DNA Structure & Replication (Outline)

- Historical perspective (DNA as the genetic material):
 - Genetic transformation
 - DNA as the transforming agent
 - DNA is the genetic material in bacterial viruses (phage)
 - Historical perspective (Structure of DNA):
 - Identifying ribose and deoxy ribose
 - Equal parts of nucleotide parts
 - The base-pairing rule
 - DNA structure: double stranded anti-parallel strands
 - DNA structure: helix
- Basis for polarity of SS DNA and anti-parallel complementary strands of DNA
- Models of DNA replication

٠

- Mechanism of DNA replication: steps and molecular machinery
- Fidelity of DNA replication

Genetic Material

"A genetic material must carry out two jobs: duplicate itself and control the development of the rest of the cell in a specific way."

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Francis Crick, 1953

The Road to the Double Helix

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 9.1	The Road to the Double Helix		
Investigator		Contribution	Timeline
Friedrich Miescher		Isolated nuclein in white blood cell nuclei	1869
Frederick Griffith		Transferred killing ability between types of bacteria	1928
Oswald Avery, Colin MacLeod, and Maclyn McCarty		Discovered that DNA transmits killing ability in bacteria	1940s
Alfred Hershey and Martha Chase		Determined that the part of a virus that infects and replicates is its nucleic acid and not its protein	1950
Phoebus Levene, Erwin Chargaff, Maurice Wilkins, and Rosalind Franklin		Discovered DNA components, proportions, and positions	1909–early 1950s
James Watson and Francis Crick		Elucidated DNA's three-dimensional structure	1953
James Watson		Had his genome sequenced	2008

History leading to establishing DNA as the genetic material

Friedrich Miescher, 1871

- Swiss physician and biochemist
- Isolated white blood cell nuclei from pus
 - o Acid substance with nitrogen and phosphorus
 - 。 "Nuclein" later changed into nucleic acid

History of DNA

Archibald Garrod, 1902

- English physician
- Linked inheritance of
 "inborn errors of
 metabolism" with the lack
 of particular enzymes
- First described the disease alkaptonuria

History of DNA

Frederick Griffith, 1928

- English microbiologist

- Established the concept of transformation:

a change in genotype (*genetic makeup*) by a foreign substance that changes the phenotype (*observed properties or trait*)

Frederick Griffith

- Worked with *Diplococcus pneumonia*, which exists in two types
 - Type S (Smooth) = Produces capsule
 - Type R (Rough) = No capsule
 - Capsule associated with virulence (causing disease)

Discovery of Bacterial Transformation

History of DNA

Avery, MacLeod, and McCarty, 1944

- American physicians
 - DNA is the transforming material

(Can convert Type R bacteria into S)

The Transforming Principle

Figure 9.2

History of DNA

Alfred Hershey and Martha Chase, 1953

- American microbiologists
- · Viruses can infect *E. coli* bacteria
- A virus in not a cell, it has protein "head" and DNA core
- · Can replicate only using host living cells as host
- DNA is the genetic material of these viruses

Phoebus Levine

- Russian-American biochemist
- Identified the 5-carbon sugars ribose in 1909 and deoxyribose in 1929
- Discovered that the three parts of a nucleotide are found in equal proportions
 - Sugar
 - Phosphate
 - Nitrogen Base

Erwin Chargaff, 1951

- Austrian-American biochemist

- Analyzed base composition of DNA from various species and observed regular relationships:

- Adenine + Guanine = Thymine + Cytosine
- -A = T and C = G

Rosalind Franklin and Maurice Wilkins, 1952

- English scientists
- Used a technique called X-ray diffraction
- It took Franklin 100 hours to obtain "photo 51"

Franklin reasoned that the DNA is a helix with symmetrically organized subunits

b. Rosalind Franklin 1920–1958 a: © Science Source/Photo Researchers; b: From The Double Helix by James D. Watson, 1968, Atheneum Press, NY. Courtesy Cold Spring Harbor Laboratory Archives

James Watson and Francis Crick

- Did not perform any experiments

- Used results of others and cardboard cutouts to build a model of the structure of DNA

aht © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Figure 9.5

Bettmann/Corbis

DNA Structure

A single building block is a **nucleotide**

Each nucleotide is composed of:

- A deoxyribose sugar
- A phosphate group
- A nitrogenous base; one of four types
 - Adenine (A), Guanine (G) = Purines
 - Cytosine (C), Thymine (T) = Pyrimidines

DNA Structure

Figure 9.6

DNA Structure

Copyright @ The McGraw-Hill Companies, inc. Permission required for reproduction or display.

Nucleotides join via a bond between the 5'-phosphate of one and the 3' hydroxyl of another

- This creates a continuous sugarphosphate backbone

20

Polarity and antiparallel nature of the two DNA strands (5' and 3' ends)

Two polynucleotide chains align forming a double helix

- The opposing orientation (head-to-toe) is called **antiparallelism**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Figure 9.9

b. © M.C. Escher's "Drawing Hands" © 2007 The M.C. Escher Company-Holland. All rights reserved. www.mcescher.com

One strand of the double-helix runs in a 5' to 3' direction, and the other strand runs in a 3' to 5' direction

Figure 9.11

3′ 3 5 5 3 5' G) 3'

McGraw-Hill Companies, Inc. Permission required for reproduction or display

DNA Structure

The key to the constant width of the double helix is the specific pairing of its complementary bases via hydrogen bonds

DNA is Highly Condensed

The DNA coils around proteins called **histones**, forming a bead-on-a-string-like structure

The bead part is called the **nucleosome**

The nucleosome in turn winds tighter forming chromatin

Chromatin fibers attach in loops to **scaffold proteins** http://www.biostudio.com/demo_freeman_dna_coiling.htm

Figure 9.13

Molecular Definition of a Gene

A **gene** is a segment of DNA that directs the formation of RNA to produce protein

The protein (or functional RNA) creates the phenotype

Information is conveyed by the sequence of the nucleotides

DNA Replication

At first, researchers suggested that DNA might replicate in any of 3 possible ways

Model of DNA	Organization of DNA
Replication	Strand
1. Conservative	old/old + new/new
2. Semiconservative	old/new + new/old
3. Dispersive	mixed old & new

DNA Replication

Matthew Meselson and Franklin Stahl, 1957

- Grew *E. coli* on media containing ¹⁵N for several generations
 - DNA with ¹⁵N is heavy
- Moved bacteria to media containing ¹⁴N
- Then traced replicating DNA
- Determined that DNA replication is semiconservative

Meselson-Stahl Experiment

Figure 9.14

Overview of DNA Replication

DNA replication occurs during the S phase of the cell cycle, prior to cell division

Human DNA replicates about 50 bases/sec

A human chromosome replicates simultaneously at hundred points along its length

A site where DNA is locally opened is called a **replication fork**

Overview of DNA Replication

Figure 9.15

Enzymes in DNA Replication

Fidelity of DNA replication & maintaining DNA integrity

Maintained by:

- 1. Proof-reading function of DNA polymerase
- 2. DNA repair systems

http://www.hhmi.org/biointeractive/media/mismatch_repair-lg.mov

DNA damage and repair in general <u>http://www.youtube.com/watch?v=y16w-CGAa0Y&feature=related</u> <u>http://www.youtube.com/watch?v=nPS2jBq1k48</u>

Genetic Integrity and Diversity

Need for maintaining genetic integrity is balanced by having enough genetic variability for natural selection to act on

Few errors of DNA replication are not corrected!