bluerig

MAKE YOUR OWN RULES

DMN Section 11 Loan Origination
Example

By Maarten P.D. Schadd
Senior Product Consultant at Blueriq B.V.




blueriq

MAKE YOUR OWN RULES

Contents

1 Introduction . . . .. . . . . . . 3

2 Problem definition . . .. ... ... ... e 3

3 Designing the process . . . . . . . . . . . e 4

4 Designing the decisions . . . . . . . . .. . ... ... e 5
4.1 Decision Requirement Graphs . . . . . .. . .. . Lo oL 5
4.2 Decision Logic . . . . . . . o e e e )

5 Conclusions . . . . . . . . L e 12

(©2017 Blueriq B.V.




blueriq

MAKE YOUR OWN RULES

1 INTRODUCTION

The decision management community [1] is an initiative that started in 2014 to facilitate the shar-
ing of news and knowledge concerning Decision Management (DM). Next to a product catalog,
decision model prototypes and case studies, the decision management community also provides
a monthly challenge. Every challenge consists of a problem that should be solved using any
business rules and decisions management system or none at all.

As Blueriq is a vendor with an integrated rule engine and decision management capabilities
in its BPM suite, we accept this challenge. Blueriq also embraced the decision model [3]. This
article describes how Blueriq solves the June 2017 challenge.

2 PROBLEM DEFINITION

This challenge asks for a decision model that is able to make decisions during a loan application.
Various decisions are made, including decisions needed for steering the process of the application.
As the problem description is long and as it is orderly defined in [2], we do not repeat the complete
description here. We invite you to read the full description. Figure 1 shows a complete overview

of the decision making of this problem.
—————

specification
N

Supporting
documents
, N
y N
s
s

s \

\
\
Eligibility |<— - { Eligibility rules J ( Routing rules J» -
Affordability
dsheet
Credit contingency spreadshee
- factor table 7

/
/

Strategy
Product

Bureau
call type
a
/
’

Bureau call type table

/
/
/
\
\

% Routing |

~
N &

Pre-Bureau __ Affordability
Affordability calculation

_ Post-Bureau
Affordability

/

M
Y —-—=

\

Pre-bureau
Risk category

Post-bureau Bureau
Risk category data
I
~
TTe- Post-bureau risk
category table

-

lf I

Pre-bureau risk
category table

) Application
Analytics risk score

Required
monthly
installment

N
A
N
Requested Installment
product calculation

Figure 1: DRD of all automated decision-making

N
N\
N\
Application risk score
model

Applicant
data

(©2017 Blueriq B.V.




| blueriq

TSS MAKE YOUR OWN RULES

3 DESIGNING THE PROCESS

Blueriq contains a process engine which is able to execute business process. These process usually
include manual tasks, performed by knowledge workers or automatic tasks, performed by the
system. In the most extreme case a process can be finished completely without needing the
knowledge worker, leading to Straight-Through Processing (STP).

In Figure 2 we show the process of Figure 69 in [2] as it could be designed in Blueriq. One
big difference is the lacking of decision nodes. Bluerigs backwards-chaining rule engine is invoked
each time when a value is needed as long as the value is not known. So if a value is needed in a
split node, that is the moment that the rule engine makes the decision. This makes the explicit
modeling of a decision moments superfluous.

v
~E ~B

B CollectApplicationData
4 B8 CollectBureauData B CollectDocuments

h 4

8 ReviewApplication

B8 AcceptApplication ) B8 DeclineApplication )
| |
k. ¥

Figure 2: Example business process

We decided to model the process in a manner which resembles the current trend we see in our
market. This trend uses much less sequential ordering of tasks and split notes. It is popular to
create the process in a data-driven manner. In the traditional approach you indicate that a task
is performed subsequently to another task with a line. We are using ad-hoc tasks which have
data driven pre-conditions. As an example, the task ACCEPT APPLICATION has precondition DE-
cISION.RouTING = "ACCEPT” OR DECISION.ADJUDICATION = "ACCEPT”. We indicate
when this task is available, and we do not care how the information is obtained. This approach
has several advantages and disadvantages. An advantage is that a process can be executed very
dynamically. With each new piece of information the process adapts itself and brings itself to
the correct state. In the most extreme case in which everything is modelled with preconditions,
the process instance could be completely deleted and re-created automatically based on the case
data. This mechanism also makes it easy to maintain cases at runtime, as incorrect information
can be corrected, and the process adapts itself to the new situation. A disadvantage can be that
it may not be clear how the process is executed when looking at the diagram. This is specially
true for simple processes. When these become complex, the sheer amount of lines makes them

(©2017 Blueriq B.V.




| blueriq

TSS MAKE YOUR OWN RULES

also difficult to read with the traditional approach.

