

UPPERCASE OR SPECIAL CHARACTERS 

Represents a required keyword, partial keyword, character, or symbol that must be 
entered completely as shown. 

lowercase 

Represents an optional keyword or partial keyword that, if used, must be entered 
completely as shown. 

italicized lowercase 

Represents a value that you supply. 
 
 

lowercase bold 

Represents a portion of the syntax shown in greater detail  at the end of the syntax 
or elsewhere in the document. 

 

◄─ 

Points to the default in a l ist of choices. 
 

►►──────────────────── 

Indicates the beginning of a complete piece of syntax. 
 

────────────────────►◄ 



Syntax Diagram Conventions 

 

14  DML Reference Guide for COBOL 

 

Indicates the end of a complete piece of syntax. 
 

─────────────────────► 

Indicates that the syntax continues on the next l ine. 
 

►───────────────────── 

Indicates that the syntax continues on this l ine. 
 

────────────────────►─ 

Indicates that the parameter continues on the next l ine. 
 

─►──────────────────── 

Indicates that a parameter continues on this l ine. 
 

►── parameter ─────────► 

Indicates a required parameter. 
 

►──┬─ parameter ─┬─────► 
   └─ parameter ─┘ 

Indicates a choice of required parameters. You must select one. 
 

►──┬─────────────┬─────► 
   └─ parameter ─┘ 

Indicates an optional parameter. 
 

►──┬─────────────┬─────► 
   ├─ parameter ─┤ 
   └─ parameter ─┘ 

Indicates a choice of optional parameters. Select one or none. 
 

  ┌─────────────┐ 
►─▼─ parameter ─┴──────► 

Indicates that you can repeat the parameter or specify more than one parameter. 
 

  ┌─── , ─────────┐ 
►─▼─ parameter ───┴──────► 

Indicates that you must enter a comma between repetitions of the parameter. 
 



Syntax Diagram Conventions 

 

Chapter 1: Introduction  15  

 

Sample Syntax Diagram 

The following sample explains how the notation conventions are used: 

 
 





 

Chapter 2: Introduction to CA IDMS Data Manipulation Language  17  

 

Chapter 2: Introduction to CA IDMS Data 
Manipulation Language 
 

The CA IDMS data manipulation language (DML) consists of statements that direct CA 
IDMS database (DB) and data communications (DC) processing. DML statements are 
coded in the program source as if they were a part of the host language. The 

precompiler converts DML statements into standard COBOL statements and performs 
source-level error checking. 

Depending on the operating environment, your program will  use different sets of DML 
statements. For example, a batch program uses only database DML statements; an 

online program can use both database and data communications DML statements. 

Batch processing typically involves large volumes of transactions, sequential processing, 
and output in the form of fi les and reports. Batch programs use database DML 

statements only. 

The following figure il lustrates the flow of a typical batch application. Input to DEPTRPT 
consists of department IDs. Output consists of a l isting of departments and their 
employees. The error report l ists the department IDs of missing and empty 

departments. 

 



Syntax Diagram Conventions 

 

18  DML Reference Guide for COBOL 

 

Online processing typically involves transaction requests entered from terminals 
connected directly to the computer, transaction results displayed at the terminal, 

multiple requests from multiple sources, and sharing one copy of a program among 
multiple users. Additionally, online processing is immediate; fast response time is 
essential in processing large volumes of transactions from multiple online users. Online 

programs use data communications DML statements and can include database DML 
statements. 

The following figure il lustrates the flow of a typical online application. EMPDISP 
retrieves information for an operator-specified employee ID. Output to the terminal 

consists of DEPARTMENT, EMPLOYEE, JOB, and OFFICE information. 
 

 

The CA IDMS programming environment is outlined below, followed by a discussion of 
compile and runtime considerations. 

This section contains the following topics: 

Programming in the CA IDMS Environment (see page 19) 
Compiling and Executing CA IDMS Programs  (see page 22) 
Callable Services and Common Facil ities (see page 26) 

 



Programming in the CA IDMS Environment 

 

Chapter 2: Introduction to CA IDMS Data Manipulation Language  19  

 

Programming in the CA IDMS Environment 

CA IDMS DML statements are divided into two categories: 

■ Database statements perform retrieval and update functions in either the batch or 
the online environment. There are three categories of database DML statements: 

– Navigational statements access database records and sets, one record at a 

time 

– LRF statements access groups of database records using the Logical Record 
Facil ity (LRF) 

– SQL statements access groups of database records using the Structured Query 

Language (SQL) 
 

■ Data communications (also called online) statements, request data 
communications services such as for online programs  

You can include database DML statements in batch programs or combine them with 

data communications DML statements in online programs that require database access. 
A discussion of accessing the database by using DML statements is presented below, 
followed by a discussion of additional considerations for coding online programs. 

 

Accessing the Database 

Database access under CA IDMS can be accomplished by using navigational, LRF DML, or 
SQL DML statements. Navigational statements are used with a subschema usage mode 
of either DML or MIXED. 

LRF DML statements, which use the Logical Record Facil ity (LRF), are used with a 

subschema usage mode of either LR or MIXED. 
 

SQL DML statements, which use Structured Query Language, access records without 
reference to subschemas. 

 

Some statements, such as BIND RUN-UNIT, READY, and FINISH, are used in all  three 
environments. They are noted in the individual discussions of each DML statement in 
Data Manipulation Language Statements  (see page 89). 

Navigational, LRF, and SQL DML statements are discussed separately below. 
 



Programming in the CA IDMS Environment 

 

20  DML Reference Guide for COBOL 

 

Navigational DML Statements 

Navigational DML statements access database records and sets one record at a time, 
checking and maintaining currency in order to assure correct results. Navigational DML 
statements give you control over error checking and flexibil ity in choosing database 

access strategy. To use navigational DML statements, you must have a thorough 
knowledge of the database structure. For an example of a data structure diagram, refer 
to EMPLOYEE Database Definition (see page 487). 

 

Navigational DML statements provide: 

■ Control over error checking—You can check the result of each navigational 

statement, enabling more thorough error detection 

■ Flexibility in choosing database access strategy—You can enter the database either 
sequentially (area sweep), by using a symbolic key value (CALC), or by using a 
database key value (DIRECT) 

 

Navigational DML statements are grouped into four categories: 

■ Control statements initiate and terminate processi ng, effect recovery, prevent 
concurrent updates, and evaluate set conditions  

■ Retrieval statements locate data in the database and make it available to the 
application program 

■ Modification statements update the database 

■ Accept statements pass database keys, storage address information, and statistics 
to the program 

 

LRF DML Statements 

LRF DML statements use the Logical Record Facil ity (LRF) to access database records. 
LRF allows you to access fields from multiple database records as if they were data fields 
in a single record. LRF DML statements allow you to specify selection criteria (by using 

the WHERE clause) that enable you to access only those logical records you need. 

LRF DML statements provide: 

■ Easy access to database records—You need not be familiar with database 
structure; your programs need not include database navigation logic. 

■ Data flexibility—Modification and recompilation of LRF programs are not 
necessarily required when the physical or logical structure of the database is 
changed. 

 

■ Run-time efficiency—LRF minimizes communication between the program and the 

DBMS. 
 



Programming in the CA IDMS Environment 

 

Chapter 2: Introduction to CA IDMS Data Manipulation Language  21  

 

The LRF DML statements are l isted below: 

■ ERASE deletes a logical  record as specified in the path definition 

■ MODIFY modifies a logical record as specified in the path definition 
 

■ OBTAIN retrieves a logical record as specified in the path definition 

■ STORE stores a new logical record as specified in the path definition 
 

SQL DML Statements 

You can use SQL DML to access the same databases you access using navigational DML. 

Additionally, you can use SQL DML to access databases that have been defined using 
SQL DDL. 

 

Using SQL DML, you do not have to be familiar with database structure and your 
programs do not have to include database navigation logic. 

 

You can perform the following functions using SQL DML statements: 

■ Select rows 

■ Update rows 
 

■ Delete rows 

■ Insert rows 

Note: For more information about SQL DML statements, see the CA IDMS SQL Reference 
Guide. 

 

Programming in the Online Environment 

The CA IDMS/DC system is fully integrated with the CA IDMS DBMS and the data 
dictionary. It enables you to request both data communications and database services 
through standard subroutine calls generated by the precompiler from DML statements. 

The following figure il lustrates a typical stream of online DML statements in a COBOL 
program. This example maps in a user-specified employee ID, retrieves and displays the 
specified information, and performs a DC RETURN naming TSK02 as the next task to be 
performed. 

 

PROCEDURE DIVISION. 

  BIND MAP EMPMAPLR. 

  BIND MAP EMPMAPLR RECORD EMPLOYEE. 

  ACCEPT TASK CODE INTO TASK-CODE-IN. 

  IF TASK-CODE-IN = 'TSK01' 

          GO TO INITIAL-MAPOUT. 

  MAP IN USING EMPMAPLR. 

     . 

     . 
 



Compiling and Executing CA IDMS Programs  

 

22  DML Reference Guide for COBOL 

 

 navigational, LRF, or SQL database DML statements 

     . 

     . 

  MAP OUT USING EMPMAPLR 

      OUTPUT DATA IS YES 

      MESSAGE IS DISPLAY-MESSAGE LENGTH 80. 

  DC RETURN NEXT TASK CODE 'TSK02'. 
 

Online DML statements, which request CA IDMS to perform data communications 
services, are grouped into nine categories: 

1. Program management statements govern flow of control and abend processing 

2. Storage management statements allocate and release variable storage 
 

3. Task management statements provide runtime services that enhance control over 
task processing 

4. Time management statements obtain the time and date, and define time-related 
events 

 

5. Scratch management statements create, delete, or retrieve records from the 

scratch area 

6. Queue management statements create, delete, or retrieve records in a queue area  
 

7. Terminal management statements transfer data between the application program 
and a terminal  

 

8. Utility function statements retrieve task-related information or statistics, send 
messages, and monitor access to database records  

9. Recovery statements perform functions relating to database, scratch, and queue 

area recovery in the event of a system failure 
 

Compiling and Executing CA IDMS Programs 

A CA IDMS COBOL source program contains DML statements that are processed by the 
precompiler. The precompiler converts DML statements into COBOL CALL statements 

and copies information maintained in the data dictionary into the application program. 
After successful compilation and link editing, the application program can be executed. 
The compilation and runtime processes are described separately below. 

 



Compiling and Executing CA IDMS Programs 

 

Chapter 2: Introduction to CA IDMS Data Manipulation Language  23  

 

Compiling Programs 

There are three components that prepare a COBOL DML program for execution: the 
precompiler, the COBOL compiler, and the linkage editor. 

1. The precompiler converts DML statements in the source program to COBOL CALL 

statements and copies information maintained in the data dictionary into the 
application program. For example, database record descriptions, fi le definitions, 
map records, map definitions, and other predefined modules such as the IDMS 
communications block can be copied into the program. 

 

Output from the precompiler is a  source fi le that serves as input to the COBOL 

precompiler and as an optional source listing. The output fi le differs from the 
source input to the precompiler in the following ways: 

■ Source code (such as the IDMS communications block and the IDMS-STATUS 
routine) has been added to the program. 

■ DML statements have been replaced by COBOL CALL statements and changed 
to comment entries (asterisk in column 7). 

 

Additionally, the precompiler produces a l isting of the following errors: 

■ Incorrect DML entries 

■ Statements inconsistent with the program's declared subschema view 

■ Any other error conditions detected during DMLC processing 

■ Warning messages indicating source code conditions that could adversely 
affect run units using the program 

 

2. The COBOL compiler compiles the source program after it has been successfully 
processed by the precompiler. Output from the COBOL compiler consists of an 

object program and a source listing that includes any generated diagnostics. 
 

3. The linkage editor l ink edits the object program into a specified load library. Output 
from the linkage editor consists of a load module (or phase) and a l ink map. 

 



Compiling and Executing CA IDMS Programs  

 

24  DML Reference Guide for COBOL 

 

The job control language required to execute each step is l isted in DML Precompile, 
COBOL Compile, and Link-Edit JCL (see page 337). 

The component steps needed to prepare a COBOL DML program for execution are 
i l lustrated in the following figure: 

 

  



Compiling and Executing CA IDMS Programs 

 

Chapter 2: Introduction to CA IDMS Data Manipulation Language  25  

 

Executing Programs 

At run time, CA IDMS requests are treated as application program subroutine calls. 
When the subroutine call  is executed, control passes to the DBMS or the DC system, 
which processes the requested function. 

A CA IDMS program must be defined to the CA IDMS s ystem in which it will  operate. The 
program can be defined either at system generation or at run time by using a DCMT 
VARY DYNAMIC PROGRAM command. 

 

The following COBOL features are not used in programs running in an online 
environment under CA IDMS: 

■ ENVIRONMENT and DATA DIVISION entries normally associated with fi le 
management (for example, INPUT-OUTPUT SECTION, FILE SECTION) 

■ The Report Writer and Segmentation features, as well as features invoked by the 
SORT, EXHIBIT, TRACE, DISPLAY, ACCEPT, STRING, UNSTRING, and INSPECT 

commands. The EXAMINE and TRANSFORM verbs, though valid under VS/COBOL, 
will  not compile under VS/COBOL-II since the logic of these verbs has been 
incorporated into the inspect verb and are not valid verbs in COBOL-II. Additionally, 
the EXTERNAL clause of the record statement is invalid for all versions of COBOL. 

 

Note: The restriction on INSPECT, STRING, and UNSTRING commands arise because 

they issue supervisor calls in some environments. This restriction applies mainly 
when running VS COBOL on a VSE or z/OS operating system. It does not apply when 
using LE-compiant COBOL with IBM's runtime Language environment. See section 

H.2 for considerations when using these commands with VS/COBOL II. 

■ The I/O statements READ, WRITE, OPEN, and CLOSE 
 

■ The COBOL compiler DEBUG option; the COUNT, FLOW, STATE, ENDJOB, TEST, 
RESIDENT, DYNAM, and SYMDMP commands (OS only); or the COUNT, FLOW, 
STATE, STXIT, and SYMDMP commands (z/VSE only) 

The TEST compile option can be used for a program compiled using an Language 
Environment compliant compiler, but the DEBUG runtime option must not be used in 
the online environment. A load module compiled with the TEST option can be run with 
the DEBUG runtime option in batch. This allows the same load module which is being 

tested in a batch environment to run in an online environment without being 
recompiled. 

■ Any feature that can lead to the issuance of a supervisor call (SVC) 
 



Callable Services and Common Facilities  

 

26  DML Reference Guide for COBOL 

 

These features lead to a supervisor call (SVC), which will  inhibit system performance and 
can also crash the DC system. 

Usage of the DBCS COBOL compile time option by a CA IDMS program can lead to 
IGYPS0156-E run time errors. Programs using LRF are especially susceptible to this 
problem. This option is the default for LE/COBOL compilers starting with z/OS. 3.2.0. You 

should compile CA IDMS programs using the NODBCS option. 

The COBOL compiler provides a TRUNC option. Use this option with care in any CA IDMS 
program that accesses dbkey values. Exercise particular care if arithmetic operations are 
performed on the dbkey, for example multiplying a page number by the dbkey radix. 

Unexpected results can occur if an inappropriate value is specified for the TRUNC 
option. Such unexpected resul ts can occur because COBOL truncates numeric values to 
fit the PICTURE clause in some cases. 

Avoid this problem by using the compiler option TRUNC(BIN). On some older COBOL 

compilers the equivalent option is NOTRUNC.  

Note: For more information about the TRUNC option, see the documentation of your 
compiler vendor. 

 

Callable Services and Common Facilities 

CA IDMS provides callable services and common facil ities to use with your application 
programs. 

 

Callable Services 

The callable services include: 

■ The IDMSCALC util ity that lets you sort input into target page sequence. 

■ The IDMSIN01 facil ity that lets you perform miscellaneous CA IDMS functions. 

■ The TCP/IP socket program interface that lets you communicate with another 
TCP/IP application. 

Note: For more information about using these callable services, see the CA IDMS 
Callable Services Guide. 

 



Callable Services and Common Facilities  

 

Chapter 2: Introduction to CA IDMS Data Manipulation Language  27  

 

Common Facilities 

The common facil ities include: 

■ The Command Facil ity that lets you submit command statements in a batch or 
online environment. 

■ The Online Compiler Text Editor that lets you edit compiler output and resubmit it 
as input using the CA IDMS development tools. 

 

■ The Transfer Control Facil ity that lets you transfer between CA IDMS development 
tools. 

■ The SYSIDMS parameter fi le that contains parameters that you can add to a batch 

job running in local mode or under the central version. These parameters let you 
specify environment requirements, runtime directives, and operating 
system-dependent information. 

Note: For more information about using these common facil ities and the SYSIDMS 

parameter fi le, see the CA IDMS Common Facilities Guide. 
 





 

Chapter 3: Precompiler Options  29  

 

Chapter 3: Precompiler Options 
  

This chapter contains the syntax for COBOL precompiler options. These options, 

included as special format entries in the COBOL source code input to the precompiler, 
are used to: 

■ Override the DDLDML area default usage mode 

■ Enable the printing of data dicti onary and subschema comments  

■ Control the generation of precompiler source listings  

■ Suppress the logging of program activity statistics 

This section contains the following topics: 

Dictionary Ready Override (see page 29) 

Comment Generation (see page 30) 
List Generation (see page 30) 
Log Suppression (see page 31) 

 

Dictionary Ready Override 

When the DDLDML area of the data dictionary (that is, the main area of the dictionary 
accessed by the precompiler) is readied, a number of different options are available. The 
default mode used is shared update. Shared update mode readies the DDLDML area for 
both retrieval and update and allows other concurrently executing run units to ready 

the DDLDML area in shared update or shared retrieval usage mode. An application 
program can override the default usage mode by specifying either retrieval or protected 
update usage. 

  

Syntax 

Begin in column 7. 
 
►►─┬─ *RETRIEVAL ────────┬────────────────────────────────────────────────────►◄ 
   └─ *PROTECTED-UPDATE ─┘ 

  

Parameters 

*RETRIEVAL 

Readies the DDLDML area for retrieval only and allows other concurrently executing 
run units to open the area in shared retrieval, shared update, protected retrieval, or 
protected update usage modes. 

Note: If the DDLDML area is readied for retrieval only, no program activity statistics 
can be logged. 

 



Comment Generation 

 

30  DML Reference Guide for COBOL 

 

*PROTECTED-UPDATE 

Readies the DDLDML area for both retrieval and update and allows other 

concurrently executing run units to ready the area in retrieval usage mode only. The 
protected update usage mode prevents concurrent update of the area by run units 
executing under the same central version. 

If used, the dictionary ready override statement must precede all  source input 
statements. 

 

Dictionary Ready Override 
Begin in column 7. 
 
►►─┬─ *RETRIEVAL ────────┬────────────────────────────────────────────────────►◄ 
   └─ *PROTECTED-UPDATE ─┘ 

 

Comment Generation 

The *SCHEMA-COMMENTS option causes schema-defined data-item comments and 
IDD-defined record-element comments in the data dictionary to be printed on the 
precompiler source listing and inserted into the program. 

 
 

Syntax 

►►─── *SCHEMA-COMMENTS ───────────────────────────────────────────────────────►◄ 
 

Code the *SCHEMA-COMMENTS statement after the dictionary ready override 

statements (if any) and before any DML or COBOL statements: If the 
*SCHEMA-COMMENTS statement is not included with the input, comment lines are not 
generated. 

 

List Generation 

The source statement l isting output by the precompiler can be turned on or off by 

inserting a l ist generation option into the source program. 
 
 

Syntax 

►►─┬─ *DMLIST ─────┬──────────────────────────────────────────────────────────►◄ 
   └─ *NODMLIST ◄ ─┘ 

  



Log Suppression 

 

Chapter 3: Precompiler Options  31  

 

Parameters 

*DMLIST 

Specifies that the source listing is to be generated for the statements that follow. 

*NODMLIST 

Specifies that no source listing is to be generated for the statements that follow. 

This is the default. 
 

Generation of the list can be turned on or off any number of times within one source 
program by inserting appropriate *DMLIST and/or *NODMLIST entries in the code. 

Note: A listing of error messages is always produced. The *DMLIST option controls 

output of the processor source listing. 
 

Log Suppression 

The *NO-ACTIVITY-LOG option suppresses the logging of program activity statistics. The 
precompiler generates and logs the following program activity statistics unless the 
*NO-ACTIVITY-LOG option is specified: 

■ Program name 

■ Language 

■ Date last compiled 
 

■ Number of l ines 

■ Number of compilations 
 

■ Date created 

■ Subschema name (if any) 

■ File statistics 

■ Database access statistics (records and modules copied from the data dictionary; 

subprograms called; and records, sets, and areas accessed by DML verbs) 
 

Syntax 

►►─── *NO-ACTIVITY-LOG ───────────────────────────────────────────────────────►◄ 

The *NO-ACTIVITY-LOG statement follows the NODENAME/DBNAME and dictionary 

ready override statements. 

Note: Program activity statistics cannot be logged if the DDLDML area is readied for 
retrieval only. 
 





 

Chapter 4: Communications Blocks and Error Detection  33  

 

Chapter 4: Communications Blocks and 
Error Detection 
  

This chapter describes the 16-byte communications block available under CA IDMS. 

These blocks return status information about requested database and data 
communications services to the application program. This chapter also describes the 
ERROR-STATUS field in the IDMS and IDMS-DC communications blocks, status codes, 
and error detection routines. 

Note: For more information about 18-byte communications blocks, see 18-Byte 
Communications Blocks  (see page 517). 

 

This section contains the following topics: 

Communications Blocks  (see page 33) 

ERROR-STATUS Field and Codes (see page 48) 
DB Status Codes (see page 48) 
DC Status Codes (see page 54) 
ERROR-STATUS Condition Names (see page 59) 

Error Detection (see page 59) 
 

Communications Blocks 

Communications blocks return status information about requested database and data 
communications services to the application program. Depending on the usage mode (LR, 
DML, or MIXED) defined in the subschema, your program will  use one or two of the 

following blocks: 

■ IDMS communications block—The IDMS communications block is used when the 
operating mode is either BATCH or BATCH-AUTOSTATUS. 

■ Logical-record request control (LRC) block—The LRC block is used when the 
subschema usage mode is either LR or MIXED. 

The LRC block is copied in with either the IDMS communications block (operating mode 
of BATCH or BATCH-AUTOSTATUS) or the IDMS-DC communications block (operating 

mode of IDMS-DC or DC-BATCH). 
 

■ IDMS-DC communications block—The IDMS-DC communications block is used 
when the operating mode is either IDMS-DC or DC-BATCH. 

Each of these blocks is discussed in detail  below. 

Note: For more information about operating modes and protocols, see 

Precompiler-Directive Statements (see page 67). 
 



Communications Blocks 

 

34  DML Reference Guide for COBOL 

 

IDMS Communications Block 

The IDMS communications block is used when the operating mode is either BATCH or 
BATCH-AUTOSTATUS; it serves as an interface between the database management 
system (DBMS) and the application program. Whenever a run unit issues a call to the 

DBMS for a database operation, the DBMS returns information about the outcome of 
the requested service to the application program's IDMS communications block. 

 

The data description (identified as SUBSCHEMA-CTRL) of the IDMS communications 
block is copied from the data dictionary into the WORKING-STORAGE SECTION or 
LINKAGE SECTION of the program. When you submit the program to the precompiler, 

the IDMS communications block is copied automatically unless an IDMS-RECORDS 
MANUAL statement is included in the ENVIRONMENT DIVISION. In that case, the 
program can explicitly call in the data description by using a COPY IDMS 
SUBSCHEMA-CTRL statement. 

 

Note: For more information about the IDMS-RECORDS MANUAL and the COPY IDMS 

statements, see Precompiler-Directive Statements (see page 67). 

You should examine the ERROR-STATUS field of the IDMS communications block after 
every call  to the DBMS. Depending on the value contained in this field, you should 
perform the IDMS-STATUS routine (see IDMS-STATUS Routine (see page 60) later in this 

chapter). For example, if the ERROR-STATUS field contains the value 0307 
(DB-END-OF-SET) while walking a set, you should perform end-of-set processing; 
otherwise, IDMS-STATUS should be performed. 

 

The following figure show the layout of the 16-byte IDMS communications block. Each 
field is described separately following the figure. 

 



Communications Blocks 

 

Chapter 4: Communications Blocks and Error Detection  35  

 

                  ┌────────────────────────────────────────┐ 
                  │ 16-CHARACTER IDMS COMMUNICATIONS BLOCK │ 
                  └────────────────────────────────────────┘ 
 
                                              Length       
                 Field           Data Type   (bytes)      Initial Value 
  ┌──────────┐ 
 *│ 1      8 │   PROGRAM-NAME    Alphanumeric  8           Program Name 
  ├────────┬─┘ 
  │ 9  12  │     ERROR-STATUS    Alphanumeric  4          '1400' 
  ├────────┤ 
  │ 13  16 │     DBKEY           Binary        4(Fullword) 0000 
  ├────────┴───┐ 
  │ 17      32 │ RECORD-NAME     Alphanumeric  16          Spaces 
  ├────────────┤ 
  │ 33      48 │ AREA-NAME       Alphanumeric  16          Spaces 
  ├────────────┤ 
  │ 49      64 │ ERROR-SET       Alphanumeric  16          Spaces 
  ├────────────┤ 
  │ 65      80 │ ERROR-RECORD    Alphanumeric  16          Spaces 
  ├────────────┤ 
  │ 81      96 │ ERROR-AREA      Alphanumeric  16          Spaces 
  ├─────────┬──┘ 
**│ 97  100 │    PAGE-INFO       Binary        4(Fullword) 0000 
  └─────────┘ 
  ┌──────────┐ 
  │ 97   196 │   IDBMSCOM-AREA   Alphanumeric  100         Low Values 
  ├──────────┤ 
  │ 197  200 │   DIRECT-DBKEY    Binary        4(Fullword) 0000 
  └──────────┘ 
  ┌─────────┐ 
  │ 201 207 │    DATABASE-STATUS Alphanumeric  7           Spaces 
  ├─────┬───┘ 
  │ 208 │        FILLER          ...           1           ... 
  ├─────┴───┐ 
  │ 209 212 │    RECORD-OCCUR    Binary        4(Fullword) 0000 
  ├─────────┤ 
  │ 213 216 │    DML-SEQUENCE    Binary        4(Fullword) 0000 
  └─────────┘ 
 
    * word aligned 
   ** PAGE-INFO-GROUP overlays bytes 97 and 98 and PAGE-INFO-DBK-FORMAT 
     overlays bytes 99 and 100. Both of these fields are binary datatype, 
     each with a length of two bytes. Suggested initial values for 
     both are 00. Together these two fields represent PAGE-INFO. 

 
 

The IDMS DB communications block contains the following fields that describe program 

status information: 

 

Field name Description 

PROGRAM-NAME The name of the program being executed, as defined in the 
program's IDENTIFICATION DIVISION. 

This field is initialized automatically at the beginning of program 
execution if the program contains a COPY IDMS 

SUBSCHEMA-BINDS statement in its PROCEDURE DIVISION. 
Otherwise, it must be initialized by the programmer. 



Communications Blocks 

 

36  DML Reference Guide for COBOL 

 

Field name Description 

ERROR-STATUS An alphanumeric value indicating the outcome of the last DML 

statement executed. 

The ERROR-STATUS field must be initialized to 1400 by the 
program. The ERROR-STATUS field is updated by the DBMS after 

(attempted) performance of a requested database service and 
before control is returned to the program. 

A program that consists of more than one run unit must 
reinitialize the ERROR-STATUS field to 1400 after finishing one 

run unit and before binding the next. 

DBKEY The database key of the last record accessed by the run unit. For 
example, after successful execution of a FIND command, DBKEY is 
updated with the database key of the located record. 

DBKEY is not changed if the call  to the DBMS results in a nonzero 
status condition. 

RECORD-NAME The name of the last record accessed successfully by the run unit. 

This field is left-justified and padded with spaces on the right. 

AREA-NAME The name of the last area accessed successfully by the run unit. 

This field is left-justified and padded with spaces on the right. 

ERROR-SET The name of the set involved in the last operation to produce a 

nonzero status code. 

This field is left-justified and padded with spaces on the right. 

ERROR-RECORD The name of the record involved in the last operation to produce 

a nonzero status code. 

This field is left-justified and padded with spaces on the right. 

ERROR-AREA The name of the area involved in the last operation to produce a 
nonzero status code. 

This field is left-justified and padded with spaces on the right. 



Communications Blocks 

 

Chapter 4: Communications Blocks and Error Detection  37  

 

Field name Description 

PAGE-INFO Two binary halfwords that represent the page information 

associated with the last record accessed by the run unit. 
PAGE-INFO is not changed if the call  to the DBMS results in a 
non-zero status. The first halfword (PAGE-INFO-GROUP) 

represents the page group number. The second halfword 
(PAGE-INFO-DBK-FORMAT) represents the db-key radix. 

The db-key radix portion of the page information can be used in 
interpreting a db-key for display purposes and in formatting a 

db-key from page and line numbers. The db-key radix represents 
the number of bits within a db-key value that are reserved for the 
line number of a record. By default, this value is 8, meaning that 
up to 255 records can be stored on a si ngle page of the area. 

Given a db-key, you can separate its associated page number by 
dividing the db-key by 2 raised to the power of the db-key radix. 
For example, if the db-key radix is 4, you would divide the db-key 

value by 2**4. The resulting value is  the page number of the 
db-key. To separate the line number, you would multiply the 
page number by 2 raised to the power of the db-key radix and 
subtract this value from the db-key value. The result would be the 

line number of the db-key. The following two formulas can be 
used to calculate the page and line numbers from a db-key value: 

Page-number = db-key value / 

 (2 ** db-key radix) 

Line-number = db-key value - 

 (page-number * 

 ( 2 ** db-key radix)) 

IDBMSCOM-AREA Used internally by the DBMS for specification of runtime function 
information. 

DIRECT-DBKEY Either a user-specified db-key value or a null db-key value of -1. 

This field is used for storing a record with a location mode of 
DIRECT. It must be initialized by the user; it is not updated by the 
DBMS. 

DATABASE-STATUS Reserved for use by the DBMS. 

FILLER Used to ensure fullword alignment. 

RECORD-OCCUR A record occurrence sequence identifier used internally by the 
DBMS. 

DML-SEQUENCE The source level sequence number generated by the precompiler. 

This field is updated before each call  to the DBMS if DEBUG is 
specified in the program's ENVIRONMENT DIVISION; it is not used 
by the runtime system. 



Communications Blocks 

 

38  DML Reference Guide for COBOL 

 

Native VSAM users: The DIRECT-DBKEY field can be used only when storing a record in a 
native VSAM relative record data set (RRDS) or when storing records with DIRECT 

location mode. You must initialize DIRECT-DBKEY to the relative record number of the 
record being stored. 

 
 
 

After a call  has been made to the DBMS, one or more of the fields described above may 
have been updated, depending on the DML statement issued and if the statement was 

executed successfully. The following figure il lustrates the IDMS communications block 
fields updated by successful and unsuccessful calls to the DBMS; only those fields 
accessed by the runtime system are shown. Fields used internally by the DBMS are not 

shown. Blank fields are not updated by DML statements. 
 



Communications Blocks 

 

Chapter 4: Communications Blocks and Error Detection  39  

 

                           ┌───────────────────┐┌───────────────────────┐ 
                           │     SUCCESSFUL    ││        UNSUCCESSFUL   │ 
                           ├─┬─┬─┬─┬─┬─┬─┬─┬─┬─┤├─┬─────┬─┬─┬─┬─┬─┬─┬─┬─┤ 
                           │ │ │ │ │ │ │ │ │ │ ││ │     │ │ │ │ │ │ │ │ │ 
                           │P│E│D│R│A│E│E│E│P│D││P│  E  │D│R│A│E│E│E│P│D│ 
                           │R│R│B│E│R│R│R│R│A│I││R│  R  │B│E│R│R│R│R│A│I│ 
                           │O│R│K│C│E│R│R│R│G│R││O│  R  │K│C│E│R│R│R│G│R│ 
                           │G│O│E│O│A│O│O│O│E│E││G│  O  │E│O│A│O│O│O│E│E│ 
                           │R│R│Y│R│-│R│R│R│-│C││R│  R  │Y│R│-│R│R│R│-│C│ 
                           │A│-│ │D│N│-│R│-│I│T││A│  -  │ │D│N│-│-│-│I│T│ 
                           │M│S│ │-│A│S│-│A│N│-││M│  S  │ │-│A│S│R│A│N│-│ 
                           │-│T│ │N│M│E│R│R│F│D││-│  T  │ │N│M│E│E│R│F│D│ 
                           │N│A│ │A│E│T│E│E│O│B││N│  A  │ │A│E│T│C│E│O│B│ 
                           │A│T│ │M│ │ │C│A│ │K││A│  T  │ │M│ │ │O│A│ │K│ 
                           │M│U│ │E│ │ │O│ │ │E││M│  U  │ │E│ │ │R│ │ │E│ 
                           │E│S│ │ │ │ │R│ │ │Y││E│  S  │ │ │ │ │D│ │ │Y│ 
                           │ │ │ │ │ │ │D│ │ │ ││ │     │ │ │ │ │ │ │ │ │ 
                           │ │ │ │ │ │ │ │ │ │ ││ │     │ │ │ │ │ │ │ │ │ 
                           │ │ │ │ │ │ │ │ │ │ ││ │     │ │ │ │ │ │ │ │ │ 
┌──────────────────────────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┤├─┴─────┴─┴─┴─┴─┴─┴─┴─┴─┤ 
│Controlstatements                             ││                       │ 
├──────────────────────────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┤├─┬─────┬─┬─┬─┬─┬─┬─┬─┬─┤ 
│BINDRUN-UNIT              │ │O│ │ │ │ │ │ │ │ ││ │14nn │ │ │ │ │ │ │ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│BINDRECORD                │ │O│ │ │ │ │ │ │ │ ││ │14nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│BINDPROCEDURE             │ │O│ │ │ │ │ │ │ │ ││ │14nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│READY                     │ │O│ │ │ │ │ │ │ │ ││ │09nn │ │ │ │C│C│C│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│FINISH                    │ │O│N│C│ │C│C│C│ │ ││ │01nn │ │ │ │C│C│C│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│COMMIT(ALL)               │ │O│N│C│ │C│C│C│ │ ││ │18nn │ │ │ │C│C│C│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│ROLLBAK(CONTINUE)         │ │O│N│C│ │C│C│C│ │ ││ │19nn │ │ │ │C│C│C│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│KEEP(EXCLUSIVE)           │ │O│Y│Y│Y│C│C│C│Y│ ││ │06nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│IFSET                     │ │*│Y│Y│Y│C│C│C│Y│ ││ │16nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│IFNOTSET                  │ │*│Y│Y│Y│C│C│C│Y│ ││ │16nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┤├─┴─────┴─┴─┴─┴─┴─┴─┴─┴─┤ 
│Retrievalstatements                           ││                       │ 
├──────────────────────────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┤├─┬─────┬─┬─┬─┬─┬─┬─┬─┬─┤ 
│FIND/OBTAINRECORD         │ │O│Y│Y│Y│C│C│C│Y│ ││ │03nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│GETRECORD                 │ │O│Y│Y│Y│C│C│C│Y│ ││ │05nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│RETURNRECORD              │ │O│Y│Y│Y│C│C│C│Y│ ││ │17nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┤├─┴─────┴─┴─┴─┴─┴─┴─┴─┴─┤ 
│Modificationstatements                        ││                       │ 
├──────────────────────────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┤├─┬─────┬─┬─┬─┬─┬─┬─┬─┬─┤ 
│STORERECORD               │ │O│Y│Y│Y│C│C│C│Y│ ││ │12nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│CONNECTRECORD             │ │O│Y│Y│Y│C│C│C│Y│ ││ │07nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│MODIFYRECORD              │ │O│Y│Y│Y│C│C│C│Y│ ││ │08nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│DISCONNECTRECORD          │ │O│Y│Y│Y│C│C│C│Y│ ││ │11nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│ERASERECORD               │ │O│N│Y│Y│C│C│C│ │ ││ │02nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┤├─┴─────┴─┴─┴─┴─┴─┴─┴─┴─┤ 
│Acceptstatements                              ││                       │ 
├──────────────────────────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┤├─┬─────┬─┬─┬─┬─┬─┬─┬─┬─┤ 
│ACCEPTDBKEYOFCURRENCY     │ │O│ │ │ │C│C│C│ │ ││ │15nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│ACCEPTDBKEYOFN/P/O        │ │O│ │ │ │C│C│C│ │ ││ │15nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│ACCEPTIDMSSTATISTICS      │ │O│ │ │ │C│C│C│ │ ││ │15nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│ACCEPTBINDRECORD          │ │O│ │ │ │C│C│C│ │ ││ │15nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 
│ACCEPTPROCEDURE           │ │O│ │ │ │C│C│C│ │ ││ │82nn │ │ │ │Y│Y│Y│ │ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┼─┤ 



Communications Blocks 

 

40  DML Reference Guide for COBOL 

 

│ACCEPTpage-info-location  │ │O│ │ │ │C│C│C│ │ ││ │15nn │ │ │ │Y│Y│Y│ │ │ 
└──────────────────────────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴┴─┴─────┴─┴─┴─┴─┴─┴─┴─┴─┘ 

 

┌────────────────────────────────────────────┐┌─────────────────────┐ 
│Acceptstatements                            ││                     │ 
├──────────────────────────┬─┬─┬─┬─┬─┬─┬─┬─┬─┤├─┬─────┬─┬─┬─┬─┬─┬─┬─┤ 
│ACCEPTFROMCURRENCY        │ │O│ │ │ │C│C│C│ ││ │15nn │ │ │ │Y│Y│Y│ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┤ 
│ACCEPTFROMN/P/OCURRENCY   │ │O│ │ │ │C│C│C│ ││ │15nn │ │ │ │Y│Y│Y│ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┤ 
│ACCEPTFROMIDMS-STATISTICS │ │O│ │ │ │C│C│C│ ││ │15nn │ │ │ │Y│Y│Y│ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┤ 
│ACCEPTFROMBIND            │ │O│ │ │ │C│C│C│ ││ │15nn │ │ │ │Y│Y│Y│ │ 
├──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤├─┼─────┼─┼─┼─┼─┼─┼─┼─┤ 
│ACCEPTFROMPROCEDURE       │ │O│ │ │ │C│C│C│ ││ │15nn │ │ │ │Y│Y│Y│ │ 
└──────────────────────────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴┴─┴─────┴─┴─┴─┴─┴─┴─┴─┘ 

 

┌────────────────────────────────────────────────────────┐ 
│┌──────────────────────────────────────────────────────┐│ 
││                                                      ││ 
││*Iftrue,fieldissettozonedecimalzeroes(0000)           ││ 
││Iffalse,fieldissetto1601                              ││ 
││                                                      ││ 
││OFieldissettozonedecimalzeroes                        ││ 
││                                                      ││ 
││YFieldisupdated                                       ││ 
││                                                      ││ 
││CFieldisclearedtospaces                               ││ 
││                                                      ││ 
││NFieldissettonulldb-keyvalue(-1)                      ││ 
││                                                      ││ 
││nnSpecificminorerrorcode                              ││ 
││                                                      ││ 
│└──────────────────────────────────────────────────────┘│ 
└────────────────────────────────────────────────────────┘ 

 

LRC Block 

The logical-record request control (LRC) block is used when the subschema usage mode 
is LR or MIXED. The LRC block, which is used in conjunction with the IDMS or IDMS-DC 
communications block, provides an interface between LRF and the application program. 

It passes information about a logical-record request to LRF and returns path status 
information about the processing of the request to the program. 

 

The data description (identified as SUBSCHEMA-LR-CTRL) of the LRC block is copied from 
the data dictionary into the WORKING-STORAGE SECTION or LINKAGE SECTION of the 
program. When the program is submitted to the precompiler, the LRC block and the 

IDMS or IDMS-DC communications block are copied automatically, unless the 
IDMS-RECORDS MANUAL statement is included in the ENVIRONMENT DIVISION. In that 
case, both descriptions can be called in explicitly by the program by using a COPY IDMS 

SUBSCHEMA-LR-CTRL statement 

For more information about the IDMS-RECORDS MANUAL and the COPY IDMS 
statements, see Precompiler-Directive Statements (see page 67). 

 



Communications Blocks 

 

Chapter 4: Communications Blocks and Error Detection  41  

 

You should examine the LR-STATUS field of the LRC block for all  possible statuses after 
every call  to LRF. If the value returned is LR-ERROR, you should then examine the 

ERROR-STATUS field of the IDMS or IDMS-DC communications block. 

The following figure shows the layout of the LRC block. Each field is described 
separately, following the figure. 

 

Logical-Record Request Control Block 

                      ┌───────────┐ 
                      │ LRC BLOCK │ 
                      └───────────┘ 
                                                    Length     Suggested 
                         Field        Data Type    (bytes)     Initial Value 
    ┌─────┐ 
    │1  2 │              LRC-LRPXELNG Binary        2 (Halfword)  00 
    ├─────┤ 
    │3  4 │              LRC-MAXVXP   Binary        2 (Halfword)  00 
    ├─────┴┐ 
    │5   8 │             LRIDENT      Alphanumeric  4       'LRC' 
    ├──────┴──┐ 
    │9     16 │          LRVERB       Alphanumeric  8       Spaces 
    ├─────────┴──┐ 
    │17       32 │       LRNAME       Alphanumeric  16       Spaces 
    ├────────────┤ 
    │33       48 │       LR-STATUS    Alphanumeric  16       Spaces 
    ├────────────┤ 
    │49       64 │       FILLER       ...           16       ... 
    ├──┬───┬─────┴──────┐ 
    │65(variable-length)│PXE          Mixed         ...      ... 
    └──┴───┴────────────┘ 
    * word aligned 

 

The LRC block contains the following fields: 

 

Field name Position Description 

LRC-LRPXELNG 1-2 

 

Specifies the length of the LRC block. 

LRC-MAXVXP 3-4 Specifies the length of the work area 
required to evaluate the WHERE clause. 

LRIDENT 5-8 The constant 'LRC' followed by a space. 

LRVERB 9-16 The verb passed to LRF. 

LRNAME 17-32 The name of the logical record being 
accessed. 



Communications Blocks 

 

42  DML Reference Guide for COBOL 

 

Field name Position Description 

LR-STATUS 33-48 The path status of a logical -record request. 

Path statuses are 1- to 16-character 
strings; they can be either standard or 
defined in the subschema by the DBA. LRF 

provides three standard path statuses: 
LR-FOUND, LR-NOT-FOUND, and 
LR-ERROR. 

Note: For more information about path 

statuses, see the Logical-Record Clauses 
(see page 327). 

FILLER 49-64 Used internally by LRF. 

PXE 65-end The variable-length expansion of the 

WHERE clause. From 0 to 512 1-byte 
elements. 

The 512-byte l imit can be raised or 

lowered by using the SIZE IS parameter of 
the COPY IDMS SUBSCHEMA-LR-CTRL 
statement. 

Note: For more information about the SIZE 

IS parameter and the COPY IDMS 
statement, see Precompiler-Directive 
Statements (see page 67). 

IDMS-DC Communications Block 

The IDMS DC communications block replaces the IDMS communications block when the 
operating mode is either IDMS-DC or DC-BATCH. At run time, the IDMS-DC 

communications block is used to pass information about the outcome of requested data 
communications and database services to an application program. 

 

The data description (identified as SUBSCHEMA-CTRL) of the IDMS-DC communications 
block is copied from the data dictionary into the WORKING-STORAGE SECTION or 
LINKAGE SECTION of the program. When the program is submitted to the precompiler, 

the IDMS-DC communications block is copied automatically unless the IDMS-RECORDS 
MANUAL statement is included in the ENVIRONMENT DIVISION. In that case, the 
program can explicitly call in the data description by using a COPY IDMS 

SUBSCHEMA-CTRL statement (for more information on the IDMS-RECORDS MANUAL 
and the COPY IDMS statements, see Precompiler-Directive Statements (see page 67)). 

 



Communications Blocks 

 

Chapter 4: Communications Blocks and Error Detection  43  

 

The following figure shows the layout of the IDMS-DC communications block. Each field 
is described separately below. 

                   ┌──────────────────────────────┐ 
                   │ IDMS-DC COMMUNICATIONS BLOCK │ 
                   └──────────────────────────────┘ 
 
                   Field               Data Type        (bytes)     Initial Value 
  ┌────────┐ 
 *│1     8 │       PROGRAM-NAME        Alphanumeric     8           Program Name 
  ├──────┬─┘ 
  │9  12 │         ERROR-STATUS        Alphanumeric     4          '1400' 
  ├──────┤ 
  │13  16│         DBKEY               Binary           4(Fullword) 0000 
  ├──────┴───┐ 
  │17     32 │     RECORD-NAME         Alphanumeric     16          Spaces 
  ├──────────┤ 
  │33     48 │     AREA-NAME           Alphanumeric     16          Spaces 
  ├──────────┤ 
  │49     64 │     ERROR-SET           Alphanumeric     16          Spaces 
  ├──────────┤ 
  │65     80 │     ERROR-RECORD        Alphanumeric     16          Spaces 
  ├──────────┤ 
  │81     96 │     ERROR-AREA          Alphanumeric     16          Spaces 
  ├──────────┘ 
**│ 97  100 │      PAGE-INFO           Binary           4(Fullword) 0000 
  └─────────┘ 

 

  ┌────┬────┬────┐ 
  │ 97   ... 196 │ IDBMSCOM-AREA       Alphanumeric     100         Low Values 
  ├────┴───┬┴────┘ 
  │197 200 │       DIRECT-DBKEY        Binary           4(Fullword) 0000 
  ┌────┬────┬────┐ 
  │ 201  ... 300 │ DCBMSCOM-AREA       Alphanumeric     100         Low Values 
  ├────┴───┬┴────┘ 
  │301 304 │       SSC-ERRSTAT-SAVE    Alphanumeric     4           Spaces 
  ├────────┤ 
  │305 308 │       SSC-DMLSEQ-SAVE     Binary           4(Fullword) 0000 
  ├────────┤ 
  │309 312 │       DML-SEQUENCE        Binary           4(Fullword) 0000 
  ├────────┤ 
  │313 316 │       RECORD-OCCUR        Binary           4(Fullword) 0000 
  ├────────┤ 
  │317 320 │       SUBSCHEMA-CTRL-END  Alphanumeric     4           Spaces 
  └────────┘ 
 * word aligned 
 ** PAGE-INFO-GROUP overlays bytes 97 and 98 and PAGE-INFO-DBK-FORMAT 
  overlays bytes 99 and 100. Both of these fields are binary datatype each 
  having a length of two bytes. Suggested initial values for 
  both are 00. Together these two fields represent PAGE-INFO.  

 



Communications Blocks 

 

44  DML Reference Guide for COBOL 

 

Field Descriptions 

The IDMS-DC communications block contains the following fields that describe program 
status information: 

 

Field name Position Description 

PROGRAM-NAME 1-8 The name of the program being 
executed, as defined in the program's 
IDENTIFICATION DIVISION. 

This field is initialized automatically at 
the beginning of program execution if 
the program contains a COPY IDMS 

SUBSCHEMA-BINDS statement in its 
PROCEDURE DIVISION. Otherwise, it 
must be initialized by the programmer. 

ERROR-STATUS 9-12 A value indicating the outcome of the 

last DML statement executed. The 
ERROR-STATUS field must be initialized 
to 1400 by the program. 

This field is updated by CA IDMS after 

(attempted) performance of a 
requested database or data 
communications service and before 

control is returned to the program. 

The ERROR-STATUS field and its use 
are described in greater detail  under 
ERROR-STATUS Field and Codes (see 

page 48). 

A program that consists of more than 
one run unit must reinitialize the 

ERROR-STATUS field to 1400 after 
finishing one run unit and before 
binding the next. 

DBKEY 13-16 The database key of the last record 

accessed by the run unit. For example, 
after successful execution of a FIND 
command, DBKEY is updated with the 

database key of the located record. 
DBKEY is not changed if the database 
call  results in a nonzero status 
condition. 



Communications Blocks 

 

Chapter 4: Communications Blocks and Error Detection  45  

 

Field name Position Description 

RECORD-NAME 17-32 The name of the last record accessed 

successfully by the run unit. 

This field is left-justified and padded 
with spaces on the right. 

AREA-NAME 33-48 The name of the last area accessed 
successfully by the run unit. 

This field is left-justified and padded 
with spaces on the right. 

ERROR-SET 49-64 The name of the set involved in the 
last operation to produce a nonzero 
status code. 

This field is left-justified and padded 

with spaces on the right. 

ERROR-RECORD 65-80 The name of the record involved in the 
last operation to produce a nonzero 

status code. 

This field is left-justified and padded 
with spaces on the right. 

ERROR-AREA 81-96 The name of the area involved in the 

last operation to produce a nonzero 
status code. 

This field is left-justified and padded 

with spaces on the right. 



Communications Blocks 

 

46  DML Reference Guide for COBOL 

 

Field name Position Description 

PAGE-INFO 97-100 Two binary halfwords that represent 

the page information associated with 
the last record accessed by the run 
unit. PAGE-INFO is not changed if the 

call  to the DBMS results in a non-zero 
status. The first halfword 
(PAGE-INFO-GROUP) represents the 
page group number. The second 

halfword (PAGE-INFO-DBK-FORMAT) 
represents the db-key radix. 

The db-key radix portion of the page 
information can be used in 

interpreting a db-key for display 
purposes and in formatting a db-key 
from page and line numbers. The 

db-key radix represents the number of 
bits within a db-key value that are 
reserved for the line number of a 
record. By default, this value is 8, 

meaning that up to 255 records can be 
stored on a single page of the area. 
Given a db-key, you can separate its 

associated page number by dividing 
the db-key by 2 raised to the power of 
the db-key radix. For example, if the 
db-key radix is 4, you would divide the 

db-key value by 2**4. The resulting 
value is the page number of the 
db-key. To separate the line number, 

you would multiply the page number 
by 2 raised to the power of the db-key 
radix and subtract this value from the 
db-key value. The result would be the 

line number of the db-key. The 
following two formulas can be used to 
calculate the page and line numbers 
from a db-key value: 

Page-number = db-key value / 

 (2 ** db-key radix) 

Line-number = db-key value - 

 (page-number * 

 ( 2 ** db-key radix)) 



Communications Blocks 

 

Chapter 4: Communications Blocks and Error Detection  47  

 

Field name Position Description 

IDBMSCOM-AREA 97-196 Used internally by CA IDMS for 

specification of DBMS runtime 
function information. 

DIRECT-DBKEY 197-200 Either a user-specified db-key value or 

a null db-key value of -1. 

This field is used for storing a record 
with a location mode of DIRECT. It 
must be initialized by the user; it is not 

updated by CA IDMS. 

Native VSAM users: The 
DIRECT-DBKEY field can be used when 
storing a record in a native VSAM 

relative record data set (RRDS). You 
must initialize DIRECT-DBKEY to the 
relative record number of the record 

being stored. 

DCBMSCOM-AREA 201-300 Used internally by CA IDMS for 
specification of runtime function 
information. 

SSC-ERRSTAT-SAVE 301-304 Used by the IDMS-STATUS routine to 
save a nonzero ERROR-STATUS in the 
event of an abend. 

SSC-DMLSEQ-SAVE 305-308 Used by the IDMS-STATUS routine to 
save the value of DML-SEQUENCE in 
the event of an abend. 

DML-SEQUENCE 309-312 The source level sequence number 

generated by the precompiler. 

This field is updated before each call  to 
CA IDMS if DEBUG is specified in the 

program's ENVIRONMENT DIVISION; it 
is not used by the runtime system. 

RECORD-OCCUR 313-316 A record occurrence sequence 
identifier used internally by CA IDMS. 

SUBSCHEMA-CTRL-END 317-320 Marks the end of the IDMS-DC 
communications block. 



ERROR-STATUS Field and Codes 

 

48  DML Reference Guide for COBOL 

 

ERROR-STATUS Field and Codes 

You can use the ERROR-STATUS field of the IDMS or IDMS-DC communications block to 
determine if a DML request was processed successfully. The DBMS or the DC system 
returns a value to the ERROR-STATUS field indicating the result of each DML request. 
For more information on using the ERROR-STATUS field, see Error Detection (see 

page 59). 

LRF users: You should check the LR-STATUS field of the LRC block before checking the 
ERROR-STATUS field. 

 

Major and Minor Codes 

The ERROR-STATUS field is a four-byte zoned decimal field. The first two bytes represent 

a major code; the second two bytes represent a minor code. Major codes identify the 
function performed; minor codes describe the status of that function. 

 

Value of Codes 

A value of 0000 indicates successful completion of the requested function. A value other 
than 0000 indicates completion of the function in a manner that may or may not be in 

error, depending on your expectations. For example, 0326 (DB-REC-NOT-FOUND) should 
be anticipated after FIND CALC retrieval; this allows you to trap the condition and 
continue processing. 

 

DB status codes have a major code in the range 01 to 20. They occur during database 
access in batch or online processing. DC status codes have a major code in the range 30 

to 51. They occur in online or DC-BATCH processing. Status codes with a major code of 
00 apply to all  DML functions. DB status codes  and DC status codes are discussed 
separately below. 

 

DB Status Codes 

The following tables l ist DB major and minor codes and their meanings. 

 
 

Major DB Status Codes 

 

Major 
Code 

Database Function 

00 Any DML statement 

01 FINISH 



DB Status Codes 

 

Chapter 4: Communications Blocks and Error Detection  49  

 

Major 
Code 

Database Function 

02 ERASE 

03 FIND/OBTAIN 

05 GET 

06 KEEP 

07 CONNECT 

08 MODIFY 

09 READY 

11 DISCONNECT 

12 STORE 

14 BIND 

15 ACCEPT 

16 IF 

17 RETURN 

18 COMMIT 

19 ROLLBACK 

20 LRF requests 

Minor DB Status Codes 

 

Minor 
Code 

Database Function Status 

00 Combined with a major code of 00, this code indicates successful completion 
of the DML operation. Combined with a nonzero major code, this code 
indicates that the DML operation was not completed successfully due to 
central version causes, such as time-outs and program checks. 

01 An area has not been readied. When this code is combined with a major 
code of 16, an IF operation has resulted in a valid false condition. 

02 Either the db-key used with a FIND/OBTAIN DB-KEY statement or the direct 

db-key suggested for a STORE is not wi thin the page range for the specified 
record name. 



DB Status Codes 

 

50  DML Reference Guide for COBOL 

 

Minor 
Code 

Database Function Status 

03 Invalid currency for the named record, set, or area. This can only occur when 
a run unit is sharing a transaction with other database sessions. The 03 
minor status is returned if the run unit tries to retrieve or update a record 

using a currency that has been invalidated because of changes made by 
another database session that is sharing the same transaction. 

04 The occurrence count of a variably occurring element has been specified as 
either less than zero or greater than the maximum number of occurrences 

defined in the control element. 

05 The specified DML function would have violated a duplicates -not-allowed 
option for a CALC, sorted, or index set. 

06 No currency has been established for the named record, set, or area. 

07 The end of a set, area, or index has been reached or the set is empty. 

08 The specified record, set, procedure, or LR verb is not in the subschema or 
the specified record is not a member of the set. 

09 The area has been readied with an incorrect usage mode. 

10 An existing access restriction or subschema usage prohibits execution of the 
specified DML function. For LRF users, the subschema in use allows access to 
database records only. Combined with a major code of 00, this code means 

the program has attempted to access a database record, but the subschema 
in use allows access to logical records only. 

11 The record cannot be stored in the specified area due to insufficient space. 

12 There is no db-key for the record to be stored. This is a system internal error 
and should be reported. 

13 A current record of run unit either has not been established or has been 
nullified by a previous ERASE statement. 

14 The CONNECT statement cannot be executed because the requested record 
has been defined as a mandatory automatic member of the set. 

15 The DISCONNECT statement cannot be executed because the requested 

record has been defined as a mandatory member of the set. 

16 The record cannot be connected to a set of which it is already a member. 

17 The transaction manager encountered an error. 

18 The record has not been bound. 

19 The run unit's transaction was forced to back out. 

20 The current record is not the same type as the specified record name. 

21 Not all  areas being used have been readied in the correct usage mode. 



DB Status Codes 

 

Chapter 4: Communications Blocks and Error Detection  51  

 

Minor 
Code 

Database Function Status 

22 The record name specified is not currently a member of the set name 
specified. 

23 The area name specified is either not in the subschema or not an extent 

area; or the record name specified has not been defined within the area 
name specified. 

25 No currency has been established for the named set. 

26 No duplicates exist for the named record or the record occurrences cannot 

be found. 

28 The run unit has attempted to ready an area that has been readied 
previously. 

29 The run unit has attempted to place a lock on a record that is locked already 

by another run unit. A deadlock results. Unless the run unit issued either a 
FIND/OBTAIN KEEP EXCLUSIVE or a KEEP EXCLUSIVE, the run unit is aborted. 

30 An attempt has been made to erase the owner record of a nonempty set. 

31 The retrieval statement format conflicts with the record's location mode. 

32 An attempt to retrieve a CALC/DUPLICATE record was unsuccessful; the 
value of the CALC field in variable storage is not equal to the value of the 
CALC control element in the current record of run unit. 

33 At least one set in which the record participates has not been included in the 
subschema. 

40 The WHERE clause in an OBTAIN NEXT logical-record request is inconsistent 

with a previous OBTAIN FIRST or OBTAIN NEXT command for the same 
record. Previously specified criteria, such as reference to a key field, have 
been changed. A path status of LR-ERROR is returned to the LRC block. 

41 The subschema contains no path that matches the WHERE clause in a 

logical-record request. A path status of LR-ERROR is returned to the LRC 
block. 

42 An ON clause included in the path by the DBA specified return of the 

LR-ERROR path status to the LRC block; an error has occurred while 
processing the LRF request. 

43 A program check has been recognized during evaluation of a WHERE clause; 
the program check indicates that either a WHERE clause has specified 

comparison of a packed decimal field to an unpacked nonnumeric data field, 
or data in variable storage or a database record does not conform to its 
description. A path status of LR-ERROR is returned to the LRC block unless 
the DBA has included an ON clause to override this action in the path. 



DB Status Codes 

 

52  DML Reference Guide for COBOL 

 

Minor 
Code 

Database Function Status 

44 The WHERE clause in a logical-record request does not supply a key element 
(sort key, CALC key, or db-key) expected by the path. A path status of 
LR-ERROR is returned to the LRC block. 

45 During evaluation of a WHERE clause, a program check has been recognized 
because a subscript value is neither greater than 0 nor less than its 
maximum allowed value plus 1. A path status of LR-ERROR is returned to the 
LRC block unless the DBA has included an ON clause to override this action 

in the path. 

46 A program check has revealed an arithmetic exception (for example: 
overflow, underflow, significance, divide) during evaluation of a WHERE 
clause. A path status of LR-ERROR is returned to the LRC block unless the 

DBA has included an ON clause to override this action in the path. 

53 The subschema definition of an indexed set does not match the indexed 
set's physical structure in the database. 

54 Either the prefix length of an SR51 record is less than zero or the data length 
is less than or equal to zero. 

55 An invalid length has been defined for a variable-length record. 

56 An insufficient amount of memory to accommodate the CA IDMS 

compression/decompression routines is available. 

57 A retrieval-only run unit has detected an inconsistency in an index that 
should cause an 1143 abend, but optional APAR bit 216 has been turned on. 

58 An attempt was made to rollback updates in a local mode program. Updates 
made to an area during a local  mode program's execution cannot be 
automatically rolled out. The area must be manually recovered. 

60 A record occurrence type is inconsistent with the set named in the 

ERROR-SET field in the IDMS communications block. This code usually 
indicates a broken chain. 

61 No record can be found for an internal db-key. This code usually indicates a 

broken chain. 

62 A system-generated db-key points to a record occurrence, but no record 
with that db-key can be found. This code usually indicates a broken chain. 

63 The DBMS cannot interpret the DML function to be performed. When 

combined with a major code of 00, this code means invalid function 
parameters have been passed on the call  to the DBMS. For LRF users, a 
WHERE clause includes a keyword that is longer than the 32 characters 
allowed. 

64 The record cannot be found; the CALC control element has not been defined 
properly in the subschema. 



DB Status Codes 

 

Chapter 4: Communications Blocks and Error Detection  53  

 

Minor 
Code 

Database Function Status 

65 The database page read was not the page requested. 

66 The area specified is not available in the reques ted usage mode. 

67 The subschema invoked does not match the subschema object tables. 

68 The CICS interface was not started. 

69 A BIND RUN-UNIT may not have been issued; the CV may be inactive or not 
accepting new run units; or the connection with the CV may have been 
broken due to time out or other factors. When combined with a major code 

of 00, this code means the program has been disconnected from the DBMS. 

70 The database will  not ready properly; a JCL error is the probable cause. 

71 The page range or page group for the area being readied or the page 
requested cannot be found in the DMCL. 

72 There is insufficient memory to dynamically load a subschema or database 
procedure. 

73 A central version run unit will  exceed the MAXERUS value specified at 

system generation. 

74 The dynamic load of a module has failed. If operating under the central 
version, a subschema or database procedure module either was not found in 
the data dictionary or the load (core image) l ibrary or, if loaded, will  exceed 

the number of subschema and database procedures provided for at system 
generation. 

75 A read error has occurred. 

76 A write error has occurred. 

77 The run unit has not been bound or has been bound twice. When combined 
with a major code of 00, this code means either the program is no longer 
signed on to the subschema or the variable subschema tables have been 

overwritten. 

78 An area wait deadlock has occurred. 

79 The run unit has requested more db-key locks than are available to the 

system. 

80 The target node is either not active or has been disabled. 

81 The converted subschema requires specified database name to be in the 
DBNAME table. 

82 The subschema must be named in the DBNAME table. 

83 An error has occurred in accessing native VSAM data sets. 



DC Status Codes 

 

54  DML Reference Guide for COBOL 

 

Minor 
Code 

Database Function Status 

87 The owner and member records for a set to be updated are not in the same 
page group or do not have the same db-key radix. 

91 The subschema requires a DBNAME to do the bind run unit. 

92 No subschema areas map to DMCL. 

93 A subschema area symbolic was not found in DMCL. 

94 The specified dbname is neither a dbname defined in the DBNAME table, 
nor a SEGMENT defined in the DMCL. 

95 The specified subschema failed DBTABLE mapping using the specified 
dbname. 

Note: For a complete description of DB runtime status codes, see the chapter "CA IDMS 
Status Codes" in the Messages and Codes Guide. 

 

DC Status Codes 

The following tables l ist the DC major and minor codes and their meanings. 
 

Major DC Status Codes 

 

Major 
Code 

Function 

00 Any DML statement 

30 TRANSFER CONTROL 

31 WAIT/POST 

32 GET STORAGE/FREE STORAGE 

33 SET ABEND EXIT/ABEND CODE 

34 LOAD/DELETE TABLE 

35 GET TIME/SET TIMER 

36 WRITE LOG 

37 ATTACH/CHANGE PRIORITY 

38 BIND/ACCEPT/END TRANSACTION STATISTICS 

39 ENQUEUE/DEQUEUE 



DC Status Codes 

 

Chapter 4: Communications Blocks and Error Detection  55  

 

Major 
Code 

Function 

40 SNAP 

43 PUT/GET/DELETE SCRATCH 

44 PUT/GET/DELETE QUEUE 

45 BASIC MODE TERMINAL MANAGEMENT 

46 MAPPING MODE TERMINAL MANAGEMENT 

47 LINE MODE TERMINAL MANAGEMENT 

48 ACCEPT/WRITE PRINTER 

49 SEND MESSAGE 

50 COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE JOURNAL 

51 KEEP LONGTERM 

58 SVC SEND/RECEIVE 

Minor DC Status Codes 

 

Minor 
Code 

Function Status 

00 Combined with a major code of 00, this code indicates either successful 
completion of the DML function or that all  tested resources have been 

enqueued. 

01 The requested operation cannot be performed immediately; waiting will  
cause a deadlock. 

02 Either there is insufficient storage in the storage pool or the storage 
required for control blocks is unavailable. 

03 The scratch area ID cannot be found. 

04 Either the queue ID (header) cannot be found or a paging session was in 

progress when a second STARTPAGE command was received (that is, an 
implied ENDPAGE was processed before this STARTPAGE was executed 
successfully). 

05 The specified scratch record ID or queue record cannot be found. 

06 No resource control element (RCE) exists for the queue record; currency has 
not been established. 

07 Either an I/O error has occurred or the queue upper l imit has been reached. 



DC Status Codes 

 

56  DML Reference Guide for COBOL 

 

Minor 
Code 

Function Status 

08 The requested resource is not available. 

09 The requested resource is available. 

10 New storage has been assigned. 

11 A maximum task condition exists. 

12 The named task code is invalid. 

13 The named resource cannot be found. 

14 The requested module is defined as nonconcurrent and is currently in use. 

15 The named module has been overlaid and cannot be reloaded immediately. 

16 The specified interval control element (ICE) address cannot be found. 

17 The record has been replaced. 

18 No printer terminals have been defined for the current DC system. 

19 The return area is too small; data has been truncated. 

20 An I/O, program-not-found, or potential -deadlock status condition exists. 

21 The message destination is undefined, the long term ID cannot be found, or 

a KEEP LONGTERM request was issued by a nonterminal task. 

22 A record already exists for the scratch area specified. 

23 No storage or resource control element (RCE) could be allocated for the 
reply area. 

24 The maximum number of outstanding replies has been exceeded. 

25 An attention interrupt has been received. 

26 There is a logical error in the output data stream. 

27 A permanent I/O error has occurred. 

28 The terminal dial -up line is disconnected. 

29 An invalid parameter has been passed in the list set up by the DML 
processor. 

30 The named function has not yet been implemented. 

31 An invalid parameter has been passed; the TRB, LRB, or MRB contains an 
invalid field; or the request is invalid because of a possible logic error in the 

application program. In a DC-BATCH environment, a possible cause is that 
the record length specified by the command exceeds the maximum length 
based on the packet size. 

32 The derived length of the specified variable storage is negative or zero. 



DC Status Codes 

 

Chapter 4: Communications Blocks and Error Detection  57  

 

Minor 
Code 

Function Status 

33 Either the named table or the named map cannot be found in the data 
dictionary load area. 

34 The named variable-storage area must be an 01-level entry in the LINKAGE 

SECTION. 

35 A GET STORAGE request is invalid because the LINKAGE SECTION variable 
has already been allocated. 

36 The program either was not defined during system generation or i s marked 

out-of-service. 

37 A GET STORAGE operand is invalid because the specified variable storage 
area is in the WORKING-STORAGE SECTION instead of the LINKAGE SECTION. 

38 Either no GET STORAGE operand was specified or the specified LINKAGE 

SECTION variable has not been allocated. 

39 The terminal device being used is out of service. 

40 NOIO has been specified but the datastream cannot be found. 

41 An IF operation resulted in a valid true condition. 

42 The named map does not support the terminal device in use. 

43 A line I/O session has been cancelled by the terminal operator. 

44 The referenced field does not participate in the specified map; a possible 

cause is an invalid subscript. 

45 An invalid terminal type is associated with the issuing task. 

46 A terminal I/O error has occurred. 

47 The named area has not been readied. 

48 The run unit has not been bound. 

49 NOWAIT has been specified but WAIT is required. 

50 Statistics are not being kept. 

51 A lock manager error occurred during the processing of a KEEP LONGTERM 
request 

52 The specified table is missing or invalid. 

53 An error occurred from a user-written edit routine. 

54 Either there is invalid internal data or a data conversion error has occurred. 

55 The user-written edit routine cannot be found. 

56 No DFLDS have been defined for the map. 



DC Status Codes 

 

58  DML Reference Guide for COBOL 

 

Minor 
Code 

Function Status 

57 The ID cannot be found, is not a long-term permanent ID, or is being used by 
another run unit. 

58 Either the LRID cannot be found, the maximum number of concurrent task 

threads was exceeded, or an attempt was made to rollback database 
changes in local mode. 

59 An error occurred in transferring the KEEP LONGTERM request to IDMSKEEP 

60 The requested KEEP LONGTERM lock id was already in use with a different 

page group 

63 Invalid function parameters have been passed on the call  to the DBMS. 

64 No detail  exists currently for update; no action has been taken. 
Alternatively, the requested node for a header or detail  is either not present 

or not updated. 

68 There are no more updated details to MAP IN or the amount of storage 
defined for pageable maps at sysgen is insufficient. In the latter case, 

subsequent MAP OUT DETAIL statements are i gnored. 

72 No detail  occurrence, footer, or header fields exist to be mapped out by a 
MAP OUT RESUME command, or the scratch record that contains the 
requested detail  could not be accessed. The latter case is a mapping internal 

error and should be reported. 

76 The first screen page has been transmitted to the terminal. 

77 Either the program is no longer signed on to the subschema or the variable 

subschema tables have been overwritten. 

80 The target node is either not active or has been disabled. 

97 An error was encountered processing a syncpoint request; check the log for 
details. 

98 An unsupported COBOL compiler option (for example, DEBUG) has been 
specified for an online program or a program running in a batch region has 
issued a DML verb that is only valid when running online under CA 

IDMS/DC/UCF. 

99 An unexpected internal return code has been received; the terminal device 
is out of service. 

Note: For a complete description of DC runtime status codes, see the chapter "CA IDMS 

Status Codes" in the Messages and Codes Guide. 
 



ERROR-STATUS Condition Names 

 

Chapter 4: Communications Blocks and Error Detection  59  

 

ERROR-STATUS Condition Names 
 

Code  Condition name  Explanation 

0000   DB-STATUS-OK No error 

0307   DB-END-OF-SET End of set, area, or SPF index 

0326   DB-REC-NOT-FOUND No record found 

0001 to 

9999  

ANY-ERROR-STATUS Any nonzero status 

0000 to 

9999  

ANY-STATUS Any status 

3101 3201 

3401 3901  

DC-DEADLOCK Waiting will  cause a deadlock 

3202 3402   DC-NO-STORAGE Insufficient space available 

4303   DC-AREA-ID-UNK ID cannot be found 

4404   DC-QUEUE-ID-UNK Queue header cannot be found 

4305 4405   DC-REC-NOT-FOUND Record cannot be found 

3908   DC-RESOURCE-NOT-AVAI
L 

Resource not available 

3909   DC-RESOURCE-AVAIL Resource is available 

3210   DC-NEW-STORAGE New space allocated 

3711  DC-MAX-TASKS Maximum attached tasks  

4317   DC-REC-REPLACED Record has been replaced 

4319 4419 

4519 4719 

DC-TRUNCATED-DATA  Return area too small; data has 

been truncated 

4525 4625  DC-ATTN-INT Attention interrupt received 

4743 DC-OPER-CANCEL Session cancelled 

Error Detection 

The value returned to the ERROR-STATUS field must be checked after each DML 
request. When using the Logical Record Facil ity, you should check the LR-STATUS field of 
the LRC block before checking the ERROR-STATUS field. 

 



Error Detection 

 

60  DML Reference Guide for COBOL 

 

CA IDMS provides three aids for error detection: the IDMS-STATUS routine, the 
AUTOSTATUS protocols, and the USER-DEFINED protocols. Each of these aids is 

described below. 
 

IDMS-STATUS Routine 

IDMS-STATUS is an error-checking routine included in the dictionary. You can copy 
IDMS-STATUS into your program by coding the following statement at the end of the 

PROCEDURE DIVISION: 

COPY IDMS IDMS-STATUS. 
 

For more information on the use of the COPY IDMS IDMS-STATUS statement, refer to 
Precompiler-Directive Statements (see page 67). 

 

IDMS-STATUS Routine Used Under Batch 
 

The following code is copied into batch programs by the COPY IDMS IDMS-STATUS 
statement: 

****************************************************************** 

 IDMS-STATUS                                              SECTION. 

****************************************************************** 

 IDMS-STATUS-PARAGRAPH. 

         IF DB-STATUS-OK GO TO ISABEX. 

         PERFORM IDMS-ABORT. 
 

         DISPLAY '**************************' 

                 ' ABORTING - ' PROGRAM-NAME 

                 ', '           ERROR-STATUS 

                 ', '           ERROR-RECORD 

                 ' **** RECOVER IDMS ****' 

                 UPON CONSOLE. 
 

         DISPLAY 'PROGRAM NAME ------ ' PROGRAM-NAME. 

         DISPLAY 'ERROR STATUS ------ ' ERROR-STATUS. 

         DISPLAY 'ERROR RECORD ------ ' ERROR-RECORD. 

         DISPLAY 'ERROR SET --------- ' ERROR-SET. 

         DISPLAY 'ERROR AREA -------- ' ERROR-AREA. 

         DISPLAY 'LAST GOOD RECORD -- ' RECORD-NAME. 

         DISPLAY 'LAST GOOD AREA ---- ' AREA-NAME. 
 

         MOVE 39  TO SSC-IN01-REQ-CODE. 

         MOVE 0   TO SSC-IN01-REQ-RETURN. 

         MOVE ' ' TO SSC-STATUS-LABEL. 

         PERFORM IDMS-STATUS-LOOP 

                 UNTIL SSC-IN01-REQ-RETURN > 0. 

         ROLLBACK. 

         CALL 'ABORT'. 

         GO TO ISABEX. 

 IDMS-STATUS-LOOP. 
 



Error Detection 

 

Chapter 4: Communications Blocks and Error Detection  61  

 

         CALL 'IDMSIN1' USING IDBMSCOM(41) 

                              SSC-IN01-REQ-WK 

                              SUBSCHEMA-CTRL 

                              IDBMSCOM(1) 

                              DML-SEQUENCE 

                              SSC-STATUS-LINE. 

         IF SSC-IN01-REQ-RETURN GREATER THAN 4 

             DISPLAY 'DML SEQUENCE ------ ' DML-SEQUENCE 

         ELSE 

             DISPLAY SSC-STATUS-LABEL '--- ' SSC-STATUS-VALUE. 

 ISABEX. EXIT. 
 

IDMS-STATUS Routine Used Under a DC/UCF System  

The following code is copied into DC/UCF programs by the COPY IDMS IDMS-STATUS 
statement: 

****************************************************************** 

 IDMS-STATUS                       SECTION. 

********************* IDMS-STATUS FOR IDMS/DC ******************** 

     IF DB-STATUS-OK GO TO ISABEX. 

     PERFORM IDMS-ABORT. 

     MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE 

     MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE 

     SNAP FROM SUBSCHEMA-CTRL TO SUBSCHEMA-CTRL-END 

          ON ANY-STATUS 

                 NEXT SENTENCE. 

     ABEND CODE SSC-ERRSTAT-SAVE 

          ON ANY-STATUS 

                 NEXT SENTENCE. 

 ISABEX. EXIT. 
 

IDMS-STATUS abends your program if the ERROR-STATUS field contains a nonzero value. 

Because some values do not indicate processing errors, your program should check 
ERROR-STATUS for nonzero values before call ing IDMS-STATUS. 

 

Pageable Map ERROR-STATUS Condition Names 

The following table l ists the condition names that are automatically included when using 
pageable maps. 

 

Note: You cannot make checks for these codes within the IDMS-STATUSroutine. 

 

Code Condition name Explanation 

4604 DC-SECOND-STARTPAGE Second consecutive 
STARTPAGE 

4664 DC-DETAIL-NOT-FOUND No current detail  



Error Detection 

 

62  DML Reference Guide for COBOL 

 

Code Condition name Explanation 

4668  DC-NO-MORE-UPD-DETAILS All  details mapped in 

4668 DC-MAX-SPACE-REACHED Pageable map space exceeded 

4672  DC-NO-DETAILS Nothing to map out 

4676 DC-FIRST-PAGE-SENT First page transmitted 

4680  DC-PAGE-READY A complete map page was built 

When IDMS-STATUS executes, it exits immediately if the error-status check indicates 
successful completion of the function (ERROR-STATUS of 0000). 

 

Effects of Nonzero Status on IDMS-STATUS 

This section describes the effects of nonzero status conditions on IDMS-STATUS 
execution. The effects depend on the operating mode (BATCH or IDMS-DC) of the 
application program. 

Effect When the Operating Mode Is BATCH 
 

When the operating mode is BATCH, a nonzero error status causes IDMS-STATUS to: 

■ Print status information on the unsuccessful function 

■ Issue a rollback 

■ Abend the program 
 

The status information retrieved from the IDMS-DB communications block includes 
program name, error status, error record, error set, error area, record name (the last 

record successfully accessed), area name (the last area successfully accessed), page 
number and line index of the dbkey (the last record accessed by the run unit), dbkey in 
hexadecimal format, page group and database-key format (associated with the last 
record accessed by the run unit), and the DML sequence number. 

 

Effect When the Operating Mode Is IDMS-DC 

When the operating mode is IDMS-DC, a nonzero error status causes IDMS-STATUS to: 

■ Snap the IDMS-DC communications block (SUBSCHEMA-CTRL) 

■ Abend the program 
 

The status information retrieved from the IDMS-DC communications block includes 
program name, error status, error record, error set, error area, record name (the last 

record successfully accessed), area name (the last area successfully accessed), and the 
DML sequence number. 

 



Error Detection 

 

Chapter 4: Communications Blocks and Error Detection  63  

 

IDMS-STATUS includes a call to perform a routine named IDMS-ABORT, which you can 
use for additional error processing. CA IDMS supplies only the PERFORM statement; if 

the IDMS-ABORT routine is to be used, you must supply the routine itself by coding the 
section name and exit as shown below: 

IDMS-ABORT SECTION. 

IDMS-ABORT-EXIT. 

  EXIT. 
 

For example, you can use the IDMS-ABORT SECTION to display information regarding 
the LRC block as shown below: 

IDMS-ABORT SECTION. 

    IF LR-STATUS = 'LR-ERROR' 

      DISPLAY 'LOGICAL RECORD ERROR' 

          'LR NAME -- ' LR-NAME 

          'LR VERB -- ' LR-VERB. 

IDMS-ABORT-EXIT. 

    EXIT. 
 

A routine can be coded directly into the program or copied in as a module, according to 
the requirements of the program. However, if no abort routine is to be performed, the 

reference to IDMS-ABORT must be deleted from IDMS-STATUS by the DBA. 
 

AUTOSTATUS Protocols 

The precompiler automatically generates a PERFORM IDMS-STATUS statement after 
each DML command (except IF) if the protocol in use includes AUTOSTATUS. For each 

standard protocol (for example BATCH or CICS) provided at installation time, an 
AUTOSTATUS protocol  (for example BATCH-AUTOSTATUS or CICS-AUTOSTATUS) is also 
provided. (The IDMS DC and DC-BATCH protocols already include AUTOSTATUS.) The 
DBA determines which protocol should be used; you must specify this protocol in the 

ENVIRONMENT DIVISION by means of the MODE IS statement (for more information on 
protocols, see Precompiler-Directive Statements (see page 67)). 

 

When AUTOSTATUS is in use, the PERFORM IDMS-STATUS statement can stil l  be 
preceded by a check for a nonzero return code by including an ON clause at the end of 
the DML command. If the DBMS returns the specified status code to the IDMS 

communications block, the imperative statement included in the ON clause is executed; 
if the status code tested for is not returned, IDMS-STATUS is performed. 

 

Any DML command can include an ON clause; only one ON clause is allowed per 
command. 

 
 

Syntax 

►►─── ON condition-name imperative-statement . ───────────────────────────────►◄ 
  



Error Detection 

 

64  DML Reference Guide for COBOL 

 

Parameters 

ON parameter 

Tests for a nonzero status returned as a result of a DML command. 

condition-name 

A preassigned nonzero status condition name. Valid condition names include 
DB-STATUS-OK, DB-END-OF-SET, DB-REC-NOT-FOUND, ANY-ERROR-STATUS, and 
any condition names defined by the DBA. 

imperative-statement 

Specifies the program action to be taken if the nonzero status identified by 
condition-name results from the DML command. 

 

The example below il lustrates use of the ON clause. A DML source program might 
contain the following statements: 

0800-OBTAIN-REC. 

  OBTAIN CALC OFFICE ON DB-REC-NOT-FOUND GO TO 0900-NO-REC. 

         . 

         . 

         . 

0900-NO-REC. 

  STORE OFFICE. 
 

The precompiler converts the DML statements to comments, translates the ON clause 
into an IF statement, and generates the following expanded COBOL source code: 

 0800-OBTAIN-REC. 

*  OBTAIN CALC OFFICE ON DB-REC-NOT-FOUND 

         MOVE 0001 TO DML-SEQUENCE 

         CALL 'IDMS' USING SUBSCHEMA-CTRL 

                  IDBMSCOM (32) 

                  SR450 

                  IDBMSCOM (43) 

         IF NOT DB-REC-NOT-FOUND PERFORM IDMS-STATUS; 

         ELSE 

                      GO TO 0900-NO-REC. 

          . 

          . 

          . 

 
 



Error Detection 

 

Chapter 4: Communications Blocks and Error Detection  65  

 

 0900-NO-REC. 

*  STORE OFFICE. 

         MOVE 0002 TO DML-SEQUENCE 

         CALL 'IDMS' USING SUBSCHEMA-CTRL 

                  IDBMSCOM (42) 

                  SR450 

          PERFORM IDMS-STATUS. 

For further details on the expansion of calls to CA IDMS, see CA IDMS Call Formats (see 
page 453). 

 

USER-DEFINED Protocols 

To establish a user-defined protocol, follow these steps: 

1. Establish a uniquely named user-defined MODE. 

2. Identify an existing CA supplied protocol that meets the program's requirements, 

and use this protocol, with modifications as needed, to create a new protocol with 
the same name as the user-defined MODE. 

 

3. Modify the appropriate SUBSCHEMA-CTRL record definition to include the 
user-defined MODE. 

4. Specify the user-defined MODE in the PROTOCOL parameter of the program. 
 

For example, to create a version of the DC-BATCH protocol that does not include 

AUTOSTATUS, follow these steps: 

1. Define the user-defined MODE: 

ADD ATTRIBUTE DC-BATCH-NOAUTO WITHIN CLASS MODE. 

2. Define the user-defined protocol based on the CA supplied DC-BATCH protocol, 
editing the DC-BATCH protocol to remove the @AUTOSTATUS references: 

ADD MODULE NAME DC-BATCH-NOAUTO VERSION 1 LANGUAGE IS COBOL 

    MODE IS DC-BATCH-NOAUTO 

    MODULE SOURCE FOLLOWS 

         . 

         . 

         . 

    MSEND. 
 



Error Detection 

 

66  DML Reference Guide for COBOL 

 

3. Modify the SUBSCHEMA-CTRL record for MODE IS DC-BATCH to include the 
user-defined MODE: 

MODIFY RECORD SUBSCHEMA-CTRL VERSION 1 LANGUAGE COBOL 

    MODE IS DC-BATCH-NOAUTO. 

4. Specify the user-defined MODE in the program: 

PROTOCOL MODE IS DC-BATCH-NOAUTO 

 



 

Chapter 5: Precompiler-Directive Statements  67  

 

Chapter 5: Precompiler-Directive 
Statements 
 

Compiler-directive statements instruct the precompiler to copy source code from the 
data dictionary into the COBOL application program. These statements do not produce 
any executable commands. Compiler-directive statements are coded beginning in 

columns 8-11 of the IDENTIFICATION and ENVIRONMENT DIVISIONs, and in columns 
8-72 of the DATA and PROCEDURE DIVISIONs, as follows: 

■ IDENTIFICATION DIVISION—The PROGRAM-ID statement specifies a program name 
and version number. 

■ ENVIRONMENT DIVISION—The IDMS-CONTROL SECTION establishes the operating 
mode, debug sequencing, and variable storage allocation. 

■ DATA DIVISION—The following sections are included in the DATA DIVISION: 

– FILE SECTION—COPY IDMS FILE statements copy descriptions of non-IDMS fi les 
from the data dictionary. 

– SCHEMA SECTION—The DB statement identifies the subschema view to be 
used by the program. 

– MAP SECTION—These statements notify the precompiler that mapping mode 
terminal I/O is being used, define the program's maps, and specify the size of 
map field l ists. 

– WORKING-STORAGE and LINKAGE SECTIONs—PROCEDURE DIVISION—COPY 

IDMS statements copy source data descriptions or non-IDMS data description 
code for records from the data dictionary. 

■ COPY IDMS statements copy source data for BIND statements or program source 

modules defined in the data dictionary. 
 
 

All compiler-directive statements are optional except the SCHEMA SECTION and DB 
statement. If a program accesses the database, it must include a SCHEMA SECTION that 

contains a DB statement identifying the subschema. All  other compiler -directive 
statements can be omitted; the precompiler will  generate the required source code 
components automatically. 

 

If the program does not access the database (that is, does not invoke a subschema and 
does not issue any DML statements), the SCHEMA SECTION and DB statement can be 

omitted as well. 
 



IDENTIFICATION DIVISION 

 

68  DML Reference Guide for COBOL 

 

The COPY IDMS and other compiler-directive statements are explained separately for 
each of the following divisions. References to the IDMS communications block apply 

equally to the IDMS-DC communications block. 

This section contains the following topics: 

IDENTIFICATION DIVISION (see page 68) 

ENVIRONMENT DIVISION (see page 69) 
DATA DIVISION (see page 72) 
PROCEDURE DIVISION (see page 85) 

 

IDENTIFICATION DIVISION 

The PROGRAM-ID statement in the IDENTIFICATION DIVISION identifies your program to 

the precompiler. 
 
 

Syntax 

►►─── IDENTIFICATION DIVISION. ───────────────────────────────────────────────► 
 
 ►─── PROGRAM-ID.program-name ─┬──────────────────────────┬───────────────────►◄ 
                               └─ VERSION version-number ─┘ 

 
 

Parameters 

PROGRAM ID 

Specifies the program. 

program-name 

The name of the program. If the program has been previously defined in the data 
dictionary through IDD facil ities, program-name must match the name assigned to 
the program when it was defined in order for the precompiler to recognize it as the 

same program. 
 

VERSION 

Qualifies program-name with a version number (for example, for purposes of 
testing or development). 

version-number 

An integer in the range 1 through 9999. By default, if you do not specify a number, 
the default is either the highest number defined in the data dictionary for the 
named program or 1 if the program does not already exist in the data dictionary. 

 



ENVIRONMENT DIVISION 

 

Chapter 5: Precompiler-Directive Statements  69  

 

ENVIRONMENT DIVISION 

An IDMS-CONTROL SECTION is required in the ENVIRONMENT DIVISION to establish the 
following: 

■ Operating mode—The environment in which the program will  execute, and the 
form and content of call ing sequences produced by the precompiler  

■ Debug sequencing—Whether each PROCEDURE DIVISION DML command will  be 
numbered for identification during error reporting 

■ Variable storage allocation—How source data description code for the IDMS 
communications block and other DATA DIVISION components will  be inserted in the 

program 
 
 

Syntax 

►►─── ENVIRONMENT DIVISION. ──────────────────────────────────────────────────►◄ 
 
 ►─┬──────────────────────────────────────────────────────────────────────────►─ 
   └─ IDMS-CONTROL SECTION. ────────────────────────────────────────────────── 
 
─►──────────────────────────────────────────────────────────────┬─────────────► 
  ─── PROTOCOL. ─┬────────────────────────────────────────────┬─┘ 
                 └─ MODE is ─┬─ BATCH ◄ ────────┬─┬─────────┬─┘ 
                             ├─ IDMS-DC ────────┤ └─ DEBUG ─┘ 
                             ├─ DC-BATCH ───────┤ 
                             └─ user-mode-name ─┘ 

 

 ►─┬──────────────────────────────────────┬───────────────────────────────────► 
   └─ SUBSCHEMA-NAMES LENGTH IS ─┬─ 16 ◄─┬┘ 
                                 └─ 18 ──┘ 
 
 ►─┬──────────────────────────────────────────────────────────────────────────►─ 
   └─ IDMS-RECORDS ─────────────────────────────────────────────────────────── 
 
─►──────────────────────────────────────────────────────────────────────────┬─►◄ 
 ┬─ WITHIN WORKING-STORAGE section ◄─┬┬───────────────────────────────┬── . ┘ 
 ├─ WITHIN LINKAGE section ──────────┘└─ levels INCREMENTED by count ─┤ 
 └─ MANUAL ───────────────────────────────────────────────────────────┘ 

 

Parameters 

PROTOCOL 

Specifies how CA IDMS CALL statements are generated and whether the debugging 
sequence option is included. 

MODE IS 

Identifies the operating mode used by the precompiler to generate call  statements 
for the program's PROCEDURE DIVISION DML statements. 

 

BATCH 

Specifies to execute the program in batch mode. 

This is the default. 

The IDMS communications block is copied into variable storage; standard CALL 
statements (CALL 'IDMS') are generated in the PROCEDURE DIVISION. 

 



ENVIRONMENT DIVISION 

 

70  DML Reference Guide for COBOL 

 

IDMS DC 

Specifies to execute the program in IDMS-DC mode. 

The IDMS DC communications block is copied into variable storage; CA IDMS 
CALL statements (CALL 'IDMSCOBI') are generated in the PROCEDURE DIVISION 
for DC requests. 

 

DC-BATCH 

Specifies to execute the program in DC-BATCH mode. The IDMS-DC 

communications block is copied into variable storage; DC-BATCH CALL statements 
(CALL 'IDMSDCCI') are generated in the PROCEDURE DIVISION for DC requests. 

Specify MODE IS DC-BATCH to access DC queues and printers from batch 

applications running under the central version. 
 

user-mode-name 

Specifies to execute the program in a special environment (for example, under a 
teleprocessing monitor or in a user-defined operating mode) as determined by the 
DBA. The appropriate communications block is copied into variable storage; 

mode-specific CALL statements (for example, in CICS: CALL 'IDMSINC1' USING 
DFHCADS) are generated in the PROCEDURE DIVISION. The following list provides 
the standard operating modes (protocols) available for COBOL programs. 

If user-mode-name specifies an AUTOSTATUS protocol (for example, 

CICS-AUTOSTATUS), the precompiler automatically generates an IDMS-STATUS 
statement after every DML command except IF. When using an AUTOSTATUS 
protocol, be sure to include the COPY IDMS IDMS-STATUS statement in the 

PROCEDURE DIVISION. For details on programming under an AUTOSTATUS 
protocol, see Communications Blocks and Error Detection (see page 33). 

 

DEBUG 

Specifies that a unique DML sequence number is placed in the IDMS 
communications block for each DML statement. These numbers appear in columns 

81-88 of the COBOL compiler output l isting in the form DMLCnnnn. The precompiler 
generates numbers to identify the sequence in which DML statements appear in the 
program. Depending on the error routine defined by the DBA, you can use the DML 
sequence number to help debug your program. 

If DEBUG is not specified, the precompiler does not associate sequence numbers 
with source statements. 

 



ENVIRONMENT DIVISION 

 

Chapter 5: Precompiler-Directive Statements  71  

 

SUBSCHEMA-NAMES LENGTH IS 

Specifies whether to use a 16-byte or 18-byte communications block. 

For information about 16-byte communications blocks, see Communications Blocks 
and Error Detection (see page 33). 

For information about 18-byte communications blocks, see 18-Byte 

Communications Blocks  (see page 517). 

IDMS-RECORDS 

Specifies whether source CA IDMS data description code is inserted into the DATA 
DIVISION automatically. 

 

WITHIN WORKING-STORAGE section 

Instructs the processor to insert automatically the copied DATA DIVISION 
components as the last entries in the WORKING-STORAGE SECTION of the source 
program. 

This is the default. 
 

WITHIN LINKAGE section 

Instructs the processor to automatically insert the copied DATA DIVISION 
components as the last entries in the LINKAGE SECTION of the source program. Any 
VALUE clauses present in source code will  be dropped automatically. 

levels INCREMENTED by 

Varies the level numbers for inserted descriptions from those stored in the data 
dictionary. If you specify a level number, the first level of code will  be inserted to 
the level specified by count; all  other levels will  be adjusted accordingly. If you do 

not specify a level, the descriptions inserted will  begin at 01 and have the same 
level numbers as originally specified in the data dictionary. 

 

count 

An integer in the range 1 through 48. 

Specifies the value by which the DATA DIVISION level numbers (including the 01 

level number) of all  stored elements are to be incremented. 

Note: Using the LEVELS INCREMENTED BY clause may cause unpredictable results if 
record fields have been defined with a SYNCHRONIZED clause. Such fields may 
contain extra bytes (slack bytes) inserted to ensure correct alignment. Because CA 

IDMS does not recognize slack bytes as functional, it may misinterpret data fields 
that contain them. Therefore, you should ensure that all  fields and records are 
properly structured. 

 



DATA DIVISION 

 

72  DML Reference Guide for COBOL 

 

MANUAL 

Indicates that CA IDMS-related source data description code (for example, 

SUBSCHEMA-CTRL or SUBSCHEMA-NAMES) will  be inserted explicitly into the 
source program by means of DATA DIVISION COPY IDMS statements. If MANUAL is 
not specified, the required DATA DIVISION code is inserted automatically by the 

precompiler. 
 

Standard Modes Available for COBOL Programs 

 

BATCH DC-BATCH TASKMASTER 

BATCH-AUTOSTATUS IDMS-DC TASKMASTER-AUTO 

CICS INTERCOMM UTM 

CICS-AUTOSTATUS INTERCOMM-AUTO UTM-AUTOSTATUS 

CICS-EXEC INTERCOMM-REENT WESTI 

CICS-EXEC-AUTO ICOMM-REENT-AUTO WESTI-AUTOSTATUS 

CICS-STANDARD SHADOW WESTI-REENT 

CICS-STD-AUTO SHAD-AUTOSTATUS WESTI-REENT-AUTO 

The following example il lustrates the statements used to code the IDMS-CONTROL 

SECTION of a program running under DC with DEBUG sequencing and automatic 
insertion of IDMS-RECORDS in WORKING-STORAGE SECTION: 

 

ENVIRONMENT DIVISION. 

 IDMS-CONTROL SECTION. 

 PROTOCOL. 

 MODE IS IDMS-DC 

  DEBUG 

  IDMS-RECORDS WITHIN WORKING-STORAGE SECTION. 
 

DATA DIVISION 

Compiler-directive statements can be in the following sections of the DATA DIVISION: 

■ FILE SECTION—COPY IDMS statements copy descripti ons of non-IDMS fi les from the 
data dictionary 

■ SCHEMA SECTION—A DB statement identifies the subschema view to be used by 
the program 

 

■ MAP SECTION—These statements notify the precompiler that mapping mode 
terminal I/O is being used, define the program's maps, and specify the size of map 
field l ists 

 



DATA DIVISION 

 

Chapter 5: Precompiler-Directive Statements  73  

 

■ WORKING-STORAGE SECTION—COPY IDMS statements copy source data 
description or non-IDMS data description code for records from the data dictionary 

■ LINKAGE SECTION—COPY IDMS statements copy source data description or 
non-IDMS data description code for records from the data dictionary 

 

FILE SECTION 

The FILE SECTION can include one or more COPY IDMS statements to copy non-IDMS fi le 

descriptions from the data dictionary into the program. Each COPY IDMS statement 
generates the fi le definition that includes record size, block size, and recording mode 
from the data dictionary. Additionally, any records defined within the fi le through the 

IDD facil ities are also copied. 
  

Syntax 

►►─── FILE SECTION. ──────────────────────────────────────────────────────────► 
 
 ►─┬─────────────────────────────────────────────────────────────────┬────────►◄ 
   │ ┌─────────────────────────────────────────────────────────────┐ │ 
   └─▼─ COPY IDMS FILE file-name ─┬──────────────────────────┬─ . ─┴─┘ 
                                  └─ VERSION version-number ─┘ 

 
 

Parameters 

COPY IDMS FILE 

Copies the description of a non-IDMS fi le into the DATA DIVISION. 

file-name 

Either the primary name or a synonym for a fi le defined in the data dictionary. 
 

VERSION 

Qualifies file-name with a version number. 

If you do not specify a version number, the default is the highest version number 
defined in the data dictionary for file-name. 

version-number 

An integer in the range 1 through 9999. 
 

SCHEMA SECTION 

For any program that accesses the database, a SCHEMA SECTION is included in the DATA 
DIVISION to identify a subschema view to the precompiler. The subschema named in the 
DB statement of the SCHEMA SECTION determines which record descriptions can be 

copied into the program from the data dictionary. Every DML command issued by the 
program is checked against the record, set, and area access restrictions specified in this 
subschema. 

 
 



DATA DIVISION 

 

74  DML Reference Guide for COBOL 

 

Syntax 

►►─── SCHEMA SECTION. ────────────────────────────────────────────────────────► 
 
 ►─── DB subschema-name WITHIN schema-name ─┬──────────────────────────┬─ . ──►◄ 
                                            └─ VERSION version-number ─┘ 

 
 

Parameters 

DB subschema-name 

Specifies a subschema defined in the data dictionary. If the DBA has chosen to 
preregister valid program names for this subschema in the data dictionary, the 

program named in the IDENTIFICATION DIVISION must be associated with 
subschema-name in the data dictionary. 

WITHIN schema-name 

Specifies the schema under which subschema-name is compiled. 
 

VERSION 

Qualifies schema-name with a version number. 

If you do not specify a version number, the default is the highest version number 
defined in the data dictionary for file-name. 

version-number 

An integer in the range 1 through 9999. 
 

MAP SECTION 

The MAP SECTION notifies the precompiler that mapping mode terminal I/O is being 

used, defines the program's maps, and specifies the size of map field l ists. 
 

Syntax 

►►─── MAP SECTION. ───────────────────────────────────────────────────────────► 
 
 ►─┬─────────────────────────────────────┬────────────────────────────────────► 
   └─ MAX FIELD LIST is field-list-size ─┘ 
 
  ┌────────────────────────────────────────────────────────────────────────── 
 ►─▼─ MAP map-name ─┬──────────────────────────┬──────────────────────────────►─ 
                    └─ VERSION version-number ─┘ 
 
───────────────────────────────────────────────────┐ 
─►─┬─────────────────────────────────────────┬─ . ─┴──────────────────────────►◄ 
   └─ TYPE is ─┬─ STANDARD ◄ ─┬─┬──────────┬─┘ 
               └─ EXTENDED ───┘ └─ PAGING ─┘ 

 



DATA DIVISION 

 

Chapter 5: Precompiler-Directive Statements  75  

 

Parameters 

MAX FIELD LIST is 

Specifies the size of field l ists used in MODIFY MAP and INQUIRE MAP statements. 

field-list-size 

The field l ist size or the size is expressed as a numeric constant. 

The specified size must be at least one greater than the size of the largest field l ist 
used by the program. For example, if the largest map field l ist contains 5 fields, the 
value of field-list-size must be at least 6. 

The MAX FIELD LIST statement must be specified if the program uses a field l ist in a 
MODIFY MAP or INQUIRE MAP request. 

 

MAP 

Defines the map used by the program. This parameter can be repeated as necessary 
to define each map to be used. 

map-name 

The name of a map used by the program. 
 

VERSION 

Qualifies the named map with a version number. 

version-number 

An integer in the range 1 through 9999. 

There is no default for version-number. If your site uses multiple versions, you must 
specify a version number. 

 

TYPE Is 

Specifies whether the map request block (MRB) built for the map is to be standard 

or extended. 

STANDARD 

Specifies that the map has standard 3270-type terminal attributes. 

This is the default. 
 

EXTENDED 

Specifies that the map has extended 3279-type terminal attributes (for example, 
color, blinking fields, reverse video). 

PAGING 

Specifies that the named map is a pageable map. 

Note: For more information about pageable maps, see "MAP OUT" and MAP IN (see 
page 227), or see the CA IDMS Mapping Facility Guide. 

 



DATA DIVISION 

 

76  DML Reference Guide for COBOL 

 

The following example shows the DATA DIVISION statements required to access the 
EMPSS09 subschema and the EMPMAPLR map; the largest map field l ist allowed is 4. 

DATA DIVISION. 

SCHEMA SECTION. 

DB EMPSS09 WITHIN EMPSCHM. 

MAP SECTION. 

MAX FIELD LIST IS 5. 

MAP EMPMAPLR VERSION 1 TYPE IS STANDARD. 
 

WORKING-STORAGE and LINKAGE SECTIONS 

COPY IDMS statements can be coded in the WORKING-STORAGE and LINKAGE 
SECTIONs, allowing you to explicitly copy source code from the data dictionary into the 
program. No COPY IDMS statements are required in the DATA DIVISION unless the 

IDMS-RECORDS MANUAL clause has been specified in the IDMS-CONTROL SECTION of 
the ENVIRONMENT DIVISION. 

 

If the source code to be copied into the LINKAGE SECTION includes VALUE clauses, these 
clauses are not copied. 

WORKING-STORAGE SECTION and LINKAGE SECTION source code requirements differ 

according to the usage mode defined in the program's subschema: DML, LR, or MIXED. 
These usage modes determine whether the program can access database records only, 
logical records only, or both database records and logical records. The program should 

not copy components that conflict with its subschema's usage mode (for ex ample, do 
not copy SUBSCHEMA-LR-CTRL if the subschema's usage mode is DML). 

 

An explanation of each usage mode and the required source code components in the 
program is shown below: 

■ DML allows a program to access database records only and requires the following 

source code components: 

– SUBSCHEMA-CTRL—The IDMS communications block, through which the 
application program and the DBMS communicate. For more information, see 
Chapter 4 (see page 33). 

 

– SUBSCHEMA-NAMES—The name of the program's subschema and the names 

of all  records, sets, and areas to which the program has access through this 
subschema. SUBSCHEMA-NAMES is used by the precompiler to generate 
appropriate CA IDMS CALL statements in the PROCEDURE DIVISION. 

 



DATA DIVISION 

 

Chapter 5: Precompiler-Directive Statements  77  

 

– SUBSCHEMA-RECORDS—The description of all  records to which the subschema 
permits access. 

■ LR allows a program to access logical records only and requires the following source 
code components: 

– SUBSCHEMA-CTRL—The IDMS communications block, through which LRF and 

the DBMS communicate. For more information, see Chapter 4 (see page 33). 
 

– SUBSCHEMA-LR-CTRL—The logical-record request control (LRC) block, through 

which the application program and LRF communicate. For more information, 
see Chapter 4 (see page 33). 

 

– SUBSCHEMA-LR-NAMES—The name of the program's subschema and the 
names of all  database areas that can be accessed through the subschema. 
Logical-record names are not copied into the program; rather, they are moved 

as l iterals into the LRC block when needed to process a logical -record request. 

– SUBSCHEMA-LR-RECORDS—The descriptions of all  logical records contained in 
the subschema. 

 

■ MIXED allows a program to access both database records and logical records; this 

usage mode requires the following source code components: 

– SUBSCHEMA-CTRL 

– SUBSCHEMA-NAMES 
 

– SUBSCHEMA-RECORDS 

– SUBSCHEMA-LR-CTRL 

– SUBSCHEMA-LR-RECORDS 
  

The use of MIXED mode is not recommended for the following reasons: 

■ Issuing both logical-record and database requests requires that the program take 

into account the database currencies maintained in the paths used to service 
logical-record requests. 

 
 

■ Accessing both logical records and database records in the same program can 

diminish the program's independence from the database structure and possibly 
interfere with the execution of paths invoked to provide requested logical-record 
access. 

 

■ Logical-record path processing can interfere with program access to database 
records. You may need to insert a DML statement after a logical -record request to 

reestablish the appropriate currency. 
 

The precompiler inserts the required data descriptions into the program automatically 
unless IDMS RECORDS MANUAL is specified in the IDMS-CONTROL SECTION of the 
ENVIRONMENT DIVISION. If IDMS RECORDS MANUAL is specified, you must explicitly 
copy the required components, as outlined above, by coding COPY IDMS statements in 

the DATA DIVISION. 
 



DATA DIVISION 

 

78  DML Reference Guide for COBOL 

 

UTM modes only: You must include SUBSCHEMA-CTRL and all  subschema records in the 
LINKAGE SECTION. You must include SUBSCHEMA-NAMES in the WORKING-STORAGE 

SECTION. 
 
 

Syntax 

►►─┬─ WORKING STORAGE SECTION. ─┬─────────────────────────────────────────────► 
   └─ LINKAGE SECTION. ─────────┘ 
 
 ►───┬────────────────────────────────────────────────────────────────────────►─ 
     │ ┌────────────────────────────────────────────────────────────────────── 
     └─▼─┬────────────────┬─ COPY-IDMS ─────────────────────────────────────── 
         └─ level-number ─┘ 
─►──────────────────────────────────────────────────────────────────────────┬─►◄ 
 ─────────────────────────────────────────────────────────────────────────┐ │ 
 ─┬─ SUBSCHEMA-DML-LR-DESCRIPTION ──────────────────────────────────┬─ . ─┴─┘ 
  ├─ SUBSCHEMA-DESCRIPTION ─────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-CONTROL ─────────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-CTRL ────────────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-NAMES ───────────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-SSNAME ──────────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-RECNAMES ────────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-SETNAMES ────────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-AREANAMES ───────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-RECORDS ─────────────────────────────────────────────┤ 
  ├─ RECORD rec-name ─┬────────────────────┬┬──────────────────────┬┤ 
  │                   └─ VERSION vers-num ─┘└─ REDEFINES rec-name ─┘│ 
  ├─ TRANSACTION-STATISTICS ────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-LR-DESCRIPTION ──────────────────────────────────────┤ 
  ├─ SUBSCHEMA-LR-CONTROL ──────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-LR-CTRL ─┬──────────────────────────┬────────────────┤ 
  │                     ├─ SIZE IS lrc-block-size ─┤                │ 
  │                     └─ 512 ◄ ──────────────────┘                │ 
  ├─ SUBSCHEMA-LR-NAMES ────────────────────────────────────────────┤ 
  ├─ SUBSCHEMA-LR-RECORDS ──────────────────────────────────────────┤ 
  ├─ LR logical-record-name ─┬─────────────────────────┬────────────┤ 
  │                          └─ REDEFINES record-name ─┘            │ 
  ├─ MAPS ──────────────────────────────────────────────────────────┤ 
  ├─ MAP map-name ──────────────────────────────────────────────────┤ 
  ├─ MAP CONTROLS ──────────────────────────────────────────────────┤ 
  ├─ MAP CONTROL map-name ──────────────────────────────────────────┤ 
  └─ MAP RECORDS ───────────────────────────────────────────────────┘ 

 

Parameters 

level-number 

An integer in the range 01 through 48. 

Instructs the precompiler to copy the descriptions into the program at a level other than 

that originally specified for the description in the data dictionary. If you specify a level 
number, the first level of code will  be copied to the specified level; all  other levels will  
be adjusted accordingly. If you do not specify a level, the descriptions copied will begin 
at 01 and have the same level numbers  as originally specified in the data dictionary. 

 



DATA DIVISION 

 

Chapter 5: Precompiler-Directive Statements  79  

 

Note: Using the level-number clause can cause unpredictable results if record fields have 
been defined with a SYNCHRONIZED clause. Such fields may contain slack bytes, 

inserted to ensure correct alignment. Because CA IDMS does not regard slack bytes as 
functional, it may misrepresent fields that contain such bytes. Therefore, you should 
ensure that all  fields and records are properly structured. 

COPY IDMS 

Requests that the specified source data description code be copied into the DATA 
DIVISION at the location of the COPY IDMS statement. 

 

SUBSCHEMA-DML-LR-DESCRIPTION 

Copies all  components required to access both database and logical records 

(SUBSCHEMA-CTRL, SUBSCHEMA-NAMES, SUBSCHEMA-RECORDS, 
SUBSCHEMA-LR-CTRL, SUBSCHEMA-LR-RECORDS). 
SUBSCHEMA-DML-LR-DESCRIPTION should be specified only when the subschema's 
usage mode is MIXED; do not specify SUBSCHEMA-DML-LR-DESCRIPTION if the 

usage mode is DML or LR. 
 

SUBSCHEMA-DESCRIPTION 

Copies all  components required to access database records (SUBSCHEMA-CTRL, 
SUBSCHEMA-NAMES, and SUBSCHEMA-RECORDS). Do not specify 
SUBSCHEMA-DESCRIPTION if the subschema's usage mode is LR. 

 

SUBSCHEMA-CONTROL 

Copies both the SUBSCHEMA-CTRL and SUBSCHEMA-NAMES components. Do not 
specify SUBSCHEMA-CONTROL if the subschema's usage mode is LR. 

SUBSCHEMA-CTRL 

Copies the IDMS communications block data description; if the operating mode is 

IDMS-DC or DC-BATCH, SUBSCHEMA-CTRL copies the IDMS-DC communications 
block. 

 

SUBSCHEMA-NAMES 

Copies the eight-character l iteral name of the subschema and the literal names of 
all  database records, sets, and areas contained in the subschema. 

SUBSCHEMA-NAMES includes SUBSCHEMA-SSNAME, SUBSCHEMA-RECNAMES, 
SUBSCHEMA-SETNAMES, and SUBSCHEMA-AREANAMES. Do not specify 
SUBSCHEMA-NAMES if the subschema's usage mode is LR. 

 

SUBSCHEMA-SSNAME 

Copies the eight-character l iteral name of the program's subschema. Do not speci fy 
SUBSCHEMA-SSNAME if the subschema's usage mode is LR. 

SUBSCHEMA-RECNAMES 

Copies the literal names of all  database records contained in the subschema. Do not 

specify SUBSCHEMA-RECNAMES if the subschema's usage mode is LR. 
 



DATA DIVISION 

 

80  DML Reference Guide for COBOL 

 

SUBSCHEMA-SETNAMES 

Copies the literal names of all  sets contained in the subschema. Do not specify 

SUBSCHEMA-SETNAMES if the subschema's usage mode is LR. 

SUBSCHEMA-AREANAMES 

Copies the literal names of all  database areas that can be accessed through the 

subschema. Do not specify SUBSCHEMA-AREANAMES if the subschema's usage 
mode is LR. 

 

SUBSCHEMA-RECORDS 

Copies the descriptions of all  records contained in the subschema. COBOL 
synonyms defined for the subschema records in the data dictionary may be copied 

into the program, according to the rules of synonym usage. Do not specify 
SUBSCHEMA-RECORDS if the subschema's usage mode is LR. 

Note: The OCCURS DEPENDING ON clause will  be commented out for all  
schema-owned records. Therefore, although the maximum length of variable 

storage will  be reserved, only the correct amount of data will  be transferred to 
variable storage at run time. 

Since COBOL will  doubleword align an 01 level record, the precompiler adds up to 

seven bytes, if necessary, to make the record length divisible by eight when copying 
in a schema-owned record to an 01 level. 

 

RECORD 

Copies the description of a record defined in the data dictionary. If the subschema's 
usage mode is LR, only copy in IDD work records . 

rec-name 

The name of the record to be copied. Either the primary name or a synonym for a 
record stored in the data dictionary. 

Schema-owned records cannot be copied into non-IDMS programs (that is, 

programs that do not use a subschema and that do not access the database). 
However, a synonym defined for a schema-owned record can be copied into a 
non-IDMS program (use the VERSION clause to identify the synonym). 

IDD records: If an operating mode is associated with record-name in the data 
dictionary, it must agree with the mode in effect for the program (see 
"ENVIRONMENT DIVISION" earlier in this chapter). 

 



DATA DIVISION 

 

Chapter 5: Precompiler-Directive Statements  81  

 

VERSION 

Optionally qualifies IDD records (but not schema -owned records) with a version 

number. 

If you do not specify a version number, the default is the highest version number 
defined in the data dictionary for the language and operating mode under which 

the program is being compiled. 

When copying a record that is schema owned using a synonym name, a version 
clause is needed, even if the synonym is not schema owned. The only time the 
version clause may be left off when copying a record using a synonym name is 

when the record is IDD owned. Once a record becomes schema owned, version 
clauses are needed. 

 

vers-num 

An integer in the range 1 through 9999. 

You cannot specify a version number for a rec-name specified in the subschema 

named in the DB subschema-name statement. The precompiler will  automatically 
copy the correct version into the program. 

 

REDEFINES 

Copies a record description to an area previously defined by another record 
description. Two record descriptions can thus provide alternative definitions of the 

same storage location. 

rec-name 

The name of the record to be redefined. 
 

TRANSACTION-STATISTICS 

Copies the definition of the transaction statistics block (TSB) with a length of 560 

bytes. This block can be used in the ACCEPT TRANSACTION STATISTICS or END 
TRANSACTION STATISTICS DML statements. 

 

SUBSCHEMA-LR-DESCRIPTION 

Copies all  components required to access logical records (SUBSCHEMA-CTRL, 
SUBSCHEMA-LR-CTRL, SUBSCHEMA-LR-NAMES, and SUBSCHEMA-LR-RECORDS). Do 

not include SUBSCHEMA-LR-DESCRIPTION if the subschema's usage mode is DML. 
 

SUBSCHEMA-LR-CONTROL 

Copies the SUBSCHEMA-CTRL, SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-NAMES 
components. Do not include SUBSCHEMA-LR-CONTROL if the subschema's usage 

mode is DML. 

SUBSCHEMA-LR-CTRL 

Copies the LRC block data description. 
 



DATA DIVISION 

 

82  DML Reference Guide for COBOL 

 

SIZE IS 

Specifies the size of that portion of the LRC block that contains information about 

the logical-request request WHERE clause (PXE). 

If included, this parameter should specify a size large enough to accommodate the 
most complex WHERE clause in the program. The default, 512, is large enough to 

include approximately 32 operators, operands, and literals. 

Do not include SUBSCHEMA-LR-CTRL if the subschema's usage mode is DML. 
 

lrc-block-size 

A positive integer in the range 0 through 9999. 

Calculate the size as follows: 

■ Multiply the greatest number of operands and operators that will  be 
included in a single WHERE clause by 16 bytes  

■ Add the number of bytes, rounded up to the nearest multiple of 8, 
associated with the data field for each operand that is a keyword or a 

program variable or logical-record field named in the OF LR clause 
 

■ Add the length, rounded up to the nearest multiple of eight, of each 
operand that is a character l iteral  

■ Add 12 bytes for each operand that is a numeric l iteral  

■ Do not specify a block size if none of the logical -record requests issued by 

the program will  include WHERE clauses. 
 

SUBSCHEMA-LR-NAMES 

Copies the literal name of the program's subschema and the literal names of all  
database areas that can be accessed through the subschema. Logical -record names 
are not copied into the program. Do not include SUBSCHEMA-LR-NAMES if the 

subschema's usage mode is DML. 
 

SUBSCHEMA-LR-RECORDS 

Copies the descriptions of all  logical records defined in the subschema. All  
participating database records become 02-level group fields, permitting the 
program to reference as a group field that portion of a logical record that 

corresponds to a database record. Do not include SUBSCHEMA-LR-RECORDS if the 
subschema's usage mode is DML. 

Note: The OCCURS DEPENDING ON clause will  be commented out for all  

schema-owned records. Therefore, although the maximum length of variable 
storage will  be reserved, only the correct amount of data will  be transferred to 
variable storage at runtime. 

