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Translators’ Introduction

The Dniester Notebook (Dnestrovskaya Tetrad) is a collection of problems in
algebra, especially the theory of rings (both associative and nonassociative) and
modules, which was first published in the Soviet Union in 1969. The second
and third editions of 1976 and 1983 expanded the list of problems, and included
comments on the current status of each problem together with bibliographical
references, especially when a solution or a counter-example had been discovered.
The fourth Russian edition of 1993 (edited by V. T. Filippov, V. K. Kharchenko
and I. P. Shestakov) was the last; this is the edition which we have translated
for the present English version.

The problems in the Dniester Notebook originate primarily from the Novosi-
birsk school of algebra and logic, which was founded by the mathematician and
logician A. I. Malcev. The ring theory branch of this school was developed by
the algebraist A. I. Shirshov. These problems have had a considerable influence
on research in algebra in the countries of the former Soviet Union. They cover
a wide range of topics, with a special emphasis on research directions that are
characteristic of the “Russian School”: associative rings and algebras, nonasso-
ciative rings and algebras, polynomial identities, free algebras, varieties of rings
and algebras, group rings, topological and ordered rings, embedding of rings into
fields and rings of fractions, and the theory of modules. Nonassociative rings

∗Dnestrovskaya tetrad: Nereshennye problemy teorii kolets i modulei (Izdanie chetvyor-
toye, Novosibirsk, 1993). Compiled by V. T. Filippov, V. K. Kharchenko and I. P. Shestakov,
with the assistance of A. Z. Ananyin, L. A. Bokut, V. N. Gerasimov, A. V. Iltyakov, E. N.
Kuzmin, I. V. Lvov and V. G. Skosyrskii. Translated by Murray R. Bremner and Mikhail
V. Kochetov (Research Unit in Algebra and Logic, University of Saskatchewan, Saskatoon,
Canada). The translators thank the Editors of the Proceedings of NONAA-V for their sup-
port of this project, and NSERC (Natural Sciences and Engineering Research Council) for
financial assistance. The references have been put into English alphabetical order, and include
MR numbers and cross-references to problem numbers.
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receive as much attention as associative rings, and there is a notable emphasis
on problems with connections to universal algebra and mathematical logic.

Since the publication of the fourth edition in 1993, many problems which
were mentioned as unsolved have in fact been solved, partially or completely.
However we have decided to go ahead with the publication of this translation,
the first English version of the Dniester Notebook, for three major reasons.

First, there are many mathematicians working in areas related to the prob-
lems in the Notebook who do not read Russian. We hope that this English
version will make it easier for them to appreciate the significant Russian work
in these areas.

Second, even though some parts of the Notebook are somewhat out-of-date,
it is still very stimulating to read as a source of research ideas. There are many
contemporary areas of research, some of which did not even exist at the original
publication date, which are closely related to the problems in the Notebook.
We hope that reading the current version will inspire further research in those
areas.

Third, we plan to prepare a fifth edition of the Dniester Notebook, which
will be bilingual in Russian and English. We hope that the publication of the
fourth edition in English will facilitate the collection on a worldwide basis of
information on the current status of the problems, and of new problems to be
included in the fifth edition. We would appreciate it very much if readers of this
translation would send any comments on old problems or suggestions for new
problems to

V. K. Kharchenko vlad@servidor.unam.mx

I. P. Shestakov shestak@ime.usp.br

M. R. Bremner bremner@math.usask.ca

With the influx of many mathematicians from the former Soviet Union to
the West during the last two decades, the significance of the Dniester Notebook
to Western mathematicians has never been greater. We believe that this is
an opportune moment to make this important work easily accessible to the
English-speaking world.

Murray R. Bremner and Mikhail V. Kochetov

Preface

In September 1968 in Kishinev, at the First All-Union Symposium on the Theory
of Rings and Modules, it was resolved to publish a collection of open problems
in the theory of rings and modules, and as a result the “Dniester Notebook”
appeared in 1969. Since then it has been republished twice, in 1976 and 1982.
The first and both subsequent editions were quickly sold out, and to a certain
extent promoted the development of research in ring theory in the USSR. Of
the 326 problems in the third edition, at present more than one-third have been
solved.
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In the present collection we offer the reader the fourth edition of the “Dni-
ester Notebook”, which consists of three parts. The first two parts are repro-
duced from the third edition with small editorial changes. The comments on the
problems have been updated and extended. As before, the problems which have
been completely solved are marked by an asterisk; a small circle indicates those
problems on which progress has been made. The third part of the collection
consists of new problems.

The compilers thank everyone who has taken part in the preparation of this
fourth edition.

1 Part One

1.1. ◦ (A. A. Albert, reported by K. A. Zhevlakov) Let A be a finite dimensional
commutative power-associative nilalgebra over a field of characteristic 6= 2. Is A
solvable? Remark: It is known that such an algebra is not necessarily nilpotent:
there exists a solvable but not nilpotent finite dimensional commutative power-
associative nilalgebra over any field of characteristic 6= 2 (D. Suttles [164]).

1.2. ∗ (S. Amitsur [78]) Is the Jacobson radical of a finitely generated associative
algebra over any field necessarily a nilalgebra? Remark: The answer is No (K.
I. Beidar [13]).

1.3. (A. Z. Ananiyn) Find necessary and sufficient conditions for the existence
of a faithful representation of associative PI algebra of n × n matrices over an
associative commutative algebra.

1.4. (A. Z. Ananiyn) Is it true that the variety M of associative algebras over
a field k of characteristic 0 is a matricial variety if and only if each algebra A
in M satisfies the identities

[x1, x2, · · · , xn]z1z2 · · · zn[y1, · · · , yn] = 0,

[z1, z2][z3, z4] · · · [z2n−1, z2n] = 0?

1.5. (V. A. Andrunakievich) It is known that in any associative ring R the sum
of all right nilideals Σ(R) coincides with the sum of all left nilideals. Is the
quotient ring R/Σ(R) a ring without one-sided nilideals, where Σ(R) is the sum
of all one-sided nilideals?

1.6. (V. A. Andrunakievich) By transfinite induction using the ideal Σ(R) (see
the previous problem) we construct the ideal N analogous to the Baer radical
as the sum of all nilpotent ideals in the class of associative rings. The radical N
is pronilpotent. Is the radical N special, that is, is any associative ring without
one-sided nilideals homomorphic to the (ordinally) first ring without one-sided
nilideals?

1.7. ∗ (V. A. Andrunakievich, submitted by L. A. Bokut) Find necessary and
sufficient conditions to embed an associative ring in a radical ring (in the sense
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of Jacobson). Remark: Such conditions have been found (A. I. Valitskas [179]).
In the same paper it is shown that these conditions are not equivalent to a finite
system of quasi-identities.