4  DESIGNING THE DECISIONS

This section describes how we modeled the decisions for the loan application example. All rules,
decision tables and logic is executable at runtime, and is created based on our best practices. We
follow the ordering as the decisions are presented in [2].

4.1  DECISION REQUIREMENT (GRAPHS

In Figure 3 we show the decision requirements graph for the strategy decision. This graph is
similar to the one provided in the example. There are some notable differences. (1) The graph
is generated from the modelled rules, not drawn manually. This means that it is always up-
to-date. (2) It is generated as a tree structure, not as a graph. Certain parts of the tree may
be repetitions, as can be seen for the TOTAL RISK decision. For this example we collapsed the
details of the righter-most repetition to keep the graph simpler. (3) By default, details regarding
the logic or data needed for a decision are hidden. Details can be opened upon request, which
results in a view as shown in Figure 4. Here we see that the disposable income is calculated
by an unnamed expression, and needs three pieces of raw input data for its calculations. The
expression is unnamed as it is set as default expression on the disposable income attribute. The
user has the possibility to open any element directly by clicking on nodes in the graph.

Figure 5 shows the decision for the routing of the loan application. This also resembles the
example. The tree has one repeating node, POST BUREAU RISK CATEGORY.

Interestingly, the decision for the adjudication does not have a decision requirements graph
in Blueriq. There is no logic defined in the example that is needed for this decision. It is made
purely by knowledge workers. As the system does not derive any values, no graph is generated
automatically.

4.2  DECcCISION LoGIic

In this section we show all details regarding the decision logic for the load application in Blueriq.
Figure 6 shows the decision table for deciding the strategy. In Blueriq, a decision table is read
from top to bottom, with the conclusion of the table being the last row. All decisions tables are
of type U, Blueriq does not support any other type (C+, C<, C>, C#, C-, P, A, R, F, O, N, ...).
One more thing to notice when looking at Figure 6 is the * sign. This represents any value, and
is analogue to the - in DMN. The decision alternatives use strings of values, such as ”Eligible”.
Value lists of such values are defined on the corresponding attribute, so that no invalid value can
be entered here. Validations are in place to indicate any invalid input, and a combo-box selection
can be used for the derived attribute if the user prefers so.

The next table shows the decision for the bureau call type (Figure 7). It speaks for itself and
needs no additional explanation.

The eligibility decision table, shown in Figure 8 is an interesting table. The [| represents
all values not mentioned already. It uses three independent conditions to make an applicant
ineligible. This results in a table with only values on the main diagonal. Another possible
manner of modeling this in Blueriq is to set the default value ELIGIBLE on the attribute, and
to write three business rules (in the form of IF ... THEN ...) to set the value to INELIGIBLE.

(©2017 Blueriq B.V.




334 Aoy wawfedey Aguony AuoBage) sy neaing-aig ¥y Rz AR 12NN 504 26y

o=
n
3 ¥ v a v " . m
s J&)
s 1oL LRI YO PAINDIY Jopey fouatuzuo) ® w034 gesodsig 04 el ~
)
+
L) . X - v =
~
AuoBR1e) Y1y neing-2i fyqepioyy neang-aig AioBa3e3 Y51 neung-2ud +2
&
L) a . ..
4L lIe3 neaung AuaibiE ;
o
=
o
! . =~
»
Absyens - Absens [==]

>
aa)
g
i
Q
=
M
~
—
S
[\
©)




MAKE YOUR OWN RULES

Applicant.MonthlyExpenses
Applicant.Monthlylncome = Expression e Disposable Income

Applicant.MonthlyRepayments

Figure 4: The Disposable Income Decision

Applicant Bankrupt y _— !
Applicant CreditScare » B DetermineRouting ! Routing

Post Bureau Affordability Post Bureau Risk Category
d 4.‘ v Y
Disposable Income Contingency Factor Required Monthly Installment Total Risk
[y ~ V“ ¥ [y A
Post Bureau Risk Category Monthly Repayment Monthly Fee Age Risk Marital Risk Employment Risk
Figure 5: The Routing Decision

|Applicant.EIigibiIity | | “Ineligible” H *Eligible” ‘

|Applicaticn.ﬂur&auCallT}rpe | | = | ‘ “Full* OR "Mini" || “MNone" ‘

|Deci5ion.StratEgy - @ Q@ s | *DECLINE" H "BUREAU" || “THROUGH" ‘

Figure 6: The Strategy Decision Table

"HIGH" OR "MEDIUM® || "LOW" H “VERY LOW™ OR "DECLINE®

|Application.PreBureau RiskCategory

e [ L

|Application.Burﬂa uCallType

Figure 7: The Bureau Call Type Decision Table

(©2017 Blueriq B.V.