When copying a schema-owned record to a level other than 01, the precompiler 

adds up to seven bytes, if necessary, to make the record length divisible by eight for 
doubleword alignment. 

 



DATA DIVISION 

 

Chapter 5: Precompiler-Directive Statements  83  

 

LR 

Copies the description of an individual logical record contained in the subschema. 

logical-record-name 

The name of the logical record to copy. 
 

REDEFINES 

Copies a redefinition of the data contained in another logical record, a database 
record, or a non-IDMS record, while maintaining the same location in variable 

storage. 

Do not include this statement if the subschema's usage mode is DML. 

record-name 

The name of the record to be redefined. 
 

MAPS 

Copies the map request block (MRB) and map records associated with all  maps 
defined in the MAP SECTION. 

MAP map-name 

Copies the MRB and map records associated with the named map. The map version 
number defaults to the version specified for the map in the MAP SECTION. 

 

MAP-CONTROLS 

Copies the MRBs associated with all  maps specified in the MAP SECTION. 

MAP-CONTROL map-name 

Copies the MRB for the named map. The map version number defaults to the 
version specified for the map in the MAP SECTION. 

 

MAP-RECORDS 

Copies the map records associated with all  maps specified in the MAP SECTION. 
 

Results of COPY IDMS Specifications 

The following figure shows the code copied into the DATA DIVISION as a result of COPY 

IDMS specifications. 
 



DATA DIVISION 

 

84  DML Reference Guide for COBOL 

 

                         ┌──────────────────────────────────────────────┐ 
                         │    Source code components brought in from    │ 
                         │   the data dictionary by the DML Cprocessor  │ 
                         ├──┬──┬──┬──┬──┬──┬──┐┌──┬──┬──┬──┐┌──┬──┬──┬──┤ 
                         │ S│ S│ S│ S│ S│ S│ r││ S│ S│ S│ l││ A│ N│ A│ m│ 
                         │ U│ U│ U│ U│ U│ U│ e││ U│ U│ U│ o││ l│ a│ l│ a│ 
                         │ B│ B│ B│ B│ B│ B│ c││ B│ B│ B│ g││ l│ m│ l│ p│ 
                         │ S│ S│ S│ S│ S│ S│ o││ S│ S│ S│ i││  │ e│  │  │ 
                         │ C│ C│ C│ C│ C│ C│ r││ C│ C│ C│ c││ M│ d│ M│ ││ 
                         │ H│ H│ H│ H│ H│ H│ d││ H│ H│ H│ a││ a│  │ a│  │ 
                         │ E│ E│ E│ E│ E│ E│  ││ E│ E│ E│ l││ p│ M│ p│ n│ 
                         │ M│ M│ M│ M│ M│ M│  ││ M│ M│ M│  ││  │ a│  │ a│ 
                         │ A│ A│ A│ A│ A│ A│  ││ A│ A│ A│ │││ R│ p│ R│ m│ 
                         │  │  │  │  │  │  │ n││  │  │  │  ││ e│  │ e│ e│ 
                         │ ││ ││ ││ ││ ││ ││ a││ ││ ││ ││ r││ q│ R│ c│  │ 
                         │  │  │  │  │  │  │ m││  │  │  │ e││ u│ e│ o│ M│ 
                         │ C│ S│ R│ S│ A│ R│ e││ L│ L│ L│ c││ e│ q│ r│ a│ 
                         │ T│ S│ E│ E│ R│ E│  ││ R│ R│ R│ o││ s│ u│ d│ p│ 
                         │ R│ N│ C│ T│ E│ C│  ││  │  │  │ r││ t│ e│ s│  │ 
                         │ L│ A│ N│ N│ A│ O│  ││ ││ ││ ││ d││  │ s│  │ R│ 
                         │  │ M│ A│ A│ N│ R│  ││  │  │  │  ││ B│ t│  │ e│ 
                         │  │ E│ M│ M│ A│ D│  ││ C│ N│ R│ │││ l│  │  │ c│ 
                         │  │  │ E│ E│ M│ S│  ││ T│ A│ E│  ││ o│ B│  │ o│ 
                         │  │  │ S│ S│ E│  │  ││ R│ M│ C│ n││ c│ l│  │ r│ 
                         │  │  │  │  │ S│  │  ││ L│ E│ O│ a││ k│ o│  │ d│ 
   ┌───────────────────┐ │  │  │  │  │  │  │  ││  │ S│ R│ m││ s│ c│  │ s│ 
   │COPYIDMSstatements │ │  │  │  │  │  │  │  ││  │ D│ e│ e││ k│  │  │  │ 
   │codedinthe         │ │  │  │  │  │  │  │  ││  │  │ S│  ││  │  │  │  │ 
   │DATADIVISION       │ │  │  │  │  │  │  │  ││  │  │  │  ││  │  │  │  │ 
┌──┴───────────────────┴─┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-DML-LR-       │ X│ X│ X│ X│ X│ X│  ││  │  │  │  ││  │  │  │  │ 
│DESCRIPTION             │  │  │  │  │  │  │  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┴──┴──┴──┴──┴──┴──┴──┘└──┴──┴──┴──┘└──┴──┴──┴──┤ 
├────────────────────────┬──┬──┬──┬──┬──┬──┬──┐┌──┬──┬──┬──┐┌──┬──┬──┬──┤ 
│SUBSCHEMA-DESCRIPTION   │ X│ X│ X│ X│ X│ X│  ││ X│  │ X│  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-CONTROL       │ X│ X│ X│ X│ X│  │  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-CTRL          │ X│  │  │  │  │  │  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-NAMES         │  │ X│ X│ X│ X│  │  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┴──┴──┴──┴──┴──┴──┴──┴┴──┴──┴──┴──┴┴──┴──┴──┴──┤ 
├────────────────────────┬──┬──┬──┬──┬──┬──┬──┬┬──┬──┬──┬──┬┬──┬──┬──┬──┤ 
│SUBSCHEMA-SSNAME        │  │ X│  │  │  │  │  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-RECNAMES      │  │  │ X│  │  │  │  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-SETNAMES      │  │  │  │ X│  │  │  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-AREANAMES     │  │  │  │  │ X│  │  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-RECORDS       │  │  │  │  │  │ X│  ││  │  │  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│RECORDrecord-name       │  │  │  │  │  │  │ X││  │  │  │  ││  │  │  │  │ 
├────────────────────────┴──┴──┴──┴──┴──┴──┴──┘└──┴──┴──┴──┘└──┴──┴──┴──┤ 
├────────────────────────┬──┬──┬──┬──┬──┬──┬──┐┌──┬──┬──┬──┐┌──┬──┬──┬──┤ 
│SUBSCHEMA-LR-DESCRIPTION│ X│  │  │  │  │  │  ││ X│ X│ X│  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-LR-CONTROL    │ X│  │  │  │  │  │  ││ X│ X│  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-LR-CTRL       │  │  │  │  │  │  │  ││ X│  │  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-LR-NAMES      │  │  │  │  │  │  │  ││  │ X│  │  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│SUBSCHEMA-LR-RECORDS    │  │  │  │  │  │  │  ││  │  │ X│  ││  │  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│LRlogical-record-name   │  │  │  │  │  │  │  ││  │  │  │ X││  │  │  │  │ 
├────────────────────────┴──┴──┴──┴──┴──┴──┴──┘└──┴──┴──┴──┘└──┴──┴──┴──┤ 
├────────────────────────┬──┬──┬──┬──┬──┬──┬──┐┌──┬──┬──┬──┐┌──┬──┬──┬──┤ 
│MAPS                    │  │  │  │  │  │  │  ││  │  │  │  ││ X│  │ X│  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│MAP-CONTROLS            │  │  │  │  │  │  │  ││  │  │  │  ││ X│  │  │  │ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│MAPCONTROLmap-name      │  │  │  │  │  │  │  ││  │  │  │  ││  │ X│  │  │ 



PROCEDURE DIVISION 

 

Chapter 5: Precompiler-Directive Statements  85  

 

├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│MAPmap-name             │  │  │  │  │  │  │  ││  │  │  │  ││  │ X│  │ X│ 
├────────────────────────┼──┼──┼──┼──┼──┼──┼──┤├──┼──┼──┼──┤├──┼──┼──┼──┤ 
│MAP-RECORDS             │  │  │  │  │  │  │  ││  │  │  │  ││  │  │ X│  │ 
└────────────────────────┴──┴──┴──┴──┴──┴──┴──┴┴──┴──┴──┴──┴┴──┴──┴──┴──┘ 

 

PROCEDURE DIVISION 

The COPY IDMS statements in the PROCEDURE DIVISION allow inclusion into the source 

program of BIND statements for CA IDMS records and for procedure source statements 
defined as modules in the data dictionary by the DBA. 

 

Syntax 

►►─── PROCEDURE DIVISION. ────────────────────────────────────────────────────► 
 
 ►─┬──────────────────────────────┬───────────────────────────────────────────► 
   └─ COPY IDMS SUBSCHEMA-BINDS. ─┘ 
 
 ►─┬─────────────────────────────────────┬────────────────────────────────────► 
   └─ COPY IDMS SUBSCHEMA-RECORD-BINDS. ─┘ 
 
 ►─┬────────────────────────┬─────────────────────────────────────────────────► 
   └─ COPY IDMS MAP-BINDS. ─┘ 
 
 ►─┬─────────────────────────────────────────────────────────────────────┬────►◄ 
   │                                                                     │ 
   │ ┌─────────────────────────────────────────────────────────────────┐ │ 
   └─▼─ COPY IDMS module module-name ─┬──────────────────────────┬─ . ─┴─┘ 
                                      └─ VERSION version-number ─┘ 

 

Parameters 

COPY IDMS SUBSCHEMA-BINDS 

Initializes the PROGRAM-NAME field in the IDMS communications block and copies 

a standard BIND RUN-UNIT statement and appropriate standard BIND record-name 
commands for each CA IDMS record in the program's DATA DIVISION. COPY IDMS 
SUBSCHEMA-BINDS does not generate BIND RECORD statements for logical records, 

nor are any needed. 

In cases where more than one copy of a given database record description 
(including synonyms) is present in the program, COPY IDMS SUBSCHEMA-BINDS will  
not automatically generate bind record statements. Individual bind record 

statements must be issued to bind the record to the correct location. 
 

If IDMS-RECORDS MANUAL has been specified in the ENVIRONMENT DIVISION, the 
COPY IDMS SUBSCHEMA-BINDS statement generates BINDS only for subschema 
records explicitly copied into the DATA DIVISION by means of COPY I DMS 
statements; it does not automatically generate BINDS for all  subschema records. 

Do not use the COPY IDMS SUBSCHEMA-BINDS statement when binding several 
records to the same location. Instead, code DML BIND statements in the 
PROCEDURE DIVISION for each record (for more informails, see BIND RECORD (see 

page 124)). 
 



PROCEDURE DIVISION 

 

86  DML Reference Guide for COBOL 

 

Note: If AUTOSTATUS is in use, a PERFORM IDMS-STATUS occurs automatically after 
each BIND generated by a COPY IDMS SUBSCHEMA-BINDS statement. If 

AUTOSTATUS is not in use, you should explicitly code the BIND RUN-UNIT and BIND 
RECORD statements so that a PERFORM IDMS-STATUS can be coded after each 
BIND. 

For more information about AUTOSTATUS, see Chapter 4: (see page 33). 
 

COPY IDMS SUBSCHEMA-RECORD-BINDS 

Copies appropriate standard BIND record-name commands for each CA IDMS 
record in the program's DATA DIVISION. 

In cases where more than one copy of a given database record description 

(including synonyms) is present in the program, COPY IDMS 
SUBSCHEMA-RECORD-BINDS will  not automatically generate bind record 
statements. Individual bind record statements must be issued to bind the record to 
the correct location. 

If IDMS-RECORDS MANUAL has been specified in the ENVIRONMENT DIVISION, the 
COPY IDMS SUBSCHEMA-RECORD-BINDS statement generates BINDS only for 
subschema records explicitly copied into the DATA DIVISION by means of COPY 

IDMS statements; it does not automatically generate BINDS for all  subschema 
records. 

 

Do not use the COPY IDMS SUBSCHEMA-RECORD-BINDS statement when binding 
several records to the same location. Instead, code DML BIND statements in the 
PROCEDURE DIVISION for each record (for more information, see BIND RECORD 

(see page 124)). 

Note: If AUTOSTATUS is in use, a PERFORM IDMS-STATUS occurs automatically after 
each BIND generated by a COPY IDMS SUBSCHEMA-BINDS statement. If 
AUTOSTATUS is not in use, you should explicitly code the BIND RUN-UNIT and BIND 

RECORD statements so that a PERFORM IDMS-STATUS can be coded after each 
BIND. 

For more information about AUTOSTATUS, see Chapter 4: (see page 33). 
 

COPY IDMS MAP-BINDS 

Copies map- and map-record-specific BIND MAP statements for all  maps in the 

program's MAP SECTION. For more information, see BIND MAP (see page 121). 
 

COPY IDMS module 

Copies source statements from a module stored in the data dictionary into the 
source program. 

The unmodified module is placed into the program by the precompiler at the 

location of the request. The module can, but need not, contain DML statements. 
Any DML statements will  be examined and expanded within the context of the 
program's subschema view and compile mode as if they were coded directly. 

 



PROCEDURE DIVISION 

 

Chapter 5: Precompiler-Directive Statements  87  

 

COPY IDMS MODULE statements can be nested (that is, code invoked by a COPY 
IDMS MODULE entry can itself contain a COPY IDMS MODULE statement). However, 

you must ensure that a copied module does not, in turn, copy itself. 
 

module-name 

The name of a module previously defined by the DBA by means of the IDD DDDL 
compiler. 

The following standard modules are available for COBOL programs: 

■ IDMS-STATUS 
 

Note: The IDMS-STATUS module must be copied into the program if an 
AUTOSTATUS protocol is in effect, as specified in the IDMS-CONTROL SECTION 
of the ENVIRONMENT DIVISION. 

■ IDMS-STATUS (BATCH-AUTOSTATUS) 

■ IDMS-STATUS (DC) 
 

■ IDMS-WAIT (DC) 

■ IDMS-WAIT (CICS) 
 

■ IDMS-WAIT (CICS STANDARD) 

■ IDMS-WAIT (CICS AUTOSTATUS) 

■ IDMS-WAIT (CICS STANDARD AUTOSTATUS) 
 

VERSION 

Optionally qualifies module-name with a version number. 

If you do not specify a version number, the default is the highest version number 
defined in the data dictionary for the language mode under which the program is 
being compiled (for example, BATCH or IDMS-DC). 

 

If no mode-specific version exists for module-name, the non-mode-specific version 

(if present) is copied. If neither a mode-specific entry nor a non-mode-specific entry 
for module-name has been established, an error results. The same rules apply to 
the module's language (that is, version-number defaults to the highest value 
defined in the data dictionary for the language in which the program is written). 

 

version-number 

An integer in the range 1 through 9999. 

By default, if you do not specify a version number, the highest value defined in 
the data dictionary will  be used. 

 





 

Chapter 6: Data Manipulation Language Statements   89  

 

Chapter 6: Data Manipulation Language 
Statements 
 



PROCEDURE DIVISION 

 

90  DML Reference Guide for COBOL 

 

This section contains the following topics: 

About Data Manipulation Language (DML) (see page 92) 

ABEND (see page 100) 
ACCEPT (see page 101) 
ACCEPT BIND ADDRESS (see page 103) 

ACCEPT DATABASE STATISTICS (see page 104) 
ACCEPT DB-KEY FROM CURRENCY (see page 106) 
ACCEPT DB-KEY RELATIVE TO CURRENCY (see page 108) 
ACCEPT page-info-location (see page 110) 

ACCEPT PROCEDURE CONTROL LOCATION (see page 112) 
ACCEPT TRANSACTION STATISTICS (see page 113) 
ATTACH (see page 119) 
BIND MAP (see page 121) 

BIND PROCEDURE (see page 123) 
BIND RECORD (see page 124) 
BIND RUN-UNIT (see page 126) 

BIND TASK (see page 129) 
BIND TRANSACTION STATISTICS (see page 130) 
CHANGE PRIORITY (see page 131) 
CHECK TERMINAL (see page 132) 

COMMIT (see page 135) 
CONNECT (see page 136) 
DC RETURN (see page 139) 

DELETE QUEUE (see page 143) 
DELETE SCRATCH (see page 144) 
DELETE TABLE (see page 146) 
DEQUEUE (see page 148) 

DISCONNECT (see page 149) 
Disconnecting a Record from a Set (see page 150) 
END LINE TERMINAL SESSION (see page 152) 

END TRANSACTION STATISTICS (see page 152) 
ENDPAGE (see page 154) 
ENQUEUE (see page 154) 
ERASE (see page 157) 

ERASE (LRF) (see page 163) 
FIND/OBTAIN (see page 165) 
FIND/OBTAIN CALC/DUPLICATE (see page 165) 
FIND/OBTAIN CURRENT (see page 167) 

FIND/OBTAIN DB-KEY (see page 170) 
FIND/OBTAIN OWNER (see page 173) 
FIND/OBTAIN WITHIN SET USING SORT KEY (see page 176) 

FIND/OBTAIN WITHIN SET/AREA (see page 179) 
FINISH (see page 185) 
FREE STORAGE (see page 187) 
GET (see page 188) 

GET QUEUE (see page 189) 
GET SCRATCH (see page 194) 
GET STORAGE (see page 197) 



PROCEDURE DIVISION 

 

Chapter 6: Data Manipulation Language Statements   91  

 

GET TIME (see page 201) 
IF (see page 203) 

INQUIRE MAP (see page 205) 
KEEP CURRENT (see page 215) 
KEEP LONGTERM (see page 216) 

LOAD TABLE (see page 222) 
MAP IN (see page 227) 
MAP OUT (see page 232) 
MAP OUTIN (see page 239) 

MODIFY (see page 243) 
MODIFY (LRF) (see page 246) 
MODIFY MAP (see page 248) 
OBTAIN (LRF) (see page 258) 

POST (see page 261) 
PUT QUEUE (see page 262) 
PUT SCRATCH (see page 265) 

READ LINE FROM TERMINAL (see page 267) 
READ TERMINAL (see page 269) 
READY (see page 272) 
RETURN (see page 275) 

ROLLBACK (see page 278) 
SEND MESSAGE (see page 280) 
SET ABEND EXIT (see page 283) 

SET TIMER (see page 284) 
SNAP (see page 288) 
STARTPAGE (see page 290) 
STORE (see page 293) 

STORE (LRF) (see page 297) 
TRANSFER CONTROL (see page 299) 
WAIT (see page 301) 

WRITE JOURNAL (see page 303) 
WRITE LINE TO TERMINAL (see page 305) 
WRITE LOG (see page 308) 
WRITE PRINTER (see page 315) 

WRITE TERMINAL (see page 319) 
WRITE THEN READ TERMINAL (see page 322) 
Logical-Record Clauses (see page 327) 

 



About Data Manipulation Language (DML) 

 

92  DML Reference Guide for COBOL 

 

About Data Manipulation Language (DML) 

CA IDMS data manipulation language (DML) consists of statements that enable you to 
access the database management system (DBMS) and to request Logical Record Facil ity 
(LRF) and DC system services. The DML statements can be grouped into categories by 
function: 

■ Control statements: 

– Initiate and terminate processing 

– Effect recovery 

– Prevent concurrent retrieval and update of database records  

– Evaluate set conditions  
 

■ Retrieval statements locate records in the database and make them available to the 
application program. 

■ Modification statements add new records to the database and modify and delete 

existing records. 
 

■ Accept statements move special information such as database keys, storage 

addresses, and statistics from the DBMS to program variable storage. 

■ Logical-record statements retrieve, modify, store, and erase logical records. 
 

■ Program management statements: 

– Pass and return control from one program to another  

– Load and delete programs and tables  

– Define exit routines to be performed before an abnormal program termination 
(abend) 

– Force an abend condition 
 

■ Storage management statements allocate and release variable storage. 

■ Task management statements: 

– Initiate a new task 

– Change the dispatching priority of the issuing task 

– Enqueue and dequeue system resources  

– Signal that a task is to wait pending completion of an event 

– Post an event control block (ECB) indicating completion of an event 
 



About Data Manipulation Language (DML) 

 

Chapter 6: Data Manipulation Language Statements  93  

 

■ Time management statements obtain the time and date, and define time-related 
events. These events include: 

– Placing the issuing task in a wait state for a specified duration of time 

– Posting a user-specified ECB after a specified interval  

– Initiating a new task after a specified interval  

■ Scratch management statements create, delete, or retrieve records from the 
scratch area. 

 

■ Queue management statements create, delete, or retrieve records from the queue 
area. 

■ Terminal management statements transfer data between the application program 

and the terminal. 
 

■ Utility function statements: 

– Request retrieval of task-related information 

– Request a memory dump of selected parts of storage 

– Retrieve and send a predefined message stored in the data dictionary 
 

– Send a specified message to one or more users or logical terminals  

– Collect, retrieve, and write CA IDMS statistics on a transaction basis 

– Establish longterm database locks and monitor access to database records used 
across tasks during a pseudo-conversational transaction 

 

■ Recovery statements perform functions relating to database, scratch, and queue 
area recovery in the event of a system failure. These functions: 

– Establish checkpoints in the journal fi le for database, scratch, and queue 
records used by the issuing task 

– Roll back user database, scratch, and queue areas to the last checkpoint 
established 

 

– Establish an end-of-task checkpoint and relinquish control of all  database, 

scratch, and queue areas associated with the issuing task 

– Write user-defined records to the journal fi le 
 



About Data Manipulation Language (DML) 

 

94  DML Reference Guide for COBOL 

 

This section describes each DML statement that requests an CA IDMS database access 
or an online service. The DML statements are presented in two ways to help you 

understand their function in the CA IDMS environment. The following table presents the 
DML statements by function (for example, retrieval statements and program 
management statements). Statements that apply to the online environment only are 

marked with (o). Statements that apply to DC-BATCH only are marked with (dcb). 
Statements that apply to DC-BATCH or the online environment only are marked with 
(o,dcb). Following the table, each DML statement is presented in alphabetical order; 
function, syntax, syntax rules, examples, and associated error-status codes are 

described in detail. Run-time currency affected by DML statements that navigate the 
database is described where appropriate. 

 

The WHERE and ON clauses, which are used with LRF DML statements, are described in 
detail  at the end of this section. 

Note: All DML operands are positional. 
 



About Data Manipulation Language (DML) 

 

Chapter 6: Data Manipulation Language Statements   95  

 

DML Statements Grouped by Function 

 

Function DML Statement 

Control 
Statements 

■ BIND RUN-UNIT—Signs on the application program to the 
DBMS 

■ BIND TASK—Establishes a connection with the DC/UCF system 
from abatch program and allows certain online functions, such 
as writing to queues or printing to a printer controlled by the 
DC/UCF system (dcb) 

■ BIND RECORD—Establishes addressability in variable storage 
for one or more records included in the program's subschema  

■ BIND PROCEDURE—Establishes communication between the 
application program and a DBA-defined database procedure 

■ READY—Prepares database areas for processing 

■ FINISH—Commits changes made to the database through an 
individual run unit or through all  database sessions associated 

with a task 

■ IF—Evaluates the presence of records in a set or a record's 
membership status and specifies action based on the outcome 

■ COMMIT—Commits changes made to the database through an 

individual run unit or through all  database sessions associated 
with a task 

■ ROLLBACK—Rolls back uncommitted changes made to the 

database through an individual run unit or through all  database 
sessions associated with a task 

■ KEEP CURRENT—Places an explicit shared or exclusive lock on a 
record that is current of run unit, record, set, or area 



About Data Manipulation Language (DML) 

 

96  DML Reference Guide for COBOL 

 

Function DML Statement 

Retrieval 

Statements 
■ FIND/OBTAIN DB-KEY—Accesses a record using a db-key 

previously saved bythe program 

■ FIND/OBTAIN CURRENT—Accesses a record using previously 
established currencies  

■ FIND/OBTAIN WITHIN SET/AREA—Accesses a record based on 
its logical location within a set or its physical location within an 
area 

■ FIND/OBTAIN OWNER—Accesses the owner record of a set 

occurrence 

■ FIND/OBTAIN CALC/DUPLICATE—Accesses a record using its 
CALC-key value 

■ FIND/OBTAIN USING SORT KEY—Accesses a record in a sorted 

set using its sort-key value 

■ GET—Moves all  data associated with a previously located 
record into program variable storage 

■ RETURN—Retrieves the database key and symbolic key of an 
indexed record entry 

Modification 
Statements 

■ STORE—Adds a new record to the database 

■ MODIFY—Changes the contents of an existing record 

■ CONNECT—Links a record to a set 

■ DISCONNECT—Removes a member record from a set 

■ ERASE—Deletes a record from the database 

Recovery 
Functions 

■ COMMIT—Commits changes made to the database through an 
individual run unit orthrough all  database sessions associated 
with a task 

■ FINISH—Commits changes made to the database through an 

individual run unit or through all  database sessions associated 
with a task 

■ ROLLBACK—Rolls back uncommitted changes made to the 

database through an individual run unit or through all  database 
sessions associated with a task 



About Data Manipulation Language (DML) 

 

Chapter 6: Data Manipulation Language Statements  97  

 

Function DML Statement 

Accept 

Statements 
■ ACCEPT DB-KEY FROM CURRENCY—Saves the db-key of the 

current record of run unit, record type, set, or area  

■ ACCEPT DB-KEY RELATIVE TO CURRENCY—Saves the db-key of 
the next, prior, or owner record relative to the current record 

of a set 

■ ACCEPT IDMS STATISTICS—Returns system run-time statistics 
to the program 

■ ACCEPT BIND RECORD—Returns a record's bind address to the 

program 

■ ACCEPT PROCEDURE—Returns information from the 
application program information block associated with a 
database procedure to the program 

Logical Record 
Facil ity 

■ ERASE—Deletes a logical record 

■ MODIFY—Modifies a logical record 

■ OBTAIN—Accesses a logical record 

■ STORE—Stores a logical record 

Program 
Management 

■ TRANSFER CONTROL (LINK)—Passes control to another 
program with the expectation of receiving it back (o) 

■ TRANSFER CONTROL (XCTL)—Passes control to another 

program with no expectation of receiving it back (o) 

■ DC RETURN—Returns control to the next higher level call ing 
program (o) 

■ LOAD TABLE—Loads a program or table into the CA IDMS 
system program pool (o) 

■ DELETE TABLE—Signals that a program has finished using a 
program or a table in the program pool (o) 

■ SET ABEND EXIT (STAE)—Establishes l inkage to a program or 
routine that will  receive control in the event of an abend (o) 

■ ABEND—Abnormally terminates the issuing task (o) 

Storage 
Management 

■ GET STORAGE—Allocates variable storage from an CA IDMS 
system storage pool (o) 

■ FREE STORAGE—Frees all  or part of a block of variable storage 
(o) 



About Data Manipulation Language (DML) 

 

98  DML Reference Guide for COBOL 

 

Function DML Statement 

Task 

Management 
■ ATTACH—Attaches a new task within the CA IDMS system (o) 

■ CHANGE PRIORITY—Changes the dispatching priority of the 
issuing task (o) 

■ ENQUEUE—Acquires a resource or a l ist of resources (o) 

■ DEQUEUE—Releases a resource (o) 

■ WAIT—Relinquishes control to the CA IDMS system while 
awaiting completion of an event (o) 

■ POST—Posts an event control block (ECB) (o) 

Time 
Management 

■ GET TIME—Obtains the time and date from the system 

■ SET TIMER—Defines a time-delayed event (o) 

Scratch 
Management 

■ PUT SCRATCH—Stores a scratch record (o) 

■ GET SCRATCH—Retrieves a scratch record (o) 

■ DELETE SCRATCH—Deletes a scratch record (o) 

Queue 
Management 

■ PUT QUEUE—Stores a queue record (o,dcb) 

■ GET QUEUE—Retrieves a queue record (o,dcb) 

■ DELETE QUEUE—Deletes a queue record (o,dcb) 

Terminal 
Management 
(Basic Mode) 

■ READ TERMINAL—Requests a synchronous or asynchronous 
data transfer from the terminal to program variable storage (o) 

■ WRITE TERMINAL—Requests a synchronous or asynchronous 

data transfer from program variable storage to the terminal 
buffer (o) 

■ WRITE THEN READ TERMINAL—Requests a synchronous or 

asynchronous data transfer from program variable storage to 
the terminal buffer and, upon an operator signal, back to 
variable storage (o) 

■ CHECK TERMINAL—Ensures that a previously issued 

asynchronous I/O operation is complete (o) 

Terminal 
Management 

(Line Mode) 

■ READ LINE FROM TERMINAL—Requests a synchronous data 
transfer from the terminal to the issuing program (o) 

■ WRITE LINE TO TERMINAL—Requests a synchronous or 
asynchronous data transfer from the issuing program to the 
terminal (o) 

■ END LINE TERMINAL SESSION—Terminates the current l ine I/O 

session (o) 

■ WRITE PRINTER—Requests transmission of data from a task to 
a printer (o,dcb) 



About Data Manipulation Language (DML) 

 

Chapter 6: Data Manipulation Language Statements   99  

 

Function DML Statement 

Terminal 

Management 
(Mapping Mode) 

■ BIND MAP—Identifies the location of the map request block 

(MRB) and initializes MRB fields (o) 

■ MAP IN—Requests a transfer of data from the terminal to 
program variable storage (o) 

■ MAP OUT—Requests a transfer of data from program variable 
storage to the terminal (o) 

■ MAP OUTIN—Requests a transfer of data from program 
variable storage to the terminal and, upon an operator signal, 

back to variable storage (o) 

■ INQUIRE MAP—Obtains information or tests conditions 
concerning the previous map operation (o) 

■ MODIFY MAP—Requests modifications of mapping options for 

a map (o) 

■ STARTPAGE—Begins a map paging session and specifies 
options for that session (o) 

■ ENDPAGE—Terminates a map paging session (o) 

Util ity Functions ■ ACCEPT—Retrieves task-related information (o) 

■ SNAP—Requests a memory dump of selected parts of storage 
(o) 

■ SEND MESSAGE—Sends a message to a user, logical terminal, 
or l ist of users or logical terminals (o) 

■ BIND TRANSACTION STATISTICS—Defines the beginning of a 

transaction for the purpose of collecting transaction statistics 
(o) 

■ ACCEPT TRANSACTION STATISTICS—Returns the contents of 
the transaction statistics block (TSB) to program variable 

storage (o) 

■ END TRANSACTION STATISTICS—Defines the end of a 
transaction (o) 

■ KEEP LONGTERM—Either modifies a prior KEEP LONGTERM 
request, or enables database longterm locks or database 
monitoring for records, sets, or areas  

■ WRITE JOURNAL—Writes user-defined records to the journal 

fi le 

■ WRITE LOG—Retrieves a message from the data dictionary and 
sends it to a predefined destination (o) 



ABEND 

 

100  DML Reference Guide for COBOL 

 

ABEND 

The ABEND statement terminates the issuing task abnormally. It also invokes or ignores 
previously established abend exits and writes a task dump to the log fi le. After 
completion of the ABEND function, processing control is returned to the CA IDMS 
program-control module. 

 

Syntax 

►►─── ABEND CODE abend-code ─┬────────────┬─┬─────────────────────────┬─ . ───►◄ 
                             ├─ DUMP ─────┤ └─ EXITS ─┬─ INVOKED ◄ ─┬─┘ 
                             └─ NODUMP ◄ ─┘           └─ IGNORED ───┘ 

 

Parameters 

CODE 

Specifies a four-character user-defined abend code. 

abend-code 

Either the symbolic name of a variable-storage field that contains the abend code or 
the code itself enclosed in quotation marks. 

Note: Because the specified abend code appears in the system log and is displayed 
at the task's terminal, you should not use CA IDMS system abend codes. 

 

DUMP/NODUMP 

Specifies whether to write a formatted task dump to the log fi le. The default is 
NODUMP. 

EXITS INVOKED/IGNORED 

Specifies whether to invoke or ignore abend routines established by SET ABEND 

EXIT (STAE) requests. The default is INVOKED. 
 

Example 

The following example specifies an abend request that terminates the issuing task 

abnormally and requests CA IDMS to write a task dump to the log fi le and to ignore any 
abend exits: 

ABEND CODE 'U876' 

  DUMP 

  EXITS IGNORED. 
 

Status Codes 

Because control is passed to the CA IDMS program-control module, there is no need for 

the program to check the ERROR-STATUS field. 
 



ACCEPT 

 

Chapter 6: Data Manipulation Language Statements   101  

 

ACCEPT 

The ACCEPT statement retrieves the following task-related information: 

■ Current task code 

■ Task identifier 

■ Logical terminal identifier 

■ Physical terminal identifier 
 

■ CA IDMS system version 

■ User identifier (the ID of the user signed on to the task's logical terminal)  

■ Physical terminal screen dimensions  

■ System ID 
 

Syntax 

►►─── ACCEPT ─┬─ TASK CODE ──┬─ INTO return-location . ───────────────────────►◄ 
              ├─ TASK ID ────┤ 
              ├─ LTERM ID ───┤ 
              ├─ PTERM ID ───┤ 
              ├─ SYSVERSION ─┤ 
              ├─ USER ID ────┤ 
              ├─ SCREENSIZE ─┤ 
              └─ SYSTEM ID ──┘ 

 

Parameters 

ACCEPT 

Retrieves the specified information. 

TASK CODE 

Retrieves the 1 through 8 character code used to invoke the current task. 

TASK ID 

Retrieves the task identifier assigned by CA IDMS. The task identifier is a unique 
sequence number stored in a PIC S9(8) COMP SYNC (fullword) field. At system 
startup, the identifier is set to zero; each time a task is executed, the ID is 
incremented by one. 

  

LTERM ID 

Retrieves the 1 through 8 character identifier of the logical terminal associated with 
the current task. If the current task is not associated with a terminal, a null value of 

all  spaces is returned. 

PTERM ID 

Retrieves the 1 through 8 character identifier of the physical terminal associated 

with the current task. If the current task is not associated with a terminal, a null 
value of all  spaces is returned. 

 
 



ACCEPT 

 

102  DML Reference Guide for COBOL 

 

SYSVERSION 

Retrieves the version of the current CA IDMS system. The version number is an 

integer in the range 0 through 9999 stored in a PIC S9(4) COMP (halfword) field. 
 

USER ID 

Retrieves the 32-character identifier of the user signed on to the logical terminal 
associated with the current task. If no user is signed on, a null value of all  spaces is 
returned. 

  

SYSTEM ID 

Specifies the 8 character name (nodename) by which the DC/UCF system is known 

to other nodes in the DC/UCF communications network. 
 

SCREENSIZE 

Retrieves the screen dimensions of the physical terminal associated with the 
current task. The screen size is returned to a field that is divided into two PIC S9(4) 
COMP (halfword) fields. The first halfword contains the row, the second halfword 

contains the column. For example, a 24-line by 80-character screen is represented 
by a value of 24 in the first halfword and 80 in the second halfword. If the current 
task is not associated with a terminal, a null value of zero is returned. 

 
 

INTO 

Specifies the location to which CA IDMS returns the requested task-related 
information. 

return-location 

The symbolic name of a user-defined field; the picture and usage of this field must 
be compatible with the picture and usage of the requested data. 

 

Example 

The following example il lustrates ACCEPT statements that retrieve the ID of the current 
task and the ID of the user signed on to the logical terminal associated with that task: 

ACCEPT TASK ID INTO TASK-ID. 

ACCEPT USER ID INTO USER-ID. 
 

Status Codes 

After completion of the ACCEPT function, the ERROR-STATUS field in the IDMS-DC 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4829 An invalid parameter has been passed from the program 



ACCEPT BIND ADDRESS 

 

Chapter 6: Data Manipulation Language Statements   103  

 

ACCEPT BIND ADDRESS 

The ACCEPT BIND ADDRESS statement moves the bind address of a record to a specified 
location in program variable storage. This statement is typically requested by a 
subprogram that requires the address of a record in order to access it. 

Currency 

The ACCEPT BIND ADDRESS statement updates no currencies and requires no 
currencies to be set relative to the specified record. 

 

Syntax 

►►─── ACCEPT bind-address FROM record-name BIND . ────────────────────────────►◄ 
 

Parameters 

bind-address 

A PIC S9(8) COMP SYNC (fullword) field, containing the location into which the bind 

address of the specified record will  be copied. 
 

FROM ... BIND 

Specifies the record whose bind address will  be copied into the specified location in 
variable storage. 

record-name 

The name of a record previously bound by the run unit. 
 

Example 

The following statement moves the bind address for an EMPLOYEE record to a location 
identified as REG1 in the requesting subprogram: 

ACCEPT REG1 FROM EMPLOYEE BIND. 
 

Status Codes 

After completion of the ACCEPT BIND ADDRESS function, the ERROR-STATUS field in the 
IDMS communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

1508 The named record is not in the specified subschema  



ACCEPT DATABASE STATISTICS  

 

104  DML Reference Guide for COBOL 

 

ACCEPT DATABASE STATISTICS 

The ACCEPT DATABASE STATISTICS statement copies system runtime statistics located in 
the program's IDMS statistics block to program variable storage. This statement can be 
issued any number of times during the execution of a run unit. For example, you might 
request database statistics after storing a variable-length record to determine whether 

the entire record was stored in one place or if fragments were placed in an overflow 
area. 

 

The ACCEPT DATABASE STATISTICS statement does not reset any of the statis tics fields 
to zero; resetting of IDMS statistics block fields occurs only upon issuing a FINISH 
command. 

The ACCEPT DATABASE STATISTICS statement is used in both the navigational and the 
non-navigational environments. 

 

Syntax 

►►─── ACCEPT db-statistics FROM IDMS-STATISTICS . ────────────────────────────► 
 
 ►─┬───────────────────────────────────┬─ ; ──────────────────────────────────►◄ 
   └─EXTENDED (db-stat-extended)───────┘ 

  

Parameters 

db-statistics 

The name of a fullword-aligned 100-byte field in program variable storage. 
 

The data copied from IDMS-STATISTICS to db-statistics is formatted as follows: 

01 DB-STATISTICS 

 03 DATE-TODAY             PIC X(8). 

 03 TIME-TODAY             PIC X(8). 

 03 PAGES-READ             PIC S9(8)  COMP. 

 03 PAGES-WRITTEN          PIC S9(8)  COMP. 

 03 PAGES-REQUESTED        PIC S9(8)  COMP. 

 03 CALC-TARGET            PIC S9(8)  COMP. 

 03 CALC-OVERFLOW          PIC S9(8)  COMP. 

 03 VIA-TARGET             PIC S9(8)  COMP. 
 

 03 VIA-OVERFLOW           PIC S9(8)  COMP. 

 03 LINES-REQUESTED        PIC S9(8)  COMP. 

 03 RECS-CURRENT           PIC S9(8)  COMP. 

 03 CALLS-TO-IDMS          PIC S9(8)  COMP. 

 03 FRAGMENTS-STORED       PIC S9(8)  COMP. 

 03 RECS-RELOCATED         PIC S9(8)  COMP. 

 *03 LOCKS-REQUESTED       PIC S9(8)  COMP. 
 



ACCEPT DATABASE STATISTICS  

 

Chapter 6: Data Manipulation Language Statements   105  

 

 *03 SEL-LOCKS-HELD        PIC S9(8)  COMP. 

 *03 UPD-LOCKS-HELD        PIC S9(8)  COMP. 

 *03 RUN-UNIT-ID           PIC S9(8)  COMP. 

 *03 TASK-ID               PIC S9(8)  COMP. 

 *03 LOCAL-ID              PIC X(8). 

 03 FILLER                 PIC X(8). 

 

 *Applies to the central version only 
 

The LOCAL-ID field consists of the four-byte identifier of the interface in which the run 
unit originated (for example, BATC, DBDC, or CICS) and a unique identifier (fullword) 
assigned to the run unit by that interface. For batch and CMS run units, this identifier 

specifies the internal machine time. For CICS run units, this identifier specifies the CICS 
transaction number assigned to the run unit. 

 

To display the originating interface identifier and the run-unit identifier for a program, 
the LOCAL-ID field can be moved to a work field: 

01  WORK-LOCAL-ID. 

 02 WORK-LOCAL-ORIGIN   PIC X(4). 

 02 WORK-LOCAL-NUMBER   PIC S9(8)  COMP. 
 

Alternatively, the DB-STATISTICS record from the data dictionary can be modified by 
your DBA to define two subordinate fields for the LOCAL-ID field. The DB-STATISTICS 

record describes the IDMS statistics block. To use this record, code the following 
statement in program variable storage: 

01 COPY IDMS DB-STATISTICS. 
 

db-stat-extended 

The name of a fullword-aligned 100-byte field in program variable storage The data 
copied from IDMS-STATISTICS to db-stat-extended is formatted as as follows: 

    01 DB-STAT-EXTENDED 

     03 SR8-SPLITS        PIC    S9(8) COMP. 

     03 SR8-SPAWNS        PIC    S9(8) COMP. 

     03 SR8-STORES        PIC    S9(8) COMP 

     03 SR8-ERASES        PIC    S9(8) COMP. 

     03 SR7-STORES        PIC    S9(8) COMP 

     03 SR7-ERASES        PIC    S9(8) COMP. 

     03 BINARY-SEARCHES-TOTAL PIC    S9(8) COMP. 

     03 LEVELS-SEARCHED-TOTAL PIC    S9(8) COMP. 

     03 ORPHANS-ADOPTED     PIC    S9(8) COMP. 

     03 LEVELS-SEARCHED-BEST   PIC    S9(4) COMP. 

     03 LEVELS-SEARCHED-WORST  PIC    S9(4) COMP. 

     03 FILLER           PIC    X(60). 
 



ACCEPT DB-KEY FROM CURRENCY 

 

106  DML Reference Guide for COBOL 

 

This record layout can be copied from the data dictionary. Code the following 
statement in program variable storage: 

01 INCLUDE IDMS (DB_STAT_EXTENDED). 

Note: For more information about the CA IDMS statistics blocks, see the CA IDMS 
Database Administration Guide. 

 

Example 

The following statements establish currency for the sets in which a new EXPERTISE 

record will  participate as a member, store the EXPERTISE record, and move statistics 
regarding the stored EXPERTISE record to the DB-STATISTICS location in main storage: 

 

MOVE EMP-ID-IN TO EMP-ID-0415. 

FIND CALC EMPLOYEE. 

MOVE SKILL-ID-IN TO SKILL-ID-0455. 

FIND CALC SKILL. 

STORE EXPERTISE. 

ACCEPT DB-STATISTICS FROM IDMS-STATISTICS. 
 

Status Codes 

After completion of the ACCEPT DATABASE STATISTICS function, the ERROR-STATUS 
field in the IDMS communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

1518 The database statistics location has not been bound properly 

ACCEPT DB-KEY FROM CURRENCY 

The ACCEPT DB-KEY FROM CURRENCY statement moves the db-key of the current 

record of run unit, record type, set, or area to a specified location in program variable 
storage. Records whose db-keys are saved in this manner are available for subsequent 
direct access by using a FIND/OBTAIN DB-KEY statement. 

 

Note: You must establish currency before using this statement. If no currency has been 
established, the DBMS returns 0000 to the ERROR-STATUS field and -1 to the db-key 

field. 

Currency 

ACCEPT DB-KEY FROM CURRENCY does not update any currencies. 
 



ACCEPT DB-KEY FROM CURRENCY 

 

Chapter 6: Data Manipulation Language Statements   107  

 

Syntax 

►►─ ACCEPT db-key-location FROM ─┬───────────────┬──── CURRENCY ─────────────► 
                                 ├─ record-name ─┤ 
                                 ├─ set-name ────┤ 
                                 └─ area-name ───┘ 
 
 ►─┬──────────────────────────────┬─── . ────────────────────────────────────►◄ 
   └ PAGE-INFO page-info-location ┘ 

 

Parameters 

db-key-location 

A PIC S9(8) COMP SYNC (fullword) field. Identifies the location in variable storage 
that will  contain the db-key of the specified record. 

FROM CURRENCY 

Specifies the record whose db-key will  be placed in the specified location. By 

default, if you omit a record, set, or area qualifier, the db-key of the record that is 
current of the run unit is saved. 

 

record-name Saves the db-key of the record that is current of the specified record 
type. 

 

set-name Saves the db-key of the record that is current of the specified set. 

area-name Saves the db-key of the record that is current of the specified area. 
 

PAGE-INFO 

Indicates that the page-info of the specified record is collected and recorded into 
page-info-location. 

page-info-location 

Identifies the location in variable storage that contains the page-info of the 

requested record. This field is a PIC S9(8) COMP SYNC (fullword) field. 
 

Example 

The following statements establish a DEPARTMENT record as current of run unit and 
save its db-key in location SAVE-DB-KEY: 

MOVE '8683' TO DEPT-ID-0410. 

FIND CALC DEPARTMENT. 

ACCEPT SAVE-DB-KEY FROM CURRENCY. 
 

Note: The same results can be accomplished using the following COBOL MOVE 

statement: 

MOVE DB-KEY TO SAVE-DB-KEY. 
 



ACCEPT DB-KEY RELATIVE TO CURRENCY 

 

108  DML Reference Guide for COBOL 

 

Status Codes 

After completion of the ACCEPT DB-KEY FROM CURRENCY function, the ERROR-STATUS 
field in the IDMS communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

1503 The dbkey that is the object of an ACCEPT has been invalidated. This 
can only occur when a run unit is sharing a transaction with other 

database sessions. The 03 minor status is returned if the run unit 
tries to retrieve a dbkey and a currency has been invalidated because 
of changes made by another database session that is sharing the 

same transaction. 

1508 The named record or set is not in the subschema. The program has 
probably invoked the wrong subschema. 

1523 The named area is not in the subschema. 
 

ACCEPT DB-KEY RELATIVE TO CURRENCY 

The ACCEPT DB-KEY RELATIVE TO CURRENCY statement moves a selected db-key to a 
specified location in program variable storage. The db-key moved to variable storage 
can be the db-key of the next, prior, or owner record relative to the current record of 

set. 

This version of the ACCEPT statement allows you to save the db-key of a record within a 
set without actually having to access the record. Records whose db-keys are saved in 
this manner are available for subsequent direct access by using a FIND/OBTAIN DB-KEY 

statement. 
 

Note: You must establish currency before using this statement. If no set currency has 
been established, the DBMS returns 0000 to the ERROR-STATUS field and -1 to the 
db-key-location field. 

Currency 

ACCEPT DB-KEY RELATIVE TO CURRENCY does not update any currencies. 
 

Syntax 

►►─── ACCEPT db-key-location FROM set-name ─┬─ NEXT ──┬─ CURRENCY ───────────► 
                                            ├─ PRIOR ─┤ 
                                            └─ OWNER ─┘ 
 
 ►─┬──────────────────────────────┬─── . ────────────────────────────────────►◄ 
   └ PAGE-INFO page-info-location ┘ 

 



ACCEPT DB-KEY RELATIVE TO CURRENCY 

 

Chapter 6: Data Manipulation Language Statements   109  

 

Parameters 

db-key-location 

A PIC S9(8) COMP SYNC (fullword) field. Identifies the location in variable storage 
that will  contain the db-key of the requested record. 

FROM .. CURRENCY 

Identifies the record whose db-key will  be moved into the specified location. 

set-name The name of a set included in the subschema. Native VSAM users:. 
NEXT/PRIOR/OWNER CURRENCY cannot be requested for sets defined for native 

VSAM records. 
 

NEXT  

Saves the db-key of the next record relative to the record that is current of the 
specified set. NEXT CURRENCY cannot be requested unless the specified set has 
prior pointers; prior pointers ensure that the next pointer in the prefix of the 

current record does not point to a logically deleted record. 

PRIOR  

Saves the db-key of the prior record relative to the record that is current of the 

specified set. PRIOR CURRENCY cannot be requested unless the specified set 
has prior pointers. 

 

Note: No indication of an end-of-set condition is possible for an ACCEPT NEXT 
or PRIOR. A retrieval command must be issued to determine whether the next 
or prior record in the set occurrence is the owner record. 

 

OWNER  

Saves the db-key of the owner of the record that is current of the specified set. 

A request for OWNER CURRENCY cannot be executed unless the specified set 
has owner pointers. However, if the current record of the named set is the 
owner record occurrence, requests for OWNER CURRENCY return the db-key of 

the record itself, even if this set does not have owner pointers. 
 

Note: When a record declared as an optional or manual member of a set is 
accessed, it is not established as current of set if it is not currently connected to 
an occurrence of the specified set. A subsequent attempt to access the owner 
record will  locate instead the owner of the current record of set. In such cases, 

determine whether the retrieved record is actually a set member before 
executing the ACCEPT DB-KEY FROM OWNER CURRENCY statement. The IF 
statement, explained later in this chapter, can be used for this purpose. 

 

PAGE-INFO 

Indicates that the page-info of the specified record is collected and recorded into 

page-info-location. 

page-info-location 

Identifies the location in variable storage that contains the page-info of the 

requested record. This field is a PIC S9(8) COMP SYNC (fullword) field.  
 



ACCEPT page-info-location 

 

110  DML Reference Guide for COBOL 

 

Example 

The following statements access the EMP-EXPERTISE set and save the db-key of the 
owner record of the SKILL-EXPERTISE set: 

MOVE '0119' TO EMP-ID-0415. 

FIND CALC EMPLOYEE. 

FIND FIRST WITHIN EMP-EXPERTISE. 

ACCEPT SAVE-DB-KEY FROM SKILL-EXPERTISE OWNER CURRENCY. 
 

Status Codes 

After completion of the ACCEPT DB-KEY RELATIVE TO CURRENCY function, the 
ERROR-STATUS field in the IDMS communications block indicates the outcome of the 
operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

1503 The dbkey that is the object of an ACCEPT has been invalidated. This 
can only occur when a run unit is sharing a transaction with other 

database sessions. The 03 minor status is returned if the run unit 
tries to retrieve a dbkey and a currency has been invalidated because 
of changes made by another database session that is sharing the 

same transaction. 

1508 The named set is not in the subschema. The program has probably 
invoked the wrong subschema. 

ACCEPT page-info-location 

The ACCEPT page-info-location statement moves the page information for a given 
record to a specified location in program variable storage. Page information that is 
saved in this manner is available for subsequent direct access by using a FIND/OBTAIN 

DB-KEY statement. 
 



ACCEPT page-info-location 

 

Chapter 6: Data Manipulation Language Statements   111  

 

The dbkey radix portion of the page information can be used in interpreting a dbkey for 
display purposes and in formatting a dbkey from page and line number s. The dbkey 

radix represents the number of bits within a dbkey value that are reserved for the line 
number of a record. By default, this value is 8, meaning that up to 255 records can be 
stored on a single page of the area. Given a dbkey, you can separate its associated page 

number by dividing the dbkey by 2 raised to the power of the dbkey radix. For example, 
if the dbkey radix is 4, you would divide the dbkey value by 2**4. The resulting value is 
the page number of the dbkey. To separate the line number, you would multiply the 
page number by 2 raised to the power of the dbkey radix and subtract this value from 

the dbkey value. The result would be the line number of the dbkey. The following two 
formulas can be used to calculate the page and line numbers from a dbkey value: 

 

■ Page-number = dbkey value / (2 ** dbkey radix) 

■ Line-number = dbkey value - (page-number * ( 2 ** dbkey radix)) 
 

Syntax 

►►─── ACCEPT page-info-location FOR record-name . ────────────────────►◄ 
 

Parameters 

ACCEPT 

Retrieves the specified information. 

page-info-location Specifies a four-byte field that may be defined either as a group 
field or as a fullword field (PIC S9(8) COMP). Identifies the location in variable 
storage that contains page information for the specified record. Upon successful 

completion of this statement, the first two bytes of the field contain the page group 
number and the last two bytes contain a value that may be used for interpreting 
dbkeys. 

FOR 

Specifies the record whose page information will  be placed in the specified 
location. 

record-name 

Specifies the record whose page information will  be placed in the specified 
location. 

 

Example 

The following example retrieves the page information for the DEPARTMENT record and 

uses the dbkey format information to transform a page number into a dbkey. 

01 W-PG-INFO. 

  02 W-GRP-NUM    PIC S9(4) COMP. 

  02 W-DBK-FORMAT  PIC 9(4) COMP. 
 



ACCEPT PROCEDURE CONTROL LOCATI ON 

 

112  DML Reference Guide for COBOL 

 

 

  ACCEPT W_PG_INFO FOR DEPARTMENT. 

  MOVE W-PAGE TO W-DBKEY. 

  PERFORM ADJUST-PAGE W-DBK-FORMAT TIMES. 

 

ADJUST-PAGE SECTION. 

  MULTIPLY W-DBKEY BY 2.} 
 

Status Codes 

After completion of the ACCEPT page-info-location function, the ERROR-STATUS field in 

the IDMS-DC communications block indicates the outcome of the operation: 
 

 

Status code Meaning 

0000 The request has been serviced successfully. 

1508 The named record is not in the subschema. The program probably 

invoked the wrong subschema. 

ACCEPT PROCEDURE CONTROL LOCATION 

The ACCEPT PROCEDURE CONTROL LOCATION statement copies the 256-byte 

application program information block associated with a previously defined database 
procedure to a specified location in program variable storage. A BIND PROCEDURE 
statement (explained later in this chapter) previously placed information into this block; 
this information may have been subsequently updated by the procedure. 

 

The ACCEPT PROCEDURE CONTROL LOCATION statement should be used only by 

programs running under, but in a different partition from, the central version. 
 

Syntax 

►►─── ACCEPT procedure-control-location FROM procedure-name PROCEDURE . ──────►◄ 
 

Parameters 

procedure-control-location 

The fullword-aligned 256-byte location in variable storage to which the application 
program information block is to be copied. 

 

FROM procedure-name PROCEDURE 

The name of the database procedure whose application program information block 

is to be copied into variable storage. Procedure-name must refer to an 
eight-character field in variable storage. 

 



ACCEPT TRANSACTION STATISTICS  

 

Chapter 6: Data Manipulation Language Statements   113  

 

Example 

The following statement copies the application program information bloc k used by the 
CHECKALL procedure to the location identified as CHECK-IT in main storage: 

ACCEPT CHECK-IT FROM CHECKALL PROCEDURE. 
 

Status Codes 

After completion of the ACCEPT PROCEDURE CONTROL LOCATION function, the 
ERROR-STATUS field in the IDMS communications block indicates the outcome of the 
operation: 

 

 

Status code Meaning 

0000 The request has been serviced successfully 

1508 The named procedure is not in the specified subschema  

1518 The procedure control location has not been bound properly 

ACCEPT TRANSACTION STATISTICS 

The ACCEPT TRANSACTION STATISTICS statement copies the contents of the transaction 
statistics block (TSB) to a location in program variable storage. Optionally, the statement 
can also write the TSB to the DC system log fi le and you can define the length of the TSB. 

 

Syntax 

►►─── ACCEPT TRANSACTION STATISTICS ──┬───────────┬────────────────────────────► 
                                      ├─ WRITE ◄ ─┤   
                                      └─ NOWRITE ─┘ 
 
 ►───┬──────────────────────────────────┬──────────────────────────────────────► 
     └─ INTO return-stat-data-location ─┘ 
 
 ►───┬─────────────────────────────────┬────────────────────────────────────;──►◄ 
     └─ LENGTH ─┬─ 388 ◄───────────┬───┘  
                └─ len-return-TSB ─┘ 

 

Parameters 

WRITE/NOWRITE 

Specifies whether the TSB is written to the DC system log fi le. 

Default: WRITE 
 



ACCEPT TRANSACTION STATISTICS  

 

114  DML Reference Guide for COBOL 

 

INTO 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION data area into 

which to return the TSB. 

return-stat-data-location  

A fullword-aligned 388-byte field (you can customize the length using the 

LENGTH parameter).  

The data copied from the TSB to return-stat-data-location is formatted as 
follows: 

01 STATISTICS-BLOCK. 

  03 SYS-INTERN1   PIC X(8)     SYSTEM INTERNAL USE ONLY 

  03 PROG-CALL    PIC S9(8) COMP  # OF PROGRAMS CALLED 

  03 PROG-LOAD    PIC S9(8) COMP  # OF PROGRAMS LOADED 

  03 TERM-READ    PIC S9(8) COMP  # OF TERMINAL READS 

  03 TERM-WRITE    PIC S9(8) COMP  # OF TERMINAL WRITES 

  03 TERM-ERROR    PIC S9(8) COMP  # OF TERMINAL ERRORS 

  03 STORAGE-GET   PIC S9(8) COMP  # OF STORAGE GETS 
 

  03 SCRATCH-GET   PIC S9(8) COMP  # OF SCRATCH GETS 

  03 SCRATCH-PUT   PIC S9(8) COMP  # OF SCRATCH PUTS 

  03 SCRATCH-DEL   PIC S9(8) COMP  # OF SCRATCH DELETES 

  03 QUEUE-GET    PIC S9(8) COMP  # OF QUEUE GETS 

  03 QUEUE-PUT    PIC S9(8) COMP  # OF QUEUE PUTS 

  03 QUEUE-DEL    PIC S9(8) COMP  # OF QUEUE DELETES 

  03 GET-TIME     PIC S9(8) COMP  # OF GET TIMES 
 

  03 SET-TIME     PIC S9(8) COMP  # OF SET TIMES 

  03 DB-SRVREQ    PIC S9(8) COMP  # OF DB SERVICE REQUESTS 

  03 MAX-STACK    PIC S9(8) COMP  MAX WORDS USED IN STACK 

  03 USER-TIME    PIC S9(8) COMP  USER MODE TIME (10**-4 SEC) 

  03 SYS-TIME     PIC S9(8) COMP  SYS MODE TIME (10**-4 SEC) 

  03 WAIT-TIME    PIC S9(8) COMP  WAIT TIME (10** -4 SEC) 

  03 MAX-RCE-USED   PIC S9(8) COMP  MAXIMUM NUMBER OF RCES USED 
 

  03 MAX-RLE-USED   PIC S9(8) COMP  MAXIMUM NUMBER OF RLES USED 

  03 MAX-DPE-USED   PIC S9(8) COMP  MAXIMUM NUMBER OF DPES USED 

  03 STG-HI-MARK   PIC S9(8) COMP  STORAGE HIGH WATER MARK 

  03 FREESTG-REQ   PIC S9(8) COMP  # OF FREE STORAGE REQUESTS 

  03 SYS-SERV     PIC S9(8) COMP  # OF SYSTEM SERVICE REQUEST 

  03 SYS-INTERN2   PIC X(8)     SYSTEM INTERNAL USE ONLY 

  03 PAGES-READ    PIC S9(8) COMP  # OF PAGES READ 

  03 PAGES-WRIT    PIC S9(8) COMP  # OF PAGES WRITTEN 
 

  03 PAGES-REQ    PIC S9(8) COMP  # OF PAGES REQUESTED 

  03 CALC-NO       PIC S9(8) COMP  # OF CALC RECS NO OFLOW 

  03 CALC-OF       PIC S9(8) COMP  # OF CALC RECS OFLOW 

  03 VIA-NO        PIC S9(8) COMP  # OF VIA RECS NO OFLOW 

  03 VIA-OF       PIC S9(8) COMP  # OF VIA RECS OFLOW 

  03 RECS-REQ      PIC S9(8) COMP  # OF RECS REQUESTED 

  03 RECS-CURR    PIC S9(8) COMP  # OF RECS CURR OF RU 

  03 DB-CALLS     PIC S9(8) COMP  # OF DBMS CALLS 
 



ACCEPT TRANSACTION STATISTICS  

 

Chapter 6: Data Manipulation Language Statements   115  

 

  03 FRAG-STORED   PIC S9(8) COMP  # OF FRAGMENTS STORED 

  03 RECS-RELO    PIC S9(8) COMP  # OF RECS RELOCATED 

  03 TOT-LOCKS    PIC S9(8) COMP  TOTAL # OF LOCKS ACQUIRED 

  03 SHR-LOCKS    PIC S9(8) COMP  # OF SHARE LOCKS HELD 

  03 NSH-LOCKS    PIC S9(8) COMP  # OF NON-SHARE LOCKS HELD 

  03 LOCKS-FREED   PIC S9(8) COMP  # OF LOCKS FREED 

  03 SR8-SPLITS    PIC S9(8) COMP  # OF SR8 SPLITS 
 

  03 SR8-SPAWN    PIC S9(8) COMP  # OF SR8 SPAWNS 

  03 SR8-STORE    PIC S9(8) COMP  # OF SR8S STORED 

  03 SR8-ERASE    PIC S9(8) COMP  # OF SR8S ERASED 

  03 SR7-STORE    PIC S9(8) COMP  # OF SR7S STORED 

  03 SR7-ERASE    PIC S9(8) COMP  # OF SR7S ERASED 

  03 BTREE-SRCH    PIC S9(8) COMP  # OF BTREE SEARCHES 

  03 BTREE-LEVEL   PIC S9(8) COMP  # OF BTREE LEVELS SEARCHED 
 

  03 ORPHANS       PIC S9(8) COMP  # OF ORPHANS ADAPTED 

  03 BTREE-LEV-B   PIC S9(4) COMP  # OF LVLS SRCH'D (BEST CASE) 

  03 BTREE-LEV-W   PIC S9(4) COMP  # OF LVLS SRCH'D (WORST CASE) 

  03 RECS-UPD     PIC S9(8) COMP  # OF RECS UPDATED 
 

  03 PAGE-INCACHE   PIC S9(8) COMP  # OF PAGES FOUND IN CACHE 

  03 PAGE-INPREFET  PIC S9(8) COMP  # OF PAGES FOUND IN PREFETCH 

  03 RESERVED       PIC X(8)     RESERVED FOR FUTURE USE 

  03 SYS-INTERN3    PIC X(8)     SYSTEM INTERNAL USE ONLY 

  03 USER-ID         PIC X(32)    DC USER ID 

  03 LTERM-ID        PIC X(8)     LOGICAL TERMINAL ID 
 

  03 USER-SUPP-ID   PIC X(8)     USER-SUPPLIED ID 

  03 BIND-DATE      PIC S9(7) COMP-3 DATE BIND COMMAND ISSUED 

  03 BIND-TIME      PIC S9(8) COMP  TIME BIND COMMAND ISSUED 

  03 TRANSTAT-FLGS  PIC S9(8) COMP  FOUR 1-BYTE FLAGS 

  03 SYS-INTERN4    PIC X(8)     SYSTEM INTERNAL USE ONLY 

  03 SQL-COMMANDS    PIC S9(8) COMP  # OF SQL COMMANDS EXECUTED 
 

  03 SQL-FETCH       PIC S9(8) COMP  # OF ROWS FETCHED 

  03 SQL-INSERT      PIC S9(8) COMP  # OF ROWS INSERTED 

  03 SQL-UPDATE      PIC S9(8) COMP  # OF ROWS UPDATED 

  03 SQL-DELETE      PIC S9(8) COMP  # OF ROWS DELETED 
 

  03 SQL-SORTS       PIC S9(8) COMP  # OF SORTS PERFORMED 

  03 SQL-ROWSORT     PIC S9(8) COMP  # OF ROWS SORTED 

  03 SQL-MINRSORT    PIC S9(8) COMP  MINIMUM ROWS SORTED 

  03 SQL-MAXRSORT     PIC S9(8) COMP  MAXIMUM ROWS SORTED 

  03 SQL-AMCMPL      PIC S9(8) COMP  # OF AM RECOMPILES 

  03 SQL-RESERVED     PIC X(32)    RESERVED FOR FUTURE USE 
 



ACCEPT TRANSACTION STATISTICS  

 

116  DML Reference Guide for COBOL 

 

If you extend the length to 560 bytes, the full  TRANSACTION-STATISTICS are also 
included. The following block can be expanded using the COPY IDMS 

TRANSACTION-STATISTICS statement: 

       01  TRANSACTION-STATISTICS.                                               

            03  TSB-STATS-R18          PIC X(560).                               

            03  TSB-STATS-R17          REDEFINES TSB-STATS-R18.                  

             04  TSB-DC-STATS          PIC X(108).                               

             04  TSB-DC-STATS1         REDEFINES TSB-DC-STATS.                   

              05  SYS-INTERN1          PIC X(8).  
 

              05  PROG-CALL            PIC S9(8) COMP.                           

              05  PROG-LOAD            PIC S9(8) COMP.                           

              05  TERM-READ            PIC S9(8) COMP.                           

              05  TERM-WRITE           PIC S9(8) COMP.                           

              05  TERM-ERROR           PIC S9(8) COMP.                           

              05  STORAGE-GET          PIC S9(8) COMP.                           

              05  SCRATCH-GET          PIC S9(8) COMP.                           

              05  SCRATCH-PUT          PIC S9(8) COMP.                           

              05  SCRATCH-DEL          PIC S9(8) COMP.                           

              05  QUEUE-GET            PIC S9(8) COMP.                           

              05  QUEUE-PUT            PIC S9(8) COMP.                           

              05  QUEUE-DEL            PIC S9(8) COMP.                           
 

              05  GET-TIME             PIC S9(8) COMP.                           

              05  SET-TIME             PIC S9(8) COMP.                           

              05  DB-SRVREQ            PIC S9(8) COMP.                           

              05  MAX-STACK            PIC S9(8) COMP.                           

              05  USER-TIME            PIC S9(8) COMP.                           

              05  SYS-TIME             PIC S9(8) COMP.                           

              05  WAIT-TIME            PIC S9(8) COMP.                           
 

              05  MAX-RCE-USED         PIC S9(8) COMP.                           

              05  MAX-RLE-USED         PIC S9(8) COMP.                           

              05  MAX-DPE-USED         PIC S9(8) COMP.                           

              05  STG-HI-MARK          PIC S9(8) COMP.                           

              05  FREESTG-REQ          PIC S9(8) COMP.                           

              05  SYS-SERV             PIC S9(8) COMP.                           

             04  TSB-DB-STATS          PIC X(72).                                

             04  TSB-DB-STATS1         REDEFINES TSB-DB-STATS.                   

              05  SYS-INTERN2          PIC X(8).                                 
 

              05  PAGES-READ           PIC S9(8) COMP.                           

              05  PAGES-WRIT           PIC S9(8) COMP.                           

              05  PAGES-REQ            PIC S9(8) COMP.                           

              05  CALC-NO              PIC S9(8) COMP.                           

              05  CALC-OF              PIC S9(8) COMP.                           

              05  VIA-NO               PIC S9(8) COMP.                           

              05  VIA-OF               PIC S9(8) COMP.                           

              05  RECS-REQ             PIC S9(8) COMP.                           
 



ACCEPT TRANSACTION STATISTICS 

 

Chapter 6: Data Manipulation Language Statements   117  

 

              05  RECS-CURR            PIC S9(8) COMP.                           

              05  DB-CALLS             PIC S9(8) COMP.                           

              05  FRAG-STORED          PIC S9(8) COMP.                           

              05  RECS-RELO            PIC S9(8) COMP.                           

              05  TOT-LOCKS            PIC S9(8) COMP.                           

              05  SHR-LOCKS            PIC S9(8) COMP.                           

              05  NSH-LOCKS            PIC S9(8) COMP.                           

              05  LOCKS-FREED          PIC S9(8) COMP.                           

             04  TSB-IX-STATS          PIC X(40).                                
 

             04  TSB-IX-STATS1         REDEFINES TSB-IX-STATS.                   

              05  SR8-SPLITS           PIC S9(8) COMP.                           

              05  SR8-SPAWN            PIC S9(8) COMP.                           

              05  SR8-STORE            PIC S9(8) COMP.                           

              05  SR8-ERASE            PIC S9(8) COMP.                           

              05  SR7-STORE            PIC S9(8) COMP.                           

              05  SR7-ERASE            PIC S9(8) COMP.                           

              05  BTREE-SRCH           PIC S9(8) COMP.                           

              05  BTREE-LEVEL          PIC S9(8) COMP.                           

              05  ORPHANS              PIC S9(8) COMP.                           

              05  BTREE-LEV-B          PIC S9(4) COMP.                           

              05  BTREE-LEV-W          PIC S9(4) COMP.                           
 

             04  TSB-DB-STATS-EXTENDED PIC X(20).                                

             04  TSB-DB-STATS-EXTENDED1                                          

                                       REDEFINES TSB-DB-STATS-EXTENDED.          

              05  RECS-UPD             PIC S9(8) COMP.                           

              05  PAGE-INCACHE         PIC S9(8) COMP.                           

              05  PAGE-INPREFET        PIC S9(8) COMP.                           

              05  RESERVED             PIC X(8).                                 

             04  TSB-HDR               PIC X(68).                                

             04  TSB-HDR1              REDEFINES TSB-HDR.                        
 

              05  SYS-INTERN3          PIC X(8).                                 

              05  USER-ID              PIC X(32).                                

              05  LTERM-ID             PIC X(8).                                 

              05  USER-SUPP-ID         PIC X(8).                                 

              05  BIND-DATE            PIC S9(7) COMP-3.                         

              05  BIND-TIME            PIC S9(8) COMP.                           

              05  TRANSTAT-FLGS        PIC S9(8) COMP.                           

             04  TSB-SQL-STATS         PIC X(80).                                

             04  TSB-SQL-STATS1        REDEFINES TSB-SQL-STATS.                  
 



ACCEPT TRANSACTION STATISTICS  

 

118  DML Reference Guide for COBOL 

 

              05  SYS-INTERN4          PIC X(8).                                 

              05  SQL-COMMANDS         PIC S9(8) COMP.                           

              05  SQL-FETCH            PIC S9(8) COMP.                           

              05  SQL-INSERT           PIC S9(8) COMP.                           

              05  SQL-UPDATE           PIC S9(8) COMP.                           

              05  SQL-DELETE           PIC S9(8) COMP.                           

              05  SQL-SORTS            PIC S9(8) COMP.                           

              05  SQL-ROWSORT          PIC S9(8) COMP.                           

              05  SQL-MINRSORT         PIC S9(8) COMP.                           

              05  SQL-MAXRSORT         PIC S9(8) COMP.                           

              05  SQL-AMCMPL           PIC S9(8) COMP.                           
 

              05  SQL-RESERVED         PIC X(32).                                

             04  TSB-STATS-DCX         PIC X(168).                               

             04  TSB-STATS-DCX1        REDEFINES TSB-STATS-DCX.                  

              05  TSB-STATS-DCX-FILLER PIC X(8).                                 

              05  TSB-SYS-MODE-CPU-TOD PIC 9(18) COMP.                           

              05  TSB-SYS-ZIIP-ON-CP-TOD                                         

                                       PIC 9(18) COMP.                           
 

              05  TSB-SYS-ZIIP-ON-ZIIP-TOD                                       

                                       PIC 9(18) COMP.                           

              05  TSB-USER-MODE-CPU-TOD                                          

                                       PIC 9(18) COMP.                           

              05  TSB-TCB-CPU-TIME-TOD PIC 9(18) COMP.                           

              05  TSB-SRB-CPU-TIME-TOD PIC 9(18) COMP.                           

              05  TSB-STATS-DCX-FILL01 PIC X(112).                               
 

LENGTH 

Specifies the length of the returned TSB. To retrieve all  statistics including the DC 

extended statistics section that records CPU times in the Time of Day (TOD) format, 
specify LENGTH as 560.  

len-return-TSB 

Specifies either the symbolic name of a user-defined field that contains the 

length of the TSB, or the length expressed as a numeric constant. 

Limits: Integer of 388 or greater 

Default: If you do not specify len-return-TSB, the first 388 bytes of the TSB are 

returned. 

Example 

The following statement returns the contents of the TSB to STATISTICS-BLOCK and 

writes transaction statistics to the log fi le: 
 

ACCEPT TRANSACTION STATISTICS 

  WRITE 

  INTO STATISTICS-BLOCK. 
 



ATTACH 

 

Chapter 6: Data Manipulation Language Statements   119  

 

Status Codes 

After completion of the ACCEPT TRANSACTION STATISTICS function, the ERROR-STATUS 
field in the IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3801 Storage for the transaction statistics block is not available; to wait 
would cause a deadlock 

3813 No transaction statistics block exists; a BIND TRANSACTION 
STATISTICS request has not been issued 

3831 Either the parameter l ist is invalid or no logical terminal element 

(LTE) is associated with the issuing task 

3850 The collection of transaction statistics or task statistics has not been 
enabled during system generation 

ATTACH 

The ATTACH statement initiates a new task by acquiring the necessary control blocks 
and storage and by adding the task to its dispatching list. CA IDMS initializes the 
attached task and queues it up for execution; the issuing program receives control in 

accordance with normal dispatching priority. 
 

Syntax 

►►─── ATTACH TASK CODE 'task-code' ─┬─────────────────────┬─┬──────────┬─ . ──►◄ 
                                    └─ PRIORITY priority ─┘ ├─ WAIT ◄ ─┤ 
                                                            └─ NOWAIT ─┘ 

 

Parameters 

task-code 

Either the symbolic name of a user-defined field that contains the task code or the 

code itself enclosed in quotation marks. 

The referenced task code must have been defined during system generation or 
dynamically by using the DCMT VARY DYNAMIC TASK command. 

 



ATTACH 

 

120  DML Reference Guide for COBOL 

 

PRIORITY 

Specifies the dispatching priority of the attached task. 

priority Either the symbolic name of a user-defined field that contains the 
dispatching priority or the priority itself expressed as a numeric constant in the 
range 000 through 240. By default, if you do not specify a priority or its 

location, the priority established during system generation for the specified 
task code, terminal, and user is used. 

 

WAIT 

Specifies that the issuing task waits until the maximum task condition no longer 
exists and the specified task can be attached. 

This is the default. 
 

NOWAIT 

Specifies that the issuing task does not wait for the task to be attached. When 
NOWAIT is specified, the program should check the ERROR-STATUS field in the CA 
IDMS communications block to determine if the ATTACH request has been 

completed. If the ERROR-STATUS value is 3711, indicating that a maximum task 
condition exists, the request has not been serviced and the program should 
perform alternative processing before reissuing the ATTACH request. 

 

Example 

The following example il lustrates how to initiate tas k TASKATCH and assign it a 
dispatching priority of 199: 

ATTACH TASK CODE 'TASKATCH' 

  PRIORITY 199 

  NOWAIT. 
 

Status Codes 

After completion of the ATTACH function, the ERROR-STATUS field of the IDMS-DC 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

3711 The task cannot be attached because the maximum number of tasks 
has already been attached. 

3712 The specified task code is not known to the CA IDMS system. 

3758 The task cannot be attached because the maximum number of 
concurrent tasks threads was exceeded. 



BIND MAP 

 

Chapter 6: Data Manipulation Language Statements   121  

 

Status code Meaning 

3799 The requested task could not be attached because the current user is 

not authorized to execute the task. 

BIND MAP 

The BIND MAP statement identifies the location of a map request block (MRB) and 

initializes MRB fields. For each MRB used by a program, code a BIND MAP statement; for 
each record defined to a map, code a BIND MAP RECORD statement. 

 

BIND MAP statements can be global or record-specific, as follows: 

■ Global—The BIND MAP statement applies to the map as a whole. It initializes the 
entire MRB and fi l ls in fields that apply to the map in general. 

■ Record-specific—The BIND MAP statement applies only to the named map record. 
It initializes the variable storage address of the named record in the MRB. 

 

Typically, a program issues a global BIND MAP statement for each map, followed by 
BIND MAP statements for each map record used by the program. 

 

You can request the precompiler to include global and record-specific BIND MAP 
statements automatically by using a COPY IDMS MAP-BINDS statement (see Chapter 5: 

(see page 67)). COPY IDMS MAP-BINDS includes the necessary BINDS for all  maps and 
map records defined for the program. 

 

The program can alter the storage address for a map record at any time by issuing 
another BIND MAP statement for that record. After the initial global bind (BIND MAP), 
all  map records are considered unbound; map operations that use those records will  

have no effect on storage. After binding a map record to a storage address (BIND MAP 
RECORD), subsequent map operations will  use that address to access the rec ord. To 
unbind a map record, issue a record-specific BIND MAP statement that specifies the TO 
NULL option. 

 

Syntax 

   ┌────────────────────────────────────────────────────────────────────────┐ 
►►─▼─ BIND MAP map-name ─┬─────────────────────────────────────────────┬─ . ┴─►◄ 
                         └─ RECORD rec-name ─┬────────────────────────┬┘ 
                                             └─ TO ─┬─ NULL ─────────┬┘ 
                                                    └─ rec-location ─┘ 

 



BIND MAP 

 

122  DML Reference Guide for COBOL 

 

Parameters 

map-name 

The name of an existing map. The map version defaults to the version specified for 
the map in the program's MAP SECTION. 

RECORD 

Initializes the variable storage address of the named record in the MRB. 

record-name 

The name of a record used by the map. 
 

TO 

Specifies whether the record is to be unbound or bound to a specified address. 

NULL 

Leaves the record unbound. 

rec-location 

The symbolic name of a user-defined field that contains the address to which 
the record is to be bound. Record-location defaults to record-name. 
Subsequent I/O operations will  use this area of storage for any operation 

associated with the record. 
 

Example 

The following statements bind the map EMPMAPLR and its five associated map records: 

BIND MAP EMPMAPLR. 

BIND MAP EMPMAPLR RECORD EMPLOYEE. 

BIND MAP EMPMAPLR RECORD DEPARTMENT. 

BIND MAP EMPMAPLR RECORD JOB. 

BIND MAP EMPMAPLR RECORD OFFICE. 

BIND MAP EMPMAPLR RECORD EMP-DATE-WORK-REC. 
 

Status Codes 

After completion of the BIND MAP function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 



BIND PROCEDURE 

 

Chapter 6: Data Manipulation Language Statements  123  

 

BIND PROCEDURE 

The BIND PROCEDURE statement establishes communication between a program and a 
DBA-written database procedure (for example, a security routine). You should use this 
statement only when the application program is required to pass to the procedure more 
information than is provided by the DBMS itself. Such instances are unusual; in most 

cases, you will  not be aware of which procedures gain control before or after various 
DML functions. 

The BIND PROCEDURE statement is used in both the navigational and the 
non-navigational environments. 

 

Syntax 

►►─── BIND PROCEDURE FOR procedure-name TO procedure-control-location . ──────►◄ 
 

Parameters 

procedure-name 

Specifies the database procedure in program variable storage to be made available 
to the program. 

TO procedure-control-location 

Specifies the 256-byte (fixed-length) location to which the named procedure will  be 
bound. 

 

A program that runs in a different partition from the central version may need to 
pass certain information to the database procedure. When the DBMS invokes the 
database procedure, this information is copied from the program storage area 

identified by procedure-control-location into the IDMS application program 
information block. The information passed is the information in 
procedure-control-location when the BIND PROCEDURE was performed; it is not the 

information in the program's storage at the time of the procedure call. 
 

Example 

The following statement binds the procedure with the variable name PROGCHEK to the 
256-byte area PROC-CTL: 

BIND PROCEDURE FOR PROGCHEK TO PROC-CTL. 
 



BIND RECORD 

 

124  DML Reference Guide for COBOL 

 

Status Codes 

After completion of the BIND PROCEDURE function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

1400 The BIND PROCEDURE statement cannot be recognized. This code 
usually indicates that the IDMS communications block 

(SUBSCHEMA-CTRL) is not aligned on a fullword boundary. 

1408 The named procedure is not in the specified subschema. 

1418 The procedure has been bound improperly to location 0. 

1472 The available memory is insufficient to dynamically load the database 
procedure. 

1474 An attempt to load a module from the load/core-image library or 
DDLDCLOD has failed. 

BIND RECORD 

The BIND RECORD statement establishes  addressability for a record in program variable 
storage. In most cases, you need not issue individual BIND RECORD statements since the 

necessary statements are generated as a group by the COPY IDMS SUBSCHEMA-BINDS 
statement (see Chapter 5: (see page 67)). However, you can issue BIND RECORD 
commands separately as necessary (for example, to bind several records to the same 
storage location). In any case, addressability must be established for each subschema 

record to be used by the program. 
 

The program should perform the IDMS-STATUS routine after each BIND RECORD 
statement to ensure that the statement was executed successfully. When AUTOSTATUS 
is in use (see AUTOSTATUS Protocols  (see page 63)), a PERFORM IDMS-STATUS 
operation occurs automatically after each BIND RECORD statement, even if the BIND 

RECORD statements are generated as a group by a COPY IDMS SUBSCHEMA-BINDS 
statement. You should use COPY IDMS SUBSCHEMA-BINDS only when AUTOSTATUS is in 
use. 

 

Syntax 

►►─── BIND ─┬─ record-name ─┬──────────────────────┬─┬─ . ────────────────────►◄ 
            │               └─ TO record-location ─┘ │ 
            │                                        │ 
            └─ record-location WITH record-name ─────┘ 

 



BIND RECORD 

 

Chapter 6: Data Manipulation Language Statements   125  

 

Parameters 

record-name 

Specifies the record to be bound to a location in variable storage. 

The specified record must be included in the subschema. 

TO record-location  

Specifies the location to which the record is to be bound. The location 
corresponds to the record description as copied into the program manually or 
automatically through DATA DIVISION statements. 

Note: record-location must be the same length as record-name. 
 
 

Note: Exercise caution when using the TO record-location option because 

source-object mismapping can result from improper use. In cases where more than 
one copy of a given database record description is present in the program, you 
must ensure that the proper record description is bound at the proper time. 

 

record-location WITH record-name 

Binds a record name literal, specified by record-name, with a variable storage 

record description, specified by record-location. Record-name must specify a record 
included in the subschema. 

 

Example 

The following statement binds the EMPLOYEE record: 

BIND EMPLOYEE. 
 

Status Codes 

After completion of the BIND RECORD function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

1400 The BIND RECORD statement cannot be recognized. This code usually 

indicates that the IDMS communications block (SUBSCHEMA-CTRL) is 
not aligned on a fullword boundary. 

1408 The named record is not in the subschema. The program has 
probably invoked the wrong subschema. 

1418 The record has been bound improperly to location 0. 

1472 The available memory is insufficient to dynamically load a database 
procedure. 



BIND RUN-UNIT 

 

126  DML Reference Guide for COBOL 

 

Status code Meaning 

1474 An attempt to load a module from the load/core-image library or 

DDLDCLOD has failed. 

BIND RUN-UNIT 

The BIND RUN-UNIT statement establishes a run unit for accessing the database, 

identifies the location of the IDMS communications block being used, and names the 
subschema to be loaded for the run unit. BIND RUN-UNIT can also name the node under 
which the run unit will  execute and identify the database to be accessed. BIND 
RUN-UNIT must be the first functional DML call  passed to the DBMS at execution time; it 

must logically precede all  other DML statements (for example, BIND RECORD, READY, 
FIND) in the program's PROCEDURE DIVISION. UTM modes only: You must move LOW 
VALUES to SUBSCHEMA-CTRL before issuing the BIND RUN-UNIT statement. 

 

When AUTOSTATUS is in use, COPY IDMS SUBSCHEMA BINDS can be used to 

automatically invoke the BIND RUN-UNIT statement and the appropriate BIND RECORD 
statements (see Chapter 5: (see page 67)). 

 

If program registration is in effect (that is, all  programs must be registered in the data 
dictionary before compilation), the program must initialize the PROGRAM-NAME field of 
the IDMS communications block either automatically or manually: 

 

■ Automatically—A COBOL MOVE statement automatically generated by COPY IDMS 
SUBSCHEMA-BINDS moves the program name (stated in the IDENTIFICATION 

DIVISION) to the PROGRAM-NAME field. 

■ Manually—A COBOL MOVE statement is coded by the programmer before the BIND 
RUN-UNIT statement is executed. For example: 

MOVE 'EMPDISP' TO PROGRAM-NAME. 

The BIND RUN-UNIT statement is used in both the navigational and the 
non-navigational environments. 

 

Syntax 

►►─── BIND RUN-UNIT ─┬──────────────────────────┬─────────────────────────────► 
                     └─ FOR subschema-name ─────┘ 
 
 ►─┬────────────────────┬─┬────────────────────────┬──────────────────────────► 
   └─ DBNODE nodename ──┘ └─ DBNAME database-name ─┘ 
 
 ►─┬─────────────────────┬────┬────────────────────────────┬─ . ──────────────►◄ 
   └─ DICTNODE nodename ─┘    └─ DICTNAME dictionary-name ─┘ 

 



BIND RUN-UNIT 

 

Chapter 6: Data Manipulation Language Statements   127  

 

Parameters 

FOR subschema-name 

Identifies a subschema view other than that specified in the DB clause of the 
SCHEMA SECTION. It must be the symbolic name of a user-defined eight-character 

field in variable storage. 

By default, if you do not specify a subschema, the run unit uses the subschema 
named in the DB clause of the SCHEMA SECTION. 

Note: Exercise care when using the FOR subschema-name option; improper use can 

lead to mismappings between the named subschema and record descriptions in 
variable storage. 

DBNODE 

Specifies the node where the database resides. 

nodename 

Either the symbolic name of a user-defined eight-character field in variable 
storage or the database name itself enclosed in quotation marks. 

  

DBNAME 

Specifies the database to be accessed by the run unit. 

database-name 

Either the symbolic name of a user-defined eight-character field in variable 
storage or the database name itself enclosed in quotation marks. 

DICTNODE 

Specifies the node that controls the dictionary where the subschema resides. 

nodename 

Either the symbolic name of a user-defined eight-character field in variable 
storage or the node name itself enclosed in quotation marks. 

 

DICTNAME 

Specifies the dictionary where the subschema resides. 

dictionary-name 

Either the symbolic name of a user-defined eight-character field in variable 
storage or the dictionary name itself enclosed in quotation marks. 

  

Note: The DBNODE, DBNAME, DICTNODE, and DICTNAME parameters can be 
overridden at runtime by the DCUF SET DBNODE/DBNAME and DCUF SET 

DICTNODE/DICTNAME commands. 
  



BIND RUN-UNIT 

 

128  DML Reference Guide for COBOL 

 

Batch users: The DBNODE AND DBNAME parameters can be overridden at runtime 
if the IDMSOPTI module or the SYSCTL clause in the system generation SYSTEM 

statement specifies a nodename or a dbname with the ALWAYS option. For more 
information about the use of DBNODE, DBNAME, DICTNODE, and DICTNAME, see 
the System Generation Guide. 

 

Example 

The following statement binds the run unit to the DBMS: 

BIND RUN-UNIT. 
 

Status Codes 

After completion of the BIND RUN-UNIT function, the ERROR-STATUS field in the IDMS 

communications block indicates the outcome of the operation: 
 

 

Status code Meaning 

0000 The request has been serviced successfully. 

1400 The BIND RUN-UNIT statement cannot be recognized. This code 

usually indicates that the IDMS communications block 
(SUBSCHEMA-CTRL) is not aligned on a fullword boundary. 

1410 Security violation; an existing access restriction or subschema usage 
prohibits execution of the specified DML function. For LRF users, the 

subschema in use allows access to database records only. Combined 
with a major code of 00, this code means the program has attempted 
to access a database record, but the subschema in use allows a ccess 

to logical records only. 

1417 The transaction manager encountered an error. See the log for 
additional information. 

1467 Invalid subschema load module; the subschema invoked does not 

match the subschema object tables. subschema object tables. 

1469 The run unit is not bound to the DBMS. This code indicates that the 
central version is not active, that the central version is not accepting 
new run units, or that the run unit's connection to the central version 

is broken due to timeout or other factors, as noted on the CV log. 

1470 A journal fi le will  not open (local mode only); under OS, the most 
probable cause is that a DD statement for the journal fi le is missing in 

the JCL. 

1472 There is insufficient memory to dynamically load a subschema  or 
database procedure. 

1473 The central version is not accepting new run units. 



BIND TASK 

 

Chapter 6: Data Manipulation Language Statements  129  

 

Status code Meaning 

1474 The subschema was not found in the dictionary load area or in the 

load library. 

1477 The run unit has been bound previously. 

1480 The node specified is not active or has been disabled. 

1481 The converted subschema requires specified database name to be in 
the DBNAME table. 

1482 The subschema must be named in the DBNAME table. 

1483 The available memory is insufficient to allocate native VSAM work 

areas. 

1491 The subschema requires a DBNAME to do the bind run unit. 

1492 No subschema areas map to DMCL. 

1493 A subschema area symbolic was not found in DMCL. 

1494 The specified dbname is neither a dbname defined in the DBNAME 
table, nor a SEGMENT defined in the DMCL. 

1495 The specified subschema failed DBTABLE mapping using the specified 

dbname. 

BIND TASK 

The BIND TASK statement initiates an CA IDMS task when the operating mode is 

DC-BATCH. This statement establishes communication with the DC system and, if 
accessing CA IDMS queues, allocates a packet-data movement buffer to contain the 
queue data. Once a task is started, the program can issue any number of consecutive 
BIND-READY-FINISH sequences. 

Note: Do not issue this command in local mode. 
 

Syntax 

►►─── BIND TASK ──────────────────────────────────────────────────────────────► 
 
 ►─┬───────────────────────┬─ . ──────────────────────────────────────────────►◄ 
   └─ NODENAME (nodename) ─┘ 

 



BIND TRANSACTION STATISTICS  

 

130  DML Reference Guide for COBOL 

 

Parameters 

NODENAME 

Specifies the node to which the task will  be bound. 

nodename  

Either the symbolic name of a user-defined field that contains the nodename or 
the nodename itself enclosed in quotation marks. The specified node name 
must match the node named in the DDS statement at system generation. 

 

Example 

The following statement establishes communication with a DC system. 
BIND TASK. 

 

Status Codes 

After completion of the BIND TASK function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

BIND TRANSACTION STATISTICS 

The BIND TRANSACTION STATISTICS statement defines the beginning of a transaction 
for the purposes of collecting transaction statistics. CA IDMS allocates a block of storage 

in which to accumulate these statistics. Because this block is owned by the logical 
terminal associated with the current task, the BIND TRANSACTION STATISTICS 
statement cannot be used with nonterminal tasks. 

 

Note: If a transaction statistics block (TSB) is already allocated for the logical terminal 
associated with the current task, the BIND request clears the block and writes any 

previously accumulated transaction statistics to the log fi le. 
 

When a BIND TRANSACTION STATISTICS request is issued, the transaction is assigned a 

40-character identifier; the first 32 characters are the identifier of the signed-on user (if 
any) and the last eight characters are the identifier of the logical terminal associated 
with the current task. 

 

Syntax 

►►─── BIND TRANSACTION STATISTICS . ──────────────────────────────────────────►◄ 
 



CHANGE PRIORITY 

 

Chapter 6: Data Manipulation Language Statements   131  

 

Example 

The following example il lustrates the BIND TRANSACTION STATISTICS statement: 

BIND TRANSACTION STATISTICS. 
 

Status Codes 

After completion of the BIND TRANSACTION STATISTICS function, the ERROR-STATUS 

field in the IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully; any existing transaction 

statistics block was written to the log fi le before being cleared 

3801 Storage for the transaction statistics block is not available; to wait 
would cause a deadlock 

3810 A new transaction statistics block has been allocated 

3831 Either the parameter l ist is invalid or no logical terminal element 
(LTE) is associated with the issuing task 

3850 The collection of transaction statistics or task statistics has not been 

enabled during system generation 

CHANGE PRIORITY 

The CHANGE PRIORITY statement changes the dispatching priority of the issuing task. 

The new dispatching priority applies only to the current execution of the task. CHANGE 
PRIORITY does not relinquish control to another task and cannot be used to alter the 
priority of other tasks. 

 

Syntax 

►►─── CHANGE PRIORITY to priority . ──────────────────────────────────────────►◄ 
 

Parameters 

priority 

The new dispatching priority for the issuing task. 

Either the symbolic name of a user-defined field that contains the priority value or 
the value itself expressed as a numeric constant in the range 0 through 240. 

 



CHECK TERMINAL 

 

132  DML Reference Guide for COBOL 

 

Example 

The following example changes the dispatching priority of the issuing task to the va lue 
contained in the PRIORITY-210 field: 

CHANGE PRIORITY TO PRIORITY-210. 
 

Status Codes 

After completion of the CHANGE PRIORITY function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

CHECK TERMINAL 

The CHECK TERMINAL statement delays task processing until  a previously issued I/O 

request has completed. 

If a READ TERMINAL, WRITE TERMINAL, or WRITE THEN READ TERMINAL request 
specifies the NOWAIT option, the program must issue a CHECK TERMINAL request 
before specifying any other I/O operation. If the I/O operation is not complete, the task 

execution is suspended. When the I/O operation is complete, the task resumes 
execution according to its established dispatching priority. 

 

Syntax 

►►─── CHECK TERMINAL ─┬───────────────┬───────────────────────────────────────► 
                      └─ GET STORAGE ─┘ 
 
 ►─── INTO input-data-location ─┬─ TO end-input-data-location ───────┬────────► 
                                └─ MAX LENGTH input-data-max-length ─┘ 
 
 ►─┬───────────────────────────────────────────────┬─ . ──────────────────────►◄ 
   └─ RETURN LENGTH into input-data-actual-length ─┘ 

 



CHECK TERMINAL 

 

Chapter 6: Data Manipulation Language Statements   133  

 

Parameters 

GET STORAGE 

Asynchronous requests only. Acquires an input buffer for the data being read into 
the program; CA IDMS allocates the required storage when the read operation is 

complete. 

INTO 

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION data area 
reserved for the input data stream. 

input-data-location  

Specifies the symbolic name of a user-defined field. 

If GET STORAGE is specified, the data area reserved for the input data stream 

must be an unallocated 01-level LINKAGE SECTION entry. If GET STORAGE is not 
specified, the data area must be a previously allocated WORKING-STORAGE 
SECTION or LINKAGE SECTION entry. 

 
 

TO 

Specifies the end of the data area reserved for the input. 

end-input-data-location 

Either the symbolic name of a user-defined dummy byte field or a field that 

contains a data item not associated with the data area reserved for the input 
data stream. 

 
 

MAX LENGTH 

Defines the length, in bytes, of the data area reserved for the input data stream. 

input-data-max-length 

Either the symbolic name of a user-defined field that contains the length of the 

data area or the length itself expressed as a numeric constant. 

If the input data stream is larger than the data area reserved in the 
WORKING-STORAGE SECTION or LINKAGE SECTION, the data stream is 

truncated as needed to fit the available space. 
  

RETURN LENGTH INTO 

Specifies the location to return the actual length of the input data stream. 

input-data-actual-length 

The symbolic name of a user-defined field. If the data stream has been 
truncated, input-data-actual-length will  contain the original length before 
truncation. 

 



CHECK TERMINAL 

 

134  DML Reference Guide for COBOL 

 

Example 

The following statement determines whether an I/O operation is complete, acquires an 
input buffer, and reads 72 bytes of data into TERM-LINE: 

CHECK TERMINAL 

  GET STORAGE 

  INTO TERM-LINE MAX LENGTH 72. 
 

Status Codes 

After completion of the CHECK TERMINAL function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4519 The input area specified for the return of data is too small; the 
returned data has been truncated to fit the available space. 

4525 The output operation has been interrupted; the terminal operator 

has pressed ATTENTION or BREAK. 

4526 A logical error (for example, an invalid control character) has been 
encountered in the output data stream. 

4527 A permanent I/O error has occurred during processing. 

4528 The dial-up line for the terminal being used has been disconnected. 

4531 The terminal request block (TRB) contains an invalid field, indicating a 
possible error in the program's parameters. 

4535 Storage for the input buffer cannot be acquired because the specified 
01-level LINKAGE SECTION entry has been allocated. 

4537 Storage for the input buffer cannot be acquired because the specified 

data area is defined in the WORKING-STORAGE SECTION rather than 
in the LINKAGE SECTION. 

4538 The specified 01-level LINKAGE SECTION entry has not been allocated 
and the GET STORAGE option has not been specified. No I/O has 

been performed. 

4539 The terminal device associated with the issuing task is out of service. 



COMMIT 

 

Chapter 6: Data Manipulation Language Statements   135  

 

COMMIT 

The COMMIT statement commits changes made to the database through an individual 
run unit or through all  database sessions associated with a task. A task-level commit also 
commits all  changes made in conjunction with scratch, queue, and print activity. 

If the commit applies to an individual run unit and the run unit is sharing its transaction 

with another database session, the run unit's changes may not be committed at the 
time the COMMIT statement is  executed. 

 

Note: For more information about the impact of transaction sharing, see the CA IDMS 
Navigational DML Programming Guide. 

Run units (and SQL sessions) impacted by the COMMIT statement remain active after 

the operation is complete. 
 

The COMMIT statement is used in both the navigational and logical record facility 
environments. The COMMIT TASK statement is also used in an SQL programming 
environment. 

Currency 

Use of the ALL option, as in COMMIT ALL, sets all  currencies to null. 
 

Syntax 

►►─── COMMIT ─┬────────┬─┬───────┬─ . ────────────────────────────────────────►◄ 
              └─ TASK ─┘ └─ ALL ─┘ 

 

Parameters 

TASK 

Commits the changes made by all  scratch, queue, and print activity and all  top-level 
run units associated with the current task. Its impact on SQL sessions associated 
with the task depends on whether those sessions are suspended and whether their 

transactions are eligible to be shared. 

More information: 
 

For more information about the impact of a COMMIT TASK statement on SQL 
sessions, see the CA IDMS SQL Programming Guide. 

For more information about run units and the impact of COMMIT TASK, see the CA 

IDMS Navigational DML Programming Guide. 
  

(ALL) 

Releases all  currency locks held on records in database, scratch, and queue areas 

associated with the issuing task (COMMIT TASK ALL) or run unit (COMMIT ALL) and 
sets all  currencies to null. 

 



CONNECT 

 

136  DML Reference Guide for COBOL 

 

Example 

The following statement commits changes made by the run unit through which it is 
issued: 

COMMIT. 
 

Status Codes 

After completion of the COMMIT function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

5031 The specified request is invalid; the program may contain a logic 
error 

5097 An error was encountered processing a syncpoint request; check the 

log for details  

CONNECT 

The CONNECT statement establishes a record occurrence as a member of a set 

occurrence. The specified record must be defined as an optional automatic, optional 
manual, or mandatory manual member of the set. Native VSAM users:. The CONNECT 
statement is not valid since all sets in native VSAM data sets must be defined as 

mandatory automatic. 
 

Before execution of the CONNECT statement, the following conditions must be satisfied: 

■ All areas affected either explicitly or implicitly by the CONNECT statement must be 
readied in one of the update usage modes (see READY (see page 272) later in this 
chapter). 

 

■ The specified record must be established as current of its record type. 

■ The occurrence of the set into which the specified record will  be connected must be 

established. The current record of set determines the set occurrence and, if set 
order is NEXT or PRIOR, the position at which the specified record will  be connected 
within the set. 

 

Currency 

Following successful execution of a CONNECT statement, the specified record is 
current of run unit, its record type, its area, and all  sets in which it currently 
participates. 

 
 



CONNECT 

 

Chapter 6: Data Manipulation Language Statements   137  

 

Connecting a Record to a Set 

The following figure il lustrates the steps required to connect an EMPLOYEE record 

to an occurrence of the OFFICE-EMPLOYEE set. 

To connect EMPLOYEE 459 to OFFICE 1 in the OFFICE-EMPLOYEE set, establish 
EMPLOYEE 459 as current of record type, locate the proper occurrence of the 

OFFICE record, and issue the CONNECT command. 

  

  

Syntax 

►►─── CONNECT record-name TO set-name . ──────────────────────────────────────►◄ 
 



CONNECT 

 

138  DML Reference Guide for COBOL 

 

Parameters 

CONNECT 

Specifies the record whose current occurrence is to be connected to the current 
occurrence of the specified set. 

record-name 

Must be a record included in the subschema and must be defined as an 
optional automatic, optional manual, or mandatory manual member of the set 
to which it is being connected. 

  

TO 

Specifies the set to which the member record is to be connected. 

set-name  

Specifies the name of a set included in the subschema. The record is connected 
to the set in accordance with the ordering rules defined for that set in the 
schema. 

 

Example 

The following statement connects the current EMPLOYEE record to the current 
occurrence of the OFFICE-EMPLOYEE set: 

CONNECT EMPLOYEE TO OFFICE-EMPLOYEE. 
 

Status Codes 

After completion of the CONNECT function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

0705 The CONNECT would violate a duplicates -not-allowed option. 

0706 Currency has not been established for the named record or set. 

0708 The named record is not in the subschema. The program has 
probably invoked the wrong subschema. 

0709 The named record's area has not been readied in one of the update 
usage modes. 

0710 The subschema specifies an access restriction that prohibits 
connecting the named record in the named set. 



DC RETURN 

 

Chapter 6: Data Manipulation Language Statements   139  

 

Status code Meaning 

0714 The CONNECT statement cannot be executed because the named 

record has been defined as a mandatory automatic member of the 
set. 

0716 The record cannot be connected to a set in which it is already a 

member. 

0721 An area other than the area of the named record has been readied 
with an incorrect usage mode. 

0725 Currency has not been established for the named set type. 

DC RETURN 

The DC RETURN statement returns control to a program at the next higher level within a 
task. Additionally, you can use the DC RETURN statement to specify: 

■ The next task to be initiated on the same terminal  

■ Recovery procedures for abend routines established by SET ABEND EXIT functions  

■ The action to be taken if the user fails to initiate the next task 
 
 

Following a DC RETURN request, control returns to the program at the next higher level 
within the task. If the issuing program is the highest level program, control returns to CA 
IDMS. Any DC RETURN statement can include a NEXT TASK CODE option to specify the 

next task to initiate. However, the position of the issuing program within the task 
governs whether the specified task will, in fact, receive control. 

 
 

DC RETURN Processing 

The following figure il lustrates how a task is executed when DC RETURN statements 
within three programs specify the NEXT TASK CODE option. 

 

Task A invokes program A. Program A links to program B, which in turn links to program 
C. Program C issues a DC RETURN NEXT TASK CODE 'Z' request; control returns to 
program B. Program B contains a DC RETURN NEXT TASK CODE 'Y' request, which takes 

precedence over program C's DC RETURN specification. Control returns to program A, 
which issues a DC RETURN NEXT TASK CODE 'X' request. Because program A is at the 
highest level in the task, task X will  be invoked. 

  



DC RETURN 

 

140  DML Reference Guide for COBOL 

 

                   IDMS-DC 
─────────────────────────────────────────────────────────────────────── 
                                                   TASK X 
     TASK A             ┌───────────────────────────┐ 
 ───────────┬───────────▲───────────────────────────┼────────────────── 
            │           │                           │ 
            │           │                    ┌──────▼──────┐ 
            │           │                    │             │ 
   ┌────────▼────────┐  │                    │  PROGRAM X  │ 
   │  PROGRAM A      │  │                    │             │ 
   │    .            │  │                    └─────────────┘ 
   │    .            │  │      (RETURN) 
 ┌─┤    .            ◄──┼─────────────────────────┐ 
 │ │  DC RETURN      │  │                         │ 
 │ │ NEXT TASK CODE  │  │                         │ 
 │ │    X            │  │                         │ 
 │ └────────┬────────┘  │                         │ 
 │          └───────────┘                         │ 
 │                                                │ 
 │                                                │ 
 │                                                │ 
 │                                                │ 
 │                                                │ 
 │     (LINK B)              ┌─────────────────┐  │ 
 └───────────────────────────►  PROGRAM B      │  │ 
                             │    .            │  │ 
                             │    .            │  │ 
                           ┌─┤    .            │  │     (RETURN) 
                           │ │  DC RETURN      ◄──┼─────────────────┐ 
                           │ │ NEXT TASK CODE  │  │                 │ 
                           │ │    Y            │  │                 │ 
                           │ └────────┬────────┘  │                 │ 
                           │          └───────────┘                 │ 
                           │                                        │ 
                           │                                        │ 
                           │     (LINK C)      ┌─────────────────┐  │ 
                           └───────────────────►  PROGRAM C      │  │ 
                                               │    .            │  │ 
                                               │    .            │  │ 
                                               │    .            │  │ 
                                               │  DC RETURN      │  │ 
                                               │ NEXT TASK CODE  │  │ 
                                               │    Z            │  │ 
                                               └────────┬────────┘  │ 
                                                        └───────────┘ 

 
 

When CA IDMS receives control from the highest level program that issued a DC 

RETURN NEXT TASK CODE request, the specified task is executed immediately if the 
specified task code has been assigned the NOINPUT attribute during system generation; 
if the task code was assigned the INPUT attribute, the task executes only when the user 

presses an attention identifier (AID) key. Typical AID keys include all  PA and PF keys, 
ENTER, and CLEAR. 

 

Syntax 

►►─── DC RETURN ──────────────────────────────────────────────────────────────► 
 
 ►─┬─────────────────────────────────┬────────────────────────────────────────► 
   └─ NEXT TASK CODE next-task-code ─┘ 
 
 ►─┬─────────────┬────────────────────────────────────────────────────────────► 
   ├─ NORMAL ◄ ──┤ 
   ├─ ABORT ─────┤ 
   ├─ CONTINUE ──┤ 
   └─ IMMEDIATE ─┘ 

 



DC RETURN 

 

Chapter 6: Data Manipulation Language Statements   141  

 

 ►─┬───────────────────────────────────────────────┬──────────────────────────► 
   │           ┌─────────────────────────────────┐ │ 
   └─ TIMEOUT ─▼─┬─ INTERVAL timeout-interval ─┬─┴─┘ 
                 └─ PROGRAM timeout-program ───┘ 
 
 ►─┬──────────────────────────────────────────────────────────────────────────►─ 
   └─ NEXT TASK INTERVAL start-interval EVENT TYPE ─┬─ INTERNAL ─┬───────────── 
                                                    └─ EXTERNAL ─┘ 
 
─►─────────────────────────┬─ . ──────────────────────────────────────────────►◄ 
 ──┬─────────────────────┬─┘ 
   ├─ EVENT ecb ─────────┤ 
   └─ EVENT NAME ecb-id ─┘ 

 

Parameters 

NEXT TASK CODE 

Specifies the next task to be initiated on the same terminal. 

next-task-code  

Either the symbolic name of a user-defined field that contains the task code or 
the task code itself enclosed in quotation marks. The task code must be defined 
to the DC system under which it is running, either during system generation or 

at runtime. 
 
 

NORMAL/ABORT/CONTINUE 

Defines the recovery action to take within the program logic (CA IDMS recovery 
occurs automatically) and specifies whether to execute abend routines for 
higher-level programs. These options apply to DC RETURNs issued from abend 
routines established by SET ABEND EXIT (STAE) functions only. 

NORMAL  

Specifies to not attempt recovery and execute all  abend routines established 
for programs at higher task levels. 

This is the default. 
 

ABORT 

Specifies to not attempt recovery and abort the task immediately without 
executing any abend routines established for programs at higher task levels. 

CONTINUE 

Specifies to return control to the program that failed at an address established 
in the abend control element (ACE) for the program. 

IMMEDIATE 

Is ignored when issued from ABEND routine; it is only applied when NOT issued 

from an ABEND routine. 
 

TIMEOUT 

Specifies the action to take if the user fails to enter data required to initiate a task. 
This parameter overrides resource timeout interval and program specifications 
established during system generation. 

  



DC RETURN 

 

142  DML Reference Guide for COBOL 

 

INTERVAL 

Specifies the time, in seconds, that can elapse before releasing the resources held 

by the terminal on which the task is executing. 

timeout-interval 

Either the symbolic name of a user-defined PIC S9(4) COMP SYNC (halfword) 

field that contains the timeout interval or the interval itself expressed as a 
numeric constant. 

 
 

PROGRAM 

Specifies the program to be invoked to handle and release resources held by the 
terminal on which the task is executing when the specified timeout interval has 
been reached. 

timeout-program  

Either the symbolic name of a user-defined field that contains the program 
name or the name itself enclosed in quotation marks. 

The specified program must be defined to the DC system either during system 

generation or at runtime. 
 

NEXT TASK INTERVAL start-interval 

Either the symbolic name of a user-defined PIC S9(4) COMP SYNC (halfword) field 
that contains the start interval or the interval itself expressed as a numeric 
constant. 

Note: When specified alone, NEXT TASK INTERVAL will  cause task to be initiated 
after start-interval. When specified along with EVENT/EVENT NAME, task will  be 
initiated either after start-interval or posting of the EVENT(S)/EVENT NAME(S), 
whichever occurs first. 

  

EVENT TYPE INTERNAL/EXTERNAL 

Specifies events that happen either internal or external to the system. 

INTERNAL  

An event that occurs within IDMS-DC, such as waiting for space in a storage 
pool, or waiting for a completed task. 

EXTERNAL  

An event that occurs outside the system's control, such as waiting for a fi le to 
be read, or waiting for an I/O to complete. 

 
 

EVENT 

Defines one or more ECBs upon which the task will  wait. 

ecb  

The symbolic name of a user-defined area that contains three PIC S9(8) COMP 

SYNC (fullword) fields. Multiple EVENT parameters must be separated by at 
least one blank. 

 



DELETE QUEUE 

 

Chapter 6: Data Manipulation Language Statements  143  

 

EVENT NAME 

Specifies the ECB upon which the task will  wait. 

Note: When specified alone, NEXT TASK INTERVAL will  cause task to be initiated 
after start-interval. When specified along with EVENT/EVENT NAME, task will  be 
initiated either after start-interval or posting of the EVENT(S)/EVENT NAME(S), 

whichever occurs first. 

ecb-id  

Either the symbolic name of a user-defined field that contains the ECB ID or the 
ID itself enclosed in quotation marks. 

 

Example 

The following statement i l lustrates the use of DC RETURN. The task code associated with 
MENU-TASK-CODE, if defined with the INPUT parameter, will  be invoked when the user 
next presses an AID key; if MENU-TASK-CODE is defined with the NOINPUT parameter, it 

will  be invoked immediately. 

DC RETURN 

  NEXT TASK CODE MENU-TASK-CODE. 

Status Codes 

Because control is returned to the next-higher level, there is no need to check the 
ERROR-STATUS field. 

 

DELETE QUEUE 

The DELETE QUEUE statement deletes all  or part of a queue. If only one queue record is 
deleted, CA IDMS maintains currency within the queue by saving the next and prior 

currencies of the deleted record. 
 

Syntax 

►►─── DELETE QUEUE ─┬───────────────┬─┬─────────────────┬─ . ─────────────────►◄ 
                    └─ ID queue-id ─┘ └─┬─ CURRENT ◄ ─┬─┘ 
                                        └─ ALL ───────┘ 

 

Parameters 

ID 

Specifies the queue that contains the record to be deleted. 

queue-id 

Either the symbolic name of a user-defined field that contains the ID or the ID 
itself enclosed in quotation marks. If you do not specify an ID, a blank ID is 

assumed. 
 



DELETE SCRATCH 

 

144  DML Reference Guide for COBOL 

 

CURRENT 

Deletes the current record of the queue associated with the requesting task. 

This is the default. 

ALL 

Deletes all  records in the queue and the queue header ID. 
 

Example 

The following example il lustrates a request to delete the current record in the RES-Q 
queue: 

DELETE QUEUE 

  ID 'RES-Q' 

  CURRENT. 
 

Status Codes 

After completion of the DELETE QUEUE function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4404 The requested queue header record cannot be found. 

4405 The requested queue record cannot be found. 

4406 No resource control element (RCE) exists for the queue record, 
indicating that currency has not been established. 

4407 A database error occurred during queue processing.  A common 
cause is a DBKEY deadlock.  For a PUT QUEUE operation, this code 
can also mean that the queue upper l imit has been reached. 

If a database error has occurred, there are usually be other messages 
in the CA-IDMS/DC/UCF log indicating a problem encountered in 
RHDCRUAL, the internal Run Unit Manager.  If a deadlock has 
occurred, messages DC001000 and DC001002 are also produced. 

4431 The parameter l ist is invalid. 

DELETE SCRATCH 

The DELETE SCRATCH statement deletes one scratch record or all  records in the scratch 

area. 
 



DELETE SCRATCH 

 

Chapter 6: Data Manipulation Language Statements   145  

 

Syntax 

►►─── DELETE SCRATCH ─────────────────────────────────────────────────────────► 
 
 ►─┬───────────────────────────┬──────────────────────────────────────────────► 
   └─ AREA ID scratch-area-id ─┘ 
 
 ►─┬───────────────────────────────┬──────────────────────────────────────────► 
   ├─ CURRENT ◄ ───────────────────┤ 
   ├─ FIRST ───────────────────────┤ 
   ├─ LAST ────────────────────────┤ 
   ├─ NEXT ────────────────────────┤ 
   ├─ PRIOR ───────────────────────┤ 
   ├─ ALL ─────────────────────────┤ 
   └─ RECORD ID scratch-record-id ─┘ 
 
 ►─┬───────────────────────────────────────────────┬─ . ──────────────────────►◄ 
   └─ RETURN RECORD ID into return-scratch-record ─┘ 

 

Parameters 

AREA ID 

Specifies the scratch area associated with the scratch records being deleted. 

scratch-area-id 

Either the symbolic name of a user-defined field that contains the scratch area 
ID or the ID itself enclosed in quotation marks. If you do not specify an AREA ID, 

an area ID of eight blanks is assumed. 
 

CURRENT 

Deletes the current record in the scratch area (that is, that record most recently 
referenced by another scratch function). 

This is the default. 

FIRST 

Deletes the first record in the specified scratch area. 
 

LAST 

Deletes the last record in the specified scratch area. 
 

NEXT 

Deletes the next record in the specified scratch area. 
 

PRIOR 

Deletes the prior record in the specified scratch area. 

ALL 

Deletes all  records in the specified scratch area. 
 
 



DELETE TABLE 

 

146  DML Reference Guide for COBOL 

 

RECORD ID 

Deletes the identified record. 

scratch-record-id 

The symbolic name of a user-defined field that contains the ID. 

RETURN RECORD ID into 

Specifies the location in the program in which to return the ID of the last record 
deleted by means of the DELETE SCRATCH function. 

return-scratch-record 

The symbolic name of a user-defined four-byte field. 
 

Example 

The following example il lustrates a request to delete the scratch record that is prior to 
the current scratch record and return the ID of the deleted record to the SCR-REC-ID 
field: 

DELETE SCRATCH 

  PRIOR 

  RETURN RECORD ID INTO SCR-REC-ID. 
 

Status Codes 

After completion of the DELETE SCRATCH function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4303 The requested scratch area ID cannot be found 

4305 The requested scratch record ID cannot be found 

4307 An I/O error has occurred during processing 

4331 The parameter l ist is invalid 

DELETE TABLE 

The DELETE TABLE statement notifies CA IDMS that the issuing task has finished usi ng a 
table that has been loaded into the program pool by using the LOAD TABLE function. 
DELETE TABLE does not physically delete reusable tables from the program pool; rather, 

it decrements the in-use count maintained by CA IDMS. An in-use count of 0 signals to 
reuse the space occupied by the table. 