1.8. ∗ (V. A. Andrunakievich, Yu. M. Ryabukhin) Find necessary and sufficient
conditions for an algebra over any associative commutative ring with identity
to be decomposable into the direct sum of simple algebras. (The corresponding
question for division algebras is solved.) Remark: A ring R is isomorphic to a
direct sum of rings without proper ideals if and only if the following two con-
ditions are both satisfied: (a) R satisfies the minimum condition on principal
ideals; (b) R has no large ideals. (An ideal is called large if it has nontrivial
intersection with every nonzero ideal). Indeed, let E be the ring of endomor-
phisms of the additive group of R, and let T be the subring of E generated
by the identity element of E and all left and right multiplications by the ele-
ments of R. Consider R as a unital (right) module over T . It is clear that R
is isomorphic to a direct sum of rings without proper ideals if and only if this
module is semisimple. Note that if a unital module M is semisimple then every
finitely generated submodule N is isomorphic to a finite direct sum of simple
modules and therefore has finite length. In particular, every cyclic submodule
N satisfies the minimum condition on submodules. It follows that M satisfies
the minimum condition on cyclic submodules. Now if H is a submodule of M
and M 6= H then H has a complement in M ; that is, there exists a submodule
H ′ of M such that H ⊕ H ′ = M . Therefore, H is not large. Thus M satisfies
the minimum condition on cyclic submodules and does not have proper large
submodules. Conversely, let M be a module that does not have proper large
submodules and satisfies the minimum condition on cyclic submodules. Let S
be the socle of M (the sum of all simple submodules). Assume that S 6= M .
Then S is not a large submodule and therefore there exists a nonzero submodule
G of M such that G ∩ S = (0). Denote by P the minimal element of the set of
all nonzero cyclic submodules of G. It is clear that P is simple and that P ⊆ G.
Therefore P ∩ S = (0). This contradicts the inclusion P ⊆ S which holds by
definition of the socle. Thus a unital module is semisimple if and only if it
satisfies the minimum condition on cyclic submodules and has no proper large
submodules. From this and from the fact that the direct sum of arbitrary rings
is semiprime if and only if every summand is semiprime, it follows that the ring
R is isomorphic to a direct sum of simple rings if and only if R is semiprime
and satisfies conditions (a) and (b). (I. V. Lvov).

1.9. ∗ (V. I. Arnautov) An associative commutative ring R is called weakly
Boolean if for any element x ∈ R there exists a natural number n(x) > 1 such
that xn(x) = x. (Boolean algebras correspond to the case n(x) = 2 for all x.) Is
there any weakly Boolean (or Boolean) ring on which it is possible to define a
topology which makes the ring into a connected topological ring? Remark: The
answer is Yes (V. I. Arnautov, M. I. Ursul [8]).

1.10. (V. I. Arnautov) Does there exist a “non-weakenable” topology on the
ring Z of integers in which Z does not contain closed ideals?
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1.11. (V. I. Arnautov) Is it possible to embed any topological field F into a
connected field? This is true if F is given the discrete topology.

1.12. ∗ (V. I. Arnautov) The ring R is called hereditarily linearly compact if
any closed subring in R is linearly compact. Is the direct product, with the
Tikhonov topology, of hereditarily linearly compact rings Ri also hereditarily
linearly compact? This is true if the Jacobson radical of every Ri is a bounded
set. Remark: The answer is Yes (M. I. Ursul [176]).

1.13. (V. I. Arnautov) Must a complete topological associative ring R, in which
every closed commutative subring is compact, be compact?

1.14. (B. E. Barbaumov) Does there exist a division algebra, infinite dimen-
sional over its center, in which all proper subalgebras are PI algebras?

1.15. (A. A. Bovdi) If the crossed product (G, K, ρ, σ) is a division ring, then
G is a periodic group and K is a division ring. Is the group G locally finite?

1.16. ∗ (L. A. Bokut) Is it possible to embed every solvable Lie algebra of
countable dimension into a solvable Lie algebra with two generators? Remark:
The answer is Yes (G. P. Kukin [98]).

1.17. ◦ (L. A. Bokut) Let R be an associative algebra over the field P , and
let F be the free associative algebra over P on the countable set of generators
X = {xi}. Let R ∗ F be the free product of the algebras R and F . By an
equation over R we mean an expression f = 0 where f ∈ R ∗F , f /∈ R. We will
call the algebra R algebraically closed if any equation over R has a solution in
R. Do there exist algebraically closed associative algebras? Remark: A positive
solution for equations in one variable is obtained by M. G. Makar-Limanov [106].

1.18. (L. A. Bokut) For which varieties M of rings (resp. algebras) is the
groupoid ΓM of subvarieties free? When is ΓM a free semigroup?

1.19. ◦ (L. A. Bokut) Describe (in terms of identities) varieties of rings (resp. al-
gebras) with a distributive lattice of subvarieties. Remark: For associative al-
gebras over a field of characteristic 0 the description has been obtained by A.
Z. Ananyin and A. R. Kemer [4], and for right alternative algebras by V. D.
Martirosyan [109].

1.20. ∗ (L. A. Bokut) Is a ring, which is the sum of three nilpotent subrings,
also nilpotent? Remark: Not always (L. A. Bokut [25]). The nilpotency of an
associative ring that is the sum of two nilpotent subrings has been proved by
O. Kegel [81].

1.21. (L. A. Bokut) Do there exist two semigroup algebras F1(S) and F2(S)
without zero-divisors (here S is a semigroup and F1 and F2 are fields) such that
one of them can be embedded in a division ring but the other cannot?

1.22. ∗ (L. A. Bokut) Is it possible to embed any recursively defined asso-
ciative algebra (that is, finitely generated with recursively enumerable defining
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relations) over a prime field into a finitely defined associative algebra? The same
question for Lie algebras. Remark: The answer is Yes (V. Ya. Belyaev [16] for
associative algebras, and G. P. Kukin [101] for Lie algebras). In G. P. Kukin
[102] the following general result is obtained for Lie algebras and groups: Every
recursively presented Lie algebra (resp. group) in a variety M is embeddable
into a finitely presented Lie algebra (resp. group) in the variety MA2 (here A
denotes the Abelian variety).

1.23. ◦ (L. A. Bokut) Describe the identities which hold in all n-dimensional
associative algebras (with fixed n). Remark: A finite basis of identities in the
variety generated by n-dimensional unital algebras (n ≤ 18) over a field of
characteristic 0 has been found by S. A. Pikhtilkov [132].

1.24. (L. A. Bokut) Describe Lie algebras for which the universal enveloping
algebra has a classical ring of fractions.

1.25. ◦ (L. A. Bokut) Describe varieties of associative (resp. Lie) algebras which
are not decomposable into a product. Remark: A series of results on this
problem for Lie algebras has been obtained by M. V. Zaicev [185].