| blueriq

TSS MAKE YOUR OWN RULES

This is a matter of taste, and it also has an advantage to have all logic in one place in the decision
table. When the decision is dependent on more than five attributes, the table should be split
into business rules to avoid a large and mostly empty table.

|AppIicaticn.PreBureauRiskCategury | | “DECLINE" || I |
|AppIicatic:n.PreBureauAﬁordabilit}r | | * || FALSE || I |
|App|icant.Age | | . || . || <18 || i |
|Applicant.EIigibiIity -a @ | *INELIGIBLE || “INELIGIBLE" || "INELIGIBLE" || "ELIGIBLE" |

Figure 8: The Eligibilty Decision Table

The pre bureau risk category table is shown in Figure 9. Please note that borders are sometime
inclusive and sometimes exclusive the border value, according to the specifications.

‘Appllcanl.ExistingCustumer ‘ | TRUE | | FALSE |
‘Appli:ation.RiskScore ‘ | <100 H >=100 AND <120 H>:120AND <:130|| >130 || <80 || >:80AND<90|| >=00 AND<=110 H >110 |
‘Appllcaticn.PmBureauRlskCahegDry | |-18t @ | “HIGH" H "MEDIUM" H “Low" || “VERY LOW" || “DECLINE" || “HIGH" || “MEDIUM® H “LOW™ |

Figure 9: The Pre Bureau Risk Category Decision Table

The next decision concerns the risk model score of a customer that applies for a loan. This
decision table is of type C+ of the DMN standard. This indicates that all outcomes are tried,
and any match is accumulated to a grant total value. This type of decision table is frequently
used for calculating a score which is based on several independent factors that each change the
value independent of the other factors. When designing such a decision table, one has to be
careful to have exclusive columns as otherwise the understandability of the table is low.

In Blueriq, decision tables of type C+ are not supported. All tables are of type U. There
are however advantages of modeling this decision with only this type of tables. Advantages are
(1) nicely separated logic for each decision category, (2) smaller decision tables that do not have
many empty cells, (3) easier development and better maintainability as the calculation of the
score is broken down into smaller chunks. Disadvantages are (1) additional helper attributes in
the domain and (2) the logic for one business decision is split up into different tables.

The total application risk score is calculated as default expression on the attribute as shown
in Figure 10. The separate calculations for age, marital status and employment status are shown
in Figures 11, 12 and 13, respectively.

The decision for the routing is shown in Figure 14. Just as in [2], the table is largely empty.
This is due to that four factors decide the outcome in a boolean manner. This table is of type
P, and we had to rearrange the table slightly to work but it is still readable and maintainable.

(©2017 Blueriq B.V.




MAKE YOUR OWN RULES

DEFINITION @ &%

Entity ] |ﬁpp|icatc-" -

Name [RiskScore | W Askable

Functional name |Total Risk |

Type 12 Integer - | (] MultiValued
[ ] Acts as Reference

Valuelist 3 | [-] 2

DEFAULT VALUE

Application.AgeRiskScore + Application.MaritalRiskScore + El —h
Application.EmploymentRiskScore _ T
Expression
Figure 10: The total application risk score
|App|icant.Age | | >=18 AND <=21 || >=22 AND <=25 || >=26 AND <=35 || >=36 AND <=49 || >=50 |
|Appncation.AgeRiskscore |- | Qo | 2 || e || 0 || 3 || 48 |
Figure 11: The age risk score
Applicant. MaritalStatus "5t "M
Application MaritalRiskScore |~ | & B 52 25 45

Figure 12: The marital risk score

|Ap plicant. EmploymentStatus

‘ *UNEMPLOYED" |

“STUDENT"

'EMPLOYED"H "SELF-EMPLOYED" ‘

|Application.EmpluymentRiskSccre ‘ - | Qo

L s

18

45

36

Figure 13: The employment risk score

(©2017 Blueriq B.V.