 



DELETE TABLE 

 

Chapter 6: Data Manipulation Language Statements   147  

 

Syntax 

►►── DELETE TABLE from 01-level-program-location . ───────────────────────────► 
 
 ►─┬──────────────────────┬─┬────────────────────────────┬────────────────────► 
   └─ DICTNODE nodename ──┘ └─ DICTNAME dictionary-name ─┘ 
 
 ►─┬────────────────────────┬─ . ─────────────────────────────────────────────►◄ 
   └─ LOADLIB library-name ─┘ 

 

Parameters 

01-level-program-location 

The LINKAGE SECTION entry of the 01-level record area specified in the associated 
LOAD TABLE request. 

DICTNODE 

Specifies the node that controls the dictionary where the subschema containing the 

table resides. 

nodename 

Specifies the symbolic name of a user-defined eight-character field in variable 

storage. 
 

DICTNAME 

Specifies the dictionary where the subschema containing the table resides. 

dictionary-name  

Specifies the symbolic name of a user-defined eight-character field in variable 

storage. 

LOADLIB 

Specifies the load library containing the table. 

library-name  

Specifies the symbolic name of a user-defined eight-character field in variable 
storage. 

 

Example 

The following example releases a previously loaded table from the location in variable 

storage identified by RATE-TABLE: 

DELETE TABLE FROM RATE-TABLE. 
 



DEQUEUE 

 

148  DML Reference Guide for COBOL 

 

Status Codes 

After completion of the DELETE TABLE function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3433 The specified table was not loaded by the task 

DEQUEUE 

The DEQUEUE statement releases resources acquired by the issuing task with an 
ENQUEUE request. Acquired resources not released explicitly with a DEQUEUE request 
are released automatically at task termination. 

 

Syntax 

►►─── DEQUEUE ─┬─ ALL ────────────────────────────────────────────┬─ . ───────►◄ 
               │ ┌──────────────────────────────────────────────┐ │ 
               └─▼─ NAME resource-id LENGTH resource-id-length ─┴─┘ 

 

Parameters 

ALL 

Releases all  resources acquired by the issuing task by means of ENQUEUE requests. 
 

NAME 

Specifies a resource to be dequeued. 

Multiple resource specifications must be separated by at least one blank. 

resource-id 

The symbolic name of a user-defined field that contains the resource ID. 
 

LENGTH 

Specifies the length of the resource. 

resource-id-length 

Either the symbolic name of a PIC S9(8) COMP SYNC (fullword) field that 
contains the length of the resource ID or the length itself expressed as a 
numeric constant. 

 



DISCONNECT 

 

Chapter 6: Data Manipulation Language Statements  149  

 

Example 

The following statement illustrates a request to release all the resources enqueued by 
the issuing task: 

DEQUEUE PAYROLL-LOCK 

    LENGTH 16. 
 

Status Codes 

After completion of the DEQUEUE function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3913 At least one resource ID cannot be found; all  resources that were 
located have been dequeued 

3931 The parameter l ist is invalid. 

DISCONNECT 

The DISCONNECT statement cancels the current membership of a record occurrence in a 
set occurrence. The named record must be defined as an optional member of the 

named set. Native VSAM users:. The DISCONNECT statement is not valid since all  sets in 
native VSAM data sets must be defined as mandatory automatic. 

 
 

Before execution of the DISCONNECT statement, the following conditions must be 
satisfied: 

■ All areas affected either explicitly or implicitly by the DISCONNECT statement must 
be readied with one of the three update usage modes (see READY (see page 272) 

later in this chapter). 

■ The named record must be established as current of its record type. 

■ The named record must currently participate as a member in an occurrence of the 
named set. 

 

Following successful execution of the DISCONNECT statement, the named record can no 

longer be accessed through the set for which membership was cancelled. The 
disconnected record can stil l  be accessed either by means of a complete scan of the 
area in which it participates or directly through its db-key, if known. A disconnected 

record can also be accessed either through any other sets in which it participates as a 
member or if it has a location mode of CALC. 

 



Disconnecting a Record from a Set 

 

150  DML Reference Guide for COBOL 

 

Currency 

A successfully executed DISCONNECT statement nullifies currency in the specified 

set. However, next, prior, and owner of set are maintained, enabling continued 
access within the set. The disconnected record is current of run unit, its record type, 
its area, and any other sets in which it participates. 

 

Disconnecting a Record from a Set 

The following figure il lustrates the steps required to disconnect an EMPLOYEE record 
from an occurrence of the OFFICE-EMPLOYEE set. 

To disconnect EMPLOYEE 4 from the OFFICE 1 of the OFFICE-EMPLOYEE set, enter the 
database on OFFICE, establish EMPLOYEE 4 as  current of the EMPLOYEE record type, 

and disconnect it from the OFFICE-EMPLOYEE set. 
 

  

  



Disconnecting a Record from a Set 

 

Chapter 6: Data Manipulation Language Statements   151  

 

Syntax 

►►─── DISCONNECT record-name FROM set-name . ─────────────────────────────────►◄ 
 

Parameters 

DISCONNECT 

Specifies the record to disconnect from the named set. 

record-name 

Must be a record included in the subschema and must be defined as an 
optional member of the specified set. 

 

FROM 

Specifies the set from which the named record will  be disconnected. 

set-name  

Specifies the name of a set included in the subschema. 
 

Example 

The following statement disconnects the current EMPLOYEE record from the 
OFFICE-EMPLOYEE set: 

DISCONNECT EMPLOYEE FROM OFFICE-EMPLOYEE. 
 

Status Codes 

After completion of the DISCONNECT function, the ERROR-STATUS field in the IDMS 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

1106 Currency has not been established for the named record 

1108 The named record is not in the subschema. The program has 
probably invoked the wrong subschema 

1109 The named record's area has not been readied in one of the update 
usage modes 

1110 The subschema specifies an access restriction that prohibits use of 

the DISCONNECT statement 

1115 The DISCONNECT statement cannot be executed because the named 
record has been defined as a mandatory member of the set 

1121 An area other than the area that contains the named record has been 

readied with an incorrect usage mode 



END LINE TERMINAL SESSION 

 

152  DML Reference Guide for COBOL 

 

Status code Meaning 

1122 The named record is not currently a member of the specified set 

END LINE TERMINAL SESSION 

The END LINE TERMINAL SESSION statement terminates the current l ine I/O session. All  
output data l ines that remain in the current buffer and all  pages queued for 

asynchronous I/O operations are deleted. 
 

Syntax 

►►─── END LINE TERMINAL SESSION . ────────────────────────────────────────────►◄ 
 

Example 

The following statement terminates a l ine mode I/O session: 

END LINE TERMINAL SESSION. 
 

Status Codes 

There are no status codes associated with the END LINE TERMINAL SESSION command. 
 

END TRANSACTION STATISTICS 

The END TRANSACTION STATISTICS statement defines the end of a transaction. The 
transaction typically ends when the issuing task terminates. Optionally, END 
TRANSACTION STATISTICS can be used to write the transaction statistics block (TSB) to 
the DC system log fi le and to return the TSB to a preallocated location in variable 

storage. You can define the length of the TSB. 
 

Syntax 

►►─── END TRANSACTION STATISTICS ─────┬───────────┬────────────────────────────► 
                                      ├─ WRITE ◄ ─┤   
                                      └─ NOWRITE ─┘ 
 
 ►───┬──────────────────────────────────┬──────────────────────────────────────► 
     └─ INTO return-stat-data-location ─┘ 
 
 ►───┬─────────────────────────────────┬────────────────────────────────────;──►◄ 
     └─ LENGTH ─┬─ 388 ◄───────────┬───┘  
                └─ len-return-TSB ─┘ 

 



END TRANSACTION STATISTICS  

 

Chapter 6: Data Manipulation Language Statements   153  

 

Parameters 

WRITE/NOWRITE 

Specifies whether the TSB is written to the DC system log fi le when the task 
terminates. 

Default: WRITE. 
 

INTO 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION data area into 
which to return the TSB. 

return-stat-data-location  

A fullword-aligned 388-byte field (you can customize the length using the 
LENGTH parameter).  

LENGTH 

Specifies the length of the returned TSB. To retrieve all  statistics including the DC 

extended statistics section that records CPU times in the Time of Day (TOD) format, 
specify LENGTH as 560. 

len-return-TSB 

Specifies either the symbolic name of a user-defined field that contains the 
length of the TSB, or the length expressed as a numeric constant. 

Limits: Integer of 388 or greater 

Default: If you do not specify len-return-TSB, the first 388 bytes of the TSB are 

returned. 
 

Example 

The following statement i l lustrates a request to end a transaction, write statistics to the 
log fi le, and return a copy of the TSB to the STATISTICS-BLOCK field: 

END TRANSACTION STATISTICS 

  WRITE 

  INTO STATISTICS-BLOCK. 
 

Status Codes 

After completion of the END TRANSACTION STATISTICS function, the ERROR-STATUS 
field in the IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

3801 Storage for the transaction statistics block is not available; to wait 

would cause a deadlock. 



ENDPAGE 

 

154  DML Reference Guide for COBOL 

 

Status code Meaning 

3813 No transaction statistics block exists; a BIND TRANSACTION 

STATISTICS request has not been issued. 

3831 Either the parameter l ist is invalid or no logical terminal element 
(LTE) is associated with the issuing task. 

3850 The collection of transaction statistics or task statistics has not been 
enabled during system generation. 

ENDPAGE 

The ENDPAGE statement terminates a map paging session, clears the scratch record for 

the session, and clears the map paging options for the completed session. A 
STARTPAGE/ENDPAGE pair encloses commands that handle a pageable map at runtime. 
The STARTPAGE command is discussed later in this chapter. 

 

Syntax 

►►─── ENDPAGE session . ──────────────────────────────────────────────────────►◄ 
 

Example 

The following statement ends a map paging session: 

ENDPAGE session. 
 

Status Codes 

After completion of the ENDPAGE function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

ENQUEUE 

The ENQUEUE statement acquires or tests the availability of a resource or l ist of 
resources. Resources are defined during installation and system generation and typically 
include storage areas, common routines, queues, and processor time. 

 



ENQUEUE 

 

Chapter 6: Data Manipulation Language Statements   155  

 

An enqueued resource can be exclusive or shared: 

■ Exclusive—The resource is owned exclusively by the issuing task and is not available 

to any other tasks. CA IDMS prohibits other tasks from obtaining resources that 
have been ENQUEUED exclusively. 

Note: An exclusive ENQUEUE request prohibits another task from enqueuing a 

resource by name; however, it does not prohibit the use of the resource by another 
task. Therefore, to effect true resource protection, you must enqueue and dequeue 
resources consistently. 

 

■ Shared—The resource is available to all  tasks. CA IDMS allows other tasks to issue 
nonexclusive ENQUEUE requests for the resources, permitting the resources to be 

shared. 
 

Syntax 

►►─── ENQUEUE ─┬──────────┬───────────────────────────────────────────────────► 
               ├─ WAIT ◄ ─┤ 
               ├─ NOWAIT ─┤ 
               └─ TEST ───┘ 
 
  ┌─────────────────────────────────────────────────────────────┐ 
 ►─▼─ NAME resource-id LENGTH resource-length ─┬───────────────┬┴─ . ────────►◄ 
                                               ├─ EXCLUSIVE ◄ ─┤ 
                                               └─ SHARED ──────┘ 

 

Parameters 

WAIT 

Specifies to wait for all  resources to be freed, if it cannot service the request 

immediately. 

This is the default. 
 

NOWAIT 

Specifies to not wait to acquire resources that are not currently available. If 
NOWAIT is specified, the program should check the ERROR-STATUS field in the 

IDMS-DC communications block to determine if the function has been completed. If 
the ERROR-STATUS value is 3901, indicating that a resource could not be obtained 
immediately, the request has not been serviced and the program should perform 
alternative processing before reissuing the NOWAIT request. 

 

TEST 

Specifies to test the availability of the specified resources. If TEST is specified, the 
program should check the ERROR-STATUS field in the IDMS-DC communications 
block to determine the outcome of the test. 

 



ENQUEUE 

 

156  DML Reference Guide for COBOL 

 

NAME 

Specifies the ID associated with a resource. 

Multiple resource specifications must be separated by at least one blank. 

resource-id  

Specifies the symbolic name of a user-defined field that contains the name of 

the resource.  The resource name is a 1–256 byte character string used to 
identify the resource that an enqueue is to be set or tested with. Any character 
string can be defined as long as all  programs that access the resource use the 
same name, and as long as the name is unique relative to all  other names used 

to identify other resources within the CV. 
 

LENGTH 

Specifies the length of the resource. 

resource-id-length  

Either the symbolic name of a user-defined field that contains the length of the 

resource ID or the length itself expressed as a numeric constant. 
 

EXCLUSIVE 

Assigns the exclusive attribute to the named resource. 

This is the default. 

SHARED 

Assigns the shared attribute to the named resource. 
 

Examples 

The statements below il lustrate the use of the ENQUEUE statement: 

Example 1 

The following statement enqueues the CODE-VALUE and PAYROLL-LOCK resources. 
CODE-VALUE is reserved for the issuing task's exclusive use; PAYROLL-LOCK can be 
shared. 

 

ENQUEUE 

  WAIT 

  NAME CODE-VALUE LENGTH 10 

  NAME PAYROLL-LOCK LENGTH 16 SHARED. 
 

Example 2 

The following statement tests the availability of the resource whose identifier is 
contained in the RESOURCE-NAME field: 

ENQUEUE 

  TEST 

  NAME RESOURCE-NAME LENGTH RESOURCE-LENGTH. 
 



ERASE 

 

Chapter 6: Data Manipulation Language Statements   157  

 

Status Codes 

After completion of an ENQUEUE function to acquire resources, the ERROR-STATUS field 
in the IDMS DC communications block indicates  the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

3901 At least one of the requested resources cannot be enqueued 
immediately; to wait would cause a deadlock. No new resources have 

been acquired. 

3908 At least one of the requested exclusive resources is currently owned 
by another task. No new resources have been acquired. 

3931 Parameter l ist is invalid. 

After completion of an ENQUEUE function to test resources, the ERROR-STATUS field in 
the IDMS DC communications block indicates  the outcome of the operation: 

 

Status code Meaning 

0000 All requested resources are available. 

3908 At least one of the tested resources is already owned by another 
task. 

3909 At least one of the tested resources is not yet owned by another task 
and is available to the issuing task. 

3931 Parameter l ist is invalid. 

ERASE 

The ERASE statement performs the following functions: 

■ Disconnects the specified record from all  set occurrences in which it participates as 

a member and logically or physically deletes the record from the database 

■ Optionally erases all records that are mandatory members of set occurrences 
owned by the specified record 

 

■ Optionally disconnects or erases all records that are optional members of set 
occurrences owned by the specified record 

 



ERASE 

 

158  DML Reference Guide for COBOL 

 

ERASE is a two-step procedure that first cancels the existing membership of the named 
record in specific set occurrences and then releases for reuse the space occupied by the 

named record and its db-key. Erased records are unavailable for further processing by 
any DML statement. 

 

Before execution of the ERASE statement, the following conditions must be satisfied: 

■ All areas affected either implicitly or explicitly must be readied in one of the update 
usage modes (see READY (see page 272) later in this chapter) 

 

■ All sets in which the specified record participates as owner either directly or 

indirectly (for example, as owner of a set with a member that is owner of another 
set) and all  member record types in those sets must be included in the subschema 
in use 

■ The specified record must be established as current of run unit 
 

Currency 

Following successful execution of an ERASE statement, currency is nullified for all  
record types involved in the erase both explicitly and implicitly. Run unit and area 
currency remain unchanged. Next, prior, and owner currencies are preserved for 
sets from which the last record occurrence was erased. These currencies enable you 

to retrieve the next or prior records within the area or the next, prior, or owner 
records within the set in which the erased record participated. An attempt to 
retrieve erased records results in a non-zero status condition. 

 

Syntax 

►►─── ERASE record-name ─┬───────────────────────┬─── . ──────────────────────►◄ 
                         ├─ PERMANENT MEMBERS ───┤ 
                         ├─ SELECTIVE MEMBERS ───┤ 
                         └─ ALL MEMBERS ─────────┘ 

 

Parameters 

record-name 

Specifies the name of the record to be erased. It must be a record included in the 
subschema. The current of record-name must be current of run unit. 

Unless PERMANENT, SELECTIVE, or ALL qualification follows, a non-zero status 

condition results if the named record is the owner of any nonempty set 
occurrences. 

Native VSAM users: ERASE record-name is the only form of the ERASE 
statement valid for records in a native VSAM KSDS or RRDS; the ERASE 

statement is not valid for a native VSAM ESDS. 
 



ERASE 

 

Chapter 6: Data Manipulation Language Statements   159  

 

PERMANENT MEMBERS 

Erases the specified record and all  mandatory member record occurrences owned 

by the specified record. Optional member records are disconnected. If any of the 
erased mandatory members are themselves the owner of any set occurrenc es, the 
ERASE statement is executed on such records as if they were directly the object 

record of an ERASE PERMANENT statement (that is, all  mandatory members of such 
sets are also erased). This process continues until  all direct and indirect members 
have been processed. 

 

SELECTIVE MEMBERS 

Erases the specified record and all  mandatory member record occurrences owned 

by the specified record. Optional member records are erased if they do not 
currently participate as members in other set occurrences. All  erased member 
records that are themselves the owners of any set occurrences are treated as if 
they were the object of an ERASE SELECTIVE statement. 

 

ALL MEMBERS 

Erases the specified record and all  mandatory and optional member record 
occurrences owned by the specified record. All  erased member records that are 
themselves the owners of any set occurrences are treated as if they were the object 
record of an ERASE ALL statement. 

  

Example 

Use of the ERASE Statement 

The following figure il lustrates use of the three parameters of the ERASE statement. 
 

The outcome of the ERASE statement varies based on the qualifier specified 
(PERMANENT, SELECTIVE, or ALL). Although all  three qualifiers cause all mandatory 
members owned by the specified record to be erased, they differ in their effect on 

optional members. 
 



ERASE 

 

160  DML Reference Guide for COBOL 

 

Because the sample employee database provides no appropriate examples of these 
parameters, this figure and the one after use a sample high school database instead. 

 

  

 



ERASE 

 

Chapter 6: Data Manipulation Language Statements   161  

 

 

  

  

ERASE Currency 

The following figure shows the effect each of the parameters has on currency. 
 



ERASE 

 

162  DML Reference Guide for COBOL 

 

Status Codes 

 

After completion of the ERASE function, the ERROR-STATUS field in the IDMS 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

0203 Invalid currency for the named record to ERASE. This can only occur 
when a run unit is sharing a transaction with other database sessions. 
The 03 minor status is returned if the run unit tries to erase a record 

using a currency that has been invalidated because of changes made 
by another database session that is sharing the same transaction. 

0208 The object record is not in the specified subschema. 

0209 The named record's area has not been readied in one of the three 

update usage modes. 

0210 The subschema specifies an access restriction that prohibits use of 
the ERASE statement. For SPF users, this code can also indicate use of 

an invalid form of the ERASE statement. 

0213 A current record of run unit has either not been established or has 
been nullified by a previous ERASE statement. 

0217 A db-key has been encountered that contains a long-term permanent 

lock. 



ERASE (LRF) 

 

Chapter 6: Data Manipulation Language Statements   163  

 

Status code Meaning 

0220 The current record of run unit is not the same record type as the 

named record. 

0221 An area other than the area of the specified record has been readied 
with an incorrect usage mode. 

0225 Currency has not been established. 

0226 A broken chain has been encountered in the process of executing an 
ERASE ALL, PERMANENT, or SELECTIVE. 

0230 An attempt has been made to erase the owner record of a nonempty 

set. 

0233 Either erasure of the record occurrence is not allowed in this 
subschema or all  sets in which the record participates have not been 
included in the subschema. 

0260 A record occurrence has been encountered whose type is 
inconsistent with the set named in the ERROR-SET field of the IDMS 
communications block; probable causes include: a broken chain and 

improper database description. 

0261 The record cannot be erased because of broken chains in the 
database. 

ERASE (LRF) 

The ERASE statement deletes a logical -record occurrence. The ERASE statement does 
not necessarily result in the deletion of all  or any of the database records used to create 
the specified logical record; the path selected to service an ERASE logical-record request 

performs whatever database access operations the DBA has specified to service the 
request. For example, if a DEPARTMENT loses an employee, the EMP-JOB-LR logical 
record that contains information about that employee would be erased. However, only 

the information about the former employee would be erased from the database, not all  
the information about the department; that is, EMPLOYEE information would be erased, 
but not DEPARTMENT, JOB, or OFFICE information. 

 

LRF uses field values present in the variable-storage location reserved for the logical 
record to update the database. You can specify an alternative storage location from 

which LRF is to take field values to make the appropriate updates to the database. 
 



ERASE (LRF) 

 

164  DML Reference Guide for COBOL 

 

Syntax 

►►─── ERASE logical-record-name ──────────────────────────────────────────────► 
 
 ►─┬────────────────────────────────────┬─────────────────────────────────────► 
   └─ FROM alt-logical-record-location ─┘ 
 
 ►─┬────────────────────────────┬─────────────────────────────────────────────► 
   └─ WHERE boolean-expression ─┘ 
 
 ►─┬───────────────────────────────────────┬─ . ──────────────────────────────►◄ 
   └─ ON path-status imperative-statement ─┘ 

 

Parameters 

logical-record-name 

Specifies the name of the logical record to erase. The logica l record must be defined 
in the subschema. Unless you specify FROM, LRF uses field values present in the 
variable-storage location reserved for the logical record to make any necessary 
updates to the database. 

FROM alt-logical-record-location 

Names an alternative variable-storage location from which LRF is to obtain field 
values to perform the appropriate database updates in response to this request. 

When erasing a logical record that has previously been retrieved into an alternative 
storage location, use the FROM clause to name the same location specified in the 
OBTAIN request. The alternate record location must be defined in the 
WORKING-STORAGE/LINKAGE SECTION. 

 

WHERE boolean-expression 

Specifies the selection criteria to be applied to the specified logical record. For 
details on coding this clause, see Logical-Record Clauses (see page 327) at the end 
of this chapter. 

ON path-status imperative-statement 

Specifies the action to be taken if path-status is returned to the LR-STATUS field in 
the LRC block. For details on coding this clause, see Logical-Record Clauses (see 
page 327) at the end of this chapter. 

 

Example 

The following example il lustrates a request to erase all  occurrences of a former 
employee's EMP-INSURANCE-LR logical record; the DBA-designated path status 
ALL-ERASED indicates that all  occurrences of the EMP-INSURANCE-LR logical record have 

been erased. 

ERASE EMP-INSURANCE-LR WHERE EMP-ID-0415 EQ '0316' 

 ON ALL-ERASED PERFORM EMP-INS-DELETION-RPT. 
 



FIND/OBTAIN 

 

Chapter 6: Data Manipulation Language Statements   165  

 

ERASE EMP-INSURANCE-LR 

As defined by the DBA, the ERASE EMP-INSURANCE-LR path group logically deletes all  of 

the specified EMP-INSURANCE-LR occurrences but physically deletes only the 
COVERAGE records, as i l lustrated by the following figure. 

 

FIND/OBTAIN 

The FIND statement locates a record occurrence in the database; the OBTAIN statement 

locates a record and moves the data associated with the record to the record buffers. 
Because the FIND and OBTAIN command statements have identical formats, they are 
discussed together. The six formats of the FIND/OBTAIN statement are as follows: 

■ FIND/OBTAIN CALC accesses a record occurrence by using its CALC key value. 

■ FIND/OBTAIN CURRENT accesses a record occurrence by using established 
currencies. 

 

■ FIND/OBTAIN DB-KEY accesses a record occurrence by using its database key. 

■ FIND/OBTAIN OWNER accesses the owner record of a set occurrence. 
 

■ FIND/OBTAIN WITHIN SET USING SORT KEY accesses a record occurrence in a 
sorted set by using its sort key value. 

■ FIND/OBTAIN WITHIN SET/AREA accesses a record occurrence based on its logical 
location within a set or on its physical location within an area. 

 

You can place locks on located record occurrences by using the KEEP clause of a 
FIND/OBTAIN statement. The KEEP clause sets a shared or exclusive lock: 

■ KEEP places a shared lock on the located record occurrence. Other concurrently 

executing run units can access but not update the locked record. 
 

■ KEEP EXCLUSIVE places an exclusive lock on the located record occurrence. Other 
concurrently executing run units can neither access nor update the locked record. 

Note: For more information about record locks, s ee KEEP CURRENT (see page 215). 

Each format of the FIND/OBTAIN statement is discussed separately on the following 

pages. 
 

FIND/OBTAIN CALC/DUPLICATE 

The FIND/OBTAIN CALC/DUPLICATE statement locates a record based on the value of an 
element defined as a CALC key in the record. The specified record must be stored in the 

database with a location mode of CALC. Before issuing the FIND/OBTAIN 
CALC/DUPLICATE statement, you must initialize a field in program variable storage with 
the CALC-key value. 

 



FIND/OBTAIN CALC/DUPLICATE 

 

166  DML Reference Guide for COBOL 

 

You can use the DUPLICATE option to access duplicate records with the same CALC-key 
value as the record that is current of record type, provided that a FIND/OBTAIN CALC 

statement has previously accessed an occurrence of the same record type. 
 

Currency 

Following successful execution of a FIND/OBTAIN CALC/DUPLICATE statement, the 
accessed record becomes the current record of run unit, its record type, its area, 
and all  sets in which it currently participates as member or owner. 

 

Syntax 

►►─┬─ FIND ───┬─┬────────────────────────┬─┬─┬─ CALC ─┬──┬── record-name . ───►◄ 
   └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ │ └─ ANY ──┘  │ 
                         └─ EXCLUSIVE ─┘   └─ DUPLICATE ─┘ 

 

Parameters 

KEEP 

Places a shared lock on the accessed record. 

EXCLUSIVE 

Places an exclusive lock on the accessed record. 
 

CALC (ANY) 

Locates the first or only occurrence of the specified record type whose CALC key 
matches the value of the CALC data item in program variable storage. 

CALC and ANY are synonyms and can be used interchangeably. 
 

DUPLICATE 

Locates the next record with the same CALC key value as the current of the 
specified record type. Use of the DUPLICATE option requires prior selection of an 
occurrence of the same record type with the CALC option. If the value of the CALC 
key in variable storage is not equal to the CALC-key field of the current of record 

type, a status code of 0332 is returned. 

record-name  

The name of the record type to be located. 
 

Example 

To retrieve an occurrence of the EMPLOYEE record by using the FIND/OBTAIN 
CALC/DUPLICATE statement, you must first initialize the variable-storage field that 
contains the CALC control element. The following statements initialize the CALC field 

EMP-ID-0415 and retrieve an occurrence of the EMPLOYEE record: 

MOVE EMP-ID-IN TO EMP-ID-0415. 

OBTAIN CALC EMPLOYEE. 
 



FIND/OBTAIN CURRENT 

 

Chapter 6: Data Manipulation Language Statements   167  

 

Status Codes 

After completion of the FIND/OBTAIN CALC/DUPLICATE function, the ERROR-STATUS 
field in the IDMS communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

0301 The area in which the named record participates has not been 
readied. 

0306 A successful FIND/OBTAIN CALC has not yet been executed (applies 
to the DUPLICATE option only). 

0308 The named record is not in the subschema. The program probably 

invoked the wrong subschema. 

0310 The subschema specifies an access restriction that prohibits retrieval 
of the named record. 

0318 The record has not been bound. 

0326 Either the record or cannot be found or no more duplicates exist for 
the named record. 

0331 The retrieval statement format conflicts with the record's location 
mode. 

0332 The value of the CALC data item in program variable storage does not 
equal the value of the CALC data item in the current record (applies 
to the DUPLICATE option only). 

0364 The CALC control element has not been described correctly either in 
the program or in the subschema. 

0370 A database fi le will  not open properly. 

If the FIND/OBTAIN statement includes an explicit KEEP: 03 is the major code returned if 

an error occurs during FIND processing, 06 if the error occurs during KEEP processing. 
 

FIND/OBTAIN CURRENT 

The FIND/OBTAIN CURRENT statement locates the record that is current of its record 
type, set, or area. This form of the FIND/OBTAIN statement is an efficient means of 

establishing the appropriate record as current of run unit before executing a DML 
statement that uses run-unit currency (for example, ACCEPT, IF, GET, MODIFY, ERASE). 

 



FIND/OBTAIN CURRENT 

 

168  DML Reference Guide for COBOL 

 

Currency 

Following successful execution of a FIND/OBTAIN CURRENT statement, the 

accessed record is current of run unit, its record type, its area, and all  sets in which 
it currently participates as member or owner. 

 

Syntax 

►►─┬─ FIND ───┬┬───────────────────────┬─ CURRENT ─┬────────────────────┬─ . ─►◄ 
   └─ OBTAIN ─┘└─ KEEP ─┬─────────────┬┘           ├─ record-name ──────┤ 
                        └─ EXCLUSIVE ─┘            ├─ WITHIN set-name ──┤ 
                                                   └─ WITHIN area-name ─┘ 

 

Parameters 

KEEP 

Places a shared lock on the accessed record. 

EXCLUSIVE 

Places an exclusive lock on the accessed record. 
 

CURRENT 

Locates the current record occurrence of a specified record type, set, or area. 

record-name 

Accesses the current record of the specified record type. 
 

WITHIN set-name 

Accesses the current record of the specified set. 

WITHIN area-name 

Accesses the current record of the specified area. 
 

Example 

Using the FIND/OBTAIN CURRENT Statement  

The following figure il lustrates use of the FIND/OBTAIN CURRENT statement to establish 
the proper record as current of run unit before the record is modified. 

 



FIND/OBTAIN CURRENT 

 

Chapter 6: Data Manipulation Language Statements   169  

 

Enter the database on DEPARTMENT 5100 by using CALC retrieval. Then examine 
EMPLOYEE 466 by using within set retrieval and obtain further information from its 

owner OFFICE record (OFFICE 8). OFFICE 8 becomes current of run unit. Before 
modifying EMPLOYEE 466, you must issue the FIND CURRENT statement to reestablish 
EMPLOYEE 466 as current of run uni t. 

For a complete description of the MODIFY statement and its use, see MODIFY (see 
page 243). 

 

  

  



FIND/OBTAIN DB-KEY 

 

170  DML Reference Guide for COBOL 

 

Status Codes 

After completion of the FIND/OBTAIN CURRENT function, the ERROR-STATUS field in the 
IDMS communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

0301 The area in which the named record participates has not been 
readied. 

0303 Invalid currency for a record to be retrieved on a FIND. This can only 
occur when a run unit is sharing a transaction with other database 
sessions. The 03 minor status is returned if the run unit tries to find a 

record using a currency that has been invalidated because of changes 
made by another database session that is sharing the same 
transaction. 

0306 Currency has not been established for the named record, set, or area. 

0308 The named record or set is not in the subschema. The program has 
probably invoked the wrong subschema. 

0310 The subschema specifies an access restriction that prohibits retrieval 
of the named record. 

0313 A current record of run unit either has not been established or has 
been nullified by a previous ERASE statement. 

0323 The specified area name has not been included in the subschema 

invoked. 

If the FIND/OBTAIN statement includes an explicit KEEP: 03 is the major code returned if 
an error occurs during FIND processing, 06 if the error occurs during KEEP processing. 

 

FIND/OBTAIN DB-KEY 

The FIND/OBTAIN DB-KEY statement locates a record occurrence directly using a 

database key that has been stored previously by the program. The DML ACCEPT 
statement, explained earlier in this chapter, or the COBOL MOVE statement can be used 
to save a db-key. Any record in the program's subschema can be accessed directly in this 

manner, regardless of its location mode. 
 



FIND/OBTAIN DB-KEY 

 

Chapter 6: Data Manipulation Language Statements   171  

 

Native VSAM users: This statement is not valid for accessing data records in a native 
VSAM key-sequenced data set (KSDS). 

Currency 

After successful execution of a FIND/OBTAIN DB-KEY statement, the accessed 
record becomes the current record of run unit, its record type, its area, and all  sets 

in which it currently participates as member or owner. In addition, the 
RECORD-NAME field of the IDMS communications block is updated with the name 
of the accessed record. 

 

Note that currency is not used to determine the specified record of the FIND/OBTAIN 
DB-KEY statement; the record is identified by its db-key and, optionally, by its record 

type. 
 

Syntax 

►►─┬─ FIND ───┬─┬────────────────────────┬───────────────────────────────────► 
   └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ 
                         └─ EXCLUSIVE ─┘ 
 
 ►─┬─ DB-KEY is db-key ─┬───────────────────────┬─┬──────────────────────────►◄ 
   │                    └─ PAGE-INFO page-info ─┘ │ 
   └─┬────────────┬─ DB-KEY is db-key ────────────┘ 
     └─ rec-name ─┘ 

 

Parameters 

KEEP 

Places a shared lock on the accessed record. 

EXCLUSIVE 

Places an exclusive lock on the accessed record. 
 

DB-KEY is 

Locates a record directly by using a db-key value contained in program variable 

storage. 

db-key 

A field that identifies the location within program variable storage that contains 
a db-key previously saved by the program. 

If a record name has been specified, db-key must contain the db-key of an 
occurrence of the named record type. If a record name has not been specified, 
db-key can contain the db-key of an occurrence of any record type in the 

subschema. 
 



FIND/OBTAIN DB-KEY 

 

172  DML Reference Guide for COBOL 

 

PAGE-INFO 

Specifies page information that is used to determine the area with which the dbkey 

is associated. If not specified, the page information associated with the record that 
is current of rununit is used. 

Note: Page information is only used if the subschema includes areasthat have 

mixed page groups; otherwise, it is ignored. 
 

page-info 

A four-byte field that may be defined either as a group field or as a fullword field 
(PIC S9(8) COMP). Identifies the location in variable storage that contains the page 
information previously saved by the program. 

Page information is returned in the PAGE-INFO field in the subschema control area 
if the subschema includes areas in mixed page groups. Page information may also 
be returned using an ACCEPT PAGE-INFO statement. 

rec-name 

The record type of the requested record. Rec-name must name a record that is 
included in the subschema. 

 

Example 

The following statement locates the occurrence of the HOSPITAL-CLAIM record whose 

db-key matches the value of a field in program variable storage called SAVED-KEY: 

FIND HOSPITAL-CLAIM DB-KEY IS SAVED-KEY. 
 

The located record becomes current of run unit, current of the HOSPITAL-CLAIM record 
type, current of the INS-DEMO-REGION area, and current of the COVERAGE-CLAIMS set. 

 

Status Codes 

After completion of the FIND/OBTAIN DB-KEY function, the ERROR-STATUS field in the 

IDMS communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

0301 The area in which the named record participates has not been 
readied. 

0302 The db-key is inconsistent with the area in which the record is stored. 

Either the db-key has not been initialized properly or the record 
name is incorrect. 



FIND/OBTAIN OWNER 

 

Chapter 6: Data Manipulation Language Statements   173  

 

Status code Meaning 

0303 Invalid currency for a record to be retrieved on a FIND. This can only 

occur when a run unit is sharing a transaction with other database 
sessions. The 03 minor status is returned if the run unit tries to find a 
record using a currency that has been invalidated because of changes 

made by another database session that is sharing the same 
transaction. 

0308 The named record is not in the subschema. The program has 
probably invoked the wrong subschema. 

0310 The subschema specifies an access restriction that prohibits retrieval 
of the named record. 

0326 The record cannot be found; record occurrence not correct type. 

0370 A database fi le will  not open properly. 

0371 The requested page cannot be found in the DMCL. 

If the FIND/OBTAIN statement includes an explicit KEEP: 03 is the major code returned if 
an error occurs during FIND processing, 06 if the error occurs during KEEP processing. 

 

FIND/OBTAIN OWNER 

The FIND/OBTAIN OWNER statement locates the owner record of the current 
occurrence of a set. This statement can be used to retrieve the owner record of any set 
whether or not that set has been assigned owner pointers. 

Native VSAM users: The FIND/OBTAIN OWNER statement is not valid since owner 

records are not defined in native VSAM data sets. 
 

Currency 

In order to execute a FIND/OBTAIN OWNER statement, currency must be 
established for the specified set. 

Note: When a record declared as an optional or manual member of a set is 
retrieved, it is not established as current of set if it is not currently connected to the 
specified set. A subsequent attempt to retrieve the owner record will  locate instead 
the owner of the current record of set. In such cases, you should determine 

whether the retrieved record is actually a member in the specified set before 
executing the FIND/OBTAIN OWNER statement. The IF MEMBER statement, 
explained later in this chapter, can be used for this purpose. 

 



FIND/OBTAIN OWNER 

 

174  DML Reference Guide for COBOL 

 

Following successful execution of a FIND/OBTAIN OWNER statement, the accessed 
record becomes the current record of run unit, its record type, its area, and all  sets in 

which it currently participates as member or owner. If the current record of set is the 
owner record when the statement is executed, currency within the specified set 
remains unchanged. 

 

Syntax 

►►─┬─ FIND ───┬─┬────────────────────────┬─ OWNER WITHIN set-name . ──────────►◄ 
   └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ 
                         └─ EXCLUSIVE ─┘ 

 

Parameters 

KEEP 

Places a shared lock on the accessed record. 

EXCLUSIVE 

Places an exclusive lock on the accessed record. 
 

OWNER 

Locates the owner record of the specified set. 

WITHIN 

Specifies the set whose owner record is to be retrieved. 

set-name  

The name of a set included in the subschema. 
 

Example 

Using the FIND/OBTAIN OWNER Statement to Move Through the Database  

The following figure il lustrates use of the FIND/OBTAIN OWNER statement. 
 

 



FIND/OBTAIN OWNER 

 

Chapter 6: Data Manipulation Language Statements   175  

 

 

  

Status Codes 

After completion of the FIND/OBTAIN OWNER function, the ERROR-STATUS field in the 

IDMS communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

0301 The area in which the object record participates has not been 
readied. 

0303 Invalid currency for a record to be retrieved on a FIND. This can only 

occur when a run unit is sharing a transaction with other database 
sessions. The 03 minor status is returned if the run unit tries to find a 
record using a currency that has been invalidated because of changes 
made by another database session that is sharing the same 

transaction. 

0306 Currency has not been established for the record, set, or area. 

0308 The named set is not in the subschema. The program has probably 
invoked the wrong subschema. 

0310 The subschema specifies an access restriction that prohibits retrieval 
of the object record. 

0360 A record occurrence has been encountered whose record type is not 

a member or owner of the set as it is defined in the subschema. 



FIND/OBTAIN WITHIN SET USING SORT KEY 

 

176  DML Reference Guide for COBOL 

 

Status code Meaning 

0370 A database fi le will  not open properly. 

If the FIND/OBTAIN statement includes an explicit KEEP: 03 is the major code returned if 
an error occurs during FIND processing, 06 if the error occurs during KEEP processing. 

 

FIND/OBTAIN WITHIN SET USING SORT KEY 

The FIND/OBTAIN WITHIN SET USING SORT KEY statement locates a member record in a 

sorted set. Sorted sets are ordered in ascending or descending sequence based on the 
value of a sort-control element in each member record. The search begins with either 
the current of set or the owner of the current of set and always proceeds through the 
set in the next direction. 

 

Before issuing this statement, you must initialize the sort control element in program 

variable storage. The record occurrence selected will  have a key value equal to the value 
of the sort control element. If more than one record occurrence contains a sort key 
equal to the key value in variable storage, the first such record will  be selected. 

In a batch environment, sorted sets can be processed more efficiently by sorting the 

input transactions. 
 

Currency 

Following successful execution of a FIND/OBTAIN WITHIN SET USING SORT KEY 
statement, the accessed record becomes current of run unit, its record type, its 
area, and all  sets in which it currently participates as member or owner. If a 

member record with the requested sort-key value is not found, the current of set is 
nullified but the next of set and prior of set are maintained. The next of set is the 
member record with the next higher sort-key value (or next lower for descending 

sets) than the requested value; the prior of set is the member record with the next 
lower value (or higher for descending sets) than requested. Because these 
currencies are maintained, the program can walk the set to do a generic search on 
the sort-key value. 

 

Syntax 

►►─┬─ FIND ───┬─┬────────────────────────┬─ record-name WITHIN set-name ──────► 
   └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ 
                         └─ EXCLUSIVE ─┘ 
 
 ►─┬───────────┬─ USING sort-key ── . ────────────────────────────────────────►◄ 
   └─ CURRENT ─┘                  └─;─┘ 

 



FIND/OBTAIN WITHIN SET USING SORT KEY 

 

Chapter 6: Data Manipulation Language Statements   177  

 

Parameters 

KEEP 

Places a shared lock on the accessed record. 

EXCLUSIVE 

Places an exclusive lock on the accessed record. 
 

record-name 

Specifies the record type to locate. 
 
 

WITHIN 

Specifies the set to be searched. 

Unless you specify CURRENT, the search begins with the owner of the specified 
set. 

set-name  

The name of a sorted set included in the subschema. 
 

CURRENT 

Indicates that the search begins with the currencies already established for the 
specified set. 

If the key value for the record that is current of set is higher than the key value of 

the requested record (assuming ascending set order), a non-zero status condition 
results. In a descending set order, if the key value for the record that is current of 
set is lower than the key value of the requested record, a non-zero status condition 

results. 
 

USING 

Specifies the sort control element to be used in searching the sorted set. 

sort-key  

The symbolic name of a field defined in working storage that contains the value 

of the sort control element. 
 

Note: Due to the architecture of the client interface for CA IDMS, 256 bytes will  

be moved regardless of the actual length of the working storage sort key. This 
additional storage should be accounted for in order to avoid potential program 
exceptions that can occur. While these exceptions are rare, they are more 

probable if the sort-key is defined in a FILE or LINKAGE SECTION definition. To 
avoid this problem, it is recommended that the sort-key be defined in the 
program's WORKING STORAGE SECTION, padded to a full  256 bytes; and 
moved in and out of the FILE or LINKAGE SECTION fields. 

 



FIND/OBTAIN WITHIN SET USING SORT KEY 

 

178  DML Reference Guide for COBOL 

 

Note: The value coded for sort-key can only specify a single field name. If the 
sort key is comprised of multiple elementary fields, the value coded should be 

a group-level name. The elementary fields that make up the group element 
must be in the same sequence as defined for the corresponding fields in the 
database set's schema definition. The data formats for the individual 

elementary fields must also match the formats of the corresponding fields 
within the database record. 

 

Note: A period or semicolon is required to terminate the statement unless an 
ON clause has been coded. 

 

Here is an example of OBTAIN RECA WITHIN RECA-SET USING RECA-KEY. The 
record's sort key would be defined as follows in the WORKING-STORAGE 
SECTION: 

01 RECA-KEY. 

  02 RECA-FIELD1        PIC X(10). 

  02 RECA-FIELD2        PIC X(10). 
 

It should be changed to: 

01 RECA-KEY. 

  02 RECA-FIELD1        PIC X(10). 

  02 RECA-FIELD2        PIC X(10). 

  02 FILLER                  PIC X(236). 
 

Example 

The following example il lustrates the use of a FIND/OBTAIN WITHIN SET USING SORT 
KEY statement. Assume that the SKILL-NAME-NDX set is ordered in ascending sequence 
based on the value stored in SKILL-NAME-0455 in each SKILL record occurrence. 

Retrieval of a SKILL record with a skil l name equal to PL/I is accomplished by the 
following statements: 

MOVE 'PL/I' TO SKILL-NAME-0455. 

FIND SKILL WITHIN SKILL-NAME-NDX 

          USING SKILL-NAME-0455. 
 

Status Codes 

After completion of the FIND/OBTAIN WITHIN SET USING SORT KEY function, the 

ERROR-STATUS field in the IDMS communications block indicates the outcome of the 
operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 



FIND/OBTAIN WITHIN SET/AREA 

 

Chapter 6: Data Manipulation Language Statements   179  

 

Status code Meaning 

0301 The area in which the named record participates has not been 

readied. 

0303 Invalid currency for a record to be retrieved on a FIND. This can only 
occur when a run unit is sharing a transaction with other database 

sessions. The 03 minor status is returned if the run unit tries to find a 
record using a currency that has been invalidated because of changes 
made by another database session that is sharing the same 
transaction. 

0306 Currency has not been established for the named set. 

0308 Either the named record or set is not in the subschema or the named 
record is not a member of the named set. The program has probably 
invoked the wrong subschema. 

0310 The subschema specifies an access restriction that prohibits retrieval 
of the named record. 

0326 The record cannot be found. 

0331 The retrieval statement format conflicts with the record's location 
mode. 

0360 A record occurrence has been encountered whose record type is not 
a member or owner of the set as it is defined in the subs chema. 

0370 A database fi le will  not open properly. 

If the FIND/OBTAIN statement includes an explicit KEEP: 03 is the major code returned if 
an error occurs during FIND processing, 06 if the error occurs during KEEP processing. 

 

FIND/OBTAIN WITHIN SET/AREA 

The FIND/OBTAIN WITHIN SET/AREA statement locates  records either logically, based 
on set relationships, or physically, based on database location. The formats of this 
statement allow you either to access serially each record in a set or area or to select 
specific occurrences of a given record type within the set or area. 

 

The following rules apply to the selection of member records within a set: 

■ The set occurrence used as the basis for the operation is determined by the current 
record of the speci fied set. Set currency must be established before attempting to 
access records within a set. 

■ The next or prior record within a set is the subsequent or previous record relative to 

the current record of the named set in the logical order of the set. The prior record 
in a set can be retrieved only if the set has been assigned prior pointers. 

 



FIND/OBTAIN WITHIN SET/AREA 

 

180  DML Reference Guide for COBOL 

 

■ The first or last record within a set is the first or last member occurrence in terms of 
the logical order of the set. The selected record is the same as would be selected if 

the current of set were the owner record and the next or prior record had been 
requested. The last record in a set can be retrieved only if the set has prior pointers. 

 

■ The nth occurrence of a record within a set can be retrieved by specifying a 
sequence number that identifies the position of the record in the set. The DBMS 
begins its search with the owner of the current of set for the specified set and 

continues until  it locates the nth record or encounters an end-of-set condition. If 
the specified sequence number is negative, the search proceeds in the prior 
direction within the set. A negative sequence number can be used only if the set 

has prior pointers; a sequence number of 0 produces a status code of 0304. 
 

■ When an end-of-set condition occurs, the owner record occurrence of the set 

becomes the current record of run unit, current of its record type, current of its 
area, and current record of only the set involved in this operation. Currency of other 
sets in which the specified record partici pates as owner or member remains 

unaffected. 

Note: If OBTAIN has been specified, the contents of the owner record are not 
moved to program variable storage (that is, OBTAIN under these circumstances is 
treated as a FIND). 

Native VSAM users:.When an end-of-set condition occurs, all currencies remain 
unchanged. 

 

The following rules apply to the selection of records within an area: 

■ The first record occurrence within an area is the one with the lowest database key; 
the last record is the one with the highest database key 

■ The next record within an area is the one with the next higher database key relative 
to the current record of the named area; the prior record is the one with the next 
lower database key relative to the current of area  

 

■ The first or last or nth record in an area must be retrieved to establish the correct 
starting position before next or prior records are requested 

Currency 

Following successful execution of a FIND/OBTAIN WITHIN SET/AREA statement, the 
accessed record becomes the current record of run unit, its record type, its area, 

and all  sets in which it currently participates as member or owner. 
 

When an end-of-set condition occurs selecting records within a set, the owner record 
occurrence of the set becomes the current record of run unit, its record type, its area, 
and only the set involved in this operation. Currency of other sets in which the specified 
record participates as owner or member remains unaffected. 

 



FIND/OBTAIN WITHIN SET/AREA 

 

Chapter 6: Data Manipulation Language Statements   181  

 

Syntax 

►►─┬─ FIND ───┬─┬────────────────────────┬─┬─ NEXT ───┬───────────────────────► 
   └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ ├─ PRIOR ──┤ 
                         └─ EXCLUSIVE ─┘   ├─ FIRST ──┤ 
                                           ├─ LAST ───┤ 
                                           └─ number ─┘ 
 
 ►─┬───────────────┬─ WITHIN ─┬─ set-name ──┬─ . ─────────────────────────────►◄ 
   └─ record-name ─┘          └─ area-name ─┘ 

 

Parameters 

KEEP 

Places a shared lock on the accessed record. 

EXCLUSIVE 

Places an exclusive lock on the accessed record. 
 

NEXT 

Accesses the next record in the specified set or area relative to the current record. 
 

PRIOR 

Accesses the prior record in the specified set or area relative to the current record. 
The specified set must have prior pointers. 

 

FIRST 

Accesses the first record in the specified set or area. 
 

LAST 

Accesses the last record in the specified set or area. The specified set must have 
prior pointers. 

 

number 

Accesses the indicated record number in the specified set or area. Number must 

either be a non-zero number or the symbolic name of a numeric field that contains 
a non-zero value. If the number is negative, the specified set must have prior 
pointers. 

 

record-name 

Specifies that within a set or area, only occurrences of the named record type will  

be accessed. Record-name must be defined as a member of the specified set or 
contained within the specified area. 

 



FIND/OBTAIN WITHIN SET/AREA 

 

182  DML Reference Guide for COBOL 

 

WITHIN 

Locates a record based on its location within a set or area. 

set-name Specifies the set to be searched. The set must be included in the 
subschema. 

area-name Specifies the area to be searched. The area must be included in the 

subschema. 

Native VSAM users:.FIRST, LAST, and sequence options are not valid for a 
native VSAM KSDS with spanned records. 

 

Example 

Retrieval of Records in an Occurrence of the DEPT-EMPLOYEE Set 

The following figure il lustrates the retrieval of records within an occurrence of the 
DEPT-EMPLOYEE set. 

 

The FIND CALC statement establishes currency in the DEPT-EMPLOYEE set. Member 
EMPLOYEE records are then retrieved by a series of OBTAIN WITHIN SET statements. 

EMPLOYEE 106 is the last record in the set and the next OBTAIN statement returns an 
end-of-set condition, positioning run unit currency at the owner of the set, 
DEPARTMENT 2000. 

 

 



FIND/OBTAIN WITHIN SET/AREA 

 

Chapter 6: Data Manipulation Language Statements  183  

 

 

  

Retrieving Records in Area Containing Multiple Record Types 

The following figure il lustrates special considerations relating to the retrieval of records 
within an area that contains multiple record types. 

 

In this example, a sweep of the EMP-DEMO-REGION is performed, retrieving 
sequentially each EMPLOYEE record and all  records in the associated 

EMPLOYEE-EXPERTISE set. The first command retrieves EMPLOYEE 119. Subsequent 
OBTAIN WITHIN SET statements retrieve the associated EXPERTISE records and establish 
currency on EXPERTISE 03. The FIND CURRENT statement is used to reestablish the 
proper position before retrieving EMPLOYEE 48. If FIND CURRENT EMPLOYEE is not 

specified, an attempt to retrieve the next EMPLOYEE record in the area would return 
EMPLOYEE 23. 

 

 



FIND/OBTAIN WITHIN SET/AREA 

 

184  DML Reference Guide for COBOL 

 

 

  

  

Status Codes 

After completion of the FIND/OBTAIN WITHIN SET/AREA function, the ERROR-STATUS 
field in the IDMS communications block indicates the outcome of the operation: 

 

 

Status code Meaning 

0000 The request has been serviced successfully. 

0301 The area in which the named record participates has not been 
readied. 

0303 Invalid currency for a record to be retrieved on a FIND. This can only 
occur when a run unit is sharing a transaction with other database 

sessions. The 03 minor status is returned if the run unit tries to find a 
record using a currency that has been invalidated because of changes 
made by another database session that is sharing the same 

transaction. 

0306 A successful FIND/OBTAIN CALC has not yet been executed (applies 
to the DUPLICATE option only). 



FINISH 

 

Chapter 6: Data Manipulation Language Statements   185  

 

Status code Meaning 

0307 The end of the set or area has been reached, or the set is empty. 

0308 The named record is not in the subschema. The program probably 
invoked the wrong subschema. 

0310 The subschema specifies an access restriction that prohibits retrieval 

of the named record. 

0318 The record has not been bound. 

0326 Either the record or SPF index entry cannot be found or no more 
duplicates exist for the named record. 

0331 The retrieval statement format conflicts with the record's location 
mode. 

0332 The value of the CALC data item in program variable storage does not 
equal the value of the CALC data item in current record (applies to 

the DUPLICATE option only). 

0364 The CALC control element has not been described correctly either in 
the program or in the subschema. 

0370 A database fi le will  not open properly. 

If the FIND/OBTAIN statement includes an explicit KEEP: 03 is the major code returned if 
an error occurs during FIND processing, 06 if the error occurs during KEEP processing. 

 

FINISH 

The FINISH statement commits changes made to the database through an individual run 

unit or through all  database sessions associated with a task. A task-level finish also 
commits all  changes made in conjunction with scratch, queue, and print activity. 

If the finish applies to an individual run unit and the run unit is sharing its transaction 

with another database session, the run unit's changes may not be committed at the 
time the FINISH statement is executed. 

 

Note: For more information about the impact of transaction sharing, see the CA IDMS 
Navigational DML Programming Guide. 

Run units (and SQL sessions) impacted by the FINISH statement end, and their access to 

the database is terminated. 
 

The FINISH statement is used in both the navigational and logical record facility 
environments. The FINISH TASK statement is also used in an SQL programming 
environment. 

 



FINISH 

 

186  DML Reference Guide for COBOL 

 

Currency 

Following the successful execution of a FINISH request, all  currencies are set to null; 

the issuing program or task cannot perform database access through an impacted 
run unit without executing another BIND/READY sequence. 

 

Syntax 

►►─── FINISH ─┬────────┬─ . ──────────────────────────────────────────────────►◄ 
              └─ TASK ─┘ 

 

Parameters 

TASK 

Commits the changes made by all  scratch, queue, and print activity and all  top-level 
run units associated with the current task and terminates those run units. Its impact 

on SQL sessions associated with the task depends on whether those sessions are 
suspended and whether their transactions are eligible to be shared. 

 

More information: 

For more information about the impact of a FINISH TASK statement on SQL 
sessions, see the SQL Programming Guide. 

For more information about run units and the impact of FINISH TASK, see the 
Navigational DML Programming Guide. 

 

Example 

The following statement commits changes made by the run unit through which it is 

issued and terminates that run unit: 

FINISH. 
 

Status Codes 

After completion of the FINISH function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

5031 The specified request is invalid; the program may contain a logic 
error 

5097 An error was encountered processing a syncpoint request; check the 
log for details. 



FREE STORAGE 

 

Chapter 6: Data Manipulation Language Statements   187  

 

FREE STORAGE 

The FREE STORAGE statement i l lustrates a request to release all  or a part of a variable 
storage area. The storage to be released must have been acquired by means of a GET 
STORAGE request in the issuing task or by another task running on the same terminal as 
the issuing task. A partial release is valid only for user storage; shared storage must be 

freed in its entirety. 
 

Syntax 

►►─── FREE STORAGE ───────────────────────────────────────────────────────────► 
 
 ►─┬─ STGID storage-id ────────────────────────────────────────────────┬─ . ──►◄ 
   └─ FOR 01-level-storage-data-loc ─┬───────────────────────────────┬─┘ 
                                     └─ FROM start-free-storage-loc ─┘ 

 

Parameters 

STGID 

Specifies variable storage area to be released. 

storage-id 

Either the symbolic name of a user-defined field that contains the ID or the ID 

itself enclosed in quotation marks. 
 

FOR 01-level-storage-data-loc 

Specifies the LINKAGE SECTION entry of the storage area to be released. 

FROM 

Releases storage from the specified location to the end of the storage area. 

start-free-storage-loc  

The symbolic name of a user-defined field that contains the starting point of 
the storage area to be released. 

 

Example 

The following example il lustrates a request to release the storage area identified by 
09PA: 

FREE STORAGE STGID '09PA'. 
 



GET 

 

188  DML Reference Guide for COBOL 

 

Status Codes 

After completion of the FREE STORAGE function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3213 The requested storage ID cannot be found 

3232 The derived length of the variable storage area is zero or negative 

3234 The request cannot be serviced because the variable storage area is 
not an 01-level entry in the LINKAGE SECTION 

GET 

The GET statement transfers the contents of a specified record occurrence from the 
record buffer into program variable storage. Elements in the specified record are moved 
to their respective locations in variable storage according to the subschema view of the 
record. The transferred elements will  appear in storage at the location to which the 

record has been bound (for further details, see BIND RECORD (see page 124)). 
 

Currency 

The GET statement operates only on the record that is current of run unit. 
Following successful execution of a GET statement, the accessed record is current 

of run unit, its record type, its area, and all  sets in which it participates as member 
or owner. 

 

Syntax 

►►─── GET ─┬───────────────┬─ . ──────────────────────────────────────────────►◄ 
           └─ record-name ─┘ 

 

Parameters 

record-name 

Specifies that the current of run unit must be an occurrence of the named record 
type. 

 

Example 

The following statement moves the record that is current of run unit (in this case, the 
OFFICE record) from the record buffer into program variable storage: 

GET OFFICE. 
 



GET QUEUE 

 

Chapter 6: Data Manipulation Language Statements   189  

 

Status Codes 

After completion of the GET function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

0503 Invalid currency for a record to be retrieved on a GET. This can only 
occur when a run unit is sharing a transaction with other database 

sessions. The 03 minor status is returned if the run unit tries to get a 
record using a currency that has been invalidated because of changes 
made by another database session that is sharing the same 

transaction. 

0506 Currency has not been established. 

0508 The named record is not in the subschema. The program has 
probably invoked the wrong subschema. 

0510 The subschema specifies an access restriction that prohibits retrieval 
of the named record. 

0513 A current record of run unit either has not been established or has 
been nullified by a previous ERASE statement. 

0518 The record has not been bound. 

0520 The current record is not the same type as the named record. 

0526 The requested record has been erased. 

0555 An invalid length has been returned for a variable-length record. 

GET QUEUE 

The GET QUEUE statement retrieves a queue record and places it in a storage area 

associated with the issuing program. If the queue record is larger than the designated 
storage area, the record is truncated. The retrieved record is automatically deleted from 
the queue unless the GET QUEUE statement explicitly requests to keep the record in the 
queue. 

 



GET QUEUE 

 

190  DML Reference Guide for COBOL 

 

Syntax 

►►─── GET QUEUE ─┬───────────────┬─┬─────────────────────────────────┬────────► 
                 └─ ID queue-id ─┘ └─┬─ NEXT ◄ ────────────────────┬─┘ 
                                     ├─ FIRST ─────────────────────┤ 
                                     ├─ LAST ──────────────────────┤ 
                                     ├─ PRIOR ─────────────────────┤ 
                                     ├─ SEQUENCE number ───────────┤ 
                                     └─ RECORD ID queue-record-id ─┘ 
 
 ►─┬────────────┬─┬──────────┬─┬────────────┬─────────────────────────────────► 
   ├─ DELETE ◄ ─┤ ├─ LOCK ◄ ─┤ ├─ WAIT ─────┤ 
   └─ KEEP ─────┘ └─ NOLOCK ─┘ └─ NOWAIT ◄ ─┘ 
 
 ►─── INTO return-queue-data-location ─┬─ TO end-queue-data-location ───────┬─► 
                                       └─ MAX LENGTH queue-data-max-length ─┘ 
 
 ►─┬───────────────────────────────────────────────┬─ . ──────────────────────►◄ 
   └─ RETURN LENGTH INTO queue-data-actual-length ─┘ 
 
 
 

 

Parameters 

ID 

Specifies the queue associated with the record to be retrieved. 

queue-id 

Either the symbolic name of a user-defined field that contains the ID or the ID 
itself enclosed in quotation marks. If the queue ID is not specified, a null ID of 
16 blanks is assumed. 

NEXT 

Retrieves the next record in the queue. 

This is the default. 

If currency has not been established, NEXT is equivalent to FIRST. 
 

FIRST 

Retrieves the first record in the queue. 

LAST 

Retrieves the last record in the queue. 
 



GET QUEUE 

 

Chapter 6: Data Manipulation Language Statements   191  

 

PRIOR 

Retrieves the prior record in the queue. If currency has not been established, PRIOR 

is equivalent to LAST. 

SEQUENCE 

Retrieves the specified queue record. 

number  

Either the symbolic name of a user-defined field that contains the sequence 
number of the record or the sequence number itself expressed as a numeric 
constant. 

 

RECORD ID 

Retrieves the specified record. 

queue-record-id  

The symbolic name of the PIC S9(8) COMP (fullword) field that contains the 
queue record ID returned by the PUT QUEUE function. 

 

DELETE 

Deletes the record from the queue. 

This is the default. 

If DELETE is specified and the record has been truncated, the truncated data is lost. 

KEEP 

Keeps the record in the queue. 
 

LOCK/NOLOCK 

These parameters have been non-functional since CA IDMS Release 12.0. They are 
included as parameters for release compatability. Queue record locking is 
performed as part of the standard database locking routines since CA IDMS Release 

12.0. 

WAIT 

Suspends task execution until  the requested queue exists. 
 



GET QUEUE 

 

192  DML Reference Guide for COBOL 

 

NOWAIT 

Continues task execution in the event of a nonexistent queue. 

This is the default. 

An ERROR-STATUS value of 4405 (DC-REC-NOT-FOUND) indicates that the 
requested queue record cannot be found. 

INTO 

Indicates the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data 
area reserved for the requested queue record. 

return-queue-data-location 

The symbolic name of a user-defined field. 
 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 
reserved for the requested queue record. 

end-queue-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the requested queue record. 

 

MAX LENGTH 

Explicitly defines the length of the data area reserved for the requested queue 
record. 

queue-data-max-length  

Either the symbolic name of the user-defined field that contains the length of 
the queue records data or the length itself expressed as a numeric constant. 

 

RETURN LENGTH INTO 

Specifies the location to which CA IDMS is to return the actual length of the 

retrieved queue record. 

queue-data-actual-length  

The symbolic name of a user-defined four-byte field. If the record has been 

truncated, the value returned to this field is the actual length of the queue 
record before truncation. 

 



GET QUEUE 

 

Chapter 6: Data Manipulation Language Statements   193  

 

Example 

The following example il lustrates a request to retrieve the first record in the RES-Q 
queue, return it to the PEND-RES field, and keep the record in the queue: 

GET QUEUE 

  ID 'RES-Q' 

  FIRST 

  KEEP 

  INTO PEND-RES MAX LENGTH 125. 
 

Status Codes 

After completion of the GET QUEUE function, the ERROR-STATUS field of the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4404 The requested queue header record cannot be found. 

4405 The requested queue record cannot be found. 

4407 A database error occurred during queue processing.  A common 

cause is a DBKEY deadlock.  For a PUT QUEUE operation, this code 
can also mean that the queue upper l imit has been reached. 

If a database error has occurred, there are usually be other messages 

in the CA-IDMS/DC/UCF log indicating a problem encountered in 
RHDCRUAL, the internal Run Unit Manager.  If a deadlock has 
occurred, messages DC001000 and DC001002 are also produced. 

4419 The program storage area specified for return of the queue record is 

too small; the returned record has been truncated as appropriate to 
fit the available space. In a DC-BATCH environment, a possible cause 
is that the size of the queue record exceeds the value specified in the 

MAX LENGTH parameter of the BIND TASK statement. In a DC-BATCH 
environment, a possible cause is that the size of the record read by a  
GET QUEUE statement exceeds the value specified in the max length 
parameter of the BIND TASK statement. This can also happen if the 

record size specified in the GET QUEUE statement is large enough for 
the queue record, but the maximum specified in the BIND TASK 
statement is too small. The record size is always truncated to the 

maximum length determined in the BIND TASK statement. 

4431 The parameter l ist is invalid. In DC-BATCH, this code signifies that the 
specified record length has exceeded the maximum length based on 
the packet size. 

4432 The derived length of the queue record data area is negative. 



GET SCRATCH 

 

194  DML Reference Guide for COBOL 

 

GET SCRATCH 

The GET SCRATCH statement obtains a scratch record and places it in a storage area 
associated with the issuing program. The storage area must already be allocated to the 
requesting task; no implicit GET STORAGE function is performed during the GET 
SCRATCH operation. If the scratch record is larger than the designated storage area, 

data is truncated. 
 

Syntax 

►►─── GET SCRATCH ─┬───────────────────────────┬──────────────────────────────► 
                   └─ AREA ID scratch-area-id ─┘ 
 
 ►─┬───────────────────────────────┬─┬────────────┬───────────────────────────► 
   ├─ NEXT ◄ ──────────────────────┤ ├─ DELETE ◄ ─┤ 
   ├─ FIRST ───────────────────────┤ └─ KEEP ─────┘ 
   ├─ LAST ────────────────────────┤ 
   ├─ PRIOR ───────────────────────┤ 
   ├─ CURRENT ─────────────────────┤ 
   └─ RECORD ID scratch-record-id ─┘ 
 
 ►─── INTO return-scratch-data-loc ─┬─ TO end-scratch-data-loc ────────────┬──► 
                                    └─ MAX LENGTH scratch-data-max-length ─┘ 
 
 ►─┬─────────────────────────────────────────────────┬─ . ────────────────────►◄ 
   └─ RETURN LENGTH into scratch-data-actual-length ─┘ 

 

Parameters 

AREA ID 

Identifies the scratch area associated with the record being retrieved. If you do not 
specify an area ID, an area ID of eight blanks is assumed. 

scratch-area-id  

Either the symbolic name of a user-defined field that contains the scratch area 
ID or the ID itself enclosed in quotation marks. 

NEXT 

Retrieves the next record in the scratch area. 

This is the default. 
 

FIRST 

Retrieves the first record in the scratch area. 

LAST 

Retrieves the last record in the scratch area. 
 

PRIOR 

Retrieves the prior record in the scratch area. 

CURRENT 

Retrieves the current record in the scratch area; the current record is the record 

most recently referenced by another scratch function. 
 



GET SCRATCH 

 

Chapter 6: Data Manipulation Language Statements   195  

 

RECORD ID 

Retrieves the specified scratch record. 

scratch-record-id 

 The symbolic name of a user-defined PIC S9(8) COMP SYNC (fullword) field that 
contains the four-byte scratch record ID. 

 

DELETE 

Deletes the record from the scratch area. 

This is the default. 

If DELETE is specified and the record has been truncated, the truncated data is lost. 
To maintain currency following a DELETE request, CA IDMS saves the next and prior 

currencies of the scratch area. 
 

KEEP 

Keeps the record in the scratch area. 

INTO 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data 

area to which CA IDMS is to return the scratch record. 

return-scratch-data-loc 

The symbolic name of a user-defined field. 
 

TO 

Indicates the end of the data area to which CA IDMS will  return the scratch record. 

end-scratch-data-loc  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the scratch record. 

 



GET SCRATCH 

 

196  DML Reference Guide for COBOL 

 

MAX LENGTH 

Specifies the length in bytes of the data area associated with the requested scratch 

record. 

scratch-data-max-length  

Either the symbolic name of a WORKING-STORAGE SECTION or LINKAGE 

SECTION field that contains the length or the length itself expressed as a 
numeric constant. 

RETURN LENGTH into 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry to which CA 

IDMS will  return the actual length of the requested scratch record. 

scratch-data-actual-length  

The symbolic name of the entry. If the record has been truncated, 
scratch-data-actual-length will  contain the length of the full, untruncated 

scratch record. 
 

Example 

The following statement i l lustrates a request to return the contents of the current 

record in the scratch area to the variable-storage area defined by WORK-PROC-AREA 
and END-WORK-PROC-AREA: 

GET SCRATCH 

  CURRENT 

  INTO WORK-PROC-AREA TO END-WORK-PROC-AREA. 
 

Status Codes 

After completion of the GET SCRATCH function, the ERROR-STATUS field of the IDMS-DC 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4303 The requested scratch area ID cannot be found 

4305 The requested scratch record ID cannot be found 

4307 An I/O error has occurred during processing 

4319 The program storage area specified for return of the scratch record is 
too small; the returned record has been truncated to fit the available 
space 

4331 The parameter l ist is invalid 

4332 The derived length of the scratch record is negative 



GET STORAGE 

 

Chapter 6: Data Manipulation Language Statements  197  

 

GET STORAGE 

The GET STORAGE statement is used either to acquire variable storage from a DC system 
storage pool or to obtain the address of a previously acquired storage area. Once 
acquired, the storage is available for use: 

 

■ By the issuing task only (user storage) 

■ By subsequent tasks running on the same terminal (user kept storage) 

■ By all  tasks in the system (shared or shared kept storage) 

Storage availability is governed by GET STORAGE parameter specifications. 
 

Syntax 

►►─── GET STORAGE FOR 01-level-storage-data-location ─────────────────────────► 
 
 ►─┬────────────────────────────────┬─────────────────────────────────────────► 
   └─ TO end-storage-data-location ─┘ 
 
 ►─┬──────────────────────────────┬───────────────────────────────────────────► 
   └─ LENGTH storage-data-length ─┘ 

 

 ►─┬─────────────────────────────────────────┬────────────────────────────────► 
   └─ POINTER storage-data-location-pointer ─┘ 
 
 ►─┬──────────┬─┬────────┬─┬──────────┬─┬──────────┬──────────────────────────► 
   ├─ WAIT ───┤ └─ KEEP ─┘ ├─ LONG ◄ ─┤ ├─ USER ◄ ─┤ 
   └─ NOWAIT ─┘            └─ SHORT ──┘ └─ SHARED ─┘ 
 
 ►─┬────────────────────┬─┬──────────────────────────────┬────────────────────► 
   └─ STGID storage-id ─┘ └─ VALUE IS ─┬─ LOW-VALUE ─────┤ 
                                       ├─ HIGH-VALUE ────┤ 
                                       └─ initial-value ─┘ 
 
 ►─┬────────────────────────────┬─ . ─────────────────────────────────────────►◄ 
   └─ LOCATION is ──┬─────────┬─┘ 
                    ├─ ANY ◄ ─┤ 
                    └─ BELOW ─┘ 

 



GET STORAGE 

 

198  DML Reference Guide for COBOL 

 

Parameters 

FOR 

Specifies the LINKAGE SECTION entry of the storage area to be acquired. 

01-level-storage-data-location  

The name of the 01-level entry used to acquire the storage area. 

TO 

Specifies the end of the storage area. This parameter is required when the 
precompiler execution option COBOL=1 is specified. It is accepted but not required 

if COBOL=2 is specified. See 

Note: For more information about the COBOL= option, see Passing Parameters to 
the Precompiler (see page 355). 

end-storage-data-location  

The symbolic name of a user-defined dummy byte field. It is specified as a 
subordinate item within the 01-level record area following the last real data 
field. 

 

Note: CA IDMS does not support the use of an OCCURS DEPENDING ON clause 

within 01-level-storage-data-location. 

LENGTH 

Specifies the length of the storage location (COBOL 85 only). 

storage-data-length  

The symbolic name of a user-defined field that contains the length of the 
storage location. 

POINTER 

Specifies a pointer that is to receive the address of the storage location (COBOL 85 
only). 

storage-data-location-pointer  

The symbolic name of a user-defined field that contains a pointer to the 

address of the storage location. 
 

WAIT 

Specifies that the issuing task will wait until  sufficient storage is available in a 
storage pool. 

This is the default. 
 



GET STORAGE 

 

Chapter 6: Data Manipulation Language Statements   199  

 

NOWAIT 

Specifies that the issuing task will not wait for storage to become available if an 

insufficient storage condition exists. If NOWAIT is specified, the program should 
check the ERROR-STATUS field in the IDMS-DC communications block to determine 
if the GET STORAGE request has been completed. If the ERROR-STATUS value is 

3202 (DC-NO-STORAGE), the program should perform alternative processing before 
reissuing the GET STORAGE request. 

KEEP 

Optionally specifies whether the storage area will  be used by subsequent tasks 

executing on the same logical terminal. When KEEP is specified, the storage area 
can be accessed by subsequent tasks; otherwise the storage area cannot be 
accessed by subsequent tasks. For a more detailed discussion of the KEEP 
parameter, refer to CA IDMS Navigational DML Programming Guide. 

 

LONG 

Allocates storage from the bottom of the storage pool. 

This is the default. 

You should specify LONG when allocating kept storage to be held across 

pseudo-converses. 

An incorrect LONG/SHORT specification will not affect normal program execution; 
however, it may affect the overall  performance of the DC system. 

 

SHORT 

Allocates storage from the top of the storage pool. You should specify SHORT when 

allocating small pieces of storage for a short duration. 

An incorrect LONG/SHORT specification will not affect normal program execution; 
however, it may affect the overall  performance of the DC system. 

 

USER 

Specifies that only the issuing task can access the storage area or, if KEEP is 

specified, only subsequent tasks executing on the same terminal. 

This is the default. 

Note: During system execution, a program defined at sysgen with the NOPROTECT 
option can access any storage area within the system, including an area associated 

exclusively with another task. Thus, the USER attribute may not protect the storage 
area being acquired. However, storage areas can be protected on a system-wide or 
program-by-program basis during system generation and by the modes specified 

when storage is allocated. 
 



GET STORAGE 

 

200  DML Reference Guide for COBOL 

 

SHARED 

Specifies that any task in the system can access and modify the acquired storage. 

Each task must establish addressability to the storage area by explicitly issuing a 
GET STORAGE request. 

STGID 

Specifies storage area. The STGID parameter must be specified with GET STORAGE 
requests for either previously allocated storage areas or areas to be reallocated. 

storage-id  

Either the symbolic name of a user-defined field that contains the storage ID or 

the ID itself enclosed in quotation marks. 

The specified storage ID must be unique; although multiple variable storage 
areas (that is, one shared and the others user) can have the same ID, only one 
such area can be owned by a given task at a time. To access the CA IDMS 

common work area, specify STGID 'CWA'. 
 

Note: If the STGID parameter specifies the address of an existing storage area, the 
USER/SHARED parameter must specify the same option as that specified in the GET 
STORAGE statement that originally allocated the storage area. 

VALUE IS 

Specifies how the storage area is to be initialized. 

LOW-VALUE Initializes the storage area to all  zeros. 

HIGH-VALUE Initializes the storage area to the highest value in the computer 

collating sequence. 

initial-value  

Either the symbolic name of a user-defined field that contains the initial value 
or the value itself enclosed in quotation marks. All  bytes of the acquired 

storage area are initialized to the same value. 
 

LOCATION is 

Specifies whether the storage is to be restricted to below the 16-megabyte line or if 
space above the 16-megabyte line is also eligible. 

ANY Specifies that space above the 16-megabyte line is eligible for allocation. 

This is the default. 

BELOW Specifies that storage must be allocated from below the 16-megabyte 
line. 

 



GET TIME 

 

Chapter 6: Data Manipulation Language Statements   201  

 

Example 

The following statement i l lustrates a request to allocate the shared kept storage area, 
09PA, and initialize it to all  zeros: 

GET STORAGE FOR EMPLMENU-KEPT-STORAGE TO 

  EMPLMENU-KEPT-STORAGE-END 

  NOWAIT 

  KEEP 

  SHORT 

  SHARED 

  STGID '09PA' 

  VALUE IS LOW-VALUE. 
 

Status Codes 

After completion of the GET STORAGE function, the ERROR-STATUS field of the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3201 The requested storage cannot be allocated immediately; to wait 
would cause a deadlock 

3202 The requested storage cannot be allocated because insufficient space 

exists in the storage pool  

3210 The request specified a storage ID that did not previously exist; the 
required space has been allocated 

3231 The request specifies an invalid parameter l ist 

3232 The requested length is zero or negative 

3234 The request cannot be serviced because the variable storage area is 
not an 01-level LINKAGE SECTION variable 

3235 The request cannot be serviced because the specified 01-level 
LINKAGE SECTION entry has either been previously allocated or 
contains an OCCURS DEPENDING ON clause 

GET TIME 

The GET TIME statement obtains the time of day and date from the operating system. 
The system time is returned to the issuing task in either fixed binary, packed decimal, or 

edited format. The date is returned to the program in packed decimal format. 
 



GET TIME 

 

202  DML Reference Guide for COBOL 

 

Syntax 

►►─── GET TIME ─┬─────────────────────────────────┬───────────────────────────► 
                └─ INTO return-time ─┬─ COMP ◄──┬─┘ 
                                     ├─ COMP-3 ─┤ 
                                     └─ EDIT ───┘ 
 
 ►─┬─────────────────────────┬─ . ────────────────────────────────────────────►◄ 
   └─ DATE INTO return-date ─┘ 

 

Parameters 

INTO 

Specifies the field to which CA IDMS is to return the time. 

return-time  

The symbolic name of a user-defined field to which the current time will  be 
returned. The following format options apply: 

COMP Returns the time as a fixed binary value representing the elapsed time 
since midnight in ten-thousandths of a second. 

This is the default. 
 

If COMP is specified, the field associated with return-time should be a PIC S9(8) 
COMP SYNC (fullword) field. The COMP option returns the most precise time. 

COMP-3 Returns the time as a six-byte packed decimal value in the format 
0hhmmssttttc (padded zero, hours, minutes, seconds, ten-thousandths of a 
second, sign). If COMP-3 is specified, the field associated with return-time 

should be defined as PIC S9(11) COMP-3. 
 

EDIT Returns the time as an edited character string in the format hh:mm:ss:hh 

(hours, minutes, seconds, hundredths of a second). If EDIT is specified, 
return-time should be defined as PIC X(11) DISPLAY. 

 

DATE INTO 

Specifies the field to which CA IDMS is to return the data obtained from the 
operating system. 

return-date  

The symbolic name of a user-defined COMP-3 PIC S9(7) field. The date is 
returned in the Julian format 0yyydddc (padded zero, current year relative to 

1900, date, sign). For example, 0099365C would represent December 31, 1999. 
0100001C would represent January 1, 2000. 

 

Example 

The following statement i l lustrates a request to return the current time and date to the 

CURRENT-TIME and CURRENT-DATE fields, respectively: 

GET TIME 

  INTO CURRENT-TIME EDIT 

  DATE INTO CURRENT-DATE. 
 



IF 

 

Chapter 6: Data Manipulation Language Statements   203  

 

Status Codes 

After completion of the GET TIME function, the only possible value in the 
ERROR-STATUS field of the IDMS-DC communications block is 0000. 

 

IF 

The IF statement allows the program to test for the presence of member record 

occurrences in a set and to determine the membership status of a record occurrence in 
a specified set; once the set has been evaluated, the IF statement specifies further 
action based on the outcome of the evaluation. For example, an IF statement might be 
used to determine whether a set occurrence is empty and, if it is empty, to erase the 

owner record. 
 

Depending on its format, the IF statement uses set or run-unit currency. The object set 
occurrence of an IF statement is determined by the owner of the current record of the 
named set; the object record occurrence is determined by the current of run unit. 

 

Each IF statement contains a conditional phrase and an imperative statement. When an 
IF is issued, the precompiler first generates a call  to the DBMS to execute the 

conditional phrase. Then, the precompiler generates a COBOL IF statement that tests 
the results of the call  to the DBMS to determine whether the imperative statement is 
executed. Exercise care when nesting DML IF within COBOL IF statements as logic can be 
difficult to follow. You may need to code explicit scope terminators. 

 

Note: If AUTOSTATUS is in use (see AUTOSTATUS Protocols  (see page 63)), 

IDMS-STATUS is not performed automatically when an IF statement is issued. 

Native VSAM users:.The IF statement is not valid for sets defined with member records 
that are stored in native VSAM data sets. 

 

Syntax 

►►─┬─ IF set-name is ─┬───────┬─ EMPTY ─┬─ imperative-statement . ────────────►◄ 
   │                  └─ NOT ─┘         │ 
   │                                    │ 
   └─ IF ─┬───────┬─ set-name MEMBER ───┘ 
          └─ NOT ─┘ 

 



IF 

 

204  DML Reference Guide for COBOL 

 

Parameters 

set-name 

Specifies the set whose owner should be examined for the presence of member 
record occurrences. 

The specified set must be included in the subschema. 

EMPTY 

Specifies that the imperative statement be executed if the current occurrence of 
the named set is empty. 

 

NOT EMPTY 

Specifies that the imperative statement be executed if the current occurrence of 
the named set is not empty. 

MEMBER 

Specifies that the imperative statement be executed if the current record of the run 

unit is a member of any occurrence of the specified set. 
 

NOT set-name MEMBER 

Specifies that the imperative statement be executed if the current record of the run 
unit is not a member of any occurrence of the specified set. 

imperative-statement 

Identifies the action to execute if the specified condition is true. 
 

Examples 

The examples below il lustrate the use of the IF statement. 

Example 1 

The following statement tests the COVERAGE-CLAIMS set for existing CLAIMS 
members and, if no occurrences of the CLAIMS record are found (ERROR-STATUS is 
0000), moves a message to that effect to location CLAIMS-WS. 

 

IF COVERAGE-CLAIMS IS EMPTY MOVE 'NONE' TO CLAIMS-WS. 

If the current occurrence of the COVERAGE-CLAIMS set contains one or more 

occurrences of the CLAIMS record (ERROR-STATUS is 1601), the MOVE statement is 
ignored and the next statement in the program is executed. 

 

Example 2 

The following statement verifies that the EMPLOYEE record that is current of run 
unit is not a member of the current occurrence of the OFFICE-EMPLOYEE set before 

code is executed to connect the EMPLOYEE record to that set. 
 



INQUIRE MAP 

 

Chapter 6: Data Manipulation Language Statements   205  

 

IF NOT OFFICE-EMPLOYEE MEMBER PERFORM LINK-SET. 

If the EMPLOYEE record is not a member of the OFFICE-EMPLOYEE set 
(ERROR-STATUS is 1601), the program performs the LINK-SET paragraph. If the 

EMPLOYEE record is already a member of the OFFICE-EMPLOYEE set 
(ERROR-STATUS is 0000), the PERFORM statement is ignored and the next 
statement in the program is executed. 

 

Status Codes 

After completion of the IF function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 Either the set is empty or the record that is current of run unit is a 
member of the set 

1601 Either the set is not empty or the record that is current of run unit is 

not a member of the set 

1606 Currency has not been established for the named set 

1608 Either an invalid set name has been specified or the current record of 

run unit is not a member of the named set 

1613 A current record of run unit either has not been established or has 
been nullified by a preceding ERASE statement 

INQUIRE MAP 

The INQUIRE MAP statement is used after a map input request to accomplish one of the 
following actions related to the input operation: 

■ Move map-related information into variable storage 

■ Test for conditions relating to global map input operations  
 

■ Test specific map fields for the presence of the cursor 

■ Test for conditions relating to specific map fields  
 

Each of these actions is discussed on the following pages. 
 



INQUIRE MAP 

 

206  DML Reference Guide for COBOL 

 

The following rules apply to INQUIRE MAP statements: 

■ If any of the test conditions are requested, INQUIRE MAP must specify a statement 

to execute if the condition is found to be true. 

■ An INQUIRE MAP statement can specify only one field-oriented inquiry. This inquiry 
can be specified alone or with a map-specific inquiry. 

■ A MAP IN request must be issued before INQUIRE MAP is used. 
 

Moving Map-related Data 
 

This version of the INQUIRE MAP statement moves one of the following map-related 

data items into variable storage: 

■ The attention ID (AID) key used 

■ The current cursor position (row and column) 

■ The entered length of a specific map input field 
 

Syntax 

►►─── INQUIRE MAP map-name ───────────────────────────────────────────────────► 
 
 ►─── MOVE ─┬─ AID TO aid-indicator ─────────────────────┬─ . ────────────────►◄ 
            ├─ CURSOR TO cursor-row cursor-column ───────┤ 
            └─ IN LENGTH FOR field-name TO field-length ─┘ 

 

Parameters 

map-name 

Specifies the map for which the inquiry is to be made. The specified map must be 

included in the program's MAP SECTION. 

MOVE 

Move screen-related information to program variable storage. 
 

AID TO 

Return the attention ID to the specified location in variable storage. 

aid-indicator  

The symbolic name of a one-byte user-defined field that will  be set to the 3270 
AID character received in the last map input request. The table below lists the 

AID characters associated with each 3270-type control key. 

Note: The data dictionary includes a record that defines the AID character 
values as level-88 items to test for particular keyed i nput by including a COPY 
IDMS DC-AID-CONDITION-NAMES statement in the WORKING-STORAGE 

SECTION. 
 



INQUIRE MAP 

 

Chapter 6: Data Manipulation Language Statements   207  

 

CURSOR TO 

Returns the cursor address from the last map input function to the specified 

location in program variable storage. 

cursor-row cursor-column  

The symbolic names of user-defined PIC S9(4) COMP fields to which the row 

and column cursor address will be returned. 
 

IN LENGTH FOR 

Specifies to return the length in bytes of the data in the specified map field. 

field-name  

The name of the map field for which the length is being requested. 
 

TO 

Specifies where to return the length of the field. 

field-length  

The symbolic name of a user-defined PIC S9(4) COMP field. 
 

Attention ID (AID) Key Values 

 

Key AID Character Key AID Character 

ENTER ''' (single quote) PF14 'B' 

CLEAR '_' (underscore) PF15 'C' 

PF01 '1' PF16 'D' 

PF02 '2' PF17 'E' 

PF03 '3' PF18 'F' 

PF04 '4' PF19 'G' 

PF05 '5' PF20 'H' 

PF06 '6' PF21 'I' 

PF07 '7' PF22 '¢' 

PF08 '8' PF23 '.' 

PF09 '9' PF24 '<' 

PF10 ':' PA01 '%' 

PF11 '#' PA02 '>' 

PF12 '@' PA03 ',' 

PF13 'A'   



INQUIRE MAP 

 

208  DML Reference Guide for COBOL 

 

The following figure shows the code copied into the program as a result of the COPY 
IDMS DC-AID-CONDITION-NAMES specification. 

 

*01 COPY IDMS DC-AID-CONDITION-NAMES. 

 01 DC-AID-CONDITION-NAMES. 

   03 DC-AID-IND-V      PIC X. 

               88 ENTER-HIT VALUE QUOTE. 

               88 CLEAR-HIT VALUE '_'. 

               88 PF01-HIT VALUE '1'. 

               88 PF02-HIT VALUE '2'. 
 

               88 PF03-HIT VALUE '3'. 

               88 PF04-HIT VALUE '4'. 

               88 PF05-HIT VALUE '5'. 

               88 PF06-HIT VALUE '6'. 

               88 PF07-HIT VALUE '7'. 

               88 PF08-HIT VALUE '8'. 

               88 PF09-HIT VALUE '9'. 

               88 PF10-HIT VALUE ':'. 

               88 PF11-HIT VALUE '#'. 
 

               88 PF12-HIT VALUE '@'. 

               88 PF13-HIT VALUE 'A'. 

               88 PF14-HIT VALUE 'B'. 

               88 PF15-HIT VALUE 'C'. 

               88 PF16-HIT VALUE 'D'. 

               88 PF17-HIT VALUE 'E'. 

               88 PF18-HIT VALUE 'F'. 

               88 PF19-HIT VALUE 'G'. 

               88 PF20-HIT VALUE 'H'. 
 

               88 PF21-HIT VALUE 'I'. 

               88 PF22-HIT VALUE '¢'. 

               88 PF23-HIT VALUE '.'. 

               88 PF24-HIT VALUE '<'. 

               88 PA01-HIT VALUE '%'. 

               88 PA02-HIT VALUE '>'. 

               88 PA03-HIT VALUE ','. 

               88 PEN-ATTN-SPACE-NULL VALUE '='. 

               88 PEN-ATTN VALUE QUOTE. 
 

Example 

The following example il lustrates the use of an INQUIRE MAP statement to move the 

3270 AID character received in the last map input request to DC-AID-IND-V. If the AID 
character indicates that PF1 was pressed, the program performs a DC RETURN. 

INQUIRE MAP EMPMAPLR 

  MOVE AID TO DC-AID-IND-V. 

IF CLEAR-HIT 

  DC RETURN. 
 



INQUIRE MAP 

 

Chapter 6: Data Manipulation Language Statements   209  

 

Testing for Global Map Input Conditions 

This version of the INQUIRE MAP statement tests for one of the following global map 

input conditions: 

■ If the screen was not formatted before the input operation was performed 

■ If one or more input fields were truncated when transferred to variable storage 

data fields 
 

■ If one or more input fields were modified on the screen before being transferred 

■ If one or more fields that were modified on the screen are undefined in the map 
being used 

 

Syntax 

►►─── INQUIRE MAP map-name ───────────────────────────────────────────────────► 
 
                                         ┌────────────────────────┐ 
 ►─── IF INPUT ─┬─ UNFORMATTED ─┬─ THEN ─▼─ imperative-statement ─┴─ . ───────►◄ 
                ├─ TRUNCATED ───┤ 
                ├─ CHANGED ─────┤ 
                └─ EXTRANEOUS ──┘ 

 

Parameters 

map-name 

The name of the map for which the inquiry is being made. The map must be 

included in the program's MAP SECTION. 
 

IF INPUT 

Tests the outcome of the last map input request for conditions relating to the data 
input to the program. 

UNFORMATTED Tests whether the screen had been formatted before the input 

operation was performed. 

TRUNCATED Tests whether any of the map fields were truncated when 
transferred to variable-storage data fields. 

 

CHANGED Tests whether any of the map fields actually had been mapped to 
variable-storage data fields when the map input operation was performed. 

EXTRANEOUS Tests whether the input data stream contained any data from a 
field not defined to the map. If this condition is true, the undefined data field is 
ignored by CA IDMS. 

 

THEN 

Specifies the action to be taken when the test condition is true. 

imperative-statement A COBOL statement, a DML statement, or a nested block 
of COBOL and/or DML statements. 

 



INQUIRE MAP 

 

210  DML Reference Guide for COBOL 

 

Example 

The following example il lustrates an INQUIRE MAP statement that tests to determine if 
any fields in the EMPMAPLR map have been truncated and, if so, requests CA IDMS to 
perform the DATA-TRUNC routine: 

INQUIRE MAP EMPMAPLR 

  IF INPUT TRUNCATED 

   THEN PERFORM DATA-TRUNC. 
 

Testing for Cursor Position 

This version of the INQUIRE MAP statement tests a specified map field for the presence 

of the cursor. 
 

Syntax 

►►─── INQUIRE MAP map-name ───────────────────────────────────────────────────► 
 
                                         ┌────────────────────────┐ 
 ►─── IF CURSOR at DFLD field-name THEN ─▼─ imperative-statement ─┴─ . ───────►◄ 

 

Parameters 

map-name 

The name of the map for which the inquiry is being made. The map must be 
included in the program's MAP SECTION. 

 

IF CURSOR at DFLD 

Determines whether the cursor was in the named map field during the last map 
input operation. 

field-name Identifies the field within the named map to be tested. 

THEN 

Specifies the action to be taken if the test condition is true. 

imperative-statement A COBOL statement, a DML statement, or a nested block 
of COBOL and/or DML statements. 

 

Example 

The following example il lustrates an INQUIRE MAP statement that tests for the presence 
of the cursor in the PASSED-DATA-01 data field and, if so, performs the CHECK-2 routine: 

INQUIRE MAP EMPMAPLR 

   IF CURSOR AT DFLD EMP-LAST-NAME-0415 

     THEN PERFORM CHECK-2. 
 



INQUIRE MAP 

 

Chapter 6: Data Manipulation Language Statements  211  

 

Testing for Input Non-zero Status Conditions 

This version of the INQUIRE MAP statement tests for the following input conditions 

relating to specific map fields: 

■ If map fields have been modified 

■ If map fields have been erased by operator action 

■ If map fields have been truncated 
 

■ If map fields are identical to map data currently in program variable storage 

■ If map fields are different from map data currently in program variable storage 

■ If the specified map fields are either in error (the error flag has been set on for 
those fields) or are correct (the error flag has been set off); this option applies only 

to those maps and map fields for which automatic editing is enabled 
 

Syntax 

►►─── INQUIRE MAP map-name ───────────────────────────────────────────────────► 
 
 ►─── IF ─┬─┬─ CURRENT ─────────┬───────────┬─────────────────────────────────► 
          │ ├─ ALL ─────────────┤           │ 
          │ ├─ NONE ────────────┤           │ 
          │ ├─ ANY ─────────────┤           │ 
          │ ├─ SOME ────────────┤           │ 
          │ └─ ALL BUT CURRENT ─┘           │ 
          │                                 │ 
          ├─┬─ ALL ◄ ───┬─ DFLD field-name ─┤ 
          │ ├─ NONE ────┤                   │ 
          │ ├─ ANY ─────┤                   │ 
          │ ├─ SOME ────┤                   │ 
          │ └─ ALL BUT ─┘                   │ 
          │                                 │ 
          └─ DFLD field-name ───────────────┘ 

 

 ►─┬─ DATA is ─┬─ YES ───────┬─┬──────────────────────────────────────────────► 
   │           ├─ NO ────────┤ │ 
   │           ├─ ERASE ─────┤ │ 
   │           ├─ TRUNCATED ─┤ │ 
   │           ├─ IDENTICAL ─┤ │ 
   │           └─ DIFFERENT ─┘ │ 
   │                           │ 
   └─ EDIT is ─┬─ ERROR ───┬───┘ 
               └─ CORRECT ─┘ 
 
            ┌────────────────────────┐ 
 ►─── THEN ─▼─ imperative-statement ─┴─ . ────────────────────────────────────►◄ 

 

Parameters 

map-name 

Specifies the map for which the inquiry is being made. The map must be included in 
the program's MAP SECTION. 

 



INQUIRE MAP 

 

212  DML Reference Guide for COBOL 

 

IF 

Specifies the map fields to which the test applies. 

CURRENT Applies the test only to the current field; that is, the map field that 
was referenced in the last MODIFY MAP or INQUIRE MAP statement issued by 
the program. If the last MODIFY MAP or INQUIRE MAP statement specified a 

field l ist, no currency exists. 

ALL Specifies that the test is true if all  map fields meet the specified condition. 
 

NONE Specifies that the test is true if none of the map fields meet the specified 
condition. 

ANY Specifies that the test is true if one or more of the map fields meet the 

specified condition. 
 

SOME Specifies that the test is true if one or more but not all of the map fields 

meet the specified condition. 

ALL BUT CURRENT Specifies that the test is true if all  map fields except the 
current field meet the specified condition. 

 

IF 

Specifies the extent to which the condition applies to the map field. 

ALL Specifies that the test is true if all  of the named map fields meet the 
specified condition. 

NONE Specifies that the test is true if none of the named map fields meet the 

specified condition. 
 

ANY Specifies that the test is true if one or more of the named map fields meet 
the specified condition. 

SOME Specifies that the test is true if one or more but not all  of the named 
map fields meet the specified condition. 

ALL BUT Specifies that the test is true if all  map fields except for the named 
field meet the specified condition. 

 

DFLD 

Specifies the individual map fields to which the test conditions apply. 

Multiple DFLD specifications must be separated by at least one blank. 

field-name The name of a field within the named map. 
 

DFLD field-name 

Specifies the individual map field(s) to which the test condition applies. The 
specified field(s) must exist within the named map. 

Multiple DFLD specifications must be separated by at least one blank. 
 



INQUIRE MAP 

 

Chapter 6: Data Manipulation Language Statements   213  

 

DATA IS 

Tests the input data in the specifi ed map field(s). 

YES Determines if the terminal operator entered data in the specified map 
field(s). 

NO Determines if the terminal operator did not enter data in the specified map 

field(s). 

ERASE Determines if data has been erased from the specified map field(s). 

TRUNCATED Determines if data has been truncated in the specified map 
field(s). 

 

IDENTICAL Tests whether input data is identical to map data currently in 

program variable storage. 

  IDENTICAL is true in either of the following cases: 

– The field's modified data tag (MDT) is off. On mapin, the MDT is usually off 

if the user did not type any characters in the field. 

– The field's MDT is on, but each character that the user typed in is identical 
(including capitalization) to the data in variable storage. 

 

DIFFERENT Tests whether input data is different from map data currently in 
program variable storage. 

DIFFERENT is true if the field's MDT is both: 

– on 

and 

– at least one input character differs from the data in variable storage. 
 

EDIT IS 

Tests for errors in the named map field(s). 

If the EDIT parameter is specified, automatic editing must be enabled for the map 
and for each of the named map fields. 

ERROR Determines if the named map field(s) were found to be in error during 

automatic editing. 

CORRECT Determines if the named map field(s) were found to be correct during 
automatic editing. 

 

THEN 

Specifies the action to be taken when the test condition is true. 

imperative-statement A single COBOL statement, a DML statement, or a nested 
block of COBOL and/or DML statements. 

 



INQUIRE MAP 

 

214  DML Reference Guide for COBOL 

 

Examples 

The examples below il lustrate the use of the INQUIRE MAP statement. 

Example 1—Testing for Erroneous Data 

The following example determines if automatic editing has detected erroneous data 

in any field in the EMPMAPLR map; if so, the program modifies the map temporarily 
to display the erroneous fields with the bright and blinking attributes: 

 

INQUIRE MAP EMPMAPLR 

  IF ANY EDIT IS ERROR 

   THEN MODIFY MAP EMPMAPLR TEMPORARY 

      FOR ALL ERROR FIELDS 

      ATTRIBUTES BRIGHT BLINK. 
 

Example 2—Testing for Identical Data 

Use an INQUIRE MAP statement to test whether the user has entered an employee 
ID number: 

■ If the IDENTICAL condition is true (the user doesn't specify a different ID number), 

the program displays the menu screen. 

■ If the IDENTICAL condition is false (the user specifies a different ID number), the 
program obtains the corresponding employee record from the database. 

The sample INQUIRE MAP statement is: 
 

INQUIRE MAP MAP01 

  IF DFLD EMP-ID-0415 DATA IS IDENTICAL THEN 

   PERFORM EMP-PROMPT-20 

  ELSE 

   PERFORM EMP-OBTAIN-20. 
 

Example 3—Testing for Changed Data 

Use an INQUIRE MAP statement to test whether the user has entered a new 
department ID or department name. If the user has changed either value 

(DIFFERENT is true), the program branches to DEPTUP-30: 
 

INQUIRE MAP MAP02 

  IF ANY DFLD DEPT-ID-0410 

     DFLD DEPT-NAME-0410 DATA IS DIFFERENT 

  THEN PERFORM DEPTUP-30. 
 



KEEP CURRENT 

 

Chapter 6: Data Manipulation Language Statements   215  

 

Status Codes 

After completion of the INQUIRE MAP function, the ERROR-STATUS field of the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4629 An invalid parameter has been passed from the program. 

4641 The test condition has been found to be true. (This condition is 

tested for automatically by COBOL DML expansion statements.) 

4644 The referenced map field is not in the specified map; a possible cause 
is a reference to an invalid map field subscript. 

4656 The referenced map contains no data fields. 

KEEP CURRENT 

The KEEP CURRENT statement places an expli cit shared or exclusive lock on a record 
that is current of run unit, record, set, or area. Locks placed on records through the KEEP 

CURRENT function are maintained for the duration of the database transaction or until  
explicitly released by means of the COMMIT or FINISH statements. 

 

Syntax 

►►─── KEEP ─┬─────────────┬─ CURRENT ─┬────────────────────┬─ . ──────────────►◄ 
            └─ EXCLUSIVE ─┘           ├─ record-name ──────┤ 
                                      ├─ WITHIN set-name ──┤ 
                                      └─ WITHIN area-name ─┘ 

 

Parameters 

EXCLUSIVE 

Specifies to place an exclusive lock on the current record of run unit, record, set, or 

area. If you do not specify EXCLUSIVE, the record receives a shared lock by default. 

record-name 

Specifies to place the lock on the current record of the specified record type. 
 

WITHIN set-name 

Specifies to place the lock on the current record of the specified set. 

WITHIN area-name 

Specifies to place the lock on the current record of the specified area. 
 



KEEP LONGTERM 

 

216  DML Reference Guide for COBOL 

 

Example 

The following example places a shared lock on the current EMPLOYEE record 
occurrence: 

KEEP CURRENT EMPLOYEE. 
 

Status Codes 

After completion of the KEEP function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

0606 Currency has not been established for the named record, set, or area  

0608 Either the named record or set is not in the subschema or the current 
record of run unit is not a member of the named set 

0610 The program's subschema specifies an access restriction that 
prohibits execution of the KEEP function 

0623 The named area is not in the subschema 

0626 The record to be kept has been erased 

0629 A deadlock has occurred while attempting to set the l ock. 

KEEP LONGTERM 

The KEEP LONGTERM statement establishes longterm record locks and/or monitors 
access to records between tasks. Longterm database locks are used in 
pseudo-conversational transactions and can be shared or exclusive: 

■ Longterm shared locks allow other run units to access the locked record but 

prevent run units from updating the record as long as the lock is maintained. 

■ Longterm exclusive locks prevent other run units from accessing the locked record. 
However, run units executing on the logical terminal associated with the issuing 

task are not restricted from accessing the locked record. Therefore, subsequent 
tasks in a transaction can access the locked record and complete the database 
processing required by the transaction. 

 

If a record has been locked with a KEEP LONGTERM or KEEP request, restrictions exist 
on the type of lock that can be placed on that record by other run units. These 

restrictions are based on existing locks and whether the requesting run unit is executing 
on the same logical terminal as the run unit that originally placed the lock on the record. 
The following table i l lustrates these restrictions. 

 



KEEP LONGTERM 

 

Chapter 6: Data Manipulation Language Statements  217  

 

Keep Longterm Record Lock Options 

 

Locks in effect Locks allowed for other run units Locks disallowed for other 
run units 

Shared ■ shared 

■ longterm shared 

■ exclusive 

■ longterm exclusive 

Exclusive None ■ shared 

■ exclusive 

■ longterm shared 

■ longterm exclusive 

Longterm shared For all  run units: 

■ shared 

■ longterm shared 

For run units on the same terminal: 

■ exclusive 

■ longterm exclusive 

For run units on other 
terminals: 

■ exclusive 

■ longterm exclusive 

Longterm exclusive For run units on the same terminal: 

■ shared 

■ exclusive 

■ longterm shared 

■ longterm exclusive 

For run units on other 
terminals: 

■ shared 

■ exclusive 

■ longterm shared 

■ longterm exclusive 

Tasks can monitor database activity associated with a specified record during a 

pseudo-converse and, if desired, can place a longterm lock on the record being 
monitored. A subsequent task can then make inquiries about that database activity for 
the record and take the appropriate action. 

CA IDMS maintains information on database activity by using five bit flags, each of which 

is either turned on (binary 1) or turned off (binary 0). This information is returned to the 
program as a numeric value. The bit assi gnments, the corresponding numeric value 
returned to the program, and a description of the associated database activity follow: 

 

 

Numeric 

Value 

Bit Assignment Description 

16 X'00000010' The record was physically deleted 

8 X'00000008' The record was logically deleted 



KEEP LONGTERM 

 

218  DML Reference Guide for COBOL 

 

Numeric 
Value 

Bit Assignment Description 

4 X'00000004' The record's prefix was modified; that is, a set operation 
(for example, CONNECT or DISCONNECT) occurred 
involving the record 

2 X'00000002' The record's data was modified 

1 X'00000001' The record was obtained 

To determine the action or combination of actions that has occurred, you can compare 
the numeric value returned to the program with an appropriate constant. For example: 

– If the returned value is zero, no database activity occurred for the specified 
record. 

– If the returned value is two, the record's data was modified. 

– If the returned value is two or greater, the record was altered in some way. 

– If the returned value is eight or greater, the record was deleted. 
 

The maximum possible value is 31, indicating that all  the above actions occurred for the 
specified record. 

You may prefer to monitor database activity across a pseudo-converse rather than to 

set longterm locks. Monitoring does not restrict access to database records, sets, or 
areas by other run units; however, it does enable a program to test a record for 
alterations made by other run units. The presence of longterm locks can prevent other  
run units from accessing locked records for an undesirable amount of time if, during a 

pseudo-converse, the terminal operator fails to enter a response. If longterm locks are 
used, you may want to release them at specified intervals. 

Note: For more information about the use of timeout intervals, see the CA IDMS System 
Generation Guide .. 

 

Syntax 

►►─── KEEP LONGTERM ─┬─ ALL ─────────┬────────────────────────────────────────► 
                     └─ longterm-id ─┘ 
 
 ►─┬─ NOTIFY CURRENT ─┬─ record-name ─┬─────────────┬─ . ─────────────────────►◄ 
   │                  ├─ set-name ────┤             │ 
   │                  └─ area-name ───┘             │ 
   │                                                │ 
   ├─ lock-options ─────────────────────────────────┤ 
   │                                                │ 
   ├─ TEST ─┬─────────────────────────────────────┬─┤ 
   │        └─ RETURN NOTIFICATION into location ─┘ │ 
   │                                                │ 
   └─ RELEASE ──────────────────────────────────────┘ 

 



KEEP LONGTERM 

 

Chapter 6: Data Manipulation Language Statements   219  

 

Expansion of lock-options 

 ►─┬─┬─ SHARE ─────┬─ CURRENT ─┬─ record-name ─┬───────────────────────┬──────► 
   │ └─ EXCLUSIVE ─┘           ├─ set-name ────┤                       │ 
   │                           └─ area-name ───┘                       │ 
   │                                                                   │ 
   └─ UPGRADE ─┬─ SHARE ─────┬─┬─────────────────────────────────────┬─┘ 
               └─ EXCLUSIVE ─┘ └─ RETURN-NOTIFICATION into location ─┘ 
 
 ►─┬──────────────┬───────────────────────────────────────────────────────────► 
   ├─ WAIT ◄ ─────┤ 
   ├─ NOWAIT ─────┤ 
   └─ NODEADLOCK ─┘ 

 

Parameters 

ALL 

Used only with the RELEASE parameter, to release all  longterm locks kept for the 
logical terminal associated with the current task. 

longterm-id 

Either the symbolic name of a user-defined field that contains the longterm ID or 
the ID itself enclosed in quotation marks. This ID will  be used in any subsequent 
references to the lock, when it is changed or released. 

 

NOTIFY CURRENT 

Specifies to monitor database activity associated with the current record. When 
NOTIFY CURRENT is specified, CA IDMS initializes a preallocated location in the 
program to contain information on database activity for the specified record. 

record-name  

Monitors database activity associated with the current occurrence of 
record-name. 

set-name  

Monitors database activity associated with the record current of set-name. 

area-name  

Monitors database activity associated with the record current of area-name. 
 

TEST RETURN NOTIFICATION into 

Specifies to return information on database activity associated with the record 
identified by longterm-id to a previously allocated location in the program's storage. 

The TEST request must specify a longterm lock ID that matches the longterm lock ID 
specified in a previous KEEP LONGTERM NOTIFY CURRENT request. 

location  

The symbolic name of a user-defined PIC S9(8) COMP (fullword) field that 
contains the WORKING-STORAGE or LINKAGE SECTION entry of the data area to 
which CA IDMS will  return the information. 

 



KEEP LONGTERM 

 

220  DML Reference Guide for COBOL 

 

RELEASE 

Releases the longterm lock for the record identified by longterm-id or all  record 

locks (ALL) owned by the logical terminal associated with the current task. RELEASE 
also releases the information associated with a previous KEEP LONGTERM NOTIFY 
request. 

 

Lock Options 

SHARE 

Applies a longterm shared lock to the specified record. 

EXCLUSIVE 

Applies a longterm exclusive lock to the specified record. 

CURRENT record-name Applies the lock to the current occurrence of 
record-name. 

CURRENT set-name Applies the lock to the record current of set-name. 

CURRENT area-name Applies the lock to the record current of area-name. 
 

UPGRADE 

Upgrades a previous KEEP LONGTERM NOTIFY CURRENT request. 

SHARE Places a shared longterm lock on the record. 

EXCLUSIVE Places an exclusive longterm lock on the record. 

RETURN NOTIFICATION into 

Returns information on database activity for the specified record. 

return-location The symbolic name of a user-defined PIC S9(8) COMP (fullword) 

field that contains the WORKING-STORAGE SECTION or LINKAGE SECTION entry 
of the data area to which CA IDMS will  return the information. 

 

WAIT 

Requests the issuing task to wait for an existing lock to be released. 

This is the default. 

If the wait would cause a deadlock, the task is terminated abnormally. 
 

NOWAIT 

Requests the issuing task not to wait for an existing lock to be released. 

NODEADLOCK 

Requests the issuing task to wait for an existing lock to be released, unless to do so 

would cause a deadlock. If the wait would cause a deadlock, control is returned to 
the task. 

 



KEEP LONGTERM 

 

Chapter 6: Data Manipulation Language Statements   221  

 

Example 

The steps below il lustrate the use of the KEEP LONGTERM statement. 

1. Begin monitoring database activities for the current occurrence of the EMPLOYEE 
record by coding: 

KEEP LONGTERM KEEP-ID NOTIFY CURRENT EMPLOYEE. 

2. Return statistics of database activities for the record identified by KEEP-ID into 
STAT-VALUE by coding: 

KEEP LONGTERM KEEP-ID TEST RETURN NOTIFICATION 

       INTO STAT-VALUE. 
 

3. Depending on the value returned to STAT-VALUE, you may want to put a longterm 
shared lock on the EMPLOYEE record identified by KEEP-ID by coding: 

KEEP LONGTERM KEEP-ID UPGRADE SHARE. 

4. After processing, release all longterm locks by coding: 

KEEP LONGTERM ALL RELEASE. 
 

Status Codes 

After completion of the KEEP LONGTERM function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

5101 The NODEADLOCK option has been specified; however, to wait would 

cause a deadlock. Control has returned to the issuing task. 

5102 Unable to obtain storage for the required KEEP LONGTERM control 
blocks. 

5105 Either the requested record type cannot be found or currency has 

not been established. 

5113 The required area control block was not found in the DMCL. 

5121 Either the requested longterm ID cannot be found or the KEEP 
LONGTERM request was issued by a nonterminal task. 

5123 The specified area cannot be found. 

5131 The parameter l ist is invalid. 

5147 The KEEP LONGTERM area has not been readied. 

5148 The run unit associated with the KEEP LONGTERM request has not 
been bound. 



LOAD TABLE 

 

222  DML Reference Guide for COBOL 

 

Status code Meaning 

5149 The NOWAIT option has been specified; however, a wait is required. 

5151 A lock manager error occurred during the processing of the KEEP 
LONGTERM request. 

5159 An error occurred in transferring the KEEP LONGTERM request to 

IDMSKEEP. 

5160 The requested KEEP LONGTERM lock ID was already in use with a 
different page group. 

5161 The requested KEEP LONGTERM lock ID was already in use with a 

different dbkey format. 

LOAD TABLE 

The LOAD TABLE statement instructs CA IDMS/DC to load a table (module or program) 

into the program pool and provide access to it through a COBOL LINKAGE SECTION 
entry. 

 

Syntax 

►►─── LOAD TABLE program ─────────────────────────────────────────────────────► 
 
 ►─── INTO 01-level-program-location ─┬─ TO end-program-location ────────┬────► 
                                      └─ POINTER table-location-pointer ─┘ 
 
 ►─┬──────────────────────┬─┬────────────────────────────┬────────────────────► 
   └─ DICTNODE nodename ──┘ └─ DICTNAME dictionary-name ─┘ 
 
 ►─┬────────────────────────┬─────────────────────────────────────────────────► 
   └─ LOADLIB library-name ─┘ 
 
 ►─┬─ WAIT ◄ ─┬─ . ───────────────────────────────────────────────────────────►◄ 
   └─ NOWAIT ─┘ 

 



LOAD TABLE 

 

Chapter 6: Data Manipulation Language Statements   223  

 

Parameters 

program 

Either the symbolic name of a user-defined field that contains the table or the name 
itself enclosed in quotation marks. 

INTO 

Specifies the LINKAGE SECTION entry of the 01-level record area that references the 
loaded table. 

01-level-program-location  

The symbolic name of a user-defined field that contains the name of the 
01-level LINKAGE SECTION entry used to load the table. 

Note: CA IDMS/DC does not support the use of an OCCURS DEPENDING ON clause 

within 01-level-program-location. 
 

TO 

Specifies the end of the LINKAGE SECTION entry of the 01-level record area that 
references the loaded table. 

This parameter is optional under COBOL 85. 

end-program-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the module being loaded. 
End-program-location is an entry subordinate to the 01-level record. 

 

POINTER 

Specifies a pointer to the address of the table (COBOL 85 only). 

table-location-pointer  

The symbolic name of a user-defined field that is to contain the pointer to the 
address of the table. 

DICTNODE 

Specifies the node that controls the dictionary where the table resides. 

nodename  

Either the symbolic name of a user-defined eight-character field in variable 
storage or the node name itself enclosed in quotation marks. 

 



LOAD TABLE 

 

224  DML Reference Guide for COBOL 

 

DICTNAME 

Specifies the dictionary where the table resides. 

dictionary-name  

Either the symbolic name of a user-defined eight-character field in variable 
storage or the dictionary name itself enclosed in quotation marks. 

LOADLIB 

Specifies the load library containing the table. 

library-name  

Either the symbolic name of a user-defined eight-character field in variable 

storage or the library name itself enclosed in quotation marks. 
 

WAIT 

Requests the issuing task to wait for sufficient storage in the event that program 
pool storage is not immediately available to meet the requirements of the LOAD 
TABLE request. 

This is the default. 

If you specify WAIT and CA IDMS/DC encounters an insufficient storage condition, 
the issuing task is placed in an inactive state; when the LOAD TABLE function is 

completed, control returns to the issuing task according to its previously 
established dispatching priority. 

 

NOWAIT 

Requests the issuing task not to wait for storage to become available. If you specify 
NOWAIT, CA IDMS/DC returns a value of 3402 (DC-NO-STORAGE) to the 

ERROR-STATUS field when an insufficient storage condition exists. 

Example 

The example below defines the 01-level LINKAGE SECTION entry for use with the LOAD 
TABLE request for a table built from an Assembler program. 

Note: IDD edit and code tables contain special characters andvariable-length fields. In 
general, such fields are not used in a COBOL program. 

 

The following source code defines the 01-level LINKAGE SECTION entry for use with the 
LOAD TABLE request: 

 LINKAGE SECTION. 

 

 01 STATE-TABLE. 

   02 STATES         OCCURS 50 TIMES. 

     03 STATE-ABB      PIC X(2). 

     03 STATE-FULL     PIC X(15). 

   02 END-STATE-TABLE     PIC X. 
 



LOAD TABLE 

 

Chapter 6: Data Manipulation Language Statements   225  

 

Examples 

The examples below il lustrate the use of the LOAD TABLE statement: 

Example 1 

The following statement loads the STATECON table into the 01-level LINKAGE 

SECTION entry STATE-TABLE: 

LOAD TABLE 'STATECON' 

   INTO STATE-TABLE TO END-STATE-TABLE. 
 

Example 2 

The example below defines the 01-level LINKAGE SECTION entry for use with the 
LOAD TABLE request for an IDD CODE TABLE, defined as follows: 

ADD TABLE NAME IS DECODMTH 

  TABLE DESCRIPTION IS 'MONTH CODE CONVERT' 

  TYPE IS CODE 

  SEARCH IS LINEAR 

  ENCLODE DATA IS ALPHANUMERICPIC 9(4) COMP. 
 