1.26. ∗ (L. A. Bokut) Find the generators of the group of automorphisms of
the free algebra of rank 2 in the variety VarMn(k) where k is a field. Remark:
These have been found (G. Bergman, preprint).

1.27. (A. T. Gainov) Is it possible to define by a finite number of identities the
variety of power-commutative algebras over a field of characteristic 0?

1.28. ∗ (A. T. Gainov) Describe all finite dimensional simple binary-Lie algebras
over an algebraically closed field of characteristic 0. Remark: These have been
described (A. N. Grishkov [63]).

1.29. ∗ (N. Jacobson) We say that a Jordan ring J has no zero-divisors if for any
a, b ∈ J the equation aUb ≡ 2(ab)b−ab2 = 0 implies either a = 0 or b = 0. Two
elements a, b are said to have a common multiple if the quadratic ideals JUa

and JUb satisfy JUa ∩JUb 6= (0). Suppose that in a Jordan ring J without zero
divisors, any two nonzero elements have a common multiple. Is J embeddable
in a Jordan division ring? Remark: The answer is Yes (E. I. Zelmanov [189]).

1.30. ∗ (N. Jacobson) Find necessary and sufficient conditions on a finite dimen-
sional Lie algebra for its universal enveloping algebra to be primitive. Remark:
These have been found (A. Ooms [125]).

1.31. (N. Jacobson, reported by G. P. Kukin) Let L be a Lie p-algebra with a
periodic p-operation. Is it true that L has zero multiplication?

1.32. (V. P. Elizarov) Find necessary and sufficient conditions for a division
ring T to be a left or right (classical) ring of quotients of a proper subring.

1.33. ∗ (K. A. Zhevlakov) Let A be a finitely generated associative ring, and
B a locally nilpotent ideal. Does B contain nilpotent ideals? Remark: Not
necessarily (E. I. Zelmanov [190]).
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1.34. ∗ (K. A. Zhevlakov) Let A be a finitely generated associative algebra
satisfying an identity. Is every algebraic ideal of A finite dimensional? Remark:
Not necessarily (Yu. N. Malcev [107]).

1.35. (K. A. Zhevlakov) If an associative algebra contains a nonzero algebraic
right ideal, must it also contain a nonzero algebraic two-sided ideal?

1.36. ∗ (K. A. Zhevlakov) Let A be an associative ring and let A〈+〉 be the
special Jordan ring generated by some set of generators of A. Suppose that
A〈+〉 satisfies some (associative) identity. Must A satisfy some identity? The
same question if A is finitely generated. Remark: If A is finitely generated then
the answer is Yes; in general, No (I. P. Shestakov [149]).

1.37. ∗ (K. A. Zhevlakov) Let A be an associative ring and let A〈+〉 be the
special Jordan ring generated by some set of generators of A. Let J(X) denote
the quasiregular radical of the ring X . Is it true that J(A〈+〉) = A〈+〉 ∩ J(A)?
Remark: The answer is Yes (E. I. Zelmanov [198]).

1.38. ∗ (K. A. Zhevlakov) Is it true that every minimal ideal of a Jordan ring
either is a simple ring or has zero multiplication? Remark: The answer is Yes
(V. G. Skosyrskii [158]).

1.39. (K. A. Zhevlakov) Let I be a locally nilpotent ideal in a Jordan ring J ,
and suppose that J satisfies the minimum condition on ideals contained in I .
Is it true that I is nilpotent?1 Remark: The answer is Yes (V. G. Skosyrskii
[158]).

1.40. (K. A. Zhevlakov) In a Jordan algebra J the least ideal for which the
quotient is a special Jordan algebra will be called the specializer of J . Describe
generators of the specializer of the free Jordan algebra on three generators.

1.41. ∗ (K. A. Zhevlakov) Is it always possible (at least over a field of charac-
teristic 0) to express a Jordan algebra as a direct sum (of vector spaces) of its
specializer and a special Jordan algebra? Remark: Not always. As an example
we can take the free nilpotent Jordan algebra A of index 9 on 3 generators. Let
S(A) be the specializer of A. The quotient algebra A/S(A) is isomorphic to
the free nilpotent special Jordan algebra of index 9. Suppose that A contains
a subalgebra B isomorphic to A/S(A) such that B ∩ S(A) = (0). If x, y, z
are the generators of B then x, y, z are linearly independent modulo A2 and
by nilpotency of A they generate A. Therefore B = A and S(A) = (0). But
A is not special [61] so S(A) 6= (0). This contradiction shows that A cannot
be decomposed into the sum of the specializer and a special algebra. (I. P.
Shestakov).

1.42. ∗ (K. A. Zhevlakov) Is the locally nilpotent radical of a Jordan ring always
ideally-hereditary? Remark: The answer is Yes (A. M. Slinko [160]).

1This problem is incomplete in the original text. The translation is from the third edition;
A and B have been changed to J and I respectively. (Translators)
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1.43. ∗ (K. A. Zhevlakov) Let J be an algebraic Jordan algebra with the max-
imal condition on subalgebras. Must J be finite dimensional? Remark: The
answer is Yes (E. I. Zelmanov, unpublished, and A. V. Chekhonadskikh [32]).

1.44. ∗ (K. A. Zhevlakov) Do there exist solvable prime Jordan rings? Remark:
The answer is No (E. I. Zelmanov and Yu. A. Medvedev [121]).

1.45. ∗ (K. A. Zhevlakov) Do there exist nil elements in the free Jordan algebra
with n generators (n ≥ 3)? Remark: The answer is Yes (Yu. A. Medvedev [117]).

1.46. ∗ (K. A. Zhevlakov) Describe nil elements in free alternative rings. Re-
mark: These have been completely described (I. P. Shestakov [146]).

1.47. ∗ (K. A. Zhevlakov) Is it true that the additive group of a free alternative
ring on any number of generators is torsion free? Remark: The answer is No
(S. V. Pchelintsev [128]).

1.48. (K. A. Zhevlakov) (a) Describe trivial ideals of the free alternative ring
on n generators.
(b) ◦ Is the free alternative ring on 3 generators semiprime?
Remark: (b) The free alternative algebra on 3 generators over a field of charac-
teristic 6= 2, 3 is semiprime (A. V. Iltyakov [70]).

1.49. (K. A. Zhevlakov) Find elements that generate the quasi-regular radical
of a free alternative ring as a T -ideal.

1.50. ∗ (K. A. Zhevlakov) Describe identities satisfied by the quasi-regular
radical of a free alternative ring. In particular, is it nilpotent or solvable? It is
known to be locally nilpotent. Remark: The nilpotency has been proved in the
case of finitely many generators, and also for the free alternative algebra over
a field of characteristic 0 with any number of generators (I. P. Shestakov [149],
E. I. Zelmanov and I. P. Shestakov [199]). In the general case the quasi-regular
radical is not solvable (S. V. Pchelintsev [128]).