, blueriq

TSS MAKE YOUR OWN RULES

|AppIicaticn.PostBureauﬁ.ﬁordabil[t),r | | FALSE || 0 |
|Applicant.|3ankmpt | | : || TRUE H i |
Application. PostBureauRiskCategory = * "HIGH" 0
Applicant.CreditScore = * * <580 0
Decision.Routing - | # @ &2 | |[DECLINE ~ ||DECLINE - ||REFER ~ ||REFER ~ ||ACCEPT -

Figure 14: The routing rules decision logic

Figure 15 shows the post bureau risk category decision table. We decided to split the table
to improve the readability in this article. It actually is one large decision table but it is too wide
to include it completely here. It is possible to model it exactly as shown in Figure 15 in Blueriq.
You then have two tables which each have a single option in the first row. This means that
both tables are not complete. The rule engine tries both tables to derive a result, and as long as
there is no contradiction, this works as expected. Splitting op decision tables in this manner can
greatly improve the readability of large tables at the cost of not seeing all the logic in one single
table. The decision requirements graph shows then both tables for this decision.

‘App\icanl.ExistingCusmmer | | FALSE |
‘App\ication.RiskScore | | <120 || >=120 AND<=130 || =130 |
‘App\icanl.CrEditScore | | <500 || >=500 AND <=610 || 610 || <600 H>=600AND <=szs|| 625 || . |
‘APP‘ication-PcstBureauRiskCategory - s |HIGH ~ | |MEDIUM -~ ||Low '||HIGH ~ | |MEDIUM - ||Low - ||VERY LOW ~
‘App\icanl.ExistingCusbomer | | TRUE |
‘Ap plication.RiskScore | | <=100 | | =100 |
‘App\icanl.CrEditScore | | <580 || >:580AND<=600|| 600 || <590 H>:590AND<:615H 615 |
‘App\ication-PostBureauRiskCategory v s |HIGH ~ | [MEDIUM ~|[Low = ||HIGH 'HMEDIUM - | [Low |

Figure 15: The post-bureau risk category table decision logic

The next piece of interesting logic concerns the pre- and post-bureau affordability. This is
challenging as logic uses a generic risk category which could be pre- or post-bureau risk category,
depending on what type of decision we are trying to take. This resembles a function call with one
parameter. The concept of a function is not something that is currently available in Blueriq. We
are currently looking into it as a mechanism to decouple the business model by using function
calls. As we are not there yet, we need to make a small workaround to make this scenario work.
The business rules for the pre- and post-bureau affordability are shown in Figures 16 and 17,
respectively. Both attributes have a default value of FALSE, which is overwritten by the business
rules if the IF clause evaluates to TRUE.

As you can see, we have created two attributes for the pre- and post-credit contingency factors.
Depending on which variant is calculated, the appropriate attribute is included in the logic. The
logic for these attributes is shown in Figures 18 and 19. These tables are rather similar, just with

(©2017 Blueriq B.V.




THEN

THEN

MAKE YOUR OWN RULES

Applicant.DisposableIncome * Application.PreCreditContingencyFactor > Application.RegquiredMonthlyInstallment

|Application | - | |PreBureauAfFordabiIity #@an

| TRUE

Figure 16: The pre bureau affordability decision logic

Applicant.DisposableIncome * Application.PostCreditContingencyFactor > Application.RequiredMonthlyInstallment

|Application # @ s

| TRUE

PostBureauAffordability

Figure 17: The post bureau affordability decision logic

different in- and outputs. I agree with the argumentation that this duplication of logic is not
maintainable, as any change has to be performed multiple times and a mistake is quickly made.
That is why we want to change this in the near future.

|Application.PreBureauRiskCabegor}f ‘ ‘ “HIGH" OR "DECLINE" H "MEDIUM" H"LOW'UR"VER\' LDW"‘

|Ap plication.PreCreditContingencyFactor

@ oo

06 ‘ | 07 ‘ ‘ 0.8 ‘

Figure 18: The pre credit contignency factor decision logic

‘Application.PcstBur&auRisk‘Categor}r | | “HIGH" OR "DECLINE" H "MEDIUM" H"LOW'OR"VER‘{ Low"|

‘Application. PostCreditContingencyFactor

B Q@ | 06 H 07 H 08 |

Figure 19: The post credit contignency factor decision logic

Last, but not least, the installment calculation is shown here. It falls apart in several steps.
The installment attribute is shown in Figure 20, which simply adds up the two components with
a default expression.