  TABLE IS UNSORTED 

  DUPLICATES ARE NOT ALLOWED 

  VALUES ARE ( 01 JAN 02 FEB 03 MAR 04 APR 

         05 MAY 06 JUN 07 JUL 08 AUG 

         09 SEP 10 OCT 11 NOV 12 DEC ). 

The following source code defines the 01-level LINKAGE SECTION entry for use with 
the LOAD TABLE request: 

 

 LINKAGE SECTION. 

 

 01 MONTH-TABLE. 

   02 TABLE-HEADER. 

     03 HDR-NUM-ENTRIES   PIC 9(4) COMP. 

   02 TABLE-DATA.       OCCURS 12 TIMES. 

     03 DTA-FILLER1     PIC X(2). 

     03 DTA-MONTH-NUM    PIC 9(2). 
 

     03 DTA-FILLER2     PIC X. 

     03 DTA-MONTH-TXT    PIC X(3). 

   02 END-MONTH-TABLE     PIC X. 

The following statement loads the DECODMTH tables into the 01-level LINKAGE 
SECTION entry MONTH-TABLE: 

 



LOAD TABLE 

 

226  DML Reference Guide for COBOL 

 

PROCEDURE DIVISION USING MONTH-TABLE. 

 

 LOAD TABLE 'DECODMTH' 

   INTO MONTH-TABLE TO END-MONTH-TABLE. 

Note: For BS2000, starting from the COBOL85 compiler V2.2C and higher, each 
01-level entry in the LINKAGE SECTION has to be defined in the USING-clause of the 

PROCEDURE DIVISION. 

Note: For BS2000, TABLE definition must be the very last definition in the LINKAGE 
SECTION. 

 

Status Codes 

After completion of the LOAD TABLE function, the ERROR-STATUS field in the CA 
IDMS/DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

3401 The requested module cannot be loaded immediately due to 
insufficient storage; to wait would cause a deadlock. 

3402 The requested module cannot be loaded because insufficient storage 
exists in the program pool. 

3407 The requested module cannot be loaded because an I/O error has 

occurred during processing. 

3414 The requested module cannot be loaded because it has been defined 
as nonconcurrent and is currently in use. 

3415 The requested module has been overlaid temporarily in the program 

pool and cannot be reloaded immediately. 

3435 The request cannot be serviced because the specified 01-level 
LINKAGE SECTION entry has either been previously allocated or 

contains an OCCURS DEPENDING ON clause. 

3436 Either the requested program is not defined in the program 
definition table (PDT) or is marked out of service, or null PDEs are not 
specified or valid in this CA IDMS/DC system. 



MAP IN 

 

Chapter 6: Data Manipulation Language Statements   227  

 

MAP IN 

The MAP IN statement requests a synchronous transfer of data from map fields on the 
screen to the corresponding variable-storage data fields. The MAP IN statement can also 
be used to transfer data from an area in variable storage that contains a 3270-like data 
stream to map-related variable-storage data fields; this is referred to as a native mode 

data transfer. 
 

Syntax 

►►─── MAP IN USING map-name ──────────────────────────────────────────────────► 
 
 ►─┬────────────────────────────────────────────────────────────────────────┬─► 
   ├─ IO ◄ ─────────────────────────────────────────────────────────────────┤ 
   │                                                                        │ 
   └─ NOIO DATASTREAM FROM mapped-data-location ─┬─ TO end-data-location ─┬─┘ 
                                                 └─ LENGTH data-length ───┘ 
 
 ►─┬───────────────────────────┬──────────────────────────────────────────────► 
   └─ INPUT DATA is ─┬─ YES ─┬─┘ 
                     └─ NO ──┘ 
 
 ►─┬─────────────────────────┬─┬───────────────────────┬─┬────────────┬─ . ───►◄ 
   ├─ DETAIL detail-options ─┤ └─ PAGE is page-number ─┘ └─ MODIFIED ─┘ 
   └─ HEADER ────────────────┘ 

 

Expansion of detail-options 

►─┬─────────────────────────────────────┬─┬────────────────────────────────┬─► 
  ├─ NEXT ◄ ────────────────────────────┤ └─ RETURNKEY is data-field-name ─┤ 
  ├─ FIRST ─────────────────────────────┤                                  │ 
  ├─ SEQUENCE NUMBER is seq-field-name ─┘                                  │ 
  └─ KEY is key ───────────────────────────────────────────────────────────┘ 

 

Parameters 

map-name 

The name of the map to be used for the MAP IN request. It must be a map included 

in the program's MAP SECTION. 

IO 

Specifies to transfer data from map fields to variable-storage data fields that are 
associated with the specified map. 

This is the default type of data transfer. 
 



MAP IN 

 

228  DML Reference Guide for COBOL 

 

NOIO DATASTREAM FROM 

Requests to transfer data from an area in program variable storage to the 

variable-storage data fields that correspond to the specified map. No terminal I/O is 
associated with the request. 

mapped-data-location  

The symbolic name of a user-defined field that contains the 
WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data stream to 
be read by CA IDMS. The length of the data stream is determined by one of the 
following specifications: 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 
that contains the data stream. 

end-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the input data stream. 

 

LENGTH 

Explicitly defines the length in bytes of the input data stream. 

data-length  

Either the symbolic name of a user-defined field that contains the length of the 
data stream or the length itself expressed as a numeric constant. 

INPUT DATA IS 

I/O requests only. Specifies whether the contents of all  fields of the specified map 
will  be moved to variable-storage data fields, or left unchanged. 

This specification applies to all  variable-storage data fields unless overridden by an 
INPUT DATA IS YES/NO clause in a previously issued MODIFY MAP request. 

YES  

Moves the contents of all  fields of the specified map to variable-storage data 
fields. 

NO  

Leaves the contents of all  variable-storage data fields unchanged. 
 



MAP IN 

 

Chapter 6: Data Manipulation Language Statements   229  

 

DETAIL 

Pageable maps only. Specifies that the MAP IN operation is to retrieve data from a 

modified detail  occurrence (MDT set on). The contents of all  map fields in the detail  
occurrence are retrieved unless MODIFIED is specified for the MAP IN DETAIL 
statement; MODIFIED causes only modified fields to be retrieved. 

Note: For more information about pageable maps, see the CA IDMS Mapping 
Facility Guide. 

NEXT 

Retrieves the next sequential modified detail  occurrence. 

This is the default. 

An end-of-data condition (DC-NO-MORE-UPD-DETAILS) is returned in either of 
the following cases: 

– No detail  occurrences have been modified. 

– All modified detail  occurrences have been mapped in already. 
 

FIRST 

Retrieves the first available modified detail  occurrence. 
 

SEQUENCE-NUMBER is 

Retrieves a detail  occurrence by sequence number. Detail  occurrences are built at 
run time by the application program and stored in the sequence in which they are 

created. 

seq-field-name  

A PIC S9(8) COMP (fullword) field. 

A detail-not-found condition is returned in either of the following cases: 

– The specified occurrence is not a modified detail  occurrence. 

– No detail  occurrence with the specified value is found. 
 

RETURNKEY IS 

Specifies the variable field in which CA IDMS stores the four-byte value (if any) 

associated with the retrieved detail  occurrence. If no value is associated with the 
detail  occurrence, the data-field-name is set to zero. 

data-field-name  

The symbolic name of either a PIC X(4) or PIC S9(8) COMP (fullword) field that 

contains the key value. Data-field-name does not have to be fullword aligned. 
 



MAP IN 

 

230  DML Reference Guide for COBOL 

 

KEY IS 

Retrieves a modified detail  occurrence based on the value associated with the 

detail  occurrence. 

key  

The name of a PIC S9(8) COMP (fullword) field. 

Note: A value is associated with a detail  occurrence by using the KEY IS 
parameter in the MAP OUT DETAIL command for that occurrence. 

 

HEADER 

Pageable maps only. Specifies that the MAP IN operation is to retrieve the contents 
of data fields in the header and footer areas. The contents of all  data fields in the 

header and footer areas are retrieved unless MODIFIED is specified for the MAP IN 
HEADER statement; MODIFIED causes only modified fields to be retrieved. 

 

PAGE IS 

Pageable maps only. Specifies the name of a variable field to store the current value 
of the $PAGE field on mapin. 

page-number  

A PIC S9(8) COMP (fullword) field. 

MODIFIED 

Pageable maps only. Specifies that, within a modified detail  occurrence, only 

modified fields (MDT set on) are to be retrieved in the MAP IN operation. 
 

Examples 

The examples below il lustrate the use of the MAP IN statement. 

Example 1 

The following statement i l lustrates a request to read the EMPMAPLR map. Data 
values are transferred from map fields on the EMPMAPLR map to the 
corresponding variable-storage data fields. Subsequent commands can evaluate the 

input values and perform appropriate processing. 

MAP IN USING EMPMAPLR 

  INPUT DATA IS YES. 
 

Example 2 

The following statement i l lustrates a request to map in the next modified detail  
occurrence of the EMPMAPPG MAP: 

MAP IN USING EMPMAPPG 

  DETAIL 

  NEXT MODIFIED. 
 



MAP IN 

 

Chapter 6: Data Manipulation Language Statements   231  

 

Status Codes 

After completion of the MAP IN function, the ERROR-STATUS field of the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4627 A permanent I/O error has occurred during processing 

4628 The dial-up line for the terminal has been disconnected 

4631 The map request block (MRB) contains an invalid field, indicating a 
possible error in the program's parameters  

4632 The derived length of the specified map input data area is zero or 

negative 

4633 The map load module named in the MRB cannot be found 

4634 The LINKAGE SECTION entry specified is not at COBOL 01-Level. 

4638 The specified 01-level WORKING-STORAGE SECTION or LINKAGE 

SECTION entry has not been allocated 

4639 The terminal being used is out of service 

4640 The NOIO option has been specified but the requested data stream 
cannot be found 

4642 The requested map does not support the terminal device being used 

4652 The specified edit or code table either cannot be found or is invalid 
for use with the named map 

4654 A data conversion error has occurred; internal map data does not 
match the map's data description 

4655 The user-written edit routine specified for the named map cannot be 
found 

4664 The requested node for a header or detail  was either not present or 
not updated 

4668 No more modified detail  occurrences require mapin 

4672 The scratch record that contains the requested detail  could not be 
accessed (internal error) 



MAP OUT 

 

232  DML Reference Guide for COBOL 

 

MAP OUT 

The MAP OUT statement creates or modifies detail  occurrences for a pageable map or 
requests a transfer of data from variable-storage data fields to map fields on the 
terminal screen. MAP OUT can also be used to transfer data to another area in program 
variable storage; this is referred to as a native mode data transfer. 

 

Syntax 

►►─── MAP OUT USING map-name ─────────────────────────────────────────────────► 
 
 ►─┬──────────┬───────────────────────────────────────────────────────────────► 
   ├─ WAIT ◄ ─┤ 
   └─ NOWAIT ─┘ 
 
 ►─┬──────────────────────────────────────────────────────────────────────────►─ 
   ├─ IO ◄ ─────────────────────────────────────────────────────────────────── 
   │ 
   └─ NOIO DATASTREAM INTO data-location ─┬─ TO end-data-location ───┬──────── 
                                          └─ max LENGTH data-length ─┘ 

 

─►─────────────────────────────────────────────┬──────────────────────────────► 
  ─────────────────────────────────────────────┤ 
                                               │ 
  ─┬─────────────────────────────────────────┬─┘ 
   └─ RETURN LENGTH into data-actual-length ─┘ 
 
 ►─┬─────────────────────────────────────────────────────────────────────┬────► 
   └─ OUTPUT ─┬───────────────────────────┬─┬───────────┬─┬────────────┬─┘ 
              └─ DATA is ─┬─ YES ───────┬─┘ ├─ NEWPAGE ─┤ └─ LITERALS ─┘ 
                          ├─ NO ────────┤   └─ ERASE ───┘ 
                          ├─ ERASE ─────┤ 
                          └─ ATTRIBUTE ─┘ 
 
 ►─┬──────────────────────────────────────────────────────────────┬───────────► 
   └─ MESSAGE IS message-text ─┬─ TO end-message-data-location ─┬─┘ 
                               └─ LENGTH data-length ───────────┘ 

 

 ►─┬──────────────────────────────────────────┬─ . ───────────────────────────►◄ 
   ├─ DETAIL ─┬───────────┬─┬──────────────┬──┤ 
   │          ├─ NEW ◄ ───┤ └─ KEY is key ─┘  │ 
   │          └─ CURRENT ─┘                   │ 
   │                                          │ 
   └─ RESUME ─┬─────────────────────────────┬─┘ 
              └─ PAGE is ─┬─ CURRENT ◄ ───┬─┘ 
                          ├─ NEXT ────────┤ 
                          ├─ PRIOR ───────┤ 
                          ├─ FIRST ───────┤ 
                          ├─ LAST ────────┤ 
                          └─ page-number ─┘ 

 



MAP OUT 

 

Chapter 6: Data Manipulation Language Statements   233  

 

Parameters 

map-name 

The map to be used for the MAP OUT request. The map must be included in the 
program's MAP SECTION. 

WAIT 

Specifies that the data transfer will  be synchronous. The issuing task is placed in an 
inactive state. When the MAP OUT operation is complete, the task resumes 
processing according to its established dispatching priority. 

This is the default. 
 

NOWAIT 

Specifies that the data transfer will  be asynchronous; the task will  continue 
executing. If NOWAIT is specified, the program must issue a CHECK TERMINAL 
before performing any other I/O operation. 

 

IO 

Specifies to transfer data from variable-storage data fields associated with the 
named map to the terminal device associated with the issuing task. 

This is the default. 
 

NOIO DATASTREAM INTO 

Specifies to transfer data from variable-storage data fields associated with the 

named map to another area of program variable storage; no terminal I/O is 
associated with the request. 

data-location  

The symbolic name of a user-defined field that contains the 

WORKING-STORAGE SECTION or LINKAGE SECTION entry to which the data is to 
be transferred. 

 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 

for the output data stream and is specified following the last data -item entry in 
data-location. 

end-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 

contains a data item not associated with the output data stream. 
 



MAP OUT 

 

234  DML Reference Guide for COBOL 

 

max LENGTH 

Defines the maximum length of the output data stream. 

data-length  

Either the symbolic name of the user-defined field that contains the length of 
the data stream or the length itself expressed as a numeric constant. 

RETURN LENGTH INTO 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry to which CA 
IDMS will  return the length in bytes of the output data stream. 

data-actual-length  

If the data stream has been truncated, contains the length before truncation. 
 

OUTPUT 

IO requests only. Specifies screen display options for the data being output. 
 

DATA IS 

Specifies whether the variable-storage data fields are to be transmitted to the 
terminal. This specification applies to all  variable-storage data fields unless 

overridden by an OUTPUT DATA IS YES/NO clause in a previously issued MODIFY 
MAP request. 

YES  

Transmits the contents of variable-storage data fields to the corresponding 

map fields. 

NO  

Does not transmit the contents of variable-storage data fields to the 

corresponding map fields. However, if the automatic error handling facility 
detects an error in any field, CA IDMS will  transmit the applicable attribute 
bytes. 

 

ERASE  

Does not transmit the contents of variable-storage data fields and fi l ls the 

corresponding map fields with null values. 

ATTRIBUTE  

Transmits only the attribute bytes for variable-storage data fields. Data in the 
record buffer is not sent to the terminal. 

 

NEWPAGE (ERASE) 

The keywords NEWPAGE and ERASE are synonymous. 

Activates the erase-write function; the screen is cleared and both literal and 
variable fields are transmitted to the map. If NEWPAGE is not specified, any 
existing screen display is overwritten without first erasing it. 

 



MAP OUT 

 

Chapter 6: Data Manipulation Language Statements   235  

 

To erase individual map fields, use the OUTPUT DATA IS ERASE option of the 
MODIFY MAP statement. To erase all  screen fields and to activate the 

erase-write function, the MAP OUT statement must specify OUTPUT DATA IS 
ERASE NEWPAGE. 

LITERALS 

Transmits l iteral fields as well as variable-storage data fields to the terminal. If 
LITERALS is not specified, l iteral fields are written to the map only when a MAP OUT 
request specifies the ERASE option. 

 

MESSAGE IS 

IO requests only. Specifies the message to be displayed in the map's message area. 

message-text  

The symbolic name of a WORKING-STORAGE SECTION or LINKAGE SECTION 
entry that contains the message text. 

 

TO 

Specifies the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 

that contains the message text and is specified following the last data item in 
message-text. 

end-message-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 

contains a data item not associated with the output data stream. 
 

LENGTH 

Defines the length in bytes of the message text. 

data-length  

Either the symbolic name of a user-defined field that contains the length or the 

length itself expressed as a numeric constant. 

Note: The MESSAGE parameter can only be used with MAP OUT DETAIL if the 
$MESSAGE field is associated with the detail  occurrence at map generation. 

Note: To reference a message stored in the data dictionary, use the ACCEPT 
TEXT INTO parameter of the WRITE LOG statement to copy the message into 
message-text. 

 



MAP OUT 

 

236  DML Reference Guide for COBOL 

 

DETAIL 

Pageable maps only. Specifies that the MAP OUT command is to create or modify a 

detail  occurrence, and optionally associates a numeric key value with the 
occurrence. For more information about pageable maps, see the Mapping Facility 
Guide. 

NEW 

Creates a detail  occurrence of a pageable map. 

This is the default. 

Occurrences are displayed in the order in which they are created by the application 

program. 
 

CURRENT 

Modifies the detail  occurrence that was referenced by the most recent MAP IN 
DETAIL or MAP OUT DETAIL statement. 

KEY IS 

Specifies a value to be associated with the created or modified detail  occurrence. 
The four-byte numeric value is not displayed on the terminal screen. 

When the KEY IS parameter is used with the MAP OUT DETAIL CURRENT command, 

the specified value replaces the value (if any) previously associated with the detail  
occurrence. 

key  

The name of a PIC S9(8) COMP (fullword) field that contains the key of a 

database record associated with the detail  occurrence. 
 

RESUME 

Pageable maps only. Specifies the page of detail  occurrences to be mapped out to 
the terminal. 

PAGE is CURRENT  

Redisplays the current page. 

This is the default. 

If no page has been displayed, the first page of the pageable map is displayed. 

PAGE is NEXT  

Displays the page that follows the current page. If no page follows the current 
page, the current page is redisplayed. 

 



MAP OUT 

 

Chapter 6: Data Manipulation Language Statements   237  

 

PAGE is PRIOR  

Displays the page that precedes the current page. If no page precedes the 

current page, the current page is redisplayed. 

PAGE is FIRST  

Displays the first available page of detail  occurrences. 
 

PAGE is LAST  

Displays the page of detail  occurrences with the highest available page number. 

PAGE is page-number 

A user field that contains the number of the page to be displayed. A page 
number is stored in the variable field by a preceding MAP IN PAGE IS 

page-number statement that names the same numeric variable field. 
 

Examples 

The examples below il lustrate the use of the MAP OUT statement: 

Example 1 

The following statement i l lustrates a request to write all  l iteral and data fields 
associated with the EMPMAPLR map to the terminal: 

MAP OUT USING EMPMAPLR 

  OUTPUT DATA IS YES 

  NEWPAGE 

  MESSAGE IS INITIAL-MESSAGE LENGTH 80. 
 

Example 2 

The following statement maps out the current detail; no terminal I/O is associated 
with this request if the first page of the pageable map is not yet fi l led. 

MAP OUT USING EMPMAPPG 

  DETAIL 

  KEY IS DETAIL-KEY. 
 

Status Codes 

After completion of the MAP OUT function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4625 The output operation has been interrupted; the operator has pressed 

ATTENTION or BREAK. 



MAP OUT 

 

238  DML Reference Guide for COBOL 

 

Status code Meaning 

4626 A logical error (for example, an invalid control character) has been 

encountered in the output data stream. 

4627 A permanent I/O error has occurred during processing. 

4628 The dial-up line for the terminal has been disconnected. 

4631 The map request block (MRB) contains an invalid field, indicating a 
possible error in the program's parameters. 

4632 The derived length of the specified map output data area is zero or 
negative. 

4633 The map load module named in the MRB cannot be found. 

4634 The LINKAGE SECTION entry specified is not at COBOL 01-Level. 

4638 The WORKING-STORAGE SECTION or LINKAGE SECTION entry 
specified for return of the output data stream has not been 

allocated. 

4639 The terminal being used is out of service. 

4640 The NOIO option has been specified but the requested data stream 

cannot be found. 

4642 The requested map does not support the terminal device being used. 

4652 The specified edit or code table either cannot be found or is invalid 
for use with the named map. 

4653 An error has occurred in a user-written edit routine. 

4654 A data conversion error has occurred; internal map data does not 
match the map's data description. 

4655 The user-written edit routine specified for the named map cannot be 
found. 

4664 There is no current detail  occurrence to be updated (MAP OUT 
DETAIL CURRENT only). No action is taken. 

4668 The amount of storage defined for pageable maps at system 
generation time is insufficient. No action is taken. This and 
subsequent MAP OUT DETAIL statements are ignored. 

4672 No detail  occurrence, footer, or header fields exist to be mapped out 
by a MAPOUT RESUME command. 

4676 The first screen page has been transmitted to the terminal. 

4680 A pageable map page has been built but the page has not been 

displayed. This can happen after you specify STARTPAGE 
NOAUTODISPLAY. Test for it after each MAP OUT DETAIL statement. 



MAP OUTIN 

 

Chapter 6: Data Manipulation Language Statements  239  

 

MAP OUTIN 

The MAP OUTIN statement requests an output data transfer (MAP OUT) followed by an 
input data transfer (MAP IN). MAP OUTIN combines the functions of the MAP OUT and 
MAP IN requests; however, it cannot be used to perform pageable map functions or 
native mode data transfers. By definition, the MAP OUTIN request is synchronous; it 

forces the program to be conversational. 
 

Syntax 

►►─── MAP OUTIN USING map-name ───────────────────────────────────────────────► 
 
 ►─┬───────────────────────────────────────────────────────────────────────┬──► 
   └─ OUTPUT ─┬──────────────────────────────────────────────────────────┬─┘ 
              └─ DATA is ─┬─ YES ───────┬─┬─────────────┬─┬────────────┬─┘ 
                          ├─ NO ────────┤ ├─ NEWPAGE ─┬─┘ └─ LITERALS ─┘ 
                          ├─ ERASE ─────┤ └─ ERASE ───┘ 
                          └─ ATTRIBUTE ─┘ 
 
 ►─┬───────────────────────────┬──────────────────────────────────────────────► 
   └─ INPUT DATA is ─┬─ YES ─┬─┘ 
                     └─ NO ──┘ 
 
 ►─┬──────────────────────────────────────────────────────────────┬─ . ───────►◄ 
   └─ MESSAGE IS message-text ─┬─ TO end-message-data-location ─┬─┘ 
                               └─ LENGTH data-length ───────────┘ 

 

Parameters 

map-name 

Specifies the map to be used for the MAP OUTIN request. Must be the name of a 
map included in the program's MAP SECTION. 

OUTPUT 

Specifies screen display options for the data being output. 
 



MAP OUTIN 

 

240  DML Reference Guide for COBOL 

 

DATA is 

Specifies whether variable-storage data fields are to be transmitted to the terminal. 

This specification applies to all  variable-storage data fields unless overridden by an 
OUTPUT DATA IS YES/NO clause in a previously issued MODIFY MAP request. 

YES  

Transmits the contents of variable-storage data fields to the corresponding 
map fields. 

NO  

Does not transmit the contents of variable-storage data fields to the 

corresponding map fields. However, if the automatic error handling facility 
detects an error in any field, CA IDMS will  transmit the applicable attribute 
bytes. 

ERASE  

Does not transmit the contents of variable-storage data fields and fi l ls the 
corresponding map fields wi th null values. 

ATTRIBUTE  

Transmits only the attribute bytes for variable-storage data fields. Data in the 
record buffer is not sent to the terminal. 

 

NEWPAGE (ERASE) 

The keywords NEWPAGE and ERASE are synonymous. 

Activates the erase-write function; the screen is cleared and both literal and 

variable fields are transmitted to the map. If NEWPAGE is not specified, any existing 
screen display is overwritten without first erasing it. 

To erase individual map fields, use the OUTPUT DATA IS ERASE option of the 
MODIFY MAP statement (described later in this chapter). To erase all  screen fields 

and to activate the erase-write function, the MAP OUT statement must specify 
OUTPUT DATA IS ERASE NEWPAGE. 

 



MAP OUTIN 

 

Chapter 6: Data Manipulation Language Statements   241  

 

LITERALS 

Specifies to transmit l iteral fields as well as variable-storage data fields to the 

terminal. If LITERALS is not specified, l iteral fields are written to the map only when 
a MAP OUT request specifies the ERASE option. 

INPUT DATA is 

Specifies whether the contents of map fields will  be moved to variable-storage data 
fields (YES), or left unchanged (NO). 

This specification applies to all  variable-storage data fields unless overridden by an 
INPUT DATA IS YES/NO clause in a previously issued MODIFY MAP request. 

YES  

Moves the contents of map fields to variable-storage data fields. 

NO  

Leaves the contents of map fields unchanged. 
 

MESSAGE IS 

Specifies the message to be displayed in the map's message area. 

message-text  

The symbolic name of a WORKING-STORAGE SECTION or LINKAGE SECTION 

entry that contains the message text. 

TO 

Specifies the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 
that contains the message text and is specified following the last data item in 

message-text. 

end-message-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the output data stream. 

 

LENGTH 

Defines the length in bytes of the message text. 

data-length  

Either the symbolic name of a user-defined field that contains the length or the 

length itself expressed as a numeric constant. 

Note: To reference a message stored in the data dictionary, use the ACCEPT 
TEXT INTO parameter of the WRITE LOG statement (described later in this 
chapter) to copy the message into message-text. 

 



MAP OUTIN 

 

242  DML Reference Guide for COBOL 

 

Example 

The following statement erases the screen, transmits l iteral and variable map fields (null 
values), and performs a MAP IN when the operator presses an AID key: 

MAP OUTIN USING EMPMAPLR 

  OUTPUT DATA IS ERASE NEWPAGE 

  INPUT DATA IS YES. 
 

Status Codes 

After completion of the MAP OUTIN function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4625 The I/O operation has been interrupted; the terminal operator has 
pressed ATTENTION or BREAK 

4626 A logical error (for example, an invalid control character) has been 

encountered in the output data stream 

4627 A permanent I/O error has occurred during processing 

4628 The dial-up line for the terminal is disconnected 

4631 The map request block (MRB) contains an invalid field, indicating a 
possible error in the program's parameters  

4633 The map load module named in the MRB cannot be found 

4639 The terminal being used is out of service 

4642 The requested map does not support the terminal device being used 

4652 The specified edit or code table either cannot be found or is invalid 
for use with the named map 

4653 An error has occurred in a user-written edit routine 

4654 A data conversion error has occurred; internal map data does not 
match the map's data description 

4655 The user-written edit routine specified for the named map cannot be 

found 



MODIFY 

 

Chapter 6: Data Manipulation Language Statements   243  

 

MODIFY 

The MODIFY statement replaces element values of the specified record occurrence in 
the database with new element values defined in program variable storage. 

Before execution of the MODIFY statement, the following conditions must be satisfied: 

■ All areas affected either implicitly or explicitly must be readied in one of the update 

usage modes (see READY (see page 272)). 

■ The specified record must be established as current of run unit. If the record that is 
current of run unit is not an occurrence of the specified record, a non-zero status 
condition results. 

 

■ The values of all  elements defined for the specified record in the program's 

subschema view must be in variable storage. If the MODIFY statement is not 
preceded by an OBTAIN statement, you must initialize the appropriate values. The 
best practice, however, is to precede MODIFY with an OBTAIN statement to ensure 

that all  the elements in the modified record are present in variable storage. 
 

The following special considerations apply to the modification of CALC- and sort-control 

elements: 

■ If modification of a CALC- or sort-control element will  violate a 
duplicates-not-allowed option, the record is not modified and a non-zero status 

condition results. 

■ If a CALC-control element is modified, successful execution of the MODIFY 
statement enables the record to be accessed on the basis of its new CALC-key 
value. The db-key of the specified record is not changed. 

 

■ If a sort-control element is to be modified, the sorted set in which the specified 

record participates must be included in the subschema invoked by the program. A 
record occurrence that is a member of a set not defined in the subschema can be 
modified if the undefined set is not sorted. 

■ If any of the modified elements in the specified record are defined as sort-control 

elements for any set occurrence in which that record is currently a member, the set 
occurrence is examined. If necessary, the specified record is disconnected and 
reconnected in the set occurrence to maintain the set order specified in the 

schema. 
 

The following special considerations apply to the modification of records in native VSAM 

data sets: 

■ The length of a record in an entry-sequenced data set (ESDS) cannot be changed 
even if the records are variable length. 

■ The prime key for a key-sequenced data set (KSDS) cannot be modified. 
 



MODIFY 

 

244  DML Reference Guide for COBOL 

 

Currency 

The specified record must be established as current of run unit. 

Following successful execution of the MODIFY statement, the modified record becomes 
the current record of run unit, its record type, its area, and all  sets in which it 
participates as member or owner. 

 

Syntax 

►►─── MODIFY record-name . ───────────────────────────────────────────────────►◄ 
 

Parameters 

record-name 

The record type to update. The record must be a type included in the subschema. 
The occurrence of record-name residing in program variable storage will  be 
updated. 

 

Example 

The following example il lustrates the steps involved in modifying an occurrence of the 
EMPLOYEE record. Assume that the employee address is to be changed. 

1. Retrieve the desired EMPLOYEE record, moving its contents to variable storage: 

MOVE EMP-ID-IN TO EMP-ID-0415. 

OBTAIN CALC EMPLOYEE. 
 

2. Update the value of the EMP-ADDRESS-0415 field by moving the new address into 
the proper location in the EMPLOYEE record: 

MOVE NEW-ADDRESS TO EMP-ADDRESS-0415. 

3. Issue a MODIFY statement to return all  data items in the EMPLOYEE record to the 
database: 

MODIFY EMPLOYEE. 
 

Status Codes 

After completion of the MODIFY function, the ERROR-STATUS field in the IDMS 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 



MODIFY 

 

Chapter 6: Data Manipulation Language Statements   245  

 

Status code Meaning 

0803 Invalid currency for a record to be altered by a MODIFY. This can only 

occur when a run unit is sharing a transaction with other database 
sessions. The 03 minor status is returned if the run unit tries to 
modify a record using a currency that has been inva lidated because 

of changes made by another database session that is sharing the 
same transaction. 

0804 The OCCURS DEPENDING ON item is less than zero or greater than 
the maximum number of occurrences of the control element 

0805 Modification of the record would violate a duplicates -not-allowed 
option for a CALC record, a sorted set, or an index set 

0806 Currency has not been established for the named record 

0808 The specified record cannot be found; the record name has proba bly 

been misspelled 

0809 The named record's area has not been readied in one of the update 
usage modes 

0810 The subschema specifies an access restriction that prohibits 
modification of the named record 

0811 There is insufficient space to hold the modified variable-length 
record occurrence 

0813 A current record of run unit has not been established or has been 
nullified by a previous ERASE statement 

0818 The record has not been bound 

0820 The current record of run unit is not the same type as the named 
record 

0821 An area other than the area of the named record has been readied 
with an incorrect usage mode 

0825 No current record of set type has been established 

0833 At least one sorted set in which the named record participates has 
not been included in the subschema 

0855 An invalid length has been defined for a variable length record 

0860 A record occurrence has been encountered whose type is 
inconsistent with the set named in the ERROR-SET field of the IDMS 
communications block; probable causes include: a broken chain and 

improper database description 

0883 Either the length of a record in a native VSAM ESDS has been 
changed or a prime key in a native VSAM KSDS has been modified 



MODIFY (LRF) 

 

246  DML Reference Guide for COBOL 

 

MODIFY (LRF) 

The MODIFY statement changes field values in an existing logical-record occurrence. LRF 
uses the field values present in the variable storage location reserved for the logical 
record to update the appropriate database records in the database. You can optionally 
specify an alternative variable storage location from which the changed field values are 

to be taken. 
 

Syntax 

►►─── MODIFY logical-record-name ─────────────────────────────────────────────► 
 
 ►─┬────────────────────────────────────┬─────────────────────────────────────► 
   └─ FROM alt-logical-record-location ─┘ 
 
 ►─┬────────────────────────────┬─────────────────────────────────────────────► 
   └─ WHERE boolean-expression ─┘ 
 
 ►─┬───────────────────────────────────────┬─ . ──────────────────────────────►◄ 
   └─ ON path-status imperative-statement ─┘ 

 

Parameters 

logical-record-name 

Updates data field values in the named logical record. Unless the FROM clause is 
specified (see below), the field values used to update the database are taken from 

the area in program variable storage reserved for the named logical record. The 
logical record must be defined in the subschema. 

 

FROM 

Specifies an alternative variable storage location from which the field values used to 
perform the requested modification are to be obtained. When modifying a logical 

record that was retrieved into an alternative location in variable storage, the FROM 
clause should name the same location specified in the OBTAIN request. 

alt-logical-record-location  

A record location defined in the WORKING-STORAGE SECTION or LINKAGE 

SECTION. 
 

WHERE 

Specifies the selection criteria to be applied to the named logical record. For details 
on coding this clause, see Logical-Record Clauses (see page 327). 

boolean-expression  

The selection criteria to apply. 
 



MODIFY (LRF) 

 

Chapter 6: Data Manipulation Language Statements   247  

 

ON parameter 

Specifies the action to be taken depending on the value returned to the LR-STATUS 

field in the LRC block. For details on coding this clause, see Logical-Record Clauses 
(see page 327). 

path-status  

The value of the LR-STATUS field in the LRC block which triggers the specified 
action. 

imperative-statement  

The action to take. 
 

Example 

The following example il lustrates the steps taken to modify an occurrence of the 
EMP-SKILL-LR logical record. Assume that the skil l level for employee 120 is to be 
upgraded from 02 (COMPETENT-0425) to 03 (PROFICIENT-0425). 

1. Retrieve the desired logical-record occurrence: 

OBTAIN FIRST EMP-SKILL-LR WHERE EMP-ID-0415 EQ '0120' 

   AND SKILL-ID-0455 EQ '3610' 

   AND COMPETENT-0425. 
 

2. Update the SKILL-LEVEL-0425 field: 

MOVE '03' TO SKILL-LEVEL-0425. 

3. Issue the MODIFY statement for the updated EMP-SKILL-LR logical record: 

MODIFY EMP-SKILL-LR. 
 

MODIFY EMP-SKILL-LR 

The following figure il lustrates the above example by showing three occurrences of the 
EMP-SKILL-LR logical record. 

LRF retrieves the EMP-SKILL-LR logical record where 

■ EMP-ID-0415   = '0120' 

■ SKILL-ID-0455  = '0120' 

■ SKILL-LEVEL-0425 = '02' (COMPETENT-0425) 
 

The bottom EXPERTISE occurrence represents the only data physically modified in the 

database. 

EMPLOYEE   EXPERTISE    SKILL 

  120      04      7620 

  120      03      3710 

  120     (02) 03    3610 
 



MODIFY MAP 

 

248  DML Reference Guide for COBOL 

 

MODIFY MAP 

The MODIFY MAP statement modifies options in the map request block (MRB) for a 
map; modifications can be designated as permanent or temporary. Requested revisions 
can be field-specific, map-specific, or both; field-specific revisions apply to the map's 
variable data fields. 

 

Note: The MODIFY MAP statement parameters used to revise predefined map and/or 

map data field attributes have no defaults. If a MODIFY MAP parameter is not specified, 
the applicable option remains set to the value specified at map generation or to the 
value specified in a previously issued MODIFY MAP PERMANENT statement. 

 

Syntax 

►►─── MODIFY MAP map-name ────────────────────────────────────────────────────►◄ 
 
 ►─┬───────────────┬──────────────────────────────────────────────────────────► 
   ├─ PERMANENT ◄ ─┤ 
   └─ TEMPORARY ───┘ 
 
 ►─┬────────────────────────────────────────────┬─────────────────────────────► 
   └─ CURSOR at ─┬─ cursor-row cursor-column ─┬─┘ 
                 └─ DFLD field-name ──────────┘ 

 

 ►─┬──────────────────────────────┬───────────────────────────────────────────► 
   │       ┌────────────────────┐ │ 
   └─ WCC ─▼─┬─┬─ RESETMDT ─┬─┬─┴─┘ 
             │ └─ NOMDT ────┘ │ 
             │                │ 
             ├─┬─ RESETKBD ─┬─┤ 
             │ └─ NOKBD ────┘ │ 
             │                │ 
             ├─┬─ ALARM ───┬──┤ 
             │ └─ NOALARM ─┘  │ 
             │                │ 
             ├─┬─ STARTPRT ─┬─┤ 
             │ └─ NOPRT ────┘ │ 
             │                │ 
             └─┬─ NLCR ─┬─────┘ 
               ├─ 40CR ─┤ 
               ├─ 64CR ─┤ 
               └─ 80CR ─┘ 
 
►─┬────────────────────────────────────────────────────────┬─────────────────►◄ 
  │                             ┌────────────────────────┐ │ 
  └─ FOR field-specifications ──▼─ modification-options ─┴─┘ 

 

Expansion of field-specifications 

►─┬─ ALL ─┬─ BUT ────┬─ CURRENT ───────────────┬─────────────────────────────► 
  │       └─ EXCEPT ─┘                         │ 
  │                                            │ 
  ├─ ALL ─┬─ CORRECT ─┬─ FIELDS ───────────────┤ 
  │       └─ ERROR ───┘                        │ 
  │                       ┌───────────────────┐│ 
  └─┬───────────────────┬─▼─ DFLD field-name ─┴┘ 
    ├─ ALL ◄ ───────────┤ 
    └─ all ─┬─ BUT ────┬┘ 
            └─ EXCEPT ─┘ 

 



MODIFY MAP 

 

Chapter 6: Data Manipulation Language Statements   249  

 

Expansion of modification-options 

►───┬─┬─ BACKSCAN ───┬─────────────────────────┬─ . ─────────────────────────► 
    │ └─ NOBACKSCAN ─┘                         │ 
    │                                          │ 
    ├─ OUTPUT DATA is ─┬─ YES ───────┬─────────┤ 
    │                  ├─ NO ────────┤         │ 
    │                  ├─ ERASE ─────┤         │ 
    │                  └─ ATTRIBUTE ─┘         │ 
    │                                          │ 
    ├─ INPUT DATA is ─┬─ YES ─┬────────────────┤ 
    │                 └─ NO ──┘                │ 
    │                                          │ 
    ├─┬─ RIGHT ─┬─ JUSTIFY ────────────────────┤ 
    │ └─ LEFT ──┘                              │ 
    │                                          │ 
    ├─ PAD ─┬─ pad-character ─┬────────────────┤ 
    │       ├─ LOW-VALUE ─────┤                │ 
    │       └─ HIGH-VALUE ────┘                │ 
    │                                          │ 
    ├─ EDIT is ─┬─ ERROR ───┬──────────────────┤ 
    │           └─ CORRECT ─┘                  │ 
    │                                          │ 
    ├─┬─ REQUIRED ─┬───────────────────────────┤ 
    │ └─ OPTIONAL ─┘                           │ 
    │                                          │ 
    ├─ error message is ─┬─ ACTIVE ─────┬──────┤ 
    │                    └─ SUPPRESS ───┘      │ 
    │                                          │ 
    │              ┌─────────────────────────┐ │ 
    └─ ATTRIBUTES ─▼─┬─ SKIP ──────────────┬─┴─┘ 
                     │                     │ 
                     ├─┬─ ALPHAMERIC ─┬────┤ 
                     │ └─ NUMERIC ────┘    │ 
                     │                     │ 
                     ├─┬─ PROTECTED ───┬───┤ 
                     │ └─ UNPROTECTED ─┘   │ 
                     │                     │ 
                     ├─┬─ DISPLAY ─┬───────┤ 
                     │ ├─ DARK ────┤       │ 
                     │ └─ BRIGHT ──┘       │ 
                     │                     │ 
                     ├─ DETECT ────────────┤ 
                     │                     │ 
                     ├─┬─ MDT ───┬─────────┤ 
                     │ └─ NOMDT ─┘         │ 
                     │                     │ 
                     ├─┬─ BLINK ───┬───────┤ 
                     │ └─ NOBLINK ─┘       │ 
                     │                     │ 
                     ├─┬─ REVERSE-VIDEO ─┬─┤ 
                     │ └─ NORMAL-VIDEO ──┘ │ 
                     │                     │ 
                     ├─┬─ UNDERSCORE ───┬──┤ 
                     │ └─ NOUNDERSCORE ─┘  │ 
                     │                     │ 
                     └─┬─ NOCOLOR ───┬─────┘ 
                       ├─ BLUE ──────┤ 
                       ├─ RED ───────┤ 
                       ├─ PINK ──────┤ 
                       ├─ GREEN ─────┤ 
                       ├─ TURQUOISE ─┤ 
                       ├─ YELLOW ────┤ 
                       └─ WHITE ─────┘ 

 



MODIFY MAP 

 

250  DML Reference Guide for COBOL 

 

Parameters 

map-name 

The name of the map to be modified. It must be a map included in the program's 
MAP SECTION. 

PERMANENT 

Specifies that modifications will apply to all  mapping mode I/O requests issued until  
the program terminates or until  a subsequent MODIFY MAP request overrides the 
requested revisions. 

This is the default. 
 

TEMPORARY 

Specifies that modifications will apply only to the next mapping mode I/O request 
(that is, MAP IN, MAP OUT, or MAP OUTIN). 

 

CURSOR AT 

Identifies the screen location at which the cursor will  be positioned during output 

operations. 

cursor-row  

The row on the terminal screen to which the cursor will  be moved. Either the 
symbolic name of the user-defined field that contains the row value or the 

value itself expressed as a numeric constant. Typically, fields that contains 
cursor row and column coordinates are level-77 data items defined as PIC S9(4) 
USAGE COMP (halfword). 

 

cursor-column  

The column on the terminal screen to which the cursor will  be moved. Either 

the symbolic name of a user-defined field that contains the column value or the 
value itself expressed as a numeric constant. Typically, fields that contains 
cursor row and column coordinates are level -77 data items defined as PIC S9(4) 

USAGE COMP (halfword). 

DFLD Specifies that the cursor will  be moved to the first position in the 
specified field. 

field-name  

The name of a map field. 
 



MODIFY MAP 

 

Chapter 6: Data Manipulation Language Statements   251  

 

WCC 

Specifies the write-control character (WCC) options requested for the output 

operation. 

If a MODIFY MAP request alters any WCC option, unspecified options are reset 
to the following values: 

– NOMDT 

– NOKBD 

– NOALARM 
 

RESETMDT  

Specifies that the modified data tags (MDTs) for the map fields will be reset 

(turned off) automatically when the map is displayed. 

NOMDT  

Specifies that the modified data tags (MDTs) for the map fields will be not reset 
(turned off) automatically when the map is displayed. In this case, the 

associated data is retransmitted to variable-storage data fields during the next 
MAP IN request. 

RESETKBD  

Specifies that the keyboard will  be unlocked automatically when the map is 
displayed. 

 

NOKBD  

Specifies that the keyboard will  not be unlocked automatically when the map is 
displayed. 

ALARM  

Specifies that the terminal audible alarm (if installed) will sound automatically 
when the map is displayed. 

 

NOALARM  

Specifies that the terminal audible alarm will not sound automatically when the 

map is displayed. 

STARTPRT  

3280-type printers only. Specifies that the contents of the terminal buffer will  
be printed automatically when the data has been transmitted to the terminal. 

 



MODIFY MAP 

 

252  DML Reference Guide for COBOL 

 

NOPRT  

3280-type printers only. Specifies that the contents of the terminal buffer will  

not be printed automatically when the data has been transmitted to the 
terminal. 

NLCR  

Specifies that no line formatting will  be performed on the printer output. 
Printing will  begin on a new line only if the printer encounters new line (NL) 
and carriage control (CR) characters. 

 

40CR  

Specifies that the contents of the 3280-type printer buffer will  be printed at 40 

characters per l ine. 
 

64CR  

Specifies that the contents of the 3280-type printer buffer will  be printed at 64 
characters per l ine. 

80CR  

Specifies that the contents of the 3280-type printer buffer will  be printed at 80 
characters per l ine. 

FOR 

Specifies the map fields to be modified or excluded from modification. 
 

Expansion of field-specifications 

ALL BUT (EXCEPT) CURRENT 

Modifies all  fields except the current field. The current field is the map field that 
was referenced in the last MODIFY MAP or INQUIRE MAP request issued by the 

program. However, if that request referenced a l ist of fields rather than a single 
map field, no currency exists and all  map fields are modified. 

BUT and EXCEPT are synonyms and can be used interchangeably. 

ALL CORRECT FIELDS 

Modifies all  fields found to be correct, during automatic editing or by a user -written 
edit module. 

To specify, ALL CORRECT FIELDS, automatic editing must be enabled for the map. 
 



MODIFY MAP 

 

Chapter 6: Data Manipulation Language Statements  253  

 

ALL ERROR FIELDS 

Modifies all  fields found to be in error, during automatic editing or by a user -written 

edit module. 

To specify, ALL ERROR FIELDS, automatic editing must be enabled for the map. 

ALL 

Specifies that all  named map fields will  receive the requested modificati ons. 

This is the default. 
 

all BUT (EXCEPT) 

Specifies that all  map fields except those named will  receive the requested 
modifications. 

BUT and EXCEPT are synonyms and can be used interchangeably. 

DFLD  

Specifies the map field(s) to modify or exclude from modification. Multiple 
DFLD specifications must be separated by at least one blank and must come 

from the same map record. 

field-name  

The name of the field(s) to modify or exclude from modification. 

Field names that are not unique within the program must be qualified with the 
name of the associated record. Likewise, multiply-occurring fields must be 
qualified with the appropriate subscripts. 

Use the following syntax: 

map-data-field-name ─┬─────────────┬──┬────────────────────────┬─ 
                     └─ subscript ─┘  └─┬─ IN ─┬─ record-name ─┘ 
                                        └─ OF ─┘ 

 

Modification Options 

BACKSCAN 

Specifies to backscan the specified fields to remove trail ing blanks before 
performing a mapout operation. Only characters up to the last nonblank will  be 
sent to the terminal; fields remaining on the screen will  contain whatever 

characters were present before the MAP OUT or MAP OUTIN request was issued. If 
the MAP OUT or MAP OUTIN request specifies the ERASE option, the contents of all  
terminal data fields are erased. 

NOBACKSCAN 

Specifies not to backscan the specified fields to remove trail ing blanks before 
performing a mapout operation. 

 



MODIFY MAP 

 

254  DML Reference Guide for COBOL 

 

OUTPUT DATA IS 

Specifies how to treat the output map fields. 

YES  

Sets the fields to the value of the corresponding variable-storage data fields. 

NO  

Leaves the fields unchanged. 

ERASE  

Erases the fields. 

ATTRIBUTE  

Transmits only the attribute byte of the fields. 
 

INPUT DATA is YES 

Moves map fields automatically to the corresponding variable-storage data fields 
during an input operation. 

 

INPUT DATA is NO 

Does not move map fields to the corresponding variable-storage data fields during 

an input operation. 

RIGHT JUSTIFY 

Right justifies the variable-storage fields on input. 
 

LEFT JUSTIFY 

Left justifies the variable-storage fields on input. 
 

PAD 

Indicates whether variable-storage data fields will be padded on input and, if so, 
defines the value or character with which the fields are to be padded. 

If RIGHT JUSTIFY is specified, fields will  be padded on the left; if LEFT JUSTIFY is 
specified, fields will  be padded on the right. 

pad-character  

Either the symbolic name of a user-defined PIC X DISPLAY field that contains 
the pad character or the character itself enclosed in quotation marks. 

The fields will  be padded with the specified character. 

LOW-VALUE  

Pads the fields with zeros. 

HIGH-VALUE  

Pads the fields with the highest value in the computer collating sequence. 
 



MODIFY MAP 

 

Chapter 6: Data Manipulation Language Statements   255  

 

EDIT IS ERROR 

Explicitly sets the error flag on for the specified map fields. 

Automatic editing must be enabled for the map. 

The ability to set the error flag enables programs to perform their own editing 
and validation in addition to that provided by the automatic editing feature. 

On a MAPOUT operation, if any field is flagged to be in error, then for all  fields 
(both CORRECT and INCORRECT), only attribute bytes are transmitted; no data 
is moved from program variable storage to the screen. 

 

EDIT IS CORRECT 

Explicitly sets the error flag off for the specified map fields. 

Automatic editing must be enabled for the map. 

The ability to set the error flag enables programs to perform their own editing and 
validation in addition to that provided by the automatic editing feature. 

On a MAPOUT operation, if any field is flagged to be in error, then for all  fields 

(both CORRECT and INCORRECT), only attribute bytes are transmitted; no data is 
moved from program variable storage to the screen. 

 

REQUIRED 

Requires the user to enter data in the specified map fields. An error results on 
mapin if you specify REQUIRED and the user fails to enter data in a required field. 

Automatic editing must be enabled for the map and for the specified map fields. 

OPTIONAL 

Does not require the user to enter data in the specified map fields. 
 

error message is 

Suppresses or enables display of an error message associated with the field. 

ACTIVE  

Enables display of the error message associated with the field. 

This is the default. 

You typically enable display of a message only after specifying ERROR MESSAGE 
SUPPRESS for the map in a previous MODIFY MAP PERMANENT statement. 

SUPPRESS 

Disables display of the error message associated with the field. When the map 

is redisplayed because of errors, the message defined for the map field will  not 
be displayed even if the field contains edit errors. 

 



MODIFY MAP 

 

256  DML Reference Guide for COBOL 

 

ATTRIBUTES 

Indicates the 3270- and 3279-type terminal display attributes for the specified map 

fields. 

Multiple attributes must be separated by blanks. 

Only the named attributes will  be modified in the map's MRB. 

SKIP  

Repositions the cursor automatically past the map fields to the next 
unprotected field. When you specify SKIP, the affected map fields are assigned 
the NUMERIC and PROTECTED attributes (described below) automatically. 

ALPHAMERIC  

Allows the data input to the map fields by the user to be any character on the 
3270 keyboard. 

 

NUMERIC  

Allows the data input to the map fields by the user to be numeric only. If the 

terminal does not have the numeric lock option, a specification of NUMERIC is 
ignored. 

PROTECTED  

Protects the specified map fields from data entry or modification by the user . 
 

UNPROTECTED  

Makes the specified map fields available for data entry or modification by the 
user. 

You cannot specify both UNPROTECTED and SKIP. 

DISPLAY  

Displays the specified map fields in normal intensity. 

DARK  

Does not display the specified map fields. 

You cannot specify both DARK and DETECT. 
 

BRIGHT  

Displays the specified map fields in bright intensity. 

Fields assigned the BRIGHT attribute are automatically detectable by a l ight 
pen. 

DETECT  

Makes the specified map fields detectable by a l ight pen. 

Fields assigned the BRIGHT attribute are automatically detectable by a l ight 

pen. 
 



MODIFY MAP 

 

Chapter 6: Data Manipulation Language Statements   257  

 

MDT  

Sets the modified data tag automatically for the map fields when they are 

displayed. 
 

NOMDT  

Does not set the modified data tag automatically for the map fields when they 
are displayed. 

BLINK  

3279s only. Displays the specified map fields with blinking characters. 

If you specify BLINK, you cannot specify REVERSE-VIDEO or UNDERSCORE. 
 

NOBLINK  

3279s only. Does not display the specified map fields with blinking characters. 

REVERSE-VIDEO  

3279s only. Displays the specified map fields in reverse video (background and 
character colors reversed). 

If you specify REVERSE-VIDEO, you cannot specify BLINK or UNDERSCORE. 
 

NORMAL-VIDEO  

3279s only. Displays the specified map fields in normal video. 

UNDERSCORE  

3279s only. Displays the specified map fields with underlined characters. If you 
specify UNDERSCORE, you cannot specify BLINK or REVERSE-VIDEO. 

 

NOUNDERSCORE  

3279s only. Displays the specified map fields without underlined characters. 

NOCOLOR/BLUE/RED/PINK/GREEN/TURQUOISE/YELLOW/WHITE  

3279s only. Specifies the color which the specified map fields will  be displayed. 
 

Examples 

The following examples i l lustrate the use of the MODIFY MAP statement. 

Example 1 

The following statement positions the cursor at EMP-ID-0415 and prohibits the user 
from entering data in any field except EMP-ID-0415 and DEPT-ID-0410: 

MODIFY MAP EMPMAPLR TEMPORARY 

  CURSOR AT DFLD EMP-ID-0415 

  FOR ALL BUT DFLD EMP-ID-0415 

        DFLD DEPT-ID-0410 

  ATTRIBUTES PROTECTED. 
 



OBTAIN (LRF) 

 

258  DML Reference Guide for COBOL 

 

Example 2 

The following statement sets the edit flag on for the TASK-CODE-01 field, thereby 

overriding automatic editing and error handling for the next MAP IN request: 

MODIFY MAP EMPMAPLR TEMPORARY 

  FOR DFLD TASK-CODE-01 

  EDIT IS ERROR. 
 

Example 3 

Use MODIFY MAP to suppress display of default error messages for fields EMP-ID 
and DEPT-ID on the current map: 

MODIFY MAP EMPMAPLR TEMPORARY 

  FOR DFLD EMP-ID DFLD DEPT-ID 

   ERROR MESSAGE IS SUPPRESS. 
 

Because this MODIFY MAP statement specifies TEMPORARY, error messages for 
these fields are suppressed for the next mapout only. If PERMANENT (default) were 

used, the error messages would be suppressed until  the program terminated or 
until  the error message specifications were overridden by a subsequent MODIFY 
MAP statement. 

 

Status Codes 

After completion of the MODIFY MAP function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4629 An invalid parameter has been passed from the program 

4644 The map field is not in the specified map; a possible cause is a 

reference to an invalid map field subscript 

4656 The referenced map contains no data fields  

OBTAIN (LRF) 

The OBTAIN statement retrieves the named logical record and places it in the 
variable-storage location reserved for that logical record. The OBTAIN statement can be 
issued to retrieve a single logical record, or it can be issued in iterative logic to retrieve 
all  logical records that meet criteria specified in the WHERE clause. Additionally, the 

OBTAIN statement can specify that the retrieved logical record is to be placed into an 
alternative variable storage location. 

 



OBTAIN (LRF) 

 

Chapter 6: Data Manipulation Language Statements   259  

 

Syntax 

►►─── OBTAIN ─┬──────────┬─ logical-record-name ──────────────────────────────► 
              ├─ FIRST ──┤ 
              └─ NEXT ◄ ─┘ 
 
 ►─┬────────────────────────────────────┬─────────────────────────────────────► 
   └─ INTO alt-logical-record-location ─┘ 
 
 ►─┬────────────────────────────┬─────────────────────────────────────────────► 
   └─ WHERE boolean-expression ─┘ 
 
 ►─┬───────────────────────────────────────┬─ . ──────────────────────────────►◄ 
   └─ ON path-status imperative-statement ─┘ 

 

Parameters 

FIRST 

Retrieves the first occurrence of the logical record. OBTAIN FIRST is typically used to 
retrieve the first in a series of logical-record occurrences following the iterative 
retrieval of a different series of logical -record occurrences. 

 

NEXT 

Retrieves a (subsequent) occurrence of the named logical record, in the order 
specified by the DBA in the path. 

This is the default. 

OBTAIN NEXT is typically issued in iterative logic to retrieve a series of logical -record 

occurrences (possibly including the first). 

When LRF receives repeated OBTAIN NEXT commands, it replaces field values in 
program variable storage with new values obtained through repeated access to the 

appropriate database records, thereby supplying the program with new 
occurrences of the desired logical record. 

 

If an OBTAIN FIRST statement is followed by an OBTAIN NEXT s tatement to retrieve 
a series of occurrences of the same logical record, the OBTAIN statements must 
direct LRF to the same path. For this reason, you must ensure that the selection 

criteria specified in the WHERE clause that accompanies the OBTAIN FIRST and 
OBTAIN NEXT statements describe the same attributes of the desired logical record. 

 

If the program issues an OBTAIN NEXT statement without issuing an OBTAIN FIRST, 
or if the last path status returned for the path was LR-NOT-FOUND, LRF interprets 
the OBTAIN NEXT as OBTAIN FIRST. After LR-ERROR or a DBA-defined path status, 

LRF does not interpret OBTAIN NEXT as OBTAIN FIRST. 

logical-record-name  

The name of a logical record defined in the subschema. 
 



OBTAIN (LRF) 

 

260  DML Reference Guide for COBOL 

 

INTO 

Specifies an alternative location in variable storage into which LRF is to place the 

retrieved logical record. Any subsequent MODIFY, STORE, or ERASE statements for a 
logical record placed in alt-logical-record-location should name that area as the one 
from which LRF is to obtain the data to be used to update the logical record. 

alt-logical-record-location  

A record location defined in the WORKING-STORAGE SECTION or LINKAGE 
SECTION. 

 

WHERE 

Specifies the selection criteria to be applied to the named logical record. For details 

on coding this clause, see Logical-Record Clauses (see page 327). 

boolean-expression  

The selection criteria to apply. 
 

ON parameter 

Specifies the action to be taken depending on the value returned to the LR-STATUS 

field in the LRC block. For details on coding this clause, see Logical-Record Clauses 
(see page 327). 

path-status  

The value of the LR-STATUS field in the LRC block which triggers the specified 

action. 

imperative-statement  

The action to take. 
 

Example 

The following example il lustrates the use of the OBTAIN NEXT statement to retrieve a 
series of logical-record occurrences. The program issues the OBTAIN NEXT statement 
iteratively to retrieve the first and all  subsequent occurrences of the EMP-JOB-LR logical 

record for all  employees in the specified department. 
 

GET-AN-ORDER. 

 MOVE DEPT-ID-IN TO DEPT-ID-0410. 

 OBTAIN NEXT EMP-JOB-LR WHERE DEPT-ID-410 EQ DEPT-ID-0410 OF LR. 

  IF LR-STATUS = LR-ERROR 

   PERFORM ERROR-PROCESSING. 

  IF LR-STATUS = LR-NOT-FOUND 
 

   PERFORM END-PROCESSING. 

  . 

  . 

  . 

 GO TO GET-AN-ORDER. 
 



POST 

 

Chapter 6: Data Manipulation Language Statements   261  

 

OBTAIN NEXT EMP-JOB-LR 

The following figure il lustrates the information retrieved by each OBTAIN NEXT 

statement. The EMP-JOB-LR logical record consists of DEPARTMENT, OFFICE, EMPLOYEE, 
and JOB information. 

 

             DEPARTMENT  EMPLOYEE   OFFICE     JOB 
         ┌── 
ONE OCCURRENCE ──┤    5100     466      8    SNOWBLOWER 
OF EMP-JOB-LR   │ 
         │    5100     467      8    WINDKEEPER 
         │ 
         │    5100     334      5    RAINDANCE 
         │ 
         │    5100     457      8    STURM UND 
         └──                       DRANG 

 

POST 

The POST statement alters an event control block (ECB), either by posting it to indicate 

completion of an event upon which another task is waiting or by clearing it to an 
unposted status. 

 

Syntax 

►►─── POST ─┬─ EVENT ecb ─────────────────────┬─ . ───────────────────────────►◄ 
            └─ EVENT NAME ecb-id ─┬─────────┬─┘ 
                                  └─ CLEAR ─┘ 

 

Parameters 

EVENT 

Identifies the ECB to be posted. 

ecb  

The symbolic name of a user-defined area that contains three PIC S9(8) COMP 
SYNC (fullword) fields. Program-allocated ECBs are cleared by moving zeros to 

ecb. 
 

EVENT NAME 

Specifies the ECB to be posted or cleared. 

ecb-id  

Either the symbolic name of a user-defined field that contains the ECB ID or the 

ID itself enclosed in quotation marks. 

CLEAR  

Clears the specified ECB to an unposted status. 

Programs posting and waiting on ECBs are responsible for clearing ECBs before 

issuing subsequent WAIT requests. 
 



PUT QUEUE 

 

262  DML Reference Guide for COBOL 

 

Example 

The following example il lustrates a request to post the event whose ECB identifier is in 
the FOUND-ECB field and to clear the ECB to an unposted status: 

POST 

  EVENT NAME FOUND-ECB 

  CLEAR. 
 

Status Codes 

After completion of the POST function, the only possible value in the ERROR-STATUS 
field of the IDMS-DC communications block is 0000. 

 

PUT QUEUE 

The PUT QUEUE statement stores a queue record in either the DDLDCRUN or the 
DDLDCQUE area of the data dictionary. CA IDMS assigns an ID to the queue record and 

places it at the beginning or end of its associated queue. 
 

Syntax 

►►─── PUT QUEUE ─┬───────────────┬────┬──────────┬────────────────────────────► 
                 └─ ID queue-id ─┘    ├─ FIRST ──┤ 
                                      └─ LAST ◄ ─┘ 
 
 ►─── FROM queue-data-location ─┬─ TO end-queue-data-location ─┬──────────────► 
                                └─ LENGTH queue-data-length ───┘ 
 
 ►─┬────────────────────────────────────────────────┬─────────────────────────► 
   └─ RETURN RECORD ID INTO return-queue-record-id ─┘ 
 
 ►─┬────────────────────────────────────┬─ . ─────────────────────────────────►◄ 
   └─ RETENTION queue-retention-period ─┘ 

 

Parameters 

ID 

Directs the queue record to a previously defined queue. 

queue-id  

Either the symbolic name of a user-defined field that contains the ID or the ID 
itself enclosed in quotation marks. 

Default: 16 blanks 

FIRST 

Places the queue record at the beginning of the queue. 
 



PUT QUEUE 

 

Chapter 6: Data Manipulation Language Statements   263  

 

LAST 

Places the queue record at the end of the queue. 

This is the default. 

FROM 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry associated 

with the data to be stored in the queue record. 

queue-data-location  

The symbolic name of a user-defined field. 
 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 

that contains the data to be stored in the queue. 

end-queue-data-location 

The symbolic name of a user-defined dummy byte field or a field that contains 
a data item not associated with the queue record. 

LENGTH 

Explicitly defines the length, in bytes, of the area that contains the data to be stored 
in the queue record. 

queue-data-length 

Either the symbolic name of a user-defined field that contains the length or the 
length itself expressed as a numeric constant. 

 

RETURN RECORD ID INTO 

Specifies the location in the program to which CA IDMS will  return the system 

assigned ID of the queue record. 

The returned ID is used to reference the queue record in subsequent GET QUEUE 
and DELETE QUEUE statements. 

return-queue-record-id  

The symbolic name of a user-defined PIC S9(8) COMP (fullword) field. 
 

RETENTION 

Specifies the time in days to retain the queue in the data dictionary. At system 
startup, queues having expired retention periods are automatically deleted. The 
retention period begins when the first record is stored in the queue. 

The specified retention period takes precedence over retention periods associated 
with previously defined queues. The RETENTION parameter is ignored if the record 
being allocated is not the first record in the queue. 

 



PUT QUEUE 

 

264  DML Reference Guide for COBOL 

 

queue-retention-period  

Either the symbolic name of a user-defined fixed binary field that contains the 

retention period or the retention period itself expressed as a numeric constant 
in the range 0 through 255. 

A retention period of 255 indicates that the queue is never to be automatically 

deleted. 

Note: If RETENTION is omitted, the default retention period for dynamic queues is 
taken. For more information on the default retention period for dynamic queues, 
refer to the System Generation Guide. 

 

Example 

The following example il lustrates a request to allocate a queue record in the beginning 
of the RES-Q queue, return the ID of the record to the Q-REC-ID field, and retain the 
queue for 45 days: 

PUT QUEUE 

  ID 'RES-Q' 

  FIRST 

  FROM NEW-RES TO END-NEW-RES 

  RETURN RECORD ID INTO Q-REC-ID 

  RETENTION 45. 
 

Status Codes 

After completion of the PUT QUEUE function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

0019 In a DC-BATCH environment, the record size exceeds the value 

specified in the MAX LENGTH parameter of the BIND TASK statement 

4407 A database error occurred during queue processing.  A common 
cause is a DBKEY deadlock.  For a PUT QUEUE operation, this code 
can also mean that the queue upper l imit has been reached. 

If a database error has occurred, there are usually be other messages 
in the CA-IDMS/DC/UCF log indicating a problem encountered in 
RHDCRUAL, the internal Run Unit Manager.  If a deadlock has 

occurred, messages DC001000 and DC001002 are also produced.  

4431 The parameter l ist is invalid; under DC-BATCH, this status indicates 
that the specified record length exceeds the maximum length based 
on the packet size 



PUT SCRATCH 

 

Chapter 6: Data Manipulation Language Statements   265  

 

Status code Meaning 

4432 The derived length of the specified queue record is either zero or 

negative 

PUT SCRATCH 

The PUT SCRATCH statement stores or replaces a scratch record in the DDLDCSCR area 

of the data dictionary. For new records, PUT SCRATCH generates an index entry in a 
scratch area associated with the issuing task. If the scratch area does not a lready exist, 
CA IDMS allocates it dynamically in the storage pool. 

 

Syntax 

►►─── PUT SCRATCH ─┬───────────────────────────┬──────────────────────────────► 
                   └─ AREA ID scratch-area-id ─┘ 
 
 ►─── FROM scratch-data-location ─┬─ TO end-scratch-data-location ─┬──────────► 
                                  └─ LENGTH scratch-data-length ───┘ 
 
 ►─┬─────────────────────────────────────────────┬────────────────────────────► 
   └─ RECORD ID scratch-record-id ─┬───────────┬─┘ 
                                   └─ REPLACE ─┘ 
 
 ►─┬──────────────────────────────────────────────────┬─ . ───────────────────►◄ 
   └─ RETURN RECORD ID into return-scratch-record-id ─┘ 

 

Parameters 

AREA ID 

Specifies the scratch area associated with the record being allocated. 

If you do not specify an AREA ID, an area ID of eight blanks is assumed. 

scratch-area-id  

Either the symbolic name of a user-defined field that contains the ID or the ID 
itself enclosed in quotation marks. 

 

FROM 

Specifies the data to be stored in the scratch record. 

scratch-data-location  

The symbolic name of a user-defined WORKING-STORAGE SECTION or LINKAGE 
SECTION entry that contains the data. 

 

TO 

Indicates the end of the data area to be stored in the scratch record. 

end-scratch-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the scratch data being stored. 

 



PUT SCRATCH 

 

266  DML Reference Guide for COBOL 

 

LENGTH 

Defines the length in bytes of the data area. 

scratch-data-length  

The symbolic name of a user-defined field that contains the length or the 
length itself expressed as a numeric constant. 

 

RECORD ID 

Specifies the ID of the scratch record being stored. 

scratch-record-id  

Either the symbolic name of a user-defined PIC S9(8) COMP (fullword) field that 
contains the ID or the ID itself expressed as a numeric constant. 

REPLACE  

Specifies that the specified scratch record replaces an existing scratch record. If 
you specify REPLACE, and the specified scratch record does not exist, the 
record is stored and the status code is set to 0000. 

 

RETURN RECORD ID into 

Returns the automatically assigned ID of a scratch record to the program. 

return-scratch-record-id  

The symbolic name of a user-defined field into which CA IDMS will  place the 
four-byte scratch record ID. 

 

Example 

The following statement i l lustrates a request to replace the scratch record identified by 
SCR-REC-ID with data in the WORK-PROC-AREA field: 

PUT SCRATCH 

  FROM WORK-PROC-AREA LENGTH 125 

  RECORD ID SCR-REC-ID REPLACE. 
 

Status Codes 

After completion of the PUT SCRATCH function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request to add a scratch record has been serviced successfully 

4305 The requested scratch record ID cannot be found 

4307 An I/O error has occurred during processing 



READ LINE FROM TERMINAL 

 

Chapter 6: Data Manipulation Language Statements  267  

 

Status code Meaning 

4317 The request to replace a scratch record has been serviced 

successfully 

4322 The request to add a scratch record cannot be serviced because the 
specified scratch record already exists in the scratch area and 

REPLACE has not been specified 

4331 The parameter l ist is invalid. 

4332 The derived length of the specified scratch record is either zero or 
negative 

READ LINE FROM TERMINAL 

The READ LINE FROM TERMINAL statement requests a synchronous, l ine-by-line transfer 
of data from the terminal to the issuing program. 

 

Syntax 

►►─── READ LINE FROM TERMINAL ─┬────────┬────┬──────────────┬─────────────────► 
                               └─ ECHO ─┘    └─ NOBACKPAGE ─┘ 
 
 ►─── INTO input-data-location ─┬─ TO end-input-data-location ───────┬────────► 
                                └─ MAX LENGTH input-data-max-length ─┘ 
 
 ►─┬───────────────────────────────────────────────┬─ . ──────────────────────►◄ 
   └─ RETURN LENGTH into input-data-actual-length ─┘ 

 

Parameters 

ECHO 

3270-type devices only. Saves the line of data being input in the current page (as 

displayed on the screen). If you do not specify ECHO, data entered will  not be 
retained and will  not be available for review by the user. 

 

NOBACKPAGE 

3270-type devices only. Specifies not to save previously input pages in a scratch 
area. If you specify NOBACKPAGE, the user can view only the current page of data. 

NOBACKPAGE is valid only with the first input request in a l ine mode session. 
 



READ LINE FROM TERMINAL 

 

268  DML Reference Guide for COBOL 

 

INTO 

Indicates the WORKING-STORAGE SECTION or LINKAGE SECTION entry reserved for 

the input data. 

input-data-location  

The symbolic name of a user-defined field. 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION 
reserved for the input data stream. 

end-input-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the data area reserved for the input 
data stream. 

 

MAX LENGTH 

Defines the length in bytes of the input data stream. 

If the input data stream is larger than the data area reserved in the 
WORKING-STORAGE SECTION or LINKAGE SECTION, the data is truncated to fit the 
available space. 

input-data-max-length  

Either the symbolic name of a user-defined field that contains the length of the 
data area or the length itself expressed as a numeric constant. 

 

RETURN LENGTH into 

Indicates the location to which CA IDMS will  return the actual length of the input 

data stream. 

input-data-actual-length  

The symbolic name of a user-defined field. If the data stream has been 
truncated, the field will  contain the original length before truncation. 

 

Examples 

The following examples i l lustrate the use of the READ LINE FROM TERMINAL statement. 

Example 1 

The following statement i l lustrates a request to read the specified data from a 

3270-type device into the specified location in the program and to echo the input 
data on the screen: 

READ LINE FROM TERMINAL 

  ECHO 

  INTO EMPL-DATA TO END-EMPL-DATA. 
 



READ TERMINAL 

 

Chapter 6: Data Manipulation Language Statements   269  

 

Example 2 

The following statement i l lustrates a request to read the specified data into the 

program but not to save pages associated with the line I/O session: 

READ LINE FROM TERMINAL 

  NOBACKPAGE 

  INTO EMPL-DATA MAX LENGTH 8 

  RETURN LENGTH INTO REC-DATA-LENGTH. 
 

Status Codes 

After completion of the READ LINE FROM TERMINAL function, the ERROR-STATUS field 
in the IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4707 A logical or permanent I/O error has been encountered in the input 
data stream 

4719 The input area specified for the return of data is too small; the 
returned data has been truncated to fit the available space 

4731 The line request block (LRB) contains an invalid field, indicating a 
possible error in the program's parameters  

4732 The derived length of the specified line input area is zero or negative 

4738 The specified 01-level LINKAGE SECTION entry has not been allocated 
as required A prior GET STORAGE request must be issued 

4743 The line I/O session has been canceled; the user has pressed CLEAR 
(3270s), ATTENTION (2741s), or BREAK (teletypes) 

READ TERMINAL 

The READ TERMINAL statement requests a synchronous or asynchronous basic mode 
data transfer from the terminal to program variable storage. 

 

Syntax 

►►─── READ TERMINAL ──────────────────────────────────────────────────────────► 
 
 ►─┬──────────┬─┬───────────────────────────────────────────────┬─────────────► 
   ├─ WAIT ◄ ─┤ ├── BUFFER ─────────────────────────────────────┤ 
   └─ NOWAIT ─┘ └── MODIFIED FROM POSITION screen-position ─────┘ 

 



READ TERMINAL 

 

270  DML Reference Guide for COBOL 

 

 ►─┬───────────────┬──────────────────────────────────────────────────────────► 
   └─ GET STORAGE ─┘ 
 
 ►─── INTO input-data-location ─┬─ TO end-input-data-location ───────┬────────► 
                                └─ MAX LENGTH input-data-max-length ─┘ 
 
 ►─┬───────────────────────────────────────────────┬─ . ──────────────────────►◄ 
   └─ RETURN LENGTH into input-data-actual-length ─┘ 

 

Parameters 

WAIT 

Specifies that the read operation will  be synchronous; the issuing task will 
automatically relinquish control to CA IDMS and must wait for completion of the 

read operation before processing can continue. 

This is the default. 

NOWAIT 

Specifies that the read operation will  be asynchronous; the issuing task will 

continue executing. 

If you specify NOWAIT, the program must issue a CHECK TERMINAL request 
(described earlier in this chapter) before performing any other I/O operations. 

 

MODIFIED 

3270-type devices only. Reads all  modified fields in the terminal buffer into variable 

storage without requiring the user to signal completion of data entry. 

BUFFER 

3270-type devices only. Executes a READ BUFFER command that reads the entire 

contents of the terminal buffer into variable storage without requiring the user to 
signal completion of data entry. 

 

FROM POSITION 

Defines the buffer address (screen position) at which the read will  start. 

screen-position  

Either the symbolic name of a user-defined PIC S9(4) COMP SYNC (halfword) 
field or the address itself enclosed in quotation marks. 

 

GET STORAGE 

Synchronous requests only. Acquires an input buffer for the data being read into 
the program; CA IDMS allocates the required storage when the read operation is 

complete. 
 



READ TERMINAL 

 

Chapter 6: Data Manipulation Language Statements   271  

 

INTO 

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION entry of 

the input data stream. 

If you also specify GET STORAGE, the data area reserved for the input data stream 
must be an unallocated 01-level LINKAGE SECTION entry. 

If you do not specify GET STORAGE, the data area must be a WORKING STORAGE or 
previously allocated LINKAGE SECTION entry. 

input-data-location  

The symbolic name of a user-defined field. 
 

TO 

Indicates the end of the data area reserved for the input data stream. 

end-input-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the data area reserved for the input 

data stream. 
 

MAX LENGTH 

Defines the length, in bytes, of the data area reserved for the input data stream. 

If the input data stream is larger than the specified WORKING-STORAGE SECTION or 
LINKAGE SECTION entry, the data is truncated to fit the available space. 

input-data-max-length  

Either the symbolic name of a user-defined field that contains the length of the 
data area or the length itself expressed as a numeric constant. 

 

RETURN LENGTH into 

Indicates the location to which CA IDMS will  return the actual length of the input 

data stream. 

input-data-actual-length  

The symbolic name of a user-defined field. If the data stream has been 

truncated, input-data-actual-length contains the original length before 
truncation. 

 

Example 

The following statement i l lustrates a basic mode request to read data from the terminal 

to the specified location in variable storage: 

READ TERMINAL 

  WAIT 

  INTO TERM-LINE TO END-TERM-LINE. 
 



READY 

 

272  DML Reference Guide for COBOL 

 

Status Codes 

After completion of the READ TERMINAL function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4519 The input area specified for the return of data to the issuing program 
is too small; the returned data has been truncated to fit the available 

space 

4527 A permanent I/O error has occurred during processing 

4528 The dial-up line for the terminal has been disconnected 

4531 The terminal request block (TRB) contains an invalid field, indicating a 
possible error in the program's parameters  

4532 The derived length of the specified input data area is zero or negative 

4535 Storage for the input buffer cannot be acquired because the specified 

01-level LINKAGE SECTION entry has been previously allocated; no 
I/O has been performed 

4537 Storage for the input buffer cannot be acquired because the specified 
entry is defined in the WORKING-STORAGE SECTION rather than in 

the LINKAGE SECTION; no I/O has been performed 

4538 The specified 01-level LINKAGE SECTION entry has not been 
previously allocated and the GET STORAGE option has not been 

specified; no I/O has been performed 

4539 The terminal device associated with the issuing task is out of service 

READY 

The READY statement prepares a database area for access by DML functions and 
specifies the usage mode of the area. 

The DBA can specify default usage modes in the subschema. Run-units that use such a 
subschema need not issue any READY statements; the areas are automatically readied 

in the predefined usage modes. However, if a run-unit issues a READY statement for one 
area, it must issue READY statements for all  areas that it will  access unless the FORCE 
option was specified for the default usage mode. Areas using the default usage mode 

combined with the FORCE option are automatically readied even if the run-unit already 
issued READY for other areas. 

 



READY 

 

Chapter 6: Data Manipulation Language S tatements  273  

 

The specified usage mode can be qualified with a PROTECTED option to prevent 
concurrent update or an EXCLUSIVE option to prevent concurrent use of areas by other 

run units executing under the central version. Each area can be readied in its own usage 
mode. Usage modes can be changed by executing a FINISH statement (see FINISH (see 
page 185)) then starting a new run unit by issuing a BIND RUN-UNIT statement, the 

appropriate BIND RECORD statements, and a READY statement specifying the new 
usage mode. 

 

When the run unit readies database areas, all areas can be readied with a single READY 
statement or each area to be accessed can be readied individually. All  areas affected 
explicitly or implicitly by the DML statements issued by the run unit mus t be readied. 

Other areas included in the subschema need not be readied. 
 

The READY statement can appear anywhere within an application program; however, to 

avoid runtime deadlock, the best practice is to ready all  areas before issuing any other 
DML statements. 

The READY statement is used in both the navigational and the non-navigational 

environments. 
 

Syntax 

►►─── READY ─┬─────────────┬──────────────────────────────────────────────────► 
             └─ area-name ─┘ 
 
 ►─┬─────────────────────────────────────────────────────┬─ . ────────────────►◄ 
   └─ USAGE-MODE is ─┬─────────────┬───┬─ RETRIEVAL ◄ ─┬─┘ 
                     ├─ PROTECTED ─┤   └─ UPDATE ──────┘ 
                     └─ EXCLUSIVE ─┘ 

 

Parameters 

area-name 

The name of an area included in the subschema. 

By default, if you do not specify an area, READY will  open all  areas in the 
subschema. 

 

USAGE-MODE IS 

Specifies the usage mode in which the area will  be opened. 

PROTECTED  

Prevents concurrent update of the area by run units executing under the same 

central version. Once a run unit has readied an area with the PROTECTED 
option, no other run unit can ready that area in any UPDATE usage mode until  
the first run unit releases it by means of the FINISH statement (see FINISH (see 
page 185)). A run unit cannot ready an area with the PROTECTED option if 

another run unit has readied the area in UPDATE usage mode or with the 
EXCLUSIVE option. 

 



READY 

 

274  DML Reference Guide for COBOL 

 

By default, if you do not specify PROTECTED or EXCLUSIVE, the areas will  be 
opened in shared mode. 

EXCLUSIVE  

Prevents concurrent use of the area by any other run unit executing under the 
central version. Once a run unit has readied an area with the EXCLUSIVE option, 

no other run unit can ready that area in any usage mode until  the first run unit 
releases it. 

By default, if you do not specify PROTECTED or EXCLUSIVE, the areas will  be 
opened in shared mode. 

 

RETRIEVAL  

Opens the area for retrieval only and allows other concurrently executing run 
units to open the same area in any non-exclusive usage mode. 

This is the default. 

UPDATE  

Opens the area for both retrieval and update and allows other concurrently 
executing run units to open the same area in any usage mode other than 
exclusive or protected. 

 

Note: If a READY statement would result in a usage mode conflict for an area, 
while running under the central version, the run unit issuing the READY is 

placed in a wait state on the first functional database call. 

Note: Modification statements involving areas opened in one of the update 
usage modes are not valid if they affect sets that include records in an area 

opened in one of the retrieval usage modes. 
 

Example 

The following statement readies all  subschema areas in a usage mode of PROTECTED 
UPDATE: 

READY USAGE-MODE IS PROTECTED UPDATE. 
 

Status Codes 

After completion of the READY function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

0910 The subschema specifies an access restriction that prohibits readying 

the area in the specified usage mode 

0923 The named area is not in the subschema 



RETURN 

 

Chapter 6: Data Manipulation Language Statements   275  

 

Status code Meaning 

0928 The run unit has attempted to ready an area that has been readied 

previously 

0966 The area specified is not available for update. If the 0966 status code 
is ignored, subsequent attempts to access the area will  return a 01 or 

09 minor code. Probable causes for the return of the status code are 
as follows: 

■ If running in local mode, the area is locked against update 

■ If running under the central version, the area is not available to 

the program in the desired access mode 

0970 The database or journal fi le will not ready properly; a JCL error is the 
probable cause 

0971 The page range for the area being readied could not be found in the 

DMCL 

0978 A wait for an area would cause a deadlock. It is recommended that all  
areas be readied either before the first functional call is issued or 

that all  programs ready areas in the same order. 

RETURN 

The RETURN statement retrieves the database key for an indexed record without 

retrieving the record itself, thus establishing currency in the indexed set. The record's 
symbolic key is moved into the data fields within the record in program variable storage. 
The contents of all  non-key fields for the record are unpredictable after the execution of 
the RETURN verb. Optionally, the program can indicate that the symbolic key can be 

moved into some other specified variable storage location. 
 

Current of index is established by: 

■ Successful execution of the RETURN statement, which sets current of index at the 
index entry from which the database key was retrieved. 

■ A status code of 1707 (end of index), which set currency on the index owner. The 

DBMS returns the owner's db-key. 
 

■ An status code of 1726 (index entry not found), which sets current of index as 
follows: 

■ Between the two entries that are higher and lower than the specified value 
 



RETURN 

 

276  DML Reference Guide for COBOL 

 

■ After the highest entry, if the specified value is higher than all  index entries  

■ Before the lowest entry, if the specified value is lower than all  index entries  

The RETURN statement is used in both the navigational and the non-navigational 
environments. 

 

Syntax 

►►─── RETURN dbkey FROM index-set-name ─┬─ CURRENCY ──────────────┬───────────► 
                                        ├─ FIRST currency ────────┤ 
                                        ├─ LAST currency ─────────┤ 
                                        ├─ NEXT currency ─────────┤ 
                                        ├─ PRIOR currency ────────┤ 
                                        └─ USING index-key-value ─┘ 
 
 ►─┬─────────────────────────┬─ . ────────────────────────────────────────────►◄ 
   └─ KEY into symbolic-key ─┘ 

 

Parameters 

db-key 

The symbolic name of a user-defined PIC S9(8) COMP SYNC (fullword) field. 

FROM 

Identifies the indexed set from which the specified database key is to be returned. 

index-set-name  

The name of the indexed set. 
 

CURRENCY 

Retrieves the database key for the current index entry. 

FIRST currency 

Retrieves the database key for the first index entry. 
 

LAST currency 

Retrieves the database key for the last index entry. 

NEXT currency 

Retrieves the database key for the index entry following current of index. If the 

current of index is the last entry, status code 1707 (end of index) is returned. 
 



RETURN 

 

Chapter 6: Data Manipulation Language Statements   277  

 

PRIOR currency 

Retrieves the database key for the index entry preceding current of index. If the 

current of index is the first entry, status code 1707 (end of index) is returned. 

USING 

Retrieves the database key for the first index entry with the specified symbolic key. 

index-key-value  

The symbolic key to be used. 

If no such entry exists, status code 1726 (index entry not found) is returned. 
 

KEY into 

Saves the symbolic key (CALC, sort, or index) of the specified record. 

symbolic-key  

The name of a user-defined alphanumeric field into which the symbolic key of 
the specified record will  be returned. Symbolic-key must be large enough to 
contain the largest contiguous or noncontiguous symbolic key. 

 

If the 'KEY into' clause is not specified, the symbolic key will  be moved into the 

corresponding fields in the user record's storage. 

The precompiler views an incorrectly formatted RETURN statement as a COBOL 
RETURN function and does not flag the error. The incorrect RETURN DML statement 
is passed to the COBOL compiler without expansion into a CALL statement, causing 

compile-time errors. 
 

Example 

The following RETURN statement retrieves the database key for the first index entry in 
the EMP-LNAME-NDX set and moves the record's symbolic key into the 

NDX-LNAME-SYM-KEY field. 

RETURN INT-INDEX-KEY FROM EMP-LNAME-NDX 

  FIRST CURRENCY 

  KEY INTO NDX-LNAME-SYM-KEY. 
 

Status Codes 

After completion of the RETURN function, the ERROR-STATUS field in the IDMS 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

1701 The area in which the object record or its index owner record 
participates has not been readied 



ROLLBACK 

 

278  DML Reference Guide for COBOL 

 

Status code Meaning 

1707 Either the end of the indexed set has been reached or the indexed 

set is empty 

1725 Currency has not been established for the specified indexed set 

1726 The record cannot be found 

ROLLBACK 

The ROLLBACK statement rolls back uncommitted changes made to the database 
through an individual run unit or through all  database sessions associated with a task. A 
task-level rollback also backs out all  uncommitted changes made in conjunction with 

scratch, queue, and print activity. 
 

Whether the changes are automatically backed out depends on the execution 
environment: 

■ If the changes were made under the control of a central version that is journaling to 

a disk fi le, they are backed out automatically. The central version continues to 
process other applications during recovery. 

■ The changes are not backed out automatically under the following circumstances: 

■ If the changes were made under the control of a central version that is 

journaling to a tape fi le. 

■ If the changes were made in local mode. 
 

In these cases, the ROLLBACK statement causes the affected areas to remain locked 
against subsequent access by other database sessions. They must be manually 
recovered. If changes cannot be backed out and CONTINUE was specified on the 

rollback request, a non-zero error status is returned to the application and if the 
request was for an individual run unit, that run unit is terminated. 

Note: For more information about manual recovery, see the CA IDMS Database 

Administration Guide. 
 

If CONTINUE is not specified, run units (and SQL sessions) impacted by the ROLLBACK 

statement end, and their access to the database is terminated. If CONTINUE is specified, 
impacted database sessions remain active after the operation is complete. 

 



ROLLBACK 

 

Chapter 6: Data Manipulation Language Statements   279  

 

The ROLLBACK statement is used in both the navigational and logical record facility 
environments. The ROLLBACK TASK statement is also used in an SQL programming 

environment. 

Currency 

Following a ROLLBACK statement, all  currencies are set to null. Unless the 

CONTINUE option is specified, the issuing program or task cannot perform database 
access through an impacted run unit without executing another BIND/READY 
sequence. 

 

Syntax 

►►─── ROLLBACK ─┬────────┬──┬────────────┬─ . ────────────────────────────────►◄ 
                └─ TASK ─┘  └─ CONTINUE ─┘ 

 

Parameters 

TASK 

Rolls back the uncommitted changes made by all  scratch, queue, and print activity 
and all  top-level run units associated with the current task and terminates those run 

units. Its impact on SQL sessions associated with the task depends on whether 
those sessions are suspended and whether their transactions are eligible to be 
shared. 

 

For more information about the impact of a ROLLBACK TASK statement on SQL 
sessions, see the SQL Programming Guide. 

For more information about run units and the impact of ROLLBACK TASK, see the 
Navigational DML Programming Guide. 

 

CONTINUE 

Central version only. Causes the affected run units and SQL sessions to remain 
active after their changes are backed out. Database access can be resumed without 

reissuing BIND and READY statements. 

Note: The CONTINUE option should not be used in local mode ifdatabase changes 
have been made. 

 

Example 

The following statement reverses the effects of the run unit through which it is issued 
and terminates the run unit: 

ROLLBACK. 
 



SEND MESSAGE 

 

280  DML Reference Guide for COBOL 

 

Status Codes 

After completion of the ROLLBACK function, the ERROR-STATUS field in the IDMS 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

1958 CONTINUE was specified and database changes could not be backed 
out. The run unit has been terminated. 

5031 The specified request is invalid; the program may contain a logic 
error 

5058 TASK CONTINUE was specified and database changes could not be 

backed out. 

5097 An error was encountered processing a syncpoint request; check the 
log for details. 

SEND MESSAGE 

The SEND MESSAGE statement sends a message to another terminal or user or to a 
group of terminals or users defined as a destination during system generation. The SEND 
MESSAGE function does not employ the data dictionary message area; instea d, CA IDMS 

places each message in a queue, sending the message to the appropriate terminal only 
when it is possible to do so without disrupting executing tasks. Typically, CA IDMS sends 
queued messages to a terminal the next time the ENTER NEXT TASK CODE message is 
displayed. 

 

Syntax 

►►─── SEND MESSAGE ─┬──────────┬──────────────────────────────────────────────► 
                    ├─ ONLY ◄ ─┤ 
                    └─ ALWAYS ─┘ 
 
 ►─── TO ─┬─ DEST ID destination-id ─┬────────────────────────────────────────► 
          ├─ USER ID user-id ────────┤ 
          └─ LTERM ID lterm-id ──────┘ 
 
 ►─── FROM message-location ─┬─ TO end-message-location ─┬─ . ────────────────►◄ 
                             └─ LENGTH message-length ───┘ 

 



SEND MESSAGE 

 

Chapter 6: Data Manipulation Language Statements  281  

 

Parameters 

ONLY 

Sends the message immediately if the destination, user, or terminal is available, and 
does not queue the message for subsequent transmission if the destination, user, 

or terminal is not available. 

This is the default. 

Note: If ONLY is specified with the DEST ID option (described below) and if some, 
but not all, of a group of users or terminals in the destination are available, CA IDMS 

will  send the message to those available. The sender will  not be aware of any 
unsuccessful transmissions. 

ALWAYS 

Sends the message immediately if the destination, user, or terminal is available, and 
queues the message for later transmission if the destination, user, or terminal is not 
available. 

 

TO DEST ID 

Identifies the recipient of the message as a destination. The specified destination 

must have been defined during system generation. 

destination-id  

Either the symbolic name of a user-defined field that contains the destination 
ID or the ID itself enclosed in quotation marks. 

TO USER ID 

Identifies the user to receive a message. The specified user can be signed on to any 
terminal. 

user-id  

Identifies the user to receive the message. The specified user can be signed on 
to any terminal. User-id is the symbolic name of a 32-byte user-defined field 
that contains the user-id. 

 

TO LTERM ID 

Identifies the logical terminal to receive the message. 

lterm-id  

Either the symbolic name of a user-defined field that contains the terminal ID 
or the ID itself enclosed in quotation marks. 

 



SEND MESSAGE 

 

282  DML Reference Guide for COBOL 

 

FROM 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry that contains 

the text of the message to be sent. 

message-location  

The symbolic name of a user-defined field. 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 
that contains the message text. 

end-message-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the message text. 

 

LENGTH 

Defines the length in bytes of the message text. 

message-length  

Either the symbolic name of a user-defined field that contains the length or the 
length itself expressed as a numeric constant. 

 

Examples 

The following examples i l lustrate the use of the SEND MESSAGE statement. 

Example 1 

The following statement i l lustrates a request to send the message in the 
TERM-MESS field to the logical terminal KENNEDYA: 

SEND MESSAGE ALWAYS 

  TO LTERM ID 'KENNEDYA' 

  FROM TERM-MESS TO END-TERM-MESS. 
  

Example 2 

The following statement i l lustrates a request to send the message in the 
TERM-MESS field to the user field: 

MOVE 'KYJOE2' to USER32. 

   SEND MESSAGE 

    TO USER ID USER32 

    FROM TERM-MESS TO END-TERM-MESS. 
 



SET ABEND EXIT 

 

Chapter 6: Data Manipulation Language Statements   283  

 

Example 3 

The following statement i l lustrates a request to send the message in the 

TERM-MESS field to the destination ALL: 

SEND MESSAGE 

  TO DEST ID 'ALL' 

  FROM TERM-MESS TO END-TERM-MESS. 
 

Status Codes 

After completion of the SEND MESSAGE function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4907 An I/O error has occurred during processing. 

4921 The specified message recipient has not been defined. 

4931 The parameter l ist is invalid. 

4932 The derived length of the specified message data area is zero or 

negative. 

4934 The specified variable storage area that contains the message text is 
in the LINKAGE SECTION but is not an 01-level entry. 

4938 The specified WORKING-STORAGE SECTION or LINKAGE SECTION 
entry has not been allocated, as required. A GET STORAGE request 
must be issued. 

SET ABEND EXIT 

The SET ABEND EXIT (STAE) statement establishes or cancels l inkage to an abend routine 
to which CA IDMS passes control if the issuing task terminates abnormally. Any program 
within a task can establish an abend exit; however, only one abend exit is in effect at 

any given time for each task level. If more than one abend exit has been established, CA 
IDMS recognizes the exit associated with the last STAE request issued. 

 

When a task terminates abnormally (following either a processing error or an ABEND 
request), abend exits for the program that was executing at the time of the abend and 
for all  higher-level programs will be executed before the task is terminated. The 

program can prevent CA IDMS from executing abend exits automatically either by 
coding the EXITS IGNORED clause in an ABEND request or by coding a DC RETURN 
request in the abend routine. 

 



SET TIMER 

 

284  DML Reference Guide for COBOL 

 

Syntax 

►►─── SET ABEND EXIT ─┬─ on PROGRAM program ─┬─ . ────────────────────────────►◄ 
                      └─ OFF ────────────────┘ 

 

Parameters 

on PROGRAM 

Specifies the program to which control is to transfer if the issuing task terminates 

abnormally. 

program  

Either the symbolic name of a user-defined field that contains the program 
name or the name itself enclosed in quotation marks. 

 

Note: CA IDMS does not check to determine if the specified program name is 

valid when the STAE request is issued. Rather, if the program is not found or is 
otherwise unloadable when CA IDMS attempts to execute it, the STAE request 
will  be ignored. 

OFF 

Cancels any previously issued STAE request for the issuing task level. 
 

Examples 

The following examples i l lustrate the use of the SET ABEND EXIT statement. 

Example 1 

The following statement establishes an abend exit that will  execute the program 
ABENDRTN if the issuing task terminates abnormally: 

SET ABEND EXIT ON PROGRAM 'ABENDRTN'. 
 

Example 2 

The following statement cancels all abend exits previously established at the task 
level of the issuing program: 

SET ABEND EXIT OFF. 
 

Status Codes 

After completion of the SET ABEND EXIT function, the only possible value in the 
ERROR-STATUS field of the IDMS-DC communications block is 0000. 

 

SET TIMER 

The SET TIMER statement defines an event that is to occur after a specified time interval 
or cancels the effect of a previously issued SET TIMER request. Using the SET TIMER 
function, a program can: 

 



SET TIMER 

 

Chapter 6: Data Manipulation Language Statements   285  

 

■ Delay task processing for a specified period of time 

■ Post an ECB at the end of a specified period of time 

■ Initiate a task at the end of a specified period of time 
 

Syntax 

►►─── SET TIMER ─┬─ WAIT────┬─────────────────────────────────────────────────► 
                 ├─ POST ───┤ 
                 ├─ START ──┤ 
                 └─ CANCEL ─┘ 
 
 ►─┬──────────────────────────────────┬───────────────────────────────────────► 
   └─ INTERVAL time-interval seconds ─┘ 
 
 ►─┬──────────────────┬───────────────────────────────────────────────────────► 
   └─ EVENT post-ecb ─┘ 
 
 ►─┬───────────────────────────────────────────────┬──────────────────────────► 
   └─ TASK CODE task-code ─┬─────────────────────┬─┘ 
                           └─ PRIORITY priority ─┘ 
 
 ►─┬────────────────────────┬─────────────────────────────────────────────────► 
   └─ TIMER ID ice-address ─┘ 
 
 ►─┬────────────────────────────────────────────────────────────────┬─ . ─────►◄ 
   └─ DATA FROM task-data-location ─┬─ TO end-task-data-location ─┬─┘ 
                                    └─ LENGTH task-data-length ───┘ 

 

Parameters 

WAIT 

Places the issuing task in a wait state and redispatches the issuing task after the 

specified time interval elapses. Because WAIT relinquishes control until  the time 
interval has elapsed, a subsequent SET TIMER request cannot be used to cancel this 
WAIT request. 

 

POST 

Posts a user-specified ECB after the specified time interval elapses; the issui ng task 

continues to run. If POST is specified, the EVENT parameter (described below) must 
also be specified. 

 

START 

Initiates a user-specified task after the specified time interval elapses. If START is 
specified, the TASK CODE parameter (described below) must also be specified. 

 

CANCEL 

Cancels the effect of a previously issued SET TIMER request. 
 

INTERVAL ... seconds 

WAIT, POST, START requests only. Specifies the time, in seconds, from the issuance 
of a SET TIMER request at which the requested event will  occur. 

time-interval  

Either the symbolic name of a user-defined field that contains the time interval 
or the interval itself expressed as a numeric constant. 

 



SET TIMER 

 

286  DML Reference Guide for COBOL 

 

EVENT 

POST requests only. Specifies the ECB to be posted. 

post-ecb  

The symbolic name of a user-defined area that contains three PIC S9(8) COMP 
SYNC (fullword) fields. 

Note: The POST instruction will only POST an ECB that is within storage owned by 
the TASK initiating the POST instruction. If the storage is not owned by the same 
task, it will  not be executed. 

 

TASK CODE 

START requests only. Specifies the task to be initiated. 

task-code  

Either the symbolic name of the user-defined field that contains the task code 
or the task code itself enclosed in quotation marks. 

The specified task code must have been defined to CA IDMS during system 

generation or at runtime with a DCMT VARY DYNAMIC TASK command. 
 
 

PRIORITY 

Specifies a dispatching priority for the task. 

priority  

Either the symbolic name of a user-defined field that contains the priority or 
the priority itself expressed as a numeric constant in the range 0 through 240. 

The new task's priority defaults to the priority defined for that task code. 
 

TIMER ID 

POST, START, CANCEL requests only. Specifies the address of the interval control 
element (ICE) associated with the timed event. 

ice-address  

The symbolic name of a user-defined PIC S9(8) COMP SYNC (fullword) field. If 
either POST or START has been specified, ice-address references a field to 
which CA IDMS will  return the ICE address. If CANCEL has been specified, 
ice-address references the field that contains the ICE address returned by CA 

IDMS following a SET TIMER POST or SET TIMER START request. 

Note: The TIMER ID parameter must be specified with SET TIMER POST and SET 
TIMER START requests if the program is to issue subsequent SET TIMER CANCEL 

requests. 
 



SET TIMER 

 

Chapter 6: Data Manipulation Language Statements   287  

 

DATA FROM 

START requests only. Identifies the user data to be passed to the new task. 

task-data-location  

The symbolic name of a user-defined field that identifies the beginning of an 
area containing the data item(s) to be passed. 

 

TO 

Indicates the end of the data area being passed to the new task. 

end-task-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the data area being passed. 

 

LENGTH 

Specifies the length in bytes of the data area. 

task-data-length  

Either the symbolic name of a user-defined WORKING-STORAGE SECTION or 
LINKAGE SECTION field that contains the length of the data area or the length 

itself expressed as a numeric constant. 

Note: The data passed to the new task consists of two bytes containing the 
length of the original data followed by the original data itself. This may be 
accessed by means of a LINKAGE SECTION entry corresponding to the data and 

a USING clause in the PROCEDURE DIVISION header. 
 

Examples 

The following examples i l lustrate the use of the SET TIMER statement. 

Example 1 

The following statement i l lustrates a request to place the issuing task in a wait state 
and redispatch it after nine seconds have elapsed: 

SET TIMER WAIT 

  INTERVAL 9 SECONDS. 
 

Example 2 

The following statement i l lustrates a request to post the event PODB after five 

seconds have elapsed: 

SET TIMER POST 

  INTERVAL 5 SECONDS 

  EVENT PODB 

  TIMER ID TMR-ID. 
 



SNAP 

 

288  DML Reference Guide for COBOL 

 

Example 3 

The following statement i l lustrates a request to start the SPSG task after five 

seconds have elapsed and to pass the specified data to that task: 

SET TIMER START 

  INTERVAL 5 SECONDS 

  TASK CODE 'SPSG' 

  TIMER ID TMR-ID 

  DATA FROM PASSGR LENGTH REC-LENGTH. 
 

Example 4 

The following statement i l lustrates a request to cancel the timed event referenced 
by TMR-ID: 

SET TIMER CANCEL 

  TIMER ID TMR-ID. 
 

Status Codes 

After completion of the SET TIMER function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3512 The specified task code is not known to the DC/UCF system. 

3516 The interval control element (ICE) specified for a SET TIMER CANCEL 

request cannot be found 

3531 Parameter l ist is invalid. 

3532 The derived length of the data area is negative 

SNAP 

The SNAP statement requests a memory snap of one or all  of the following areas: 

■ Task areas—Includes all  resources associated with the issuing task, as well as the 
task control element (TCE) and dispatch control element (DCE) for the task. 

Information displayed by the snap is formatted with headers. 
 

■ System areas—Includes areas for all  tasks and CA IDMS internal control blocks. Task 
areas are not itemized separately. Information displayed by the snap is formatted 
with headers. 

 

■ Specified locations in memory—Includes one or more areas of memory specifically 
requested by location and length. The information displayed is not formatted with 

headers. 
 



SNAP 

 

Chapter 6: Data Manipulation Language Statements   289  

 

The areas requested in the SNAP request are written to the DC system log fi le, which is 
defined during system generation as a sequential data set or a data dictionary area. 

 

Syntax 

►►─── SNAP ─┬──────────────────┬─┬──────────┬─────────────────────────────────► 
            └─ TITLE is title ─┘ ├─ ALL ────┤ 
                                 ├─ SYSTEM ─┤ 
                                 └─ TASK ───┘ 
 
 ►─────┬───────────────────────────────────────────────────────────┬─ . ──────►◄ 
       │ ┌───────────────────────────────────────────────────────┐ │ 
       └─▼─ FROM begin-snap-location ─┬─ TO end-snap-location ─┬─┴─┘ 
                                      └─ LENGTH snap-length ───┘ 

 

Parameters 

TITLE is 

Specifies the title to be printed at the beginning of each page of the snap. 

title  

The symbolic name of a user-defined field that contains the title. 

A title must contain 134 characters; the first character is reserved for use by CA 
IDMS, and the second character must be a valid ASA carriage control character 
(blank, 0, 1, +, or -). 

 

ALL 

Writes a snap of both task and system areas. Areas associated with the issuing task 
are formatted separately from the system areas. (Task areas are also included with 
the system areas but are not itemized by task.) 

SYSTEM 

Writes a snap of system areas. 
 

TASK 

Writes a snap of task areas. 

FROM 

Writes a snap of the specified memory location. 

begin-snap-location  

The symbolic name of a user-defined field indicating the starting location of the 
area to be snapped. 

 



STARTPAGE 

 

290  DML Reference Guide for COBOL 

 

TO 

Indicates the end of the area to be snapped. 

end-snap-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the area requested in the snap. 

LENGTH 

Defines the length in bytes of the area to be included in the snap. 

snap-length  

Either the symbolic name of a user-defined field that contains the length of the 

data area or the length itself expressed as a numeric constant. 

Note: If snap-length is greater than 100, some COBOL compilers may produce 
errors. In this case, either use a symbolic name that contains the length, or use 
the FROM/TO form of the verb. 

 

Example 

The following example il lustrates a SNAP statement that requests CA IDMS to write a 
memory snap of the specified memory location: 

SNAP TITLE IS SNAP-TITLE 

  FROM WS-START TO WS-END. 
 

Status Codes 

After completion of the SNAP function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4032 The derived length of the specified snap storage area is zero or 
negative 

STARTPAGE 

The STARTPAGE statement initiates a paging session. It can be followed by any number 
of DML commands, including MAP IN and MAP OUT commands. The map paging session 

is terminated by an ENDPAGE command (or by another STARTPAGE command, if one is 
encountered before an ENDPAGE command). 

Note: Only one pageable map can be handled by the statements enclosed by a given 

STARTPAGE/ENDPAGE pair. 
 



STARTPAGE 

 

Chapter 6: Data Manipulation Language Statements   291  

 

Syntax 

►►─── STARTPAGE session map-name ─┬────────────┬──────────────────────────────► 
                                  ├─ WAIT ─────┤ 
                                  ├─ NOWAIT ◄ ─┤ 
                                  └─ RETURN ───┘ 
 
 ►─┬──────────────┬─┬────────────┬─┬─────────────────┬─ . ────────────────────►◄ 
   ├─ BACKPAGE ◄ ─┤ ├─ UPDATE ◄ ─┤ ├─ AUTODISPLAY ◄ ─┤ 
   └─ NOBACKPAGE ─┘ └─ BROWSE ───┘ └─ NOAUTODISPLAY ─┘ 

 

Parameters 

map-name 

Specifies the pageable map to be used for the session. 

WAIT 

Specifies that runtime mapping automatically handles paging transactions that 
do not cause data to be updated. Control is passed to the program when the 
user presses a control key that requests an update or nonpaging operation. 

 

NOWAIT 

Specifies that runtime mapping automatically handles all paging and update 
transactions. 

This is the default. 

Control is passed to the program only when neither an update nor paging 

request is made when the operator presses a control key. 
 

RETURN 

Specifies that runtime mapping does not handle any terminal transactions in 
the paging session. Control is passed to the program whenever the operator 
presses a control key. 

Note: Runtime mapping does not update program variable storage unless a 
MAP IN command is issued. In cases where the operator can update data, it is 
recommended that WAIT or RETURN be specified for the session so that data 

can be retrieved as it is updated. 
 

BACKPAGE 

Specifies that the operator can display previous pages of detail  occurrences. 

This is the default. 
 



STARTPAGE 

 

292  DML Reference Guide for COBOL 

 

NOBACKPAGE 

Specifies that the operator cannot display any page of detail  occurrences with a 

page number lower than the current page number. Modifications made on a given 
page of the map must be requested by MAP IN statements in the application 
program before a MAP OUT RESUME command is issued. The previous page of 

detail  occurrences is deleted from the session scratch record when a new map page 
is displayed. 

Note: NOBACKPAGE cannot be assigned if UPDATE and NOWAIT are specified for 
the session. 

 

UPDATE 

Specifies that the user can modify variable map fields, subject to restrictions 
specified for the map either at map definition time or by statements in the 
program. 

This is the default. 
 

BROWSE 

Specifies that the user can modify only the page and response fields (if any) of the 
map. The MDTs for variable fields on the map can be set on only according to 
specifications made either in the map definition or by statements in the program. 

 

AUTODISPLAY 

Enables automatic display of the pageable map's first page. 

This is the default. 
 

NOAUTODISPLAY 

Disables automatic display of the pageable map's first page. You manually display 
the page by using a MAP OUT RESUME statement. 

 

Examples 

Initiating a Paging Session 

The following statement initiates a paging session in which the operator can page 
forward and backward within the pageable map but can make no modifications: 

STARTPAGE SESSION EMPMAPPG NOWAIT BACKPAGE BROWSE. 
 

Overriding Automatic Display 

Use STARTPAGE to override automatic display for the first page of pageable map 

EMPMAPPG: 

STARTPAGE SESSION EMPMAPPG NOAUTODISPLAY. 
 



STORE 

 

Chapter 6: Data Manipulation Language Statements   293  

 

Status Codes 

After completion of the STARTPAGE function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4604 A paging session was already in progress when this STARTPAGE 
command was received. An implied ENDPAGE was processed before 

this STARTPAGE was successfully executed. 

STORE 

The STORE statement performs the following functions: 

■ Acquires space and a database key for a new record occurrence in the database 

■ Transfers the value of the appropriate elements from program variable storage to 
the specified record occurrence in the database 

■ Connects the new record occurrence to all  sets for which it is defined as an 

automatic member 
 

Before execution of the STORE statement, the following conditions must be satisfied: 

■ All areas affected either implicitly or explicitly must be readied in one of the update 
usage modes (see READY (see page 272)). 

■ All control elements (that is, CALC and sorted set control fields) must be initialized 
by the program. 

 

■ If the record being stored has a location mode of DIRECT, the contents of 
DIRECT-DBKEY (positions 197-200 of the IDMS communications block, as described 
in Chapter 4: (see page 33)) must be initialized with a suggested db-key value or a 

null db-key value of -1. 

■ If the record is to be stored in a native VSAM relative-record data set (RRDS), the 
contents of DIRECT-DBKEY must be initialized with the relative record number that 
represents the location within the data set where the record is to be stored. 

 

■ All sets in which the named record is defined as an automatic member, and the 

owner record of each of those sets must be included in the subschema. Sets for 
which the named record is defined as a manual member need not be defined in the 
subschema since the STORE statement does not access those sets. (An automatic 
member is connected automatically to the selected set occurrence when the record 

is stored; a manual member is not connected automatically to the selected set 
occurrence.) 

 



STORE 

 

294  DML Reference Guide for COBOL 

 

■ If the record being stored has a location mode of VIA, currency must be established 
for that VIA set, regardless of whether the record being stored is an automatic or 

manual member of that set. Current of the VIA set provides the suggested page for 
the record being stored. 

 

■ Currency must be established for all  set occurrences in which the stored record will  
participate as an automatic member. Depending on set order, the STORE statement 
uses currency as follows: 

– If the named record is defined as a member of a set that is ordered FIRST or 
LAST, the record that is current of set establishes the set occurrence to which 
the new record will  be connected. 

– If the named record is defined as a member of a set that is ordered NEXT or 
PRIOR, the record that is current of set establishes the set occurrence into 
which the new record will  be connected and determines its position within the 
set. 

 

– If the named record is defined as a member of a sorted set, the record that is 

current of set establishes the set occurrence into which the new record will  be 
connected. The DBMS compares the sort key of the new record with the sort 
key of the current record of set to determine if the new record can be inserted 
into the set by movement in the next direction. If it can, the current of set 

remains positioned at the record that is current of set and the new record is 
inserted. If it cannot, the DBMS finds the owner of the current of set (not 
necessarily the current occurrence of the owner record type) and moves as far 

forward in the next direction as is necessary to determine the logical insertion 
point for the new record. 

 

A record is stored in the database based on the location mode specified in the schema 
definition of the record. The location modes are as follows: 

■ CALC—The record being stored is placed on or near a page calculated by CA IDMS 

from a control element (the CALC key) in the record. 

■ VIA—The record being stored is placed either as close as possible to the current of 
set (if current of set and member record occurrences share a common page range) 
or in the same relative position in the member record's page range as the current of 

set is in its associated page range (if current of set and member record occurrences 
do not share a common page range). 

 

■ DIRECT—The record being stored is placed on or near a user-specified page as 
determined by the value in the DIRECT-DBKEY field of the IDMS communications 
block. If DIRECT-DBKEY contains a valid db-key for the record being stored, the 

DBMS assigns a db-key on the same page if space is available to the new record 
occurrence. Otherwise, it assigns the next available db-key, subject to the 
page-range limits of the record being stored. If DIRECT-DBKEY contains a value of -1, 

the first db-key available in the page range in which the record is to be stored is 
assigned to the record. In any case, the db-key of the stored record occurrence is 
returned to DBKEY (positions 13-16 in the IDMS communications block). The 
contents of DIRECT-DBKEY remain unchanged. 

 



STORE 

 

Chapter 6: Data Manipulation Language Statements  295  

 

Currency 

Following successful execution of a STORE statement, the stored record becomes 

current of run unit, its record type, its area, and all  sets i n which it participates as 
owner or automatic member. 

 

Syntax 

►►─── STORE record-name . ────────────────────────────────────────────────────►◄ 
 

Parameters 

record-name 

The name of a record type included in the subschema. The current occurrence of 

the record type will  be moved from variable storage to the database, connected to 
an occurrence of each set for which it is defined as an automatic member, and 
established as the owner of a set occurrence for each set in which it is defined as an 
owner. 

The ordering rules for each set govern the insertion point of the specified record in the 
set. 

 

Example 

The following figure il lustrates the steps necessary to add a new EMPLOYEE record to 
the database. Since EMPLOYEE is defined as an automatic member of both the 
DEPT-EMPLOYEE and OFFICE-EMPLOYEE sets, currency must be established in each of 
those sets before issuing the STORE. The first two DML statements establish OFFICE 1 

and DEPARTMENT 3100 as current of the OFFICE-EMPLOYEE and DEPT-EMPLOYEE sets, 
respectively. When EMPLOYEE 27 is stored, it is connected automatically to each set. 

 

 



STORE 

 

296  DML Reference Guide for COBOL 

 

 

  

Status Codes 

After completion of the STORE function, the ERROR-STATUS field in the IDMS 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

1201 The area in which the named record is to be stored has not been 
readied 

1202 The suggested DIRECT-DBKEY value is not within the page range for 

the named record 

1203 Invalid currency for a record to be inserted by a STORE. This can only 
occur when a run unit is sharing a transaction with other database 
sessions. The 03 minor status is returned if the run unit tries to store 

a record and a currency in any set in which the record is a owner or 
member of has been invalidated because of changes made by 
another database session that is sharing the same transaction. 

1204 The OCCURS DEPENDING ON item is either less than zero or greater 
than the maximum number of occurrences  of the control element 

1205 Storage of the record would violate a duplicates -not-allowed option 
for a CALC record, a sorted set, or an index set 



STORE (LRF) 

 

Chapter 6: Data Manipulation Language Statements   297  

 

Status code Meaning 

1208 The named record is not in the subschema; The program has 

probably invoked the wrong subschema. 

1209 The named record's area has not been readied in one of the update 
usage modes 

1210 The subschema specifies an access restriction that prohibits storage 
of the named record 

1211 The record cannot be stored in the area because of insufficient space 

1212 The record cannot be stored because no db-key is available; this is a 

system internal error. 

1218 The record has not been bound 

1221 An area other than the area of the named record occurrence has 
been readied with an incorrect usage mode 

1225 A set occurrence has not been established for each set in which the 
named record is to be stored 

1233 At least one set in which the record participates as an automatic 

member has not been included in the subschema  

1253 The subschema definition of an indexed set does not match the 
indexed set's physical structure in the database 

1254 Either the prefix length of an SR51 record is less than zero or the data 

length is less than or equal to zero 

1255 An invalid length has been defined for a variable length record 

1260 A record occurrence encountered in the process of connecting 

automatic sets is inconsistent with the set named in the ERROR-SET 
field of the IDMS communications block; probable causes include: a 
broken chain and improper database description. 

1261 The record cannot be stored because of broken chains in the 

database 

STORE (LRF) 

The STORE statement updates the database with field values for a logical-record 

occurrence. STORE does not necessarily result in storing new occurrences of all  or any of 
the database records that participate in the logical record; the path selected to service a 
STORE logical-record request performs whatever database access  operations the DBA 
has specified to service the request. For example, if an existing department gets a new 

employee, only the new employee information will  be stored in the database; the 
department information need not be stored in the database because it already exists. 