1.51. ◦ (K. A. Zhevlakov) Does a free alternative ring have nonzero ideals
contained in its commutative center? Remark: The answer is Yes for the free
alternative algebra of characteristic 6= 2, 3 with a finite number k ≥ 5 of free
generators (V. T. Filippov [48]).

1.52. ∗ (K. A. Zhevlakov) Let A be an alternative ring. Let Z(A), N(A) and
D(A), respectively, be the commutative center, the associative center, and the
ideal generated by all the associators. It is known (G. V. Dorofeev [37]) that
(N(A)∩D2(A))2 ⊂ Z(A). Is it true that N(A)∩D2(A) ⊂ Z(A)? Remark: The
answer is No (E. Kleinfeld [88]).

1.53. ∗ (K. A. Zhevlakov) Let A be an alternative ring, I an ideal of A, and H
an ideal of I such that in A the ideal I is generated by H . Is the quotient ring
B = I/H nilpotent or solvable? Remark: If the ring of operators contains 1/6
or if A is finitely generated, then B is nilpotent (S. V. Pchelintsev [127], I. P.
Shestakov [147]); in the general case the answer is No (S. V. Pchelintsev [129]).
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1.54. ∗ (K. A. Zhevlakov) Is every nil subring of a Noetherian alternative ring
nilpotent? Remark: If the ring of operators contains 1/3 then the answer is Yes
(Yu. A. Medvedev [116]).

1.55. (K. A. Zhevlakov) Find a basis of identities for the Cayley-Dickson alge-
bra

(a) ∗ over a finite field;
(b) over a field of characteristic 0;
(c) over an infinite field of prime characteristic.

Remark: (a) A basis was found by I. M. Isaev [74].

1.56. ∗ (K. A. Zhevlakov) Let σ be an arbitrary radical in the class of alternative
rings. Are the following statements equivalent: a ∈ σ(A), and Ra ∈ σ(A∗)
(where A∗ is the ring of right multiplications of A)? Remark: The equivalence
has been proved by A. M. Slinko and I. P. Shestakov [162] for the quasi-regular
radical, by V. G. Skosyrskii [158] for the locally nilpotent and locally finite
radicals. In general these inclusions are not equivalent. Indeed, let s1 and s2 be
the upper radicals for the class of alternative algebras defined respectively by
the class of all simple associative rings and the class containing only the Cayley-
Dickson algebra C. Then s1(C) = C, s1(C

∗) = (0), s2(C) = (0), s2(C
∗) = C

∗,
and so for every a 6= 0 in C we have

a ∈ s1(C), Ra /∈ s1(C
∗), a /∈ s2(C), Ra ∈ s2(C

∗).

(I. P. Shestakov).

1.57. ◦ (K. A. Zhevlakov) Describe simple non-alternative right alternative
rings. Is it true that every simple right alternative ring with a non-trivial idem-
potent is alternative? Remark: An example of a simple non-alternative right
alternative ring has been constructed by I. M. Mikheev [122]. Any simple right
alternative ring which is not nil (in particular, a ring with a nonzero idempotent)
is alternative (V. G. Skosyrskii [156], Ts. Dashdorzh [35]).

1.58. ∗ (K. A. Zhevlakov) Can every finite dimensional right alternative algebra
over a “good” field be expressed as a direct sum (of vector spaces) of its nil
radical and a semisimple subalgebra? Remark: The answer is No (A. Thedy
[169], I. P. Shestakov, unpublished, see [169], p. 428).

1.59. (K. A. Zhevlakov) For right alternative rings, do there exist polynomials
that take on values only in the right (resp. left) associative center? In the
alternative center?

1.60. (K. A. Zhevlakov) Does every right alternative ring on two generators
have a finite normal series with associative quotients?

1.61. (K. A. Zhevlakov) Let A be an Engel Lie algebra, A∗ its multiplication
algebra, and L(X) the locally nilpotent radical of the algebra X . Are the
statements a ∈ L(A) and Ra ∈ L(A∗) equivalent?
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1.62. (A. E. Zalessky) Let G = SL(n, Z) where Z is the ring of integers and
n ≥ 3. Let P (G) be the group algebra of G over a field P . Does the maximal
condition on two-sided ideals hold in P (G)?

1.63. ∗ (A. E. Zalessky) Let P (A) be the group algebra over a field P of a finitely
generated torsion-free Abelian group A. Let G be the group of automorphisms
of A; G acts on P (A) in a natural way. Let J be an ideal of P (G) of infinite
index, and H ⊆ G the subgroup stabilizing this ideal: H = {h ∈ G |h(J) ⊆ J }.
Is it true that in this case H has a subgroup H0 of finite index such that A has a
subgroup A0 of infinite index that is invariant under H0? (This is equivalent to
the statement that H0 can block-triangularized in GL(n, Z) where Z is the ring
of integers and n is the rank of A.) Remark: The answer is Yes (G. Bergman
[18]).

1.64. (A. E. Zalessky) Do there exist non-isomorphic finitely generated nilpo-
tent groups whose group algebras over some field have isomorphic division rings
of quotients? Remark: The answer is No (D. Farkas, A. Schofield, R. Snider, J.
Stafford [40]).

1.65. (I. Kaplansky) Does there exist a torsion-free group whose group algebra
has zero-divisors?

1.66. (I. Kaplansky) Must the group algebra of an arbitrary group G over a
field k of characteristic 0 be semisimple in the sense of Jacobson?

1.67. (I. Kaplansky, reported by A. A. Bovdi) If the augmentation ideal of the
group algebra KG is a nilideal then K is a field of characteristic p and G is a
p-group. Must G also be locally finite?

1.68. (H. Köthe) Is it true that in any associative ring a sum of two left nilideals
is a left nilideal?

1.69. (A. I. Kokorin) Develop a theory of totally ordered skew fields analogous
to the Artin-Schreier theory of totally ordered fields.

1.70. (A. I. Kokorin) Is it always possible to embed a totally ordered skew
field into another totally ordered skew field whose set of positive elements is a
divisible multiplicative group?

1.71. ∗ (A. T. Kolotov) Let d be a derivation of the free associative algebra
k〈X〉. Must the kernel of d be a free algebra? Remark: The answer is No.
Let F = k〈x, y, z〉 be the free associative algebra and d the derivation of F
defined on generators by d(x) = xyx + x, d(y) = −yxy − y, d(z) = −x. Then
kerd coincides with the subalgebra G = alg〈p, q, r, s〉 that has a single defining
relation pq = rs where p = xyz +x+ z, q = yx+1, r = xy +1, s = zyx+x+ z.
The subalgebra is not free. (G. Bergman).