The attribute representing the monthly repayment (not shown) has this default expression:
PMT. This is a reusable expression defined as

(Loan.Amount*Loan.Rate/12)/(1-(1+Loan.Rate/12)**-Loan.Term)

, and can be used anywhere.

While this resembles a function call, it has no parameters, so we can not use this mechanism for
the affordability calculation (Figures 16, 17, 18 and 19). As the PMT calculation is not used
anywhere else, it can also be placed as a default expression directly on the attribute. As this

(©2017 Blueriq B.V.




~bluerig

MAKE YOUR OWN RULES

DEFINITION ‘@ 52

Entity # |é::|:|i:-_=: on | - |
RequiredMonthlylnstallment | (W Askable

Mame

Functional name |Required Monthly Installment |

Type ||E| Currency - | [] MultiValued
Value list i | - | &

DEFAULT VALUE

Type |Expre55ior1 -

Loan.MonthlyRepayment + Loan.MonthlyFee

Expression

Figure 20: The monthly installment decision logic

calculation is a known term for the business, we decided to model this in the shown manner. The
monthly fee is calculated in the small decision table shown in Figure 21.

Product.Type "STANDARD LOAN" "SPECIAL LOAN"®

Loan.MonthlyFee ~ | 3 QN &2 20 25

Figure 21: The monthly fee decision logic

5  CONCLUSIONS

Blueriq is able to create an executable decision model from the provided loan application speci-
fications. A decision requirements graph can be constructed during design and runtime [7] that
shows all dependencies of the decision. While not all concepts of DMN are available in Blueriq,
an executable and maintainable model can still be constructed. For more information on the
capabilities of Blueriq and examples, we refer to these articles: [3, 4, 5, 6, 7].

(©2017 Blueriq B.V.




'blueriq

MAKE YOUR OWN RULES

ConTAcT Us

If you have any questions about this article or if you would like to start a discussion, do not
hesitate to contact us.

Email the author : m.schadd@everest.nl
Email Blueriq :  info@blueriq.com

Call Blueriq ;431 (0)73 6450467
Website Blueriq  :  http://www.blueriq.com
Blueriqg BV

Veemarktkade 8
5222 AE s-Hertogenbosch
The Netherlands

ABOUT BLUERIQ

Blueriq is a rule-driven software platform designed to deliver dynamic business solutions for
organizations with knowledge-intensive processes. It empowers organizations in fast changing
environments to quickly and cost-effectively respond to changing business conditions and regu-
lations. Blueriq provides solutions for Decision Management, Dynamic Case Management and
intelligent User Experience Management across multiple channels. Solutions based on Blueriq
are modeled, not programmed, giving you the opportunity to respond more quickly to your cus-
tomers needs and improving your business outcomes. With Blueriq, you make your own rules!

(©2017 Blueriq B.V. All rights reserved.

REFERENCES

[1] Decision Management Community. https://dmcommunity.wordpress.com/home/, 2014.

[2] Object Management Group. Decision Model and Notation (DMN), version 1.1. formal/2016-
06-01, 2016.

[3] M. P. D. Schadd. Blueriq embraces the decision model. Technical report, Blueriq B.V., 2013.
http://schadd.com/Papers/2013dmn.pdf.

[4] M.P.D. Schadd. Case study: Vehicle insurance userv product derby.
Technical report, Blueriq B.V., ‘'s-Hertogenbosch, = The Netherlands, 2015.
http://schadd.com/Papers/2015DMCVehiclelnsurance.pdf.

[5] M.P.D. Schadd. Collections of cars. Technical report, Blueriq B.V., ’s-Hertogenbosch, The
Netherlands, 2015. http://schadd.com/Papers/2015DMCCollectionOfCars.pdf.

[6] M.P.D. Schadd. Decision table for vacation days calculation. Tech-
nical  report, Blueriq  B.V., ’s-Hertogenbosch, The  Netherlands, 2016.
http://schadd.com/Papers/2016DMCVacationDays.pdf.

[7] M.P.D. Schadd. Port clearance rules. Technical report, Blueriq B.V., ’s-Hertogenbosch, The
Netherlands, 2016. http://schadd.com/Papers/2016DMCPortClearance.pdf.

(©2017 Blueriq B.V.




	Introduction
	Problem definition
	Designing the process
	Designing the decisions
	Decision Requirement Graphs
	Decision Logic

	Conclusions