 



STORE (LRF) 

 

298  DML Reference Guide for COBOL 

 

LRF uses field values present in the variable storage location reserved for the logical 
record to make the appropriate updates to the database. You can optionally name an 

alternative storage location from which the new field values are to be obtained to 
perform the requested store operation. 

 

Syntax 

►►─── STORE logical-record-name ──────────────────────────────────────────────► 
 
 ►─┬────────────────────────────────────┬─────────────────────────────────────► 
   └─ FROM alt-logical-record-location ─┘ 
 
 ►─┬────────────────────────────┬─────────────────────────────────────────────► 
   └─ WHERE boolean-expression ─┘ 
 
 ►─┬───────────────────────────────────────┬─ . ──────────────────────────────►◄ 
   └─ ON path-status imperative-statement ─┘ 

 

Parameters 

logical-record-name 

The name of a logical record defined in the subschema. 

FROM 

Specifies an alternative variable storage location that contains the field values to be 
used to make appropriate updates to the database. When storing a logical record 
that has previously been retrieved into an alternative variable storage location, use 

the FROM clause to name the same area specified in the OBTAIN request. 

alt-logical-record-location  

A record location defined in the WORKING-STORAGE SECTION or LINKAGE 

SECTION. 
 

WHERE 

Specifies selection criteria to be applied to the object logical record. For details on 
coding this clause, see Logical-Record Clauses (see page 327). 

boolean-expression  

The selection criteria to apply. 
 

ON parameter 

Specifies the action to be taken depending on the value returned to the LR-STATUS 
field in the LRC block. For details on coding this clause, see Logical-Record Clauses 
(see page 327). 

path-status  

The value of the LR-STATUS field in the LRC block which triggers the specified 
action. 

imperative-statement The action to take. 
 



TRANSFER CONTROL 

 

Chapter 6: Data Manipulation Language Statements   299  

 

Example 

The following example il lustrates the steps necessary to store a new 
EMP-INSURANCE-LR for a given employee: 

MOVE EMP-ID-IN TO EMP-ID-0415. 

MOVE INS-PLAN-IN TO INS-PLAN-CODE-0435. 

MOVE S-DATE-IN TO SELECTION-DATE-0400 

MOVE T-DATE-IN TO TERMINATION-DATE-0400 

MOVE TYPE-IN TO TYPE-0400 

MOVE PLAN-IN TO INS-PLAN-CODE-0400. 

STORE EMP-INSURANCE-LR. 
 

The following figure il lustrates the new occurrence of the EMP-INSURANCE-LR, which 
consists of EMPLOYEE 149, INS-PLAN 001, and COVERAGE 'D'. The bottom COVERAGE 
occurrence represents the only data physically added to the database. 

                      EMPLOYEE   INS-PLAN   COVERAGE 
                 ┌── 
NEW OCCURRENCE   │     149         002        M 
 OF EMP-INS-LR ──┤ 
                 │     149         002        F 
                 │ 
                 │     149         001       (D) 
                 └── 

 

TRANSFER CONTROL 

The TRANSFER CONTROL statement is used to: 

■ Establish l inkage with a specified program and to pass control and an optional 
parameter l ist to that program. The program issuing the TRANSFER CONTROL 

RETURN request expects return of control at the instruction immediately following 
the TRANSFER CONTROL statement when the linked program terminates or issues a 
DC RETURN request. 

 

■ Transfer control and an optional parameter l ist to a specified program. The program 
issuing the TRANSFER CONTROL NORETURN request does not expect return of 

control. 
 

Syntax 

►►─── TRANSFER CONTROL to program ─┬────────────────────┬─────────────────────► 
                                   ├─┬─ RETURN ─┬───────┤ 
                                   │ └─ LINK ───┘       │ 
                                   │                    │ 
                                   └─┬─ NORETURN ─┬─ ◄ ─┘ 
                                     └─ XCTL ─────┘ 
 
 ►─┬─────────────────────────┬──┬─ . ─┬───────────────────────────────────────►◄ 
   │         ┌─────────────┐ │  └─ ; ─┘ 
   └─ USING ─▼─ parameter ─┴─┘ 



TRANSFER CONTROL 

 

300  DML Reference Guide for COBOL 

 

Parameters 

program 

Either the symbolic name of a user-defined field that contains the program name or 
the name itself enclosed in quotation marks. 

RETURN (LINK)  

Establishes l inkage with the specified program, expecting return of control. 

RETURN and LINK are synonyms and can be used interchangeably. 
 

NORETURN (XCTL) 

Transfers control to the specified program, not expecting return of control. 

This is the default. 

NORETURN and XCTL are synonyms and can be used interchangeably. 
 

USING 

Passes one or more parameters (data items) to the program receiving control. 

parameter  

The symbolic name of a user-defined field that contains the names of the data 
items to be passed. Multiple parameter specifications must be separated with a 
blank. 

 

If the USING clause is specified with the RETURN option, the data items being 
passed are defined in either the WORKING-STORAGE SECTION or the LINKAGE 

SECTION of the call ing program, and in the LINKAGE SECTION of the linked 
program. 

 

If the USING clause is specified with the NORETURN option, the data items 
being passed are defined in the LINKAGE SECTION of both the call ing program 
and the program receiving control. In either case, the program receiving 

control must have a corresponding USING clause and pa rameter l ist as part of 
its PROCEDURE DIVISION header. 

 

Examples 

The following examples i l lustrate the use of the TRANSFER CONTROL statement. 

Example 1 

The following statement i l lustrates a request to transfer control to the program in 
the PROGRAM-NAME field; the issuing program expects return of control: 

TRANSFER CONTROL TO PROGRAM-NAME 

  LINK. 
 



WAIT 

 

Chapter 6: Data Manipulation Language Statements   301  

 

Example 2 

The following statement i l lustrates a request to transfer control to PROGRAMD and 

passes three data items (FIELD-1, FIELD-2, and FIELD-3) to the program; the issuing 
program does not expect return of control: 

TRANSFER CONTROL TO 'PROGRAMD' 

  NORETURN 

  USING FIELD-1 FIELD-2 FIELD-3. 
 

Status Codes 

After completion of the TRANSFER CONTROL function, the ERROR-STATUS field in the 

IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3020 The request cannot be serviced because an I/O, program-not-found, 
or potential deadlock error has occurred 

WAIT 

The WAIT statement relinquishes control either to CA IDMS, pending completion of one 
or more events, or to a higher priority ready-to-run task. If control is relinquished to 
wait for the completion of one or more events, an event control block (ECB) must be 

defined for each event. If an ECB is already posted when the WAIT is issued, the task is 
redispatched immediately and control does not pass to another task. 

 

Syntax 

  
►►─── WAIT ─┬────────────────────────────────────────┬─ . ────────────────────►◄ 
            │                  ┌─────────────┐       │ 
            ├─┬─ LONG ◄ ─┬───┬─▼─ EVENT ecb ─┴─────┬─┤ 
            │ └─ SHORT ──┘   └─ EVENT NAME ecb-id ─┘ │ 
            │                                        │ 
            └─ REDISPATCH ───────────────────────────┘  

 

Parameters 

LONG 

Specifies that the wait is expected to be long-term. 

This is the default. 

LONG should be specified for all  waits expected to last a second or more (for 
example, terminal input). 

 



WAIT 

 

302  DML Reference Guide for COBOL 

 

SHORT 

Specifies that the wait is expected to be short-term. SHORT should be specified for 

all  waits expected to last less than a second (for example, a disk I/O). 
 

EVENT 

Defines one or more ECBs upon which the task will  wait. 

ecb  

The symbolic name of a user-defined area that contains three PIC S9(8) COMP 

SYNC (fullword) fields. 

Multiple EVENT parameters must be separated by at least one blank. 
 

EVENT NAME 

Specifies the ECB upon which the task will  wait. 

ecb-id  

Either the symbolic name of a user-defined field that contains the ECB ID or the 
ID itself enclosed in quotation marks. 

You cannot specify multiple EVENT NAMEs. 
 

REDISPATCH 

Specifies that the issuing task wishes to relinquish control to any higher priority 

ready-to-run task before being redispatched. 
 

Example 

The following example requests a short-term wait on the event PODB: 

WAIT 

  SHORT 

  EVENT NAME 'PODB'. 
 

Status Codes 

After completion of the WAIT function, the ERROR-STATUS field in the IDMS-DC 
communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3101 To wait on the specified ECB would cause a deadlock 



WRITE JOURNAL 

 

Chapter 6: Data Manipulation Language Statements   303  

 

WRITE JOURNAL 

The WRITE JOURNAL statement writes a task-defined record to the journal fi le. Records 
written to the journal fi le with the WRITE JOURNAL function will  be available to 
user-defined exit routines during a task- or system-initiated rollback. 

 

Syntax 

►►─── WRITE JOURNAL ─┬────────────┬───────┬──────────┬────────────────────────► 
                     ├─ WAIT ─────┤       ├─ SPAN ◄ ─┤ 
                     └─ NOWAIT ◄ ─┘       └─ NOSPAN ─┘ 
 
 ►─── FROM record-location ─┬─ TO end-record-location ─┬─ . ──────────────────►◄ 
                            └─ LENGTH record-length ───┘ 

 

Parameters 

WAIT 

Specifies that the issuing task will wait for completion of the physical I/O associated 
with the WRITE JOURNAL function before resuming execution. This option will  
cause CA IDMS to write a partially fi l led buffer to the journal fi le. 

NOWAIT 

Specifies that the issuing task will not wait for completion of the WRITE JOURNAL 
function; the journal record will  remain in a storage buffer until  a future request 
necessitates writing the buffer to the journal fi le. 

This is the default. 
 

SPAN 

Specifies to write the record across several journal fi le blocks, if necessary. 

This is the default. 
 

NOSPAN 

Specifies to write the record to a single journal fi le block; if it is longer than the 

journal block, the record will  be split. 

When a record is shorter than a journal fi le block, based on space available in the 
current journal block, CA IDMS wi ll  either place the record in the block, split it 

across multiple blocks (SPAN), or write it to a new block after the current block is 
written (NOSPAN). 

 

The following considerations apply to using an exit routine to retrieve journal fi le 
records during recovery: 

– If a WRITE JOURNAL statement issued before a failure specified the SPAN 

option, records may have been written across several journal blocks. To 
retrieve these records, the exit routine will  be invoked once for each segment 
of each record to be retrieved. 

 



WRITE JOURNAL 

 

304  DML Reference Guide for COBOL 

 

– If a WRITE JOURNAL statement issued before a failure specified the NOSPAN 
option and records written to the journal fi le are shorter than journal blocks, 

the exit routine need only be concerned with the complete records. 

Note: In general, the SPAN option provides better space util ization in the 
journal fi le because it increases the average fullness of each block. 

 

FROM 

Defines the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the record 

to be written to the journal fi le. 

record-location  

The symbolic name of a user-defined field. 
 

TO 

Indicates the end of the record area to be written to the journal fi le. 

end-record-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the record being written to the journal 

fi le. 
 

LENGTH 

Defines the length in bytes of the record to be written to the journal fi le. 

record-length  

Either the symbolic name of the user-defined field that contains the length or 

the length itself expressed as a numeric constant. 
 

Example 

The following statement i l lustrates a request to write the JOURNAL-DATA record to the 
journal fi le, spanning it across several blocks if necessary: 

WRITE JOURNAL SPAN 

  FROM JOURNAL-DATA TO END-JOURNAL-DATA. 
 

Status Codes 

After completion of the WRITE JOURNAL function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

5002 Storage is not available for the required control blocks  

5032 The derived length of the specified journal record is zero or negative 



WRITE LINE TO TERMINAL 

 

Chapter 6: Data Manipulation Language Statements   305  

 

Status code Meaning 

5097 An invalid status has been received from DBIO/DBMS; check the DC 

system log for details  

WRITE LINE TO TERMINAL 

The WRITE LINE TO TERMINAL statement i l lustrates a request to transfer data from 

program variable storage to a terminal. WRITE LINE TO TERMINAL also establishes, 
modifies, and deletes page header l ines. 

 

Data transfers requested by WRITE LINE TO TERMINAL statements can be synchronous 
or asynchronous: 

■ Following a synchronous request, control passes to CA IDMS, which places the 

issuing task in an inactive state. For non-3270 devices, control does not return to 
the issuing program until  the WRITE LINE TO TERMINAL request is complete. For 
3270-type devices, all  l ines of output are saved in a buffer; the buffer is not 

transmitted to the terminal until  it is full. 
 

The transfer of a l ine to the buffer will  res ult in a processing delay; however, control 

returns to the program immediately following the request. If the line of data fi l ls 
the buffer, the entire page of data must be transmitted to the terminal. In this case, 
control does not return to the issuing program until  the user responds by pressing 

ENTER. Thus, the program is made conversational. 
 

■ Following an asynchronous request, control returns immediately to the issuing 

program. Thereafter, each time the program issues a l ine mode I/O request, CA 
IDMS automatically checks to determine if the last asynchronous request has 
completed and, therefore, whether a new data transfer can be initiated. 

With asynchronous requests, programs can buffer all  required pages of output 
without suspending task execution during the actual transmission of data. However, 
the task can optionally terminate itself, thereby freeing resources and allowing the 
user to review the buffered output. 

 

I/O requests are processed in the sequence received from the task; thus, if a program 

issues a synchronous WRITE LINE TO TERMINAL request after issuing one or more 
asynchronous requests, all  I/O requests are completed before returning control to the 
issuing program. 

 

The WRITE LINE TO TERMINAL request issued automatically by CA IDMS to empty 
partially fi lled buffers upon completion of a task is synchronous; therefore, the user can 

view all  screens and catch up with processing at that time. If an application allows the 
user to interrupt or terminate processing at some point within a task, a synchronous 
WRITE LINE TO TERMINAL request must be issued to suspend processing while awaiting 
an operator response. 

 



WRITE LINE TO TERMINAL 

 

306  DML Reference Guide for COBOL 

 

Syntax 

►►─── WRITE LINE TO TERMINAL ─────────────────────────────────────────────────► 
 
 ►─┬──────────┬────┬───────────┬────┬──────────────┬──────────────────────────► 
   ├─ WAIT ◄ ─┤    ├─ NEWPAGE ─┤    └─ NOBACKPAGE ─┘ 
   └─ NOWAIT ─┘    └─ ERASE ───┘ 
 
 ►─── FROM output-data-location ─┬─ TO end-output-data-location ─┬────────────► 
                                 └─ LENGTH output-data-length ───┘ 
 
 ►─┬─────────────────────────────┬─ . ────────────────────────────────────────►◄ 
   └─ HEADER header-line-number ─┘ 

 

Parameters 

WAIT 

Specifies that the write operation is synchronous; the issuing task automatically 

relinquishes control and must wait for completion of the output operation before 
processing can continue. 

This is the default. 

NOWAIT 

Specifies that the write operation is asynchronous; the issuing task continues 
executing. 

 

NEWPAGE (ERASE) 

Write the output data l ine beginning on a new page. For 3270-type devices, the 
NEWPAGE option forces CA IDMS to output the contents of the current buffer, even 

if the buffer is not full. 

NEWPAGE and ERASE are synonyms and can be used interchangeably. 

NOBACKPAGE 

3270-type devices only. Does not keep pages output in a scratch area. If 
NOBACKPAGE is specified, the user can view only the current page of output. 
NOBACKPAGE is valid only with the first I/O request in a l ine mode session. 

 



WRITE LINE TO TERMINAL 

 

Chapter 6: Data Manipulation Language Statements   307  

 

FROM 

Identifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data 

to be transferred to the terminal device or the page header l ine being created, 
modified, or deleted. 

output-data-location  

The symbolic name of a user-defined field. 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 
that contains the output data stream. 

end-output-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the output data. 

 

LENGTH 

Defines the length in bytes of the output data area. 

output-data-length  

Either the symbolic name of a user-defined field that contains the length of the 
data area or the length itself expressed as a numeric constant. 

Note: If the WRITE LINE TO TERMINAL statement is being used to delete a page 
header l ine, output-data-length must be zero. 

 

HEADER 

Specifies the number of the page header l ine being created, modified, or deleted. 

header-line-number  

Either the symbolic name of a user-defined field that contains the header l ine 
number or the header l ine number itself expressed as a numeric constant. 

Examples 

The following examples i l lustrate the use of the WRITE LINE TO TERMINAL statement. 

Example 1 

The following statement defines the value of a data area as a header to be 

displayed at the top of each new page written to the terminal: 

WRITE LINE TO TERMINAL 

 FROM EMPL-HEAD TO END-EMPL-HEAD 

 HEADER 1. 
 



WRITE LOG 

 

308  DML Reference Guide for COBOL 

 

Example 2 

The following statement i l lustrates a request to write the value in the specified data 

area to a new page on the terminal: 

WRITE LINE TO TERMINAL 

  NOWAIT 

  FROM EMPL-RPT LENGTH 60. 
 

Status Codes 

After completion of the WRITE LINE TO TERMINAL function, the ERROR-STATUS field in 
the IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4707 A logical or permanent I/O error has occurred during processing. 

4731 The line request block (LRB) contains an invalid field, indicating a 
possible error in the program's parameters. 

4732 The derived length of the specified line output area is zero or 

negative. 

4738 The specified 01-level LINKAGE SECTION entry has not been allocated 
as required. A GET STORAGE request must be issued. 

4743 The line I/O session has been canceled; the user has pressed CLEAR 
(3270s), ATTENTION (2741s), or BREAK (teletypes). 

WRITE LOG 

The WRITE LOG statement retrieves a predefined message from the message area of the 
data dictionary and optionally writes the message to a specified location in program 
variable storage. Retrieved messages are sent to the destination specified in the 
message definition; typical destinations are the operator's console and the DC system 

log fi le. If the operator's console has been defined as the message destination, the 
WRITE LOG statement can request a reply. When a reply is requested, control is not 
returned to the issuing task until  the reply is received. 

 



WRITE LOG 

 

Chapter 6: Data Manipulation Language Statements   309  

 

Note: For more information about global messages, see the CA IDMS IDD DDDL 
Reference Guide. 

The message ID specified in the WRITE LOG statement is a seven-digit number. The first 
six (most significant) digits make up the actual message ID used to retrieve the message 
from the data dictionary; the seventh digit is a severity code. This severity code is 

predefined in the dictionary and is retrieved along with the message text to indicate the 
action to be taken after the message is written to the log: 

 

 

Severity Level CA IDMS Action 

 0 Return control to the issuing program and continue processing 

 1 Snap all  task resources and return control to the issuing program 

 2 Snap all  system areas and return control to the issuing program 

 3 Snap all  task resources and abend the task with a task abend code of 
D002 

 4 Snap all  system areas and abend the task with a task abend code of 
D002 

 5 Terminate the task with a task abend code of D002 

 6 Undefined 

 7 Undefined 

 8 Snap all  system areas and abend the system with a system abend 
code of 3996 

 9 Terminate the system with a system abend code of 3996 

If a WRITE LOG statement specifies a message ID that is not in the data dictionary, CA 
IDMS will  use a prototype message but will  perform the action associated with the 
severity code specified in the WRITE LOG request. 

 

Messages stored in the data dictionary can contain symbolic parameters. Symbolic 

parameters, identified by an ampersand (&). followed by a two-digit numeric identifier, 
can appear in any order within the message. The WRITE LOG statement can specify 
replacement values for one or more symbolic parameters; however, the position of 

replacement values within the WRITE LOG request must correspond exactly with the 
two-digit numeric identifier in the message text. For example, the first value specified 
corresponds to &01., the second to &02., and so forth. 

 



WRITE LOG 

 

310  DML Reference Guide for COBOL 

 

Syntax 

►►─── WRITE LOG MESSAGE ID message-id ────────────────────────────────────────► 
 
 ►─┬───────────────────────────────────────────────────────────────────────┬──► 
   │         ┌───────────────────────────────────────────────────────────┐ │ 
   └─ PARMS ─▼─ FROM parameter-location ─┬─ TO end-parameter-location ─┬─┴─┘ 
                                         └─ LENGTH parameter-length ───┘ 
 
 ►─┬───────────────────────────────────────────────────────────────┬──────────► 
   └─ REPLY INTO reply-location ─┬─ TO end-reply-location ───────┬─┘ 
                                 └─ MAX LENGTH reply-max-length ─┘ 

 

 ►─┬────────────────────────────┬─────────────────────────────────────────────► 
   └─ MESSAGE PREFIX is 'DC' ───┘ 
 
 ►─┬──────────────────────────────────────────────────────────────────────────►─ 
   └─ TEXT INTO text-return-location ─┬─ TO end-text-return-location ─┬─────── 
                                      └─ MAX LENGTH text-max-length ──┘ 
 
 ─►───────────────────────────────────────────────┬─ . ───────────────────────►◄ 
  ───┬──────────────────────────────────────────┬─┘ 
     ├─ MESSAGE PREFIX is ─┬─ YES ◄ ──────────┬─┤ 
     │                     ├─ NO ─────────────┤ │ 
     │                     └─ message-prefix ─┘ │ 
     │                                          │ 
     └─ TEXT is ONLY ───────────────────────────┘ 

 

Parameters 

MESSAGE ID 

Specifies the message ID. The first six digits specify the ID of the message; the 
seventh digit specifies the message's severity code. 

message-id  

Either the symbolic name of a user-defined PIC S9(8) COMP (fullword) field that 
contains the message ID or the ID itself expressed as a numeric constant. 

Message IDs 000001 through 900000 are reserved for use by CA IDMS; the 
WRITE LOG statement can specify any number in the range 900001 through 
999999. 

 

Caution: The message length must be seven digits. The system will  always 
interpret the last digit as the severity level. If you request message 987659 and 

do not code a severity level of zero (that is, 9876590) you are actually 
requesting that message 098765 be written to the log and that the system 
should be terminated with a 3996 abend code. 

When messages are added to the data dictionary for use with the WRITE LOG 

statement, they are assigned an eight-character identification number; the first 
two characters are DC. A request for message 987654 retrieves DC987654. 

 



WRITE LOG 

 

Chapter 6: Data Manipulation Language Statements   311  

 

PARMS FROM 

Supplies replacement values for one or more symbolic parameters stored with the 

message text. 

parameter-location  

The symbolic name of a user-defined field that contains the 

WORKING-STORAGE SECTION or LINKAGE SECTION entry of the replacement 
parameter. 

This field must begin with a one-byte field into which the system places the 
length of the adjacent field. The value in the length does not include the length 

byte. 
 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 
that contains the replacement parameter. 

end-parameter-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the replacement parameter. 

 

LENGTH 

Defines the length, in bytes, of the replacement parameter. 

parameter-length  

Either the symbolic name of a user-defined field that contains the length or the 
length itself expressed as a numeric constant. 

 

REPLY INTO 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the area 
reserved for a reply to the message issued by the WRITE LOG request. 

reply-location  

The symbolic name of a user-defined field. 

This field must begin with a one-byte field into which the system places the 

length of the adjacent field. The value in the length does not include the length 
byte. 

 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 
reserved for the reply. 

end-reply-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the reply. 

 



WRITE LOG 

 

312  DML Reference Guide for COBOL 

 

MAX LENGTH 

Defines the maximum length, in bytes, of the area reserved for the reply. 

reply-max-length  

Either the symbolic name of a user-defined field that contains the length or the 
length itself expressed as a numeric constant. 

 

MESSAGE PREFIX IS 'DC' 

Specifies the two characters that precede the numeric position of a message. The 

default is 'DC'. 

TEXT INTO 

Specifies that the contents of the named message, along with any replacement 

parameters, are to be written to the issuing program. 

text-return-location  

The symbolic name of a user-defined 1 through 132 character alphanumeric 
field that contains the WORKING-STORAGE SECTION or LINKAGE SECTION entry 

to which the message text is to be returned. 

This field must begin with a 1-byte field into which the system places the length 
of the adjacent field. The value in the length does not include the length byte. 

 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 

reserved for the text. 

end-text-return-location  

The symbolic name of either a user-defined dummy byte field or a field that 

contains a data item not associated with the returned text. 
 

MAX LENGTH 

Defines the maximum length in bytes of the WORKING-STORAGE SECTION or 
LINKAGE SECTION entry reserved for the returned message text. 

text-max-length  

Either the symbolic name of a user-defined field that contains the text length 
or the length itself expressed as a numeric constant. 

 



WRITE LOG 

 

Chapter 6: Data Manipulation Language Statements   313  

 

MESSAGE PREFIX is 

Defines the format of the message prefix. To override the default DC prefix, specify 

any one or two characters for message-prefix. To suppress a prefix, specify blanks. 

YES  

Indicates that the message text is preceded by: 

IDMS ppnnnnnnn Vssssss REPLYnn 

■ pp is the prefix specified in the MESSAGE PREFIX parameter 

■ nnnnnnn is the message number 

■ Vssssss is the system number 

■ REPLYnn is the message's system-supplied reply number (present only if 
the REPLY parameter is used) 

This is the default. 

NO  

Indicates that the message text is preceded by: 

ppnnnnnnn 

■ pp is the prefix specified in the MESSAGE PREFIX parameter 

■ nnnnnnn is the message number 
 

TEXT is ONLY 

Indicates that the message text is output with no prefix. 
 

Example 

The following figure il lustrates a WRITE LOG statement that supplies three replacement 

parameters. 
 



WRITE LOG 

 

314  DML Reference Guide for COBOL 

 

WRITE LOG Activities 

Task A issues a WRITE LOG request for message 900121, specifying values to 

replace symbolic parameters &01., &02., and &03. stored with the message text. 
The message is sent to its destination, which has been defined as the logical 
terminal associated with the issuing task. 

  

Status Codes 

After completion of the WRITE LOG function, the ERROR-STATUS field of the IDMS DC 

communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

3623 No storage or resource control element (RCE) can be allocated for 
the specified reply area 

3624 The maximum number of outstanding replies has been exceeded; a 

maximum of 98 messages can be awaiting reply at a given time 



WRITE PRINTER 

 

Chapter 6: Data Manipulation Language Statements  315  

 

Status code Meaning 

3625 The maximum number of replacement parameters has been 

exceeded; a maximum of 8 replacement parameters may be used if 
the "Message Prefix" option is not used. If the"Message Prefix" 
option is used then the maximum number of replacement 

parameters is l imited to 7. 

3631 The parameter l ist is invalid 

WRITE PRINTER 

The WRITE PRINTER statement transmits data from a task to a terminal defined to the 

system as a printer device during system generation. Any type of terminal can be 
designated as a printer; however, the terminal is usually a hard-copy device. 

 

CA IDMS does not transmit data directly from program variable storage to the terminal. 
Rather, data is passed to a queue maintained by CA IDMS, and from the queue to the 

printer. The data stream passed to the queue by the WRITE PRINTER request contains 
only data; CA IDMS adds the necessary l ine and device control characters when it writes 
the data to the printer. 

 

Note: Native mode data streams (that is, those that contain device-control information 
as well as user data) can also be transmitted with a WRITE PRINTER request. This 

capability is useful in formatting reports for 3280-type printers. 
 

Each line of data transmitted in a WRITE PRINTER request is considered a record. Each 

record is associated with a report in the print queue. A report consists of one or more 
records. Any task can have up to 256 active print reports. A program can issue multiple 
WRITE PRINTER requests, each specifying a different report. Because the records 

associated with each report are maintained individually, records associated with one 
report are not interspersed with records associated with other reports when printed. 

 

The WRITE PRINTER request can direct reports to print classes and to destinations: 

■ During system generation, one or more print classes are associated with each 
terminal designated as a printer. For each report, the first record transmitted to the 

print queue by means of a WRITE PRINTER request establishes the print class for 
that report. The report will  be printed on the first available printer that is assigned 
the same print class. 

■ Destinations are groups of terminals, printers, or users. If destinations have been 

defined during system generation, the WRITE PRINTER request can direct a report 
to a destination. Reports sent to printer destinations are printed on the first 
available printer for the destination, regardless of print class. 

 

A report is printed only when that report is completed, either explicitly as part of a 
WRITE PRINTER request or implicitly when the issuing task terminates. 

 



WRITE PRINTER 

 

316  DML Reference Guide for COBOL 

 

Note: Normal task termination, a FINISH TASK request, or a COMMIT TASK request will  
end all  of the task's reports. Queued reports are made eligible for printing. 

Abnormal task termination (abend) or a ROLLBACK TASK request will  cause any queued 
reports belonging to the task to be deleted. 

 

Syntax 

►►─── WRITE PRINTER ─┬───────────┬────┬──────────┬────────────────────────────► 
                     ├─ NEWPAGE ─┤    └─ ENDRPT ─┘ 
                     └─ ERASE ───┘ 
 
 ►─┬──┬──────────┬─ FROM message-location ─┬─ TO end-message-location ─┬──┬───► 
   │  └─ NATIVE ─┘                         └─ LENGTH message-length ───┘  │ 
   │                                                                      │ 
   └─ SCREEN CONTENTS ────────────────────────────────────────────────────┘ 

 

 ►─┬───────────────────────────┬─────┬─────────────────────────────┬──────────► 
   └─ COPIES ─┬─ 1 ◄ ────────┬─┘     └─ REPORT ID ─┬─ 1 ◄ ───────┬─┘ 
              └─ copy-count ─┘                     └─ report-id ─┘ 
 
 ►─┬─────────────────────────────────────────────┬────────────────────────────► 
   ├─ CLASS printer-class ───────────────────────┤ 
   └─ DESTINATION printer-destination ─┬───────┬─┘ 
                                       └─ ALL ─┘ 
 
 ►─┬────────┬────┬────────┬─ . ───────────────────────────────────────────────►◄ 
   └─ HOLD ─┘    └─ KEEP ─┘ 

 

Parameters 

NEWPAGE (ERASE) 

Specifies that the data stream will  be printed beginning on a new page. 

NEWPAGE and ERASE are synonyms and can be used interchangeably. 

ENDRPT 

Indicates that the data stream constitutes the last record in the specified report. 

When ENDRPT is specified, the report can be printed before the issuing task has 
terminated. However, the program must issue a COMMIT TASK request to signal to 
print the ended report. A subsequent WRITE PRINTER request with the same report 

ID will  start a separate report. 
 

NATIVE 

Specifies that the data stream contains device control characters. If NATIVE is not 
specified, the necessary characters are automatically inserted. 

FROM 

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data 
to be transmitted to the print queue. 

message-location  

The symbolic name of a user-defined field. 
 



WRITE PRINTER 

 

Chapter 6: Data Manipulation Language Statements   317  

 

TO 

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry 

that contains the data to be transmitted to the print queue. 

end-message-location  

The symbolic name of either a user-defined dummy byte field or a field that 

contains a data item not associated with the output data. 
 

LENGTH 

Defines the length, in bytes, of the data stream. 

message-length  

Either the symbolic name of a user-defined field that contains the length of the 

data or the length itself expressed as a numeric constant. 

SCREEN CONTENTS 

3270-type devices only. Specifies that the contents of the currently displayed 
screen are to be transmitted to the print queue. 

 

COPIES 

Specifies the number of copies of the report to be printed. 

copy-count  

Either the symbolic name of a user-defined field that contains the copy count 
or the count itself expressed as a numeric constant. 

The count must be an integer in the range 1 through 255; the default is one. 
 

REPORT ID 

Specifies the identifier of the report to be printed. 

report-id  

Either the symbolic name of a user-defined field that contains the report ID or 

the ID itself expressed as a numeric constant. Report-id must be an integer in 
the range 1 through 255; the default is one. 

 

CLASS 

Specifies the print class to which the report will  be assigned. 

The CLASS or DESTINATION should be specified only for the first l ine of each report. 

If no class or destination is specified, the default print class assigned to the issuing 
task's physical terminal during system generation will  be used. 

printer-class  

Either the symbolic name of a user-defined field that contains the print class or 
the class itself expressed as a numeric constant. 

Valid print classes are 1 through 64; the default is 1. 
 



WRITE PRINTER 

 

318  DML Reference Guide for COBOL 

 

DESTINATION 

Specifies the destination to which the report will  be routed. 

The CLASS or DESTINATION should be specified only for the first l ine of each report. 
If no class or destination is specified, the default print class assigned to the issuing 
task's physical terminal during system generation will  be used. 

printer-destination  

Either the symbolic name of a user-defined field that contains the destination 
or the destination itself enclosed in quotation marks. 

The specified destination must have been defined during system generation. 

ALL Specifies that the report is to be printed on all  of the printers belonging to 
the specified destination. The report will  be printed, one printer at a time, and 
saved until  it has been printed on each of the printers associated with the 
destination. 

 

HOLD 

Specifies that a queued report will  be held without being printed. The specified 
report will  be held until  a DCMT VARY REPORT report-name RELEASE command is 
issued at run time. 

 

KEEP 

Specifies to keep the report in the print queue after it has been printed. The report 

can be released for printing with a DCMT VARY REPORT report-name RELEASE 
command. In this way, the report can be printed several times. A KEPT report can 
be deleted from the print queue manually (using a DCMT VARY REPORT 

report-name DELETE command at run time) or automatically (when the queue 
retention period has been exceeded). 

 

Examples 

The following examples i l lustrate the use of the WRITE PRINTER statement. 

Example 1 

The following statement i l lustrates a request to associate the data in the specified 
location with report 32 in the print queue and to print it beginning on a new page. 
Report 32 will  print on the first terminal assigned to print class 3 when the program 

notifies CA IDMS that the report is complete or when the task terminates. 

WRITE PRINTER 

  NEWPAGE 

  FROM PASSGR-RPT TO END-PASSGR-RPT 

  REPORT ID 32 

  CLASS 3. 
 



WRITE TERMINAL 

 

Chapter 6: Data Manipulation Language Statements   319  

 

Example 2 

The following statement i l lustrates a request to print three copies of the current 

screen contents on a printer associated with destination A and to keep the contents 
of the report in the print queue after it has printed: 

WRITE PRINTER 

  SCREEN CONTENTS 

  COPIES 3 

  DESTINATION 'A' 

  KEEP. 
 

Status Codes 

After completion of the WRITE PRINTER function, the ERROR-STATUS field in the 

IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully. 

4807 An I/O error has occurred while placing the record in the print queue. 

4818 The current DC system definition contains no logical terminal -printer 
associations. 

4821 The specified printer destination is undefined or is not a printer. 

4831 The parameter l ist is invalid. 

4832 The derived length of the specified printer output data area is zero or 

negative. 

4838 The specified 01-level LINKAGE SECTION entry has not been 
allocated, as required. A GET STORAGE request for the specified 
variable must be issued before the WRITE PRINTER statement. 

4845 A WRITE PRINTER SCREEN CONTENTS request cannot be serviced 
because the terminal associated with the issuing task is not a 
3270-type device or is a remote 3270 device running under TCAM. 

4846 A terminal I/O error has occurred. 

WRITE TERMINAL 

The WRITE TERMINAL statement requests a synchronous or asynchronous data transfer 
from program variable storage to the terminal buffer. 

 



WRITE TERMINAL 

 

320  DML Reference Guide for COBOL 

 

Syntax 

►►─── WRITE TERMINAL ───┬──────────┬──────────────────────────────────────────► 
                        ├─ WAIT ◄ ─┤ 
                        └─ NOWAIT ─┘ 
 
 ►─┬─────────────────────────────┬─────┬────────────────┬─────────────────────► 
   ├─┬─ NEWPAGE ─┬───────────────┤     └─ FREE STORAGE ─┘ 
   │ └─ ERASE ───┘               │ 
   │                             │ 
   └─┬─ EAU ───────────────────┬─┘ 
     └─ ERASE ALL UNPROTECTED ─┘ 
 
 ►─── FROM output-data-location ─┬─ TO end-output-data-location ─┬─ . ────────►◄ 
                                 └─ LENGTH output-data-length ───┘ 

 

Parameters 

WAIT 

Specifies that the write operation will  be synchronous; the issuing task will 
automatically relinquish control to CA IDMS and wait for completion of the write 
operation before continuing processing. 

This is the default. 
 

NOWAIT 

Specifies that the write operation will  be asynchronous; the issuing task will 
continue executing. 

Note: If NOWAIT is specified, the program must issue a CHECK TERMINAL request 
(described earlier in this chapter) before performing any other I/O operation. 

 

NEWPAGE (ERASE) 

Activates the page-eject (SYSINOUT devices) or erase-write (3270-type devices) 
mechanism to erase the contents of a screen. If NEWPAGE is not specified, the 
WRITE TERMINAL request will  write over rather than erase data displayed on the 
terminal. 

NEWPAGE and ERASE are synonyms and can be used interchangeably. 
 

EAU (ERASE ALL UNPROTECTED) 

3270-type devices only. Activates the erase-all-unprotected mechanism. Following a 
WRITE TERMINAL EAU function, only protected fields remain on the terminal. If EAU 
is specified, the FROM clause (described below) need not be specified. 

EAU and ERASE ALL UNPROTECTED are synonyms and can be used interchangeably. 
 

FREE STORAGE 

Releases the output buffer associated with the data being written to the terminal. 
The storage area being freed must have been acquired by a GET STORAGE 

statement (described earlier in this chapter) or the GET STORAGE option of a 
previously issued READ TERMINAL or WRITE THEN READ TERMINAL request. If FREE 
STORAGE is not specified, the storage associated with the output buffer is not freed 
until  the issuing task terminates. 

 



WRITE TERMINAL 

 

Chapter 6: Data Manipulation Language Statements  321  

 

FROM 

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION entry of 

the output data stream. 

output-data-location  

The symbolic name of a user-defined field. If FREE STORAGE is specified, 

output-data-location must be an 01-level LINKAGE SECTION entry. 
 

TO 

Indicates the end of the output data stream and is specified following the last 
data-item entry in output-data-location. 

end-output-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the output data stream. 

 

LENGTH 

Defines the length in bytes of the output data stream. 

output-data-length  

Either the symbolic name of a user-defined field that contains the length of the 
data area or the length itself expressed as a numeric constant. 

 

Example 

The following statement i l lustrates an asynchronous basic mode request to write data 

to the terminal from the specified location in program variable storage: 

WRITE TERMINAL 

  NOWAIT 

  FROM TERM-LINE LENGTH 72. 
 

Status Codes 

After completion of the WRITE TERMINAL function, the ERROR-STATUS field in the 
IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4525 The output operation has been interrupted; the user has pressed 
ATTENTION or BREAK 

4526 A logical error (for example, an invalid control character) has been 
encountered in the output data stream 

4527 A permanent I/O error has occurred during processing 



WRITE THEN READ TERMINAL 

 

322  DML Reference Guide for COBOL 

 

Status code Meaning 

4528 The dial-up line for the terminal has been disconnected 

4531 The terminal request block (TRB) contains an invalid field, indicating a 
possible error in the program's parameters  

4532 The derived length of the specified output data area is zero or 

negative 

4537 Storage for the output buffer cannot be freed because the specified 
data area is defined in the WORKING-STORAGE SECTION rather than 
in the LINKAGE SECTION. 

4539 The terminal associated with the issuing task is out of service 

WRITE THEN READ TERMINAL 

The WRITE THEN READ TERMINAL statement requests a transfer of data from program 

variable storage to the terminal buffer and, when the user has completed entering data, 
a transfer of that data back to program variable storage. 

 

Syntax 

►►─── WRITE THEN READ TERMINAL ───┬──────────┬────────────────────────────────► 
                                  ├─ WAIT ◄ ─┤ 
                                  └─ NOWAIT ─┘ 
 
 ►─┬─────────────────────────────┬─────┬────────────────┬─────────────────────► 
   ├─┬─ NEWPAGE ─┬───────────────┤     └─ FREE STORAGE ─┘ 
   │ └─ ERASE ───┘               │ 
   │                             │ 
   └─┬─ EAU ───────────────────┬─┘ 
     └─ ERASE ALL UNPROTECTED ─┘ 
 
 ►─── FROM output-data-location ─┬─ TO end-output-data-location ─┬────────────► 
                                 └─ LENGTH output-data-length ───┘ 

 

 ►─┬────────────────────────────────────────────────────┬─────────────────────► 
   └─┬─ MODIFIED ─┬─┬─────────────────────────────────┬─┘ 
     └─ BUFFER ───┘ └─ FROM POSITION screen-position ─┘ 
 
 ►─┬───────────────┬──────────────────────────────────────────────────────────► 
   └─ GET STORAGE ─┘ 
 
 ►─── INTO input-data-location ─┬─ TO end-input-data-location ───────┬────────► 
                                └─ MAX LENGTH input-data-max-length ─┘ 
 
 ►─┬───────────────────────────────────────────────┬─ . ──────────────────────►◄ 
   └─ RETURN LENGTH into input-data-actual-length ─┘ 

 



WRITE THEN READ TERMINAL 

 

Chapter 6: Data Manipulation Language Statements   323  

 

Parameters 

WAIT 

Specifies that the I/O operation will  be synchronous; the issuing task will 
automatically relinquish control to CA IDMS and must wait for completion of the I/O 

operation before processing can continue. 

This is the default. 

NOWAIT 

Specifies that the I/O operation will  be asynchronous; the issuing task will continue 

executing. 

Note: If NOWAIT is specified, the program must issue a CHECK TERMINAL request 
(described earlier in this chapter) before performing any other I/O operation. 

 

NEWPAGE (ERASE) 

Activates the page-eject (SYSINOUT devices) or erase-write (3270-type devices) 

mechanism to erase the contents of a screen. If NEWPAGE is not specified, the 
WRITE TERMINAL request will  write over rather than erase data displayed on the 
terminal. 

NEWPAGE and ERASE are synonyms and can be used interchangeably. 
 

EAU (ERASE ALL UNPROTECTED) 

3270-type devices only. Activates the erase-all-unprotected mechanism. Following a 
WRITE TERMINAL EAU function, only protected fields remain on the terminal. If EAU 
is specified, the FROM clause (described below) need not be specified. 

EAU and ERASE ALL UNPROTECTED are synonyms and can be used interchangeably. 
 

FREE STORAGE 

Releases the output buffer associated with the data being written to the terminal. 
The storage area being freed must have been acquired by a GET STORAGE 
statement (described earlier in this chapter) or the GET STORAGE option of a 

previously issued READ TERMINAL or WRITE THEN READ TERMINAL request. If FREE 
STORAGE is not specified, the storage associated with the output buffer is not freed 
until  the issuing task terminates. 

 



WRITE THEN READ TERMINAL 

 

324  DML Reference Guide for COBOL 

 

FROM 

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION entry of 

the output data stream. 

output-data-location  

The symbolic name of a user-defined field. If FREE STORAGE has been specified, 

output-data-location must be an 01-level LINKAGE SECTION entry. 

TO 

Indicates the end of the output data stream. 

end-output-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the output data stream. 

 

LENGTH 

Defines the length in bytes of the output data stream. 

output-data-length  

Either the symbolic name of a user-defined field that contains the length of the 
data stream or the length itself expressed as a numeric constant. 

MODIFIED 

3270-type devices only. Reads all  modified fields in the terminal buffer into 
program variable storage. 

 

BUFFER 

3270-type devices only. Executes a READ BUFFER command that reads the entire 
contents of the terminal buffer into the program variable storage. 

FROM POSITION 

Defines the buffer address (screen position) at which the read will  start. 

screen-position  

Either the symbolic name of a user-defined PIC S9(8) COMP SYNC (fullword) 

field or the address itself enclosed in quotation marks. 
 

GET STORAGE 

Synchronous requests only. Acquires an input buffer for the data being read into 
the program; CA IDMS allocates the required storage when the read operation is 
complete. 

 



WRITE THEN READ TERMINAL 

 

Chapter 6: Data Manipulation Language Statements   325  

 

INTO 

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION entry of 

the data area reserved for the input data stream. 

input-data-location  

The symbolic name of a user-defined field. 

If GET STORAGE is specified, the data area reserved for the input data stream 
must be an unallocated 01-level LINKAGE SECTION entry. If GET STORAGE is not 
specified, the data area must be a WORKING-STORAGE SECTION or previously 
allocated LINKAGE SECTION entry. 

 

TO 

Indicates the end of the data area reserved for the input data stream. 

end-input-data-location  

The symbolic name of either a user-defined dummy byte field or a field that 
contains a data item not associated with the data area reserved for the input 

data stream. 

MAX LENGTH 

Defines the length, in bytes, of the data area reserved for the input data stream. 

input-data-max-length  

Either the symbolic name of a user-defined field that contains the length of the 
data stream or the length itself expressed as a numeric constant. 

If the input data stream is larger than the data area reserved in the 

WORKING-STORAGE SECTION or LINKAGE SECTION, the data stream is 
truncated to fit the available space. 

 

RETURN LENGTH into 

Indicates the location to which CA IDMS will  return the actual length of the input 
data stream. 

input-data-actual-length  

The symbolic name of a user-defined field. If the data stream has been 
truncated, input-data-actual-length contains the original length before 

truncation. 
 



WRITE THEN READ TERMINAL 

 

326  DML Reference Guide for COBOL 

 

Example 

The following statement i l lustrates a basic mode request to write data from the 
program (OUTPUT-LINE) to the terminal, read the data from the terminal to the 
specified location (INPUT-LINE) in the program, and return the actual length of the input 

data stream (LINE-LENGTH) to variable storage: 

WRITE THEN READ TERMINAL 

  WAIT 

  FROM OUTPUT-LINE TO END-INPUT-LINE 

  INTO INPUT-LINE MAX LENGTH 80 

  RETURN LENGTH INTO LINE-LENGTH. 
 

Status Codes 

After completion of the WRITE THEN READ TERMINAL function, the ERROR-STATUS field 
in the IDMS-DC communications block indicates the outcome of the operation: 

 

Status code Meaning 

0000 The request has been serviced successfully 

4519 The input area specified for the return of data is too small; the 

returned data has been truncated to fit the available space 

4525 The output operation has been interrupted; the terminal operator 
has pressed ATTENTION or BREAK 

4526 A logical error (for example, an invalid control character) has been 
encountered in the output data stream 

4527 A permanent I/O error has occurred 

4528 The dial-up line for the terminal has been disconnected 

4531 The terminal request block (TRB) contains an invalid field, indicating a 
possible error in the program's parameters . 

4532 The derived length of the specified I/O data area is zero or negative. 

4535 Storage for the input buffer cannot be acquired because the specified 
01-level LINKAGE SECTION entry has been allocated 

4537 A storage area cannot be acquired or freed because the specified 
data area is defined in the WORKING-STORAGE SECTION rather than 

in the LINKAGE SECTION 

4538 The specified 01-level LINKAGE SECTION entry has not been allocated 
and the GET STORAGE option has not been specified 

4539 The terminal device associated with the issuing task is out of service 



Logical-Record Clauses 

 

Chapter 6: Data Manipulation Language Statements   327  

 

Logical-Record Clauses 

Logical-record clauses are used with any of the four DML statements that access logical 
records (that is, OBTAIN, MODIFY, STORE, or ERASE). The logical-record clauses are as 
follows: 

■ WHERE specifies criteria used to select and/or criteria used to l imit the selection of 

logical-record occurrences. 

■ ON tests for a specific path status returned to indicate the result of a logical-record 
DML statement. 

 

WHERE 

The WHERE clause has two major functions: 

■ To direct the program to a path, predefined in the subschema by the DBA and 
transparent to the application program. This allows you to access the database 
without issuing speci fic instructions for navigating the database. 

You need not be concerned about path selection; LRF automatically picks the most 
appropriate path to efficiently service the request. 

 

■ To specify selection criteria to be applied to a logical record. This allows the 
program to specify attributes of the desired logical record, thereby reducing the 

need for the program to inspect multiple logical records to isolate the logical record 
of interest. 

The WHERE clause is issued in the form of a boolean expression that consists of 
comparisons and keywords connected by boolean operators (AND, OR, and NOT). The 

format of the WHERE clause follows COBOL syntax rules (that is, operands or operators 
are separated by a blank). 

 

Syntax 

►►─── WHERE ─┬───────┬───┬─ dba-designated-keyword ─┬─────────────────────────► 
             └─ NOT ─┘   └─ comparison ─────────────┘ 
 
 ►─┬──────────────────────────────────────────────────────┬───────────────────►◄ 
   │ ┌──────────────────────────────────────────────────┐ │ 
   └─▼─┬─ AND ─┬─┬───────┬─┬─ dba-designated-keyword ─┬─┴─┘ 
       └─ OR ──┘ └─ NOT ─┘ └─ comparison ─────────────┘ 

 



Logical-Record Clauses 

 

328  DML Reference Guide for COBOL 

 

Expansion of comparison 

►─┬─ 'logical-record-field-name' ──────────────────────────────────┬─────────► 
  ├─ idd-defined-variable-field-name ─┬───────────────────┬────────┤ 
  │                                   │ ┌───────────────┐ │        │ 
  │                                   └─▼─ OF group-id ─┴─┘        │ 
  ├─ logical-record-field-name ─┬───────────────────┬──┬─────────┬─┤ 
  │                             │ ┌───────────────┐ │  └─ OF LR ─┘ │ 
  │                             └─▼─ OF group-id ─┴─┘              │ 
  └─ arithmetic-expression ────────────────────────────────────────┘ 
 
►──┬── CONTAINS ─┬───────────────────────────────────────────────────────────► 
   ├── MATCHES ──┤ 
   ├┬─ EQ ─┬─────┤ 
   │└─ = ──┘     │ 
   ├── NE ───────┤ 
   ├┬─ GT ─┬─────┤ 
   │└─ > ──┘     │ 
   ├┬─ LT ─┬─────┤ 
   │└─ < ──┘     │ 
   ├── GE ───────┤ 
   └── LE ───────┘ 

 

Parameters 

dba-designated-keyword 

Specifies a DBA-designated keyword to be applied to the logical record that is the 
object of the command. Dba-designated-keyword is a keyword specified by the DBA 
that is applicable to the logical record named in the command; it can be no longer 

than 32 characters. The keyword represents an operation to be performed at the 
path level and serves only to route the logical-record request to the appropriate, 
predetermined path. 

A path must exist to service a request that issues dba-designated-keyword. If no 
such path exists, the precompiler flags this condition by issuing an error message. 

 

comparison 

Specifies a comparison operation to be performed, using the indicated operands 
and operators. It also serves to direct the logical -record request to a path. 

Individual comparisons and keywords are connected by the boolean operators AND, 
OR, and NOT. Parentheses can be used to clarify a multiple-comparison boolean 
expression or to override the precedence of operators. 

 



Logical-Record Clauses 

 

Chapter 6: Data Manipulation Language Statements   329  

 

Parameters 

logical-record-field-name 

Specifies a data field that participates in the named logical record. 

CONTAINS/MATCHES/EQ/NE/GT/LT/GE/LE 

Specifies the comparison operator: 

■ CONTAINS— Is true if the value of the right operand occurs in the value of the 
left operand. Both operands included with the CONTAINS operator must be 
alphanumeric values. 

■ MATCHES— Is true if each character in the left operand matches a 
corresponding character in the right operand (the mask). When MATCHES is 
specified, LRF compares the left operand with the mask, one character at a 

time, moving from left to right. The result of the match is either true or false: 
the result is true if the end of the mask is reached before encountering a 
character in the left operand that does not match a corresponding character in 
the mask; the result is false if LRF encounters a character in the left operand 

that does not match a mask character. 
 

Three special characters can be used in the mask to perform pattern matching: 
@, which matches any alphabetic character; #, which matches any numeric 
character; and *, which matches any alphabetic or numeric character. Both the 
left operand and the mask must be alphanumeric values and elementary 

elements. 

– EQ— Is true if the value of the left operand is equal to the value of the 
right operand. 

– NE— Is true if the value of the left operand is not equal to the value of the 
right operand. 

 

– GT— Is true if the value of the left operand is greater than the value of the 
right operand. 

– LT— Is true if the value of the left operand is less than the value of the 

right operand. 
 

– GE— Is true if the value of the left operand is greater than or equal to the 

value of the right operand. 

– LE— Is true if the value of the left operand is less than or equal to the 
value of the right operand. 

 

'literal' 

Any alphanumeric or numeric l iteral . Alphanumeric l iterals must be enclosed in 

quotation marks. 

idd-defined-variable-field-name 

The name of a program variable storage field predefined in the data dictionary. 
 



Logical-Record Clauses 

 

330  DML Reference Guide for COBOL 

 

OF 

Uniquely identifies the named variable field. 

This qualifier is required if idd-defined-variable-field-name is not unique within 
program variable storage. 

A maximum of 15 different OF group-id qualifiers can be specified to identify as 

many as 15 levels of group elements. 

group-id The name of the group element that contains the field. 
 

logical-record-field-name 

Specifies a data field that participates in the named logical record. 

OF 

Uniquely identifies the named logical-record field. 

This qualifier is required if logical-record-field-name is not unique within all  
subschema records, including those not part of the logical record, and including all 
non-CA IDMS database records copied into the program. 

A maximum of 15 different OF group-id qualifiers can be specified to identify as 
many as 15 levels of group elements. 

group-id The name of the group element or database record that contains the 

field. 
 

OF LR 

Specifies that the value of the named field at the time the request is issued will  be 
used throughout processing of the request. 

If the value of the field changes during request processing, LRF will  continue to use 

the original value. If you do not specify OF LR, and the value of the field changes 
during request processing, the new field value in variable storage will  be used if the 
field is required for further processing. 

 

arithmetic-expression 

Specifies an arithmetic expression designated as a unary minus (-), unary plus (+), 

simple arithmetic operation, or compound arithmetic operation. Arithmetic 
operators permitted in an arithmetic expression are add (+), subtract (-), multiply 
(*), and divide (/). Operands can be literals, variable-storage fields, and 
logical-record fields as described above. 

 

If the WHERE clause compares a CALC-key field to a literal, the literal's format must 

correspond exactly to the CALC-key definition. Enclose the literal in quotation marks if 
the CALC key has a usage of DISPLAY and use leading zeros if the literal consists of fewer 
characters than the field's picture. For example, if the calc-key-field CALC key is defined 
as PIC 9(3) USAGE DISPLAY, code the WHERE clause as follows: 

WHERE calc-key-field EQ '054' 
 



Logical-Record Clauses 

 

Chapter 6: Data Manipulation Language Statements   331  

 

The WHERE clause can contain as many comparisons and keywords as required to 
specify the criteria to be applied to the logical record. If necessary, the value of the SIZE 

parameter on the COPY IDMS SUBSCHEMA-LR-CTRL statement can be increased to 
accommodate very large and complex WHERE clause specifications. Processing 
efficiency is not affected by the composition of the WHERE clause (other than the logical 

order of the operators, as noted below), since LRF automatically uses the most efficient 
path to process the logical-record request. 

 

Operators in a WHERE clause are evaluated in the following order: 

1. Comparisons enclosed in parentheses  

2. Arithmetic, comparison, and boolean operators by order of precedence, from 

highest to lowest: 

a. Unary plus or minus in an arithmetic expression 

b. Multiplication or division in an arithmetic expression 

c. Addition or subtraction in an arithmetic expression 

d. MATCHES or CONTAINS comparison operators  

e. EQ, NE, GT, LT, GE, LE comparison operators 

f. NOT boolean operator 

g. AND boolean operator 

h. OR boolean operator 

3. From left to right within operators of equal precedence 
 

Examples 

The following examples i l lustrate the use of the WHERE clause. 

Example 1 

The following logical-record request uses a DBA-designated keyword 
(PROGRAMMER-ANALYSTS) to direct LRF to a DBA-defined access path: 

OBTAIN NEXT EMP-JOB-LR 

  WHERE PROGRAMMER-ANALYSTS. 
 

Example 2 

The following logical-record request uses boolean selection criteria to specify the 
desired occurrence of EMP-JOB-LR: 

OBTAIN EMP-JOB-LR 

  WHERE OFFICE-CODE-0450 EQ '001'. 
 



Logical-Record Clauses 

 

332  DML Reference Guide for COBOL 

 

ON Clause 

The ON clause tests for a specific path status returned to indicate the result of the 
statement. If LRF returns the specified path status, the imperative statement included in 
the ON clause is executed; if the specified path status is not returned, the imperative 

statement included in the ON clause is ignored and IDMS-STATUS is performed. 

If the DML statement with the ON clause is the object of a PERFORM, then the user 
should avoid scope problems by using the THROUGH option of the PERFORM statement. 

 

A logical-record DML statement can include an ON clause only if the AUTOSTATUS 
protocol is in effect for the program. AUTOSTATUS automatically invokes an 

error-checking routine after every DML statement except IF. For more details, see Error 
Detection (see page 59). 

 

The ON clause tests for a standard or DBA-defined path status, which is in the form of a 
1- through 16-character unquoted string. Path statuses are issued during execution of 
the path selected to service the request. The standard path statuses are: 

■ LR-FOUND is returned when the logical -record request has been successfully 
executed. This status can be returned as the result of any of the four LRF DML 
statements. When LR-FOUND is returned, the ERROR-STATUS field of the IDMS 
communications block contains 0000. 

 

■ LR-NOT-FOUND is returned when the logical record specified cannot be found, 

either because no such record exists or because all  such occurrences have already 
been retrieved. This status can be returned as the result of any of the four LRF DML 
statements, provided that the path to which LRF is directed includes retrieval logic. 
When LR-NOT-FOUND is returned, the ERROR-STATUS field of the IDMS 

communications block contains 0000. 

Note: A successful STORE can return LR-NOT-FOUND if its WHERE clause references 
a logical-record field and the STORE path performs no OBTAINs. 

 

■ LR-ERROR is returned when a logical -record request is issued incorrectly or when an 
error occurs in the processing of the path selected to service the request. When 

LR-ERROR is returned, the type of status code returned to the program in the 
ERROR-STATUS field of the IDMS communications block differs according to the 
type of error: 

■ When the error occurs in the logical-record request, the ERROR-STATUS field 
contains a status code issued by LRF (major code of 20). 

■ When an error occurs in the logical-record path processing, the ERROR-STATUS 
field contains a status code issued by the DBMS (major code from 00 to 19). For 

more information about status codes, see Chapter 4: (see page 33). 
 



Logical-Record Clauses 

 

Chapter 6: Data Manipulation Language Statements   333  

 

When accessing ASF-defined data tables, you should always check for all  of the 
following path statuses: 

■ INVALID-DATA is returned when the data violates the definition-time selection 
criteria (for example, WHERE STATE EQ 'MA' and the program tries to repla ce the 
state with 'NY'). When INVALID-DATA is returned, the ERROR-STATUS field in the 

IDMS communications block is set to 0000. 

■ DEFN-MISSING is returned when the record definition cannot be found. When 
DEFN-MISSING is returned, the ERROR-STATUS field in the IDMS communications 
block is set to 0000. 

 

■ OOAK-MISSING is returned when a one-of-a-kind record cannot be found. When 

OOAK-MISSING is returned, the ERROR-STATUS field in the IDMS communications 
block is set to 0000. 

■ SYNC-ERROR is returned when the time stamp in the catalog and the table 
definition do not match. When SYNC-ERROR is returned, the ERROR-STATUS field in 

the IDMS communications block is set to 0000. This applies to ASF tables only. 

The return of any of these statuses indicates a fatal error; for more information, consult 
your DBA. 

 

Syntax 

►─── ON path-status imperative-statement ────────────────────────────────────► 
 

Parameters 

ON parameter 

Tests for a path status returned as the result of the logical -record request issued by 
the program. 

path-status A 1 through 16 character alphanumeric value. 

imperative-statement Specifies the program action to be taken if the indicated 

path status results from the logical -record request. 
 

Examples 

The following statements use the path status LR-NOT-FOUND in two different ways. If 
LR-NOT-FOUND occurs following the initial statement, a LR-MISSING message is output; 

if LR-NOT-FOUND occurs in subsequent statements, an END-OF-LR message is output. 
 

OBTAIN-FIRST-LR. 

  OBTAIN FIRST EMP-JOB-LR 

    WHERE OFFICE-CODE-450 EQ OFFICE-CODE-IN 

    ON LR-NOT-FOUND 

      GO TO LR-MISSING. 

   . 

   . 

   . 
 



Logical-Record Clauses 

 

334  DML Reference Guide for COBOL 

 

OBTAIN-REST-LR. 

  OBTAIN NEXT EMP-JOB-LR 

    WHERE OFFICE-CODE-0450 EQ OFFICE-CODE-IN 

    ON LR-NOT-FOUND 

      GO TO END-OF-LR. 

   . 

   . 

   . 

   . 

   . 

  GO TO OBTAIN-REST-LR. 
 

Status Codes 

The following codes are returned to the ERROR-STATUS field in the IDMS or IDMS-DC 

communications block when an LR-ERROR path status is returned to the LR-STATUS field 
in the LRC block: 

 

Status code Meaning 

2001 The requested logical record was not found in the subschema. (The 
path DML statement, EVALUATE, returns 0000 if true, and 2001 if 
false.) 

2008 The named record is not in the subschema, or the specified request is 
not permitted for the named record. 

2010 The subschema prohibits access to logical records. 

2018 A path command has attempted to access a database record that has 

not been bound. 

2040 The WHERE clause in an OBTAIN NEXT command directed LRF to a 
different processing path than did the WHERE clause in the preceding 

OBTAIN command for the same logical record. 

2041 The request's WHERE clause cannot be matched to a path in the 
subschema. 

2042 The logical-record path for the request specifies return of the 

LR-ERROR status. 

2043 Bad or inconsistent data was encountered in the logical-record buffer 
during evaluation of the request's WHERE clause. 

2044 The request's WHERE clause does not include data required by the 
logical-record path. 

2045 A subscript value in a WHERE clause is either less than zero or greater 
than its maximum allowed value. 



Logical-Record Clauses 

 

Chapter 6: Data Manipulation Language Statements   335  

 

Status code Meaning 

2046 A program check has revealed an arithmetic exception (for example, 

overflow, underflow, significance, divide) during evaluation of a 
WHERE clause. 

2063 The request's WHERE clause contains a keyword that exceeds the 

16-character maximum. 

2064 The path command has attempted to access a CALC data item that 
has not been defined properly in the subschema. 

2072 The request's WHERE clause is too long to be evaluated in the 

available work area. 

 





 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  337  

 

Appendix A: DML Precompile, COBOL 
Compile, and Link-Edit JCL 
 

This appendix contains the JCL used to prepare COBOL source code that contains DML 
statements for execution. Link-edit considerations are also discussed. Samples of z/OS, 
z/VSE, and z/VM JCL are included. 

This section contains the following topics: 

Compiling a COBOL Program (see page 337) 
z/OS JCL (see page 339) 
z/VSE JCL (see page 342) 

CMS Commands (see page 352) 
Link-Edit Considerations (see page 355) 
Passing Parameters to the Precompiler (see page 355) 

 

Compiling a COBOL Program 

To compile a COBOL program under the DML precompiler: 

1. Execute the program IDMSDMLC 

2. Execute the COBOL compiler 

3. Link edit 
 

Input to IDMSDMLC consists of source code written in COBOL/DML, protocol/control 

information, and data dictionary record descriptions. Output from IDMSDMLC is as 
follows: 

■ A source COBOL program 

■ A DML source listing and diagnostics 
 

Input to the COBOL compiler consists of the source program produced by IDMSDMLC. 

Output is as follows: 

■ An object program 

■ COBOL listings 
 

Input to the linkage editor consists of the object program produced by the COBOL 
compiler. Output is as follows: 

■ A load module (phase) 

■ A link-edit map 
 



Compiling a COBOL Program 

 

338  DML Reference Guide for COBOL 

 

The following figure il lustrates the steps involved in compiling a COBOL program. 

  



z/OS JCL 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  339  

 

z/OS JCL 

Sample JCL for z/OS operating systems is shown below, followed by a description of 
statements that need tailoring for site-specific conditions. 

//***************************************************************** 

//**         PRECOMPILE COBOL PROGRAM          ** 

//***************************************************************** 

//precomp EXEC PGM=IDMSDMLC,REGION=4096K, 

//       PARM='precompiler-options' 

//STEPLIB DD  DSN=idms.dba.loadlib,DISP=SHR 

//        DD  DSN=idms.custom.loadlib,DISP=SHR 

//         DD DSN=idms.cagjload,DISP=SHR 

//sysctl  DD  DSN=idms.sysctl,DISP=SHR 

//dcmsg  DD  DSN=idms.sysmsg.ddldcmsg,DISP=SHR 

//SYS001  DD  UNIT=sysda,SPACE=(TRK,(10,10)), 
 

//       DCB=(RECFM=VB,LRECL=133,BLKSIZE=1334,DSORG=PS) 

//SYS002  DD  UNIT=sysda,SPACE=(TRK,(10,10)), 

//       DCB=(RECFM=VB,LRECL=133,BLKSIZE=1334,DSORG=PS) 

//SYS003  DD  UNIT=sysda,SPACE=(TRK,(10,10)), 

//       DCB=(RECFM=VB,LRECL=133,BLKSIZE=1334,DSORG=PS) 

//SYSPCH  DD  DSN=&&SOURCE.,DISP=(NEW,PASS), 

//       UNIT=sysda,SPACE=(TRK,(10,5),RLSE), 

//       DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120) 

//SYSLST  DD  SYSOUT=A 
 

//SYSIDMS DD  * 

DMCL=dmcl-name 

sysidms-input-parms 

/* 

//SYSIPT  DD  * 

COBOL DML source statements 

/* 
 

//***************************************************************** 

//**         COMPILE COBOL PROGRAM           ** 

//***************************************************************** 

//cblcmp  EXEC PGM=igycrctl,REGION=4096K, 

//       PARM='compiler-options' 

//STEPLIB DD  DSN=cobol.loadlib,DISP=SHR 

//SYSUT1  DD  UNIT=sysda,SPACE=(TRK,(10,5)) 

//SYSUT2  DD  UNIT=sysda,SPACE=(TRK,(10,5)) 
 

//SYSUT3  DD  UNIT=sysda,SPACE=(TRK,(10,5)) 

//SYSUT4  DD  UNIT=sysda,SPACE=(TRK,(10,5)) 

//SYSUT5  DD  UNIT=sysda,SPACE=(TRK,(10,5)) 

//SYSUT6  DD  UNIT=sysda,SPACE=(TRK,(10,5)) 

//SYSUT7  DD  UNIT=sysda,SPACE=(TRK,(10,5)) 
 



z/OS JCL 

 

340  DML Reference Guide for COBOL 

 

//syslin  DD  DSN=&&OBJECT.,DISP=(NEW,PASS), 

//       UNIT=sysda,SPACE=(TRK,(10,5),RLSE), 

//       DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120) 

//SYSPRINT DD  SYSOUT=A 

//SYSIN  DD  DSN=&&SOURCE.,DISP=(OLD,DELETE) 

//***************************************************************** 

//**         LINK PROGRAM MODULE            ** 

//***************************************************************** 

//link   EXEC PGM=HEWL,REGION=1024K,PARM='LET,LIST,MAP,XREF' 

//SYSUT1  DD  UNIT=sysda,SPACE=(TRK,(20,5)) 
 

//SYSLIB  DD  DSN=cobol.linklib,DISP=SHR 

//vanilla DD  DSN=idms.cagjload,DISP=SHR 

//custom  DD DSN=idms.custom.loadlib,DISP=SHR 

//SYSLMOD DD  DSN=idms.custom.loadlib,DISP=SHR 

//SYSPRINT DD  SYSOUT=A 

//SYSLIN  DD  DSN=&&OBJECT.,DISP=(OLD,DELETE) 

//     DD  * 
 

 INCLUDE vanilla(IDMS)   required, except omit for CICS 

 INCLUDE vanilla(IDMSCANC) required for BATCH and DC-BATCH if using IDMS-STATUS module 

 INCLUDE custom(IDMSOPTI) optional; BATCH and DC-BATCH only 

 INCLUDE custom(idmscint) required for CICS, otherwise omit 

 ENTRY  userentry 

 NAME  userprog(R) 

/* 

//* 

Note: If using the IDMSOPTI module, you must assemble and link edit it before using the 

JCL above. 
 

The link of CICS application programs that use IDMSCINT must incorporate JCL to resolve 
external reference DFHEI1. The particular JCL depends on the nature and language of 
your application. See the appropriate IBM CICS application programming 
documentation for details. 

 

precompiler-options Options that control various aspects of the precompile 
process. See Passing Parameters to the Precompiler (see 

page 355) for a complete description of the options. 

idms.dba.loadlib Data set name of the load library containing the DMCL and 
database name table 

idms.cagjload Data set name of the load library containing the vanilla CA 

IDMS executable modules  

idms.custom.loadlib Data set name of the load library containing the customized 
CA IDMS executable modules  

sysctl DDname of SYSCTL fi le 



z/OS JCL 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  341  

 

idms.sysctl Data set name of SYSCTL fi le 

dcmsg DDname of the system message (DDLDCMSG) area  

idms.sysmsg.ddldcmsg Data set name of the system message (DDLDCMSG) area 

sysda Symbolic device name for work fi les  

sysidms-input-parms Parameters that specify physical requirements of the 

environment, runtime directives, or operating 
system-dependent fi le information. For a complete 
description of all  SYSIDMS parameters and syntax, see CA 
IDMS Common Facilities Guide. Also see Passing Parameters 

to the Precompiler (see page 355) for a discussion of 
parameters that can be passed using the PARM=SYSIDMS 
input statement. 

dmcl-name Specifies the name of the DMCL that the precompiler should 

use to access the message dictionary 

igycrctl Program name of the COBOL compiler 

compiler-options Parameters that specify options that are appropriate to your 

version of the COBOL compiler. See Chapter 2: (see page 17), 
VS COBOL II Support (see page 503), and Considerations for 
IBM Language Environment (see page 507) for restrictions 
and recommendations specific to CA IDMS access. Also see 

the IBM documentation for your compiler. 

cobol.loadlib Load library that contains COBOL compiler 

syslin DDname of the object data set output by the COBOL compiler  

cobol.linklib Load library that contains COBOL support modules  

user.loadlib User application load library 

idmscint Load module created by compiling IDMSCINT or IDMSCINL. 
For more information, see the CA IDMS System Operations 

Guide. 

userentry Name of program entry point 

userprog Name of program in load library 

Note: Depending on the central version operating environment, an IDMSOPTI module 
l ink edited with IDMSDMLC can be used in place of or in addition to the SYSCTL fi le. 

 



z/VSE JCL 

 

342  DML Reference Guide for COBOL 

 

Local Mode JCL 

To execute the compiler in local mode, remove the SYSCTL statement from the 

precompile step and replace it with the following: 

//dictdb  DD DSN=idms.appldict.ddldml,DISP=SHR 

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape 
 

 

dictdb DDname of the application dictionary DDLDML area  

idms.appldict.ddldml  Data set name of application dictionary 

sysjrnl DDname of the tape journal fi le 

idms.tapejrnl  Data set name of the tape journal fi le 

tape Symbolic device name of the tape journal fi le 

z/VSE JCL 

IDMSDMLC ('VSE') 

/****************************************************************** 

/**          PRECOMPILE PROGRAM             ** 

/****************************************************************** 

* step1 

// EXEC PROC=IDMSLBLS 

// UPSI b         if specified in IDMSOPTI module 

// DLBL   sysctl,'idms.sysctl',0 

// EXTENT  SYS000,nnnnnn,,,ssss,llll 

// ASSGN   SYS000,DISK,VOL=nnnnnn,SHR 

// DLBL   idmspch,'temp.dmlc',0 

// EXTENT  SYS020,nnnnnn,,,ssss,llll 
 

// ASSGN   SYS020,DISK,VOL=nnnnnn,SHR 

// DLBL   SYS001,'wkfile1',0 

// EXTENT  SYS001,nnnnnn,,,ssss,llll 

// ASSGN   SYS001,DISK,VOL=nnnnnn,SHR 

// DLBL   SYS002,'wkfile2',0 

// EXTENT  SYS002,nnnnnn,,,ssss,llll 

// ASSGN   SYS002,DISK,VOL=nnnnnn,SHR 

// DLBL   SYS003,'wkfile3',0 

// EXTENT  SYS003,nnnnnn,,,ssss,llll 

// ASSGN   SYS003,DISK,VOL=nnnnnn,SHR 

// EXEC   IDMSDMLC,PARM='COBOL=2' 
 



z/VSE JCL 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  343  

 

 

Input SYSIDMS parameters here, as required 

 

/* 

 

COBOL/DML source statements 

 

/****************************************************************** 

/**          COMPILE PROGRAM              ** 

/****************************************************************** 

/* 
 

* step2 

// DLBL   IJSYSIN,'temp.dmlc',0 

// EXTENT  SYSIPT,nnnnnn 

  ASSGN   SYSIPT,DISK,VOL=nnnnnn,SHR 

// OPTION  CATAL,NODECK,NOSYM 

 PHASE userprog,* 

// EXEC   IGYCRCTL 

/****************************************************************** 

/**          LINK PROGRAM MODULE            ** 
 

/****************************************************************** 

* step3 

  CLOSE   SYSIPT,SYSRDR 

ENTRY (dmlc) 

// EXEC   LNKEDT 

/* 
 

 

IDMSLBLS Name of the procedure provided at installation that contains 

the fi le definitions for CA IDMS dictionaries and databases. 

Note: For complete l isting of IDMSLBLS, see IDMSLBLS 
Procedure (see page 345). 

b appropriate UPSI switch, 1 through 8 characters, if specified 

in the IDMSOPTI module 

sysctl fi lename of SYSCTL fi le 

idms.sysctl fi le-ID of SYSCTL fi le 

idmspch fi lename of data set output from the IDMSDMLC precompiler  

temp.dmlc fi le ID of data set output from the IDMSDMLC precompiler  

SYS020 logical unit assignment of the DMLC output 

nnnnnn volume serial identifier of appropriate disk volume 

ssss starting track (CKD) or block (FBA) of disk extent 

llll number of tracks (CKD) or blocks (FBA) of disk extent 

userprog name of program in the library 



z/VSE JCL 

 

344  DML Reference Guide for COBOL 

 

precompiler-options options that control various aspects of the precompile 
process. See Passing Parameters to the Precompiler (see 

page 355) for a complete description of the options. 

dmlc name of COBOL/DML module 

You can use SYSIDMS parameters to specify information about your runtime 

environment. 

Note: For more information about SYSIDMS parameters, see the CA IDMS Common 
Facilities Guide. 

 

Local Mode 

To execute the IDMSDMLC precompiler in local mode: 

■ Remove the UPSI specification, if present, or remove the JCL for the SYSCTL fi le 
from the precompiler step. 

■ Add the following statements in step 1 (the IDMSDMLC step): 

// TLBL   sysjrnl,'idms.tapejrnl',,nnnnnn,,f 

// ASSGN  SYS009,TAPE,VOL=nnnnnn 
 

 

idms.tapejrnl fi le ID of tape journal fi le 

f fi le number of tape journal fi le 

sys009 logical unit assignment for journal fi le 

INCLUDE statements should be provided in local mode or central version JCL as follows: 

INCLUDE IDMS  IDMS interface 

 

INCLUDE IDMSOPTI  IDMSOPTI module 

 

INCLUDE IDMSCANC  Local mode abort entry point 

    omit IDMSCANC if TP application) 

 

INCLUDE IDMSCINT  For CICS only, replaces INCLUDE IDMS 
 

INCLUDE IDMSOPTI can be omitted for programs executed in local mode. 

Note: COBOL overlay programs must resolve references to IDMS within their root 
segment; care must be taken to prevent the overlaying of the IDMS interface. Use 
of IDMS and IDMSLDPT is recommended for these programs. 

 



z/VSE JCL 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  345  

 

IDMSLBLS Procedure 

IDMSLBLS is a procedure provided during an CA IDMS z/VSE installation. It contains fi le 
definitions for the CA IDMS components l isted below. These components are provided 
during installation: 

■ Dictionaries 

■ Sample databases 

■ Disk journal fi les  

■ SYSIDMS fi le 
 

Tailor the IDMSLBLS procedure to reflect the fi lenames and definitions in use at your 

site and include this procedure in z/VSE JCL job streams. 

The sample z/VSE JCL provided in this document includes the IDMSLBLS procedure. 
Therefore, individual fi le definitions for CA IDMS dictionaries, sample databases, disk 
journal fi les, and SYSIDMS fi les are not included in the sample JCL. 

 

IDMSLBLS procedure (z/VSE) 

* -------- LIBDEFS -------- 

// LIBDEF *,SEARCH=idmslib.sublib 

// LIBDEF *,CATALOG=user.sublib 

/* ------------------------- LABELS ------------------------- 

// DLBL  idmslib,'idms.library',1999/365 

// EXTENT ,nnnnnn,,,ssss,1500 

// DLBL  dccat,'idms.system.dccat',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,31 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dccatl,'idms.system.dccatlod',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,6 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dccatx,'idms.system.dccatx',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,11 
 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dcdml,'idms.system.ddldml',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,101 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dclod,'idms.system.ddldclod',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,21 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dclog,'idms.system.ddldclog',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,401 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dcrun,'idms.system.ddldcrun',1999/365,DA 
 



z/VSE JCL 

 

346  DML Reference Guide for COBOL 

 

// EXTENT SYSnnn,nnnnnn,,,ssss,68 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dcscr,'idms.system.ddldcscr',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,135 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dcmsg,'idms.sysmsg.ddldcmsg',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,201 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dclscr,'idms.sysloc.ddlocscr',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,6 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dirldb,'idms.sysdirl.ddldml',1999/365,DA 
 

// EXTENT SYSnnn,nnnnnn,,,ssss,201 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dirllod,'idms.sysdirl.ddldclod',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,2 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  empdemo,'idms.empdemo1',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,11 
 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  insdemo,'idms.insdemo1',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,6 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  orgdemo,'idms.orgdemo1',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,6 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  empldem,'idms.sqldemo.empldemo',1999/365,DA 
 

// EXTENT SYSnnn,nnnnnn,,,ssss,11 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  infodem,'idms.sqldemo.infodemo',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,6 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  projdem,'idms.projseg.projdemo',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,6 
 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  indxdem,'idms.sqldemo.indxdemo',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,6 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  sysctl,'idms.sysctl',1999/365,SD 

// EXTENT SYSnnn,nnnnnn,,,ssss,2 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  secdd,'idms.sysuser.ddlsec',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,26 
 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dictdb,'idms.appldict.ddldml',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,51 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  dloddb,'idms.appldict.ddldclod',1999/365,DA 
 



z/VSE JCL 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  347  

 

// EXTENT SYSnnn,nnnnnn,,,ssss,51 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  sqldd,'idms.syssql.ddlcat',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,101 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 
 

// DLBL  sqllod,'idms.syssql.ddlcatl',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,51 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  sqlxdd,'idms.syssql.ddlcatx',1999/365,DA 
 

// EXTENT SYSnnn,nnnnnn,,,ssss,26 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  asfdml,'idms.asfdict.ddldml',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,201 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  asflod,'idms.asfdict.asflod',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,401 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 
 

// DLBL  asfdata,'idms.asfdict.asfdata',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,201 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  ASFDEFN,'idms.asfdict.asfdefn',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,101 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  j1jrnl,'idms.j1jrnl',1999/365,DA 
 

// EXTENT SYSnnn,nnnnnn,,,ssss,54 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  j2jrnl,'idms.j2jrnl',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,54 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 
 

// DLBL  j3jrnl,'idms.j3jrnl',1999/365,DA 

// EXTENT SYSnnn,nnnnnn,,,ssss,54 

// ASSGN  SYSnnn,DISK,VOL=nnnnnn,SHR 

// DLBL  SYSIDMS,'#SYSIPT',0,SD 

/+ 

/* 
 

 

idmslib.sublib name of the sublibrary within the library containing CA IDMS modules  

user.sublib name of the sublibrary within the library containing user modules  

idmslib fi lename of the fi le containing CA IDMS modules  

idms.library fi le-ID associated with the fi le containing CA IDMS modules  

SYSnnn logical unit of the volume for which the extent is effective 

nnnnnn volume serial identifier of appropriate disk volume 

ssss starting track (CKD) or block (FBA) of disk extent 

dccat fi lename of the system dictionary catalog (DDLCAT) area  



z/VSE JCL 

 

348  DML Reference Guide for COBOL 

 

idms.system.dccat fi le-ID of the system dictionary catalog (DDLCAT) area  

dccatl fi lename of the system dictionary catalog load (DDLCATLOD) area  

idms.system.dccatlod fi le-ID of the system dictionary catalog load (DDLCATLOD) area  

dccatx fi lename of the system dictionary catalog index (DDLCATX) area  

idms.system.dccatx fi le-ID of the system dictionary catalog index (DDLCATX) area  

dcdml fi lename of the system dictionary definition (DDLDML) area  

idms.system.ddldml fi le-ID of the system dictionary definition (DDLDML) area 

dclod fi lename of the system dictionary definition load (DDLDCLOD) area  

idms.system.ddldclod fi le-ID of the system dictionary definition load (DDLDCLOD) area  

dclog fi lename of the system log area (DDLDCLOG) area  

idms.system.ddldclog fi le-ID of the system log (DDLDCLOG) area 

dcrun fi lename of the system queue (DDLDCRUN) area  

idms.system.ddldcrun fi le-ID of the system queue (DDLDCRUN) area 

dcscr fi lename of the system scratch (DDLDCSCR) area 

idms.system.ddldcscr fi le-ID of the system scratch (DDLDCSCR) area 

dcmsg fi lename of the system message (DDLDCMSG) area  

idms.sysmsg.ddldcmsg fi le-ID of the system message (DDLDCMSG) area 

dclscr fi lename of the local mode system scratch (DDLOCSCR) area  

idms.sysloc.ddlocscr fi le-ID of the local mode system scratch (DDLOCSCR) area  

dirldb fi lename of the IDMSDIRL definition (DDLDML) area  

idms.sysdirl.ddldml fi le-ID of the IDMSDIRL definition (DDLDML) area  

dirllod fi lename of the IDMSDIRL definition load (DDLDCLOD) area  

idms.sysdirl.dirllod fi le-ID of the IDMSDIRL definition load (DDLDCLOD) area  

empdemo fi lename of the EMPDEMO area 

idms.empdemo1 fi le-ID of the EMPDEMO area 

insdemo fi lename of the INSDEMO area 

idms.insdemo1 fi le-ID of the INSDEMO area 

orgdemo fi lename of the ORGDEMO area 

idms.orgdemo1 fi le-ID of the ORDDEMO area 

empldem fi lename of the EMPLDEMO area 

idms.sqldemo.empldemo fi le-ID of the EMPLDEMO area 



z/VSE JCL 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  349  

 

infodem fi lename of the INFODEMO area 

idms.sqldemo.infodemo fi le-ID of the INFODEMO area 

projdem fi lename of the PROJDEMO area 

idms.projseg.projdemo fi le-ID of the PROJDEMO area 

indxdem fi lename of the INDXDEMO area 

idms.sqldemo.indxdemo fi le-ID of the INDXDEMO area 

sysctl fi lename of the SYSCTL fi le 

idms.sysctl fi le-ID of the SYSCTL fi le 

secdd fi lename of the system user catalog (DDLSEC) area  

idms.sysuser.ddlsec fi le-ID of the system user catalog (DDLSEC) area  

dictdb fi lename of the application dictionary definition area  

idms.appldict.ddldml fi le-ID of the application dictionary definition (DDLDML) area  

dloddb fi lename of the application dictionary defini tion load area 

idms.appldict.ddldclod fi le-ID of the application dictionary definition load (DDLDCLOD) area  

sqldd fi lename of the SQL catalog (DDLCAT) area 

idms.syssql.ddlcat fi le-ID of the SQL catalog (DDLCAT) area 

sqllod fi lename of the SQL catalog load (DDLCATL) area  

idms.syssql.ddlcatl fi le-ID of SQL catalog load (DDLCATL) area 

sqlxdd fi lename of the SQL catalog index (DDLCATX) area  

idms.syssql.ddlcatx fi le-ID of the SQL catalog index (DDLCATX) area  

asfdml fi lename of the asf dictionary definition (DDLDML) area  

idms.asfdict.ddldml fi le-ID of the asf dictionary definition (DDLDML) area  

asflod fi lename of the asf dictionary definition load (ASFLOD) area  

idms.asfdict.asflod fi le-ID of the asf dictionary definition load (ASFLOD) area 

asfdata fi lename of the asf data (ASFDATA) area 

idms.asfdict.asfdata fi le-ID of the asf data area (ASFDATA) area 

ASFDEFN fi lename of the asf data definition (ASFDEFN) area  

idms.asfdict.asfdefn fi le-ID of the asf data definition area (ASFDEFN) area  

j1jrnl fi lename of the first disk journal fi le 

idms.j1jrnl fi le-ID of the first disk journal fi le 

j2jrnl fi lename of the second disk journal fi le 



z/VSE JCL 

 

350  DML Reference Guide for COBOL 

 

idms.j2jrnl fi le-ID of the second disk journal fi le 

j3jrnl fi lename of the third disk journal fi le 

idms.j3jrnl fi le-ID of the third disk journal fi le 

SYSIDMS fi lename of the SYSIDMS parameter fi le 

IDMSDMLC   

   /ADD-FILE-LINK  

L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib  

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib  

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib  

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=*YES  

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=*DUMMY  

/ASSIGN-SYSOPT TO=temp.punch  

/ASSIGN-SYSDTA TO=*SYSCMD  

/START-PROG  

*MOD(ELEM=IDMSDMLC,LIB=idms.dba.loadlib,RUN-MODE=*ADV)  

DICTNAME=dictionary-name DMCL=dmcl-name sysidms-input-parms  

PARM='precompiler-options' END-SYSIDMS 
 

COBOL/DML source statements 

/ASSIGN-SYSOPT TO=*PRIMARY  

/ASSIGN-SYSDTA TO=temp.punch  

/START-COBOL85-COMPILER                     -  

/  MODULE-OUTPUT=LIB-ELEM(LIB=idms.objlib.user,ELEM=userprog,  -  

/  COMPILER-ACTION=MODULE-GENERATION(MODULE-FORMAT=OM),     -  

/  LISTING=(SOURCE=YES,DIAGNOSTICS=YES,OUTPUT=SYSLIST)  

/START-BINDER  

//START-LLM-CREATION INTERNAL-NAME=userprog  

//INC-MOD LIB=idms.objlib.user,ELEM=userprog  

//INC-MOD LIB=idms.loadlib,ELEM=IDMSPBS2   For DC, BATCH and DCBATCH  

//INC-MOD LIB=idms.loadlib,ELEM=IDMSTCM    UTM only  

//RESOLVE-BY-AUTOLINK LIB=cobol.objlib  

//SAVE-LLM LIB=idms.loadlib.user,ELEM=userprog(VER=@),OVER=YES  

//END  

/DELETE-FILE temp.punch 
 

 

idms.loadlib fi lename of the load library containing the CA IDMS executable 

modules 

idms.dba.loadlib fi lename of the load library containing the DMCL and database 
name table load modules  

sysctl l inkname of SYSCTL fi le 

idms.sysctl fi lename of SYSCTL fi le 



z/VSE JCL 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  351  

 

temp.punch fi lename of temporary fi le that contains DML compiler output 

sysidms-input-parms parameters that specify physical requirements of the 

environment, runtime directives, or operating 
system-dependent fi le information. For a complete description 
of all  SYSIDMS parameters and syntax, see CA IDMS Common 

Facilities Guide. 

precompiler-options options that control various aspects of the precompile process. 
See Passing Parameters to the Precompiler (see page 355) for a 
complete description of the options. 

idms.objlib.user fi lename of user object l ibrary 

userprog name of user application program 

cobol.objlib fi lename of the COBOL runtime object l ibrary 

idms.loadlib.user fi lename of the user load library 

Note: Depending on the CV operating environment, an IDMSOPTI module l ink edited 
with the DML compiler can be used in place of or in addition to the SYSCTL fi le. 

Local Mode 

To execute the compiler in local mode: 

■ Remove the SYSCTL ADD-FILE-LINK command 

■ Add: 

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.ddldml,SHARED-UPD=*YES 

[/CREATE-FILE F-NAME=idms.tapejrnl,SUPPRESS-ERRORS=*FILE-EXIST,     - 

/  SUP=*TAPE(VOLUME=nnnnnn,DEVICE=tape)] 

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrnl [,BUF-LEN=bbbb,   - 

/  SUP=*TAPE(F-SEQ=1)] 

Statements and parameters between brackets must be specified only 

when using the journal file on tape. 
 

 

dictdb l inkname of the data dictionary fi le 

idms.appldict.ddldml fi lename of the data dictionary fi le 

sysjrnl l inkname of the tape journal fi le 

idms.tapejrnl fi lename of the tape journal fi le 

bbbb page size of the fi le 

nnnnnn volume serial number of the tape archive fi le 

tape device name for the tape journal fi le 



CMS Commands 

 

352  DML Reference Guide for COBOL 

 

CMS Commands 

IDMSDMLC ('CMS') 

FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn 

FILEDEF SYSPCH DISK prgnme cobol a 

FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp. BLKSIZE nnn 

EXEC IDMSFD 

OSRUN IDMSDMLC PARM='CVMACH=vmid,precompiler-options' 

FILEDEF TEXT DISK prgnme TEXT A 

GLOBAL TXTLIB coblibvs IDMSLIB1 

COBOL prgnme (OSDECK APOST LIB        COBOL compile step 

TXTLIB DEL utextlib prgnme 

TXTLIB ADD utextlib prgnme 

FILEDEF SYSLMOD uloadlib LOADLIB a (RECFM V LRECL 1024 BLKSIZE 10 24 

FILEDEF objlibl DISK IDMSLIB1 TXTLIB A 

FILEDEF objlib DISK utextlib TXTLIB a 

FILEDEF SYSLIB DISK coblibvs TXTLIB p 

FILEDEF SYS001 DISK wfn wft wfm 

LKED linkctl (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K 

                       Link edit step 
 

 

sysipt data a Fi lename, type, and mode of the fi le containing the 
COBOL/DML source statements  

ppp Record length of the data fi le 

nnn Block size of the data fi le 

prgnme cobol a Fi lename of the COBOL program 

sysidms parms a Fi lename, fi letype, and fi lemode of the fi le that contains 
SYSIDMS parameters (parameters that define your runtime 

environment) 

vmid ID of the virtual machine running the central version 

precompiler-options options that control various aspects of the precompile 

process. See Passing Parameters to the Precompiler (see 
page 355) for a complete description of the options. 

coblibvs Fi lename of the library that contains COBOL logic modules  

utextlib Fi lename of the user text l ibrary 

uloadlib LOADLIB a Fi lename, fi letype, and fi lemode of the user load library 

objlib1 DDname of the first CA IDMS object l ibrary 

objlib DDname of the user object l ibrary 

coblibvs TXTLIB p Fi lename, fi letype, and fi lemode of the library that contains 

COBOL logic modules  



CMS Commands 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  353  

 

wfn wft wfm Fi lename, type, and mode of the fi les to be used as 
intermediate work fi les by IDMSDMLC 

linkctl Fi lename of the fi le that contains the linkage editor control 
statements 

How to Edit the SYSIDMS File 

To create the SYSIDMS fi le, enter these CMS commands: 

XEDIT sysidms parms a (NOPROF 

INPUT 

 . 

 . 

 . 

SYSIDMS parameters 

 . 

 . 

 . 

FILE 
 

To run IDMSDMLC, you must include the NODENAME and DICTNAME SYSIDMS 

parameters. 

Note: For more information about SYSIDMS parameters, see the CA IDMS Common 
Facilities Guide. 

 

How to Create the SYSIPT File 

To create the SYSIPT fi le, enter these CMS commands: 

XEDIT sysipt data a (NOPROF 

INPUT 

 . 

 . 

 . 

DML source statements 

 . 

 . 

 . 

FILE 
 



CMS Commands 

 

354  DML Reference Guide for COBOL 

 

How to Create the LINKCTL File 

To create the LINKCTL fi le, enter these CMS commands: 

XEDIT linkctl data a (NOPROF 

INPUT 

 . 

 . 

 . 

INCLUDE objlib(prgnme) 

INCLUDE objlib1(IDMS)   IDMS is required, omit for CICS 

INCLUDE objlib1(IDMSCINT) for CICS only 

INCLUDE objlib1(IDMSCANC) IDMSCANC for BATCH and DC_BATCH 

ENTRY prgnme 

NAME prgnme(R) 

 . 

 . 

 . 

FILE 
 

Executing in Local Mode 

To execute IDMSDMLC in local mode, remove the CVMACH parameter from OSRUN, and 
do one of the following: 

■ Link IDMSDMLC with an IDMSOPTI program that specifies local execution mode 
 

■ Specify *LOCAL* as the first input parameter in the fi le specified in the FILEDEF 
SYSIPT statement 

■ Modify the OSRUN statement, as follows: 

OSRUN IDMSDMLC PARM='*LOCAL*' 

Note: This option is valid only if the OSRUN command is issued from a System 
Product Interpreter or from an EXEC2 fi le. 

 



Link-Edit Considerations 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  355  

 

Link-Edit Considerations 

The modules involved in the link edit of an application program contain three external 
references. Some must be resolved, others can be left unresolved depending on the 
mode of operation. The table below lists and explains the external references. 

 

Reference Referenced by Resolved by Comments 

ABORT Application program IDMSCANC Should be resolved 
ONLY in a batch 
environment; 

should NOT be 
included in a tp 
environment. 

IDMS Application program IDMS Must be resolved 

IDMSOPTI* IDMS IDMSOPTI module Must be resolved if 
using the central 
version without a 

SYSCTL fi le 

* IDMSOPTI is a weak external reference (WXTRN). 
 

Passing Parameters to the Precompiler 

A number of parameters can be provided to control the action taken by the 

precompiler. The parameters can be specified in one of three ways: 

■ An IDMSPPRM module can be compiled with parameter values that are always 
appropriate to a particular operating sys tem or client site.  IDMSPPRM must be a 
stand-alone assembler module that will  be loaded by the precompiler at run-time.  

The module must consist of a string of characters terminated by a binary zero. 

■ A PARM= clause can be coded on the EXEC statement that invokes IDMSDMLC in a 
z/OS, or z/VSE environment or on the OSRUN statement that invokes IDMSDMLC in 

a CMS environment. Any option that is specified on the EXEC or OSRUN statement 
will  take precedence over the same parameter if it is coded with a different value in 
the IDMSPPRM module. 

■ A PARM= statement can be coded as a SYSIDMS input parameter.  See CA IDMS 

Common Facil ities Guide for more information about using SYSIDMS.  Any option 
that is specified in the PARM= statement will  take precedence over the same 
parameter if it is coded with a different value in the IDMSPPRM module.  Note that 

if PARM= is specified both as a SYSIDMS input statement and on an EXEC or OSRUN 
statement, the PARM= clause on the EXEC or OSRUN statement will  be ignored 
completely. 

 



Passing Parameters to the Precompiler 

 

356  DML Reference Guide for COBOL 

 

Precompiler Options 

Parameter options available to code in the EXEC statement of the precompile step are: 

■ RCM=rcm-name 

Specifies the name of the RCM created for the program by the precompiler if the 
program uses SQL access. 

 

■ RCMVERSION=rcm-version-number 

Specifies the version number of the RCM created for the program by the 

precompiler. 

■ AM=access-module-name 

Specifies the name of the access module to be executed for the program at runtime 

if the program uses SQL access. 
 

■ SCHEMA=schema-name 

Specifies the default schema-name qualifier for the precompiler to use when 
processing an INCLUDE TABLE statement that does not supply a qualifier. 

■ NOINSTALL 

Specifies that the precompiler should only check syntax. 

■ DICTNAME=dictionary-name 

Specifies the name of the dictionary the precompiler should access. 
 

■ SQL=NO/89/FIPS/DISABLED 

Specifies the SQL syntax standard that the precompiler should apply when checking 

the validity of SQL statements in the program. 

Option NO, the default, means that compliance with a named SQL standard is not 
checked or enforced, and all  CA IDMS extensions are permitted. 

 

Option 89 directs the precompiler to use ANSI X3.135-1989 (Rev), Database 
Language SQL with integrity enhancement as the standard for compliance. 

Option FIPS directs the precompiler to use FIPS PUB 127-1, Database Language SQL 
as the standard for compliance. 

Option DISABLED directs the precompiler not to process any SQL commands 
(denoted by EXEC SQL, END-EXEC delimiters) in the program. 

 

■ LIST/NOList 

LIST directs the precompiler to create a l isting of the program with precompiler 
messages. NOList directs the compiler not to create a l isting of the program with 
precompiler messages. 

■ DATE=ISO/USA/EUR/JIS 

Specifies the format of the DATE data type to be used for communication between 
the program and the database when the access module is executed. 

 



Passing Parameters to the Precompiler 

 

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL  357  

 

■ TIME=ISO/USA/EUR/JIS 

Specifies the format of the TIME data type to be used for communication between 

the program and the database when the access module is executed. 
 

■ COBOL=1/2/85 

Specifies the version of COBOL with which COBOL statements generated by the 
precompiler must comply. 

Option 1 directs the precompiler to generate statements that comply with any of 

the following: 

Versions of VS COBOL that precede VS COBOL II for z/OS, or z/VSE operating 
systems all  CBOL compiler versions for BS2000 operating systems  

 

Option 2, the default, directs the precompiler to generate statements that comply 
with VS COBOL II or LE-compliant COBOL compilers. 

Option 85 directs the precompiler to comply with COBOL85, the version of COBOL 
required for the Fujitsu and Hitachi compilers. 

■ SR1SR7 = YES/NO 

If YES is specified then SR1 and SR7 will  be emitted in SUBSCHEMA-RECNAMES. NO 
is the default. 

Note: For more information about SQL-related parameter options, see the SQL 
Programming Guide. 

 

Site-specific Parameters 

The following sample IDMSPPRM source will  change the default for the COBOL 
parameter from COBOL=2 to COBOL=1 and will  direct the precompiler not to produce a 
l isting of the source program. 

EDBPPARM CSECT 

DC C'COBOL=1,NOLIST' 

DC X'00' 

END 

 





 

Appendix B: Sample Batch Program  359  

 

Appendix B: Sample Batch Program 
 

This appendix contains a sample batch COBOL program that accesses database records 
using navigational DML statements. The following figure shows the program as it 
appears in the various stages of the compilation process. You create a program using 
COBOL and DML statements. This program is input to the DML compiler, which 

produces a l isting that contains diagnostics and, optionally, DML source statements. The 
expanded code is input to the COBOL compiler, which generates a l isting of the fully 
expanded code and diagnostics. 

 

Compilation Process 

 

This section contains the following topics: 

Sample Batch Program as Input to the DML Compiler  (see page 360) 

Sample Batch Program as Output from the DML Compiler  (see page 369) 
Sample Batch Program from the COBOL Precompiler  (see page 387) 

 



Sample Batch Program as Input to the DML Compiler 

 

360  DML Reference Guide for COBOL 

 

Sample Batch Program as Input to the DML Compiler 

The sample program contains COBOL and DML source statements. 

   *RETRIEVAL 

   *DMLIST 

   *NO-ACTIVITY-LOG 

   *SCHEMA-COMMENTS 

 

    IDENTIFICATION DIVISION. 

 

     PROGRAM-ID.         DEPTRPT. 

 

     AUTHOR.           COMPUTER ASSOCIATES INTERNATIONAL. 

 

     DATE-WRITTEN.        APRIL 1995. 
 

 

     REMARKS.           THIS PROGRAM DEMONSTRATES 

                    CA IDMS DATABASE ACCESS USING 

                    COBOL DML STATEMENTS. IT READS 

                    DEPARTMENT ID NUMBERS AND RETRIEVES 

                    RELATED RECORD OCCURRENCES, 

                    PRINTING A REPORT THAT INCLUDES 

                    DEPARTMENT, EMPLOYEE, JOB, AND 

                    OFFICE INFORMATION. 

   *************************************************************** 

    ENVIRONMENT DIVISION. 

    INPUT-OUTPUT SECTION. 

    FILE-CONTROL. 

      SELECT DEPT-FILE-IN      ASSIGN TO INFILE. 

      SELECT DEPT-FILE-OUT     ASSIGN TO OUTFILE. 

      SELECT ERR-FILE-OUT      ASSIGN TO ERRFILE. 

   *************************************************************** 

    IDMS-CONTROL SECTION. 
 

 

    PROTOCOL.           MODE IS BATCH DEBUG 

                   IDMS-RECORDS MANUAL. 

      SKIP3 

   *************************************************************** 

    DATA DIVISION. 

 

    SCHEMA SECTION. 

 

    DB EMPSS01 WITHIN EMPSCHM. 

 

   *************************************************************** 

    FILE SECTION. 
 



Sample Batch Program as Input to the DML Compiler 

 

Appendix B: Sample Batch Program  361  

 

 

    FD DEPT-FILE-IN 

      RECORD CONTAINS 80 

      BLOCK CONTAINS 80 CHARACTERS 

      RECORDING MODE IS F 

      LABEL RECORDS ARE OMITTED. 

 

    01 DEPT-REC-IN. 

      02 DEPT-ID-IN       PIC 9(4). 

      02 DEPT-IN-FILLER     PIC X(76). 

 

    FD DEPT-FILE-OUT 

      RECORD CONTAINS 133 

      BLOCK CONTAINS 133 CHARACTERS 

      RECORDING MODE IS F 

      LABEL RECORDS ARE OMITTED. 
 

 

    01 DEPT-REC-OUT. 

      02 CC           PIC X. 

      02 PRINT-LINE       PIC X(132). 

 

    FD ERR-FILE-OUT 

      RECORD CONTAINS 133 

      BLOCK CONTAINS 133 CHARACTERS 

      RECORDING MODE IS F 

      LABEL RECORDS ARE OMITTED. 

 

    01 ERR-REC-OUT. 

      02 ERR-CC         PIC X. 

      02 ERR-LINE        PIC X(132). 
 



Sample Batch Program as Input to the DML Compiler 

 

362  DML Reference Guide for COBOL 

 

 

   *************************************************************** 

    WORKING-STORAGE SECTION. 

    01 EOF-SW       PIC X   VALUE 'N'. 

      88 END-OF-FILE        VALUE 'Y'. 

    01 LINE-COUNT    PIC 99   VALUE 0. 

    01 ERR-LINE-COUNT  PIC 99   VALUE 0. 

    01 LINE-MAX     PIC 99   VALUE 50. 

   *************************************************************** 

    01 DEPT-HEADER. 

      05 FILLER    PIC X(30)  VALUE SPACES. 

      05 FILLER    PIC X(13)  VALUE 'DEPARTMENT ID'. 

      05 FILLER    PIC X(10)  VALUE SPACES. 

      05 FILLER    PIC X(9)   VALUE 'DEPT NAME'. 

      05 FILLER    PIC X(70)  VALUE SPACES. 

    01 DEPT-DETAIL-LINE. 

      05 FILLER    PIC X(33)  VALUE SPACES. 

      05 DEPT-ID-OUT  PIC X(4). 

      05 FILLER    PIC X(16)  VALUE SPACES. 

      05 DEPT-NAME-OUT PIC X(45). 

      05 FILLER    PIC X(34)  VALUE SPACES. 
 

    01 EMP-HEADER. 

      05 FILLER    PIC X(5)   VALUE SPACES. 

      05 FILLER    PIC X(6)   VALUE 'EMP ID'. 

      05 FILLER    PIC X(2)   VALUE SPACES. 

      05 FILLER    PIC X(9)   VALUE 'LAST NAME'. 

      05 FILLER    PIC X(8)   VALUE SPACES. 

      05 FILLER    PIC X(10)  VALUE 'FIRST NAME'. 

      05 FILLER    PIC X(3)   VALUE SPACES. 

      05 FILLER    PIC X(10)  VALUE 'START DATE'. 

      05 FILLER    PIC X(2)   VALUE SPACES. 

      05 FILLER    PIC X(9)   VALUE 'JOB TITLE'. 

      05 FILLER    PIC X(13)  VALUE SPACES. 

      05 FILLER    PIC X(14)  VALUE 'OFFICE ADDRESS'. 

      05 FILLER    PIC X(42)  VALUE SPACES. 
 



Sample Batch Program as Input to the DML Compiler 

 

Appendix B: Sample Batch Program  363  

 

    01 EMP-DETAIL-LINE. 

      05 FILLER    PIC X(5)   VALUE SPACES. 

      05 ID-OUT    PIC X(4). 

      05 FILLER    PIC X(4)   VALUE SPACES. 

      05 LAST-OUT   PIC X(15). 

      05 FILLER    PIC X(2)   VALUE SPACES. 

      05 FIRST-OUT   PIC X(10). 

      05 FILLER    PIC X(3)   VALUE SPACES. 

      05 SD-OUT. 

        10 SD-MM   PIC XX. 

        10 FILLER   PIC X    VALUE '/'. 

        10 SD-DD   PIC XX. 

        10 FILLER   PIC X    VALUE '/'. 

        10 SD-YY   PIC XX. 

      05 FILLER    PIC X(4)   VALUE SPACES. 
 

      05 TITLE-OUT   PIC X(20). 

      05 FILLER    PIC X(2)   VALUE SPACES. 

      05 OFF-ADDRESS-OUT. 

        10 STREET-OUT PIC X(20). 

        10 FILLER   PIC XX    VALUE SPACES. 

        10 CITY-OUT  PIC X(15). 

        10 FILLER   PIC XX    VALUE SPACES. 
 

        10 STATE-OUT PIC XX. 

        10 FILLER   PIC XX    VALUE SPACES. 

        10 ZIP-OUT  PIC X(5). 

      05 FILLER    PIC X(8)   VALUE SPACES. 

    01 ERR-HEADER-1. 

      05 FILLER    PIC X(40)  VALUE SPACES. 

      05 FILLER    PIC X(12)  VALUE 'ERROR REPORT'. 

      05 FILLER    PIC X(80)  VALUE SPACES. 

    01 ERR-HEADER-2. 

      05 FILLER    PIC X(10)  VALUE SPACES. 

      05 FILLER    PIC X(4)   VALUE '*** '. 

      05 FILLER    PIC X(51)  VALUE 
 

        'THIS REPORT LISTS EMPTY AND NONEXISTENT DEPARTMENTS'. 

      05 FILLER    PIC X(4)   VALUE ' ***'. 

      05 FILLER    PIC X(63)  VALUE SPACES. 

    01 ERR-HEADER-3. 

      05 FILLER    PIC X(20)  VALUE SPACES. 

      05 FILLER    PIC X(7)   VALUE 'DEPT ID'. 

      05 FILLER    PIC X(9)   VALUE SPACES. 

      05 FILLER    PIC X(7)   VALUE 'MESSAGE'. 

      05 FILLER    PIC X(89)  VALUE SPACES. 
 



Sample Batch Program as Input to the DML Compiler 

 

364  DML Reference Guide for COBOL 

 

    01 ERR-DETAIL-LINE. 

      05 FILLER    PIC X(20)  VALUE SPACES. 

      05 ERR-ID-OUT  PIC X(4). 

      05 FILLER    PIC X(12)  VALUE SPACES. 

      05 ERR-MESS-OUT PIC X(15). 

      05 FILLER    PIC X(79)  VALUE SPACES. 

   *************************************************************** 

    01 MESSAGES. 

      05 NO-JOB-MESSAGE. 

       10 FILLER     PIC X(20) VALUE 'NO JOB ASSIGNED'. 
 

      05 NO-OFFICE-MESSAGE. 

       10 FILLER     PIC X(20) 

                 VALUE 'NO OFFICE ASSIGNED'. 

      05 NO-DEPT-MESSAGE. 

       10 FILLER     PIC X(15) VALUE 'DOES NOT EXIST'. 

      05 NO-EMP-MESSAGE. 

       10 FILLER     PIC X(15) VALUE 'IS EMPTY'. 

      05 NO-INPUT-MESSAGE. 
 

       10 FILLER     PIC XX   VALUE SPACES. 

       10 FILLER     PIC X(11) VALUE '========>> '. 

       10 FILLER     PIC X(8)  VALUE 'NO INPUT'. 

       10 FILLER     PIC X(11) VALUE ' <<========'. 

       10 FILLER     PIC X(100) VALUE SPACES. 

 

    01 COPY IDMS SUBSCHEMA-CTRL. 

 

    01 COPY IDMS SUBSCHEMA-SSNAME. 

 

    01 COPY IDMS SUBSCHEMA-RECNAMES. 
 

 

    01 COPY IDMS SUBSCHEMA-SETNAMES. 

 

    01 COPY IDMS RECORD EMPLOYEE. 

 

    01 COPY IDMS RECORD DEPARTMENT. 
 

 

    01 COPY IDMS RECORD JOB. 

 

    01 COPY IDMS RECORD EMPOSITION. 

 

    01 COPY IDMS RECORD OFFICE. 

      EJECT 

    PROCEDURE DIVISION. 
 



Sample Batch Program as Input to the DML Compiler 

 

Appendix B: Sample Batch Program  365  

 

 

   *  ********************************************************* 

   *  * PROCEDURE DIVISION GENERAL STRATEGY:         * 

   *  *   1) READ DEPT-ID-IN, WHICH CONTAINS THE      * 

   *  *     DEPT-ID NUMBER                * 

   *  *   2) ACCESS THE DATABASE USING THE DEPT-ID NUMBER * 

   *  *     WITH AN OBTAIN CALC ON THE DEPARTMENT RECORD * 

   *  *   3) ACCESS ALL EMPLOYEES IN THE DEPT-EMPLOYEE SET * 

   *  *     AND RETRIEVE RELATED JOB AND OFFICE DATA   * 

   *  *   4) PRINT A REPORT FOR EACH DEPARTMENT      * 

   *  *   5) PRINT AN ERROR REPORT FOR EMPTY DEPARTMENTS  * 

   *  *     AND NONEXISTENT DEPARTMENTS (NO MATCHING   * 

   *  *     DEPT-ID)                   * 

   *  ********************************************************* 
 

 

    MAIN-LINE. 

      PERFORM INIT-FILES. 

      IF END-OF-FILE 

       PERFORM EMPTY-INPUT-PROCESSING 

      ELSE 

       PERFORM INIT-BIND-READY 

       PERFORM U220-ERR-HEADER 

       PERFORM DEPT-PROCESSING THRU DEPT-PROCESSING-EXIT 

              UNTIL END-OF-FILE. 

      PERFORM END-PROCESSING. 

      GOBACK. 
 

 

    INIT-BIND-READY. 

   *************************************************************** 

   * THE BIND STATEMENTS ARE PERFORMED INDIVIDUALLY (RATHER   * 

   * THAN BY USING A COPY IDMS SUBSCHEMA-BINDS) IN ORDER TO   * 

   * CHECK EACH ERROR-STATUS BY PERFORMING THE IDMS-STATUS    * 

   * ROUTINE.                          * 

   *************************************************************** 

      MOVE 'DEPTRPT' TO PROGRAM-NAME. 

      BIND RUN-UNIT. 

      PERFORM IDMS-STATUS. 

      BIND EMPLOYEE. 

      PERFORM IDMS-STATUS. 

      BIND DEPARTMENT. 
 

      PERFORM IDMS-STATUS. 

      BIND JOB. 

      PERFORM IDMS-STATUS. 

      BIND EMPOSITION. 

      PERFORM IDMS-STATUS. 

      BIND OFFICE. 

      PERFORM IDMS-STATUS. 

      READY. 

      PERFORM IDMS-STATUS. 
 



Sample Batch Program as Input to the DML Compiler 

 

366  DML Reference Guide for COBOL 

 

 

    INIT-FILES. 

      OPEN INPUT DEPT-FILE-IN. 

      OPEN OUTPUT DEPT-FILE-OUT. 

      OPEN OUTPUT ERR-FILE-OUT. 

      MOVE SPACES TO PRINT-LINE. 

      MOVE SPACES TO ERR-LINE. 

      READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW. 
 

 

    EMPTY-INPUT-PROCESSING. 

      MOVE NO-INPUT-MESSAGE TO PRINT-LINE. 

      MOVE '1' TO CC. 

      PERFORM U000-WRITE-LINE. 
 

 

   *************************************************************** 

   * THIS PARAGRAPH ACCESSES THE DATABASE USING THE DEPT-ID-0415 * 

   * CALCKEY VALUE.                       * 

   *************************************************************** 

    DEPT-PROCESSING. 

      MOVE DEPT-ID-IN TO DEPT-ID-0410. 

      OBTAIN CALC DEPARTMENT. 

      IF DB-REC-NOT-FOUND THEN 

        PERFORM NO-DEPT-PROCESSING 

      ELSE 

        PERFORM IDMS-STATUS 

        IF DEPT-EMPLOYEE IS NOT EMPTY THEN 

          PERFORM U020-VALID-HEADER 

          MOVE DEPT-ID-0410 TO DEPT-ID-OUT 

          MOVE DEPT-NAME-0410 TO DEPT-NAME-OUT 
 

          MOVE DEPT-DETAIL-LINE TO PRINT-LINE 

          PERFORM U000-WRITE-LINE 

          PERFORM U030-EMP-HEADERS 

          PERFORM SET-WALK THRU SET-WALK-EXIT 

                UNTIL DB-END-OF-SET 

        ELSE 

          PERFORM EMPTY-SET. 

      READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW. 

    DEPT-PROCESSING-EXIT. 

      EXIT. 
 



Sample Batch Program as Input to the DML Compiler 

 

Appendix B: Sample Batch Program  367  

 

 

   *************************************************************** 

   * THIS PARAGRAPH RETRIEVES EMPLOYEE, JOB, AND OFFICE DATA   * 

   * FOR EACH EMPLOYEE IN THE DEPT-EMPLOYEE SET.         * 

   *************************************************************** 

    SET-WALK. 

      OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE. 

      IF DB-END-OF-SET 

       GO TO SET-WALK-EXIT 

      ELSE 

       PERFORM IDMS-STATUS. 

      MOVE EMP-ID-0415 TO ID-OUT. 

      MOVE EMP-LAST-NAME-0415 TO LAST-OUT. 

      MOVE EMP-FIRST-NAME-0415 TO FIRST-OUT. 
 

      MOVE START-YEAR-0415 TO SD-YY. 

      MOVE START-MONTH-0415 TO SD-MM. 

      MOVE START-DAY-0415 TO SD-DD. 

      IF EMP-EMPOSITION IS EMPTY 

        MOVE NO-JOB-MESSAGE TO TITLE-OUT 

      ELSE 

        FIND FIRST WITHIN EMP-EMPOSITION 

        PERFORM IDMS-STATUS 
 

        IF NOT JOB-EMPOSITION MEMBER 

          MOVE NO-JOB-MESSAGE TO TITLE-OUT 

        ELSE 

          OBTAIN OWNER WITHIN JOB-EMPOSITION 

          PERFORM IDMS-STATUS 

          MOVE TITLE-0440 TO TITLE-OUT. 

      IF OFFICE-EMPLOYEE IS EMPTY 
 

        MOVE NO-OFFICE-MESSAGE TO STREET-OUT 

        MOVE SPACES TO CITY-OUT 

        MOVE SPACES TO STATE-OUT 

        MOVE SPACES TO ZIP-OUT 

      ELSE 

        OBTAIN OWNER WITHIN OFFICE-EMPLOYEE 

        PERFORM IDMS-STATUS 
 

        MOVE OFFICE-STREET-0450 TO STREET-OUT 

        MOVE OFFICE-CITY-0450 TO CITY-OUT 

        MOVE OFFICE-STATE-0450 TO STATE-OUT 

        MOVE OFFICE-ZIP-FIRST-FIVE-0450 TO ZIP-OUT 

        MOVE EMP-DETAIL-LINE TO PRINT-LINE. 