1.72. ∗ (A. T. Kolotov) Is it true that the union of any increasing chain of
free subalgebras in an arbitrary free associative algebra is also free? Remark:
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The answer is No. Let F = k〈s, xw, yw, zw〉 be the free associative algebra
with generators indexed by w ranging over the free semigroup 〈p, q, b, d〉. Define
inductively the elements sw ∈ F by setting

1) s1 = s,

2) swp = sw(xwyw + 1), swb = zwyw + 1, swq = sw(xwywzw + xw + zw),

swd = yw.

For every n ≥ 0 set Sn = { sw : |w| = n }. Then Sn is a family of free generators
of a free subalgebra Gn and G1 ⊂ G2 ⊂ · · · , but the algebra G =

⋃

n Gn is not
free. (G. Bergman).

1.73. ∗ (A. T. Kolotov) Is it true that the intersection of two free subal-
gebras of an arbitrary free associative algebra is again free? Remark: The
answer is No. Let F = k〈x, y1, y2, y3, z〉, G1 = alg〈x, y1, y3, y2z, z〉, G2 =
alg〈x, xy1y2−y3, y2, z〉. Then G1 and G2 are free subalgebras but G1∩G2 is not
free. (G. Bergman).

1.74. (P. M. Cohn, reported by L. A. Bokut) Is every automorphism of an
arbitrary free associative algebra tame (that is, a product of elementary auto-
morphisms)?

1.75. (V. M. Kopytov) Describe the real Lie algebras that admit a topology in
which the Campbell-Hausdorff series converges for any two elements from some
neighborhood of zero. Are all such Lie algebras residually finite dimensional?

1.76. ∗ (V. M. Kopytov) Is the free Lie product of ordered Lie algebras again
ordered? Remark: The answer is Yes (S. A. Agalakov, L. S. Shtern [2]).

1.77. ◦ (E. G. Koshevoy) Describe complete subalgebras of free unital associa-
tive algebras. A subalgebra A ⊂ k〈X〉 is called complete if f(a) ∈ A implies
a ∈ A for any nonconstant polynomial f(t) ∈ k[t]. Remark: An example of
a complete subalgebra in the free algebra on 3 generators can be found in the
work of E. G. Koshevoy [90].

1.78. ◦ (E. N. Kuzmin) Is every Malcev algebra that satisfies the n-th Engel
condition locally nilpotent? Remark: The answer is Yes, if the characteristic of
the ground field is p 6= 2 (V. T. Filippov [43], E. I. Zelmanov [197]).

1.79. ∗ (E. N. Kuzmin) Is every Malcev algebra over a field of characteristic
0 that satisfies the n-th Engel condition solvable? Remark: The answer is Yes
(V. T. Filippov [42], E. I. Zelmanov [195]).

1.80. ∗ (E. N. Kuzmin) Can every finite dimensional Malcev algebra A over
a field of characteristic 0 be expressed as a direct sum (of vector spaces) of its
radical and a semisimple subalgebra? Are the semisimple components of this
decomposition conjugate by automorphisms of A? (Analogue of Levi-Malcev
theorem for Lie algebras.) Remark: The answer is Yes. This decomposition has
been obtained independently by A. N. Grishkov [62], R. Carlsson [29] and E.
N. Kuzmin [104]. The conjugacy of semisimple factors is proved by R. Carlsson
[28].
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1.81. ◦ (E. N. Kuzmin) Does an arbitrary Malcev algebra over a field of char-
acteristic 6= 2, 3 have a representation as a subalgebra of A(−) where A(−) is
the minus algebra of some alternative algebra A? (Analogue of the Poincaré-
Birkhoff-Witt theorem for Lie algebras.) Remark: There exists a representation
for the ideal (in an arbitrary Malcev algebra) generated by all Jacobians (V. T.
Filippov [49]).

1.82. ∗ (E. N. Kuzmin) Let G be a local analytic Moufang loop. Is G locally
isomorphic to an analytic Moufang loop? Remark: The answer is Yes (F. S.
Kerdman [84]).

1.83. (E. N. Kuzmin) Does there exist an invariant integral (that is, a Haar
integral) on compact Moufang loops?

1.84. ∗ (E. N. Kuzmin) Let G be a simply connected Moufang loop whose
tangent algebra is a solvable Malcev algebra. Is the topological space G homeo-
morphic to a Euclidean space R

n? Remark: The answer is Yes (F. S. Kerdman
[84]).

1.85. (G. P. Kukin) Is it true that the minimal number of generators of the
free product of two algebras is equal to the sum of the minimal numbers of
generators of the factors?

1.86. ∗ (G. P. Kukin) Is the membership problem for the free product of Lie
algebras decidable if it is decidable for both factors? Remark: The answer is
No (U. U. Umirbaev [174]).

1.87. (G. P. Kukin) Is the isomorphism problem decidable for Lie algebras with
one defining relation?

1.88. (G. P. Kukin) Is it true that every two decompositions of a Lie algebra
into a free product have isomorphic refinements?

1.89. ∗ (V. N. Latyshev) Must the Jacobson radical of a finitely generated PI
algebra of characteristic 0 be nilpotent? Remark: The answer is Yes (Yu. P.
Razmyslov [141, 142], A. R. Kemer [82]). Later, A. Braun proved the nilpotency
of the radical in any finitely generated PI algebra over a Noetherian ring [27].

1.90. ∗ (V. N. Latyshev) If a PI algebra has a classical ring of quotients must
this ring of quotients also be a PI algebra? Remark: The answer is Yes (K. I.
Beidar [12]).

1.91. (V. N. Latyshev) What are the necessary and sufficient conditions that a
semigroup must satisfy so that its semigroup algebra will be a PI-algebra?

1.92. (V. N. Latyshev) Let A be an associative algebra with a finite number of
generators and relations. If A is a nilalgebra must it be nilpotent?

1.93. ◦ (I. V. Lvov) Does there exist an infinite critical associative (resp. nonas-
sociative) ring? A ring is called critical if it does not lie in the variety generated
by its proper quotient rings. Remark: The answer is Yes in the nonassociative
case (Yu. M. Ryabukhin, R. S. Florya [143]).
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1.94. (I. V. Lvov) Find all critical finite associative commutative rings.

1.95. ◦ (I. V. Lvov) Must the variety generated by a finite right alternative
(resp. Jordan, Malcev, binary-Lie) ring have a finite basis of identities? Remark:
The answer is No in the right alternative case (I. M. Isaev [76]), and Yes in the
Jordan and Malcev cases (Yu. A. Medvedev [113, 115]).

1.96. ∗ (I. V. Lvov) Is it true that every minimal variety of rings is generated
by a finite ring? Remark: The answer is No (Yu. M. Ryabukhin, R. S. Florya
[143]).