      PERFORM U000-WRITE-LINE. 

    SET-WALK-EXIT. 

      EXIT. 
 



Sample Batch Program as Input to the DML Compiler 

 

368  DML Reference Guide for COBOL 

 

 

    END-PROCESSING. 

      FINISH. 

      PERFORM IDMS-STATUS. 

      CLOSE DEPT-FILE-OUT. 

      CLOSE ERR-FILE-OUT. 

      CLOSE DEPT-FILE-IN. 
 

 

    EMPTY-SET. 

      MOVE SPACES TO ERR-LINE. 

      MOVE DEPT-ID-0410 TO ERR-ID-OUT. 

      MOVE NO-EMP-MESSAGE TO ERR-MESS-OUT. 

      MOVE ERR-DETAIL-LINE TO ERR-LINE. 

      PERFORM U200-WRITE-ERR-LINE. 
 

 

    NO-DEPT-PROCESSING. 

      MOVE DEPT-ID-IN TO ERR-ID-OUT. 

      MOVE NO-DEPT-MESSAGE TO ERR-MESS-OUT. 

      MOVE ERR-DETAIL-LINE TO ERR-LINE. 

      PERFORM U200-WRITE-ERR-LINE. 
 

 

    U000-WRITE-LINE. 

      WRITE DEPT-REC-OUT AFTER POSITIONING CC. 

      IF CC = '1' THEN MOVE 0 TO LINE-COUNT 

       ELSE IF CC = ' ' THEN ADD 1 TO LINE-COUNT 

         ELSE IF CC = '0' THEN ADD 2 TO LINE-COUNT. 

      IF LINE-COUNT > LINE-MAX 

            THEN PERFORM U010-NEW-PAGE-ROUTINE. 

    U010-NEW-PAGE-ROUTINE. 

      PERFORM U020-VALID-HEADER. 

      MOVE DEPT-DETAIL-LINE TO PRINT-LINE. 

      PERFORM U000-WRITE-LINE. 

      PERFORM U030-EMP-HEADERS. 
 

    U020-VALID-HEADER. 

      MOVE DEPT-HEADER TO PRINT-LINE. 

      MOVE '1' TO CC. 

      PERFORM U000-WRITE-LINE 

      MOVE ' ' TO CC. 

    U030-EMP-HEADERS. 
 

      MOVE '0' TO CC. 

      MOVE EMP-HEADER TO PRINT-LINE. 

      PERFORM U000-WRITE-LINE. 

      MOVE SPACES TO PRINT-LINE. 

      MOVE ' ' TO CC. 

      PERFORM U000-WRITE-LINE. 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  369  

 

 

    U200-WRITE-ERR-LINE. 

      WRITE ERR-REC-OUT AFTER POSITIONING ERR-CC. 

      IF ERR-CC = '1' THEN MOVE 0 TO ERR-LINE-COUNT 

       ELSE IF ERR-CC = ' ' THEN ADD 1 TO ERR-LINE-COUNT 

        ELSE IF ERR-CC = '0' THEN ADD 2 TO ERR-LINE-COUNT. 

      IF ERR-LINE-COUNT > LINE-MAX THEN 

               PERFORM U220-ERR-HEADER. 

    U220-ERR-HEADER. 

      MOVE ERR-HEADER-1 TO ERR-LINE. 

      MOVE '1' TO ERR-CC. 

      PERFORM U200-WRITE-ERR-LINE 
 

      MOVE '0' TO ERR-CC. 

      MOVE ERR-HEADER-2 TO ERR-LINE. 

      PERFORM U200-WRITE-ERR-LINE. 

      MOVE ERR-HEADER-3 TO ERR-LINE. 
 

      PERFORM U200-WRITE-ERR-LINE. 

      MOVE SPACES TO ERR-LINE. 

      MOVE ' ' TO ERR-CC. 

      PERFORM U200-WRITE-ERR-LINE. 

    IDMS-ABORT. 

      EXIT. 

    IDMS-ABORT-EXIT. 

      COPY IDMS IDMS-STATUS. 
 

Sample Batch Program as Output from the DML Compiler 

Since the *DMLIST option is specified in the program's IDENTIFICATION DIVISION, 

printed output consists of expanded code as well as diagnostics. This output is in the 
following format: 

■ Heading—The top of each page of the listing contains the name of the DML 

compiler being used (IDMSDMLC), the release number of the processor (Release 
10.0), the name of the listing (Listing of Messages), the date, the time, and the page 
number. 

■ Input listing and DML compiler-generated code—The body of the printout contains 

the program input l isting along with the DML compiler-generated code, formatted 
as follows: 

 

 

Column Explanation 

1 Sequence numbers generated by the DML compiler 

12 Line numbers generated by the DML compiler 

19 Line numbers generated by the user program 



Sample Batch Program as Output from the DML Compiler 

 

370  DML Reference Guide for COBOL 

 

Column Explanation 

26 Text of the COBOL source code including text generated by the DML 

compiler 

■ Warnings and Status Messages—Diagnostics are imbedded in the input l isting and 
DML compiler-generated code following the errant l ines of source code. 

Note: For more information about the DML compiler status messages, see the CA 
IDMS Messages and Codes Guide. 

 

This l isting contains the sample batch program and partially expanded code generated 
by the DML compiler. 

          00001      *RETRIEVAL 

          00002      *DMLIST 

          00003      *NO-ACTIVITY-LOG 

          00004      *SCHEMA-COMMENTS 

          00005 

          00006      IDENTIFICATION DIVISION. 

          00007 

          00008        PROGRAM-ID.         DEPTRPT. 

          00009 

          00010        AUTHOR.           COMPUTER ASSOCIATES INTERNATIONAL. 

          00011 
 

          00012        DATE-WRITTEN.        APRIL 1995. 

          00013 

          00014        REMARKS.           THIS PROGRAM DEMONSTRATES 

          00015                      CA IDMS DATABASE ACCESS USING 

          00016                      COBOL DML STATEMENTS. IT READS 

          00017                      DEPARTMENT ID NUMBERS AND RETRIEVES 

          00018                      RELATED RECORD OCCURRENCES, 

          00019                      PRINTING A REPORT THAT INCLUDES 
 

          00020                      DEPARTMENT, EMPLOYEE, JOB, AND 

          00021                      OFFICE INFORMATION. 

          00022      *************************************************************** 

          00023      ENVIRONMENT DIVISION. 

          00024      INPUT-OUTPUT SECTION. 

          00025      FILE-CONTROL. 

          00026        SELECT DEPT-FILE-IN      ASSIGN TO INFILE. 
 

          00027        SELECT DEPT-FILE-OUT     ASSIGN TO OUTFILE. 

          00028        SELECT ERR-FILE-OUT      ASSIGN TO ERRFILE. 

          00029      *************************************************************** 

DMLC   00030      IDMS-CONTROL SECTION. 

          00031 

          00032      PROTOCOL.           MODE IS BATCH DEBUG 

          00033                      IDMS-RECORDS MANUAL. 

          00034         SKIP3 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  371  

 

          00035      *************************************************************** 

          00036      DATA DIVISION. 

          00037 

DMLC   00038      SCHEMA SECTION. 

          00039 

          00040      DB EMPSS01 WITHIN EMPSCHM. 

          00041 

          00042      *************************************************************** 

          00043      FILE SECTION. 

          00044 

          00045      FD DEPT-FILE-IN 
 

          00046        RECORD CONTAINS 80 

          00047        BLOCK CONTAINS 80 CHARACTERS 

          00048        RECORDING MODE IS F 

          00049        LABEL RECORDS ARE OMITTED. 

          00050 

          00051      01 DEPT-REC-IN. 

          00052           02 DEPT-ID-IN       PIC 9(4). 

          00053           02 DEPT-IN-FILLER     PIC X(76). 

          00054 
 

          00055      FD DEPT-FILE-OUT 

          00056        RECORD CONTAINS 133 

          00057        BLOCK CONTAINS 133 CHARACTERS 

          00058        RECORDING MODE IS F 

          00059        LABEL RECORDS ARE OMITTED. 

          00060 

          00061      01 DEPT-REC-OUT. 

          00062        02 CC           PIC X. 
 

          00063        02 PRINT-LINE       PIC X(132). 

          00064 

          00065      FD ERR-FILE-OUT 

          00066        RECORD CONTAINS 133 

          00067        BLOCK CONTAINS 133 CHARACTERS 

          00068        RECORDING MODE IS F 

          00069        LABEL RECORDS ARE OMITTED. 

          00070 

          00071      01 ERR-REC-OUT. 

          00072        02 ERR-CC         PIC X. 
 

          00073        02 ERR-LINE        PIC X(132). 

          00074 

          00075      *************************************************************** 

          00076      WORKING-STORAGE SECTION. 

          00077      01 EOF-SW       PIC X   VALUE 'N'. 

          00078        88 END-OF-FILE        VALUE 'Y'. 

          00079      01 LINE-COUNT    PIC 99   VALUE 0. 

          00080      01 ERR-LINE-COUNT  PIC 99   VALUE 0. 
 



Sample Batch Program as Output from the DML Compiler 

 

372  DML Reference Guide for COBOL 

 

          00081      01 LINE-MAX     PIC 99   VALUE 50. 

          00082      *************************************************************** 

          00083      01 DEPT-HEADER. 

          00084        05 FILLER    PIC X(30)  VALUE SPACES. 

          00085        05 FILLER    PIC X(13)  VALUE 'DEPARTMENT ID'. 

          00086        05 FILLER    PIC X(10)  VALUE SPACES. 

          00087        05 FILLER    PIC X(9)   VALUE 'DEPT NAME'. 
 

          00088        05 FILLER    PIC X(70)  VALUE SPACES. 

          00089      01 DEPT-DETAIL-LINE. 

          00090        05 FILLER    PIC X(33)  VALUE SPACES. 

          00091        05 DEPT-ID-OUT  PIC X(4). 

          00092        05 FILLER    PIC X(16)  VALUE SPACES. 

          00093        05 DEPT-NAME-OUT PIC X(45). 

          00094        05 FILLER    PIC X(34)  VALUE SPACES. 

          00095      01 EMP-HEADER. 
 

          00096           05 FILLER    PIC X(5)   VALUE SPACES. 

          00097        05 FILLER    PIC X(6)   VALUE 'EMP ID'. 

          00098        05 FILLER    PIC X(2)   VALUE SPACES. 

          00099        05 FILLER    PIC X(9)   VALUE 'LAST NAME'. 

          00100        05 FILLER    PIC X(8)   VALUE SPACES. 

          00101        05 FILLER    PIC X(10)  VALUE 'FIRST NAME'. 

          00102        05 FILLER    PIC X(3)   VALUE SPACES. 

          00103        05 FILLER    PIC X(10)  VALUE 'START DATE'. 

          00104        05 FILLER    PIC X(2)   VALUE SPACES. 

          00105        05 FILLER    PIC X(9)   VALUE 'JOB TITLE'. 

          00106        05 FILLER    PIC X(13)  VALUE SPACES. 

          00107        05 FILLER    PIC X(14)  VALUE 'OFFICE ADDRESS'. 

          00108        05 FILLER    PIC X(42)  VALUE SPACES. 
 

          00109      01 EMP-DETAIL-LINE. 

          00110        05 FILLER    PIC X(5)   VALUE SPACES. 

          00111        05 ID-OUT    PIC X(4). 

          00112        05 FILLER    PIC X(4)   VALUE SPACES. 

          00113        05 LAST-OUT   PIC X(15). 

          00114        05 FILLER    PIC X(2)   VALUE SPACES. 

          00115        05 FIRST-OUT   PIC X(10). 

          00116        05 FILLER    PIC X(3)   VALUE SPACES. 

          00117        05 SD-OUT. 
 

          00118          10 SD-MM   PIC XX. 

          00119          10 FILLER   PIC X    VALUE '/'. 

          00120          10 SD-DD   PIC XX. 

          00121          10 FILLER   PIC X    VALUE '/'. 

          00122          10 SD-YY   PIC XX. 

          00123        05 FILLER    PIC X(4)   VALUE SPACES. 

          00124        05 TITLE-OUT   PIC X(20). 

          00125        05 FILLER    PIC X(2)   VALUE SPACES. 

          00126        05 OFF-ADDRESS-OUT. 

          00127          10 STREET-OUT PIC X(20). 

          00128          10 FILLER   PIC XX    VALUE SPACES. 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  373  

 

          00129          10 CITY-OUT  PIC X(15). 

          00130          10 FILLER   PIC XX    VALUE SPACES. 

          00131          10 STATE-OUT PIC XX. 

          00132          10 FILLER   PIC XX    VALUE SPACES. 

          00133          10 ZIP-OUT  PIC X(5). 

          00134        05 FILLER    PIC X(8)   VALUE SPACES. 

          00135      01 ERR-HEADER-1. 

          00136        05 FILLER    PIC X(40)  VALUE SPACES. 

          00137        05 FILLER    PIC X(12)  VALUE 'ERROR REPORT'. 
 

          00138        05 FILLER    PIC X(80)  VALUE SPACES. 

          00139      01 ERR-HEADER-2. 

          00140        05 FILLER    PIC X(10)  VALUE SPACES. 

          00141        05 FILLER    PIC X(4)   VALUE '*** '. 

          00142        05 FILLER    PIC X(51)  VALUE 

          00143          'THIS REPORT LISTS EMPTY AND NONEXISTENT DEPARTMENTS'. 

          00144        05 FILLER    PIC X(4)   VALUE ' ***'. 

          00145        05 FILLER    PIC X(63)  VALUE SPACES. 

          00146      01 ERR-HEADER-3. 

          00147        05 FILLER    PIC X(20)  VALUE SPACES. 
 

          00148        05 FILLER    PIC X(7)   VALUE 'DEPT ID'. 

          00149        05 FILLER    PIC X(9)   VALUE SPACES. 

          00150        05 FILLER    PIC X(7)   VALUE 'MESSAGE'. 

          00151        05 FILLER    PIC X(89)  VALUE SPACES. 

          00152      01 ERR-DETAIL-LINE. 

          00153        05 FILLER    PIC X(20)  VALUE SPACES. 

          00154        05 ERR-ID-OUT  PIC X(4). 

          00155        05 FILLER    PIC X(12)  VALUE SPACES. 
 

          00156        05 ERR-MESS-OUT PIC X(15). 

          00157        05 FILLER    PIC X(79)  VALUE SPACES. 

          00158      *************************************************************** 

          00159      01 MESSAGES. 

          00160        05 NO-JOB-MESSAGE. 

          00161          10 FILLER     PIC X(20) VALUE 'NO JOB ASSIGNED'. 

          00162        05 NO-OFFICE-MESSAGE. 

          00163          10 FILLER     PIC X(20) 

          00164                   VALUE 'NO OFFICE ASSIGNED'. 
 

          00165        05 NO-DEPT-MESSAGE. 

          00166          10 FILLER     PIC X(15) VALUE 'DOES NOT EXIST'. 

          00167        05 NO-EMP-MESSAGE. 

          00168          10 FILLER     PIC X(15) VALUE 'IS EMPTY'. 

          00169        05 NO-INPUT-MESSAGE. 

          00170          10 FILLER     PIC XX   VALUE SPACES. 
 



Sample Batch Program as Output from the DML Compiler 

 

374  DML Reference Guide for COBOL 

 

          00171          10 FILLER     PIC X(11) VALUE '========>> '. 

          00172          10 FILLER     PIC X(8)  VALUE 'NO INPUT'. 

          00173          10 FILLER     PIC X(11) VALUE ' <<========'. 

          00174          10 FILLER     PIC X(100) VALUE SPACES. 

          00175 

DMLC      00176      01 COPY IDMS SUBSCHEMA-CTRL. 

          00177      01 SUBSCHEMA-CTRL. 

          00178         03 PROGRAM-NAME      PIC X(8) 

          00179                      VALUE SPACES . 

          00180         03 ERROR-STATUS      PIC X(4) 
 

          00181                      VALUE '1400' . 

          00182                    88 DB-STATUS-OK 

          00183                      VALUE '0000' . 

          00184                    88 ANY-STATUS 

          00185                      VALUE '  ' THRU '9999' . 
 

          00186                    88 ANY-ERROR-STATUS 

          00187                      VALUE '0001' THRU '9999' . 

          00188                    88 DB-END-OF-SET 

          00189                      VALUE '0307' . 

          00190                    88 DB-REC-NOT-FOUND 

          00191                      VALUE '0326' . 

          00192         03 DBKEY         PIC S9(8) COMP SYNC. 

          00193         03 RECORD-NAME      PIC X(16) 

          00194                      VALUE SPACES . 
 

          00195         03 RRECORD-NAME      REDEFINES RECORD-NAME. 

          00196          05 SSC-NODN       PIC X(8). 

          00197          05 SSC-DBN       PIC X(8). 

          00198         03 AREA-NAME       PIC X(16) 

          00199                      VALUE SPACES . 

          00200         03 AREA-RNAME       REDEFINES AREA-NAME. 

          00201          05 SSC-DNO       PIC X(8). 

          00202          05 SSC-DNA       PIC X(8). 
 

          00203         03 ERROR-SET       PIC X(16) 

          00204                      VALUE SPACES . 

          00205         03 ERROR-RECORD      PIC X(16) 

          00206                      VALUE SPACES . 

          00207         03 ERROR-AREA       PIC X(16) 

          00208                      VALUE SPACES . 

          00209         03 IDBMSCOM-AREA     PIC X(100) 

          00210                      VALUE LOW-VALUE . 
 

          00211         03 IDBMSCOM        REDEFINES IDBMSCOM-AREA 

          00212                      PIC X 

          00213                      OCCURS 100. 

          00214         03 RIDBMSCOM       REDEFINES IDBMSCOM-AREA. 

          00215          05 DB-SUB-ADDR     PIC X(4). 

          00216          05 FILLER        PIC X(96). 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  375  

 

          00217         03 R1DBMSCOM       REDEFINES IDBMSCOM-AREA. 

          00218          05 PAGE-INFO. 

          00219           07 PAGE-INFO-GROUP  PIC S9(4) COMP. 

          00220           07 PAGE-INFO-DBK-FORMAT 

          00221                      PIC 9(4) COMP. 

          00222          05  SSC-IDMS-STATUS-WRK. 

          00223           07  SSC-IN01-REQ-WK. 

          00224             09  SSC-IN01-REQ-CODE 

          00225                                   PIC S9(8) COMP. 

          00226             09  SSC-IN01-REQ-RETURN 

          00227                                   PIC S9(8) COMP. 

          00228           07  SSC-STATUS-LINE. 

          00229             09  SSC-STATUS-LABEL PIC X(16). 

          00230             09  SSC-STATUS-VALUE PIC X(12). 

 
 

          00231          05 FILLER        PIC X(60). 

          00232         03 DIRECT-DBKEY      PIC S9(8) COMP SYNC. 

          00233         03 DIRECT-DBK       REDEFINES DIRECT-DBKEY 

          00234                      PIC S9(8) COMP SYNC. 

          00235         03 DATABASE-STATUS. 

          00236          05 DBSTATMENT-CODE   PIC X(2). 

          00237          05 DBSTATUS-CODE    PIC X(5). 

          00238         03 FILLER         PIC X. 

          00239         03 RECORD-OCCUR      PIC S9(8) COMP SYNC. 
 

 

          00240         03 DML-SEQUENCE      PIC S9(8) COMP SYNC. 

          00241 

DMLC      00242      01 COPY IDMS SUBSCHEMA-SSNAME. 

          00243      01 SUBSCHEMA-SSNAME      PIC X(8) 

          00244                      VALUE 'EMPSS01 ' . 

          00245 

DMLC      00246      01 COPY IDMS SUBSCHEMA-RECNAMES. 

          00247      01 SUBSCHEMA-RECNAMES. 

          00248         03 SR460         PIC X(16) 

          00249                      VALUE 'STRUCTURE    ' . 

          00250         03 SR455         PIC X(16) 

          00251                      VALUE 'SKILL      ' . 

          00252         03 SR450         PIC X(16) 
 

 

          00253                      VALUE 'OFFICE     ' . 

          00254         03 SR445         PIC X(16) 

          00255                      VALUE 'NON-HOSP-CLAIM ' . 

          00256         03 SR440         PIC X(16) 

          00257                      VALUE 'JOB       ' . 

          00258         03 SR435         PIC X(16) 

          00259                      VALUE 'INSURANCE-PLAN ' . 

          00260         03 SR430         PIC X(16) 

          00261                      VALUE 'HOSPITAL-CLAIM ' . 
 



Sample Batch Program as Output from the DML Compiler 

 

376  DML Reference Guide for COBOL 

 

 

          00262         03 SR425         PIC X(16) 

          00263                      VALUE 'EXPERTISE    ' . 

          00264         03 SR420         PIC X(16) 

          00265                      VALUE 'EMPOSITION   ' . 

          00266         03 SR415         PIC X(16) 

          00267                      VALUE 'EMPLOYEE    ' . 

          00268         03 SR410         PIC X(16) 
 

 

          00269                      VALUE 'DEPARTMENT   ' . 

          00270         03 SR405         PIC X(16) 

          00271                      VALUE 'DENTAL-CLAIM  ' . 

          00272         03 SR400         PIC X(16) 

          00273                      VALUE 'COVERAGE    ' . 

          00274 

DMLC      00275      01 COPY IDMS SUBSCHEMA-SETNAMES. 

          00276      01 SUBSCHEMA-SETNAMES. 

          00277         03 COVERAGE-CLAIMS    PIC X(16) 

          00278                      VALUE 'COVERAGE-CLAIMS ' . 

          00279         03 DEPT-EMPLOYEE     PIC X(16) 

          00280                      VALUE 'DEPT-EMPLOYEE  ' . 

          00281         03 EMP-COVERAGE      PIC X(16) 

          00282                      VALUE 'EMP-COVERAGE  ' . 
 

 

          00283         03 EMP-EXPERTISE     PIC X(16) 

          00284                      VALUE 'EMP-EXPERTISE  ' . 

          00285         03 EMP-NAME-NDX      PIC X(16) 

          00286                      VALUE 'EMP-NAME-NDX  ' . 

          00287         03 EMP-EMPOSITION     PIC X(16) 

          00288                      VALUE 'EMP-EMPOSITION ' . 

          00289         03 JOB-EMPOSITION     PIC X(16) 

          00290                      VALUE 'JOB-EMPOSITION ' . 

          00291         03 JOB-TITLE-NDX     PIC X(16) 
 

 

          00292                      VALUE 'JOB-TITLE-NDX  ' . 

          00293         03 MANAGES        PIC X(16) 

          00294                      VALUE 'MANAGES     ' . 

          00295         03 OFFICE-EMPLOYEE    PIC X(16) 

          00296                      VALUE 'OFFICE-EMPLOYEE ' . 

          00297         03 REPORTS-TO       PIC X(16) 

          00298                      VALUE 'REPORTS-TO   ' . 

          00299         03 SKILL-EXPERTISE    PIC X(16) 

          00300                      VALUE 'SKILL-EXPERTISE ' . 

          00301         03 SKILL-NAME-NDX     PIC X(16) 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  377  

 

 

          00302                      VALUE 'SKILL-NAME-NDX ' . 

          00303         03 CALC          PIC X(16) 

          00304                      VALUE 'CALC      ' . 

          00305 

DMLC      00306      01 COPY IDMS RECORD EMPLOYEE. 

          00307      01 EMPLOYEE. 

          00308        02 EMP-ID-0415       PIC 9(4). 

          00309        02 EMP-NAME-0415. 

          00310         03 EMP-FIRST-NAME-0415  PIC X(10). 

          00311         03 EMP-LAST-NAME-0415   PIC X(15). 

          00312        02 EMP-ADDRESS-0415. 

          00313         03 EMP-STREET-0415    PIC X(20). 

          00314         03 EMP-CITY-0415     PIC X(15). 

          00315         03 EMP-STATE-0415     PIC X(2). 
 

 

          00316         03 EMP-ZIP-0415. 

          00317         04 EMP-ZIP-FIRST-FIVE-0415 

          00318                      PIC X(5). 

          00319         04 EMP-ZIP-LAST-FOUR-0415 

          00320                      PIC X(4). 

          00321        02 EMP-PHONE-0415     PIC 9(10). 

          00322        02 STATUS-0415       PIC X(2). 

          00323                    88 ACTIVE-0415 

          00324                      VALUE '01' . 
 

 

          00325                    88 ST-DISABIL-0415 

          00326                      VALUE '02' . 

          00327                    88 LT-DISABIL-0415 

          00328                      VALUE '03' . 

          00329                    88 LEAVE-OF-ABSENCE-0415 

          00330                      VALUE '04' . 

          00331                    88 TERMINATED-0415 

          00332                      VALUE '05' . 

          00333        02 SS-NUMBER-0415     PIC 9(9). 

          00334        02 START-DATE-0415. 
 

 

          00335         03 START-YEAR-0415    PIC 9(4). 

          00336         03 START-MONTH-0415    PIC 9(2). 

          00337         03 START-DAY-0415     PIC 9(2). 

          00338        02 TERMINATION-DATE-0415. 

          00339         03 TERMINATION-YEAR-0415 PIC 9(4). 

          00340         03 TERMINATION-MONTH-0415 PIC 9(2). 

          00341         03 TERMINATION-DAY-0415  PIC 9(2). 

          00342        02 BIRTH-DATE-0415. 
 



Sample Batch Program as Output from the DML Compiler 

 

378  DML Reference Guide for COBOL 

 

 

          00343         03 BIRTH-YEAR-0415    PIC 9(4). 

          00344         03 BIRTH-MONTH-0415    PIC 9(2). 

          00345         03 BIRTH-DAY-0415     PIC 9(2). 

          00346 

DMLC      00347      01 COPY IDMS RECORD DEPARTMENT. 

          00348      01 DEPARTMENT. 

          00349        02 DEPT-ID-0410      PIC 9(4). 

          00350        02 DEPT-NAME-0410     PIC X(45). 

          00351        02 DEPT-HEAD-ID-0410    PIC 9(4). 

          00352        02 FILLER         PIC XXX. 

          00353 
 

 

DMLC      00354      01 COPY IDMS RECORD JOB. 

          00355      01 JOB. 

          00356        02 JOB-ID-0440       PIC 9(4). 

          00357        02 TITLE-0440       PIC X(20). 

          00358        02 DESCRIPTION-0440. 

          00359         03 DESCRIPTION-LINE-0440 PIC X(60) 

          00360                      OCCURS 2. 

          00361        02 REQUIREMENTS-0440. 

          00362         03 REQUIREMENT-LINE-0440 PIC X(60) 

          00363                      OCCURS 2. 

          00364        02 MINIMUM-SALARY-0440   PIC S9(6)V99. 

          00365        02 MAXIMUM-SALARY-0440   PIC S9(6)V99. 
 

 

          00366        02 SALARY-GRADES-0440   PIC 9(2) 

          00367                      OCCURS 4. 

          00368        02 NUMBER-OF-POSITIONS-0440 

          00369                      PIC 9(3). 

          00370        02 NUMBER-OPEN-0440    PIC 9(3). 

          00371        02 FILLER         PIC XX. 

          00372 

DMLC      00373      01 COPY IDMS RECORD EMPOSITION. 

          00374      01 EMPOSITION. 

          00375        02 START-DATE-0420. 

          00376         03 START-YEAR-0420    PIC 9(4). 

          00377         03 START-MONTH-0420    PIC 9(2). 
 

 

          00378         03 START-DAY-0420     PIC 9(2). 

          00379        02 FINISH-DATE-0420. 

          00380         03 FINISH-YEAR-0420    PIC 9(4). 

          00381         03 FINISH-MONTH-0420   PIC 9(2). 

          00382         03 FINISH-DAY-0420    PIC 9(2). 

          00383        02 SALARY-GRADE-0420    PIC 9(2). 

          00384        02 SALARY-AMOUNT-0420   PIC S9(7)V99 COMP-3. 

          00385        02 BONUS-PERCENT-0420   PIC SV999 COMP-3. 

          00386        02 COMMISSION-PERCENT-0420 PIC SV999 COMP-3. 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  379  

 

 

          00387        02 OVERTIME-RATE-0420   PIC S9V99 COMP-3. 

          00388        02 FILLER         PIC XXX. 

          00389 

DMLC      00390      01 COPY IDMS RECORD OFFICE. 

          00391      01 OFFICE. 

          00392        02 OFFICE-CODE-0450    PIC X(3). 

          00393        02 OFFICE-ADDRESS-0450. 

          00394        03 OFFICE-STREET-0450   PIC X(20). 

          00395         03 OFFICE-CITY-0450    PIC X(15). 

          00396         03 OFFICE-STATE-0450   PIC X(2). 
 

 

          00397         03 OFFICE-ZIP-0450. 

          00398         04 OFFICE-ZIP-FIRST-FIVE-0450 

          00399                      PIC X(5). 

          00400         04 OFFICE-ZIP-LAST-FOUR-0450 

          00401                      PIC X(4). 

          00402        02 OFFICE-PHONE-0450    PIC 9(7) 

          00403                      OCCURS 3. 

          00404        02 OFFICE-AREA-CODE-0450  PIC X(3). 

 

          00405        02 SPEED-DIAL-0450     PIC X(3). 

          00406        02 FILLER         PIC X(4). 

          00407        EJECT 

          00408      PROCEDURE DIVISION. 
 

           

          00409      *  ********************************************************* 

          00410      *  * PROCEDURE DIVISION GENERAL STRATEGY:         * 

          00411      *  *   1) READ DEPT-ID-IN, WHICH CONTAINS THE      * 

          00412      *  *     DEPT-ID NUMBER                * 

          00413      *  *   2) ACCESS THE DATABASE USING THE DEPT-ID NUMBER * 

          00414      *  *     WITH AN OBTAIN CALC ON THE DEPARTMENT RECORD * 

          00415      *  *   3) ACCESS ALL EMPLOYEES IN THE DEPT-EMPLOYEE SET * 

          00416      *  *     AND RETRIEVE RELATED JOB AND OFFICE DATA   * 

 

          00417      *  *   4) PRINT A REPORT FOR EACH DEPARTMENT      * 

          00418      *  *   5) PRINT AN ERROR REPORT FOR EMPTY DEPARTMENTS  * 

          00419      *  *     AND NONEXISTENT DEPARTMENTS (NO MATCHING   * 

          00420      *  *     DEPT-ID)                   * 

          00421      *  ********************************************************* 

          00422 

          00423      MAIN-LINE. 

          00424        PERFORM INIT-FILES. 

          00425        IF END-OF-FILE 

          00426          PERFORM EMPTY-INPUT-PROCESSING 

          00427        ELSE 

          00428          PERFORM INIT-BIND-READY 

          00429          PERFORM U220-ERR-HEADER 
 



Sample Batch Program as Output from the DML Compiler 

 

380  DML Reference Guide for COBOL 

 

 

          00430          PERFORM DEPT-PROCESSING THRU DEPT-PROCESSING-EXIT 

          00431                 UNTIL END-OF-FILE. 

          00432        PERFORM END-PROCESSING. 

          00433        GOBACK. 

          00434 

          00435      INIT-BIND-READY. 

          00436      *************************************************************** 

          00437      * THE BIND STATEMENTS ARE PERFORMED INDIVIDUALLY (RATHER   * 

          00438      * THAN BY USING A COPY IDMS SUBSCHEMA-BINDS) IN ORDER TO   * 

 

          00439      * CHECK EACH ERROR-STATUS BY PERFORMING THE IDMS-STATUS    * 

          00440      * ROUTINE.                          * 

          00441       

*************************************************************** 
 

          00442        MOVE 'DEPTRPT' TO PROGRAM-NAME. 

DMLC0001  00443        BIND RUN-UNIT. 

          00444           MOVE 1 TO DML-SEQUENCE 

          00445           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00446               IDBMSCOM (59) 

          00447               SUBSCHEMA-CTRL 

          00448               SUBSCHEMA-SSNAME. 

          00449        PERFORM IDMS-STATUS. 

DMLC0002  00450        BIND EMPLOYEE. 

          00451           MOVE 2 TO DML-SEQUENCE 

          00452           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00453               IDBMSCOM (48) 
 

 

          00454               SR415 

          00455               EMPLOYEE. 

          00456        PERFORM IDMS-STATUS. 

DMLC0003  00457        BIND DEPARTMENT. 

          00458           MOVE 3 TO DML-SEQUENCE 

          00459           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00460               IDBMSCOM (48) 

          00461               SR410 

          00462               DEPARTMENT. 

          00463        PERFORM IDMS-STATUS. 

DMLC0004  00464        BIND JOB. 

          00465           MOVE 4 TO DML-SEQUENCE 

          00466           CALL 'IDMS' USING SUBSCHEMA-CTRL 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  381  

 

 

          00467               IDBMSCOM (48) 

          00468               SR440 

          00469               JOB. 

          00470        PERFORM IDMS-STATUS. 

DMLC0005  00471        BIND EMPOSITION. 

          00472           MOVE 5 TO DML-SEQUENCE 

          00473           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00474               IDBMSCOM (48) 

          00475               SR420 

          00476               EMPOSITION. 

          00477        PERFORM IDMS-STATUS. 

DMLC0006  00478        BIND OFFICE. 

          00479           MOVE 6 TO DML-SEQUENCE 

          00480           CALL 'IDMS' USING SUBSCHEMA-CTRL 
 

 

          00481               IDBMSCOM (48) 

          00482               SR450 

          00483               OFFICE. 

          00484        PERFORM IDMS-STATUS. 

DMLC0007  00485        READY. 

          00486           MOVE 7 TO DML-SEQUENCE 

          00487           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00488               IDBMSCOM (37). 

          00489        PERFORM IDMS-STATUS. 

          00490 

          00491      INIT-FILES. 

          00492        OPEN INPUT DEPT-FILE-IN. 

          00493        OPEN OUTPUT DEPT-FILE-OUT. 

          00494        OPEN OUTPUT ERR-FILE-OUT. 

 
 

          00495        MOVE SPACES TO PRINT-LINE. 

          00496        MOVE SPACES TO ERR-LINE. 

          00497        READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW. 

          00498 

          00499      EMPTY-INPUT-PROCESSING. 

          00500        MOVE NO-INPUT-MESSAGE TO PRINT-LINE. 

          00501        MOVE '1' TO CC. 

          00502        PERFORM U000-WRITE-LINE. 

          00503 
 



Sample Batch Program as Output from the DML Compiler 

 

382  DML Reference Guide for COBOL 

 

 

*************************************************************** 

          00504      * THIS PARAGRAPH ACCESSES THE DATABASE USING THE DEPT-ID-0415 

* 

          00505      * CALCKEY VALUE.                       * 

          00506      *************************************************************** 

          00507      DEPT-PROCESSING. 

          00508        MOVE DEPT-ID-IN TO DEPT-ID-0410. 

DMLC0008  00509        OBTAIN CALC DEPARTMENT. 

          00510           MOVE 8 TO DML-SEQUENCE 

          00511           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00512               IDBMSCOM (32) 

          00513               SR410 

          00514               IDBMSCOM (43). 
 

 

          00515        IF DB-REC-NOT-FOUND THEN 

          00516          PERFORM NO-DEPT-PROCESSING 

          00517        ELSE 

          00518          PERFORM IDMS-STATUS 

DMLC0009  00519          IF DEPT-EMPLOYEE IS NOT EMPTY 

          00520           MOVE 9 TO DML-SEQUENCE 

          00521           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00522               IDBMSCOM (65) 

          00523               DEPT-EMPLOYEE; 

          00524           IF ERROR-STATUS EQUAL TO '1601' 

          00525                         THEN 

          00526            PERFORM U020-VALID-HEADER 

          00527            MOVE DEPT-ID-0410 TO DEPT-ID-OUT 
 

 

          00528            MOVE DEPT-NAME-0410 TO DEPT-NAME-OUT 

          00529            MOVE DEPT-DETAIL-LINE TO PRINT-LINE 

          00530            PERFORM U000-WRITE-LINE 

          00531            PERFORM U030-EMP-HEADERS 

          00532            PERFORM SET-WALK THRU SET-WALK-EXIT 

          00533                   UNTIL DB-END-OF-SET 

          00534          ELSE 

          00535             PERFORM EMPTY-SET. 

          00536        READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW. 
 

 

          00537      DEPT-PROCESSING-EXIT. 

          00538        EXIT. 

          00539      *************************************************************** 

          00540      * THIS PARAGRAPH RETRIEVES EMPLOYEE, JOB, AND OFFICE DATA   * 

          00541      * FOR EACH EMPLOYEE IN THE DEPT-EMPLOYEE SET.         * 

          00542      *************************************************************** 

          00543      SET-WALK. 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  383  

 

 

DMLC0010  00544        OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE. 

          00545           MOVE 10 TO DML-SEQUENCE 

          00546           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00547               IDBMSCOM (10) 

          00548               SR415 

          00549               DEPT-EMPLOYEE 

          00550               IDBMSCOM (43). 

          00551        IF DB-END-OF-SET 

          00552          GO TO SET-WALK-EXIT 

          00553        ELSE 

          00554          PERFORM IDMS-STATUS. 

          00555        MOVE EMP-ID-0415 TO ID-OUT. 
 

 

          00556        MOVE EMP-LAST-NAME-0415 TO LAST-OUT. 

          00557        MOVE EMP-FIRST-NAME-0415 TO FIRST-OUT. 

          00558        MOVE START-YEAR-0415 TO SD-YY. 

          00559        MOVE START-MONTH-0415 TO SD-MM. 

          00560        MOVE START-DAY-0415 TO SD-DD. 

DMLC0011  00561        IF EMP-EMPOSITION IS EMPTY 

          00562           MOVE 11 TO DML-SEQUENCE 

          00563           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00564               IDBMSCOM (64) 

          00565               EMP-EMPOSITION; 
 

 

          00566           IF ERROR-STATUS EQUAL TO '0000' 

          00567          MOVE NO-JOB-MESSAGE TO TITLE-OUT 

          00568        ELSE 

DMLC0012  00569          FIND FIRST WITHIN EMP-EMPOSITION 

          00570           MOVE 12 TO DML-SEQUENCE 

          00571           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00572               IDBMSCOM (20) 

          00573               EMP-EMPOSITION; 

          00574          PERFORM IDMS-STATUS 

DMLC0013  00575          IF NOT JOB-EMPOSITION MEMBER 

          00576           MOVE 13 TO DML-SEQUENCE 

          00577           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00578               IDBMSCOM (62) 

          00579               JOB-EMPOSITION; 
 



Sample Batch Program as Output from the DML Compiler 

 

384  DML Reference Guide for COBOL 

 

 

          00580           IF ERROR-STATUS EQUAL TO '1601' 

          00581            MOVE NO-JOB-MESSAGE TO TITLE-OUT 

          00582          ELSE 

DMLC0014  00583            OBTAIN OWNER WITHIN JOB-EMPOSITION 

          00584           MOVE 14 TO DML-SEQUENCE 

          00585           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00586               IDBMSCOM (31) 

          00587               JOB-EMPOSITION 

          00588               IDBMSCOM (43); 

          00589            PERFORM IDMS-STATUS 

          00590            MOVE TITLE-0440 TO TITLE-OUT. 

DMLC0015  00591        IF OFFICE-EMPLOYEE IS EMPTY 

          00592           MOVE 15 TO DML-SEQUENCE 

          00593           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00594               IDBMSCOM (64) 

          00595               OFFICE-EMPLOYEE; 
 

 

          00596           IF ERROR-STATUS EQUAL TO '0000' 

          00597          MOVE NO-OFFICE-MESSAGE TO STREET-OUT 

          00598          MOVE SPACES TO CITY-OUT 

          00599          MOVE SPACES TO STATE-OUT 

          00600          MOVE SPACES TO ZIP-OUT 

          00601        ELSE 

DMLC0016  00602          OBTAIN OWNER WITHIN OFFICE-EMPLOYEE 

          00603           MOVE 16 TO DML-SEQUENCE 

          00604           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00605               IDBMSCOM (31) 

          00606               OFFICE-EMPLOYEE 

          00607               IDBMSCOM (43); 

          00608          PERFORM IDMS-STATUS 

          00609          MOVE OFFICE-STREET-0450 TO STREET-OUT 

          00610          MOVE OFFICE-CITY-0450 TO CITY-OUT 

          00611          MOVE OFFICE-STATE-0450 TO STATE-OUT 
 



Sample Batch Program as Output from the DML Compiler 

 

Appendix B: Sample Batch Program  385  

 

 

          00612          MOVE OFFICE-ZIP-FIRST-FIVE-0450 TO ZIP-OUT 

          00613          MOVE EMP-DETAIL-LINE TO PRINT-LINE. 

          00614        PERFORM U000-WRITE-LINE. 

          00615      SET-WALK-EXIT. 

          00616        EXIT. 

          00617 

          00618      END-PROCESSING. 

DMLC0017  00619        FINISH. 

          00620           MOVE 17 TO DML-SEQUENCE 

          00621           CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00622               IDBMSCOM (2). 

          00623        PERFORM IDMS-STATUS. 

          00624        CLOSE DEPT-FILE-OUT. 

          00625        CLOSE ERR-FILE-OUT. 

          00626        CLOSE DEPT-FILE-IN. 
 

 

          00627 

          00628      EMPTY-SET. 

          00629        MOVE SPACES TO ERR-LINE. 

          00630        MOVE DEPT-ID-0410 TO ERR-ID-OUT. 

          00631        MOVE NO-EMP-MESSAGE TO ERR-MESS-OUT. 

          00632        MOVE ERR-DETAIL-LINE TO ERR-LINE. 

          00633        PERFORM U200-WRITE-ERR-LINE. 

          00634 

          00635      NO-DEPT-PROCESSING. 

          00636        MOVE DEPT-ID-IN TO ERR-ID-OUT. 

          00637        MOVE NO-DEPT-MESSAGE TO ERR-MESS-OUT. 

          00638        MOVE ERR-DETAIL-LINE TO ERR-LINE. 

          00639        PERFORM U200-WRITE-ERR-LINE. 

          00640 
 

 

          00641      U000-WRITE-LINE. 

          00642        WRITE DEPT-REC-OUT AFTER POSITIONING CC. 

          00643        IF CC = '1' THEN MOVE 0 TO LINE-COUNT 

          00644         ELSE IF CC = ' ' THEN ADD 1 TO LINE-COUNT 

          00645           ELSE IF CC = '0' THEN ADD 2 TO LINE-COUNT. 

          00646        IF LINE-COUNT > LINE-MAX 

          00647              THEN PERFORM U010-NEW-PAGE-ROUTINE. 

          00648      U010-NEW-PAGE-ROUTINE. 

          00649        PERFORM U020-VALID-HEADER. 

          00650        MOVE DEPT-DETAIL-LINE TO PRINT-LINE. 
 

          00651        PERFORM U000-WRITE-LINE. 

          00652        PERFORM U030-EMP-HEADERS. 

          00653      U020-VALID-HEADER. 

          00654        MOVE DEPT-HEADER TO PRINT-LINE. 

          00655        MOVE '1' TO CC. 
 



Sample Batch Program as Output from the DML Compiler 

 

386  DML Reference Guide for COBOL 

 

 

          00656        PERFORM U000-WRITE-LINE 

          00657        MOVE ' ' TO CC. 

          00658      U030-EMP-HEADERS. 

          00659        MOVE '0' TO CC. 

          00660        MOVE EMP-HEADER TO PRINT-LINE. 

          00661        PERFORM U000-WRITE-LINE. 

          00662        MOVE SPACES TO PRINT-LINE. 

          00663        MOVE ' ' TO CC. 

          00664        PERFORM U000-WRITE-LINE. 

          00665 

          00666      U200-WRITE-ERR-LINE. 

          00667        WRITE ERR-REC-OUT AFTER POSITIONING ERR-CC. 

          00668        IF ERR-CC = '1' THEN MOVE 0 TO ERR-LINE-COUNT 

          00669         ELSE IF ERR-CC = ' ' THEN ADD 1 TO ERR-LINE-COUNT 

          00670           ELSE IF ERR-CC = '0' THEN ADD 2 TO ERR-LINE-COUNT. 

          00671        IF ERR-LINE-COUNT > LINE-MAX THEN 
 

 

          00672                 PERFORM U220-ERR-HEADER. 

          00673      U220-ERR-HEADER. 

          00674        MOVE ERR-HEADER-1 TO ERR-LINE. 

          00675        MOVE '1' TO ERR-CC. 

          00676        PERFORM U200-WRITE-ERR-LINE 

          00677        MOVE '0' TO ERR-CC. 

          00678        MOVE ERR-HEADER-2 TO ERR-LINE. 

          00679        PERFORM U200-WRITE-ERR-LINE. 

          00680        MOVE ERR-HEADER-3 TO ERR-LINE. 

          00681        PERFORM U200-WRITE-ERR-LINE. 

          00682        MOVE SPACES TO ERR-LINE. 

          00683        MOVE ' ' TO ERR-CC. 

          00684        PERFORM U200-WRITE-ERR-LINE. 

          00685      IDMS-ABORT. 

          00686        EXIT. 

          00687      IDMS-ABORT-EXIT. 

DMLC      00688        COPY IDMS IDMS-STATUS. 

          00689    
    

****************************************************************** 

          00690      IDMS-STATUS                       SECTION. 

          00691      

****************************************************************** 

          00692      IDMS-STATUS-PARAGRAPH. 

          00693          IF DB-STATUS-OK GO TO ISABEX. 

          00694          PERFORM IDMS-ABORT. 

          00695          DISPLAY '**************************' 

          00696              ' ABORTING - ' PROGRAM-NAME 

          00697              ', '      ERROR-STATUS 

          00698              ', '      ERROR-RECORD 

          00699              ' **** RECOVER IDMS ****' 

          00700              UPON CONSOLE. 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  387  

 

          00701       DISPLAY 'PROGRAM NAME ------ ' PROGRAM-NAME. 

          00702         DISPLAY 'ERROR STATUS ------ ' ERROR-STATUS. 

          00703         DISPLAY 'ERROR RECORD ------ ' ERROR-RECORD. 

          00704         DISPLAY 'ERROR SET --------- ' ERROR-SET. 

          00705         DISPLAY 'ERROR AREA -------- ' ERROR-AREA. 

          00706         DISPLAY 'LAST GOOD RECORD -- ' RECORD-NAME. 

          00707         DISPLAY 'LAST GOOD AREA ---- ' AREA-NAME. 

          00708         MOVE 39  TO SSC-IN01-REQ-CODE. 

          00709         MOVE 0   TO SSC-IN01-REQ-RETURN. 

          00710        MOVE ' ' TO SSC-STATUS-LABEL. 

          00711        PERFORM IDMS-STATUS-LOOP 

          00712                 UNTIL SSC-IN01-REQ-RETURN > 0. 

DMLC0018  00713         ROLLBACK. 
 

          00714          MOVE 18 TO DML-SEQUENCE 

          00715         CALL 'IDMS' USING SUBSCHEMA-CTRL 

          00716              IDBMSCOM (67). 

          00717         CALL 'ABORT'. 

          00718         GO TO ISABEX. 

          00719    IDMS-STATUS-LOOP. 

          00720         CALL 'IDMSIN1' USING IDBMSCOM(41) 

          00721                              SSC-IN01-REQ-WK 

          00722                              SUBSCHEMA-CTRL 

          00723                              IDBMSCOM(1) 

          00724                              DML-SEQUENCE 

          00725                              SSC-STATUS-LINE. 

          00726         IF SSC-IN01-REQ-RETURN GREATER THAN 4 

          00727             DISPLAY 'DML SEQUENCE ------ ' DML-SEQUENCE 

          00728         ELSE 

          00729             DISPLAY SSC-STATUS-LABEL '--- ' SSC-STATUS-VALUE. 

          00730    ISABEX. EXIT. 

 

 NO MESSAGES FOR PROGRAM DEPTRPT 
 

Sample Batch Program from the COBOL Precompiler 

The following listing i l lustrates the sample batch program after precompilation by the 
COBOL precompiler. The original code is further expanded and includes the following: 

■ Line numbers generated by the COBOL compiler 

■ CA IDMS call  statements for the requested DML functions  

■ Diagnostic messages 

Note: For more information about expanded code generated by the DML compiler, 
see CA IDMS Call Formats (see page 453). 

This l isting contains the sample program output from the COBOL compiler with the fully 
expanded code (including the calls to CA IDMS) generated by the DML compiler. 

 



Sample Batch Program from the COBOL Precompiler 

 

388  DML Reference Guide for COBOL 

 

00001     *DMLIST 

00002     *NO-ACTIVITY-LOG 

00003     *SCHEMA-COMMENTS 

00004 

00005     IDENTIFICATION DIVISION. 

00006 
 

00007       PROGRAM-ID.         DEPTRPT. 

00008 

00009       AUTHOR.           COMPUTER ASSOCIATES INTERNATIONAL. 

00010 

00011       DATE-WRITTEN.        APRIL 1995. 
 

00012 

00013       REMARKS.           THIS PROGRAM DEMONSTRATES 

00014                     CA IDMS DATABASE ACCESS USING 

00015                     COBOL DML STATEMENTS. IT READS 

00016                     DEPARTMENT ID NUMBERS AND RETRIEVES 

00017                     RELATED RECORD OCCURRENCES, 

00018                     PRINTING A REPORT THAT INCLUDES 

00019                     DEPARTMENT, EMPLOYEE, JOB, AND 
 

00020                     OFFICE INFORMATION. 

00021     *************************************************************** 

00022     ENVIRONMENT DIVISION. 

00023     INPUT-OUTPUT SECTION. 

00024     FILE-CONTROL. 

00025       SELECT DEPT-FILE-IN      ASSIGN TO INFILE. 

00026       SELECT DEPT-FILE-OUT     ASSIGN TO OUTFILE. 

00027       SELECT ERR-FILE-OUT      ASSIGN TO ERRFILE. 

00028     *************************************************************** 

00029     *IDMS-CONTROL SECTION. 

00030     * 

00031     *PROTOCOL.           MODE IS BATCH DEBUG 

00032     *                IDMS-RECORDS MANUAL. 
 

00034     *************************************************************** 

00035     DATA DIVISION. 

00036 

00037     *SCHEMA SECTION. 

00038     * 

00039     *DB EMPSS01 WITHIN EMPSCHM. 

00040 

00041     *************************************************************** 

00042     FILE SECTION. 

00043 

00044     FD DEPT-FILE-IN 

00045       RECORD CONTAINS 80 

00046       BLOCK CONTAINS 80 CHARACTERS 

00047       RECORDING MODE IS F 

00048       LABEL RECORDS ARE OMITTED. 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  389  

 

00049 

00050     01 DEPT-REC-IN. 

00051       02 DEPT-ID-IN       PIC 9(4). 

00052       02 DEPT-IN-FILLER     PIC X(76). 

00053 

00054     FD DEPT-FILE-OUT 

00055       RECORD CONTAINS 133 

00056       BLOCK CONTAINS 133 CHARACTERS 

00057       RECORDING MODE IS F 

00058       LABEL RECORDS ARE OMITTED. 
 

00059 

00060     01 DEPT-REC-OUT. 

00061       02 CC           PIC X. 

00062       02 PRINT-LINE       PIC X(132). 

00063 

00064     FD ERR-FILE-OUT 

00065       RECORD CONTAINS 133 

00066       BLOCK CONTAINS 133 CHARACTERS 

00067       RECORDING MODE IS F 
 

00068       LABEL RECORDS ARE OMITTED. 

00069 

00070     01 ERR-REC-OUT. 

00071       02 ERR-CC         PIC X. 

00072       02 ERR-LINE        PIC X(132). 

00073 

00074     *************************************************************** 

00075     WORKING-STORAGE SECTION. 

00076     01 EOF-SW       PIC X   VALUE 'N'. 

00077       88 END-OF-FILE        VALUE 'Y'. 
 

00078     01 LINE-COUNT    PIC 99   VALUE 0. 

00079     01 ERR-LINE-COUNT  PIC 99   VALUE 0. 

00080     01 LINE-MAX     PIC 99   VALUE 50. 

00081     *************************************************************** 

00082     01 DEPT-HEADER. 

00083       05 FILLER    PIC X(30)  VALUE SPACES. 

00084       05 FILLER    PIC X(13)  VALUE 'DEPARTMENT ID'. 

00085       05 FILLER    PIC X(10)  VALUE SPACES. 

00086       05 FILLER    PIC X(9)   VALUE 'DEPT NAME'. 

00087       05 FILLER    PIC X(70)  VALUE SPACES. 

00088     01 DEPT-DETAIL-LINE. 

00089       05 FILLER    PIC X(33)  VALUE SPACES. 
 



Sample Batch Program from the COBOL Precompiler 

 

390  DML Reference Guide for COBOL 

 

00090       05 DEPT-ID-OUT  PIC X(4). 

00091       05 FILLER    PIC X(16)  VALUE SPACES. 

00092       05 DEPT-NAME-OUT PIC X(45). 

00093       05 FILLER    PIC X(34)  VALUE SPACES. 

00094     01 EMP-HEADER. 

00095       05 FILLER    PIC X(5)   VALUE SPACES. 

00096       05 FILLER    PIC X(6)   VALUE 'EMP ID'. 

00097       05 FILLER    PIC X(2)   VALUE SPACES. 

00098       05 FILLER    PIC X(9)   VALUE 'LAST NAME'. 

00099       05 FILLER    PIC X(8)   VALUE SPACES. 
 

00100       05 FILLER    PIC X(10)  VALUE 'FIRST NAME'. 

00101       05 FILLER    PIC X(3)   VALUE SPACES. 

00102       05 FILLER    PIC X(10)  VALUE 'START DATE'. 

00103       05 FILLER    PIC X(2)   VALUE SPACES. 

00104       05 FILLER    PIC X(9)   VALUE 'JOB TITLE'. 

00105       05 FILLER    PIC X(13)  VALUE SPACES. 

00106       05 FILLER    PIC X(14)  VALUE 'OFFICE ADDRESS'. 

00107       05 FILLER    PIC X(42)  VALUE SPACES. 

00108     01 EMP-DETAIL-LINE. 

00109       05 FILLER    PIC X(5)   VALUE SPACES. 
 

00110       05 ID-OUT    PIC X(4). 

00111       05 FILLER    PIC X(4)   VALUE SPACES. 

00112       05 LAST-OUT   PIC X(15). 

00113       05 FILLER    PIC X(2)   VALUE SPACES. 

00114       05 FIRST-OUT   PIC X(10). 

00115       05 FILLER    PIC X(3)   VALUE SPACES. 

00116       05 SD-OUT. 

00117         10 SD-MM   PIC XX. 

00118         10 FILLER   PIC X    VALUE '/'. 

00119         10 SD-DD   PIC XX. 

00120         10 FILLER   PIC X    VALUE '/'. 

00121         10 SD-YY   PIC XX. 

00122       05 FILLER    PIC X(4)   VALUE SPACES. 
 

00123       05 TITLE-OUT   PIC X(20). 

00124       05 FILLER    PIC X(2)   VALUE SPACES. 

00125       05 OFF-ADDRESS-OUT. 

00126         10 STREET-OUT PIC X(20). 

00127         10 FILLER   PIC XX    VALUE SPACES. 

00128         10 CITY-OUT  PIC X(15). 

00129         10 FILLER   PIC XX    VALUE SPACES. 

00130         10 STATE-OUT PIC XX. 

00131         10 FILLER   PIC XX    VALUE SPACES. 

00132         10 ZIP-OUT  PIC X(5). 

00133       05 FILLER    PIC X(8)   VALUE SPACES. 

00134     01 ERR-HEADER-1. 

00135       05 FILLER    PIC X(40)  VALUE SPACES. 

00136       05 FILLER    PIC X(12)  VALUE 'ERROR REPORT'. 

00137       05 FILLER    PIC X(80)  VALUE SPACES. 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  391  

 

00138     01 ERR-HEADER-2. 

00139       05 FILLER    PIC X(10)  VALUE SPACES. 

00140       05 FILLER    PIC X(4)   VALUE '*** '. 

00141       05 FILLER    PIC X(51)  VALUE 

00142         'THIS REPORT LISTS EMPTY AND NONEXISTENT DEPARTMENTS'. 

00143       05 FILLER    PIC X(4)   VALUE ' ***'. 

00144       05 FILLER    PIC X(63)  VALUE SPACES. 

00145     01 ERR-HEADER-3. 

00146       05 FILLER    PIC X(20)  VALUE SPACES. 

00147       05 FILLER    PIC X(7)   VALUE 'DEPT ID'. 

00148       05 FILLER    PIC X(9)   VALUE SPACES. 
 

00149       05 FILLER    PIC X(7)   VALUE 'MESSAGE'. 

00150       05 FILLER    PIC X(89)  VALUE SPACES. 

00151     01 ERR-DETAIL-LINE. 

00152       05 FILLER    PIC X(20)  VALUE SPACES. 

00153       05 ERR-ID-OUT  PIC X(4). 

00154       05 FILLER    PIC X(12)  VALUE SPACES. 

00155       05 ERR-MESS-OUT PIC X(15). 

00156       05 FILLER    PIC X(79)  VALUE SPACES. 

00157     *************************************************************** 

00158     01 MESSAGES. 

00159       05 NO-JOB-MESSAGE. 

00160         10 FILLER     PIC X(20) VALUE 'NO JOB ASSIGNED'. 
 

00161       05 NO-OFFICE-MESSAGE. 

00162         10 FILLER     PIC X(20) 

00163                  VALUE 'NO OFFICE ASSIGNED'. 

00164       05 NO-DEPT-MESSAGE. 

00165         10 FILLER     PIC X(15) VALUE 'DOES NOT EXIST'. 

00166       05 NO-EMP-MESSAGE. 

00167         10 FILLER     PIC X(15) VALUE 'IS EMPTY'. 

00168       05 NO-INPUT-MESSAGE. 

00169         10 FILLER     PIC XX   VALUE SPACES. 

00170         10 FILLER     PIC X(11) VALUE '========>> '. 

00171         10 FILLER     PIC X(8)  VALUE 'NO INPUT'. 

00172         10 FILLER     PIC X(11) VALUE ' <<========'. 

00173         10 FILLER     PIC X(100) VALUE SPACES. 
 



Sample Batch Program from the COBOL Precompiler 

 

392  DML Reference Guide for COBOL 

 

00174 

00175     *01 COPY IDMS SUBSCHEMA-CTRL. 

00176     01 SUBSCHEMA-CTRL. 

00177        03 PROGRAM-NAME      PIC X(8) 

00178                     VALUE SPACES . 

00179        03 ERROR-STATUS      PIC X(4) 

00180                     VALUE '1400' . 

00181                   88 DB-STATUS-OK 

00182                     VALUE '0000' . 

00183                   88 ANY-STATUS 

00184                     VALUE '  ' THRU '9999' . 

00185                   88 ANY-ERROR-STATUS 

00186                     VALUE '0001' THRU '9999' . 

00187                   88 DB-END-OF-SET 
 

00188                     VALUE '0307' . 

00189                   88 DB-REC-NOT-FOUND 

00190                     VALUE '0326' . 

00191        03 DBKEY         PIC S9(8) COMP SYNC. 

00192        03 RECORD-NAME      PIC X(16) 

00193                     VALUE SPACES . 

00194        03 RRECORD-NAME      REDEFINES RECORD-NAME. 

00195         05 SSC-NODN       PIC X(8). 

00196         05 SSC-DBN       PIC X(8). 

00197        03 AREA-NAME       PIC X(16) 

00198                     VALUE SPACES . 
 

00199        03 AREA-RNAME       REDEFINES AREA-NAME. 

00200         05 SSC-DNO       PIC X(8). 

00201         05 SSC-DNA       PIC X(8). 

00202        03 ERROR-SET       PIC X(16) 

00203                     VALUE SPACES . 

00204        03 ERROR-RECORD      PIC X(16) 

00205                     VALUE SPACES . 

00206        03 ERROR-AREA       PIC X(16) 

00207                     VALUE SPACES . 

00208        03 IDBMSCOM-AREA     PIC X(100) 

00209                     VALUE LOW-VALUE . 
 

00210        03 IDBMSCOM        REDEFINES IDBMSCOM-AREA 

00211                     PIC X 

00212                     OCCURS 100. 

00213        03 RIDBMSCOM       REDEFINES IDBMSCOM-AREA. 

00214         05 DB-SUB-ADDR     PIC X(4). 

00215         05 FILLER        PIC X(96). 

00216        03 R1DBMSCOM       REDEFINES IDBMSCOM-AREA. 

00217         05 PAGE-INFO. 

00218          07 PAGE-INFO-GROUP  PIC S9(4) COMP. 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  393  

 

00219          07 PAGE-INFO-DBK-FORMAT 

00220                     PIC 9(4) COMP. 

00221          05  SSC-IDMS-STATUS-WRK. 

00222           07  SSC-IN01-REQ-WK. 

00223             09  SSC-IN01-REQ-CODE 

00224                                   PIC S9(8) COMP. 

00225             09  SSC-IN01-REQ-RETURN 

00226                                   PIC S9(8) COMP. 

00227           07  SSC-STATUS-LINE. 
 

00228             09  SSC-STATUS-LABEL PIC X(16). 

00229             09  SSC-STATUS-VALUE PIC X(12). 

00300         05 FILLER        PIC X(60). 

00301        03 DIRECT-DBKEY      PIC S9(8) COMP SYNC. 

00302        03 DIRECT-DBK       REDEFINES DIRECT-DBKEY 

00303                     PIC S9(8) COMP SYNC. 

00234        03 DATABASE-STATUS. 

00235         05 DBSTATMENT-CODE   PIC X(2). 
 

00236         05 DBSTATUS-CODE    PIC X(5). 

00237        03 FILLER         PIC X. 

00238        03 RECORD-OCCUR      PIC S9(8) COMP SYNC. 

00239       03 DML-SEQUENCE      PIC S9(8) COMP SYNC. 

00240 

00241     *01 COPY IDMS SUBSCHEMA-SSNAME. 

00242     01 SUBSCHEMA-SSNAME      PIC X(8) 

00243                     VALUE 'EMPSS01 ' . 

00244 

00245     *01 COPY IDMS SUBSCHEMA-RECNAMES. 
 

00246     01 SUBSCHEMA-RECNAMES. 

00247        03 SR460         PIC X(16) 

00248                     VALUE 'STRUCTURE    ' . 

00249        03 SR455         PIC X(16) 

00250                     VALUE 'SKILL      ' . 

00251        03 SR450         PIC X(16) 

00252                     VALUE 'OFFICE     ' . 

00253        03 SR445         PIC X(16) 

00254                     VALUE 'NON-HOSP-CLAIM ' . 

00255        03 SR440         PIC X(16) 

00256                     VALUE 'JOB       ' . 

00257        03 SR435         PIC X(16) 

00258                     VALUE 'INSURANCE-PLAN ' . 
 

00259        03 SR430         PIC X(16) 

00260                     VALUE 'HOSPITAL-CLAIM ' . 

00261        03 SR425         PIC X(16) 

00262                     VALUE 'EXPERTISE    ' . 

00263        03 SR420         PIC X(16) 

00264                     VALUE 'EMPOSITION   ' . 

00265        03 SR415         PIC X(16) 

00266                     VALUE 'EMPLOYEE    ' . 
 



Sample Batch Program from the COBOL Precompiler 

 

394  DML Reference Guide for COBOL 

 

00267        03 SR410         PIC X(16) 

00268                     VALUE 'DEPARTMENT   ' . 

00269        03 SR405         PIC X(16) 

00270                     VALUE 'DENTAL-CLAIM  ' . 

00271        03 SR400         PIC X(16) 

00272                     VALUE 'COVERAGE    ' . 

00273 

00274     *01 COPY IDMS SUBSCHEMA-SETNAMES. 
 

00275     01 SUBSCHEMA-SETNAMES. 

00276        03 COVERAGE-CLAIMS    PIC X(16) 

00277                     VALUE 'COVERAGE-CLAIMS ' . 

00278        03 DEPT-EMPLOYEE     PIC X(16) 

00279                     VALUE 'DEPT-EMPLOYEE  ' . 

00280        03 EMP-COVERAGE      PIC X(16) 

00281                     VALUE 'EMP-COVERAGE  ' . 

00282        03 EMP-EXPERTISE     PIC X(16) 

00283                     VALUE 'EMP-EXPERTISE  ' . 

00284        03 EMP-NAME-NDX      PIC X(16) 
 

00285                     VALUE 'EMP-NAME-NDX  ' . 

00286        03 EMP-EMPOSITION     PIC X(16) 

00287                     VALUE 'EMP-EMPOSITION ' . 

00288        03 JOB-EMPOSITION     PIC X(16) 

00289                     VALUE 'JOB-EMPOSITION ' . 

00290        03 JOB-TITLE-NDX     PIC X(16) 

00291                     VALUE 'JOB-TITLE-NDX  ' . 
 

00292        03 MANAGES        PIC X(16) 

00293                     VALUE 'MANAGES     ' . 

00294        03 OFFICE-EMPLOYEE    PIC X(16) 

00295                     VALUE 'OFFICE-EMPLOYEE ' . 

00296        03 REPORTS-TO       PIC X(16) 

00297                     VALUE 'REPORTS-TO   ' . 

00298        03 SKILL-EXPERTISE    PIC X(16) 

00299                     VALUE 'SKILL-EXPERTISE ' . 
 

00300        03 SKILL-NAME-NDX     PIC X(16) 

00301                     VALUE 'SKILL-NAME-NDX ' . 

00302        03 CALC          PIC X(16) 

00303                     VALUE 'CALC      ' . 

00304 

00305     *01 COPY IDMS RECORD EMPLOYEE. 

00306     01 EMPLOYEE. 

00307       02 EMP-ID-0415       PIC 9(4). 

00308       02 EMP-NAME-0415. 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  395  

 

00309        03 EMP-FIRST-NAME-0415  PIC X(10). 

00310        03 EMP-LAST-NAME-0415   PIC X(15). 

00311       02 EMP-ADDRESS-0415. 

00312        03 EMP-STREET-0415    PIC X(20). 

00313        03 EMP-CITY-0415     PIC X(15). 

00314        03 EMP-STATE-0415     PIC X(2). 

00315        03 EMP-ZIP-0415. 

00316        04 EMP-ZIP-FIRST-FIVE-0415 
 

00317                     PIC X(5). 

00318        04 EMP-ZIP-LAST-FOUR-0415 

00319                     PIC X(4). 

00320       02 EMP-PHONE-0415     PIC 9(10). 

00321       02 STATUS-0415       PIC X(2). 

00322                   88 ACTIVE-0415 

00323                     VALUE '01' . 

00324                   88 ST-DISABIL-0415 
 

00325                     VALUE '02' . 

00326                   88 LT-DISABIL-0415 

00327                     VALUE '03' . 

00328                   88 LEAVE-OF-ABSENCE-0415 

00329                     VALUE '04' . 

00330                   88 TERMINATED-0415 

00331                     VALUE '05' . 

00332       02 SS-NUMBER-0415     PIC 9(9). 

00333       02 START-DATE-0415. 
 

00334        03 START-YEAR-0415    PIC 9(4). 

00335        03 START-MONTH-0415    PIC 9(2). 

00336        03 START-DAY-0415     PIC 9(2). 

00337       02 TERMINATION-DATE-0415. 

00338        03 TERMINATION-YEAR-0415 PIC 9(4). 

00339        03 TERMINATION-MONTH-0415 PIC 9(2). 

00340        03 TERMINATION-DAY-0415  PIC 9(2). 

00341       02 BIRTH-DATE-0415. 

00342        03 BIRTH-YEAR-0415    PIC 9(4). 

00343        03 BIRTH-MONTH-0415    PIC 9(2). 

00344        03 BIRTH-DAY-0415     PIC 9(2). 
 



Sample Batch Program from the COBOL Precompiler 

 

396  DML Reference Guide for COBOL 

 

00345 

00346     *01 COPY IDMS RECORD DEPARTMENT. 

00347     01 DEPARTMENT. 

00348       02 DEPT-ID-0410      PIC 9(4). 

00349       02 DEPT-NAME-0410     PIC X(45). 

00350       02 DEPT-HEAD-ID-0410    PIC 9(4). 

00351       02 FILLER         PIC XXX. 

00352 

00353     *01 COPY IDMS RECORD JOB. 

00354     01 JOB. 

00355       02 JOB-ID-0440       PIC 9(4). 

00356       02 TITLE-0440       PIC X(20). 

00357       02 DESCRIPTION-0440. 

00358        03 DESCRIPTION-LINE-0440 PIC X(60) 

00359                     OCCURS 2. 
 

00360       02 REQUIREMENTS-0440. 

00361        03 REQUIREMENT-LINE-0440 PIC X(60) 

00362                     OCCURS 2. 

00363       02 MINIMUM-SALARY-0440   PIC S9(6)V99. 

00364       02 MAXIMUM-SALARY-0440   PIC S9(6)V99. 

00365       02 SALARY-GRADES-0440   PIC 9(2) 

00366                     OCCURS 4. 

00367       02 NUMBER-OF-POSITIONS-0440 

00368                     PIC 9(3). 

00369       02 NUMBER-OPEN-0440    PIC 9(3). 

00370       02 FILLER         PIC XX. 

00371 

00372     *01 COPY IDMS RECORD EMPOSITION. 

00373     01 EMPOSITION. 

00374       02 START-DATE-0420. 

00375        03 START-YEAR-0420    PIC 9(4). 
 

00376        03 START-MONTH-0420    PIC 9(2). 

00377        03 START-DAY-0420     PIC 9(2). 

00378       02 FINISH-DATE-0420. 

00379        03 FINISH-YEAR-0420    PIC 9(4). 

00380        03 FINISH-MONTH-0420   PIC 9(2). 

00381        03 FINISH-DAY-0420    PIC 9(2). 

00382       02 SALARY-GRADE-0420    PIC 9(2). 

00383       02 SALARY-AMOUNT-0420   PIC S9(7)V99 COMP-3. 

00384       02 BONUS-PERCENT-0420   PIC SV999 COMP-3. 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  397  

 

00385       02 COMMISSION-PERCENT-0420 PIC SV999 COMP-3. 

00386       02 OVERTIME-RATE-0420   PIC S9V99 COMP-3. 

00387       02 FILLER         PIC XXX. 

00388 

00389     *01 COPY IDMS RECORD OFFICE. 

00390     01 OFFICE. 

00391       02 OFFICE-CODE-0450    PIC X(3). 

00392       02 OFFICE-ADDRESS-0450. 

00393        03 OFFICE-STREET-0450   PIC X(20). 

00394        03 OFFICE-CITY-0450    PIC X(15). 

00395        03 OFFICE-STATE-0450   PIC X(2). 
 

00396        03 OFFICE-ZIP-0450. 

00397        04 OFFICE-ZIP-FIRST-FIVE-0450 

00398                     PIC X(5). 

00399        04 OFFICE-ZIP-LAST-FOUR-0450 

00400                     PIC X(4). 

00401       02 OFFICE-PHONE-0450    PIC 9(7) 

00402                     OCCURS 3. 
 

00403       02 OFFICE-AREA-CODE-0450  PIC X(3). 

00404       02 SPEED-DIAL-0450     PIC X(3). 

00405       02 FILLER         PIC X(4). 

00406     PROCEDURE DIVISION. 

00407 

00408     *  ********************************************************* 

00409     *  * PROCEDURE DIVISION GENERAL STRATEGY:         * 

00410     *  *   1) READ DEPT-ID-IN, WHICH CONTAINS THE      * 
 

00411     *  *     DEPT-ID NUMBER                * 

00412     *  *   2) ACCESS THE DATABASE USING THE DEPT-ID NUMBER * 

00413     *  *     WITH AN OBTAIN CALC ON THE DEPARTMENT RECORD * 

00414     *  *   3) ACCESS ALL EMPLOYEES IN THE DEPT-EMPLOYEE SET * 

00415     *  *     AND RETRIEVE RELATED JOB AND OFFICE DATA   * 

00416     *  *   4) PRINT A REPORT FOR EACH DEPARTMENT      * 

00417     *  *   5) PRINT AN ERROR REPORT FOR EMPTY DEPARTMENTS  * 

00418     *  *     AND NONEXISTENT DEPARTMENTS (NO MATCHING   * 

00419     *  *     DEPT-ID)                   * 
 



Sample Batch Program from the COBOL Precompiler 

 

398  DML Reference Guide for COBOL 

 

00420     *  ********************************************************* 

00421 

00422     MAIN-LINE. 

00423       PERFORM INIT-FILES. 

00424       IF END-OF-FILE 

00425         PERFORM EMPTY-INPUT-PROCESSING 

00426       ELSE 

00427         PERFORM INIT-BIND-READY 

00428         PERFORM U220-ERR-HEADER 

00429         PERFORM DEPT-PROCESSING THRU DEPT-PROCESSING-EXIT 

00430                UNTIL END-OF-FILE. 

00431       PERFORM END-PROCESSING. 

00432       GOBACK. 

00433 

00434     INIT-BIND-READY. 

00435     *************************************************************** 
 

00436     * THE BIND STATEMENTS ARE PERFORMED INDIVIDUALLY (RATHER   * 

00437     * THAN BY USING A COPY IDMS SUBSCHEMA-BINDS) IN ORDER TO   * 

00438     * CHECK EACH ERROR-STATUS BY PERFORMING THE IDMS-STATUS    * 

00439     * ROUTINE.                          * 

00440     *************************************************************** 

00441       MOVE 'DEPTRPT' TO PROGRAM-NAME. 

00442     *  BIND RUN-UNIT.                        DMLC0001 

00443          MOVE 1 TO DML-SEQUENCE 

00444          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00445              IDBMSCOM (59) 

00446              SUBSCHEMA-CTRL 

00447              SUBSCHEMA-SSNAME. 

00448       PERFORM IDMS-STATUS. 

00449     *  BIND EMPLOYEE.                        DMLC0002 

00450          MOVE 2 TO DML-SEQUENCE 
 

00451          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00452              IDBMSCOM (48) 

00453              SR415 

00454              EMPLOYEE. 

00455       PERFORM IDMS-STATUS. 

00456     *  BIND DEPARTMENT.                       DMLC0003 

00457          MOVE 3 TO DML-SEQUENCE 

00458          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00459              IDBMSCOM (48) 

00460              SR410 

00461              DEPARTMENT. 

00462       PERFORM IDMS-STATUS. 

00463     *  BIND JOB.                          DMLC0004 

00464          MOVE 4 TO DML-SEQUENCE 

00465          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00466              IDBMSCOM (48) 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  399  

 

00467              SR440 

00468              JOB. 

00469       PERFORM IDMS-STATUS. 

00470     *  BIND EMPOSITION.                       DMLC0005 

00471          MOVE 5 TO DML-SEQUENCE 

00472          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00473              IDBMSCOM (48) 

00474              SR420 

00475              EMPOSITION. 

00476       PERFORM IDMS-STATUS. 

00477     *  BIND OFFICE.                         DMLC0006 

00478          MOVE 6 TO DML-SEQUENCE 

00479          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00480              IDBMSCOM (48) 

00481              SR450 

00482              OFFICE. 
 

00483       PERFORM IDMS-STATUS. 

00484     *  READY.                            DMLC0007 

00485          MOVE 7 TO DML-SEQUENCE 

00486          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00487              IDBMSCOM (37). 

00488       PERFORM IDMS-STATUS. 

00489 

00490     INIT-FILES. 

00491       OPEN INPUT DEPT-FILE-IN. 

00492       OPEN OUTPUT DEPT-FILE-OUT. 

00493       OPEN OUTPUT ERR-FILE-OUT. 

00494       MOVE SPACES TO PRINT-LINE. 

00495       MOVE SPACES TO ERR-LINE. 

00496       READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW. 

00497 

00498     EMPTY-INPUT-PROCESSING. 
 

00499       MOVE NO-INPUT-MESSAGE TO PRINT-LINE. 

00500      MOVE '1' TO CC. 

00501       PERFORM U000-WRITE-LINE. 

00502 

00503     *************************************************************** 

00504     * THIS PARAGRAPH ACCESSES THE DATABASE USING THE DEPT-ID-0415 * 

00505     * CALCKEY VALUE.                       * 

00506     *************************************************************** 

00507     DEPT-PROCESSING. 

00508       MOVE DEPT-ID-IN TO DEPT-ID-0410. 

00509     *  OBTAIN CALC DEPARTMENT.                   DMLC0008 

00510          MOVE 8 TO DML-SEQUENCE 

00511          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00512              IDBMSCOM (32) 

00513              SR410 

00514              IDBMSCOM (43). 
 



Sample Batch Program from the COBOL Precompiler 

 

400  DML Reference Guide for COBOL 

 

00515       IF DB-REC-NOT-FOUND THEN 

00516         PERFORM NO-DEPT-PROCESSING 

00517       ELSE 

00518         PERFORM IDMS-STATUS 

00519     *    IF DEPT-EMPLOYEE IS NOT EMPTY              DMLC0009 

00520          MOVE 9 TO DML-SEQUENCE 

00521          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00522              IDBMSCOM (65) 

00523              DEPT-EMPLOYEE; 

00524          IF ERROR-STATUS EQUAL TO '1601' 

00525                        THEN 

00526           PERFORM U020-VALID-HEADER 

00527           MOVE DEPT-ID-0410 TO DEPT-ID-OUT 

00528           MOVE DEPT-NAME-0410 TO DEPT-NAME-OUT 

00529           MOVE DEPT-DETAIL-LINE TO PRINT-LINE 

00530           PERFORM U000-WRITE-LINE 
 

00531           PERFORM U030-EMP-HEADERS 

00532           PERFORM SET-WALK THRU SET-WALK-EXIT 

00533                  UNTIL DB-END-OF-SET 

00534         ELSE 

00535            PERFORM EMPTY-SET. 

00536       READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW. 

00537     DEPT-PROCESSING-EXIT. 

00538       EXIT. 

00539 

00540     *************************************************************** 

00541     * THIS PARAGRAPH RETRIEVES EMPLOYEE, JOB, AND OFFICE DATA   * 

00542     * FOR EACH EMPLOYEE IN THE DEPT-EMPLOYEE SET.         * 

00543     *************************************************************** 

00544     SET-WALK. 

00545     *  OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE.          DMLC0010 

00546          MOVE 10 TO DML-SEQUENCE 
 

00547          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00548              IDBMSCOM (10) 

00549              SR415 

00550              DEPT-EMPLOYEE 

00551              IDBMSCOM (43). 

00552       IF DB-END-OF-SET 

00553         GO TO SET-WALK-EXIT 

00554       ELSE 

00555         PERFORM IDMS-STATUS. 

00556       MOVE EMP-ID-0415 TO ID-OUT. 

00557       MOVE EMP-LAST-NAME-0415 TO LAST-OUT. 

00558       MOVE EMP-FIRST-NAME-0415 TO FIRST-OUT. 

00559       MOVE START-YEAR-0415 TO SD-YY. 

00560       MOVE START-MONTH-0415 TO SD-MM. 

00561       MOVE START-DAY-0415 TO SD-DD. 

00562     *  IF EMP-EMPOSITION IS EMPTY                  DMLC0011 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  401  

 

00563          MOVE 11 TO DML-SEQUENCE 

00564          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00565              IDBMSCOM (64) 

00566              EMP-EMPOSITION; 

00567          IF ERROR-STATUS EQUAL TO '0000' 

00568         MOVE NO-JOB-MESSAGE TO TITLE-OUT 

00569       ELSE 

00570     *    FIND FIRST WITHIN EMP-EMPOSITION             DMLC0012 

00571          MOVE 12 TO DML-SEQUENCE 

00572          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00573              IDBMSCOM (20) 

00574              EMP-EMPOSITION; 

00575         PERFORM IDMS-STATUS 

00576     *    IF NOT JOB-EMPOSITION MEMBER               DMLC0013 

00577          MOVE 13 TO DML-SEQUENCE 

00578          CALL 'IDMS' USING SUBSCHEMA-CTRL 
 

00579              IDBMSCOM (62) 

00580              JOB-EMPOSITION; 

00581          IF ERROR-STATUS EQUAL TO '1601' 

00582           MOVE NO-JOB-MESSAGE TO TITLE-OUT 

00583         ELSE 

00584     *      OBTAIN OWNER WITHIN JOB-EMPOSITION          DMLC0014 

00585          MOVE 14 TO DML-SEQUENCE 

00586          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00587              IDBMSCOM (31) 

00588              JOB-EMPOSITION 

00589              IDBMSCOM (43); 

00590           PERFORM IDMS-STATUS 

00591           MOVE TITLE-0440 TO TITLE-OUT. 

00592     *  IF OFFICE-EMPLOYEE IS EMPTY                 DMLC0015 

00593          MOVE 15 TO DML-SEQUENCE 

00594          CALL 'IDMS' USING SUBSCHEMA-CTRL 
 

00595              IDBMSCOM (64) 

00596              OFFICE-EMPLOYEE; 

00597          IF ERROR-STATUS EQUAL TO '0000' 

00598         MOVE NO-OFFICE-MESSAGE TO STREET-OUT 

00599         MOVE SPACES TO CITY-OUT 

00600         MOVE SPACES TO STATE-OUT 

00601         MOVE SPACES TO ZIP-OUT 

00602       ELSE 

00603     *    OBTAIN OWNER WITHIN OFFICE-EMPLOYEE           DMLC0016 

00604          MOVE 16 TO DML-SEQUENCE 

00605          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00609              IDBMSCOM (31) 

00607              OFFICE-EMPLOYEE 

00608              IDBMSCOM (43); 

00609         PERFORM IDMS-STATUS 

00610         MOVE OFFICE-STREET-0450 TO STREET-OUT 
 



Sample Batch Program from the COBOL Precompiler 

 

402  DML Reference Guide for COBOL 

 

00611         MOVE OFFICE-CITY-0450 TO CITY-OUT 

00612         MOVE OFFICE-STATE-0450 TO STATE-OUT 

00613         MOVE OFFICE-ZIP-FIRST-FIVE-0450 TO ZIP-OUT 

00614         MOVE EMP-DETAIL-LINE TO PRINT-LINE. 

00615       PERFORM U000-WRITE-LINE. 

00616     SET-WALK-EXIT. 

00617       EXIT. 

00618 

00619     END-PROCESSING. 

00620     *  FINISH.                           DMLC0017 

00621          MOVE 17 TO DML-SEQUENCE 

00622          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00623              IDBMSCOM (2). 

00624       PERFORM IDMS-STATUS. 

00625       CLOSE DEPT-FILE-OUT. 

00626       CLOSE ERR-FILE-OUT. 
 

00627       CLOSE DEPT-FILE-IN. 

00628 

00629     EMPTY-SET. 

00630       MOVE SPACES TO ERR-LINE. 

00631       MOVE DEPT-ID-0410 TO ERR-ID-OUT. 

00632       MOVE NO-EMP-MESSAGE TO ERR-MESS-OUT. 

00633       MOVE ERR-DETAIL-LINE TO ERR-LINE. 

00634       PERFORM U200-WRITE-ERR-LINE. 

00635 

00636     NO-DEPT-PROCESSING. 

00637       MOVE DEPT-ID-IN TO ERR-ID-OUT. 

00638       MOVE NO-DEPT-MESSAGE TO ERR-MESS-OUT. 

00639       MOVE ERR-DETAIL-LINE TO ERR-LINE. 

00640       PERFORM U200-WRITE-ERR-LINE. 

00641 

00642     U000-WRITE-LINE. 
 

00643       WRITE DEPT-REC-OUT AFTER POSITIONING CC. 

00644       IF CC = '1' THEN MOVE 0 TO LINE-COUNT 

00645        ELSE IF CC = ' ' THEN ADD 1 TO LINE-COUNT 

00646          ELSE IF CC = '0' THEN ADD 2 TO LINE-COUNT. 

00647       IF LINE-COUNT > LINE-MAX 

00648             THEN PERFORM U010-NEW-PAGE-ROUTINE. 

00649     U010-NEW-PAGE-ROUTINE. 

00650       PERFORM U020-VALID-HEADER. 
 



Sample Batch Program from the COBOL Precompiler 

 

Appendix B: Sample Batch Program  403  

 

00651       MOVE DEPT-DETAIL-LINE TO PRINT-LINE. 

00652       PERFORM U000-WRITE-LINE. 

00653       PERFORM U030-EMP-HEADERS. 

00654     U020-VALID-HEADER. 

00655       MOVE DEPT-HEADER TO PRINT-LINE. 

00656       MOVE '1' TO CC. 

00657       PERFORM U000-WRITE-LINE 

00658       MOVE ' ' TO CC. 

00659     U030-EMP-HEADERS. 

00660       MOVE '0' TO CC. 

00661       MOVE EMP-HEADER TO PRINT-LINE. 

00662       PERFORM U000-WRITE-LINE. 

00663       MOVE SPACES TO PRINT-LINE. 

00664       MOVE ' ' TO CC. 

00665       PERFORM U000-WRITE-LINE. 

00666 
 

00667     U200-WRITE-ERR-LINE. 

00668       WRITE ERR-REC-OUT AFTER POSITIONING ERR-CC. 

00669       IF ERR-CC = '1' THEN MOVE 0 TO ERR-LINE-COUNT 

00670        ELSE IF ERR-CC = ' ' THEN ADD 1 TO ERR-LINE-COUNT 

00671          ELSE IF ERR-CC = '0' THEN ADD 2 TO ERR-LINE-COUNT. 

00672       IF ERR-LINE-COUNT > LINE-MAX THEN 

00673                PERFORM U220-ERR-HEADER. 

00674     U220-ERR-HEADER. 

00675       MOVE ERR-HEADER-1 TO ERR-LINE. 

00676       MOVE '1' TO ERR-CC. 

00677       PERFORM U200-WRITE-ERR-LINE 

00678       MOVE '0' TO ERR-CC. 
 

00679       MOVE ERR-HEADER-2 TO ERR-LINE. 

00680       PERFORM U200-WRITE-ERR-LINE. 

00681       MOVE ERR-HEADER-3 TO ERR-LINE. 

00682       PERFORM U200-WRITE-ERR-LINE. 

00683       MOVE SPACES TO ERR-LINE. 

00684       MOVE ' ' TO ERR-CC. 

00685       PERFORM U200-WRITE-ERR-LINE. 

00686     IDMS-ABORT. 

00687       EXIT. 

00688     IDMS-ABORT-EXIT. 

00689     *  COPY IDMS IDMS-STATUS. 

00690     ****************************************************************** 
 



Sample Batch Program from the COBOL Precompiler 

 

404  DML Reference Guide for COBOL 

 

00691     IDMS-STATUS                       SECTION. 

00692     ****************************************************************** 

00693     IDMS-STATUS-PARAGRAPH. 

00694         IF DB-STATUS-OK GO TO ISABEX. 

00695         PERFORM IDMS-ABORT. 

00696         DISPLAY '**************************' 

00697              ' ABORTING - ' PROGRAM-NAME 

00698              ', '      ERROR-STATUS 

00699              ', '      ERROR-RECORD 

00700              ' **** RECOVER IDMS ****' 

00701              UPON CONSOLE. 

00702          DISPLAY 'PROGRAM NAME ------ ' PROGRAM-NAME. 

00703          DISPLAY 'ERROR STATUS ------ ' ERROR-STATUS. 

00704          DISPLAY 'ERROR RECORD ------ ' ERROR-RECORD. 

00705          DISPLAY 'ERROR SET --------- ' ERROR-SET. 

00706          DISPLAY 'ERROR AREA -------- ' ERROR-AREA. 

00707          DISPLAY 'LAST GOOD RECORD -- ' RECORD-NAME. 

00708          DISPLAY 'LAST GOOD AREA ---- ' AREA-NAME. 

00709          MOVE 39  TO SSC-IN01-REQ-CODE. 

00710          MOVE 0   TO SSC-IN01-REQ-RETURN. 

00711          MOVE ' ' TO SSC-STATUS-LABEL. 

00712          PERFORM IDMS-STATUS-LOOP 

00713                  UNTIL SSC-IN01-REQ-RETURN > 0. 

00714     *    ROLLBACK.                        DMLC0018 

00715          MOVE 18 TO DML-SEQUENCE 

00716          CALL 'IDMS' USING SUBSCHEMA-CTRL 

00717              IDBMSCOM (67). 

00718          CALL 'ABORT'. 

00719          GO TO ISABEX. 

00720     IDMS-STATUS-LOOP. 

00721          CALL 'IDMSIN1' USING IDBMSCOM(41) 

00722                               SSC-IN01-REQ-WK 

00723                               SUBSCHEMA-CTRL 

00724                               IDBMSCOM(1) 

00725                               DML-SEQUENCE 

00726                               SSC-STATUS-LINE. 

00727          IF SSC-IN01-REQ-RETURN GREATER THAN 4 

00728              DISPLAY 'DML SEQUENCE ------ ' DML-SEQUENCE 

00729          ELSE 

00730              DISPLAY SSC-STATUS-LABEL '--- ' SSC-STATUS-VALUE. 

00731     ISABEX. EXIT. 

 



 

Appendix C: Sample Online Program  405  

 

Appendix C: Sample Online Program 
 

This appendix contains a sample CA IDMS online application that i l lustrates the 
structure of CA IDMS programs that accept data from a terminal operator and retrieve 
information from the database. The application program highlights the following CA 
IDMS features: 

■ Mapping mode input and output 

■ Automatic editing and error handling 

■ Pseudo-conversational transactions 

■ LRF DML statements 

The application's components, runtime requirements, and DML code are described 
below. 

This section contains the following topics: 

Application Components  (see page 405) 
Application Runtime Requirements  (see page 406) 

 

Application Components 

The application comprises a program, two tasks, a map, and a subschema: 

■ Program—The EMPDISP program either performs a MAP OUT to start a session or 
performs a MAP IN, error checking, database access, and a MAP OUT. 

■ Tasks—The task codes TSK01 and TSK02 affect the program flow of control: 
 

TSK01 causes the program to perform the INITIAL-MAPOUT portion of the program, 
mapping out the empty screen with an initial input message. 

TSK02 causes the program to perform the GET-EMP portion of the program, 
mapping in the data, checking the AID byte, performing the error checking and 
database access portion of the program, and mapping out either an error message 
or employee data. 

 

■ Map—The application uses a map named EMPMAPLR to communicate with the 

terminal operator. The EMPMAPLR map is i l lustrated below. Its map definition 
specifies: 

Eight l iteral fields including the title *** EMPLOYEE INFORMATION SCREEN ***. 

Ten variable data fields, to contain: employee ID, last name, first name, job title, 

start date, department name, and office address (street, city, state, and zip code). 
All  data is contained in the EMP-JOB-LR logical record. 

 



Application Runtime Requirements  

 

406  DML Reference Guide for COBOL 

 

Automatic editing for the employee ID field specifies that the field is in error if the 
ID entered by the terminal operator does not comply with the field's external 

picture (PIC 9(4)). 

Messages are output in the $MESSAGE field. 
 

■ Subschema—The application uses the EMPSS09 subschema, which specifies a usage 
mode of LR. The program uses LRF DML statements to retrieve the EMP-JOB-LR 
logical record. 

 
           *** EMPLOYEE INFORMATION SCREEN *** 
 
          EMPLOYEE ID: 
          LAST NAME : 
          FIRST NAME: 
 
     JOB TITLE:                  START DATE: 
 
       DEPARTMENT NAME: 
            OFFICE: 
               : 
               : 
 
 
 
 
 
 
 
    ENTER AN EMP ID AND PRESS ENTER ** CLEAR TO EXIT 

 

Application Runtime Requirements 

The following requirements must be met to execute the sample online application 

under CA IDMS: 

■ Define and generate the EMPMAPLR map. 

■ Compile and link edit the EMPDISP program into a load library that is identified to 

CA IDMS. 
 

■ Define the EMPDISP program to the CA IDMS system either by submitting 
PROGRAM statements to the system generation compiler or by using the DCMT 
VARY DYNAMIC PROGRAM command at runtime. 

■ Define the EMPMAPLR map and the EMPSS09 subschema to the CA IDMS system by 

submitting PROGRAM statements to the system generation compiler. Maps and 
subschemas are defined automatically at system startup if null program definition 
elements (PDEs) have been allocated for them at system generation. 

 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  407  

 

Sample Online COBOL Program as Input to the DML Precompiler 

   *NO-ACTIVITY-LOG 

   *DMLIST 

    IDENTIFICATION DIVISION. 

 

    PROGRAM-ID.           EMPDISP. 

    AUTHOR.             COMPUTER ASSOCIATES INTERNATIONAL. 

 
 

    DATE-WRITTEN.          APRIL 1995. 

 

    REMARKS.            THIS PROGRAM DEMONSTRATES 

                    CA IDMS PROGRAMMING USING 

                    THE LOGICAL RECORD FACILITY. 
 

 

   *************************************************************** 

    ENVIRONMENT DIVISION. 

   *************************************************************** 

    IDMS-CONTROL SECTION. 

 

    PROTOCOL.           MODE IS IDMS-DC DEBUG 

                      IDMS-RECORDS MANUAL. 

      SKIP3 

    DATA DIVISION. 

 

    SCHEMA SECTION. 
 

 

      DB EMPSS09 WITHIN EMPSCHM. 

 

    MAP SECTION. 

    MAX FIELD LIST IS 5. 

    MAP EMPMAPLR VERSION 1 TYPE IS STANDARD. 

    WORKING-STORAGE SECTION. 

    01 TASK-CODE     PIC X(8). 

    01 TSK01       PIC X(8)   VALUE 'TSK01'. 

    01 TSK02       PIC X(8)   VALUE 'TSK02'. 
 

 

    01 MESSAGES. 

      05 INITIAL-MESSAGE     PIC X(80) VALUE 

       'ENTER AN EMP ID AND PRESS ENTER ** CLEAR TO EXIT'. 

      05 EDIT-ERROR-MESSAGE   PIC X(80) VALUE 

       'EMP-ID EITHER NOT ENTERED OR NOT NUMERIC'. 

      05 EMP-NOT-FOUND-MESSAGE  PIC X(80) VALUE 

       'SPECIFIED EMPLOYEE COULD NOT BE FOUND'. 

      05 DISPLAY-MESSAGE     PIC X(80) VALUE 

       'CLEAR TO EXIT ** NEW EMP-ID AND ENTER TO CONTINUE'. 
 



Application Runtime Requirements  

 

408  DML Reference Guide for COBOL 

 

 

    01 COPY IDMS DC-AID-CONDITION-NAMES. 

 

    01 COPY IDMS EMP-DATE-WORK-REC. 

 

    01 COPY IDMS SUBSCHEMA-LR-CONTROL. 

 

    01 COPY IDMS SUBSCHEMA-LR-RECORDS. 

      03 SUBSCHEMA-LR-CTRL-END     PIC X. 

 

    01 COPY IDMS MAP-CONTROLS. 

 

      EJECT 

    PROCEDURE DIVISION. 

 
 

   *  ********************************************************* 

   *  * PROCEDURE DIVISION GENERAL STRATEGY:         * 

   *  *   RETRIEVE INFORMATION FOR A SPECIFIED EMPLOYEE.  * 

   *  *   DISPLAYED DATA INCLUDES EMPLOYEE, DEPARTMENT,  * 

   *  *          JOB, AND OFFICE INFORMATION.    * 

   *  * ==> THIS PROGRAM USES THE EMP-JOB-LR LOGICAL RECORD<= * 

   *  * PROGRAM STRATEGY:                  * 

   *  *     ** CHECK FOR TASK CODE: TSK01= INITIAL MAPOUT * 

   *  *            ANYTHING ELSE = RETRIEVE LR  * 

   *  *     ** CLEAR TO EXIT APPLICATION         * 

   *  *     ** ENTER AND NEW EMP-ID TO CONTINUE      * 

   *  ********************************************************* 

    MAIN-LINE. 

   *************************************************************** 

   * THE BIND MAP STATEMENTS ADVISE IDMS-DC OF THE LOCATION OF * 

   * THE MRB AND THE MAP RECORDS.                * 
 

   *************************************************************** 

      BIND MAP EMPMAPLR. 

      BIND MAP EMPMAPLR RECORD EMPLOYEE. 

      BIND MAP EMPMAPLR RECORD DEPARTMENT. 

      BIND MAP EMPMAPLR RECORD JOB. 

      BIND MAP EMPMAPLR RECORD OFFICE. 

      BIND MAP EMPMAPLR RECORD EMP-DATE-WORK-REC. 

   *  ACCEPT TASK CODE INTO TASK-CODE. 

      IF TASK-CODE = TSK01 

        GO TO INITIAL-MAPOUT 

      ELSE 

        GO TO GET-EMP. 

   *************************************************************** 

   *************************************************************** 

   * THE INITIAL-MAPOUT PARAGRAPH IS PERFORMED IF THE CALLING  * 

   * TASK CODE IS TSK01.                     * 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  409  

 

   *************************************************************** 

   * THE MODIFY MAP STATEMENT ASSIGNS THE PROTECTED       * 

   * ATTRIBUTE TO ALL MAP FIELDS EXCEPT EMP-ID-0415.       * 

   *************************************************************** 

   * THE MAP OUT STATEMENT TRANSMITS THE EMPMAPLR MAP      * 

   * TO THE TERMINAL.                      * 

   *************************************************************** 

   * THE DC RETURN STATEMENT SPECIFIES THAT THE NEXT      * 

   * TASK THAT WILL BE INITIATED ON THE SAME TERMINAL WHEN THE  * 

   * OPERATOR PRESSES A CONTROL KEY WILL BE TSK02.        * 

   *************************************************************** 

    INITIAL-MAPOUT. 

      MODIFY MAP EMPMAPLR TEMPORARY 

       FOR ALL EXCEPT EMP-ID-0415 

        ATTRIBUTES PROTECTED. 
 

   * 

      MOVE ZERO TO EMP-ID-0415. 

      MAP OUT USING EMPMAPLR 

       OUTPUT DATA IS YES NEWPAGE 

       MESSAGE IS INITIAL-MESSAGE LENGTH 80. 

 

      DC RETURN 

       NEXT TASK CODE TSK02. 

    INITIAL-MAPOUT-EXIT. 

      EXIT. 

   *************************************************************** 

   *************************************************************** 

   * THE GET-EMP PARAGRAPH IS PERFORMED IF THE CALLING TASK   * 

   * CODE IS NOT TSK01.                     * 

   *************************************************************** 

   * THE MAP IN STATEMENT TRANSMITS DATA FROM THE TERMINAL TO  * 
 

   * VARIABLE STORAGE DATA FIELDS.                * 

   *************************************************************** 

   * THIS FIRST INQUIRE MAP STATEMENT IS USED TO DETERMINE   * 

   * THE AID KEY PRESSED.                    * 

   *************************************************************** 

   * THIS SECOND INQUIRE MAP STATEMENT USES AUTOMATIC EDITING  * 

   * TO DETERMINE IF THE DATA ENTERED IS CONSISTENT WITH     * 

   * THE EXTERNAL PICTURE OF THE NAMED DATA ELEMENT.       * 

   *************************************************************** 

   * THE MAP OUT STATEMENT TRANSMITS DATA FROM THE       * 

   * EMP-JOB-LR LOGICAL RECORD IN VARIABLE STORAGE TO MAP    * 

   * FIELDS.                           * 

   *************************************************************** 

    GET-EMP. 

      MAP IN USING EMPMAPLR. 
 



Application Runtime Requirements  

 

410  DML Reference Guide for COBOL 

 

   * 

      INQUIRE MAP EMPMAPLR 

       MOVE AID TO DC-AID-IND-V. 

      IF CLEAR-HIT 

       DC RETURN. 

 

   * 

      INQUIRE MAP EMPMAPLR 

       IF DFLD EMP-ID-0415 EDIT IS ERROR 

        THEN GO TO EDIT-ERROR. 

   * 

      COPY IDMS SUBSCHEMA-BINDS. 

      READY USAGE-MODE IS RETRIEVAL. 

   *************************************************************** 

   * SINCE THE MAP FIELD IS ASSOCIATED WITH THE EMP-ID-0415   * 

   * FIELD, THE PROGRAM USES THE "OF LR" RETRIEVAL. NOTE THAT  * 
 

   * AUTOSTATUS IMPLICITLY CHECKS FOR THE LR-ERROR PATH STATUS. * 

   *************************************************************** 

      OBTAIN EMP-JOB-LR 

        WHERE EMP-ID-0415 = EMP-ID-0415 OF LR 

        ON LR-NOT-FOUND 

          GO TO NOT-FOUND. 

      FINISH. 

   *************************************************************** 

   * REFORMAT DATE TO MMDDYY; OUTPUT AS MM/DD/YY USING THE OLM * 

   * EXTERNAL PICTURE SPECIFICATION (XX/XX/XX).         * 

   *************************************************************** 

      MOVE START-YEAR-0415 TO WORK-YY. 

      MOVE START-MONTH-0415 TO WORK-MM. 

      MOVE START-DAY-0415 TO WORK-DD. 

 

      MAP OUT USING EMPMAPLR 
 

       OUTPUT DATA IS YES 

       MESSAGE IS DISPLAY-MESSAGE LENGTH 80. 

   * 

      DC RETURN NEXT TASK CODE TSK02. 

    GET-EMP-EXIT. 

      EXIT. 

   *************************************************************** 

   *************************************************************** 

   * THE MODIFY MAP STATEMENT SPECIFIES THAT ALL MAP      * 

   * FIELDS EXCEPT THE INCORRECT EMP-ID-0415 FIELD WILL BE    * 

   * ERASED ON THE NEXT MAP OUT.                 * 

   *************************************************************** 

    EDIT-ERROR. 

      MODIFY MAP EMPMAPLR TEMPORARY 

       FOR ALL EXCEPT DFLD EMP-ID-0415 

        OUTPUT DATA IS ERASE. 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  411  

 

   * 

      MAP OUT USING EMPMAPLR 

       MESSAGE IS EDIT-ERROR-MESSAGE LENGTH 80. 

   * 

      DC RETURN 

       NEXT TASK CODE TSK02. 

    EDIT-ERROR-EXIT. 

      EXIT. 

   *************************************************************** 

   *************************************************************** 

   * THE FOLLOWING MODIFY MAP STATEMENT SPECIFIES THAT ALL   * 

   * MAP FIELDS EXCEPT THE EMP-ID-0415 FIELD WILL BE ERASED   * 

   * ON THE NEXT MAP OUT.                    * 

   *************************************************************** 

    NOT-FOUND. 
 

      MODIFY MAP EMPMAPLR TEMPORARY 

       FOR ALL EXCEPT DFLD EMP-ID-0415 

        OUTPUT DATA IS ERASE. 

   * 

      MAP OUT USING EMPMAPLR 

       MESSAGE IS EMP-NOT-FOUND-MESSAGE LENGTH 80. 

   * 

      DC RETURN 

       NEXT TASK CODE TSK02. 

    NOT-FOUND-EXIT. 

      EXIT. 

   *************************************************************** 

    IDMS-ABORT. 

      MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE. 

      MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE. 

      SNAP FROM SUBSCHEMA-LR-CTRL TO SUBSCHEMA-LR-CTRL-END 
 

        ON ANY-STATUS NEXT SENTENCE. 

      MOVE SSC-ERRSTAT-SAVE TO ERROR-STATUS. 

      MOVE SSC-DMLSEQ-SAVE TO DML-SEQUENCE. 

    IDMS-ABORT-EXIT. 

      EXIT. 

      COPY IDMS IDMS-STATUS. 
 



Application Runtime Requirements  

 

412  DML Reference Guide for COBOL 

 

Sample Online COBOL Program as Output from the DML Precompiler 

      00002    *DMLIST 

      00003 

      00004     IDENTIFICATION DIVISION. 

      00005 

      00006     PROGRAM-ID.           EMPDISP. 

      00007 

      00008     AUTHOR.             COMPUTER ASSOCIATES INTERNATIONAL. 

      00009 

      00010     DATE-WRITTEN.          APRIL 1995. 

      00011 

      00012     REMARKS.            THIS PROGRAM DEMONSTRATES 

      00013                     CA IDMS PROGRAMMING USING 

      00014                     THE LOGICAL RECORD FACILITY. 
 

      00015 

      00016    *************************************************************** 

      00017     ENVIRONMENT DIVISION. 

      00018    *************************************************************** 

DMLC  00019     IDMS-CONTROL SECTION. 

      00020 

DMLC  00021     PROTOCOL.           MODE IS IDMS-DC DEBUG 

DMLC  00022                       IDMS-RECORDS MANUAL. 

      00023       SKIP3 

      00024     DATA DIVISION. 

      00025 

DMLC  00026     SCHEMA SECTION. 

      00027 

DMLC  00028       DB EMPSS09 WITHIN EMPSCHM. 

      00029 

DMLC  00030     MAP SECTION. 
 

DMLC  00031     MAX FIELD LIST IS 5. 

DMLC  00032     MAP EMPMAPLR VERSION 1 TYPE IS STANDARD. 

      00033 

      00034 

      00035 

      00036     WORKING-STORAGE SECTION. 

      00037     01 TASK-CODE     PIC X(8). 

      00038     01 TSK01       PIC X(8)   VALUE 'TSK01'. 

      00039     01 TSK02       PIC X(8)   VALUE 'TSK02'. 

      00040 

      00041     01 MESSAGES. 

      00042       05 INITIAL-MESSAGE     PIC X(80) VALUE 

      00043        'ENTER AN EMP ID AND PRESS ENTER ** CLEAR TO EXIT'. 

      00044       05 EDIT-ERROR-MESSAGE   PIC X(80) VALUE 

      00045        'EMP-ID EITHER NOT ENTERED OR NOT NUMERIC'. 

      00046       05 EMP-NOT-FOUND-MESSAGE  PIC X(80) VALUE 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  413  

 

      00047        'SPECIFIED EMPLOYEE COULD NOT BE FOUND'. 

      00048       05 DISPLAY-MESSAGE     PIC X(80) VALUE 

      00049        'CLEAR TO EXIT ** NEW EMP-ID AND ENTER TO CONTINUE'. 

      00050 

DMLC  00051     01 COPY IDMS DC-AID-CONDITION-NAMES. 

      00052     01 DC-AID-CONDITION-NAMES. 

      00053       03 DC-AID-IND-V      PIC X. 

      00054                   88 ENTER-HIT VALUE QUOTE. 

      00055                   88 CLEAR-HIT VALUE '_'. 

      00056                   88 PF01-HIT VALUE '1'. 

      00057                   88 PF02-HIT VALUE '2'. 

      00058                   88 PF03-HIT VALUE '3'. 

      00059                   88 PF04-HIT VALUE '4'. 

      00060                   88 PF05-HIT VALUE '5'. 

      00061                   88 PF06-HIT VALUE '6'. 
 

      00062                   88 PF07-HIT VALUE '7'. 

      00063                   88 PF08-HIT VALUE '8'. 

      00064                   88 PF09-HIT VALUE '9'. 

      00065                   88 PF10-HIT VALUE ':'. 

      00066                   88 PF11-HIT VALUE '#'. 

      00067                   88 PF12-HIT VALUE '@'. 

      00068                   88 PF13-HIT VALUE 'A'. 

      00069                   88 PF14-HIT VALUE 'B'. 

      00070                   88 PF15-HIT VALUE 'C'. 

      00071                   88 PF16-HIT VALUE 'D'. 

      00072                   88 PF17-HIT VALUE 'E'. 

      00073                   88 PF18-HIT VALUE 'F'. 

      00074                   88 PF19-HIT VALUE 'G'. 

      00075                   88 PF20-HIT VALUE 'H'. 

      00076                   88 PF21-HIT VALUE 'I'. 

      00077                   88 PF22-HIT VALUE '_'. 
 

      00078                   88 PF23-HIT VALUE '.'. 

      00079                   88 PF24-HIT VALUE '<'. 

      00080                   88 PA01-HIT VALUE '%'. 

      00081                   88 PA02-HIT VALUE '>'. 

      00082                   88 PA03-HIT VALUE ','. 

      00083                   88 PEN-ATTN-SPACE-NULL VALUE '='. 

      00084                   88 PEN-ATTN VALUE QUOTE. 

      00085 

DMLC  00086     01 COPY IDMS EMP-DATE-WORK-REC. 

      00087     01 EMP-DATE-WORK-REC. 

      00088       02 WORK-DATE. 

      00089       03 WORK-MM        PIC 9(2). 

      00090       03 WORK-DD        PIC 9(2). 

      00091       03 WORK-YY        PIC 9(2). 

      00092 
 



Application Runtime Requirements 

 

414  DML Reference Guide for COBOL 

 

DMLC  00093     01 COPY IDMS SUBSCHEMA-LR-CONTROL. 

      00094     01 SUBSCHEMA-CTRL. 

      00095       03 PROGRAM-NAME      PIC X(8) VALUE SPACES. 

      00096       03 ERROR-STATUS      PIC X(4) VALUE '1400'. 

      00097                   88 DB-STATUS-OK VALUE '0000'. 

      00098                   88 ANY-STATUS 

      00099                     VALUE '0000' THRU '9999'. 

      00100                   88 ANY-ERROR-STATUS 

      00101                     VALUE '0001' THRU '9999'. 

      00102                   88 DB-END-OF-SET VALUE '0307'. 

      00103                   88 DB-REC-NOT-FOUND VALUE '0326'. 

      00104                   88 DC-DEADLOCK VALUE '3101' 

      00105                     '3201' '3401' '3901'. 

      00106                   88 DC-NO-STORAGE VALUE '3202' 

      00107                     '3402'. 

      00108                   88 DC-AREA-ID-UNK VALUE '4303'. 
 

      00109                   88 DC-QUEUE-ID-UNK VALUE '4404'. 

      00110                   88 DC-REC-NOT-FOUND VALUE '4305' 

      00111                     '4405'. 

      00112                   88 DC-RESOURCE-NOT-AVAIL 

      00113                     VALUE '3908'. 

      00114                   88 DC-RESOURCE-AVAIL 

      00115                     VALUE '3909'. 

      00116                   88 DC-NEW-STORAGE VALUE '3210'. 

      00117                   88 DC-MAX-TASKS VALUE '3711'. 

      00118                   88 DC-REC-REPLACED VALUE '4317'. 

      00119                   88 DC-TRUNCATED-DATA 
 

      00120                     VALUE '4319' '4419' 

      00121                     '4519' '4719'. 

      00122                   88 DC-ATTN-INT VALUE '4525' 

      00123                     '4625'. 

      00124                   88 DC-OPER-CANCEL VALUE '4743'. 

      00125                   88 DC-FIRST-PAGE-SENT 

      00126                     VALUE '4676'. 

      00127                   88 DC-SECOND-STARTPAGE 

      00128                     VALUE '4604'. 

      00129                   88 DC-DETAIL-NOT-FOUND 

      00130                     VALUE '4664'. 

      00131       03 DBKEY         PIC S9(8) 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  415  

 

      00132                     USAGE COMP. 

      00133       03 RECORD-NAME      PIC X(16) VALUE SPACES. 

      00134       03 RRECORD-NAME      REDEFINES RECORD-NAME. 

      00135        05 SSC-NODN       PIC X(8). 

      00136        05 SSC-DBN       PIC X(8). 

      00137       03 AREA-NAME       PIC X(16) VALUE SPACES. 

      00138       03 ERROR-SET       PIC X(16) VALUE SPACES. 

      00139       03 ERROR-RECORD      PIC X(16) VALUE SPACES. 

      00140       03 ERROR-AREA       PIC X(16) VALUE SPACES. 

      00141       03 IDBMSCOM-AREA     PIC X(100) VALUE LOW-VALUE. 

      00142       03 IDBMSCOM        REDEFINES IDBMSCOM-AREA 

      00143                     PIC X 

      00144                     OCCURS 100. 

      00145       03 RIDBMSCOM       REDEFINES IDBMSCOM-AREA. 

      00146        05 DB-SUB-ADDR     PIC X(4). 

      00147        05 FILLER        PIC X(0096). 
 

      00148       03 DIRECT-DBKEY      PIC S9(8) 

      00149                     USAGE COMP. 

      00150       03 DIRECT-DBK       REDEFINES DIRECT-DBKEY 

      00151                     PIC S9(8) 

      00152                     USAGE COMP. 

      00153       03 DCBMSCOM-AREA     PIC X(100) VALUE LOW-VALUE. 

      00154       03 DCBMSCOM        REDEFINES DCBMSCOM-AREA 

      00155                     PIC X 

      00156                     OCCURS 100. 

      00157       03 R1DCBMSCOM       REDEFINES DCBMSCOM-AREA. 

      00158        05 R2DCBMSCOM      PIC S9(8) 

      00159                     OCCURS 11 

      00160                     USAGE COMP. 

      00161        05 DCSTR1        PIC X(16). 

      00162        05 R3DCBMSCOM      REDEFINES DCSTR1. 
 

      00163         07 DCSTR2       PIC X(8). 

      00164         07 R4DCBMSCOM     REDEFINES DCSTR2. 

      00165          09 DCSTR4      PIC X(4). 

      00166          09 DCSTR5      PIC X(4). 

      00167         07 DCSTR3       PIC X(8). 

      00168        05 R5DCBMSCOM      REDEFINES DCSTR1. 

      00169         07 DCPNUM1      PIC S9(15) 

      00170                     USAGE COMP-3. 

      00171        05 DCNUM1        PIC S9(8) 

      00172                     USAGE COMP. 

      00173        05 R6DCBMSCOM      REDEFINES DCNUM1. 

      00174         07 DCPNUM2      PIC S9(7) 

      00175                     USAGE COMP-3. 

      00176        05 DCNUM2        PIC S9(8) 

      00177                     USAGE COMP. 

      00178        05 DCNUM3        PIC S9(8) 
 



Application Runtime Requirements  

 

416  DML Reference Guide for COBOL 

 

      00179                     USAGE COMP. 

      00180        05 DCFLG1        PIC S9(4) 

      00181                     USAGE COMP. 

      00182        05 DCFLG2        PIC S9(4) 

      00183                     USAGE COMP. 

      00184        05 DCFLG3        PIC S9(4) 

      00185                     USAGE COMP. 

      00186        05 DCFLG4        PIC S9(4) 

      00187                     USAGE COMP. 

      00188       03 SSC-ERRSTAT-SAVE    PIC X(4) VALUE SPACES. 

      00189       03 SSC-DMLSEQ-SAVE    PIC S9(8) 

      00190                     USAGE COMP. 

      00191       03 DML-SEQUENCE      PIC S9(8) 

      00192                     USAGE COMP. 

      00193       03 RECORD-OCCUR      PIC S9(8) 
 

      00194                     USAGE COMP. 

      00195       03 SUBSCHEMA-CTRL-END   PIC X(4) VALUE SPACES. 

      00196     01 SUBSCHEMA-LR-CTRL. 