1.97. (I. V. Lvov) Is it true that an associative algebra of dimension greater
than one over the field of rational numbers, all of whose proper subalgebras are
nilpotent, is also nilpotent? This is true for algebras over fields satisfying the
Brauer condition; for instance over finite or algebraically closed fields.

1.98. (I. V. Lvov) Let f be a multilinear polynomial over a field k. Is the set
of values of f on the matrix algebra Mn(k) a vector space?

1.99. ∗ (I. V. Lvov, V. A. Parfyonov) Is every radical (in the sense of Kurosh) on
the class of Lie algebras characteristic? A Lie subalgebra is called characteristic
if it is invariant under all derivations. Remark: The answer is No (Yu. A.
Kuczynski [95]).

1.100. ∗ (K. McCrimmon, reported by K. A. Zhevlakov) Is it true that the
quasi-regular radical of a Jordan ring is equal to the intersection of the max-
imal modular quadratic ideals? Remark: The answer is Yes (L. Hogben, K.
McCrimmon [68]).

1.101. ∗ (K. McCrimmon, reported by K. A. Zhevlakov) Is it true that in a
Jordan ring A with minimum condition on quadratic ideals the quasi-regular
radical J(A) is nilpotent? Remark: The answer is Yes (E. I. Zelmanov [187]).

1.102. (A. I. Malcev, reported by A. A. Bovdi, L. A. Bokut and D. M. Smirnov)
Is it possible to embed the group algebra of a right ordered group into a division
ring?

1.103. ∗ (A. I. Malcev, reported by L. A. Bokut) Find necessary and sufficient
conditions for the embeddability of an associative ring into a division ring.
Remark: Such conditions have been found by P. M. Cohn [34].

1.104. (A. I. Malcev, reported by L. A. Bokut) Do there exist two associative
rings with isomorphic multiplicative semigroups one of which is embeddable in
a division ring and the other is not?

1.105. ∗ (A. I. Malcev) Do there exist varieties of Lie algebras that are not
finitely axiomatizable? Remark: They exist over a field of characteristic p > 0
(V. S. Drensky [38], M. Vaughan-Lee [183]).

1.106. (A. I. Malcev) Does there exist a finitely axiomatizable variety of rings
whose set of identities is not recursive?
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1.107. (A. I. Malcev) What is the structure of the groupoid of the following
quasi-varieties:

(a) all rings;
(b) all associative rings?

1.108. ∗ (A. I. Malcev, reported by E. N. Kuzmin) Is every finite dimensional
real Malcev algebra the tangent algebra of some locally analytic Moufang loop?
Remark: The answer is Yes (E. N. Kuzmin [103]).

1.109. ∗ (Yu. N. Malcev) Find a basis of identities for the algebra of upper
triangular matrices over a field of characteristic p > 0. Remark: A basis has
been found by S. V. Polin [135] and P. I. Siderov [152].

1.110. ∗ (Yu. N. Malcev) Let R be an associative algebra with no nilideals
which is a radical extension of some PI subalgebra A (that is, for any x ∈ R
there exists n(x) such that xn(x) ∈ A). Must R be a PI algebra? Remark: The
answer is Yes (E. I. Zelmanov [188]).

1.111. ∗ (Yu. N. Malcev) Let R be an associative algebra which is an H-
extension of some PI subalgebra A (that is, for any x ∈ R there exists n(x) > 1
such that xn(x) −x ∈ A). Must R be a PI algebra? Remark: The answer is Yes
(M. Chacron [30]).

1.112. (R. E. Roomeldi) Describe minimal ideals of right alternative rings. Is
it true that they are either simple as rings or solvable (resp. right nilpotent)?

1.113. (Yu. M. Ryabukhin) Find necessary and sufficient conditions for an
algebra R over an arbitrary associative commutative unital ring k to be decom-
posable into a subdirect product of algebras with unique left and right division.

1.114. (Yu. M. Ryabukhin) Let F be an arbitrary field. Do there exist
(a) an associative nilalgebra A of at most countable dimension such that every
countable dimensional nilalgebra is a homomorphic image of A;

(b) ◦ an algebraic algebra with the analogous property with respect to alge-
braic algebras?

Remark: (b) The answer is No if the ground field is uncountable (G. P. Chekanu
[31]).

1.115. ∗ (Yu. M. Ryabukhin, I. V. Lvov) Let S be a class of algebras over a
fixed field F closed under homomorphic images. If S is not radical in the sense
of Kurosh then is it true that the chain of Kurosh classes

S = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sα ⊆ · · ·

formed by constructing the lower radical does not stabilize? This is true if the
class S is closed not only under homomorphic images but also under ideals.
Remark: The answer is Yes (K. I. Beidar [14]).
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1.116. ∗ (L. A. Skornyakov) Over which rings is every left module (resp. every
finitely generated left module) decomposable into a direct sum of distributive
modules (that is, modules with distributive lattices of submodules)? Does there
exist a non-Artinian ring with this property? Remark: For the first question,
descriptions of such rings are given in the works of A. A. Tuganbaev [171] and
K. R. Fuller [57]. For the second question, the answer is No.

1.117. ◦ (L. A. Skornyakov) Over which rings is every finitely generated left
module decomposable into a direct sum of uniserial modules? Remark: Such
rings have been described by G. Ivanov [77].

1.118. ◦ (L. A. Skornyakov) Which rings (resp. algebras) are projective in the
category of rings (resp. algebras over a fixed field)? Do there exist projective
rings other than free rings? Remark: The ring P is projective if and only if
P ∼= S with S ⊕ K ∼= F (direct sum of Abelian groups) where F is a free ring,
K is an ideal, and S is a subring. The solution of this problem probably depends
on the bicategory in which we work. Therefore it is useful to take into account
the fact that the collection of such bicategories is not a set (S. V. Polin [134]).
(L. A. Skornyakov).

1.119. ∗ (L. A. Skornyakov) Does there exist a ring A which is not left Noethe-
rian and such that every module, which is injective in the category of finitely
generated left A-modules, is injective? Remark: The negative answer can be
extracted from the results of V. S. Ramamurthi and K. N. Rangaswamy [138].
Indeed, let Q be a module that is injective in the category of finitely generated
left modules over an arbitrary ring A. Then Q is finitely generated and injective
with respect to natural embeddings of finitely generated left ideals of A, which
implies the injectivity of Q (Theorem 3.1 and Corollary 3.4(i) in [138]). There-
fore every non-Noetherian ring, whose only finitely generated injective module
is zero, gives the desired example. From results of E. Matlis [110] (Theorem 4)
and D. Gill [60] it follows that every non-Noetherian almost maximal commu-
tative uniserial ring is an example. More or less the same considerations were
articulated by C. U. Jensen (private correspondence, 1969). (L. A. Skornyakov).

1.120. ◦ (L. A. Skornyakov) Describe all the rings whose left ideals are homo-
morphic images of injective modules. Remark: For the commutative case the
answer is known (L. A. Skornyakov [154]).

1.121. ∗ (L. A. Skornyakov) Must a ring, over which every module has a de-
composition complementing direct summands, be a generalized uniserial ring?
Remark: The answer is No (K. R. Fuller [56]).

1.122. ∗ (L. A. Skornyakov, reported by L. A. Bokut) Do there exist free
(with respect to T -homomorphisms) associative division rings? Remark: The
answer is Yes. Let R be an arbitrary semifir. Then there exists a universal
R-division ring U that contains R. (Every R-division ring is a specialization,
or a T -homomorphic image, of the R-division ring U .) In particular, if R =
k〈X〉, the free algebra on an infinite set X of generators, over the prime field
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of characteristic p ≥ 0, then the universal R-division ring U is a “free” division
ring in the class of division rings of characteristic p and cardinality ≤ |X |. (See
P. M. Cohn [34]). The first proof of the existence of a universal division ring
was given by S. Amitsur [3]. J. Lewin [105] proved that the division subring
generated by k〈X〉 in the division ring of Malcev-Neumann (containing k〈X〉)
is the universal k〈X〉-division ring. (L. A. Bokut).

1.123. ∗ (M. Slater, reported by K. A. Zhevlakov) Does there exist a prime
alternative ring that is neither associative nor Cayley-Dickson? Remark: The
answer is Yes (S. V. Pchelintsev [129]).

1.124. ∗ (M. Slater, reported by K. A. Zhevlakov) Let A be a free alternative
ring, D the ideal generated by the associators of A, and U a maximal ideal of A
lying in the associative center. Must U ∩D be nonzero? Is it true that in a free
alternative ring every trivial ideal is contained in U ∩D? Remark: The answer
to the first question is Yes, to the second No (V. T. Filippov [47, 45]).

1.125. (M. Slater, reported by K. A. Zhevlakov) Let M be the ideal of a free
alternative ring A generated by the set [N, A] where N is the associative center of
A. Is it true that M ⊆ N? (This is equivalent to the statement [n, t](x, y, z) = 0
for all x, y, z, t ∈ A and n ∈ N .) This statement is true for rings with three
generators.

1.126. (A. M. Slinko) What is the minimal possible dimension of a non-special
Jordan algebra?

1.127. (A. M. Slinko) Is every ideal of a semiprime Jordan ring itself semiprime?
This condition is necessary and sufficient for the class of Jordan rings to have
the lower nilradical.

1.128. ∗ (A. M. Slinko) It is known that in a special Jordan algebra J every
absolute zero divisor (that is, an element b such that aUb = 2(ab)b − ab2 = 0
for all a ∈ J) generates a locally nilpotent ideal (A. M. Slinko [161]). Is this
true for arbitrary Jordan algebras? Remark: The answer is Yes (E. I. Zelmanov
[191]).

1.129. ◦ (A. M. Slinko) Does every variety of solvable alternative (resp. Jordan)
algebras have a finite basis of identities? Remark: In the case of alternative
algebras the answer is Yes if the characteristic is not 2 or 3 (U. U. Umirbaev
[172]), and No over a field of characteristic 2 (Yu. A. Medvedev [114]). In the
case of Jordan algebras the answer is Yes for algebras of solvability index 2
(Yu. A. Medvedev [112]).

1.130. (A. M. Slinko, I. P. Shestakov) Find a system of relations that defines
right representations of alternative algebras. Does there exist a finite system of
relations?

1.131. ◦ (A. M. Slinko, I. P. Shestakov) Let A be an alternative PI algebra. Is
the universal associative algebra R(A) for alternative representations of A also
PI? Remark: The answer is Yes for finitely generated algebras (I. P. Shestakov
[149]).
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1.132. (A. M. Slinko, I. P. Shestakov) Let C be a Cayley-Dickson algebra. It is
known (A. M. Slinko, I. P. Shestakov [162]) that the map ρ : x → Lx is a right-
alternative right representation of C. Is ρ an alternative right representation of
C?

1.133. ∗ (D. M. Smirnov) What is the cardinality of the set of minimal varieties
of rings? Remark: The cardinality is that of the continuum (Yu. M. Ryabukhin,
R. S. Florya [143]).

1.134. (D. M. Smirnov) If a group G is Hopf must the group ring Z(G) also be
Hopf?

1.135. (D. M. Smirnov, A. A. Bovdi) Can the group ring Z(G) of a torsion-free
group contain invertible elements other than ±g, g ∈ G?

1.136. (E. A. Sumenkov) Does the universal enveloping algebra of an arbitrary
PI Lie algebra satisfy the Ore condition?

1.137. ∗ (V. T. Filippov) Does a free Malcev algebra have trivial ideals? Re-
mark: The answer is Yes (I. P. Shestakov [148]).

1.138. ∗ (V. T. Filippov) Does the simple 7-dimensional non-Lie Malcev algebra
over a field of characteristic 0 have a finite basis of identities? Remark: The
answer is Yes (A. V. Iltyakov [71]).

1.139. (V. T. Filippov) Let A be a free Malcev algebra and J(A) the ideal
generated by the Jacobians. Does the variety generated by J(A) have a finite
basis of identities?

1.140. (I. Fleischer, reported by V. I. Arnautov) Does there exist a topological
field that is not locally bounded whose topology cannot be weakened?

1.141. ◦ (P. A. Freidman) Describe right Hamiltonian rings (that is, rings such
that every subring is a right ideal). Remark: Right Hamiltonian rings have
been described (P. A. Freidman [50], V. I. Andriyanov, P. A. Freidman [5]). A
description of periodic rings and torsion-free rings has been announced (O. D.
Artemovich [9]).

1.142. ◦ (P. A. Freidman) Describe the rings whose lattice of subrings is modu-
lar. Remark: These rings have been described in the case of prime characteristic
(P. A. Freidman, Yu. G. Shmalakov [52, 53]) and in the case of torsion-free nil
rings (P. A. Freidman [51]).

1.143. ∗ (P. A. Freidman) Must a ring in which all proper subrings are nilpotent
also be nilpotent? Remark: The answer is No. An obvious example is the field
with p elements (p prime). The answer is Yes if we assume that the ring is nil
(I. L. Khmelnitsky [86]).

1.144. ∗ (P. A. Freidman) A subring Q of a ring K is called a meta-ideal of
finite index if Q is a member a finite normal series

Q = A0 / A1 / · · · / An = K,
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where Ai is a two-sided ideal in Ai+1 (Baer). Must a nilpotent p-nilring K, in
which all subrings are meta-ideals of finite index with uniformly bounded indices,
be nilpotent? Remark: The answer is Yes, even without the assumption that
the indices are uniformly bounded (I. L. Khmelnitsky [87]).