      00197       03 LRC-LRPXELNG      PIC S9(4) 

      00198                     USAGE COMP. 

      00199       03 LRC-MAXVXP       PIC S9(4) 

      00200                     USAGE COMP. 

      00201       03 LRIDENT        PIC X(4) VALUE 'LRC '. 

      00202       03 LRVERB         PIC X(8). 

      00203       03 LRNAME         PIC X(16). 

      00204       03 LR-STATUS       PIC X(16). 

      00205       03 FILLER         PIC X(16). 

      00206       03 LRPXE         PIC X 

      00207                     OCCURS 0 TO 512 

      00208                     DEPENDING ON LRC-LRPXELNG. 

      00209       03 PXE. 

      00210        05 PXENEXT       PIC S9(8) 

      00211                     USAGE COMP. 

      00212        05 PXETABO       PIC S9(4) 

      00213                     USAGE COMP. 

      00214        05 PXEDSPL       PIC S9(4) 

      00215                     USAGE COMP. 

      00216        05 PXEDYN        PIC S9(4) 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  417  

 

      00217                     USAGE COMP. 

      00218        05 PXEDLEN       PIC S9(4) 

      00219                     USAGE COMP. 

      00220        05 PXENDEC       PIC X. 

      00221        05 PXEDTYP       PIC X. 

      00222        05 PXEOTYP       PIC X. 

      00223        05 PXEFLAG       PIC X. 

      00224        05 FILLER        PIC X(240). 

      00225       03 PXEDSP256       REDEFINES PXE 

      00226                     PIC X(256). 

      00227       03 PXEDSP248       REDEFINES PXE 

      00228                     PIC X(248). 

      00229       03 PXEDSP240       REDEFINES PXE 

      00230                     PIC X(240). 

      00231       03 PXEDSP232       REDEFINES PXE 

      00232                     PIC X(232). 
 

      00233       03 PXEDSP224       REDEFINES PXE 

      00234                     PIC X(224). 

      00235       03 PXEDSP216       REDEFINES PXE 

      00236                     PIC X(216). 

      00237       03 PXEDSP208       REDEFINES PXE 

      00238                     PIC X(208). 

      00239       03 PXEDSP200       REDEFINES PXE 

      00240                     PIC X(200). 

      00241       03 PXEDSP192       REDEFINES PXE 

      00242                     PIC X(192). 

      00243       03 PXEDSP184       REDEFINES PXE 

      00244                     PIC X(184). 

      00245       03 PXEDSP176       REDEFINES PXE 

      00246                     PIC X(176). 

      00247       03 PXEDSP168       REDEFINES PXE 
 

      00248                     PIC X(168). 

      00249       03 PXEDSP160       REDEFINES PXE 

      00250                     PIC X(160). 

      00251       03 PXEDSP152       REDEFINES PXE 

      00252                     PIC X(152). 

      00253       03 PXEDSP144       REDEFINES PXE 

      00254                     PIC X(144). 

      00255       03 PXEDSP136       REDEFINES PXE 

      00256                     PIC X(136). 

      00257       03 PXEDSP128       REDEFINES PXE 

      00258                     PIC X(128). 

      00259       03 PXEDSP120       REDEFINES PXE 

      00260                     PIC X(120). 

      00261       03 PXEDSP112       REDEFINES PXE 

      00262                     PIC X(112). 

      00263       03 PXEDSP104       REDEFINES PXE 
 



Application Runtime Requirements  

 

418  DML Reference Guide for COBOL 

 

      00264                     PIC X(104). 

      00265       03 PXEDSP96        REDEFINES PXE 

      00266                     PIC X(96). 

      00267       03 PXEDSP88        REDEFINES PXE 

      00268                     PIC X(88). 

      00269       03 PXEDSP80        REDEFINES PXE 

      00270                     PIC X(80). 

      00271       03 PXEDSP72        REDEFINES PXE 

      00272                     PIC X(72). 

      00273       03 PXEDSP64        REDEFINES PXE 

      00274                     PIC X(64). 

      00275       03 PXEDSP56        REDEFINES PXE 

      00276                     PIC X(56). 

      00277       03 PXEDSP48        REDEFINES PXE 

      00278                     PIC X(48). 

      00279       03 PXEDSP40        REDEFINES PXE 
 

      00280                     PIC X(40). 

      00281       03 PXEDSP32        REDEFINES PXE 

      00282                     PIC X(32). 

      00283       03 PXEDSP24        REDEFINES PXE 

      00284                     PIC X(24). 

      00285       03 PXEDSP16        REDEFINES PXE 

      00286                     PIC X(16). 

      00287       03 PXEDSP8        REDEFINES PXE 

      00288                     PIC X(8). 

      00289       03 PXECOMP-1       REDEFINES PXE 

      00290                     USAGE COMP-1. 

      00291       03 PXECOMP-2       REDEFINES PXE 

      00292                     USAGE COMP-2. 

      00293       03 PXECOMP-30       REDEFINES PXE 

      00294                     PIC S9(18) 
 

      00295                     USAGE COMP-3. 

      00296       03 PXECOMP-31       REDEFINES PXE 

      00297                     PIC S9(17)V9(1) 

      00298                     USAGE COMP-3. 

      00299       03 PXECOMP-32       REDEFINES PXE 

      00300                     PIC S9(16)V9(2) 

      00301                     USAGE COMP-3. 

      00302       03 PXECOMP-33       REDEFINES PXE 

      00303                     PIC S9(15)V9(3) 

      00304                     USAGE COMP-3. 

      00305       03 PXECOMP-34       REDEFINES PXE 

      00306                     PIC S9(14)V9(4) 

      00307                     USAGE COMP-3. 

      00308       03 PXECOMP-35       REDEFINES PXE 

      00309                     PIC S9(13)V9(5) 

      00310                     USAGE COMP-3. 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  419  

 

      00311       03 PXECOMP-36       REDEFINES PXE 

      00312                     PIC S9(12)V9(6) 

      00313                     USAGE COMP-3. 

      00314       03 PXECOMP-37       REDEFINES PXE 

      00315                     PIC S9(11)V9(7) 

      00316                     USAGE COMP-3. 

      00317       03 PXECOMP-38       REDEFINES PXE 

      00318                     PIC S9(10)V9(8) 

      00319                     USAGE COMP-3. 

      00320       03 PXECOMP-39       REDEFINES PXE 

      00321                     PIC S9(9)V9(9) 

      00322                     USAGE COMP-3. 

      00323       03 PXECOMP-310      REDEFINES PXE 

      00324                     PIC S9(8)V9(10) 

      00325                     USAGE COMP-3. 
 

      00326       03 PXECOMP-311      REDEFINES PXE 

      00327                     PIC S9(7)V9(11) 

      00328                     USAGE COMP-3. 

      00329       03 PXECOMP-312      REDEFINES PXE 

      00330                     PIC S9(6)V9(12) 

      00331                     USAGE COMP-3. 

      00332       03 PXECOMP-313      REDEFINES PXE 

      00333                     PIC S9(5)V9(13) 

      00334                     USAGE COMP-3. 

      00335       03 PXECOMP-314      REDEFINES PXE 

      00336                     PIC S9(4)V9(14) 

      00337                     USAGE COMP-3. 

      00338       03 PXECOMP-315      REDEFINES PXE 

      00339                     PIC S9(3)V9(15) 

      00340                     USAGE COMP-3. 

      00341       03 PXECOMP-316      REDEFINES PXE 
 

      00342                     PIC S9(2)V9(16) 

      00343                     USAGE COMP-3. 

      00344       03 PXECOMP-317      REDEFINES PXE 

      00345                     PIC S9(1)V9(17) 

      00346                     USAGE COMP-3. 

      00347       03 PXECOMP-318      REDEFINES PXE 

      00348                     PIC SV9(18) 

      00349                     USAGE COMP-3. 

      00350       03 PXECOMP20       REDEFINES PXE 

      00351                     PIC S9(4) 

      00352                     USAGE COMP. 

      00353       03 PXECOMP21       REDEFINES PXE 

      00354                     PIC S9(3)V9(1) 

      00355                     USAGE COMP. 

      00356       03 PXECOMP22       REDEFINES PXE 
 



Application Runtime Requirements  

 

420  DML Reference Guide for COBOL 

 

      00357                     PIC S9(2)V9(2) 

      00358                     USAGE COMP. 

      00359       03 PXECOMP23       REDEFINES PXE 

      00360                     PIC S9(1)V9(3) 

      00361                     USAGE COMP. 

      00362       03 PXECOMP24       REDEFINES PXE 

      00363                     PIC SV9(4) 

      00364                     USAGE COMP. 

      00365       03 PXECOMP40       REDEFINES PXE 

      00366                     PIC S9(9) 

      00367                     USAGE COMP. 

      00368       03 PXECOMP41       REDEFINES PXE 

      00369                     PIC S9(8)V9(1) 

      00370                     USAGE COMP. 

      00371       03 PXECOMP42       REDEFINES PXE 
 

      00372                     PIC S9(7)V9(2) 

      00373                     USAGE COMP. 

      00374       03 PXECOMP43       REDEFINES PXE 

      00375                     PIC S9(6)V9(3) 

      00376                     USAGE COMP. 

      00377       03 PXECOMP44       REDEFINES PXE 

      00378                     PIC S9(5)V9(4) 

      00379                     USAGE COMP. 

      00380       03 PXECOMP45       REDEFINES PXE 

      00381                     PIC S9(4)V9(5) 

      00382                     USAGE COMP. 

      00383       03 PXECOMP46       REDEFINES PXE 

      00384                     PIC S9(3)V9(6) 

      00385                     USAGE COMP. 

      00386       03 PXECOMP47       REDEFINES PXE 

      00387                     PIC S9(2)V9(7) 
 

      00388                     USAGE COMP. 

      00389       03 PXECOMP48       REDEFINES PXE 

      00390                     PIC S9(1)V9(8) 

      00391                     USAGE COMP. 

      00392       03 PXECOMP49       REDEFINES PXE 

      00393                     PIC SV9(9) 

      00394                     USAGE COMP. 

      00395       03 PXECOMP80       REDEFINES PXE 

      00396                     PIC S9(18) 

      00397                     USAGE COMP. 

      00398       03 PXECOMP81       REDEFINES PXE 

      00399                     PIC S9(17)V9(1) 

      00400                     USAGE COMP. 

      00401       03 PXECOMP82       REDEFINES PXE 

      00402                     PIC S9(16)V9(2) 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  421  

 

      00403                     USAGE COMP. 

      00404       03 PXECOMP83       REDEFINES PXE 

      00405                     PIC S9(15)V9(3) 

      00406                     USAGE COMP. 

      00407       03 PXECOMP84       REDEFINES PXE 

      00408                     PIC S9(14)V9(4) 

      00409                     USAGE COMP. 

      00410       03 PXECOMP85       REDEFINES PXE 

      00411                     PIC S9(13)V9(5) 

      00412                     USAGE COMP. 

      00413       03 PXECOMP86       REDEFINES PXE 

      00414                     PIC S9(12)V9(6) 

      00415                     USAGE COMP. 

      00416       03 PXECOMP87       REDEFINES PXE 

      00417                     PIC S9(11)V9(7) 

      00418                     USAGE COMP. 
 
  

      00419       03 PXECOMP88       REDEFINES PXE 

      00420                     PIC S9(10)V9(8) 

      00421                     USAGE COMP. 

      00422       03 PXECOMP89       REDEFINES PXE 

      00423                     PIC S9(9)V9(9) 

      00424                     USAGE COMP. 

      00425       03 PXECOMP810       REDEFINES PXE 

      00426                     PIC S9(8)V9(10) 

      00427                     USAGE COMP. 

      00428       03 PXECOMP811       REDEFINES PXE 

      00429                     PIC S9(7)V9(11) 

      00430                     USAGE COMP. 

      00431       03 PXECOMP812       REDEFINES PXE 

      00432                     PIC S9(6)V9(12) 

      00433                     USAGE COMP. 

      00434       03 PXECOMP813       REDEFINES PXE 

      00435                     PIC S9(5)V9(13) 

      00436                     USAGE COMP. 

      00437       03 PXECOMP814       REDEFINES PXE 

      00438                     PIC S9(4)V9(14) 

      00439                     USAGE COMP. 

      00440       03 PXECOMP815       REDEFINES PXE 
 



Application Runtime Requirements  

 

422  DML Reference Guide for COBOL 

 

      00441                     PIC S9(3)V9(15) 

      00442                     USAGE COMP. 

      00443       03 PXECOMP816       REDEFINES PXE 

      00444                     PIC S9(2)V9(16) 

      00445                     USAGE COMP. 

      00446       03 PXECOMP817       REDEFINES PXE 

      00447                     PIC S9(1)V9(17) 

      00448                     USAGE COMP. 

      00449       03 PXECOMP818       REDEFINES PXE 

      00450                     PIC SV9(18) 

      00451                     USAGE COMP. 

      00452     01 SUBSCHEMA-SSNAME      PIC X(8) VALUE 'EMPSS09 '. 

      00453     01 SUBSCHEMA-AREANAMES. 

      00454       03 EMP-DEMO-REGION    PIC X(16) 

      00455                     VALUE 'EMP-DEMO-REGION '. 

      00456       03 INS-DEMO-REGION    PIC X(16) 
 

      00457                     VALUE 'INS-DEMO-REGION '. 

      00458       03 ORG-DEMO-REGION    PIC X(16) 

      00459                     VALUE 'ORG-DEMO-REGION '. 

      00460 

DMLC  00461     01 COPY IDMS SUBSCHEMA-LR-RECORDS. 

      00462     01 EMP-JOB-LR. 

      00463       02 EMPLOYEE. 

      00464       03 EMP-ID-0415      PIC 9(4). 

      00465       03 EMP-NAME-0415. 

      00466        04 EMP-FIRST-NAME-0415  PIC X(10). 

      00467        04 EMP-LAST-NAME-0415  PIC X(15). 

      00468       03 STATUS-0415      PIC X(2). 

      00469                   88 ACTIVE-0415 VALUE '01'. 

      00470                   88 ST-DISABIL-0415 VALUE '02'. 

      00471                   88 LT-DISABIL-0415 VALUE '03'. 
 

      00472                   88 LEAVE-OF-ABSENCE-0415 

      00473                     VALUE '04'. 

      00474                   88 TERMINATED-0415 VALUE '05'. 

      00475       03 SS-NUMBER-0415     PIC 9(9). 

      00476       03 START-DATE-0415. 

      00477        04 START-YEAR-0415    PIC 9(2). 

      00478        04 START-MONTH-0415   PIC 9(2). 

      00479        04 START-DAY-0415    PIC 9(2). 

      00480       03 FILLER         PIC X(2). 

      00481       02 DEPARTMENT. 

      00482       03 DEPT-ID-0410      PIC 9(4). 

      00483       03 DEPT-NAME-0410     PIC X(45). 

      00484       03 DEPT-HEAD-ID-0410   PIC 9(4). 

      00485       03 FILLER         PIC XXX. 

      00486       02 JOB. 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  423  

 

      00487       03 JOB-ID-0440      PIC 9(4). 

      00488       03 TITLE-0440       PIC X(20). 

      00489       02 OFFICE. 

      00490       03 OFFICE-CODE-0450    PIC X(3). 

      00491       03 OFFICE-ADDRESS-0450. 

      00492        04 OFFICE-STREET-0450  PIC X(20). 

      00493        04 OFFICE-CITY-0450   PIC X(15). 

      00494        04 OFFICE-STATE-0450   PIC X(2). 

      00495        04 OFFICE-ZIP-0450. 

      00496        05 OFFICE-ZIP-FIRST-FIVE-0450 

      00497                     PIC X(5). 

      00498        05 OFFICE-ZIP-LAST-FOUR-0450 

      00499                     PIC X(4). 

      00500       03 OFFICE-PHONE-0450   PIC 9(7) 

      00501                     OCCURS 3. 

      00502       03 OFFICE-AREA-CODE-0450 PIC X(3). 
 

      00503       03 SPEED-DIAL-0450    PIC X(3). 

      00504       03 FILLER         PIC X(4). 

      00505       03 SUBSCHEMA-LR-CTRL-END     PIC X. 

      00506 

DMLC  00507     01 COPY IDMS MAP-CONTROLS. 

      00508     01 MRB-EMPMAPLR. 

      00509       03 MRB-EMPMAPLR-ID    PIC X(8). 

      00510       03 MRB-EMPMAPLR-MCOMP-VER. 

      00511        05 MRB-EMPMAPLR-MCOMP-DATE 

      00512                     PIC X(8). 

      00513        05 MRB-EMPMAPLR-MCOMP-TIME 

      00514                     PIC X(6). 

      00515        05 MRB-EMPMAPLR-MCOMP-VERID 

      00516                     PIC X(2). 

      00517       03 MRB-EMPMAPLR-SUBSCHEMA PIC X(8). 
 

      00518       03 MRB-EMPMAPLR-FLGS   PIC X 

      00519                     OCCURS 4. 

      00520       03 FILLER         PIC X(6). 

      00521       03 MRB-EMPMAPLR-NFLDS   PIC S9(4) 

      00522                     USAGE COMP. 

      00523       03 MRB-EMPMAPLR-NRECS   PIC S9(4) 

      00524                     USAGE COMP. 

      00525       03 MRB-EMPMAPLR-RECOF   PIC S9(4) 

      00526                     USAGE COMP. 

      00527       03 MRB-EMPMAPLR-PERM-CURSOR 

      00528                     PIC XX. 

      00529       03 MRB-EMPMAPLR-TEMP-CURSOR 

      00530                     PIC XX. 

      00531       03 MRB-EMPMAPLR-PERM-WCC PIC X. 

      00532       03 MRB-EMPMAPLR-TEMP-WCC PIC X. 

      00533       03 MRB-EMPMAPLR-CURSOR  PIC XX. 
 



Application Runtime Requirements 

 

424  DML Reference Guide for COBOL 

 

      00534       03 MRB-EMPMAPLR-AID    PIC X. 

      00535       03 MRB-EMPMAPLR-INPUT-FLGS 

      00536                     PIC X. 

      00537       03 MRB-EMPMAPLR-SEGVIEW  PIC X. 

      00538       03 FILLER         PIC X. 

      00539       03 MRB-EMPMAPLR-MREO   PIC S9(4) 

      00540                     USAGE COMP. 

      00541       03 MRB-EMPMAPLR-ERR-CNT  PIC S9(4) 

      00542                     USAGE COMP. 

      00543       03 MRB-EMPMAPLR-ATTR-FLGS PIC X 

      00544                     OCCURS 4. 

      00545       03 MRB-EMPMAPLR-CURR-MFLD PIC S9(4) 

      00546                     USAGE COMP. 

      00547       03 MRB-EMPMAPLR-XTYP   PIC X. 

      00548       03 MRB-EMPMAPLR-FILLER  PIC X. 
 

      00549       03 MRB-EMPMAPLR-MRE-XLEN PIC S9(4) 

      00550                     USAGE COMP. 

      00551       03 MRB-EMPMAPLR-MRB-XLEN PIC S9(4) 

      00552                     USAGE COMP. 

      00553       03 MRB-EMPMAPLR-MRE    OCCURS 11. 

      00554        05 MRB-EMPMAPLR-MRE-FLGS 

      00555                     PIC X 

      00556                     OCCURS 8. 

      00557        05 MRB-EMPMAPLR-MRE-INLEN 

      00558                     PIC S9(4) 

      00559                     USAGE COMP. 

      00560        05 MRB-EMPMAPLR-MRE-PAD-CHAR 

      00561                     PIC X 

      00562                     OCCURS 2. 

      00563        05 MRB-EMPMAPLR-MRE-FLG2 

      00564                     PIC X 
 

      00565                     OCCURS 2. 

      00566       03 MRB-EMPMAPLR-RECS   PIC S9(8) 

      00567                     OCCURS 5 

      00568                     USAGE COMP 

      00569                     SYNC. 

      00570       03 MRB-EMPMAPLR-END    PIC X. 

      00571       03 MRB-EMPMAPLR-MRE-SUB  PIC S9(4) 

      00572                     USAGE COMP. 

      00573 

      00574       EJECT 

      00575     01 MRB-FLDLST. 

      00576       02 FLDLST         PIC S9(8) 

      00577                     OCCURS 6 

      00578                     USAGE COMP. 

      00579     PROCEDURE DIVISION. 

      00580 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  425  

 

      00581    *  ********************************************************* 

      00582    *  * PROCEDURE DIVISION GENERAL STRATEGY:         * 

      00583    *  *   RETRIEVE INFORMATION FOR A SPECIFIED EMPLOYEE.  * 

      00584    *  *   DISPLAYED DATA INCLUDES EMPLOYEE, DEPARTMENT,  * 

      00585    *  *          JOB, AND OFFICE INFORMATION.    * 

      00586    *  * ==> THIS PROGRAM USES THE EMP-JOB-LR LOGICAL RECORD<= * 

      00587    *  * PROGRAM STRATEGY:                  * 

      00588    *  *     ** CHECK FOR TASK CODE: TSK01= INITIAL MAPOUT * 
 

      00589    *  *            ANYTHING ELSE = RETRIEVE LR  * 

      00590    *  *     ** CLEAR TO EXIT APPLICATION         * 

      00591    *  *     ** ENTER AND NEW EMP-ID TO CONTINUE      * 

      00592    *  ********************************************************* 

      00593 

      00594     MAIN-LINE. 

      00595    *************************************************************** 

      00596    * THE BIND MAP STATEMENTS ADVISE IDMS-DC OF THE LOCATION OF * 

      00597    * THE MRB AND THE MAP RECORDS.                * 

      00598    *************************************************************** 

DMLC0001  00599       BIND MAP EMPMAPLR. 

DMLC0002  00628       BIND MAP EMPMAPLR RECORD EMPLOYEE. 

DMLC0003  00635       BIND MAP EMPMAPLR RECORD DEPARTMENT. 

DMLC0004  00642       BIND MAP EMPMAPLR RECORD JOB. 
 

DMLC0005  00649       BIND MAP EMPMAPLR RECORD OFFICE. 

DMLC0006  00656       BIND MAP EMPMAPLR RECORD EMP-DATE-WORK-REC. 

          00663    * 

DMLC0007  00664       ACCEPT TASK CODE INTO TASK-CODE. 

      00671       IF TASK-CODE = TSK01 

      00672         GO TO INITIAL-MAPOUT 

      00673       ELSE 

      00674         GO TO GET-EMP. 

      00675    *************************************************************** 

      00676    *************************************************************** 

      00677    * THE INITIAL-MAPOUT PARAGRAPH IS PERFORMED IF THE CALLING  * 

      00678    * TASK CODE IS TSK01.                     * 

      00679    *************************************************************** 
 

      00680    * THE MODIFY MAP STATEMENT ASSIGNS THE PROTECTED       * 

      00681    * ATTRIBUTE TO ALL MAP FIELDS EXCEPT EMP-ID-0415.       * 

      00682    *************************************************************** 

      00683    * THE MAP OUT STATEMENT TRANSMITS THE EMPMAPLR MAP      * 

      00684    * TO THE TERMINAL.                      * 

      00685    *************************************************************** 

      00686    * THE DC RETURN STATEMENT SPECIFIES THAT THE NEXT      * 

      00687    * TASK THAT WILL BE INITIATED ON THE SAME TERMINAL WHEN THE  * 

      00688    * OPERATOR PRESSES A CONTROL KEY WILL BE TSK02.        * 

      00689    *************************************************************** 

      00690     INITIAL-MAPOUT. 

DMLC0008  00691       MODIFY MAP EMPMAPLR TEMPORARY 
 



Application Runtime Requirements  

 

426  DML Reference Guide for COBOL 

 

DMLC0008  00692        FOR ALL EXCEPT EMP-ID-0415 

DMLC0008  00693         ATTRIBUTES PROTECTED. 

          00707    * 

          00708       MOVE ZERO TO EMP-ID-0415. 

DMLC0009  00709       MAP OUT USING EMPMAPLR 

DMLC0009  00710        OUTPUT DATA IS YES NEWPAGE 

DMLC0009  00711        MESSAGE IS INITIAL-MESSAGE LENGTH 80. 

          00722 

DMLC0010  00723       DC RETURN 

DMLC0010  00724        NEXT TASK CODE TSK02. 

          00731     INITIAL-MAPOUT-EXIT. 

          00732       EXIT. 

      00733    *************************************************************** 

      00734    *************************************************************** 

      00735    * THE GET-EMP PARAGRAPH IS PERFORMED IF THE CALLING TASK   * 

      00736    * CODE IS NOT TSK01.                     * 
 

      00737    *************************************************************** 

      00738    * THE MAP IN STATEMENT TRANSMITS DATA FROM THE TERMINAL TO  * 

      00739    * VARIABLE STORAGE DATA FIELDS.                * 

      00740    *************************************************************** 

      00741    * THIS FIRST INQUIRE MAP STATEMENT IS USED TO DETERMINE   * 

      00742    * THE AID KEY PRESSED.                    * 

      00743    *************************************************************** 

      00744    * THIS SECOND INQUIRE MAP STATEMENT USES AUTOMATIC EDITING  * 

      00745    * TO DETERMINE IF THE DATA ENTERED IS CONSISTENT WITH     * 

      00746    * THE EXTERNAL PICTURE OF THE NAMED DATA ELEMENT.       * 

      00747    *************************************************************** 

      00748    * THE MAP OUT STATEMENT TRANSMITS DATA FROM THE       * 

      00749    * EMP-JOB-LR LOGICAL RECORD IN VARIABLE STORAGE TO MAP    * 

      00750    * FIELDS.                           * 

      00751    *************************************************************** 
 

      00752     GET-EMP. 

DMLC0011  00753       MAP IN USING EMPMAPLR. 

          00763    * 

DMLC0012  00764       INQUIRE MAP EMPMAPLR 

DMLC0012  00765        MOVE AID TO DC-AID-IND-V. 

          00773       IF CLEAR-HIT 

DMLC0013  00774        DC RETURN. 

          00780 

          00781    * 

DMLC0014  00782       INQUIRE MAP EMPMAPLR 

DMLC0014  00783        IF DFLD EMP-ID-0415 EDIT IS ERROR 

          00795         THEN GO TO EDIT-ERROR. 

          00796    * 

DMLC    00797       COPY IDMS SUBSCHEMA-BINDS. 

          00798       MOVE 'EMPDISP ' TO PROGRAM-NAME 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  427  

 

DMLC0015  00799       BIND RUN-UNIT. 

DMLC0016  00810       READY USAGE-MODE IS RETRIEVAL. 

          00815    *************************************************************** 

          00816    * SINCE THE MAP FIELD IS ASSOCIATED WITH THE EMP-ID-0415   * 

          00817    * FIELD, THE PROGRAM USES THE "OF LR" RETRIEVAL. NOTE THAT  * 

          00818    * AUTOSTATUS IMPLICITLY CHECKS FOR THE LR-ERROR PATH STATUS. * 

          00819    *************************************************************** 

DMLC      00820       OBTAIN EMP-JOB-LR 

DMLC      00821         WHERE EMP-ID-0415 = EMP-ID-0415 OF LR 

DMLC0017  00822         ON LR-NOT-FOUND 

          00845           GO TO NOT-FOUND. 

DMLC0018  00846       FINISH. 

          00851 
      00852    

*************************************************************** 

          00853    * REFORMAT DATE TO MMDDYY; OUTPUT AS MM/DD/YY USING THE OLM * 

          00854    * EXTERNAL PICTURE SPECIFICATION (XX/XX/XX).         * 

          00855    *************************************************************** 

          00856       MOVE START-YEAR-0415 TO WORK-YY. 

          00857       MOVE START-MONTH-0415 TO WORK-MM. 

          00858       MOVE START-DAY-0415 TO WORK-DD. 

          00859 

DMLC0019  00860       MAP OUT USING EMPMAPLR 

DMLC0019  00861        OUTPUT DATA IS YES 

DMLC0019  00862        MESSAGE IS DISPLAY-MESSAGE LENGTH 80. 

          00873    * 

DMLC0020  00874       DC RETURN NEXT TASK CODE TSK02. 

          00881     GET-EMP-EXIT. 

          00882       EXIT. 
 

          00883    *************************************************************** 

          00884    *************************************************************** 

          00885    * THE MODIFY MAP STATEMENT SPECIFIES THAT ALL MAP      * 

          00886    * FIELDS EXCEPT THE INCORRECT EMP-ID-0415 FIELD WILL BE    * 

          00887    * ERASED ON THE NEXT MAP OUT.                 * 

          00888    *************************************************************** 

          00889     EDIT-ERROR. 

DMLC0021  00890       MODIFY MAP EMPMAPLR TEMPORARY 

DMLC0021  00891        FOR ALL EXCEPT DFLD EMP-ID-0415 

DMLC0021  00892         OUTPUT DATA IS ERASE. 

          00906    * 

DMLC0022  00907       MAP OUT USING EMPMAPLR 

DMLC0022  00908        MESSAGE IS EDIT-ERROR-MESSAGE LENGTH 80. 
 



Application Runtime Requirements  

 

428  DML Reference Guide for COBOL 

 

          00919    * 

DMLC0023  00920       DC RETURN 

DMLC0023  00921        NEXT TASK CODE TSK02. 

          00928     EDIT-ERROR-EXIT. 

          00929       EXIT. 

          00930    *************************************************************** 

          00931    *************************************************************** 

          00932    * THE FOLLOWING MODIFY MAP STATEMENT SPECIFIES THAT ALL   * 

          00933    * MAP FIELDS EXCEPT THE EMP-ID-0415 FIELD WILL BE ERASED   * 

          00934    * ON THE NEXT MAP OUT.                    * 

          00935    *************************************************************** 

          00936     NOT-FOUND. 
 

DMLC0024  00937       MODIFY MAP EMPMAPLR TEMPORARY 

DMLC0024  00938        FOR ALL EXCEPT DFLD EMP-ID-0415 

DMLC0024  00939         OUTPUT DATA IS ERASE. 

          00953    * 

DMLC0025  00954       MAP OUT USING EMPMAPLR 

DMLC0025  00955        MESSAGE IS EMP-NOT-FOUND-MESSAGE LENGTH 80. 

          00966    * 

DMLC0026  00967       DC RETURN 

DMLC0026  00968        NEXT TASK CODE TSK02. 

          00975     NOT-FOUND-EXIT. 

          00976       EXIT. 

          00977    *************************************************************** 

          00978     IDMS-ABORT. 

          00979       MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE. 

          00980       MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE. 
 

DMLC      00981       SNAP FROM SUBSCHEMA-LR-CTRL TO SUBSCHEMA-LR-CTRL-END 

DMLC0027  00982         ON ANY-STATUS 

          00993                NEXT SENTENCE. 

          00994       MOVE SSC-ERRSTAT-SAVE TO ERROR-STATUS. 

          00995       MOVE SSC-DMLSEQ-SAVE TO DML-SEQUENCE. 

          00996     IDMS-ABORT-EXIT. 

          00997       EXIT. 

DMLC      00998       COPY IDMS IDMS-STATUS. 

:edisplay. 

          00999    

******************************************************************01617000 

          01000     IDMS-STATUS                       SECTION.01618000 

          01001    ********************* IDMS-STATUS FOR IDMS-DC 

********************01619000 

          01002         IF DB-STATUS-OK GO TO ISABEX.              01620000 

          01003         PERFORM IDMS-ABORT.                   01621000 
 



Application Runtime Requirements 

 

Appendix C: Sample Online Program  429  

 

          01004         MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE          01622000 

          01005         MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE           01623000 

DMLC      01006         SNAP FROM SUBSCHEMA-CTRL TO SUBSCHEMA-CTRL-END      01624000 

DMLC0028  01007              ON ANY-STATUS                 01625000 

          01018                     NEXT SENTENCE. 

DMLC      01019         ABEND CODE SSC-ERRSTAT-SAVE               01626000 

DMLC0029  01020              ON ANY-STATUS                 01627000 

          01028                     NEXT SENTENCE. 

          01029     ISABEX. EXIT.                          01628000 

***2000      * W BIND RECORD NOT ISSUED 

***2400      * W WAS MOST SEVERE ERROR FOUND 

 

0002 MESSAGES FOR PROGRAM EMPDISP 
 

Sample Online COBOL Program from the COBOL Compiler 

00001     *NO-ACTIVITY-LOG 

00002     *DMLIST 

00003 

00004     IDENTIFICATION DIVISION. 

00005 

00006     PROGRAM-ID.           EMPDISP. 

00007 

00008     AUTHOR.             COMPUTER ASSOCIATES. 

00009 

00010     DATE-WRITTEN.          APRIL 1995. 

00011 

00012     REMARKS.            THIS PROGRAM DEMONSTRATES 

00013                     CA IDMS PROGRAMMING USING 
 

00014                     THE LOGICAL RECORD FACILITY. 

00015 

00016     *************************************************************** 

00017     ENVIRONMENT DIVISION. 

00018     *************************************************************** 

00019     *IDMS-CONTROL SECTION. 

00020 

00021     *PROTOCOL.           MODE IS IDMS-DC DEBUG 

00022     *                   IDMS-RECORDS MANUAL. 

00024     DATA DIVISION. 

00025 

00026     *SCHEMA SECTION. 

00027 

00028     *  DB EMPSS09 WITHIN EMPSCHM. 

00029 

00030     *MAP SECTION. 
 



Application Runtime Requirements  

 

430  DML Reference Guide for COBOL 

 

00031     *MAX FIELD LIST IS 5. 

00032     *MAP EMPMAPLR VERSION 1 TYPE IS STANDARD. 

00033 

00034 

00035 

00036     WORKING-STORAGE SECTION. 

00037     01 TASK-CODE     PIC X(8). 

00038     01 TSK01       PIC X(8)   VALUE 'TSK01'. 

00039     01 TSK02       PIC X(8)   VALUE 'TSK02'. 

00040 

00041     01 MESSAGES. 

00042       05 INITIAL-MESSAGE     PIC X(80) VALUE 

00043         'ENTER AN EMP ID AND PRESS ENTER ** CLEAR TO EXIT'. 

00044       05 EDIT-ERROR-MESSAGE   PIC X(80) VALUE 

00045         'EMP-ID EITHER NOT ENTERED OR NOT NUMERIC'. 
 

00046       05 EMP-NOT-FOUND-MESSAGE  PIC X(80) VALUE 

00047         'SPECIFIED EMPLOYEE COULD NOT BE FOUND'. 

00048       05 DISPLAY-MESSAGE     PIC X(80) VALUE 

00049         'CLEAR TO EXIT ** NEW EMP-ID AND ENTER TO CONTINUE'. 

00050 

00051     *01 COPY IDMS DC-AID-CONDITION-NAMES. 

00052     01 DC-AID-CONDITION-NAMES. 

00053        03 DC-AID-IND-V      PIC X. 

00054                   88 ENTER-HIT VALUE QUOTE. 

00055                   88 CLEAR-HIT VALUE '_'. 

00056                   88 PF01-HIT VALUE '1'. 

00057                   88 PF02-HIT VALUE '2'. 

00058                   88 PF03-HIT VALUE '3'. 

00059                   88 PF04-HIT VALUE '4'. 

00060                   88 PF05-HIT VALUE '5'. 

00061                   88 PF06-HIT VALUE '6'. 
 

00062                   88 PF07-HIT VALUE '7'. 

00063                   88 PF08-HIT VALUE '8'. 

00064                   88 PF09-HIT VALUE '9'. 

00065                   88 PF10-HIT VALUE ':'. 

00066                   88 PF11-HIT VALUE '#'. 

00067                   88 PF12-HIT VALUE '@'. 

00068                   88 PF13-HIT VALUE 'A'. 

00069                   88 PF14-HIT VALUE 'B'. 

00070                   88 PF15-HIT VALUE 'C'. 

00071                   88 PF16-HIT VALUE 'D'. 

00072                   88 PF17-HIT VALUE 'E'. 

00073                   88 PF18-HIT VALUE 'F'. 

00074                   88 PF19-HIT VALUE 'G'. 

00075                   88 PF20-HIT VALUE 'H'. 

00076                   88 PF21-HIT VALUE 'I'. 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  431  

 

00077                   88 PF22-HIT VALUE '_'. 

00078                   88 PF23-HIT VALUE '.'. 

00079                   88 PF24-HIT VALUE '<'. 

00080                   88 PA01-HIT VALUE '%'. 

00081                   88 PA02-HIT VALUE '>'. 

00082                   88 PA03-HIT VALUE ','. 

00083                   88 PEN-ATTN-SPACE-NULL VALUE '='. 

00084                   88 PEN-ATTN VALUE QUOTE. 

00085 

00086     *01 COPY IDMS EMP-DATE-WORK-REC. 

00087     01 EMP-DATE-WORK-REC. 

00088       02 WORK-DATE. 

00089        03 WORK-MM        PIC 9(2). 

00090        03 WORK-DD        PIC 9(2). 

00091        03 WORK-YY        PIC 9(2). 

00092 
 

00093     *01 COPY IDMS SUBSCHEMA-LR-CONTROL. 

00094     01 SUBSCHEMA-CTRL. 

00095        03 PROGRAM-NAME      PIC X(8) VALUE SPACES. 

00096        03 ERROR-STATUS      PIC X(4) VALUE '1400'. 

00097                   88 DB-STATUS-OK VALUE '0000'. 

00098                   88 ANY-STATUS 

00099                     VALUE '0000' THRU '9999'. 

00100                   88 ANY-ERROR-STATUS 

00101                     VALUE '0001' THRU '9999'. 

00102                   88 DB-END-OF-SET VALUE '0307'. 

00103                   88 DB-REC-NOT-FOUND VALUE '0326'. 

00104                   88 DC-DEADLOCK VALUE '3101' 

00105                     '3201' '3401' '3901'. 

00106                   88 DC-NO-STORAGE VALUE '3202' 

00107                     '3402'. 
 

00108                   88 DC-AREA-ID-UNK VALUE '4303'. 

00109                   88 DC-QUEUE-ID-UNK VALUE '4404'. 

00110                   88 DC-REC-NOT-FOUND VALUE '4305' 

00111                     '4405'. 

00112                   88 DC-RESOURCE-NOT-AVAIL 

00113                     VALUE '3908'. 

00114                   88 DC-RESOURCE-AVAIL 

00115                     VALUE '3909'. 

00116                   88 DC-NEW-STORAGE VALUE '3210'. 

00117                   88 DC-MAX-TASKS VALUE '3711'. 

00118                   88 DC-REC-REPLACED VALUE '4317'. 

00119                   88 DC-TRUNCATED-DATA 

00120                     VALUE '4319' '4419' 

00121                     '4519' '4719'. 

00122                   88 DC-ATTN-INT VALUE '4525' 

00123                     '4625'. 
 



Application Runtime Requirements  

 

432  DML Reference Guide for COBOL 

 

00124                   88 DC-OPER-CANCEL VALUE '4743'. 

00125                   88 DC-FIRST-PAGE-SENT 

00126                     VALUE '4676'. 

00127                   88 DC-SECOND-STARTPAGE 

00128                     VALUE '4604'. 

00129                   88 DC-DETAIL-NOT-FOUND 

00130                     VALUE '4664'. 

00131        03 DBKEY         PIC S9(8) 

00132                     USAGE COMP. 

00133        03 RECORD-NAME      PIC X(16) VALUE SPACES. 

00134        03 RRECORD-NAME      REDEFINES RECORD-NAME. 

00135         05 SSC-NODN       PIC X(8). 

00136         05 SSC-DBN       PIC X(8). 

00137        03 AREA-NAME       PIC X(16) VALUE SPACES. 

00138        03 ERROR-SET       PIC X(16) VALUE SPACES. 
 

00139        03 ERROR-RECORD      PIC X(16) VALUE SPACES. 

00140        03 ERROR-AREA       PIC X(16) VALUE SPACES. 

00141        03 IDBMSCOM-AREA     PIC X(100) VALUE LOW-VALUE. 

00142        03 IDBMSCOM        REDEFINES IDBMSCOM-AREA 

00143                     PIC X 

00144                     OCCURS 100. 

00145        03 RIDBMSCOM       REDEFINES IDBMSCOM-AREA. 

00146         05 DB-SUB-ADDR     PIC X(4). 

00147         05 FILLER        PIC X(0096). 

00148        03 DIRECT-DBKEY      PIC S9(8) 

00149                     USAGE COMP. 

00150        03 DIRECT-DBK       REDEFINES DIRECT-DBKEY 

00151                     PIC S9(8) 

00152                     USAGE COMP. 

00153        03 DCBMSCOM-AREA     PIC X(100) VALUE LOW-VALUE. 

00154        03 DCBMSCOM        REDEFINES DCBMSCOM-AREA 
 

00155                     PIC X 

00156                     OCCURS 100. 

00157        03 R1DCBMSCOM       REDEFINES DCBMSCOM-AREA. 

00158         05 R2DCBMSCOM      PIC S9(8) 

00159                     OCCURS 11 

00160                     USAGE COMP. 

00161         05 DCSTR1        PIC X(16). 

00162         05 R3DCBMSCOM      REDEFINES DCSTR1. 

00163          07 DCSTR2       PIC X(8). 

00164          07 R4DCBMSCOM     REDEFINES DCSTR2. 

00165           09 DCSTR4      PIC X(4). 

00166           09 DCSTR5      PIC X(4). 

00167          07 DCSTR3       PIC X(8). 

00168         05 R5DCBMSCOM      REDEFINES DCSTR1. 

00169          07 DCPNUM1      PIC S9(15) 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  433  

 

00170                     USAGE COMP-3. 

00171         05 DCNUM1        PIC S9(8) 

00172                     USAGE COMP. 

00173         05 R6DCBMSCOM      REDEFINES DCNUM1. 

00174          07 DCPNUM2      PIC S9(7) 

00175                     USAGE COMP-3. 

00176         05 DCNUM2        PIC S9(8) 

00177                     USAGE COMP. 

00178         05 DCNUM3        PIC S9(8) 

00179                     USAGE COMP. 

00180         05 DCFLG1        PIC S9(4) 

00181                     USAGE COMP. 

00182         05 DCFLG2        PIC S9(4) 

00183                     USAGE COMP. 

00184         05 DCFLG3        PIC S9(4) 

00185                     USAGE COMP. 
 

00186         05 DCFLG4        PIC S9(4) 

00187                     USAGE COMP. 

00188        03 SSC-ERRSTAT-SAVE    PIC X(4) VALUE SPACES. 

00189        03 SSC-DMLSEQ-SAVE    PIC S9(8) 

00190                     USAGE COMP. 

00191        03 DML-SEQUENCE      PIC S9(8) 

00192                     USAGE COMP. 

00193        03 RECORD-OCCUR      PIC S9(8) 

00194                     USAGE COMP. 

00195        03 SUBSCHEMA-CTRL-END   PIC X(4) VALUE SPACES. 

00196     01 SUBSCHEMA-LR-CTRL. 

00197        03 LRC-LRPXELNG      PIC S9(4) 

00198                     USAGE COMP. 

00199        03 LRC-MAXVXP       PIC S9(4) 

00200                     USAGE COMP. 
 

00201        03 LRIDENT        PIC X(4) VALUE 'LRC '. 

00202        03 LRVERB         PIC X(8). 

00203        03 LRNAME         PIC X(16). 

00204        03 LR-STATUS       PIC X(16). 

00205        03 FILLER         PIC X(16). 

00206        03 LRPXE         PIC X 

00207                     OCCURS 0 TO 512 

00208                     DEPENDING ON LRC-LRPXELNG. 

00209        03 PXE. 

00210         05 PXENEXT       PIC S9(8) 

00211                     USAGE COMP. 

00212         05 PXETABO       PIC S9(4) 

00213                     USAGE COMP. 

00214         05 PXEDSPL       PIC S9(4) 

00215                     USAGE COMP. 

00216         05 PXEDYN        PIC S9(4) 
 



Application Runtime Requirements 

 

434  DML Reference Guide for COBOL 

 

00217                     USAGE COMP. 

00218         05 PXEDLEN       PIC S9(4) 

00219                     USAGE COMP. 

00220         05 PXENDEC       PIC X. 

00221         05 PXEDTYP       PIC X. 

00222         05 PXEOTYP       PIC X. 

00223         05 PXEFLAG       PIC X. 

00224         05 FILLER        PIC X(240). 

00225        03 PXEDSP256       REDEFINES PXE 

00226                     PIC X(256). 

00227        03 PXEDSP248       REDEFINES PXE 

00228                     PIC X(248). 

00229        03 PXEDSP240       REDEFINES PXE 

00230                     PIC X(240). 

00231        03 PXEDSP232       REDEFINES PXE 
 

00232                     PIC X(232). 

00233        03 PXEDSP224       REDEFINES PXE 

00234                     PIC X(224). 

00235        03 PXEDSP216       REDEFINES PXE 

00236                     PIC X(216). 

00237        03 PXEDSP208       REDEFINES PXE 

00238                     PIC X(208). 

00239        03 PXEDSP200       REDEFINES PXE 

00240                     PIC X(200). 

00241        03 PXEDSP192       REDEFINES PXE 

00242                     PIC X(192). 

00243        03 PXEDSP184       REDEFINES PXE 

00244                     PIC X(184). 

00245        03 PXEDSP176       REDEFINES PXE 

00246                     PIC X(176). 

00247        03 PXEDSP168       REDEFINES PXE 
 

00248                     PIC X(168). 

00249        03 PXEDSP160       REDEFINES PXE 

00250                     PIC X(160). 

00251        03 PXEDSP152       REDEFINES PXE 

00252                     PIC X(152). 

00253        03 PXEDSP144       REDEFINES PXE 

00254                     PIC X(144). 

00255        03 PXEDSP136       REDEFINES PXE 

00256                     PIC X(136). 

00257        03 PXEDSP128       REDEFINES PXE 

00258                     PIC X(128). 

00259        03 PXEDSP120       REDEFINES PXE 

00260                     PIC X(120). 

00261        03 PXEDSP112       REDEFINES PXE 

00262                     PIC X(112). 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  435  

 

00263        03 PXEDSP104       REDEFINES PXE 

00264                     PIC X(104). 

00265        03 PXEDSP96        REDEFINES PXE 

00266                     PIC X(96). 

00267        03 PXEDSP88        REDEFINES PXE 

00268                     PIC X(88). 

00269        03 PXEDSP80        REDEFINES PXE 

00270                     PIC X(80). 

00271        03 PXEDSP72        REDEFINES PXE 

00272                     PIC X(72). 

00273        03 PXEDSP64        REDEFINES PXE 

00274                     PIC X(64). 

00275        03 PXEDSP56        REDEFINES PXE 

00276                     PIC X(56). 

00277        03 PXEDSP48        REDEFINES PXE 

00278                     PIC X(48). 

00279        03 PXEDSP40        REDEFINES PXE 

00280                     PIC X(40). 

00281        03 PXEDSP32        REDEFINES PXE 

00282                     PIC X(32). 

00283        03 PXEDSP24        REDEFINES PXE 

00284                     PIC X(24). 

00285        03 PXEDSP16        REDEFINES PXE 

00286                     PIC X(16). 
 

00287        03 PXEDSP8        REDEFINES PXE 

00288                     PIC X(8). 

00289        03 PXECOMP-1       REDEFINES PXE 

00290                     USAGE COMP-1. 

00291        03 PXECOMP-2       REDEFINES PXE 

00292                     USAGE COMP-2. 

00293        03 PXECOMP-30       REDEFINES PXE 

00294                     PIC S9(18) 

00295                     USAGE COMP-3. 

00296        03 PXECOMP-31       REDEFINES PXE 

00297                     PIC S9(17)V9(1) 

00298                     USAGE COMP-3. 

00299        03 PXECOMP-32       REDEFINES PXE 

00300                     PIC S9(16)V9(2) 

00301                     USAGE COMP-3. 

00302        03 PXECOMP-33       REDEFINES PXE 
 



Application Runtime Requirements  

 

436  DML Reference Guide for COBOL 

 

00303                     PIC S9(15)V9(3) 

00304                     USAGE COMP-3. 

00305        03 PXECOMP-34       REDEFINES PXE 

00306                     PIC S9(14)V9(4) 

00307                     USAGE COMP-3. 

00308        03 PXECOMP-35       REDEFINES PXE 

00309                     PIC S9(13)V9(5) 

00310                     USAGE COMP-3. 

00311        03 PXECOMP-36       REDEFINES PXE 

00312                     PIC S9(12)V9(6) 

00313                     USAGE COMP-3. 

00314        03 PXECOMP-37       REDEFINES PXE 

00315                     PIC S9(11)V9(7) 

00316                     USAGE COMP-3. 

00317        03 PXECOMP-38       REDEFINES PXE 
 

00318                     PIC S9(10)V9(8) 

00319                     USAGE COMP-3. 

00320        03 PXECOMP-39       REDEFINES PXE 

00321                     PIC S9(9)V9(9) 

00322                     USAGE COMP-3. 

00323        03 PXECOMP-310      REDEFINES PXE 

00324                     PIC S9(8)V9(10) 

00325                     USAGE COMP-3. 

00326        03 PXECOMP-311      REDEFINES PXE 

00327                     PIC S9(7)V9(11) 

00328                     USAGE COMP-3. 

00329        03 PXECOMP-312      REDEFINES PXE 

00330                     PIC S9(6)V9(12) 

00331                     USAGE COMP-3. 

00332        03 PXECOMP-313      REDEFINES PXE 

00333                     PIC S9(5)V9(13) 
 

00334                     USAGE COMP-3. 

00335        03 PXECOMP-314      REDEFINES PXE 

00336                     PIC S9(4)V9(14) 

00337                     USAGE COMP-3. 

00338        03 PXECOMP-315      REDEFINES PXE 

00339                     PIC S9(3)V9(15) 

00340                     USAGE COMP-3. 

00341        03 PXECOMP-316      REDEFINES PXE 

00342                     PIC S9(2)V9(16) 

00343                     USAGE COMP-3. 

00344        03 PXECOMP-317      REDEFINES PXE 

00345                     PIC S9(1)V9(17) 

00346                     USAGE COMP-3. 

00347        03 PXECOMP-318      REDEFINES PXE 

00348                     PIC SV9(18) 

00349                     USAGE COMP-3. 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  437  

 

00350        03 PXECOMP20       REDEFINES PXE 

00351                     PIC S9(4) 

00352                     USAGE COMP. 

00353        03 PXECOMP21       REDEFINES PXE 

00354                     PIC S9(3)V9(1) 

00355                     USAGE COMP. 

00356        03 PXECOMP22       REDEFINES PXE 

00357                     PIC S9(2)V9(2) 

00358                     USAGE COMP. 

00359        03 PXECOMP23       REDEFINES PXE 

00360                     PIC S9(1)V9(3) 

00361                     USAGE COMP. 

00362        03 PXECOMP24       REDEFINES PXE 

00363                     PIC SV9(4) 

00364                     USAGE COMP. 

00365        03 PXECOMP40       REDEFINES PXE 
 

00366                     PIC S9(9) 

00367                     USAGE COMP. 

00368        03 PXECOMP41       REDEFINES PXE 

00369                     PIC S9(8)V9(1) 

00370                     USAGE COMP. 

00371        03 PXECOMP42       REDEFINES PXE 

00372                     PIC S9(7)V9(2) 

00373                     USAGE COMP. 

00374        03 PXECOMP43       REDEFINES PXE 

00375                     PIC S9(6)V9(3) 

00376                     USAGE COMP. 

00377        03 PXECOMP44       REDEFINES PXE 

00378                     PIC S9(5)V9(4) 

00379                     USAGE COMP. 

00380        03 PXECOMP45       REDEFINES PXE 
 

00381                     PIC S9(4)V9(5) 

00382                     USAGE COMP. 

00383        03 PXECOMP46       REDEFINES PXE 

00384                     PIC S9(3)V9(6) 

00385                     USAGE COMP. 

00386        03 PXECOMP47       REDEFINES PXE 

00387                     PIC S9(2)V9(7) 

00388                     USAGE COMP. 

00389        03 PXECOMP48       REDEFINES PXE 

00390                     PIC S9(1)V9(8) 

00391                     USAGE COMP. 

00392        03 PXECOMP49       REDEFINES PXE 

00393                     PIC SV9(9) 

00394                     USAGE COMP. 

00395        03 PXECOMP80       REDEFINES PXE 

00396                     PIC S9(18) 
 



Application Runtime Requirements  

 

438  DML Reference Guide for COBOL 

 

00397                     USAGE COMP. 

00398        03 PXECOMP81       REDEFINES PXE 

00399                     PIC S9(17)V9(1) 

00400                     USAGE COMP. 

00401        03 PXECOMP82       REDEFINES PXE 

00402                     PIC S9(16)V9(2) 

00403                     USAGE COMP. 

00404        03 PXECOMP83       REDEFINES PXE 

00405                     PIC S9(15)V9(3) 

00406                     USAGE COMP. 

00407        03 PXECOMP84       REDEFINES PXE 

00408                     PIC S9(14)V9(4) 

00409                     USAGE COMP. 

00410        03 PXECOMP85       REDEFINES PXE 

00411                     PIC S9(13)V9(5) 
 

00412                     USAGE COMP. 

00413        03 PXECOMP86       REDEFINES PXE 

00414                     PIC S9(12)V9(6) 

00415                     USAGE COMP. 

00416        03 PXECOMP87       REDEFINES PXE 

00417                     PIC S9(11)V9(7) 

00418                     USAGE COMP. 

00419        03 PXECOMP88       REDEFINES PXE 

00420                     PIC S9(10)V9(8) 

00421                     USAGE COMP. 

00422        03 PXECOMP89       REDEFINES PXE 

00423                     PIC S9(9)V9(9) 

00424                     USAGE COMP. 

00425        03 PXECOMP810       REDEFINES PXE 

00426                     PIC S9(8)V9(10) 

00427                     USAGE COMP. 
 

00428        03 PXECOMP811       REDEFINES PXE 

00429                     PIC S9(7)V9(11) 

00430                     USAGE COMP. 

00431        03 PXECOMP812       REDEFINES PXE 

00432                     PIC S9(6)V9(12) 

00433                     USAGE COMP. 

00434        03 PXECOMP813       REDEFINES PXE 

00435                     PIC S9(5)V9(13) 

00436                     USAGE COMP. 

00437        03 PXECOMP814       REDEFINES PXE 

00438                     PIC S9(4)V9(14) 

00439                     USAGE COMP. 

00440        03 PXECOMP815       REDEFINES PXE 

00441                     PIC S9(3)V9(15) 

00442                     USAGE COMP. 
 



Application Runtime Requirements 

 

Appendix C: Sample Online Program  439  

 

00443        03 PXECOMP816       REDEFINES PXE 

00444                     PIC S9(2)V9(16) 

00445                     USAGE COMP. 

00446        03 PXECOMP817       REDEFINES PXE 

00447                     PIC S9(1)V9(17) 

00448                     USAGE COMP. 

00449        03 PXECOMP818       REDEFINES PXE 

00450                     PIC SV9(18) 

00451                     USAGE COMP. 

00452     01 SUBSCHEMA-SSNAME      PIC X(8) VALUE 'EMPSS09 '. 

00453     01 SUBSCHEMA-AREANAMES. 

00454        03 EMP-DEMO-REGION    PIC X(16) 

00455                     VALUE 'EMP-DEMO-REGION '. 

00456        03 INS-DEMO-REGION    PIC X(16) 

00457                     VALUE 'INS-DEMO-REGION '. 

00458        03 ORG-DEMO-REGION    PIC X(16) 
 

00459                     VALUE 'ORG-DEMO-REGION '. 

00460 

00461     *01 COPY IDMS SUBSCHEMA-LR-RECORDS. 

00462     01 EMP-JOB-LR. 

00463       02 EMPLOYEE. 

00464        03 EMP-ID-0415      PIC 9(4). 

00465        03 EMP-NAME-0415. 

00466        04 EMP-FIRST-NAME-0415  PIC X(10). 

00467        04 EMP-LAST-NAME-0415  PIC X(15). 

00468        03 STATUS-0415      PIC X(2). 

00469                   88 ACTIVE-0415 VALUE '01'. 

00470                   88 ST-DISABIL-0415 VALUE '02'. 

00471                   88 LT-DISABIL-0415 VALUE '03'. 

00472                   88 LEAVE-OF-ABSENCE-0415 

00473                     VALUE '04'. 
 

00474                   88 TERMINATED-0415 VALUE '05'. 

00475        03 SS-NUMBER-0415     PIC 9(9). 

00476        03 START-DATE-0415. 

00477        04 START-YEAR-0415    PIC 9(2). 

00478        04 START-MONTH-0415   PIC 9(2). 

00479        04 START-DAY-0415    PIC 9(2). 

00480        03 FILLER         PIC X(2). 

00481       02 DEPARTMENT. 

00482        03 DEPT-ID-0410      PIC 9(4). 

00483        03 DEPT-NAME-0410     PIC X(45). 

00484        03 DEPT-HEAD-ID-0410   PIC 9(4). 

00485        03 FILLER         PIC XXX. 

00486       02 JOB. 

00487        03 JOB-ID-0440      PIC 9(4). 

00488        03 TITLE-0440       PIC X(20). 

00489       02 OFFICE. 
 



Application Runtime Requirements  

 

440  DML Reference Guide for COBOL 

 

00490        03 OFFICE-CODE-0450    PIC X(3). 

00491        03 OFFICE-ADDRESS-0450. 

00492        04 OFFICE-STREET-0450  PIC X(20). 

00493        04 OFFICE-CITY-0450   PIC X(15). 

00494        04 OFFICE-STATE-0450   PIC X(2). 

00495        04 OFFICE-ZIP-0450. 

00496         05 OFFICE-ZIP-FIRST-FIVE-0450 

00497                     PIC X(5). 

00498         05 OFFICE-ZIP-LAST-FOUR-0450 

00499                     PIC X(4). 

00500        03 OFFICE-PHONE-0450   PIC 9(7) 

00501                     OCCURS 3. 

00502        03 OFFICE-AREA-CODE-0450 PIC X(3). 

00503        03 SPEED-DIAL-0450    PIC X(3). 

00504        03 FILLER         PIC X(4). 
 

00505       03 SUBSCHEMA-LR-CTRL-END     PIC X. 

00506 

00507     *01 COPY IDMS MAP-CONTROLS. 

00508     01 MRB-EMPMAPLR. 

00509        03 MRB-EMPMAPLR-ID    PIC X(8). 

00510        03 MRB-EMPMAPLR-MCOMP-VER. 

00511         05 MRB-EMPMAPLR-MCOMP-DATE 

00512                     PIC X(8). 

00513         05 MRB-EMPMAPLR-MCOMP-TIME 

00514                     PIC X(6). 

00515         05 MRB-EMPMAPLR-MCOMP-VERID 

00516                     PIC X(2). 

00517        03 MRB-EMPMAPLR-SUBSCHEMA PIC X(8). 

00518        03 MRB-EMPMAPLR-FLGS   PIC X 

00519                     OCCURS 4. 

00520        03 FILLER         PIC X(6). 
 

00521        03 MRB-EMPMAPLR-NFLDS   PIC S9(4) 

00522                     USAGE COMP. 

00523        03 MRB-EMPMAPLR-NRECS   PIC S9(4) 

00524                     USAGE COMP. 

00525        03 MRB-EMPMAPLR-RECOF   PIC S9(4) 

00526                     USAGE COMP. 

00527        03 MRB-EMPMAPLR-PERM-CURSOR 

00528                     PIC XX. 

00529        03 MRB-EMPMAPLR-TEMP-CURSOR 

00530                     PIC XX. 

00531        03 MRB-EMPMAPLR-PERM-WCC PIC X. 

00532        03 MRB-EMPMAPLR-TEMP-WCC PIC X. 

00533        03 MRB-EMPMAPLR-CURSOR  PIC XX. 

00534        03 MRB-EMPMAPLR-AID    PIC X. 

00535        03 MRB-EMPMAPLR-INPUT-FLGS 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  441  

 

00536                     PIC X. 

00537        03 MRB-EMPMAPLR-SEGVIEW  PIC X. 

00538        03 FILLER         PIC X. 

00539        03 MRB-EMPMAPLR-MREO   PIC S9(4) 

00540                     USAGE COMP. 

00541        03 MRB-EMPMAPLR-ERR-CNT  PIC S9(4) 

00542                     USAGE COMP. 

00543        03 MRB-EMPMAPLR-ATTR-FLGS PIC X 

00544                     OCCURS 4. 

00545        03 MRB-EMPMAPLR-CURR-MFLD PIC S9(4) 

00546                     USAGE COMP. 

00547        03 MRB-EMPMAPLR-XTYP   PIC X. 

00548        03 MRB-EMPMAPLR-FILLER  PIC X. 

00549        03 MRB-EMPMAPLR-MRE-XLEN PIC S9(4) 

00550                     USAGE COMP. 

00551        03 MRB-EMPMAPLR-MRB-XLEN PIC S9(4) 
 

00552                     USAGE COMP. 

00553        03 MRB-EMPMAPLR-MRE    OCCURS 11. 

00554         05 MRB-EMPMAPLR-MRE-FLGS 

00555                     PIC X 

00556                     OCCURS 8. 

00557         05 MRB-EMPMAPLR-MRE-INLEN 

00558                     PIC S9(4) 

00559                     USAGE COMP. 

00560         05 MRB-EMPMAPLR-MRE-PAD-CHAR 

00561                     PIC X 

00562                     OCCURS 2. 

00563         05 MRB-EMPMAPLR-MRE-FLG2 

00564                     PIC X 

00565                     OCCURS 2. 

00566        03 MRB-EMPMAPLR-RECS   PIC S9(8) 
 

00567                     OCCURS 5 

00568                     USAGE COMP 

00569                     SYNC. 

00570        03 MRB-EMPMAPLR-END    PIC X. 

00571        03 MRB-EMPMAPLR-MRE-SUB  PIC S9(4) 

00572                     USAGE COMP. 

00573 

00574 

00575     01 MRB-FLDLST. 

00576       02 FLDLST         PIC S9(8) 

00577                     OCCURS 6 

00578                     USAGE COMP. 

00579     PROCEDURE DIVISION. 

00580 

00581     *  ********************************************************* 

00582     *  * PROCEDURE DIVISION GENERAL STRATEGY:         * 
 



Application Runtime Requirements  

 

442  DML Reference Guide for COBOL 

 

00583     *  *   RETRIEVE INFORMATION FOR A SPECIFIED EMPLOYEE.  * 

00584     *  *   DISPLAYED DATA INCLUDES EMPLOYEE, DEPARTMENT,  * 

00585     *  *          JOB, AND OFFICE INFORMATION.    * 

00586     *  * ==> THIS PROGRAM USES THE EMP-JOB-LR LOGICAL RECORD<= * 

00587     *  * PROGRAM STRATEGY:                  * 

00588     *  *     ** CHECK FOR TASK CODE: TSK01= INITIAL MAPOUT * 

00589     *  *            ANYTHING ELSE = RETRIEVE LR  * 

00590     *  *     ** CLEAR TO EXIT APPLICATION         * 

00591     *  *     ** ENTER AND NEW EMP-ID TO CONTINUE      * 

00592     *  ********************************************************* 

00593 

00594     MAIN-LINE. 

00595     *************************************************************** 

00596     * THE BIND MAP STATEMENTS ADVISE IDMS-DC OF THE LOCATION OF * 

00597     * THE MRB AND THE MAP RECORDS.                * 
 

00598     *************************************************************** 

00599     *  BIND MAP EMPMAPLR. 

00600             MOVE 0001 TO DML-SEQUENCE            DMLC0001 

00601             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00602                 DCBMSCOM (90) 

00603                 MRB-EMPMAPLR 

00604                 MRB-EMPMAPLR-END 

00605             MOVE '08/12/85112414R2' 

00606                TO MRB-EMPMAPLR-MCOMP-VER 

00607             MOVE 'EMPSS09 ' 

00608                TO MRB-EMPMAPLR-SUBSCHEMA 

00609             MOVE 'EMPMAPLR' 

00610                TO MRB-EMPMAPLR-ID 

00611             MOVE 11 

00612                TO MRB-EMPMAPLR-NFLDS 

00613             MOVE 5 

00614                TO MRB-EMPMAPLR-NRECS 

00615             MOVE 156 

00616                TO MRB-EMPMAPLR-RECOF 

00617             MOVE 76 

00618                TO MRB-EMPMAPLR-MREO 

00619             MOVE '0' 

00620                TO MRB-EMPMAPLR-XTYP 

00621             MOVE 0 

00622                TO MRB-EMPMAPLR-MRE-XLEN 

00623             MOVE 0 

00624                TO MRB-EMPMAPLR-MRB-XLEN 

00625             MOVE 'Y' 

00626                TO MRB-EMPMAPLR-SEGVIEW 

00627              PERFORM IDMS-STATUS. 

00628     *  BIND MAP EMPMAPLR RECORD EMPLOYEE. 

00629             MOVE 0002 TO DML-SEQUENCE            DMLC0002 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  443  

 

00630             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00631                 DCBMSCOM (91) 

00632                 MRB-EMPMAPLR-RECS (1) 

00633                 EMPLOYEE 

00634              PERFORM IDMS-STATUS. 

00635     *  BIND MAP EMPMAPLR RECORD DEPARTMENT. 

00636             MOVE 0003 TO DML-SEQUENCE            DMLC0003 

00637             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00638                 DCBMSCOM (91) 

00639                 MRB-EMPMAPLR-RECS (2) 

00640                 DEPARTMENT 

00641              PERFORM IDMS-STATUS. 

00642     *  BIND MAP EMPMAPLR RECORD JOB. 

00643             MOVE 0004 TO DML-SEQUENCE            DMLC0004 

00644             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00645                 DCBMSCOM (91) 
 

00646                 MRB-EMPMAPLR-RECS (3) 

00647                 JOB 

00648              PERFORM IDMS-STATUS. 

00649     *  BIND MAP EMPMAPLR RECORD OFFICE. 

00650             MOVE 0005 TO DML-SEQUENCE            DMLC0005 

00651             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00652                 DCBMSCOM (91) 

00653                 MRB-EMPMAPLR-RECS (4) 

00654                 OFFICE 

00655              PERFORM IDMS-STATUS. 

00656     *  BIND MAP EMPMAPLR RECORD EMP-DATE-WORK-REC. 

00657             MOVE 0006 TO DML-SEQUENCE            DMLC0006 

00658             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00659                 DCBMSCOM (91) 

00660                 MRB-EMPMAPLR-RECS (5) 
 

00661                 EMP-DATE-WORK-REC 

00662              PERFORM IDMS-STATUS. 

00663     * 

00664     *  ACCEPT TASK CODE INTO TASK-CODE. 

00665             MOVE 0007 TO DML-SEQUENCE            DMLC0007 

00666             MOVE 1 TO DCNUM1 

00667             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00668                 DCBMSCOM (2) 

00669                 TASK-CODE 

00670              PERFORM IDMS-STATUS. 

00671       IF TASK-CODE = TSK01 

00672          GO TO INITIAL-MAPOUT 

00673       ELSE 

00674          GO TO GET-EMP. 

00675     *************************************************************** 

00676     *************************************************************** 
 



Application Runtime Requirements 

 

444  DML Reference Guide for COBOL 

 

00677     * THE INITIAL-MAPOUT PARAGRAPH IS PERFORMED IF THE CALLING  * 

00678     * TASK CODE IS TSK01.                     * 

00679     *************************************************************** 

00680     * THE MODIFY MAP STATEMENT ASSIGNS THE PROTECTED       * 

00681     * ATTRIBUTE TO ALL MAP FIELDS EXCEPT EMP-ID-0415.       * 

00682     *************************************************************** 

00683     * THE MAP OUT STATEMENT TRANSMITS THE EMPMAPLR MAP      * 

00684     * TO THE TERMINAL.                      * 

00685     *************************************************************** 

00686     * THE DC RETURN STATEMENT SPECIFIES THAT THE NEXT      * 

00687     * TASK THAT WILL BE INITIATED ON THE SAME TERMINAL WHEN THE  * 

00688     * OPERATOR PRESSES A CONTROL KEY WILL BE TSK02.        * 

00689     *************************************************************** 

00690     INITIAL-MAPOUT. 

00691     *  MODIFY MAP EMPMAPLR TEMPORARY 

00692     *    FOR ALL EXCEPT EMP-ID-0415 

00693     *     ATTRIBUTES PROTECTED. 

00694             MOVE 0008 TO DML-SEQUENCE            DMLC0008 

00695             MOVE 8 TO DCNUM1 

00696             MOVE 2561 TO DCFLG1 

00697             MOVE 0 TO DCFLG2 

00698             MOVE 0 TO DCFLG3 

00699             MOVE 0 TO DCFLG4 
 

00700             MOVE 1 TO FLDLST (2) 

00701             MOVE 1 TO FLDLST (1) 

00702             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00703                 DCBMSCOM (93) 

00704                 MRB-EMPMAPLR 

00705                 MRB-FLDLST 

00706              PERFORM IDMS-STATUS. 

00707     * 

00708       MOVE ZERO TO EMP-ID-0415. 
 

00709     *  MAP OUT USING EMPMAPLR 

00710     *    OUTPUT DATA IS YES NEWPAGE 

00711     *    MESSAGE IS INITIAL-MESSAGE LENGTH 80. 

00712             MOVE 0009 TO DML-SEQUENCE            DMLC0009 

00713             MOVE 5 TO DCFLG1 

00714             MOVE 16 TO DCFLG2 

00715             MOVE 1 TO DCFLG3 
 

00716             MOVE 4 TO DCFLG4 

00717             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00718                 DCBMSCOM (34) 

00719                 MRB-EMPMAPLR 

00720         INITIAL-MESSAGE DCBMSCOM (80) 

00721              PERFORM IDMS-STATUS. 

00722 

00723     *  DC RETURN 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  445  

 

00724     *    NEXT TASK CODE TSK02. 

00725             MOVE 0010 TO DML-SEQUENCE            DMLC0010 

00726             MOVE TSK02 TO DCSTR2 

00727             MOVE 128 TO DCFLG1 

00728             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00729                 DCBMSCOM (19) 

00730              PERFORM IDMS-STATUS. 

00731     INITIAL-MAPOUT-EXIT. 
 

00732       EXIT. 

00733     *************************************************************** 

00734     *************************************************************** 

00735     * THE GET-EMP PARAGRAPH IS PERFORMED IF THE CALLING TASK   * 

00736     * CODE IS NOT TSK01.                     * 

00737     *************************************************************** 

00738     * THE MAP IN STATEMENT TRANSMITS DATA FROM THE TERMINAL TO  * 

00739     * VARIABLE STORAGE DATA FIELDS.                * 
 

00740     *************************************************************** 

00741     * THIS FIRST INQUIRE MAP STATEMENT IS USED TO DETERMINE   * 

00742     * THE AID KEY PRESSED.                    * 

00743     *************************************************************** 

00744     * THIS SECOND INQUIRE MAP STATEMENT USES AUTOMATIC EDITING  * 

00745     * TO DETERMINE IF THE DATA ENTERED IS CONSISTENT WITH     * 

00746     * THE EXTERNAL PICTURE OF THE NAMED DATA ELEMENT.       * 
 

00747     *************************************************************** 

00748     * THE MAP OUT STATEMENT TRANSMITS DATA FROM THE       * 

00749     * EMP-JOB-LR LOGICAL RECORD IN VARIABLE STORAGE TO MAP    * 

00750     * FIELDS.                           * 

00751     *************************************************************** 

00752     GET-EMP. 

00753     *  MAP IN USING EMPMAPLR. 
 

:edisplay. 

00754             MOVE 0011 TO DML-SEQUENCE            DMLC0011 

00755             MOVE 6 TO DCFLG1 

00756             MOVE 0 TO DCFLG2 

00757             MOVE 0 TO DCFLG3 

00758             MOVE 0 TO DCFLG4 

00759             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00760                 DCBMSCOM (34) 

00761                 MRB-EMPMAPLR 
 



Application Runtime Requirements  

 

446  DML Reference Guide for COBOL 

 

00762              PERFORM IDMS-STATUS. 

00763     * 

00764     *  INQUIRE MAP EMPMAPLR 

00765     *    MOVE AID TO DC-AID-IND-V. 

00766             MOVE 0012 TO DML-SEQUENCE            DMLC0012 

00767             MOVE 7 TO DCNUM1 

00768             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00769                 DCBMSCOM (92) 

00770                 MRB-EMPMAPLR 

00771             MOVE DCSTR2 TO DC-AID-IND-V 

00772              PERFORM IDMS-STATUS. 

00773       IF CLEAR-HIT 

00774     *    DC RETURN. 

00775             MOVE 0013 TO DML-SEQUENCE            DMLC0013 

00776             MOVE 0 TO DCFLG1 
 

00777             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00778                 DCBMSCOM (19) 

00779              PERFORM IDMS-STATUS. 

00780 

00781     * 

00782     *  INQUIRE MAP EMPMAPLR 

00783     *    IF DFLD EMP-ID-0415 EDIT IS ERROR 

00784             MOVE 0014 TO DML-SEQUENCE            DMLC0014 

00785             MOVE 17 TO DCNUM1 

00786             MOVE 5 TO DCNUM2 

00787             MOVE 2048 TO DCFLG1 

00788             MOVE 1 TO FLDLST (2) 

00789             MOVE 1 TO FLDLST (1) 

00790             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00791                 DCBMSCOM (92) 

00792                 MRB-EMPMAPLR 
 

00793                 MRB-FLDLST; 

00794             IF ERROR-STATUS EQUAL TO '4641' 

00795          THEN GO TO EDIT-ERROR. 

00796     * 

00797     *  COPY IDMS SUBSCHEMA-BINDS. 

00798       MOVE 'EMPDISP ' TO PROGRAM-NAME 

00799     *  BIND RUN-UNIT. 

00800             MOVE 0015 TO DML-SEQUENCE            DMLC0015 

00801             MOVE 576 TO LRC-LRPXELNG 

00802             MOVE 6  TO LRC-MAXVXP 

00803             MOVE 'LRF-BIND' TO LR-STATUS 

00804             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00805                 IDBMSCOM (59) 

00806                 SUBSCHEMA-CTRL 

00807                 SUBSCHEMA-SSNAME 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  447  

 

00808                 SUBSCHEMA-LR-CTRL 

00809              PERFORM IDMS-STATUS. 

00810     *  READY USAGE-MODE IS RETRIEVAL. 

00811             MOVE 0016 TO DML-SEQUENCE            DMLC0016 

00812             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00813                 IDBMSCOM (37) 

00814              PERFORM IDMS-STATUS. 

00815     *************************************************************** 

00816     * SINCE THE MAP FIELD IS ASSOCIATED WITH THE EMP-ID-0415   * 

00817     * FIELD, THE PROGRAM USES THE "OF LR" RETRIEVAL. NOTE THAT  * 

00818     * AUTOSTATUS IMPLICITLY CHECKS FOR THE LR-ERROR PATH STATUS. * 

00819     *************************************************************** 

00820     *  OBTAIN EMP-JOB-LR 

00821     *    WHERE EMP-ID-0415 = EMP-ID-0415 OF LR 

00822     *    ON LR-NOT-FOUND 

00823             MOVE 0017 TO DML-SEQUENCE            DMLC0017 
 

00824             MOVE 0  TO LRC-LRPXELNG 

00825             MOVE 0036 TO LRC-MAXVXP 

00826             MOVE 'LR-ERROR' TO LR-STATUS 

00827             MOVE 'OBTAIN N' TO LRVERB 

00828             MOVE 'EMP-JOB-LR' TO LRNAME 

00856       MOVE START-YEAR-0415 TO WORK-YY. 

00857       MOVE START-MONTH-0415 TO WORK-MM. 

00858       MOVE START-DAY-0415 TO WORK-DD. 

00859 

00860     *  MAP OUT USING EMPMAPLR 

00861     *    OUTPUT DATA IS YES 

00862     *    MESSAGE IS DISPLAY-MESSAGE LENGTH 80. 

00863             MOVE 0019 TO DML-SEQUENCE            DMLC0019 

00864             MOVE 5 TO DCFLG1 

00865             MOVE 16 TO DCFLG2 
 



Application Runtime Requirements  

 

448  DML Reference Guide for COBOL 

 

00866             MOVE 0 TO DCFLG3 

00867             MOVE 4 TO DCFLG4 

00868             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00869                 DCBMSCOM (34) 

00870                 MRB-EMPMAPLR 

00871         DISPLAY-MESSAGE DCBMSCOM (80) 

00872              PERFORM IDMS-STATUS. 

00873     * 

00874     *  DC RETURN NEXT TASK CODE TSK02. 

00875             MOVE 0020 TO DML-SEQUENCE            DMLC0020 

00876             MOVE TSK02 TO DCSTR2 

00877             MOVE 128 TO DCFLG1 

00878             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00879                 DCBMSCOM (19) 

00880              PERFORM IDMS-STATUS. 

00881     GET-EMP-EXIT. 

00882       EXIT. 

00883     *************************************************************** 

00884     *************************************************************** 

00885     * THE MODIFY MAP STATEMENT SPECIFIES THAT ALL MAP      * 

00886     * FIELDS EXCEPT THE INCORRECT EMP-ID-0415 FIELD WILL BE    * 

00887     * ERASED ON THE NEXT MAP OUT.                 * 

00888     *************************************************************** 

00889     EDIT-ERROR. 

00890     *  MODIFY MAP EMPMAPLR TEMPORARY 

00891     *    FOR ALL EXCEPT DFLD EMP-ID-0415 

00892     *     OUTPUT DATA IS ERASE. 

00893             MOVE 0021 TO DML-SEQUENCE            DMLC0021 

00894             MOVE 0 TO DCNUM1 

00895             MOVE 2561 TO DCFLG1 

00896             MOVE 16 TO DCFLG2 
 

00897             MOVE 0 TO DCFLG3 

00898             MOVE 0 TO DCFLG4 

00899             MOVE 1 TO FLDLST (2) 

00900             MOVE 1 TO FLDLST (1) 

00901             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00902                 DCBMSCOM (93) 

00903                 MRB-EMPMAPLR 

00904                 MRB-FLDLST 

00905              PERFORM IDMS-STATUS. 

00906     * 

00907     *  MAP OUT USING EMPMAPLR 

00908     *    MESSAGE IS EDIT-ERROR-MESSAGE LENGTH 80. 

00909             MOVE 0022 TO DML-SEQUENCE            DMLC0022 

00910             MOVE 5 TO DCFLG1 

00911             MOVE 0 TO DCFLG2 

00912             MOVE 0 TO DCFLG3 
 



Application Runtime Requirements 

 

Appendix C: Sample Online Program  449  

 

00913             MOVE 4 TO DCFLG4 

00914             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00915                 DCBMSCOM (34) 

00916                 MRB-EMPMAPLR 

00917         EDIT-ERROR-MESSAGE DCBMSCOM (80) 

00918              PERFORM IDMS-STATUS. 

00919     * 

00920     *  DC RETURN 

00921     *    NEXT TASK CODE TSK02. 

00922             MOVE 0023 TO DML-SEQUENCE            DMLC0023 

00923             MOVE TSK02 TO DCSTR2 

00924             MOVE 128 TO DCFLG1 

00925             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00926                 DCBMSCOM (19) 

00927              PERFORM IDMS-STATUS. 
 

00928     EDIT-ERROR-EXIT. 

00929       EXIT. 

00930     *************************************************************** 

00931     *************************************************************** 

00932     * THE FOLLOWING MODIFY MAP STATEMENT SPECIFIES THAT ALL   * 

00933     * MAP FIELDS EXCEPT THE EMP-ID-0415 FIELD WILL BE ERASED   * 

00934     * ON THE NEXT MAP OUT.                    * 

00935     *************************************************************** 

00936     NOT-FOUND. 

00937     *  MODIFY MAP EMPMAPLR TEMPORARY 

00938     *    FOR ALL EXCEPT DFLD EMP-ID-0415 

00939     *     OUTPUT DATA IS ERASE. 

00940             MOVE 0024 TO DML-SEQUENCE            DMLC0024 

00941             MOVE 0 TO DCNUM1 

00942             MOVE 2561 TO DCFLG1 

00943             MOVE 16 TO DCFLG2 
 

00944             MOVE 0 TO DCFLG3 

00945             MOVE 0 TO DCFLG4 

00946             MOVE 1 TO FLDLST (2) 

00947             MOVE 1 TO FLDLST (1) 

00948             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00949                 DCBMSCOM (93) 

00950                 MRB-EMPMAPLR 

00951                 MRB-FLDLST 

00952              PERFORM IDMS-STATUS. 

00953     * 

00954     *  MAP OUT USING EMPMAPLR 

00955     *    MESSAGE IS EMP-NOT-FOUND-MESSAGE LENGTH 80. 

00956             MOVE 0025 TO DML-SEQUENCE            DMLC0025 

00957             MOVE 5 TO DCFLG1 

00958             MOVE 0 TO DCFLG2 
 



Application Runtime Requirements  

 

450  DML Reference Guide for COBOL 

 

00959             MOVE 0 TO DCFLG3 

00960             MOVE 4 TO DCFLG4 

00961             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00962                 DCBMSCOM (34) 

00963                 MRB-EMPMAPLR 

00964         EMP-NOT-FOUND-MESSAGE DCBMSCOM (80) 

00965              PERFORM IDMS-STATUS. 

00966     * 

00967     *  DC RETURN 

00968     *    NEXT TASK CODE TSK02. 

00969             MOVE 0026 TO DML-SEQUENCE            DMLC0026 

00970             MOVE TSK02 TO DCSTR2 

00971             MOVE 128 TO DCFLG1 

00972             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00973                 DCBMSCOM (19) 

00974              PERFORM IDMS-STATUS. 
 

00975     NOT-FOUND-EXIT. 

00976       EXIT. 

00977     *************************************************************** 

00978     IDMS-ABORT. 

00979       MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE. 

00980       MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE. 

00981     *  SNAP FROM SUBSCHEMA-LR-CTRL TO SUBSCHEMA-LR-CTRL-END 

00982     *     ON ANY-STATUS 

00983             MOVE 0027 TO DML-SEQUENCE            DMLC0027 

00984             MOVE 0 TO DCFLG1 

00985             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

00986                 DCBMSCOM (22) 

00987                 DCSTR1 

00988                 DCSTR1 

00989                 DCSTR1 
 

00990         SUBSCHEMA-LR-CTRL SUBSCHEMA-LR-CTRL-END DCBMSCOM (1) 

00991             IF NOT ANY-STATUS PERFORM IDMS-STATUS; 

00992             ELSE 

00993                 NEXT SENTENCE. 

00994       MOVE SSC-ERRSTAT-SAVE TO ERROR-STATUS. 

00995       MOVE SSC-DMLSEQ-SAVE TO DML-SEQUENCE. 

00996     IDMS-ABORT-EXIT. 

00997       EXIT. 

00998     *  COPY IDMS IDMS-STATUS. 

00999     

******************************************************************01617000 

01000     IDMS-STATUS                       SECTION.01618000 

01001     ********************* IDMS-STATUS FOR IDMS-DC ********************01619000 

01002         IF DB-STATUS-OK GO TO ISABEX.              01620000 

01003         PERFORM IDMS-ABORT.                   01621000 
 



Application Runtime Requirements  

 

Appendix C: Sample Online Program  451  

 

01004         MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE          01622000 

01005         MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE           01623000 

01006     *    SNAP FROM SUBSCHEMA-CTRL TO SUBSCHEMA-CTRL-END      01624000 

01007     *          ON ANY-STATUS                 01625000 

01008             MOVE 0028 TO DML-SEQUENCE            DMLC0028 

01009             MOVE 0 TO DCFLG1 

01010             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

01011                 DCBMSCOM (22) 

01012                 DCSTR1 

01013                 DCSTR1 

01014                 DCSTR1 

01015         SUBSCHEMA-CTRL SUBSCHEMA-CTRL-END DCBMSCOM (1) 

01016             IF NOT ANY-STATUS PERFORM IDMS-STATUS; 

01017             ELSE 

01018                      NEXT SENTENCE. 
 

01019     *    ABEND CODE SSC-ERRSTAT-SAVE               01626000 

01020     *          ON ANY-STATUS                 01627000 

01021             MOVE 0029 TO DML-SEQUENCE            DMLC0029 

01022             MOVE SSC-ERRSTAT-SAVE TO DCSTR4 

01023             MOVE 2 TO DCFLG1 

01024             CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL 

01025                 DCBMSCOM (1) 

01026             IF NOT ANY-STATUS PERFORM IDMS-STATUS; 

01027             ELSE 

01028                      NEXT SENTENCE. 

01029     ISABEX. EXIT.                          01628000 

 





 

Appendix D: CA IDMS Call Formats   453  

 

Appendix D: CA IDMS Call Formats 
 

This appendix contains the call  formats used by CA IDMS to execute DML commands. 
Each DML function can be coded using standard CALL statements. 

The two tables in this appendix present the function codes and arguments that are 
passed to CA IDMS for execution of a DML command. Argument 0, which contains 

SUBSCHEMA-CTRL (the IDMS communications block), is passed for all  functions. 
 

The following example shows the expanded CA IDMS call  format for a BIND RECORD 
statement (BIND EMPLOYEE): 

CALL 'IDMS' USING SUBSCHEMA-CTRL 

         IDBMSCOM (48) 

         SR415 

         EMPLOYEE. 

The call  expansions are presented in two tables; the first table l ists the DB expansions 
and the second table l ists the DC expansions. 

This section contains the following topics: 

DB Call Formats (see page 453) 
DC Call Formats (see page 470) 

 

DB Call Formats 

CONTROL STATEMENTS 

                                                       CALLING ARGUMENTS 

                                             argument _ contains SUBSCHEMA-CTRL) 

 

Majo
r 

Funct
ion 
Code 

Database 
Service(in 

COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

14 BIND RUN- 

UNIT 

59 IDMS 

Communications 
Block* 

subschema-name*   



DB Call Formats 

 

454  DML Reference Guide for COBOL 

 

Majo
r 

Funct
ion 
Code 

Database 
Service(in 

COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

14 BIND RUN- 
UNIT 

59 IDMS 
Communications 
Block* 

subschema-name*   

 BIND 

RUN-UNIT 
FOR  

subschema- 
name 

59 IDMS 

Communications 
Block* 

subschema-name   

 BIND 
RUN-UNIT                                  
NODENAME 

  node-name 

59 IDMS 
Communications 
Block* 

subschema-name* subschema-ctrl* 

       OR 

subschema-lr-ctrl

* 

node-name 

 BIND 
RUN-UNIT 
FOR 

      
subschema-n
ame 

      
NODENAME 

node-name 

59 IDMS 

Communications 

Block* 

subschema-name subschema-ctrl* 

       OR 

subschema-lr-ctrl

* 

node-name 

 BIND 

RUN-UNIT 
FOR 

     

subschema-n
ame 

     DBNAME 

     

database-na
me 

59 IDMS 

Communications 

Block* 

subschema-name subschema-ctrl* 

       OR 

subschema-lr-ctrl
* 

node-name 



DB Call Formats 

 

Appendix D: CA IDMS Call Formats  455  

 

Majo
r 

Funct
ion 
Code 

Database 
Service(in 

COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

14 BIND RUN- 
UNIT 

59 IDMS 
Communications 
Block* 

subschema-name*   

 BIND 

RUN-UNIT  

     
NODENAME 

     

node-name 

     DBNAME 

     

database-na
me 

59 IDMS 

Communications 

Block* 

subschema-name* subschema-ctrl* 

       OR 

subschema-lr-ctrl
* 

node-name 

 BIND 
RUN-UNIT 

FOR 

     
subschema-n

ame 

     
NODENAME 

     

node-name 

     DBNAME 

     

database-na
me  

59 IDMS 

Communications 

Block* 

subschema-name subschema-ctrl* 

       OR 

subschema-lr-ctrl
* 

node-name 

 BIND 
record-name 

48 record-id record-location*   

 BIND 
record-name 

     TO 

      

record-name 

48 record-id record-location   



DB Call Formats 

 

456  DML Reference Guide for COBOL 

 

Majo
r 

Funct
ion 
Code 

Database 
Service(in 

COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

14 BIND RUN- 
UNIT 

59 IDMS 
Communications 
Block* 

subschema-name*   

 BIND  

      
record-locati
on 

      WITH 

      
record-name 

48 record-id record-location   

 BIND 

PROCEDURE  

     FOR 

     
procedure-n

ame 

     TO 

    procedure- 

    
control-locati
on 

73 procedure-name procedure-control- 

location 

  

09 READY 37     

 READY 
area-name 

37 area-name    

 READY 

area-name 

      
USAGE-MOD
E IS 

      
RETRIEVAL 

37 area-name    



DB Call Formats 

 

Appendix D: CA IDMS Call Formats   457  

 

Majo
r 

Funct
ion 
Code 

Database 
Service(in 

COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

14 BIND RUN- 
UNIT 

59 IDMS 
Communications 
Block* 

subschema-name*   

 READY 

area-name 

      
USAGE-MOD
E IS 

      
PROTECTED 

      

RETRIEVAL 

39 area-name    

 READY 
area-name 

      

USAGE-MOD
E IS 

      

EXCLUSIVE 

      
RETRIEVAL 

40 area-name    

 READY 

area-name 

      
USAGE-MOD

E IS 

      UPDATE 

36 area-name    

 READY 
area-name 

      
USAGE-MOD
E IS 

      

PROTECTED 

      UPDATE 

38 area-name    



DB Call Formats 

 

458  DML Reference Guide for COBOL 

 

Majo
r 

Funct
ion 
Code 

Database 
Service(in 

COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

14 BIND RUN- 
UNIT 

59 IDMS 
Communications 
Block* 

subschema-name*   

 READY 

area-name 

      
USAGE-MOD
E IS 

       
EXCLUSIVE 

       UPDATE 

41 area-name    

 READY 
USAGE-MOD
E 

       IS ... 

    **Choose 
function  

       code 

from 36-41 

       as shown 
above. 

**     

01 FINISH 02     

 FINISH TASK 113     

18 COMMIT 66     

 COMMIT ALL 95     

 COMMIT 
TASK 

114     

 COMMIT 
TASK ALL 

115     

19 ROLLBACK 67     

 ROLLBACK 
ALL 

96     

 ROLLBACK 

TASK 

116     



DB Call Formats 

 

Appendix D: CA IDMS Call Formats   459  

 

Majo
r 

Funct
ion 
Code 

Database 
Service(in 

COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

14 BIND RUN- 
UNIT 

59 IDMS 
Communications 
Block* 

subschema-name*   

 ROLLBACK 

TASK 

      
CONTINUE 

117     

06 KEEP 

CURRENT 

87     

 KEEP 
EXCLUSIVE 

      CURRENT  

90     

 KEEP 
CURRENT 

      

record-name       

89 record-name    

 KEEP 
EXCLUSIVE 

      CURRENT 

      
record-name 

90 record-name    

 KEEP 

CURRENT 

      WITHIN 

      set-name 

91 set-name    

 KEEP 
EXCLUSIVE 

      CURRENT 

      WITHIN 

      set-name 

92 set-name    

 KEEP 
CURRENT 

      WITHIN 

      
area-name 

93 area-name    



DB Call Formats 

 

460  DML Reference Guide for COBOL 

 

Majo
r 

Funct
ion 
Code 

Database 
Service(in 

COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

14 BIND RUN- 
UNIT 

59 IDMS 
Communications 
Block* 

subschema-name*   

 KEEP 

EXCLUSIVE 

      CURRENT 

      WITHIN 

      

area-name 

92 area-name    

16  IF   set-name 

       IS EMPTY 

... 

64 set-name    

 IF   set-name 

      IS NOT 
EMPTY... 

65 set-name    

                       (Upon return to user run-unit, the status indicator=' 0000' 

                         if set is empty;' 1601' if not empty.) 

 IF   set-name  

      MEMBER 
... 

60 set-name    

 IF   NOT 
set-name 

     MEMBER 
... 

62 set-name    

                      (Upon return to user run-unit, the status indicator = ' 0000'  

                       if the record(current of run unit) is l inked into the specified set; 

                       ' 1601' if it is not a member.) 
 



DB Call Formats 

 

Appendix D: CA IDMS Call Formats   461  

 

MODIFICATION STATEMENTS 

 

Major 
Function 

Code 

Database Service(in 
COBOL DML) 

(1) IDBMSCOM 

(nn) 

(2) (3) (4) (5) 

12  STORE record-name 42 record-name    

07 CONNECT 

      record-name TO 

      set-name 

44 record-name set-name   

08 MODIFY 

      record-name 

35 record-name    

11 DISCONNECT 

      record-name 

      FROM set-name 

46 record-name set-name   

02 ERASE record-name  

ERASE record-name 

      PERMANENT 

      MEMBERS 

ERASE record-name 

      SELECTIVE 

      MEMBERS 

ERASE record-name 

      ALL MEMBERS 

 

52 

03 

 

 

53 

 

 

4 

record-name 

record-name 

 

 

record-name 

 

 

record-name 

   

 



DB Call Formats 

 

462  DML Reference Guide for COBOL 

 

RETRIEVAL STATEMENTS 

 

Major 
Functio

n Code 

Database 
Service(in COBOL 

DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

03 FIND DB-KEY 

       db-key 

FIND record-name 

      DB-KEY IS 

      db-key 

FIND CURRENT 

FIND CURRENT 

     record-name 

75 

 

06 

 

 

30 

07 

db-key 

 

record-name 

 

 

 

record-name 

 

 

db-key 

  

 FIND CURRENT 

     WITHIN 
set-name 

08 set-name    

 FIND CURRENT 

     WITHIN 

     area-name 

09 area-name    

 FIND NEXT 
WITHIN 

     set-name 

14 set-name    

 FIND NEXT 

     record-name 

     WITHIN 

set-name 

10 record-name set-name   

 FIND PRIOR 

     WITHIN 

set-name 

16 set-name    

 FIND PRIOR 

      record-name 

      WITHIN 

set-name 

12 record-name set-name   

 FIND FIRST 

      WITHIN 
set-name 

20 set-name    



DB Call Formats 

 

Appendix D: CA IDMS Call Formats   463  

 

Major 
Functio

n Code 

Database 
Service(in COBOL 

DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

 FIND FIRST 

       record-name  

       WITHIN 
set-name  

18 record-name set-name   

 FIND LAST 

       WITHIN 
set-name 

24 set-name    

 FIND LAST 

       record-name  

       WITHIN 
set-name 

22 record-name set-name   

 FIND number 

       WITHIN 
set-name 

78 set-name number   

 FIND number  

      record-name 

      WITHIN 
set-name 

76 record-name set-name number  

 FIND NEXT 

WITHIN 

      area-name 

15 area-name    

 FIND NEXT 

       record-name 

       WITHIN 

       area-name 

11 record-name area-name   

 FIND PRIOR 

WITHIN 

       area-name 

17 area-name    

 FIND PRIOR 

       record-name  

       WITHIN 

       area-name 

13 record-name area-name   



DB Call Formats 

 

464  DML Reference Guide for COBOL 

 

Major 
Functio

n Code 

Database 
Service(in COBOL 

DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

 FIND FIRST 

WITHIN 

       area-name 

21 area-name    

 FIND FIRST 

        record-name 

        WITHIN 

        area-name 

19 record-name area-name   

 FIND LAST WITHIN 

       area-name 

25 area-name    

 FIND LAST 

       record-name 

       WITHIN 

       area-name 

23 record-name area-name   

 FIND number 

       WITHIN 

        area-name 

79 area-name number   

 FIND number  

        record-name 

        WITHIN 

        area-name 

77 record-name area-name number  

 FIND OWNER 

        WITHIN 
set-name 

31 set-name    

 FIND CALC (ANY) 

        record-name 

32 record-name    

 FIND DUPLICATE 

        record-name 

50 record-name    

 FIND record-name  

        WITHIN 

        set-name 

USING 

        sort-key 

33 record-name set-name sort-key  



DB Call Formats 

 

Appendix D: CA IDMS Call Formats   465  

 

Major 
Functio

n Code 

Database 
Service(in COBOL 

DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

 FIND record-name 

        WITHIN 

        set-name  

        CURRENT 
USING 

        sort-key 

51 record-name set-name sort-key  

 OBTAIN      

                       Any of the above FIND record selection expressions. Call   

                        generated consists of arguments described above for the  

                       FIND in question plus an additional argument of IDBMSCOM 

                       (43) function. For example: 

 OBTAIN CALC 

       record-name 

32 record-name IDBMSCOM(4

3) 

  

 OBTAIN PRIOR 

       record-name 

       WITHIN 

set-name 

12 record-name    

 KEEP 

KEEP EXCLUSIVE 

     

                       Any of the above FIND/OBTAIN record selection expressions  

                       Call  generated consists of arguments described above for the 

                       FIND/OBTAIN in question plus one of the following additional  

                       IDBMSCOM function: 

                       KEEP..............................IDBMSCOM(87) 

                       KEEP EXCLUSIVE...........IDBMSCOM(**) 

                       For example: 

 OBTAIN KEEP 
CALC 

        record-name 

32 record-name IDBMSCOM(4
3) 

IDBMSCOM(87)  

 FIND KEEP 

        EXCLUSIVE 

           CURRENT 

30 IDBMSCOM(88)    

05 GET 43 index-set-name db-key symbolic-key  



DB Call Formats 

 

466  DML Reference Guide for COBOL 

 

Major 
Functio

n Code 

Database 
Service(in COBOL 

DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

 GET   

record-name 

34 index-set-name db-key symbolic-key  

17 RETURN db-key 

        FROM 

        

index-set-name 

        CURRENCY 

        KEY INTO 

        symbolic-key 

81 index-set-name db-key symbolic-key  

 RETURN db-key 

        FROM 

        

index-set-name 

        FIRST 

        KEY INTO 

        symbolic-key 

82 index-set-name db-key symbolic-key  

 RETURN db-key 

        FROM 

        

index-set-name 

        LAST 

        KEY INTO 

        symbolic-key 

83 index-set-name db-key symbolic-key  

 RETURN db-key 

       FROM 

       

index-set-name 

       NEXT 

       KEY INTO 

       symbolic-key 

84 index-set-name db-key symbolic-key  



DB Call Formats 

 

Appendix D: CA IDMS Call Formats   467  

 

Major 
Functio

n Code 

Database 
Service(in COBOL 

DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

 RETURN db-key 

       FROM 

       
index-set-name 

       PRIOR 

       KEY INTO 

       symbolic-key 

85 index-set-name db-key symbolic-key  

 RETURN db-key 

      FROM 

      
index-set-name 

      USING 

      
index-key-value 

      KEY INTO 

      symbolic-key 

86 index-set-name db-key index-key-value symbolic-key 

 

ACCEPT STATEMENTS 

 

Major 
Function 

Code 

Database Service(in 
COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

15 ACCEPT db-key 

      FROM CURRENCY 

54 db-key    

 ACCEPT db-key 

      FROM 

      record-name 

      CURRENCY 

55 record-name db-key   

 ACCEPT db-key 

      FROM 

      set-name 

      CURRENCY 

57 set-name db-key   



DB Call Formats 

 

468  DML Reference Guide for COBOL 

 

Major 
Function 

Code 

Database Service(in 
COBOL DML) 

(1) 
IDBMS

COM 

(nn) 

(2) (3) (4) (5) 

 ACCEPT db-key 

      FROM 

      area-name 

      CURRENCY 

56 area-name db-key   

 ACCEPT db-key 

      FROM  

      set-name 

      NEXT CURRENCY 

68 set-name db-key   

 ACCEPT db-key 

      FROM 

      set-name 

      PRIOR CURRENCY 

69 set-name db-key   

 ACCEPT db-key 

      FROM 

      set-name 

      OWNER CURRENCY 

70 set-name db-key   

 ACCEPT db-statistics 

      FROM 

      IDMS STATISTICS 

71 db-statistics    

 ACCEPT  

      bind-address 

      FROM 

      record-name 

      BIND 

72 record-name bind-address   

 ACCEPT 
procedure-control-locati

on 

      FROM 

      procedure-name 

      PROCEDURE 

74 procedure-name procedure-control-locat
ion 

  

 



DB Call Formats 

 

Appendix D: CA IDMS Call Formats   469  

 

LRF DML STATEMENTS 

 

Major 
Function 

Code 

Database Service(in 
COBOL DML) 

(1) 
IDBMSCO

M 

(nn) 

(2) (3) (4) (5) 

20 OBTAIN FIRST 

      

logical-record-name 

99 subschema-lr-ctrl* logical-record- 

    location* 

  

 OBTAIN FIRST 

     logical-record-name 

     INTO 

     alt-logical-record 

      location 

99 subschema-lr-ctrl* logical-record- 

    location* 

  

 OBTAIN NEXT 

     logical-record-name 

99 subschema-lr-ctrl* logical-record- 

    location* 

  

 OBTAIN NEXT 

     logical-record-name 

     INTO 

     alt-logical-record 

      location 

99 subschema-lr-ctrl* logical-record- 

    location* 

  

 MODIFY 

logical-record-name 

99 subschema-lr-ctrl* logical-record- 

    location* 

  

 MODIFY 
logical-record- 

     name 

     FROM 

     alt-logical-record- 

     location 

       

       

99 subschema-lr-ctrl* logical-record- 

    location* 

  

 STORE 
logical-record-name 

99 subschema-lr-ctrl* logical-record- 

    location* 

  



DC Call Formats 

 

470  DML Reference Guide for COBOL 

 

Major 
Function 

Code 

Database Service(in 
COBOL DML) 

(1) 
IDBMSCO

M 

(nn) 

(2) (3) (4) (5) 

 STORE logical-record- 

     name 

     FROM 

     alt-logical-record- 

     location 

99 subschema-lr-ctrl* logical-record 

    location 

  

 ERASE 
logical-record-name 

99 subschema-lr-ctrl* logical-record- 

    location* 

  

 ERASE logical-record- 

     name 

     FROM 

     alt-logical-record- 

     location 

99 subschema-lr-ctrl* logical-record- 

    location 

  

                       To differentiate between the LRF DML statements,the DML 

                       compiler places the name of the verb issued into the LRC Block 

                       (subschema-lr-ctrl). 
 

DC Call Formats 

PROGRAM MANAGEMENT STATEMENTS 

  

Major 

Functi
on 
Code 

DC System 

Service(in 
COBOL 
DML) 

(1) 

DCBMSCO
M 

(nn) 

(2) (3) (4) (5) 

30 TRANSFER 

CONTROL 

23 DCFLG1 DCSTR2 parameter  

30 DC RETURN 19     

34 LOAD TABLE 15 01-level-program-location end-program-location   

34 DELETE 
TABLE 

5 01-level-program-location    



DC Call Formats 

 

Appendix D: CA IDMS Call Formats   471  

 

Major 
Functi

on 
Code 

DC System 
Service(in 

COBOL 
DML) 

(1) 

DCBMSCO

M 

(nn) 

(2) (3) (4) (5) 

33 SET ABEND 

EXIT     
(STATE) 

20     

33 ABEND 1     
 

STORAGE MANAGEMENT STATEMENTS 

   

Majo
r 
Funct

ion 
Code 

DC 
System 
Service(in 

COBOL 
DML) 

(1) 

DCBMSCO
M 

(nn) 

(2) (3) (4) (5) 

32 GET 
STORAGE 

13 01-level-storage-data-location end-storage-data-location   

32 FREE 
STORAGE 

10 01-level-storage-data-location start-free-storage-location   

 

  

 

 
 

TASK MANAGEMENT STATEMENTS 

 

Major 
Functi
on 

Code 

DC System 
Service(in 
COBOL 

DML) 

(1) 

DCBMSCO
M 

(nn) 

(2) (3) (4) (5) 

37 ATTACH 3 DCFLG1 DCSTR2 parameter  

37 CHANGE 
PRIORITY 

4     



DC Call Formats 

 

472  DML Reference Guide for COBOL 

 

Major 
Functi

on 
Code 

DC System 
Service(in 

COBOL 
DML) 

(1) 

DCBMSCO

M 

(nn) 

(2) (3) (4) (5) 

39 ENQUEUE 9 DCFLG1 DCBMSCOM 

(mode) 

DCBMSCOM(length) resource-id.. 

39 DEQUEUE 8 DCFLG1 DCBMSCOM 
(length) 

resource-id..  

31 WAIT 24 ecb    

31 POST 16 ecb    
 

TIME MANAGEMENT STATEMENTS 

 

Major 

Functi
on 
Code 

DC System 

Service(in 
COBOL 
DML) 

(1) 

DCBMSCO
M 

(nn) 

(2) (3) (4) (5) 

35 GET TIME 14    return-time return-date   

35 SET TIMER 21    task-data-location end-task-data-location-location   

35 SET TIMER 
(post) 

21    post- ecb    

 

SCRATCH MANAGEMENT STATEMENTS 

 

Maj
or 
Func

tion 
Cod
e 

DC System 
Service(in 
COBOL 

DML) 

(1) 

     
DCBMSC

OM 

(nn) 

(2) (3) (4) (5) 

43 PUT 
SCRATCH 

18    scratch-data-location end-scratch-data-location   

43 GET 
SCRATCH 

12   return-scratch-data-location end-scratch-data-location   



DC Call Formats 

 

Appendix D: CA IDMS Call Formats   473  

 

Maj
or 

Func
tion 
Cod

e 

DC System 
Service(in 

COBOL 
DML) 

(1) 

     

DCBMSC
OM 

(nn) 

(2) (3) (4) (5) 

43 DELETE 
SCRATCH 

6    post- ecb    

 

QUEUE MANAGEMENT STATEMENTS 

 

Majo
r 
Funct

ion 
Code 

DC System 
Service(in 
COBOL DML) 

(1) 

     
DCBMSC

OM 

(nn) 

(2) (3) (4) (5) 

44 PUT QUEUE 17    queue-data-location end-queue-data-location   

44 GET QUEUE 11   return-queue-data-location end-queue-data-location   

44 DELETE 
QUEUE 

6      

 

TERMINAL MANAGEMENT STATEMENTS 

 

Major 
Functio
n Code 

DC System 
Service(in 
COBOL DML) 

(1) 

DCBMSC
OM 

(nn) 

(2) (3) (4) (5) 

45 READ 
TERMINAL 

30 input-data-loc
ation 

end-input-data-lo
cation 

  

45 WRITE 

TERMINAL 

30 output-data-lo

cation 

end-output-data-l

ocation 

  

45 WRITE THEN 
READ 
TERMINAL 

30 output-data-lo
cation 

end-output-data-l
ocation 

input-data-location end-input-data-lo
cation 

45 CHECK 
TERMINAL 

31 input-data-loc
ation 

end-input-data-lo
cation 

  



DC Call Formats 

 

474  DML Reference Guide for COBOL 

 

Major 
Functio

n Code 

DC System 
Service(in 

COBOL DML) 

(1) 

DCBMSC

OM 

(nn) 

(2) (3) (4) (5) 

47 READ LINE 

FROM 
TERMINAL 

32 input-data-loc

ation 

end-input-data-lo

cation 

  

47 WRITE LINE 
TO 

TERMINAL 

32 output-data-lo
cation 

end-output-data-l
ocation 

  

47 END LINE 
TERMINAL 
SESSION 

32     

48 WRITE 
PRINTER 

37 message-locat
ion 

end-message-loc
ation 

  

46 MAP IN (IO) 34 MRB-mapnam

e 

   

46 MAP IN 
(NOIO) 

34 MRB-mapnam
e 

mapped-data-loc
ation 

end-mapped-data-loc
ation 

 

46 MAP IN 

(paging) (a) 

34 MRB-mapnam

e 

data-field-name sequence-field-name page-number 

46 MAP IN 
(paging) (b) 

34 MRB-mapnam
e 

key page-number  

46 MAP OUT 
(IO) 

34 MRB-mapnam
e 

message-text end-message-data-lo
cation 

  OR 

DCBMSCOM (length) 

 

46 MAP OUT 
(NOIO) 

34 MRB-mapnam
e 

mapped-data-loc
ation 

end-mapped-data- 
location 

 

46 MAP OUT 

(paging) 

34 MRB-mapnam

e 

message-text end-message-locatio

n 

OR 

DCBMSCOM (length) 

key 

46 MAP OUTIN 34 MRB-mapnam

e 

message-text end-message-data-lo

cation 

  OR 

DCBMSCOM (length)  

 

46 MODIFY MAP 93 MRB-mapnam

e 

MRE MRB-FLDLST  



DC Call Formats 

 

Appendix D: CA IDMS Call Formats   475  

 

Major 
Functio

n Code 

DC System 
Service(in 

COBOL DML) 

(1) 

DCBMSC

OM 

(nn) 

(2) (3) (4) (5) 

46 INQUIRE 

MAP (a) 

92 MRB-mapnam

e 

MRE   

46 INQUIRE 
MAP (b) 

92 MRB-mapnam
e 

   

46 INQUIRE 

MAP (c) 

92 MRB-mapnam

e 

MRE   

46 INQUIRE 
MAP (d) 

92 MRB-mapnam
e 

MRB-FLDLST   

46 STARTPAGE 40 MRB-mapnam

e 

   

46 ENDPAGE 41 MRB-mapnam
e 

   

 

UTILITY STATEMENTS 

 

Majo
r 

Funct
ion 
Code 

DC 
System 

Service(in 
COBOL 
DML) 

(1) 

DCBMSC

OM 

(nn) 

(2) (3) (4) (5) 

48 ACCEPT 2 return-locatio

n 

   

40 SNAP 22 DCSTR1 DCSTR1 (6) 
begin-dump-locatio

n 

DCSTR1 (7) 
end-dump-location 

title (8) 

49 SEND 
MESSAGE 

38 user-id message-location end-message-location DCBMSCOM(1) 

38 BIND 

TRANSACT
ION 
STATISTIC

S 

28     



DC Call Formats 

 

476  DML Reference Guide for COBOL 

 

Majo
r 

Funct
ion 
Code 

DC 
System 

Service(in 
COBOL 
DML) 

(1) 

DCBMSC

OM 

(nn) 

(2) (3) (4) (5) 

38 ACCEPT 
TRANSACT
ION 
STATISTIC

S 

28 return-stat-da
ta-location 

   

38 END 
TRANSACT
ION 

STATISTIC
S 

28 return-stat-da
ta-location 

   

51 KEEP 

LONGTER
M 

29 record-name 

set-name 

area-name 

   

36 WRITE 
LOG 

25 text-return-lo
cation 

end-text-return-loc
ation 

reply-location 

(6) 

parameter-location 

end-reply-location 
(7)  

end-parameter-locat
ion 

 

RECOVERY STATEMENTS 

 

Major 
Functio
n Code 

DC System 
Service(in 
COBOL DML) 

(1) 

DCBMSCOM 

(nn) 

(2) (3) (4) (5) 

50 COMMIT 66     

50 COMMIT 
TASK 

27     

50 FINISH 2     

50 FINISH TASK 27     

50 ROLLBACK 67     

50 ROLLBACK 
TASK 

27     



DC Call Formats 

 

Appendix D: CA IDMS Call Formats  477  

 

Major 
Functio

n Code 

DC System 
Service(in 

COBOL DML) 

(1) 

DCBMSCOM 

(nn) 

(2) (3) (4) (5) 

50 WRITE 
JOURNAL 

26 record-location end-record-location   

 

DC-BATCH 

 

Major 
Function 

Code 

DC System 
Service(in COBOL 

DML) 

(1) 

DCBMSCOM 

(nn) 

(2) (3) (4) (5) 

14 BIND-TASK 28 DCSTR2    

 





 

Appendix E: CA IDMS Keywords  479  

 

Appendix E: CA IDMS Keywords 
 

This appendix contains a l ist of keywords recognized by the DML precompiler, including 
words applicable in the online environment only. All  keywords mar ked with an asterisk 
are also reserved words. Reserved words cannot be used for user-defined element, 
record, set, paragraph, or area variable names. 

 

Note: The method of parsing used by the IDMSDMLC preprocessor is significantly 

different in CA IDMS Release 12.0 and later releases from that used in prior releases. 
The current parsing method looks at individual words in the source code. If it 
encounters a keyword, it assumes that the keyword should be expanded and tries to do 
so. Invalid use of reserved words can thus result in either coding errors or syntax errors. 

For example, if you use FIND as a variable, the parser will  try to handle it as the DML 
verb FIND. 

This section contains the following topics: 

List of Keywords (see page 479) 
 

List of Keywords 

*ABEND          INTERNAL        *REMARKS 

 ABORT          INTERVAL         REPLACE 

*ACCEPT         INTO           REPLY 

 AID            INVOKED         REPORT 

 ALARM          IO             REQUIRED 

 ALL            IS             REREAD 

 ALPHAMERIC     JOURNAL         RESETKBD 

 ALWAYS         JUSTIFY         RESETMDT 

 ANY            *KEEP           RESUME 

 AREA           KEY            RETENTION 

 ASSIGN         LAST           RETURNKEY 
 

 AT             LEAVE          RETRIEVAL 

*ATTACH         LEFT           RETRY 

 ATTRIBUTES       LENGTH         *RETURN 

 BACKPAGE        LEVELS          REVERSE-VIDEO 
 

 BACKSCAN        LINE           REVERSED 

*BIND           LINK           REWIND 

 BLINK          *LINKAGE         RIGHT 

 BLUE           LIST            *ROLLBACK 

 BRIGHT         LITERALS         RUN 
 



List of Keywords 

 

480  DML Reference Guide for COBOL 

 

 BROWSE         *LOAD           RUN-UNIT 

 BUFFER         LOCK            *SCHEMA 

 BUT            LOG             SCRATCH 

 BY             LONG            SCREEN 

 CALC          LONGTERM         SCREENSIZE 

*CALL          LR              SECONDS 

 CANCEL         LSSC-NODN        *SECTION 

*CHANGE         LTERM          *SELECT 
 

 CHANGED         MANUAL          SELECTIVE 

*CHECK         *MAP           *SEND 

 CLASS          MAP-BINDS        SEQUENCE 

 CLEAR          MAP-CONTROL       SEQUENCE-NUMBER 

 CODE          MAP-CONTROLS      SESSION 

*COMMIT         MAP-RECORDS       *SET 

 COMP          MAPS           SHARE 

 COMP-3         MAX            SHARED 
 

*CONNECT         MDT            SHORT 

 CONTENTS        MEMBER          SKIP 

 CONTINUE        MEMBERS         SKIP1 

 CONTROL         MESSAGE         SKIP2 

 COPIES         MODE           SKIP3 

*COPY          MODIFIED         SNAP 

 CORRECT        *MODIFY          SOME 

 CURRENCY        MODULE          SPAN 
 

 CURRENT         MOVE           STANDARD 

 CURSOR         MRB-FLDLST        START 

 DARK          NAME           STARTPAGE 

*DATA          NATIVE          STARTPRT 

 DATABASE-KEY      NEWPAGE         STATISTICS 

 DATASTREAM       NEXT            STGID 

 DATE          NLCR           *STOP 

 DB            NO             STORAGE 
 

 DB-KEY         NOALARM         *STORE 

 DBNAME         NOBACKPAGE        SUBSCHEMA-AREANAMES 

*DC            NOBACKSCAN         SUBSCHEMA-BINDS 

 DEBUG          NOBLINK         SUBSCHEMA-CONTROL 

*DECLARATIVES      NOCOLOR         SUBSCHEMA-CTRL 

*DELETE         NODEADLOCK        SUBSCHEMA-DESCRIPTION 

*DEQUEUE         NODENAME         SUBSCHEMA-DML-LR- 
 

 DEST          NODUMP         DESCRIPTION 

 DESTINATION       NOIO           SUBSCHEMA-LR-CONTROL 

 DETAIL         NOKBD          SUBSCHEMA-LR-CTRL 

 DETECT         NOLOCK          SUBSCHEMA-LR- 

 DFLD          NOMDT           DESCRIPTION 

*DISCONNECT       NONE           SUBSCHEMA-LR-NAMES 

 DISP          NOPAD          SUBSCHEMA-LR-RECORDS 

 DISPLAY         NOPRT          SUBSCHEMA-NAMES 
 



List of Keywords 

 

Appendix E: CA IDMS Keywords  481  

 

 DIVISION        NORETURN         SUBSCHEMA-RECNAMES 

 DUMP          NORMAL          SUBSCHEMA-RECORDS 

 DUPLICATE       NORMAL-VIDEO       SUBSCHEMA-SETNAMES 

 EAU           NOSPAN          SUBSCHEMA-SSNAME 

 ECHO          NOT            SYSTEM 

 EDIT          *NOTE           SYSVERSION 

 EJECT          NOTIFICATION       TABLE 

 EMPTY          NOTIFY          TASK 

*END           NOUNDERSCORE       TEMPORARY 
 

 ENDPAGE         NOWAIT          TERMINAL 

 ENDRPT         NOWRITE         TEST 

*ENQUEUE         NULL           TEXT 

*ENTRY          NUMERIC         THEN 

*ENVIRONMENT      *OBTAIN          TIME 

*ERASE          OF             TIMEOUT 

 ERROR          OFF            TIMER 

 EVENT          ON             TITLE 
 

 EXCEPT         ONLY           TO 

 EXCLUSIVE       *OPEN           TRACE 

 EXIT          OPTIONAL         TRANSACTION 

 EXITS          OUT            *TRANSFER 

 EXTENDED        OUTIN          TRUNCATED 

 EXTERNAL        OUTPUT          TURQUOISE 

 EXTRANEOUS       OWNER          TYPE 

 FIELD          PAD            UNDERSCORE 
 

 FIELDS         PAGE           UNFORMATTED 

 FILE          PAGING          UNPROTECTED 

*FIND          PARMS          UPDATE 

*FINISH         PERMANENT        UPGRADE 

 FIRST          PINK           USAGE-MODE 

 FOR           POSITION         USER 

*FREE          *POST           USING 
 

 FROM          PREFIX          VALUE 

*GET           PRINTER         VERSION 

 GREEN          PRIOR          *WAIT 

 HEADER         PRIORITY         WCC 

 HOLD          PRIVACY         WHERE 

 I-O           *PROCEDURE        WHITE 

*ID            PROGRAM         WITH 

*IDENTIFICATION     *PROGRAM-ID        WITHIN 
 

 IDMS          PROTECTED        *WORKING-STORAGE 

*IDMS-CONTROL      PROTOCOL        *WRITE 

 IDMS-RECORDS      PTERM          XCTL 

 IDMS-STATISTICS    *PUT           YELLOW 

*IF             QUEUE          YES 
 



List of Keywords 

 

482  DML Reference Guide for COBOL 

 

 IGNORED        *READ           40CR 

 IN             *READY          64CR 

 INCREMENTED       RECORD          80CR 

 INPUT          RED 

*INQUIRE         REDISPATCH 

 INTENT         RELEASE 

 



 

Appendix F: Notes to Teleprocessing Monitor Users   483  

 

Appendix F: Notes to Teleprocessing 
Monitor Users 
 

This appendix describes special considerations relating to application programs running 
under teleprocessing (TP) monitors supported by CA IDMS (that is, CICS, INTERCOMM, 
SHADOW, TASK/MASTER, UTM, and WESTI). 

This section contains the following topics: 

TP Monitor Coding Guidelines  (see page 483) 
TP monitor Coding Requirements  (see page 484) 

 

TP Monitor Coding Guidelines 

While there are no special coding requirements for TP monitor transactions, the 

following guidelines should be adhered to: 

■ DML statements should be coded such that all  database requests (for example, 
BIND, READY, OBTAIN, FINISH) are executed together whenever possible to achieve 

maximum efficiency and ease of recovery. 

■ For each TP monitor, you should check with the DBA to determine the operating 
mode (protocol) installed. The proper mode must then be specified in the 
IDMS-CONTROL SECTION of the ENVIRONMENT DIVISION. 

 

■ For CICS, INTERCOMM, SHADOW, UTM, and WESTI applications, the mode as 

installed may require the inclusion of additional statements in the IDMS-CONTROL 
SECTION, WORKING-STORAGE SECTION, and LINKAGE SECTION of each program. 
These requirements and the applicable modes are outlined in the following table. 

 

Note: The same rules apply to the COPY IDMS statements used to insert 
logical-record source code components into the program: IDMS-RECORDS MANUAL 

should be coded in the ENVIRONMENT DIVISION; SUBSCHEMA-LR-NAMES should be 
copied into the WORKING-STORAGE SECTION; and SUBSCHEMA-CTRL, 
SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS should be copied into the 
LINKAGE-SECTION (except under CICS-EXEC or CICS-EXEC-AUTO, when all  required 

components should be copied into the WORKING-STORAGE SECTION). 

■ The DML compiler should be executed before the teleprocessing monitor 
preprocessor. 

 



TP monitor Coding Requirements  

 

484  DML Reference Guide for COBOL 

 

TP monitor Coding Requirements 
  

TP MONITOR IF MODE IS IDMS-CONTROL 
SECTION 

WORKING-STORA
GE SECTION 

LINKAGE SECTION PROCEDURE 
DIVISION 

CICS CICS IDMS-RECORDS 

MANUAL. 

COPY IDMS 

SUBSCHEMA-NAM
ES 

*01 TWA 

       03 FILLER PIC 
S9(8) 

          COMP SYNC. 

       03 COPY IDMS 

         
SUBSCHEMA-CTRL. 

       03 COPY IDMS 

           
SUBSCHEMA-RECO
RDS. 

           OR 

 **COPY IDMS 

        
SUBSCHEMA-CTRL 

    COPY IDMS 

          
SUBSCHEMA-RECO
RDS. 

 

     (A CICS 
GETMAIN must 

     be issued for the      
SUBSCHEMA-CTRL  

and for each record 
being copied.) 

 

COPY IDMS 

  IDMS-WAIT. 

 CICS-EXEC IDMS-RECORDS 

MANUAL. 

COPY IDMS 

  

SUBSCHEMA-CTRL. 

  

 CICS-EXEC-AUTO  COPY IDMS 

   
SUBSCHEMA-NAM

ES. 

 

  



TP monitor Coding Requirements 

 

Appendix F: Notes to Teleprocessing Monitor Users   485  

 

TP MONITOR IF MODE IS IDMS-CONTROL 
SECTION 

WORKING-STORA
GE SECTION 

LINKAGE SECTION PROCEDURE 
DIVISION 

   COPY IDMS 

SUBSCHEMA-RECO
RDS. 

  

INTERCOMM INTERCOMM 

INTERCOMM-AU
TO 

IDMS-RECORDS 

MANUAL. 

COPY IDMS 

SUBSCHEMA-NAM
ES. 

COPY IDMS 
SUBSCHEMA-CTRL. 

COPY IDMS 

SUBSCHEMA-RECO

RDS. 

 

SHADOW SHADOW 

SHAD-AUTOSTAT
US 

IDMS-RECORDS 

MANUAL. 

COPY IDMS 

SUBSCHEMA-NAM
ES. 

COPY IDMS 
SUBSCHEMA-CTRL. 

COPY IDMS 

SUBSCHEMA-RECO
RDS 

 

UTM UTM 

UTM-AUTOSTAT
US 

IDMS-RECORDS 

MANUAL. 

COPY IDMS 

SUBSCHEMA-NAM
ES. 

COPY KCKBC. 

05 X PIC S9 (8) 
COMP SYNC. 

05 COPY IDMS  

  

SUBSCHEMA-CTRL. 

05 COPY IDMS 

SUBSCHEMA-RECO

RDS. 

COPY KCPAC. 

MOVE 

LOW-VALUES 
to 
SUBSCHEMA_C
TRL before 

each BIND 
RUN-UNIT. 

WESTI WESTI-REENT 

WESTI-REENT-AU

TO 

IDMS-RECORDS 

MANUAL. 

COPY IDMS 

SUBSCHEMA-NAM

ES. 

COPY IDMS 
SUBSCHEMA-CTRL. 

COPY IDMS 

SUBSCHEMA-RECO
RDS. 

 

 *If SUBSCHEMA-CTRL, SUBSCHEMA_RECORDS, and additional data does not exceed 4,096 bytes. 

 **If SUBSCHEMA-CTRL, SUBSCHEMA_RECORDS, and additional data exceeds 4,096 bytes. 

 





 

Appendix G: EMPLOYEE Database Definition  487  

 

Appendix G: EMPLOYEE Database Definition 
 

This appendix contains the IDMSRPTS util ity and the data structure diagram for the 
EMPLOYEE database from which most of the examples in this manual are taken. Both of 
the sample programs listed earlier in this manual access this database. 

Note: For more information about the IDMSRPTS util ity, see the CA IDMS Utilities Guide. 

This section contains the following topics: 

IDMSRPTS Util ity Report Listings  (see page 487) 
EMPLOYEE Database Structure Diagram (see page 501) 

 

IDMSRPTS Utility Report Listings 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss   1 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ COVERAGE                   RLGTH=  36 

RECORD VERSION..... 0100                     DLGTH=  20 

RECORD ID.......... 0400                     KLGTH=  16 

RECORD LENGTH...... FIXED                    DSTRT=  16 

LOCATION MODE...... VIA SET   EMP-COVERAGE    DISPLACEMENT 0000 PAGES 

WITHIN............. INS-DEMO-REGION   OFFSET    5 PGS FOR    20 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          EMP-COVERAGE   MEMBER     1   2   3 

          COVERAGE-CLAIMS OWNER      4 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 SELECTION-DATE-0400      DISPLAY               1   8 

03 SELECTION-YEAR-0400      DISPLAY         9(4)    1   4 

03 SELECTION-MONTH-0400     DISPLAY         9(2)    5   2 

03 SELECTION-DAY-0400      DISPLAY         9(2)    7   2 

02 TERMINATION-DATE-0400     DISPLAY               9   8 
 



IDMSRPTS Utility Report Listings 

 

488  DML Reference Guide for COBOL 

 

03 TERMINATION-YEAR-0400     DISPLAY         9(4)    9   4 

03 TERMINATION-MONTH-0400    DISPLAY         9(2)    13   2 

03 TERMINATION-DAY-0400     DISPLAY         9(2)    15   2 

02 TYPE-0400           DISPLAY         X     17   1 

88 MASTER-0400          COND     'M'          17 

88 FAMILY-0400          COND     'F'          17 

88 DEPENDENT-0400        COND     'D'          17 

02 INS-PLAN-CODE-0400      DISPLAY         X(3)    18   3 

88 GROUP-LIFE-0400        COND     '001'         18 

88 HMO-0400           COND     '002'         18 

88 GROUP-HEALTH-0400       COND     '003'         18 

88 GROUP-DENTAL-0400       COND     '004'         18 

 
 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss   3 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ DENTAL-CLAIM                 RLGTH= 944 

RECORD VERSION..... 0100                     DLGTH= 936 
 

RECORD ID.......... 0405                     KLGTH=  8 

RECORD LENGTH...... VARIABLE                   DSTRT=  12 

MINIMUM ROOT.......  132 CHARACTERS 

MINIMUM FRAGMENT...  932 CHARACTERS 

LOCATION MODE...... VIA SET   COVERAGE-CLAIMS   DISPLACEMENT 0000 PAGES 

WITHIN............. INS-DEMO-REGION   OFFSE    5 PGS FOR    20 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          COVERAGE-CLAIMS MEMBER     1 

          (FRAGMENT CHAIN) INTRNL     2 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 CLAIM-DATE-0405        DISPLAY               1   8 

03 CLAIM-YEAR-0405        DISPLAY         9(4)    1   4 

03 CLAIM-MONTH-0405       DISPLAY         9(2)    5   2 

03 CLAIM-DAY-0405        DISPLAY         9(2)    7   2 

02 PATIENT-NAME-0405       DISPLAY               9  25 

03 PATIENT-FIRST-NAME-0405    DISPLAY         X(10)    9  10 

03 PATIENT-LAST-NAME-0405    DISPLAY         X(15)   19  15 

02 PATIENT-BIRTH-DATE-0405    DISPLAY              34   8 

03 PATIENT-BIRTH-YEAR-0405    DISPLAY         9(4)    34   4 

03 PATIENT-BIRTH-MONTH-0405   DISPLAY         9(2)    38   2 
 



IDMSRPTS Utility Report Listings 

 

Appendix G: EMPLOYEE Database Definition  489  

 

03 PATIENT-BIRTH-DAY-0405    DISPLAY         9(2)    40   2 

02 PATIENT-SEX-0405       DISPLAY         X     42   1 

02 RELATION-TO-EMPLOYEE-0405   DISPLAY         X(10)   43  10 

02 DENTIST-NAME-0405       DISPLAY              53  25 

03 DENTIST-FIRST-NAME-0405    DISPLAY         X(10)   53  10 

03 DENTIST-LAST-NAME-0405    DISPLAY         X(15)   63  15 

02 DENTIST-ADDRESS-0405     DISPLAY              78  46 

03 DENTIST-STREET-0405      DISPLAY         X(20)   78  20 

03 DENTIST-CITY-0405       DISPLAY         X(15)   98  15 

03 DENTIST-STATE-0405      DISPLAY         X(2)   113   2 

03 DENTIST-ZIP-0405       DISPLAY              115   9 

04 DENTIST-ZIP-FIRST-FIVE-0405  DISPLAY         X(5)   115   5 

04 DENTIST-ZIP-LAST-FOUR-0405  DISPLAY         X(4)   120   4 

02 DENTIST-LICENSE-NUMBER-0405  DISPLAY         9(6)   124   6 

02 NUMBER-OF-PROCEDURES-0405   COMP          9(2)   130   2 

02 FILLER            DISPLAY         X     132   1 

02 DENTIST-CHARGES-0405     DISPLAY OCCURS 0 TO 10      133  800 
 

  DEPENDING ON --- NUMBER-OF-PROCEDURES-0405 

03 TOOTH-NUMBER-0405       DISPLAY         9(2)    1   2 

03 SERVICE-DATE-0405       DISPLAY               3   8 

04 SERVICE-YEAR-0405       DISPLAY         9(4)    3   4 

04 SERVICE-MONTH-0405      DISPLAY         9(2)    7   2 

04 SERVICE-DAY-0405       DISPLAY         9(2)    9   2 

03 PROCEDURE-CODE-0405      DISPLAY         9(4)    11   4 

03 DESCRIPTION-OF-SERVICE-0405  DISPLAY         X(60)   15  60 

03 FEE-0405           COMP-3         S9(7)V99  75   5 

03 FILLER            DISPLAY         X     80   1 

 
 



IDMSRPTS Utility Report Listings 

 

490  DML Reference Guide for COBOL 

 

 IDMSRPTS nn.n               ── SCHEMA RECORD DESCRIPTION LISTING ───            

   DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss   6 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ DEPARTMENT                  RLGTH=  72 

RECORD VERSION..... 0100                     DLGTH=  56 

RECORD ID.......... 0410                     KLGTH=  16 

RECORD LENGTH...... FIXED                    DSTRT=  16 

LOCATION MODE...... CALC USING  DEPT-ID-0410     DUPLICATES NOT ALLOWED 

WITHIN............. ORG-DEMO-REGION   OFFSET    5 PGS FOR    20 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          CALC       MEMBER     1   2 

          DEPT-EMPLOYEE  INDEX OWNER   3   4 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 DEPT-ID-0410         DISPLAY         9(4)    1   4 

02 DEPT-NAME-0410        DISPLAY         X(45)    5  45 

02 DEPT-HEAD-ID-0410       DISPLAY         9(4)    50   4 

02 FILLER            DISPLAY         XXX    54   3 

 
 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss   7 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ EMPLOYEE                   RLGTH= 192 

RECORD VERSION..... 0100                     DLGTH= 120 

RECORD ID.......... 0415                     KLGTH=  72 

RECORD LENGTH...... FIXED                    DSTRT=  72 

LOCATION MODE...... CALC USING  EMP-ID-0415     DUPLICATES NOT ALLOWED 

WITHIN............. EMP-DEMO-REGION   OFFSET    5 PGS FOR    45 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          CALC       MEMBER     1   2 

          DEPT-EMPLOYEE  INDEX MEMBER  3      4 

          EMP-NAME-NDX   INDEX MEMBER  5 

          EMP-SSN-NDX   INDEX MEMBER  6 

          OFFICE-EMPLOYEE INDEX MEMBER  7      8 

          EMP-COVERAGE   OWNER      9  10 

          EMP-EMPOSITION  OWNER     11  12 

          EMP-EXPERTISE  OWNER     13  14 

          MANAGES     OWNER     15  16 

          REPORTS-TO    OWNER     17  18 
 



IDMSRPTS Utility Report Listings 

 

Appendix G: EMPLOYEE Database Definition  491  

 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 EMP-ID-0415          DISPLAY         9(4)    1   4 

02 EMP-NAME-0415         DISPLAY               5  25 

03 EMP-FIRST-NAME-0415      DISPLAY         X(10)    5  10 

03 EMP-LAST-NAME-0415      DISPLAY         X(15)   15  15 

02 EMP-ADDRESS-0415       DISPLAY              30  46 

03 EMP-STREET-0415        DISPLAY         X(20)   30  20 

03 EMP-CITY-0415         DISPLAY         X(15)   50  15 

03 EMP-STATE-0415        DISPLAY         X(2)    65   2 

03 EMP-ZIP-0415         DISPLAY              67   9 

04 EMP-ZIP-FIRST-FIVE-0415    DISPLAY         X(5)    67   5 

04 EMP-ZIP-LAST-FOUR-0415    DISPLAY         X(4)    72   4 

02 EMP-PHONE-0415        DISPLAY         9(10)   76  10 

02 STATUS-0415          DISPLAY         X(2)    86   2 

88 ACTIVE-0415          COND     '01'         86 

88 ST-DISABIL-0415        COND     '02'         86 

88 LT-DISABIL-0415        COND     '03'         86 

88 LEAVE-OF-ABSENCE-0415     COND     '04'         86 

88 TERMINATED-0415        COND     '05'         86 

02 SS-NUMBER-0415        DISPLAY         9(9)    88   9 
 

02 START-DATE-0415        DISPLAY              97   8 

03 START-YEAR-0415        DISPLAY         9(4)    97   4 

03 START-MONTH-0415       DISPLAY         9(2)   101   2 

03 START-DAY-0415        DISPLAY         9(2)   103   2 

02 TERMINATION-DATE-0415     DISPLAY              105   8 

03 TERMINATION-YEAR-0415     DISPLAY         9(4)   105   4 

03 TERMINATION-MONTH-0415    DISPLAY         9(2)   109   2 

03 TERMINATION-DAY-0415     DISPLAY         9(2)   111   2 

02 BIRTH-DATE-0415        DISPLAY              113   8 

03 BIRTH-YEAR-0415        DISPLAY         9(4)   113   4 

03 BIRTH-MONTH-0415       DISPLAY         9(2)   117   2 

03 BIRTH-DAY-0415        DISPLAY         9(2)   119   2 

 
 



IDMSRPTS Utility Report Listings 

 

492  DML Reference Guide for COBOL 

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss   8 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ EMPOSITION                  RLGTH=  56 

RECORD VERSION..... 0100                     DLGTH=  32 

RECORD ID.......... 0420                     KLGTH=  24 

RECORD LENGTH...... FIXED                    DSTRT=  24 

LOCATION MODE...... VIA SET   EMP-EMPOSITION   DISPLACEMENT 0000 PAGES 

WITHIN............. EMP-DEMO-REGION   OFFSET   5 PGS FOR     45 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          EMP-EMPOSITION  MEMBER     1   2   3 

          JOB-EMPOSITION  MEMBER     4   5   6 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 START-DATE-0420        DISPLAY               1   8 

03 START-YEAR-0420        DISPLAY         9(4)    1   4 

03 START-MONTH-0420       DISPLAY         9(2)    5   2 

03 START-DAY-0420        DISPLAY         9(2)    7   2 
 

02 FINISH-DATE-0420       DISPLAY               9   8 

03 FINISH-YEAR-0420       DISPLAY         9(4)    9   4 

03 FINISH-MONTH-0420       DISPLAY         9(2)    13   2 

03 FINISH-DAY-0420        DISPLAY         9(2)    15   2 

02 SALARY-GRADE-0420       DISPLAY         9(2)    17   2 

02 SALARY-AMOUNT-0420      COMP-3         S9(7)V99  19   5 

02 BONUS-PERCENT-0420      COMP-3         SV999   24   2 

02 COMMISSION-PERCENT-0420    COMP-3         SV999   26   2 

02 OVERTIME-RATE-0420      COMP-3         S9V99   28   2 

02 FILLER            DISPLAY         XXX    30   3 

 
 



IDMSRPTS Utility Report Listings 

 

Appendix G: EMPLOYEE Database Definition  493  

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss  10 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ EXPERTISE                  RLGTH=  32 

RECORD VERSION..... 0100                     DLGTH=  12 

RECORD ID.......... 0425                     KLGTH=  20 

RECORD LENGTH...... FIXED                    DSTRT=  20 

LOCATION MODE...... VIA SET   EMP-EXPERTIS    DISPLACEMENT 0000 PAGES 

WITHIN............. EMP-DEMO-REGION   OFFSET   5 PGS FOR     45 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          EMP-EXPERTISE  MEMBER     1   2   3 

          SKILL-EXPERTISE INDEX MEMBER  4      5 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 SKILL-LEVEL-0425       DISPLAY         XX     1   2 

88 EXPERT-0425          COND     '04'          1 

88 PROFICIENT-0425        COND     '03'          1 

88 COMPETENT-0425        COND     '02'          1 
 

88 ELEMENTARY-0425        COND     '01'          1 

02 EXPERTISE-DATE-0425      DISPLAY               3   8 

03 EXPERTISE-YEAR-0425      DISPLAY         9(4)    3   4 

03 EXPERTISE-MONTH-0425     DISPLAY         9(2)    7   2 

03 EXPERTISE-DAY-0425      DISPLAY         9(2)    9   2 

02 FILLER            DISPLAY         XX     11   2 

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss  10 

                         SCHEMA EMPSCHM VERSION 100 

 
 



IDMSRPTS Utility Report Listings 

 

494  DML Reference Guide for COBOL 

 

RECORD NAME........ HOSPITAL-CLAIM                RLGTH= 304 

RECORD VERSION..... 0100                     DLGTH= 300 

RECORD ID.......... 0430                     KLGTH=  4 

RECORD LENGTH...... FIXED                    DSTRT=  4 

LOCATION MODE...... VIA SET   COVERAGE-CLAIMS  DISPLACEMENT 0000 PAGES 

WITHIN............. INS-DEMO-REGION   OFFSET   5 PGS FOR     20 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          COVERAGE-CLAIMS MEMBER     1 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 CLAIM-DATE-0430        DISPLAY               1   8 

03 CLAIM-YEAR-0430        DISPLAY         9(4)    1   4 

03 CLAIM-MONTH-0430       DISPLAY         9(2)    5   2 

03 CLAIM-DAY-0430        DISPLAY         9(2)    7   2 

02 PATIENT-NAME-0430       DISPLAY               9  25 

03 PATIENT-FIRST-NAME-0430    DISPLAY         X(10)    9  10 

03 PATIENT-LAST-NAME-0430    DISPLAY         X(15)   19  15 

02 PATIENT-BIRTH-DATE-0430    DISPLAY              34   8 

03 PATIENT-BIRTH-YEAR-0430    DISPLAY         9(4)    34   4 
 

03 PATIENT-BIRTH-MONTH-0430   DISPLAY         9(2)    38   2 

03 PATIENT-BIRTH-DAY-0430    DISPLAY         9(2)    40   2 

02 PATIENT-SEX-0430       DISPLAY         X     42   1 

02 RELATION-TO-EMPLOYEE-0430   DISPLAY         X(10)   43  10 

02 HOSPITAL-NAME-0430      DISPLAY         X(25)   53  25 

02 HOSP-ADDRESS-0430       DISPLAY              78  46 

03 HOSP-STREET-0430       DISPLAY         X(20)   78  20 

03 HOSP-CITY-0430        DISPLAY         X(15)   98  15 

03 HOSP-STATE-0430        DISPLAY         X(2)   113   2 

03 HOSP-ZIP-0430         DISPLAY              115   9 

04 HOSP-ZIP-FIRST-FIVE-0430   DISPLAY         X(5)   115   5 

04 HOSP-ZIP-LAST-FOUR-0430    DISPLAY         X(4)   120   4 

02 ADMIT-DATE-0430        DISPLAY              124   8 

03 ADMIT-YEAR-0430        DISPLAY         9(4)   124   4 

03 ADMIT-MONTH-0430       DISPLAY         9(2)   128   2 

03 ADMIT-DAY-0430        DISPLAY         9(2)   130   2 

02 DISCHARGE-DATE-0430      DISPLAY              132   8 
 

03 DISCHARGE-YEAR-0430      DISPLAY         9(4)   132   4 

03 DISCHARGE-MONTH-0430     DISPLAY         9(2)   136   2 

03 DISCHARGE-DAY-0430      DISPLAY         9(2)   138   2 

02 DIAGNOSIS-0430        DISPLAY OCCURS 2    X(60)   140  120 

02 HOSPITAL-CHARGES-0430     DISPLAY              260  41 

03 ROOM-AND-BOARD-0430      DISPLAY              260  26 

04 WARD-0430           DISPLAY              260  13 

05 WARD-DAYS-0430        COMP-3         S9(5)   260   3 

05 WARD-RATE-0430        COMP-3         S9(7)V99 263   5 

05 WARD-TOTAL-0430        COMP-3         S9(7)V99 268   5 

04 SEMI-PRIVATE-0430       DISPLAY              273  13 

05 SEMI-DAYS-0430        COMP-3         S9(5)   273   3 
 



IDMSRPTS Utility Report Listings 

 

Appendix G: EMPLOYEE Database Definition  495  

 

05 SEMI-RATE-0430        COMP-3         S9(7)V99 276   5 

05 SEMI-TOTAL-0430        COMP-3         S9(7)V99 281   5 

03 OTHER-CHARGES-0430      DISPLAY              286  15 

04 DELIVERY-COST-0430      COMP-3         S9(7)V99 286   5 

04 ANESTHESIA-COST-0430     COMP-3         S9(7)V99 291   5 

04 LAB-COST-0430         COMP-3         S9(7)V99 296   5 
 

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss  12 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ INSURANCE-PLAN                RLGTH= 140 

RECORD VERSION..... 0100                     DLGTH= 132 

RECORD ID.......... 0435                     KLGTH=  8 

RECORD LENGTH...... FIXED                    DSTRT=  8 

LOCATION MODE...... CALC USING  INS-PLAN-CODE-0435  DUPLICATES NOT ALLOWED 

WITHIN............. INS-DEMO-REGION   OFFSET    1 PGS FOR    4 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          CALC       MEMBER     1   2 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 INS-PLAN-CODE-0435      DISPLAY         X(3)    1   3 

88 GROUP-LIFE-0435        COND     '001'         1 
 

88 HMO-0435           COND     '002'         1 

88 GROUP-HEALTH-0435       COND     '003'         1 

88 GROUP-DENTAL-0435       COND     '004'         1 

02 INS-CO-NAME-0435       DISPLAY         X(45)    4  45 

02 INS-CO-ADDRESS-0435      DISPLAY              49  46 

03 INS-CO-STREET-0435      DISPLAY         X(20)   49  20 

03 INS-CO-CITY-0435       DISPLAY         X(15)   69  15 

03 INS-CO-STATE-0435       DISPLAY         X(2)    84   2 

03 INS-CO-ZIP-0435        DISPLAY              86   9 

04 INS-CO-ZIP-FIRST-FIVE-0435  DISPLAY         X(5)    86   5 

04 INS-CO-ZIP-LAST-FOUR-0435   DISPLAY         X(4)    91   4 

02 INS-CO-PHONE-0435       DISPLAY         9(10)   95  10 
 



IDMSRPTS Utility Report Listings 

 

496  DML Reference Guide for COBOL 

 

02 GROUP-NUMBER-0435       DISPLAY         9(6)   105   6 

02 PLAN-DESCRIPTION-0435     DISPLAY              111  20 

03 DEDUCT-0435          COMP-3         S9(7)V99 111   5 

03 MAXIMUM-LIFE-COST-0435    COMP-3         S9(7)V99 116   5 

03 FAMILY-COST-0435       COMP-3         S9(7)V99 121   5 

03 DEP-COST-0435         COMP-3         S9(7)V99 126   5 

02 FILLER            DISPLAY         XX    131   2 

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss  14 

                         SCHEMA EMPSCHM VERSION 100 

 
 

RECORD NAME........ JOB                     RLGTH= 324 

RECORD VERSION..... 0100                     DLGTH= 300 

RECORD ID.......... 0440                     KLGTH=  24 

RECORD LENGTH...... FIXED (INTERNALLY VARIABLE)         DSTRT=  28 

MINIMUM ROOT.......  24 CHARACTERS 

MINIMUM FRAGMENT...  296 CHARACTERS 

LOCATION MODE...... CALC USING  JOB-ID-0440     DUPLICATES NOT ALLOWED 

WITHIN............. ORG-DEMO-REGION   OFFSET    5 PGS FOR    20 PGS 

CALL PROCEDURES.... NAME.... WHEN.. FUNCTION 

          IDMSCOMP BEFORE STORE 

          IDMSCOMP BEFORE MODIFY 

          IDMSDCOM AFTER GET 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          CALC       MEMBER     1   2 

          JOB-TITLE-NDX  INDEX MEMBER  3 

          JOB-EMPOSITION  OWNER      4   5 

          (FRAGMENT CHAIN) INTRNL     6 
 



IDMSRPTS Utility Report Listings 

 

Appendix G: EMPLOYEE Database Definition  497  

 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 JOB-ID-0440          DISPLAY         9(4)    1   4 

02 TITLE-0440          DISPLAY         X(20)    5  20 

02 DESCRIPTION-0440       DISPLAY              25  120 

03 DESCRIPTION-LINE-0440     DISPLAY OCCURS 2    X(60)   25  120 

02 REQUIREMENTS-0440       DISPLAY              145  120 

03 REQUIREMENT-LINE-0440     DISPLAY OCCURS 2    X(60)   145  120 

02 MINIMUM-SALARY-0440      DISPLAY         S9(6)V99 265   8 

02 MAXIMUM-SALARY-0440      DISPLAY         S9(6)V99 273   8 

02 SALARY-GRADES-0440      DISPLAY OCCURS 4    9(2)   281   8 

02 NUMBER-OF-POSITIONS-0440   DISPLAY         9(3)   289   3 

02 NUMBER-OPEN-0440       DISPLAY         9(3)   292   3 

02 FILLER            DISPLAY         XX    295   2 

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss  15 

                         SCHEMA EMPSCHM VERSION 100 

 
 

RECORD NAME........ NON-HOSP-CLAIM                RLGTH= 1064 

RECORD VERSION..... 0100                     DLGTH= 1056 

RECORD ID.......... 0445                     KLGTH=  8 

RECORD LENGTH...... VARIABLE                   DSTRT=  12 

MINIMUM ROOT.......  248 CHARACTERS 

MINIMUM FRAGMENT... 1052 CHARACTERS 

LOCATION MODE...... VIA SET   COVERAGE-CLAIMS  DISPLACEMENT 0000 PAGES 

WITHIN............. INS-DEMO-REGION   OFFSET   5 PGS FOR     20 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          COVERAGE-CLAIMS MEMBER     1 

          (FRAGMENT CHAIN) INTRNL     2 
 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 CLAIM-DATE-0445        DISPLAY               1   8 

03 CLAIM-YEAR-0445        DISPLAY         9(4)    1   4 

03 CLAIM-MONTH-0445       DISPLAY         9(2)    5   2 

03 CLAIM-DAY-0445        DISPLAY         9(2)    7   2 

02 PATIENT-NAME-0445       DISPLAY               9  25 

03 PATIENT-FIRST-NAME-0445    DISPLAY         X(10)    9  10 

03 PATIENT-LAST-NAME-0445    DISPLAY         X(15)   19  15 

02 PATIENT-BIRTH-DATE-0445    DISPLAY              34   8 

03 PATIENT-BIRTH-YEAR-0445    DISPLAY         9(4)    34   4 

03 PATIENT-BIRTH-MONTH-0445   DISPLAY         9(2)    38   2 

03 PATIENT-BIRTH-DAY-0445    DISPLAY         9(2)    40   2 

02 PATIENT-SEX-0445       DISPLAY         X     42   1 

02 RELATION-TO-EMPLOYEE-0445   DISPLAY         X(10)   43  10 

02 PHYSICIAN-NAME-0445      DISPLAY              53  25 

03 PHYSICIAN-FIRST-NAME-0445   DISPLAY         X(10)   53  10 
 



IDMSRPTS Utility Report Listings 

 

498  DML Reference Guide for COBOL 

 

03 PHYSICIAN-LAST-NAME-0445   DISPLAY         X(15)   63  15 

02 PHYSICIAN-ADDRESS-0445    DISPLAY              78  46 

03 PHYSICIAN-STREET-0445     DISPLAY         X(20)   78  20 

03 PHYSICIAN-CITY-0445      DISPLAY         X(15)   98  15 

03 PHYSICIAN-STATE-0445     DISPLAY         X(2)   113   2 

03 PHYSICIAN-ZIP-0445      DISPLAY              115   9 

04 PHYSICIAN-ZIP-FIRST-FIVE-0445 DISPLAY         X(5)   115   5 

04 PHYSICIAN-ZIP-LAST-FOUR-0445 DISPLAY         X(4)   120   4 

02 PHYSICIAN-ID-0445       DISPLAY         9(6)   124   6 

02 DIAGNOSIS-0445        DISPLAY OCCURS 2    X(60)   130  120 

02 NUMBER-OF-PROCEDURES-0445   COMP          9(2)   250   2 

02 FILLER            DISPLAY         X     252   1 

02 PHYSICIAN-CHARGES-0445    DISPLAY OCCURS 0 TO 10      253  800 
 

  DEPENDING ON -- NUMBER-OF-PROCEDURES-0445 

03 SERVICE-DATE-0445       DISPLAY               1   8 

04 SERVICE-YEAR-0445       DISPLAY         9(4)    1   4 

04 SERVICE-MONTH-0445      DISPLAY         9(2)    5   2 

04 SERVICE-DAY-0445       DISPLAY         9(2)    7   2 

03 PROCEDURE-CODE-0445      DISPLAY         9(4)    9   4 

03 DESCRIPTION-OF-SERVICE-0445  DISPLAY         X(60)   13  60 

03 FEE-0445           COMP-3         S9(7)V99  73   5 

03 FILLER            DISPLAY         XXX    78   3 
 

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss  18 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ OFFICE                    RLGTH=  92 

RECORD VERSION..... 0100                     DLGTH=  76 

RECORD ID.......... 0450                     KLGTH=  16 

RECORD LENGTH...... FIXED                    DSTRT=  16 

LOCATION MODE...... CALC USING  OFFICE-CODE-0450   DUPLICATES NOT ALLOWED 

WITHIN............. ORG-DEMO-REGION   OFFSET    5 PGS FOR    20 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          CALC       MEMBER     1   2 
 



IDMSRPTS Utility Report Listings 

 

Appendix G: EMPLOYEE Database Definition  499  

 

          OFFICE-EMPLOYEE INDEX OWNER   3   4 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 OFFICE-CODE-0450       DISPLAY         X(3)    1   3 

02 OFFICE-ADDRESS-0450      DISPLAY               4  46 

03 OFFICE-STREET-0450      DISPLAY         X(20)    4  20 

03 OFFICE-CITY-0450       DISPLAY         X(15)   24  15 

03 OFFICE-STATE-0450       DISPLAY         X(2)    39   2 

03 OFFICE-ZIP-0450        DISPLAY              41   9 

04 OFFICE-ZIP-FIRST-FIVE-0450  DISPLAY         X(5)    41   5 

04 OFFICE-ZIP-LAST-FOUR-0450   DISPLAY         X(4)    46   4 

02 OFFICE-PHONE-0450       DISPLAY OCCURS 3    9(7)    50  21 

02 OFFICE-AREA-CODE-0450     DISPLAY         X(3)    71   3 

02 SPEED-DIAL-0450        DISPLAY         X(3)    74   3 
 

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss  20 

                         SCHEMA EMPSCHM VERSION 100 

 

 

RECORD NAME........ SKILL                    RLGTH=  96 

RECORD VERSION..... 0100                     DLGTH=  76 

RECORD ID.......... 0455                     KLGTH=  20 

RECORD LENGTH...... FIXED                    DSTRT=  20 

LOCATION MODE...... CALC USING  SKILL-ID-0455    DUPLICATES NOT ALLOWED 

WITHIN............. ORG-DEMO-REGION   OFFSET    5 PGS FOR    20 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          CALC       MEMBER     1   2 

          SKILL-NAME-NDX  INDEX MEMBER  3 
 

          SKILL-EXPERTISE INDEX OWNER   4   5 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 SKILL-ID-0455         DISPLAY         9(4)    1   4 

02 SKILL-NAME-0455        DISPLAY         X(12)    5  12 

02 SKILL-DESCRIPTION-0455    DISPLAY         X(60)   17  60 

 

 IDMSRPTS nn.n               

── SCHEMA RECORD DESCRIPTION LISTING ───               DATE   TIME  PAGE 

 RECDES                    DICTIONARY APPLDICT OF NODE DEFAULT               mm/dd/yy 

hhmmss  22 

                         SCHEMA EMPSCHM VERSION 100 
 



IDMSRPTS Utility Report Listings 

 

500  DML Reference Guide for COBOL 

 

 

 

RECORD NAME........ STRUCTURE                  RLGTH=  36 

RECORD VERSION..... 0100                     DLGTH=  12 

RECORD ID.......... 0460                     KLGTH=  24 

RECORD LENGTH...... FIXED                    DSTRT=  24 

LOCATION MODE...... VIA SET   MANAGES      DISPLACEMENT 0000 PAGES 

WITHIN............. EMP-DEMO-REGION   OFFSET   5 PGS FOR     45 PGS 

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER 

          MANAGES     MEMBER     1   2   3 

          REPORTS-TO    MEMBER     4   5   6 

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH 

02 STRUCTURE-CODE-0460      DISPLAY         X(2)    1   2 

88 ADMIN-0460          COND 'A'              1 

88 PROJECT-0460         COND 'P1' THRU 'P9'         1 

02 STRUCTURE-DATE-0460      DISPLAY               3   8 

03 STRUCTURE-YEAR-0460      DISPLAY         9(4)    3   4 

03 STRUCTURE-MONTH-0460     DISPLAY         9(2)    7   2 

03 STRUCTURE-DAY-0460      DISPLAY         9(2)    9   2 

02 FILLER            DISPLAY         XX     11   2 
 



EMPLOYEE Database Structure Diagram 

 

Appendix G: EMPLOYEE Database Definition  501  

 

EMPLOYEE Database Structure Diagram 

The data structure diagram il lustrates record relationships in the EMPLOYEE database. 

 
 





 

Appendix H: VS COBOL II Support  503  

 

Appendix H: VS COBOL II Support 
 

This appendix discusses CA IDMS support for programs compiled under the VS COBOL II 
compiler. It is divided into two parts: 

■ Features of VS COBOL II that are supported by CA IDMS 

■ Features of VS COBOL II that are not supported by CA IDMS 

Note: This appendix applies only to programs run in the online DC/UCF system. 
Except where specifically noted, it does not apply to programs run in another region 
(such as batch or CICS Transaction Server) even if the programs contain CA IDMS 

DML commands. 
 

Note: All the provisions of this appendix also apply to programs compiled under an 

LE-compliant compiler, unless otherwise noted. For more information about IBM 
Language Environment and LE-compliant ompilers, see Considerations for IBM 
Language Environment (see page 507). 

Programs compiled under VS COBOL II can be run under the IBM runtime Language 
Environment subject to the requirements documented by IBM and the CA IDMS 
restrictions documented below in this appendix and in Considerations for IBM Language 
Environment (see page 507). IBM no longer supports programs running under the VS 

COBOL II runtime environment. 

This section contains the following topics: 

Features Supported by CA IDMS (see page 503) 

Features Not Supported by CA IDMS (see page 506) 
 

Features Supported by CA IDMS 

The following COBOL II features are supported by CA IDMS: 

■ Reentrancy—Fully reentrant and non-reentrant programs are supported. The RENT 
compiler option must be specified if the program is reentrant. NORENT must be 

specified if the program is non-reentrant. 

Note: Quasi-reentrancy is not supported for VS COBOL II programs. It is strongly 
recommended that all  COBOL II programs be compiled with the RENT option. A 

separate copy of each NORENT COBOL II program will  be loaded for each 
concurrent task. CPU and storage util ization will be extremely high. 

■ Residency—Resident and nonresident programs are supported. The NORES 
compiler option causes all  necessary VS COBOL II runtime support modules to be 

linked with the program. The program can then be executed without having to load 
any support modules. The RES option causes the runtime support modules to be 
brought in as needed during execution. 

 



Features Supported by CA IDMS 

 

504  DML Reference Guide for COBOL 

 

The following combinations of RENT and RES options are supported: 

■ RENT RES 

■ NORENT NORES 

■ NORENT RES 
 

Note: 31-bit programs require the RENT and RES options. This combination is 
recommended for most efficient processing. The RES option is not relevant to 
LE-compliant compilers, which always use this option. 

The RENT/NORES combination is not allowed by the VS COBOL II compiler. 

Do not confuse the RES compiler option with the CA IDMS RESIDENT parameter 
(assigned at SYSGEN or by using a DCMT command). The CA IDMS RESIDENT 

parameter causes the user program to be loaded into the resident pool during 
startup, and remains there for the duration of system execution. 

 

■ XA support—Full 31-bit support is provided. COBOL II programs can reside above or 
below the 16-meg line, and can execute in 24-bit or 31-bit mode. User data areas 
can reside below the 16-meg line (compiler option DATA(24)) or anywhere in the 

region (DATA(31)). The following table shows the default attributes assigned by the 
COBOL II compiler based on the combination of RES and RENT compiler options. 

 

RMODE and AMODE Attributes 

 

Compiler options Default RMODE/AMODE 

RES/RENT RMODE(ANY) AMODE(ANY) 

RES/NORENT RMODE(24) AMODE(ANY) 

NORES/NORENT RMODE(24) AMODE(24) 

To run a task in 31-bit mode, it must be defined with a LOCATION of ANY (at SYSGEN or 

at runtime using a DCMT VARY DYNAMIC PROGRAM command). 
 

■ Static and dynamic calls—CA IDMS supports the following types of calls provided 
by VS COBOL II: 

■ CALL literal with NODYNAM, static (more storage, less CPU) 
 

■ CALL identifier, dynamic (less storage, more CPU) 

To call  a program dynamically you must use the call  identifier format. 
 

A VS COBOL II program can use the COBOL CALL verb to invoke an assembler or 

COBOL II subprogram. The CA IDMS TRANSFER CONTROL (LINK or XCTL) must 
be used for invoking VS COBOL subprograms. The subprogram must be defined 
to the system either at SYSGEN or by using a DCMT VARY DYNAMIC PROGRAM 
command. The correct language must be specified, and the NONOVERLAYABLE 

attribute must also be specified. 
 



Features Supported by CA IDMS 

 

Appendix H: VS COBOL II Support  505  

 

A COBOL II program and all  the COBOL II subprograms that it calls dynamically 
must be compiled with the same RES/NORES compiler option. 

A dynamic call  is often a more efficient way for one online VS COBOL II program 
to call  another than the use of a TRANSFER CONTROL DML command. Note, 
however, that when a dynamic call  is made, the DC/UCF system is not aware 

that the application is running in a new program. Therefore, error messages 
and program statistics will not reflect the call. 

 

There are also restrictions on using static or dynamic calls when invoking an 
assembler subprogram. If the assembler program is not fully reentrant or if the 
assembler program issues any operating system SVC instructions, the program 

must be invoked with a DC TRANSFER control statement. Note that use of SVC 
instructions in an online program presents security and performance concerns. 
Such instructions should be avoided unless they are absolutely necessary. In 
most cases, DC/UCF system functions can be used instead. 

Note: Also see "Performance Improvements with RHDCLEFE" in Appendix I: 
(see page 507). 

■ Optimizer—The COBOL II optimizer is fully supported. Service reloads do not have 

to be explicitly coded in the program, as is required for VS COBOL. 
 

■ STRING/UNSTRING/INSPECT—COBOL II verbs that require GETMAIN services are 

supported; this includes STRING, UNSTRING, and INSPECT. 

Note: Exercise caution with STRING, UNSTRING, and INSPECT.Use of these may 
increase SRB time. Commands in a VS/COBOL II environment may cause additional 

screening of supervisor calls resulting in some performance degradation. This 
concern does not  apply when using VS/COBOL II in an IBM runtime Language 
Environment provided that RHDCLEFE is defined in the IDMS/DC Sysgen. 

For more information about RHDCLEFE, see Appendix I. 
 

■ Compiler options—The following compiler options that affect object code 

execution are supported: 

■ DATA 

■ OPTIMIZE 

■ PFDSGN 

■ RENT 

■ RESIDENT 

■ SSRANGE 

■ TRUNC 

Note: See the discussion of the TRUNC option in the section Executing 
Programs (see page 25). 

■ ZWB 
 



Features Not Supported by CA IDMS 

 

506  DML Reference Guide for COBOL 

 

■ Execution time options—COBOL II has an options module (IGZEOPT) that can be 
assembled and link-edited to control options at execution time. The module needs 

to be linked with each online VS COBOL II application program. Valid macro values 
for parameters that affect CA IDMS performance are shown below: 

IGZOPT SYSTYPE=OS, 

    DEBUG=NO, 

    STAE=NO, 

    AIXBLD=NO, 

    SSRANGE=YES/NO, 

    SPOUT=YES/NO 
 

Features Not Supported by CA IDMS 

The following COBOL II features are not supported by CA IDMS: 

■ ENVIRONMENT and DATA DIVISION entries normally associated with fi le 
management (for example, INPUT-OUTPUT SECTION, FILE SECTION) 

 

■ I/O statements, including ACCEPT, CLOSE, DELETE, DISPLAY, OPEN, READ, REWRITE, 
and WRITE 

Note: DATE/TIME related ACCEPT statements are supported in release 14.1and 

later for COBOL II and LE-compliant compilers. 

The debugging features FDUMP and TEST 

■ The sorting features SORT and MERGE 

■ The compiler options ADV, DYNAM, FASTSRT, GRAPHIC, and OUTDD 

 



 

Appendix I: Considerations for IBM Language Environment  507  

 

Appendix I: Considerations for IBM 
Language Environment 
 

This section applies only to runtime support for COBOL programs that run in an online 
DC/UCF region. It does not apply to batch or CICS programs that ac cess CA IDMS. It also 
does not apply to online COBOL programs compiled with the "old" VS COBOL compiler, 

prior to VS COBOL II. Online VS COBOL programs must comply with the compile and 
linkage restrictions described in Compiling and Executing CA IDMS Programs (see 
page 22). If these restrictions are observed, the LE runtime environment will  not be 
accessed by VS COBOL programs. This section does apply to programs compiled under 

VS COBOL II when run in online LE runtime environment. 
 

What is IBM Language Environment (LE)? 

LE is a runtime environment that replaces the language-specific runtime environments 
that existed previously. For example, VS COBOL had its own runtime environment; VS 
COBOL II had another. CA IDMS can execute programs that are designed to use the LE 

runtime environment. It can also execute programs compiled with pre-LE compilers that 
use the LE runtime environment subject to IBM's documented restrictions. 

 

Language Environment has had several names for different operating systems and 
release levels. The term "LE" will  be used in this document to refer to the IBM runtime 
Language Environment for any of the following operating systems: 

– z/VSE 

– z/OS 

– z/VM 

Note: This section applies only to runtime supportin CA IDMS/DC. It does not apply 
to batch or CICS programs that access CA IDMS. 

 

How Can You Use LE with CA IDMS/DC? 

To execute online programs using the LE runtime libraries, follow these steps to bring up 
your CA IDMS environment: 

1. Ensure that the CA IDMS system has been generated with a 24-bit reentrant pool 
(or program pool, if no reentrant pool is generated) that is large enough to contain 
the IBM-supplied LE application program interface module CEEPIPI. The size of this 
module is approximately 100K. 

 



Considerations About LE Runtime 

 

508  DML Reference Guide for COBOL 

 

2. Ensure that the CA IDMS system has been generated with an XA reentrant pool that 
is large enough to maintain residence for several IBM-supplied LE support modules. 

Allow 5 megabytes for these programs. 

Include the LE runtime load libraries in the CDMSLIB loadlib concatenation before any 
other IBM language loadlibs you are using. For example, before COBOL II. 

This section contains the following topics: 

Considerations About LE Runtime (see page 508) 
Running LE-Compliant Compiler Programs Under CA IDMS/DC (see page 509) 
Supported LE Functions (see page 513) 

Unsupported LE Functions  (see page 513) 
Performance Improvements with RHDCLEFE (see page 513) 
Multiple-Program Enclave (see page 514) 

 

Considerations About LE Runtime 

Running Pre-LE Programs 

There are restrictions that apply when you run pre-LE programs in an LE runtime 
environment within CA IDMS/DC. Pre-LE programs are programs that were compiled 
with a non-LE compliant compiler, such as COBOL II. 

Some of these restrictions are already documented in Compiling and Executing CA IDMS 
Programs (see page 22) and Appendix H: (see page 503). Additional restrictions for LE 
are: 

■ VS COBOL II programs have to run without storage protection unless RHDCLEFE (see 

"Performance Improvements wi th RHDCLEFE" below) is in use. 
 

■ VS COBOL II programs must be linked with an IGZEOPT module that specifies 
STAE=NO (see "Execution Time Options" in Appendix H: (see page 503), for more 
information on the use of IGZEOPT). If this restriction is not observed, a program 

check in a COBOL program will  result in immediate termination of the program with 
no indication of an error. Certain other abnormal abend conditions may also go 
unreported. This restriction does not apply if one of the following conditions is true: 

 

■ RHDCLEFE is in use. See "Performance Improvements with RHDCLEFE" later in 
this appendix for more information. 

■ A special CEEDOPT or CEEROPT is in use as described later in this appendix 
under Runtime Options, and either or both of the following options is specified: 

ABTERMENC=((ABEND,... 

TRAP=((OFF,... 
 



Running LE-Compliant Compiler Programs Under CA IDMS/DC 

 

Appendix I: Considerations for IBM Language Environment  509  

 

■ The IBM LE support module CEEPIPI must be loaded once before any VS COBOL II 
program is run. This is most easily done by defining CEEPIPI as RESIDENT in the CA 

IDMS/DC sysgen using the following syntax. 

ADD PROGRAM CEEPIPI CONCURRENT ENABLED LANGUAGE ASSEMBLER 

NONOVERLAYABLE PROGRAM PROTECT REENTRANT RESIDENT REUSABLE . 
 

■ Restrictions mentioned in the IBM documentation (for example, the IBM 
COBOL/370 Migration Guide) apply. 

Note: Running pre-LE programs with LE runtime can degradeperformance in some 
circumstances. If you notice poor performance, you should consider recompiling 

the programs with the newer compiler or running with RHDCLEFE (see 
"Performance Improvements with RHDCLEFE" below). The use of RHDCLEFE also 
removes the necessity of forcing the load of CEEPIPI before running any VS COBOL II 

programs. 
 

Running LE Programs 

LE programs are programs that were compiled with an LE-compliant compiler. CA 
IDMS/DC supports all  LE-compliant compilers supported by IBM including: 

■ IBM COBOL for VM 

■ IBM Enterprise COBOL for z/OS 

■ COBOL for z/VSE 

For convenience, programs compiled with an LE-compliant compiler are referred to as 
"LE COBOL" programs below. 

 

Running LE-Compliant Compiler Programs Under CA IDMS/DC 

This section discusses Language Environment runtime options relevant to the online CA 
IDMS/DC environment. 

Note: Also see Compiling and Executing CA IDMS Programs  (see page 22) and Appendix 

H: (see page 503). The restrictions on VS COBOL and VS COBOL II compile and runtime 
options also apply to programs compiled with an LE-compliant COBOL compiler unless 
specifically noted below. 

See Appendix A: (see page 337) for sample compile and link JCL for both batch and 

online programs which use CA IDMS DML statements. 
 



Running LE-Compliant Compiler Programs Under CA IDMS/DC 

 

510  DML Reference Guide for COBOL 

 

Runtime Options 

The IBM Language Environment provides numerous options that control how programs 

operate at runtime. The default values are designed to be suitable in a batch 
environment. Therefore, it is necessary to modify some values for applications that are 
to run in a DC/UCF online system. 

Note: As stated in the introduction to this appendix, this appendix does not apply to 
programs that run in a CICS or other region, even if they access CA IDMS using DML or 
SQL commands. It does apply to programs that run a DC/UCF online system, which are 
invoked from another front-end using CA IDMS UCF (such as an ADS/O application that 

is accessed using UCFCICS from a CICS front-end). 
 

The IBM Language Environment provides a number of ways to specify runtime options. 
Four methods are supported for CA IDMS/DC online programs: 

1. Modify, assemble, and link the IBM-supplied CEEUOPT module. Link the resulting 
module with each application program. Product Documentation Change LI18624 

contains a sample version of the CEEUOPT with values that are appropriate for most 
online CA IDMS applications. Also consult the section "Creating an 
Application-Specific Runtime Options Module" in IBM's LE Installation and 

Customization Manual. 
 

2. Assemble and link a CEEUOPT module as described above. Link the resulting 

module with RHDCLEFE. Make sure that RHDCLEFE is defined in the DC/UCF Sysgen 
(as described under "Performance Improvements Using RHDCLEFE" below). This 
option affects only COBOL programs. This is the recommended option for all  online 

COBOL applications. 
 



Running LE-Compliant Compiler Programs Under CA IDMS/DC 

 

Appendix I: Considerations for IBM Language Environment  511  

 

3. Assemble and link a specialized CEEDOPT module. 

Note: This method is not available for z/OS Version 1.10 and higher. Use method 1 

or method 4 for non-COBOL applications on z/OS Versin 1.10 and higher. 

If this method is chosen, special copies of the IBM modules CEEBINIT and CEEPIPI 
must be maintained for use with online DC/UCF systems only. Due to maintenance 

considerations, this method is not recommended for COBOL applications. It is 
needed for PL/I programs compiled with a non-LE-compliant compiler. For more 
information on using this method, see Product Documentation Change LI23664. 

4. Assemble and link a specialized CEEROPT module. 

Note: This method is not available for z/OS Version 1.9 and lower or for  VSE. Use 
method 1 or 3 for those operating systems. 

If this method is chosen, a CEEROPT load module can be created to override desired 
options. Like CEEUOPT, and unlike CEEDOPT, you only need to specify those options 

which are to be different from the installation default LE run-time operations. The 
resultant load module must be included in a load library in the CDMSLIB 
concatenation ahead of the default SCEERUN load library. 

Note: The CEEROPT will  be loaded in a CA IDMS region only if your CEEPRMxx 
member specified CEEROPT(ALL). For more information on using this module, refer 
to IBM documentation. 

 

Except as discussed below, the IBM-supplied default runtime options can be used with 
any site-specific desired modifications. Note that the MSGFILE parameter is ignored and 

messages are sent to the CA IDMS log fi le. 
 

Recommended settings for certain parameters are as shown below. For more details on 
these parameters see the IBM Language Environment Customization manual. 

■ ABTERMENC=(RETCODE) or ABTERMENC=(ABEND): This parameter affects the 
action taken when an LE enclave ends with an unhandled condition of severity 2 or 

higher. If RETCODE code is specified, the DC task will  abend with message 
DC128004. If ABEND is specified, the DC task will  abend with a Uxxx where xxx 
corresponds to the hexadecimal value of the user abend code set by LE. For 

example, an LE user abend 4093 would result in a DC task abend with code UFFD. 
 

■ ALL31=(ON): This parameter will  minimize the amount of below-the-line storage 

that will  be allocated by LE. This parameter requires that all  COBOL programs are 
l inked with AMODE(31). It is strongly recommended that any non-conforming 
programs be relinked so that ALL31=(ON) can be specified. 

 

■ DEBUG=(OFF): The DEBUG runtime option cannot be used in a DC environment. 

■ INTERRUPT=(OFF): Attention interrupts are handled by the CA IDMS/DC system and 

not by LE runtime support. Application COBOL programs can test for attention 
interrupts using the DC-ATTN-INT condition name under LE just as with earlier 
COBOL runtime environments. 

■ POSIX=(OFF): POSIX is not supported under DC/UCF. 
 



Running LE-Compliant Compiler Programs Under CA IDMS/DC 

 

512  DML Reference Guide for COBOL 

 

■ RPTSTG=(OFF) or RPTSTG=(ON): Normally OFF should be specified. OFF must be 
specified for systems prior to release 14.1. 

The purpose of RPTSTG is to determine the storage util ization for a particular 
application. The report is produced at the end of a COBOL task thread and is written 
to the CA IDMS log fi le. For efficiency reasons, the termination phase of COBOL 

processing is normally not executed in an online DC environment. If it is necessary 
to obtain storage information for a particular application, optional bit 196 can be 
set (See "COBOL II and LE COBOL Task Management" in Optional Onl ine COBOL 
Functionality (see page 521)). Note that this option adversely affects performance. 

Storage reports are therefore normally produced only in a test or development 
system. 

 

■ TERMTHDACT=(QUIET) or TERMTHDACT=(TRACE): This option controls the extent of 
LE runtime information that will  be supplied when an application terminates. All  
messages will  be written to the DC log fi le. 

 

■ TRAP=(ON) or TRAP=(OFF): If ON is specified, program checks in an LE application 

will  result in IBM LE error-handling being put into effect. COBOL-specific and LE 
messages will  be written to the log. After these messages are written and the 
COBOL thread ends abnormally, the DC task will  abend with message DC128004 
and a task snap will  be taken. 

If OFF is specified, program checks in an LE application will result in an immediate 
task snap. This is similar to the result in a VS COBOL or VS COBOL II runtime 
environment. No LE messages related to the program check will  be written. 

Furthermore, if any PL/I applications are included in the online system, any ON 
ERROR clauses will not be handled properly. 

 

In addition to the parameters above, we strongly recommend that you use smaller 
values than the default ones for the various heap (ANYHEAP, BELOWHEAP, and HEAP) 
parameters and stack (LIBSTACK and STACK) parameters because these are allocated on 

a task thread basis. Storage allocation is most efficient if relatively large values are 
specified as sixteen bytes less than a multiple of 4096. Smaller values than 4096 should 
be set for some parameters to avoid wasting storage. The values shown below have 
been found to be suitable for most DC/UCF systems. 

 

Even when the smallest possible storage values are chosen, the IBM Language 

Environment requests a substantial amount of below-the-line storage for each program 
invoked in an online task--particularly with older releases of LE. This storage is used for 
functions which are not supported in an online DC/UCF system. For this reason, DC/UCF 
provides optional functionality which forces all LE storage to be allocated above the 

16M line for tasks which are defined as LOCATION ANY. You can enable this 
functionality by specifying #DEFOPT OPT00227 when compiling module RHDCOPTF. 

 



Supported LE Functions 

 

Appendix I: Considerations for IBM Language Environment  513  

 

ANYHEAP=(2032,4080,ANYWHERE,FREE) 

BELOWHEAP=(496,496,FREE) 

HEAP=(2032,4080,ANYWHERE,KEEP,2032,2032) 

LIBSTACK=(496,496,FREE) 

STACK=(2032,8176,ANY,KEEP) 

STORAGE=(NONE,NONE,NONE,0) 

THREADHEAP=(0100,0100,ANYWHERE,KEEP) 
 

Supported LE Functions 

CA IDMS/DC supports these LE functions: 

■ Math services 

■ National language support services  

■ Date and time services 

■ XML parsing 
 

CA IDMS/DC also supports storage management services, but for performance reasons, 
they are not recommended. The storage management services are: 

■ CEECRHP: Create heap segment 

■ CEECZST: Re-allocate (change size of) heap storage 

■ CEEDSHP: Discard heap segment 

■ CEEFRST: Free heap storage 

■ CEEGTST: Get heap storage 
 

Unsupported LE Functions 

CA IDMS/DC does not support the following LE functions: 

■ CEE3PRM: Get exec parms 

■ CEETDLI: Call  IMS 

■ CEETEST: Invoke debugging environment 
 

Performance Improvements with RHDCLEFE 

Beginning with Release 14.1, CA IDMS supports a more efficient method of running 

online VS COBOL II and LE COBOL programs under LE runtime. In order to realize thi s 
performance improvement, l ink RHDCLEFE and define it in the CA IDMS sysgen with the 
following values: 

 



Multiple-Program Enclave 

 

514  DML Reference Guide for COBOL 

 

ADD PROGRAM RHDCLEFE 

 CONCURRENT 

 DYNAMIC 

 ENABLED 

 LANGUAGE IS ASSEMBLER 

 NEW COPY IS ENABLED 

 NONOVERLAYABLE 

 PROGRAM 

 NOPROTECT 

 REENTRANT 

 RESIDENT 

 REUSABLE. 
 

The advantages of using defining RHDCLEFE in an LE runtime environment are as 
follows. 

■ COBOL II programs can run with Storage Protect. 

■ If RHDCLEFE is in use, it is not necessary to l ink CEEUOPT with each application 
program. 

■ If a VS COBOL II or an LE COBOL program is invoked multiple times in the same task 
using an CA IDMS DML call  (#LINK from Assembler, DC TRANSFER from COBOL or 

PL/I, or LINK from ADS/O), then only one LE enclave and one LE environment will  be 
established. 

 

The use of RHDCLEFE can reduce the CPU usage for TRANSFER CONTROL to another 
COBOL program, particularly a VS COBOL II program. Without RHDCLEFE, each such 
invocation of a VS COBOL II program will  result in the establishment and 

termination of both the environment and the enclave. Each such invocation of a LE 
COBOL program will  result in the establishment and termination of the enclave. 

Note: RHDCLEFE is l inked with a CEEUOPT with ALL31=(ON). As a consequence, all  

LE COBOL and VS COBOL II programs must be linked with AMODE(31) or 
AMODE(any). 

 

Multiple-Program Enclave 

This feature became available on release 15.0 service pack 3. 
 



Multiple-Program Enclave 

 

Appendix I: Considerations for IBM Language Environment  515  

 

You can improve the performance of certain online applications that use COBOL 
programs under the IBM Language Environment (LE) by enabling a new optional feature 

which allows the use of a single LE enclave for multiple programs. The following explains 
the conditions under which performance can be improved and some restrictions on the 
programs that can util ize this new feature: 

■ Because of restrictions on the applications that can use the new functionality, this 
feature is not in effect unless MULTIPLE ENCLAVE IS ON is specified on the SYSTEM 
statement in the DC System Generation. In addition, module RHDCLEFE must be in 
use as described in "Performance Improvements with RHDCLEFE." In release 15.0, 

this feature is available only for z/OS operating systems. 
 

■ When MULTIPLE ENCLAVE IS OFF, each new LE program invoked within a DC online 
task causes the initialization of a new LE process and enclave, provided the program 
was invoked as a result of one of the following: 

■ The DC task definition specified INVOKES PROGRAM... 

■ The program was invoked using a TRANSFER CONTROL. 

■ After an LE program is invoked in a given task, the same process and enclave 
can be reused if one of the following occurs: 

■ The same program is invoked subsequently in the same task. 

■ A different program is invoked from an LE COBOL program using a static CALL 
(CALL 'l iteral') or a dynamic CALL (CALL IDENTIFIER). 

 

■ When MULTIPLE ENCLAVE IS ON, a new LE process and enclave are created the first 
time an LE COBOL program is invoked in a task. Subsequent invocations of any 

COBOL program in the same task util izes the same process and enclave even if it 
was invoked using TRANSFER CONTROL LINK or TRANSFER CONTROL RETURN. 

■ Starting an LE process and/or enclave involves considerable overhead of both 
storage and CPU util ization. Therefore, MULTIPLE ENCLAVE IS ON can provide 

significant improvement for tasks that invoke many programs using TRANSFER 
CONTROL RETURN or TRANSFER CONTROL LINK. 

 

Restrictions on Using Multiple-Program Enclaves 

The following restrictions apply to COBOL programs that participate in a 

multiple-program enclave: 

■ Enabled programs cannot perform a DC RETURN DML call  and then be reentered 
using a subsequent TRANSFER. This restriction does not apply to programs that 

contain a DC RETURN with no subparameters because the DML compiler generates 
a GOBACK for this type of statement. This restriction does apply if the DC RETURN 
statement does have subparameters. For example, you cannot execute a "DC 
RETURN NEXT TASKCODE ..." statement and then reenter the same program in the 

same task. 
 



Multiple-Program Enclave 

 

516  DML Reference Guide for COBOL 

 

■ Enabled programs cannot issue a TRANSFER CONTROL NORETURN or a TRANSFER 
CONTROL XCTL. 

■ Optional bit 196 is ignored for programs that participate in a multiple-program 
enclave. Therefore, if MULTIPLE ENCLAVE IS ON at the system level, any program 
that depends on bit 196 must be exempted as described in "Exempting Programs 

from Multiple-Program Enclave." 
 

Exempting Programs from Multiple-Program Enclave 

You can enable multiple-program enclaves at the system level even if some programs 
are not eligible. An ineligible program can be exempted in one of two ways: 

■ Use the MULTIPLE ENCLAVE IS OFF clause of the PROGRAM statement in the DC 
System Generation. 

 

■ Use the MULTIPLE ENCLAVE OFF clause on the DCMT VARY PROGRAM statement or 
the DCMT VARY DYNAMIC PROGRAM statement. 

Exempted programs can participate in the same task with eligible programs. All  eligible 

programs share one process/enclave. Each exempted program uses its own 
process/enclave. 
 



 

Appendix J: 18-Byte Communications Blocks  517  

 

Appendix J: 18-Byte Communications 
Blocks 
 

As an alternative to using the 16-byte IDMS and IDMS DC communications blocks, you 
can specify 18-byte blocks. This appendix describes where to specify an 18-byte 
communications block and contains figures showing these blocks. The difference 

between 16-byte blocks and 18-byte blocks is that an 18-byte block contains an 
additional 18-byte fi l ler field, and the following fields are 18 bytes instead of 16 bytes: 

■ RECORD-NAME 

■ AREA-NAME 
 

■ ERROR-SET 

■ ERROR-RECORD 

■ ERROR-AREA 

Note: For more information about the the fields in IDMS and IDMS DC, see 
Communication Blocks and Error Detection (see page 33). 

Where to Specify the 18-Byte Block 

For COBOL, you specify an 18-byte communications block in the SUBSCHEMA-NAMES 
LENGTH IS clause found in the PROTOCOL statement of ENVIRONMENT DIVISION. 

Note: For more information, see ENVIRONMENT DIVISION (see page 69). 

This section contains the following topics: 

18-Byte IDMS Block (see page 518) 
18-Byte IDMS DC Block (see page 519) 

 



18-Byte IDMS Block 

 

518  DML Reference Guide for COBOL 

 

18-Byte IDMS Block 

The following figure shows the 18-byte IDMS communications block: 

                                                 Length       
                   Field           Data Type    (bytes)      Initial Value 
  ┌──────────┐ 
 *│ 1      8 │     PROGRAM-NAME    Alphanumeric  8           Program Name 
  ├────────┬─┘ 
  │ 9   12 │       ERROR-STATUS    Alphanumeric  4          '1400' 
  ├────────┤ 
  │ 13  16 │       DBKEY           Binary        4(Fullword) 0000 
  ├────────┴───┐ 
  │ 17      34 │   RECORD-NAME     Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 35      52 │   AREA-NAME       Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 53      70 │   FILLER          Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 71      88 │   ERROR-SET       Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 89     106 │   ERROR-RECORD    Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 107    124 │   ERROR-AREA      Alphanumeric  18          Spaces 
  ├─────────┬──┘ 
**│ 125 128 │      PAGE-INFO       Binary        4(Fullword) 0000 
  └─────────┘ 
  ┌─────┬───┬────┐ 
  │ 125  ... 224 │ IDBMSCOM-AREA   Alphanumeric  100         Low Values 
  ├─────┴───┴┬───┘ 
  │ 225  228 │     DIRECT-DBKEY    Binary        4(Fullword) 0000 
  └──────────┘ 
  ┌─────────┐ 
  │ 229 235 │      DATABASE-STATUS Alphanumeric  7           Spaces 
  ├─────┬───┘ 
  │ 236 │          FILLER          ...           1           ... 
  ├─────┴───┐ 
  │ 237 240 │      RECORD-OCCUR    Binary        4(Fullword) 0000 
  ├─────────┤ 
  │ 241 244 │      DML-SEQUENCE    Binary        4(Fullword) 0000 
  ├─────────┴──┐ 
  │ 245    300 │   FILLER          Alphanumeric  56          Spaces 
  └────────────┘ 
 
*  word aligned 
 
** PAGE-INFO-GROUP overlays bytes 125 and 126 and PAGE-INFO-DBK-FORMAT 
   overlays bytes 127 and 128. Both of these fields are binary datatype, 
   each with a length of two bytes. Suggested initial values for 
   both are 00. Together these two fields represent PAGE-INFO. 

 



18-Byte IDMS DC Block 

 

Appendix J: 18-Byte Communications Blocks  519  

 

18-Byte IDMS DC Block 

The following figure shows the 18-byte IDMS DC communications block: 

                                                    Length      
                   Field              Data Type    (bytes)      Initial Value 
  ┌──────────┐ 
 *│ 1      8 │     PROGRAM-NAME       Alphanumeric  8           Program Name 
  ├────────┬─┘ 
  │ 9   12 │       ERROR-STATUS       Alphanumeric  4          '1400' 
  ├────────┤ 
  │ 13  16 │       DBKEY              Binary        4(Fullword) 0000 
  ├────────┴───┐ 
  │ 17      34 │   RECORD-NAME        Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 35      52 │   AREA-NAME          Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 53      70 │   FILLER             Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 71      88 │   ERROR-SET          Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 89     106 │   ERROR-RECORD       Alphanumeric  18          Spaces 
  ├────────────┤ 
  │ 107    124 │   ERROR-AREA         Alphanumeric  18          Spaces 
  ├─────────┬──┘ 
**│ 125 128 │      PAGE-INFO          Binary        4(Fullword) 0000 
  └─────────┘ 
 
  ┌─────┬───┬────┐ 
  │ 125  ... 224 │ IDBMSCOM-AREA      Alphanumeric  100         Low Values 
  ├─────┴───┴┬───┘ 
  │ 225  228 │     DIRECT-DBKEY       Binary        4(Fullword) 0000 
  ├──────────┤ 
  │ 229  235 │     DATABASE-STATUS    Alphanumeric  7           Spaces 
  ├─────┬────┘ 
  │ 236 │          FILLER             ...           1           ... 
  ├─────┴────┐ 
  │ 237  240 │     RECORD-OCCUR       Binary        4(Fullword) 0000 
  ├──────────┤ 
  │ 241  244 │     DML-SEQUENCE       Binary        4(Fullword) 0000 
  ├──────────┤ 
  │ 245  300 │     FILLER             Alphanumeric  56          Spaces 
  ├─────┬───┬┴───┐ 
  │ 301  ... 400 │ DBMSCOM-AREA       Alphanumeric  100         Low Values 
  ├─────┴───┴┬───┘ 
  │ 401  404 │     SSC-ERRSTAT-SAVE   Alphanumeric  4           0000 
  ├──────────┤ 
  │ 405  408 │     SSC-DMLSEQ-SAVE    Binary        4(Fullword) 0000 
  ├──────────┤ 
  │ 409  412 │     SUBSCHEMA-CTRL-END Alphanumeric  4           0000 
  └──────────┘ 
 
*  word aligned 
 
** PAGE-INFO-GROUP overlays bytes 125 and 126 and PAGE-INFO-DBK-FORMAT 
   overlays bytes 127 and 128. Both of these fields are binary datatype, 
   each with a length of two bytes. Suggested initial values for 
   both are 00. Together these two fields represent PAGE-INFO. 

 





 

Appendix K: Optional Online COBOL Functionality  521  

 

Appendix K: Optional Online COBOL 
Functionality 
 

Several APARs have been written that affect the performance and/or functionality of 
COBOL programs in the online CA IDMS/DC system. This appendix discusses the effects 
of the various APARs. 

Note: This discussion applies only to online programs running in a DC/UCF region. It 
does not apply to batch programs or to programs running in a CICS region or under 
control of another TP monitor, even if such programs access an IDMS database via 
LOCAL or CV mode. 

This section contains the following topics: 

COBOL II and LE COBOL Task Management (see page 521) 
PSW Program Mask Settings  (see page 524) 

Loading VS COBOL Programs into XA Storage (see page 526) 
 

COBOL II and LE COBOL Task Management 

Several optional APARs have to do with the management of a COBOL II task thread or a 
LE COBOL process(environment) and enclave. To better understand the concept of a 
COBOL task thread, first consider a batch COBOL job in which IDMS is not involved. 

When a COBOL II program is first invoked, the COBOL support code causes the load of a 
small program called IGZCTCO. As the COBOL II runtime system is built, control 
information is placed in the copy of IGZCTCO that has been loaded into the address 

space. If the top level program (call  it program A) issues a CALL IDENTIFIER to a second 
COBOL program (call  it program B), the COBOL II support code finds the existing copy of 
IGZCTCO. Program B is entered using the same COBOL II environment. The first time 
program B is entered, its WORKING STORAGE is initialized according to any VALUE 

clauses coded. 
 

If program B does a GOBACK to program A and then program A issues a second CALL 
IDENTIFIER to program B, program B is normally entered with the same WORKING 
STORAGE values left from the previous invocation. The VALUE clauses are not 
reinitialized. 

 

In Language Environment for z/OS, the concepts of the LE process and enclave are 

roughly analogous to the COBOL II task thread. See IBM documentation for a more 
complete discussion of these concepts. 

 



COBOL II and LE COBOL Task Management 

 

522  DML Reference Guide for COBOL 

 

Now let us return to the discussion of COBOL II in an online DC/UCF system. When 
COBOL II support was first introduced for DC/UCF, every invocation of a COBOL program 

via a TRANSFER RETURN from another COBOL program caused a new IGZCTCO to be 
loaded. The COBOL II task thread was recreated. Thus if Task A invokes COBOL II 
program X, which does a TRANSFER CONTROL ten times to program Y, the COBOL II task 

thread was built eleven times -- once for program X and ten times for program Y. 
Moreover, if program Y terminated with a DC RETURN instead of a GOBACK, all  the 
storage associated with each invocation was preserved until  task termination. This 
causes serious overhead of CPU and potentially of storage util ization. 

 

To reduce the overhead of constantly creating new COBOL II environments, the DC/UCF 

COBOL II support was modified to load only one copy of IGZCTCO per task. Using this 
method, if main program X issues a TRANSFER CONTROL ten times to program Y, the 
COBOL II environment is built only once. The drawback is that certain functionality is 
changed. In particular, WORKING STORAGE is not reinitialized each time program Y is 

entered. Also, recursive TRANSFER CONTROL (Program X issues TRANSFER CONTROL TO 
X) is not allowed. Since some existing applications depended on those features, optional 
APARs were developed to allow use of one method or the other. Unfortunately, the 

DC/UCF default methodology changed from release to release and sometimes within 
one release. 

 

Note: IGZCTCO is handled differently in DC/UCF systems that are operating with an IBM 
Language Environment runtime system (such as LE for z/OS). COBOL II programs can be 
used in these systems, but prior to release 14.1, a new IGZCTCO was used for every 

TRANSFER to a COBOL II program. 
 

Beginning with release 14.1, online COBOL II programs in an LE runtime environment 

will  run most efficiently if RHDCLEFE is defined in the DC/UCF Sysgen as documented in 
the release 14.1 Features Guide. This gives functionality similar to that documented for 
the "single IGZCTCO" method shown below. In that case, the COBOL II program is 

handled as though it were compiled under LE COBOL. 

The following table describes how to util ize each of the two methods for the latest 
maintenance of all  currently supported DC/UCF releases. This table supercedes the 
documentation in any previous APARs or PDCs. Note that the table is divided into 

several sections depending on the COBOL compiler level and the runtime level. 
 

Part 1 

This part of the table contains programs compiled under COBOL II and using COBOL II 
runtime libraries. 

 

Release Method 1 (Most CPU efficient) 
Use single IGZCTCO per task 

Method 2 (Special functionality) 
Use new IGZCTCO each TRANSFER 

10.21PS Default Apply optional APAR 88-06-1105 

12.01 Default (see note below) Apply optional APAR LS12053. 



COBOL II and LE COBOL Task Management 

 

Appendix K: Optional Online COBOL Functionality  523  

 

Release Method 1 (Most CPU efficient) 
Use single IGZCTCO per task 

Method 2 (Special functionality) 
Use new IGZCTCO each TRANSFER 

14.0 and later Turn on optional bit 49 in 
RHDCOPTF. 

Default. 

Note: In release 12.01, prior to maintenance level 9607, it is necessary to apply APAR 

GO97250 to obtain the default condition shown above. With application of GO97250, 
optional APAR GS19348 is obsolete. 

Note: Optional bit 49 is not valid in a LE/370 runtime environment. 
 

Part 2 

This part of the table contains programs compiled under COBOL II and using LE runtime 

libraries. RHDCLEFE is not in use. 

 

Release Method 1 (Most CPU efficient) 
Use single IGZCTCO per task 

Method 2 (Special functionality) 
Use new IGZCTCO each TRANSFER 

10.21PS and 
later 

Not available Default 

Part 3 

This part of the table contains programs compiled under COBOL II and using LE runtime 
libraries. RHDCLEFE is in use. 

 

Release Method 1 (Most CPU efficient) 

Reuse same process/enclave 

Method 2 (Special functionality) 

Use new process/enclave 

10.21PS Not available Default 

12.01 Not available Default 

14.0 Not available Default. 

14.1 and later Default Optional bit 196. 



PSW Program Mask Settings 

 

524  DML Reference Guide for COBOL 

 

Part 4 

This part of the table contains programs compiled under LE COBOL and using LE runtime 

libraries. 

 

Release Method 1 (Most CPU efficient) 

Reuse same process/enclave (see 
first note below) 

Method 2 (Special functionality) 

Use new process/enclave (see 
first note below) 

10.21PS Not available Default 

12.01 Not available Default 

14.0 Default Optional bit 196. (see second note 
below) 

14.1 and later Default Optional bit 196. 

Note: When using RHDCLEFE with release 14.1 and later, the default is to preserve both 

the LE environment (process) and the LE enclave when invoking the same program 
multiple times in the same DC task. When not using RHDCLEFE, the environment is 
preserved for LE COBOL programs, but not the enclave. 

In release 14.0, prior to maintenance level 9810, it is necessary to apply APAR LS40957 
in order for optional bit 196 to have any effect.  That APAR is automatically applied at 
level 9810 and above. 

 

PSW Program Mask Settings 

The program mask in the PSW controls whether or not certain arithmetic exceptions will  

cause a program check or be ignored. If the exception is ignored, significant digits of 
data may be lost. If the bit is on, the exception causes a program check. If the bit is off, 
the exception is ignored. The exceptions controlled by the program mask are as follows: 

 

PSW bit Exception 

20 Fixed-point Overflow 

21 Decimal overflow 

22 Exponent underflow 

23 Significance 

When the CA IDMS/DC/UCF system is in system mode (i.e., code in the system nucleus is 

executing), the program mask is always set to B'1110'. This enables a program check for 
all  exceptions except significance exceptions. 

 



PSW Program Mask Settings 

 

Appendix K: Optional Online COBOL Functionality  525  

 

A program mask of B'1110' is the default for initial entry into a user mode program. 
Some high level languages may change the program mask. For example, some versions 

of COBOL change the mask to B'0000'. The DC default is to honor such a change. The DC 
system does that by saving the program mask when a user-mode program makes a 
system request (for example, an OBTAIN or a GET STORAGE). While the request is being 

processed, the program mask is always set to B'1110'. When the system processing is 
completed, the program mask is restored before return to the user-mode program 
which made the request. 

 

The default program mask settings can be modified through the use of options module 
RHDCOPTF. One option is to force the program mask to be set to B'1110' (the system 

default) upon return to a user-mode program after a system request as well as upon 
initial entry to the program. To effect this option, set OPT00253 in RHDCOPTF. This 
option will  cause the default mask to be in effect at all  times with one exception. The 
exception would be during the period after the user-mode program changes the mask 

until  the next time it makes a system request. Note that this exception does not apply to 
COBOL II or LE COBOL programs. The COBOL run time code will  always make several 
requests to the DC system for storage or other resources before the actual application 

code is entered. This assures that the default mask will  be in effect when the application 
code is executed. 

If OPT00253 is set, option bits 148 and 184 through 188 (described below) ignored. 
 

The value of the program mask upon initial entry to a user-mode program can also be 
modified as described below: 

■ If OPT00184 is set and OPT00253 is not set in RHDCOPTF, then the value of the 
program mask on initial entry to a user mode program will  be set based on 
#DEFOPTF bits 185-188 as follows: 

■ If OPT00185 is set, fixed-point overflow exceptions will  result in an interrupt 

(program check). When it is not set, fixed-point overflows will  not result in an 
interrupt. 

■ If OPT00186 is set, decimal overflow exceptions will  result in an interrupt 

(program check). When it is not set, decimal overflows will  not result in an 
interrupt. 

 

■ If OPT00187 is set, exponent underflow exceptions will  result in an interrupt 
(program check). When it is not set, exponent underflows will  not result in an 
interrupt. 

■ If OPT00188 is set, significance exceptions will  result in an interrupt (program 
check). When it is not set, significance exceptions will  not result in an interrupt. 

 



Loading VS COBOL Programs into XA Storage 

 

526  DML Reference Guide for COBOL 

 

■ If neither OPT00184 nor OPT00253 are set and OPT00148 is set, then the initial 
program mask will  be set to binary 1010, i.e., fixed-point overflow and exponent 

underflow will  cause an interrupt, but decimal overflow and significance exceptions 
will  not. OPT00148 has no effect in release 16.0. The same functionality can be 
obtained by setting OPT00184, OPT00185, and OPT00187. 

Note: the bit settings described above affect all  user mode programs, not just 
COBOL programs. They are presented here because the optional settings are most 
commonly used for specialized COBOL applications. 

 

Loading VS COBOL Programs into XA Storage 

VS COBOL II and LE COBOL programs can and normally should be linked with AMODE 31 

and RMODE ANY. Old-style VS COBOL programs, which run in batch, must run with 
AMODE 24 and RMODE 24. However, when running online VS COBOL programs in a 
DC/UCF region, it is permissible to run with AMODE 31 and RMODE 24. This is the 

normal recommended AMODE/RMODE setting for online VS COBOL program. This 
allows the WORKING STORAGE for VS COBOL programs to be allocated in XA storage. 
Since multiple copies of WORKING STORAGE may be allocated simultaneously (when 
multiple tasks are running that use the same program), this feature considerably 

reduces the amount of below-the-line storage required. 
 

Some sites have a large number of COBOL programs and may want to l ink VS COBOL 
programs with AMODE 31 and RMODE ANY. This allows the programs to be loaded into 
the 31-bit (above-the-line) PROGRAM POOL. Caution should be used before util izing this 
feature. If a program that is loaded above the line issues a COBOL verb that causes an 

il legal SVC to be issued or if the program is compiled with i l legal compile options, the 
entire DC/UCF region may be abended. In some cases, the entire operating system may 
be abended. Il legal COBOL verbs and compile options are l isted in Chapter 2: (see 

page 17). 
 

If online VS COBOL programs are to be linked RMODE(ANY) and run under Release 12.01 

or earlier, an optional APAR must be applied. No optional APAR is required for release 
14.0 and above, but the cautions l isted above must be observed. The optional APARs ar e 
as follows: 

 

Release APAR 

10.21PS (MVS) 90-09-1003 

10.21PS (VSE) Not available 

12.01  (MVS) CS82390 

12.01  (VSE) GS53516 

 



 

Appendix L: Online Debugger Syntax  527  

 

Appendix L: Online Debugger Syntax 
 

This section contains the following topics: 

General Registers Symbols  (see page 527) 
DC/UCF System Symbols  (see page 528) 
Address Symbols and Markers  (see page 528) 

User Symbols (see page 529) 
Program Symbols (see page 529) 
Expression Operators (see page 529) 

Delimiters (see page 530) 
Debugger Commands (see page 530) 

 

General Registers Symbols 

General registers include the registers used by the program at the time of execution 
and the registers used by the DC/UCF system. The program status word (PSW) and 

register definitions are always preceded by a colon (:) and are specified by these 
symbols: 

■ :PSW for the current program status word 

■ :Rn for the user program register at the time of interrupt, where n represents the 
number of the register and can have a value of 0 through 15 

■ :REGS for all  user program registers at the time of interrupt 

■ :SRn for a DC/UCF system register at the time of interrupt, where n represents the 

number of the register and can have a value of 0 through 15 

■ :SREGS for all  DC/UCF system registers at the time of interrupt 

Important! A single debug expression can reference only one general register. 
 



DC/UCF System Symbols 

 

528  DML Reference Guide for COBOL 

 

DC/UCF System Symbols 

Certain DC/UCF system symbols also function as debugger entities, and you can refer to 
them during a debugging session. A colon (:) must precede each symbol. These are the 
valid symbols: 

:BAT 

Specifies the base address table for session. 

:CSA 

Specifies the DC/UCF common storage area. 

:DLB 

Specifies the debug local block, control block required for debugging session. 

:LTE 

Specifies the current logical terminal element. 

:PTE 

Specifies the current physical terminal element. 

:TCE 

Specifies the current task control element. 

:VECT 

Specifies the vector table for debugger. 

Important! A single debug expression can reference only one system entity. 
 

Address Symbols and Markers 
 

Symbol Symbol Name Designated Location 

@  At sign Absolute address 

$  Dollar sign Load address 

¢  Cent sign Address of current dialog process  
 



User Symbols 

 

Appendix L: Online Debugger Syntax  529  

 

User Symbols 
■ :DRn for a debugger general register, where n represents the number of the 

register and can have a value of 0 through 15 

■ :DREGS for all  debugger registers  

■ :H1 and :H2 for halfword 1 and halfword 2 

■ :F1 and :F2 for fullword 1 and fullword 2 

■ :UCHR for a 48-byte character area 

You can also refer to specified secti ons of this area: 

– :UC0, the first 16 bytes 

– :UC16, the next 16 bytes 

– :UC32, the last 16 bytes 
 

Program Symbols 

Syntax: Data Field Names 

►►──── data-field-name ─┬──────────────────────┬──────────────────────────────►◄ 
                        ├─ IN ─┬─ record-name ─┘ 
                        └─ OF ─┘ 

 

Syntax: Line Numbers 

►►──── # line-number ─────────────────────────────────────────────────────────► 
 
 ►─┬──────────────────────────────────────────────────────────────────────┬───►◄ 
   └─┬─ IN ─┬─┬─ current-process-name ───────────────────────────────────┬┘ 
     └─ OF ─┘ └─ included-module-name ─┬────────────────────────────────┬┘ 
                                       └─ OCCurrence occurrence-number ─┘ 

 

Syntax: Qualifying Program Symbols 

►►─── process-name - . - program-symbol ──────────────────────────────────────►◄ 
 

Expression Operators 
  

Operator Meaning 

+ Addition 

- Subtraction 



Delimiters 

 

530  DML Reference Guide for COBOL 

 

Operator Meaning 

* Multiplication 

/ Division 
 

Delimiters 
  

Delimiter Meaning 

* Asterisk 

 Blank 

, Comma 

= Equal sign 

! Exclamation point 

- Hyphen 

% Percent sign 

. Period 

+ Plus sign 

/ Slash 
 

Debugger Commands 

Syntax: AT 

ADD Format 

►►─── AT debug-expression ────────────────────────────────────────────────────► 
 
 ►─┬───────────────────────────────┬─┬──────────────────────────────┬─────────► 
   └─ BEFore ─┬─ MAXimum ◄ ───────┬┘ └─ AFTer ─┬─ 0 ◄ ─────────────┬┘ 
              └─ execution-count ─┘            └─ execution-count ─┘ 
 
 ►─┬──────────────────────────────┬─┬──────────┬──────────────────────────────►◄ 
   └─ EVEry ─┬─ 1 ◄ ─────────────┬┘ ├─ ON ◄ ───┤ 
             └─ execution-count ─┘  └─ IGNore ─┘ 

INQUIRE Format 

►►─── AT ─┬─ ALL ──────────────┬─┬─ INQuire ─┬────────────────────────────────►◄ 
          └─ debug-expression ─┘ ├─ ON ──────┤ 
                                 ├─ IGNore ──┤ 
                                 └─ OFF ─────┘ 

 



Debugger Commands 

 

Appendix L: Online Debugger Syntax  531  

 

Syntax: DEBUG 

ADD format 

►►─── DEBug ─┬─ PROgram ◄ ──┬─ entity-name ─┬──────────────────────────┬───────►◄ 
             ├─ DIAlog ─────┤               └─ VERsion version-number ─┘ 
             ├─ MAP ────────┤ 
             ├─ SS ─────────┤ 
             └─ TABle ──────┘ 

INQUIRE format 

►►─── DEBug ─┬─ entity-name ─┬──────────────────────────┬─┬─┬─ INQuire ─┬─────►◄ 
             │               └─ VERsion version-number ─┘ │ └─ OFF ─────┘ 
             └─ ALL ──────────────────────────────────────┘ 

 

Syntax: EXIT 
►►─── EXIt ───────────────────────────────────────────────────────────────────►◄ 

 

Syntax: IOUSER 

►►─── IOUser ─────────────────────────────────────────────────────────────────►◄ 
 

Syntax: LIST 

MEMORY Format 

►►─┬─ List ────┬─┬──────────┬─ begin-debug-expression ────────────────────────► 
   └─ Display ─┘ └─ Memory ─┘ 
 
 ►─┬──────────────────────────────────┬──┬──────┬─────────────────────────────►◄ 
   ├─ TO end-debug-expression ────────┤  ├─ C ──┤ 
   └─┬──────────┬─ byte-count-number ─┘  ├─ X ──┤ 
     └─ LENgth ─┘                        └─ XC ─┘ 

ATTRIBUTES Format 

►►─┬─ List ────┬─ SESsion ATTributes ─────────────────────────────────────────►◄ 
   └─ Display ─┘ 

 

Syntax: MENU 
►►─── MENu ─┬───────────────┬─────────────────────────────────────────────────►◄ 
            └─ screen-name ─┘ 

 

Syntax: PROMPT 
►►─── PROmpt ─────────────────────────────────────────────────────────────────►◄ 

 



Debugger Commands 

 

532  DML Reference Guide for COBOL 

 

Syntax: QUALIFY 

RESET Format 

►►─── QUAlify ─┬──────────────────────┬─ PROCess process-name ────────────────► 
               └─ DIAlog dialog-name ─┘ 
 
 ►─┬──────────────────────────┬───────────────────────────────────────────────►◄ 
   └─ VERsion version-number ─┘ 

INQUIRE Format 

►►─── QUAlify INQuire ────────────────────────────────────────────────────────►◄ 
 

Syntax: QUIT 

►►─── QUIt ───────────────────────────────────────────────────────────────────►◄ 
 

Syntax: RESUME 
►►─── RESume ─┬───────────────────────────────┬───────────────────────────────►◄ 
              └┬──────┬─┬─ debug-expression ─┬┘ 
               └─ AT ─┘ └─ ABEnd ────────────┘ 

 

Syntax: SET 

MEMORY Format 

►►─┬─ Set ──┬─┬──────────┬─ debug-expression ─┬──────────┬───────────────────► 
   └─ Vary ─┘ └─ Memory ─┘                    ├─ EQUals ─┤ 
                                              └─ = ──────┘ 
 
 ►─┬─ data-field-name ────┬─┬──────┬─┬─────────────┬──────────────────────────►◄ 
   ├─ H halfword ─────────┤ ├─ C ──┤ ├─ RESEt ─────┤ 
   ├─ F fullword ─────────┤ ├─ X ──┤ └─ NOReset ◄ ─┘ 
   ├─ X hex-value ────────┤ └─ XC ─┘ 
   ├─ C character-string ─┤ 
   └─ P packed-value ─────┘ 

ATTRIBUTES Format 

►►─── Set ─┬─ CHAr ─┬─────────────────────────────────────────────────────────►◄ 
           ├─ HEX ──┤ 
           └─ BOTh ─┘ 

 

Syntax: SNAP 

►►─── SNAp ─┬─ TASk ──────────────────────────────────────────────────────┬───► 
            └─ begin-debug-expression ─┬─────────────────────────────────┬┘ 
                                       ├─ TO end-debug-expression ───────┤ 
                                       └┬──────────┬─ byte-count-number ─┘ 
                                        └─ LENgth ─┘ 
 
 ►─┬───────────────┬──────────────────────────────────────────────────────────►◄ 
   └─ TITle title ─┘ 

 



Debugger Commands 

 

Appendix L: Online Debugger Syntax  533  

 

Syntax: WHERE 

►►─── WHEre ──────────────────────────────────────────────────────────────────►◄ 

 





 

Index  535  

 

Index 
 

A 

attention ID keys • 205 
DC-AID-CONDITION-NAMES • 205 

B 

basic mode • 269, 272, 319, 322, 327  

READ TERMINAL • 269, 272 
WRITE TERMINAL • 319, 322 
WRITE THEN READ TERMINAL • 322, 327 

C 

CALL statements • 69 
database • 69 
DC • 69 

DC-BATCH • 69 
Non-DC TP monitors • 69 

compiler options • 29, 30, 31, 33  

comment generation • 30 
dictionary ready override • 29, 30 
l ist generation • 30, 31 
log suppression • 31, 33 

compiler-directive statements • 68, 69, 72, 73, 74, 
76, 85, 89, 100 

DATA DIVISION • 72, 85 

ENVIRONMENT DIVISION • 69, 72 
FILE SECTION • 73 
IDENTIFICATION DIVISION • 68, 69 
MAP SECTION • 74, 76 

PROCEDURE DIVISION • 85, 89 
SCHEMA SECTION • 73, 74 
WORKING-STORAGE/LINKAGE SECTIONs • 76, 85  

control statements • 185, 187, 203, 205, 215, 272, 

275, 278, 280 
FINISH • 185, 187 
IF • 203, 205 

KEEP CURRENT • 215 
READY • 272, 275 
ROLLBACK • 278, 280 

COPY IDMS statement • 73, 74, 76, 85, 121, 123, 

124, 126, 129 
COPY IDMS MAP-BINDS • 121 
COPY IDMS SUBSCHEMA-BINDS • 85, 126 

in FILE SECTION of DATA DIVISION • 73  
in MAP SECTION of DATA DIVISION • 74  

in PROCEDURE DIVISION • 85 
in WORKING-STORAGE/LINKAGE SECTIONs of 

DATA DIVISION • 76 
COPY IDMS statement • 124 

COPY IDMS statement 
i2.COPY IDMS SUBSCHEMA-BINDS • 124 

cursor position • 248 

MODIFY MAP • 248 

D 

DATA DIVISION • 73, 74, 76, 85 

FILE SECTION • 73 
MAP SECTION • 74, 76 
SCHEMA SECTION • 73, 74 
WORKING-STORAGE/LINKAGE SECTIONs • 76, 85 

destination • 280, 315 
SEND MESSAGE • 280 
WRITE PRINTER • 315 

DML compiler • 337, 339, 342, 483  
execution of • 337 
with non-DC TP monitor • 483 

dump • 100, 101, 288, 290 

ABEND • 100, 101 
SNAP • 288, 290 

I 

IDMS communications block • 34 
figure • 34 
update (figure) • 34 

IDMS DC communications block • 42  
figure • 42 

IDMS-DC communications block • 42, 48, 59  

field descriptions • 42 
IF • 203 

AUTOSTATUS considerations • 203 
INQUIRE MAP • 205 

general discussion • 205 
moving map-related data • 205 
testing for cursor position • 205 
testing for global map input conditions • 205  

testing for input non-zero status conditions • 205 

J 

journal fi le • 303, 305 



 

 

536  DML Reference Guide for COBOL 

 

WRITE JOURNAL • 303, 305 

K 

kept storage • 187, 188, 197, 201  
FREE STORAGE • 187, 188 

GET STORAGE • 197, 201 

L 

LE-compliant language compilers • 508, 509, 513, 

514, 521 
executing programs under CA IDMS/DC • 509  
multiple-program enclave • 514 
single LE enclave • 514 

supported compilers • 508 
supported functions • 513 
unsupported functions • 513 

using • 513 
l ine mode • 267, 269, 305, 308  

READ LINE FROM TERMINAL • 267, 269 
WRITE LINE TO TERMINAL • 305, 308 

Logical Record Facil ity • 246, 248, 258, 261, 297, 
299, 327, 337 

logical-record clauses • 327, 337 

MODIFY • 246, 248 
OBTAIN • 258, 261 
status codes • 337 
STORE • 297, 299 

logical-record clauses • 327 
general discussion • 327 

logical-record request control (LRC) block • 40  
field descriptions • 40 

figure • 40 

M 

map • 205, 232, 248 
attributes • 248 
field l ist • 205 
message area • 232 

modifying • 248 
mapping mode • 205, 215, 227, 232, 239, 243, 248, 

258, 290, 293 

INQUIRE MAP • 205, 215 
MAP IN • 227, 232 
MAP OUT • 232, 239 
MAP OUTIN • 239, 243 

MODIFY MAP • 248, 258 
STARTPAGE • 290, 293 

modification statements • 243, 246, 293, 297  

MODIFY • 243, 246 
STORE • 293, 297 

N 

native mode • 227, 232, 315 

MAP IN • 227 
MAP OUT • 232 
WRITE PRINTER • 315 

NODENAME parameter • 352 

ih1.DBNAME parameter • 352 

P 

page=end.KEEP LONGTERM • 222 

page=end KEEP LONGTERM • 222 
page=end.RETURN • 278 

page=end RETURN • 278 

page=start.RETURN • 275 
page=start RETURN • 275 

Precompiler • 22, 23, 29, 33, 34, 67, 68, 89  
compiler options • 29, 33 

compiler-directive statements • 67, 89 
execution of • 23 
general discussion • 22 

print • 315 
classes • 315 
destinations • 315 
queues • 315 

program management • 146, 148, 222, 227, 283, 
284, 299, 301 

DELETE TABLE • 146, 148 
LOAD TABLE • 222, 227 

SET ABEND EXIT • 283 
SET ABEND EXIT (STAE) • 284 
TRANSFER CONTROL • 299, 301 

protocols • 63, 65, 67, 69, 124, 126, 203  
AUTOSTATUS • 63, 65, 69, 124, 126, 203 
PROTOCOL clause • 69 
standard protocols (table) • 69  

USER-DEFINED • 65, 67 

Q 

queue management • 189, 194, 262, 265  
GET QUEUE • 189, 194 
PUT QUEUE • 262, 265 

queues • 129, 130, 148, 149, 152, 154, 157, 163, 165  

BIND TASK • 129, 130 
DEQUEUE • 148, 149 
ENQUEUE • 154, 157 



 

 

Index  537  

 

R 

record locks • 216 
KEEP CURRENT • 216 

recovery • 278, 280, 303, 305  

ROLLBACK • 278, 280 
WRITE JOURNAL • 303, 305 

retrieval statements • 165, 167, 170, 173, 176, 179, 
185, 188, 189, 258, 261 

FIND/OBTAIN • 165 
FIND/OBTAIN CALC/DUPLICATE • 165, 167 
FIND/OBTAIN CURRENT • 167, 170 
FIND/OBTAIN DB-KEY • 170, 173 

FIND/OBTAIN OWNER • 173, 176 
FIND/OBTAIN WITHIN SET USING SORT KEY • 

176, 179 

FIND/OBTAIN WITHIN SET/AREA • 179, 185  
GET • 188, 189 
OBTAIN (LRF) • 258, 261 

S 

scratch management • 194, 197, 265, 267 
GET SCRATCH • 194, 197 

PUT SCRATCH • 265, 267 
see=AUTOSTATUSprotocols error detection • 60, 62, 

63 
see=callformats call expansions • 479  

see=compileroptions precompiler options • 29  
see=LogicalRecordFacility non-navigational DML 

statements • 21, 22 
see=logsuppression program activity statistics • 31  

see=operatingmode PROTOCOL clause • 69  
see=precompiler DMLC processor • 23, 25, 26, 27  
see=programexpansionelement(PXE) PXE • 40, 42  

see=READY dictionary ready override • 29  
see=statuscodes IDMS communications block • 40  
see=statuscodes IDMS-DC communications block • 

42 

see=writecontrolcharacter(WCC) WCC • 248  
Sequential Processing Facility • 275, 278  

RETURN • 275, 278 

storage management • 187, 188, 197, 201  
FREE STORAGE • 187, 188 
GET STORAGE • 197, 201 

subschema usage modes • 19, 20, 76  

DML • 19, 76 
LR • 19, 76 
MIXED • 19, 76 

T 

tables • 146, 148, 222, 227 
DELETE TABLE • 146, 148 
LOAD TABLE • 222, 227 

task management • 261, 262, 301, 303, 521, 524, 
526 

COBOL II • 521 
LE COBOL • 521 

POST • 261, 262 
WAIT • 301, 303 

teleprocessing monitors • 69, 72, 487  
notes to users of • 487 

protocols for use with (table) • 69  
terminal management • 205, 215, 227, 232, 239, 

243, 248, 258, 267, 269, 272, 290, 293, 315, 319, 

322, 327 
INQUIRE MAP • 205, 215 
MAP IN • 227, 232 
MAP OUT • 232, 239 

MAP OUTIN • 239, 243 
MODIFY MAP • 248, 258 
READ LINE FROM TERMINAL • 267, 269 

READ TERMINAL • 269, 272 
STARTPAGE • 290, 293 
WRITE PRINTER • 315, 319 
WRITE TERMINAL • 319, 322 

WRITE THEN READ TERMINAL • 322, 327 
time management • 201, 203, 284, 288  

GET TIME • 201, 203 

SET TIMER • 284, 288 
transaction statistics block (TSB) • 113, 119, 121, 

130, 131, 132, 135, 136, 139, 143, 144, 146, 152, 
154 

ACCEPT TRANSACTION STATISTICS • 113, 119  
BIND TRANSACTION STATISTICS • 130, 131 
END TRANSACTION STATISTICS • 152, 154  

TRANSFER CONTROL • 299 

NORETURN (XCTL) parameter • 299  
RETURN (LINK) parameter • 299 

U 

user storage • 187, 188, 197, 201  
FREE STORAGE • 187, 188 
GET STORAGE • 197, 201 

util ities • 503 
util ity functions • 101, 103, 104, 106, 108, 110, 112, 

113, 216, 222, 280, 283, 288, 290, 308, 315 

ACCEPT • 101, 103, 112 



 

 

538  DML Reference Guide for COBOL 

 

ACCEPT page-info-location • 110 
KEEP LONGTERM • 216, 222 

SEND MESSAGE • 280, 283 
SNAP • 288, 290 
WRITE LOG • 308, 315 

 


	CA IDMS DML Reference Guide for COBOL
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Copying and Pasting COBOL Code from this Guide
	Syntax Diagram Conventions

	2: Introduction to CA IDMS Data Manipulation Language
	Programming in the CA IDMS Environment
	Accessing the Database
	Navigational DML Statements
	LRF DML Statements
	SQL DML Statements

	Programming in the Online Environment

	Compiling and Executing CA IDMS Programs
	Compiling Programs
	Executing Programs

	Callable Services and Common Facilities
	Callable Services
	Common Facilities


	3: Precompiler Options
	Dictionary Ready Override
	Syntax
	Parameters
	Dictionary Ready Override

	Comment Generation
	Syntax

	List Generation
	Syntax
	Parameters

	Log Suppression
	Syntax


	4: Communications Blocks and Error Detection
	Communications Blocks
	IDMS Communications Block
	LRC Block
	IDMS-DC Communications Block
	Field Descriptions


	ERROR-STATUS Field and Codes
	DB Status Codes
	Major DB Status Codes
	Minor DB Status Codes

	DC Status Codes
	Major DC Status Codes
	Minor DC Status Codes

	ERROR-STATUS Condition Names
	Error Detection
	IDMS-STATUS Routine
	Effects of Nonzero Status on IDMS-STATUS

	AUTOSTATUS Protocols
	Syntax
	Parameters

	USER-DEFINED Protocols


	5: Precompiler-Directive Statements
	IDENTIFICATION DIVISION
	Syntax
	Parameters

	ENVIRONMENT DIVISION
	Syntax
	Parameters

	DATA DIVISION
	FILE SECTION
	Syntax
	Parameters

	SCHEMA SECTION
	Syntax
	Parameters

	MAP SECTION
	Syntax
	Parameters

	WORKING-STORAGE and LINKAGE SECTIONS
	Syntax
	Parameters


	PROCEDURE DIVISION
	Syntax
	Parameters


	6: Data Manipulation Language Statements
	About Data Manipulation Language (DML)
	ABEND
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT BIND ADDRESS
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT DATABASE STATISTICS
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT DB-KEY FROM CURRENCY
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT DB-KEY RELATIVE TO CURRENCY
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT page-info-location
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT PROCEDURE CONTROL LOCATION
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT TRANSACTION STATISTICS
	Syntax
	Parameters
	Example
	Status Codes

	ATTACH
	Syntax
	Parameters
	Example
	Status Codes

	BIND MAP
	Syntax
	Parameters
	Example
	Status Codes

	BIND PROCEDURE
	Syntax
	Parameters
	Example
	Status Codes

	BIND RECORD
	Syntax
	Parameters
	Example
	Status Codes

	BIND RUN-UNIT
	Syntax
	Parameters
	Example
	Status Codes

	BIND TASK
	Syntax
	Parameters
	Example
	Status Codes

	BIND TRANSACTION STATISTICS
	Syntax
	Example
	Status Codes

	CHANGE PRIORITY
	Syntax
	Parameters
	Example
	Status Codes

	CHECK TERMINAL
	Syntax
	Parameters
	Example
	Status Codes

	COMMIT
	Syntax
	Parameters
	Example
	Status Codes

	CONNECT
	Syntax
	Parameters
	Example
	Status Codes

	DC RETURN
	Syntax
	Parameters
	Example
	Status Codes

	DELETE QUEUE
	Syntax
	Parameters
	Example
	Status Codes

	DELETE SCRATCH
	Syntax
	Parameters
	Example
	Status Codes

	DELETE TABLE
	Syntax
	Parameters
	Example
	Status Codes

	DEQUEUE
	Syntax
	Parameters
	Example
	Status Codes

	DISCONNECT
	Disconnecting a Record from a Set
	Syntax
	Parameters
	Example
	Status Codes

	END LINE TERMINAL SESSION
	Syntax
	Example
	Status Codes

	END TRANSACTION STATISTICS
	Syntax
	Parameters
	Example
	Status Codes

	ENDPAGE
	Syntax
	Example
	Status Codes

	ENQUEUE
	Syntax
	Parameters
	Examples
	Status Codes

	ERASE
	Syntax
	Parameters
	Example
	Status Codes

	ERASE (LRF)
	Syntax
	Parameters
	Example

	FIND/OBTAIN
	FIND/OBTAIN CALC/DUPLICATE
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN CURRENT
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN DB-KEY
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN OWNER
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN WITHIN SET USING SORT KEY
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN WITHIN SET/AREA
	Syntax
	Parameters
	Example
	Status Codes

	FINISH
	Syntax
	Parameters
	Example
	Status Codes

	FREE STORAGE
	Syntax
	Parameters
	Example
	Status Codes

	GET
	Syntax
	Parameters
	Example
	Status Codes

	GET QUEUE
	Syntax
	Parameters
	Example
	Status Codes

	GET SCRATCH
	Syntax
	Parameters
	Example
	Status Codes

	GET STORAGE
	Syntax
	Parameters
	Example
	Status Codes

	GET TIME
	Syntax
	Parameters
	Example
	Status Codes

	IF
	Syntax
	Parameters
	Examples
	Status Codes

	INQUIRE MAP
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Examples
	Status Codes

	KEEP CURRENT
	Syntax
	Parameters
	Example
	Status Codes

	KEEP LONGTERM
	Syntax
	Parameters
	Lock Options
	Example
	Status Codes


	LOAD TABLE
	Syntax
	Parameters
	Examples
	Status Codes

	MAP IN
	Syntax
	Parameters
	Examples
	Status Codes

	MAP OUT
	Syntax
	Parameters
	Examples
	Status Codes


	MAP OUTIN
	Syntax
	Parameters
	Example
	Status Codes

	MODIFY
	Syntax
	Parameters
	Example
	Status Codes

	MODIFY (LRF)
	Syntax
	Parameters
	Example

	MODIFY MAP
	Syntax
	Parameters
	Expansion of field-specifications
	Modification Options
	Examples
	Status Codes


	OBTAIN (LRF)
	Syntax
	Parameters
	Example

	POST
	Syntax
	Parameters
	Example
	Status Codes

	PUT QUEUE
	Syntax
	Parameters
	Example
	Status Codes

	PUT SCRATCH
	Syntax
	Parameters
	Example
	Status Codes

	READ LINE FROM TERMINAL
	Syntax
	Parameters
	Examples
	Status Codes

	READ TERMINAL
	Syntax
	Parameters
	Example
	Status Codes

	READY
	Syntax
	Parameters
	Example
	Status Codes

	RETURN
	Syntax
	Parameters
	Example
	Status Codes

	ROLLBACK
	Syntax
	Parameters
	Example
	Status Codes

	SEND MESSAGE
	Syntax
	Parameters
	Examples
	Status Codes

	SET ABEND EXIT
	Syntax
	Parameters
	Examples
	Status Codes

	SET TIMER
	Syntax
	Parameters
	Examples
	Status Codes


	SNAP
	Syntax
	Parameters
	Example
	Status Codes

	STARTPAGE
	Syntax
	Parameters
	Examples
	Status Codes

	STORE
	Syntax
	Parameters
	Example
	Status Codes

	STORE (LRF)
	Syntax
	Parameters
	Example

	TRANSFER CONTROL
	Syntax
	Parameters
	Examples
	Status Codes

	WAIT
	Syntax
	Parameters
	Example
	Status Codes

	WRITE JOURNAL
	Syntax
	Parameters
	Example
	Status Codes

	WRITE LINE TO TERMINAL
	Syntax
	Parameters
	Examples
	Status Codes

	WRITE LOG
	Syntax
	Parameters
	Example
	Status Codes

	WRITE PRINTER
	Syntax
	Parameters
	Examples
	Status Codes

	WRITE TERMINAL
	Syntax
	Parameters
	Example
	Status Codes

	WRITE THEN READ TERMINAL
	Syntax
	Parameters
	Example
	Status Codes

	Logical-Record Clauses
	WHERE
	Syntax
	Parameters
	Parameters
	Examples

	ON Clause
	Syntax
	Parameters
	Examples
	Status Codes



	A: DML Precompile, COBOL Compile, and Link-Edit JCL
	Compiling a COBOL Program
	z/OS JCL
	z/VSE JCL
	Local Mode
	IDMSLBLS Procedure

	CMS Commands
	Link-Edit Considerations
	Passing Parameters to the Precompiler

	B: Sample Batch Program
	Sample Batch Program as Input to the DML Compiler
	Sample Batch Program as Output from the DML Compiler
	Sample Batch Program from the COBOL Precompiler

	C: Sample Online Program
	Application Components
	Application Runtime Requirements
	Sample Online COBOL Program as Input to the DML Precompiler
	Sample Online COBOL Program as Output from the DML Precompiler
	Sample Online COBOL Program from the COBOL Compiler


	D: CA IDMS Call Formats
	DB Call Formats
	CONTROL STATEMENTS
	MODIFICATION STATEMENTS
	RETRIEVAL STATEMENTS
	ACCEPT STATEMENTS
	LRF DML STATEMENTS

	DC Call Formats
	PROGRAM MANAGEMENT STATEMENTS
	STORAGE MANAGEMENT STATEMENTS
	TASK MANAGEMENT STATEMENTS
	TIME MANAGEMENT STATEMENTS
	SCRATCH MANAGEMENT STATEMENTS
	QUEUE MANAGEMENT STATEMENTS
	TERMINAL MANAGEMENT STATEMENTS
	UTILITY STATEMENTS
	RECOVERY STATEMENTS
	DC-BATCH


	E: CA IDMS Keywords
	List of Keywords

	F: Notes to Teleprocessing Monitor Users
	TP Monitor Coding Guidelines
	TP monitor Coding Requirements

	G: EMPLOYEE Database Definition
	IDMSRPTS Utility Report Listings
	EMPLOYEE Database Structure Diagram

	H: VS COBOL II Support
	Features Supported by CA IDMS
	Features Not Supported by CA IDMS

	I: Considerations for IBM Language Environment
	Considerations About LE Runtime
	Running LE-Compliant Compiler Programs Under CA IDMS/DC
	Supported LE Functions
	Unsupported LE Functions
	Performance Improvements with RHDCLEFE
	Multiple-Program Enclave
	Restrictions on Using Multiple-Program Enclaves
	Exempting Programs from Multiple-Program Enclave


	J: 18-Byte Communications Blocks
	18-Byte IDMS Block
	18-Byte IDMS DC Block

	K: Optional Online COBOL Functionality
	COBOL II and LE COBOL Task Management
	PSW Program Mask Settings
	Loading VS COBOL Programs into XA Storage

	L: Online Debugger Syntax
	General Registers Symbols
	DC/UCF System Symbols
	Address Symbols and Markers
	User Symbols
	Program Symbols
	Syntax: Data Field Names
	Syntax: Line Numbers
	Syntax: Qualifying Program Symbols

	Expression Operators
	Delimiters
	Debugger Commands
	Syntax: AT
	Syntax: DEBUG
	Syntax: EXIT
	Syntax: IOUSER
	Syntax: LIST
	Syntax: MENU
	Syntax: PROMPT
	Syntax: QUALIFY
	Syntax: QUIT
	Syntax: RESUME
	Syntax: SET
	Syntax: SNAP
	Syntax: WHERE


	Index