1.145. ∗ (V. K. Kharchenko) Let L be a Lie algebra that admits an automor-
phism of finite order such that the fixed elements are in the center of L. Must
L be solvable? Remark: The answer is No (A. I. Belov, A. G. Gein [15]).

1.146. (I. Herstein) Must the Jacobson radical of a left and right Noetherian
associative ring be generalized nilpotent?

1.147. (I. Herstein, reported by Yu. N. Malcev) Let R be an associative ring,
without nilideals, that satisfies the condition ∀x, y ∈ R, ∃n = n(x, y) such that
[x, y]n = 0. Must R be commutative?

1.148. (P. Hall, reported by A. A. Bovdi) If the group ring K(G) satisfies the
maximal condition on right ideals then G is Noetherian and K satisfies the
maximal condition on right ideals. Is the converse true? It is true for solvable
groups (P. Hall [66]).

1.149. ◦ (I. P. Shestakov) Is it true that the center of the free alternative ring
on three generators is equal to the intersection of the associative center and
the associator ideal? If not, the free alternative ring on three generators is not
semiprime. Remark: For the free alternative algebra on 3 generators over a field
of characteristic 6= 2, 3 the answer is Yes (A. V. Iltyakov [70]).

1.150. ∗ (I. P. Shestakov) Is it true that every simple exceptional Jordan algebra
is finite dimensional over its center? The answer is not known even in the case
of Jordan division algebras (N. Jacobson [79]). Remark: The answer is Yes (E.
I. Zelmanov [193]).

1.151. ∗ (I. P. Shestakov) Is every solvable subring of a finitely generated al-
ternative (resp. Jordan) ring nilpotent? Remark: For alternative algebras over
a field of characteristic 6= 2, 3 the answer is Yes (I. P. Shestakov [148], V. T.
Filippov [46]). For Jordan algebras the answer is No (I. P. Shestakov [148]).

1.152. (I. P. Shestakov) Must a right alternative nilalgebra over an associative
commutative ring Φ with the maximal condition on Φ-subalgebras be right
nilpotent?

1.153. ∗ (A. I. Shirshov) Describe subalgebras of a free product of Lie algebras.
Remark: These have been described (G. P. Kukin [96, 97]).

1.154. ∗ (A. I. Shirshov) Is the word problem decidable in the class of all Lie
algebras? Remark: The answer is No (L. A. Bokut [24]). An explicit example
has been constructed by G. P. Kukin [99].

1.155. ∗ (A. I. Shirshov) Is the word problem decidable in the class of all Lie
algebras which are solvable of a fixed index? Remark: The answer is No for
solvability index ≥ 3 (G. P. Kukin [100], see also O. G. Kharlampovich [85]).
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1.156. ∗ (A. I. Shirshov) Must a Jordan nil ring of bounded index be locally
nilpotent? Remark: The answer is Yes (E. I. Zelmanov [191]).

1.157. ◦ (A. I. Shirshov) Must a Jordan nil ring of index n in characteristic 0
or p > n be solvable? Remark: The answer is Yes for algebras over a field of
characteristic 0 (E. I. Zelmanov [196]).

1.158. ∗ (A. I. Shirshov) Does there exist a natural number n such that every
Jordan algebra of at most countable dimension embeds in a Jordan algebra with
n generators? Remark: For special Jordan algebras n = 2 (A. I. Shirshov [150]).
In the general case there is no such number n (E. I. Zelmanov [192]).

1.159. ◦ (A. I. Shirshov) Let Altn be the variety of alternative rings generated
by the free alternative ring on n generators. Does the chain

Alt1 ⊆ Alt2 ⊆ Alt3 ⊆ · · ·

stabilize? The same question for Jordan, right alternative, Malcev and binary-
Lie rings. It is known that in the class of (−1, 1) rings this chain does not
stabilize (S. V. Pchelintsev [126]). Remark: For alternative and Malcev rings it
does not stabilize (I. P. Shestakov [148]).

1.160. (A. I. Shirshov) Construct a basis of the free alternative (resp. right
alternative, Jordan, Malcev, binary-Lie) algebra on n generators.

1.161. ∗ (A. I. Shirshov) Must a right alternative nil ring of bounded index be
locally nilpotent? Remark: The answer is No (G. V. Dorofeev [36]).

1.162. (A. I. Shirshov) Is it true that every finitely generated right alternative
nil ring of bounded index is solvable?

1.163. ∗ (A. I. Shirshov, A. T. Gainov) Does the variety of binary-Lie algebras
of characteristic 2 have a finite basis of identities? Remark: The answer is Yes
if the ground field has more than 3 elements (A. T. Gainov [58]).

1.164. ∗ (W. Specht [163]) Is it true that every variety of associative (unital)
algebras over a field of characteristic 0 has a finite basis of identities? Remark:
The answer is Yes (A. R. Kemer [83]).

1.165. ∗ (Reported by V. I. Arnautov) Does there exist an infinite ring that
admits only the discrete topology? Remark: The answer is Yes (V. I. Arnautov
[7]). An associative commutative ring always admits a non-discrete topology
(V. I. Arnautov [6]).

1.166. ◦ (Reported by L. A. Bokut) Is the freeness theorem true for associative
algebras with one relation? Remark: References and some partial results on
this problem and 1.168 can be found in V. N. Gerasimov [59].
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1.167. (Problem of Keller, reported by L. A. Bokut) Let f : xi → fi (1 ≤ i ≤ n)
be an endomorphism of the polynomial algebra F [x1, x2, . . . , xn] where n ≥ 2
and F is a field of characteristic 0. Suppose that the Jacobian

det

(

∂fi

∂xj

)

is equal to 1. Must f be an automorphism?

1.168. ◦ (Reported by L. A. Bokut) Is the word problem decidable for asso-
ciative algebras with a single relation? Remark: References and some partial
results on this problem and 1.166 can be found in V. N. Gerasimov [59].

1.169. (Reported by L. A. Bokut) Does there exist a group such that its group
ring does not have zero divisors but is not embeddable into a division ring?

1.170. (Reported by L. A. Bokut and A. R. Kemer) Let R be an associative
ring without nilideals that satisfies the condition ∀x, y ∈ R, ∃n = n(x, y) ≥ 2
such that (xy)n = xnyn. Must R be commutative?

1.171. (Reported by L. A. Bokut) Does there exist an infinite associative divi-
sion ring which is finitely generated as a ring?

1.172. (Reported by K. A. Zhevlakov) Does there exist a simple associative nil
ring?

1.173. (Reported by K. A. Zhevlakov and V. N. Latyshev) Does there exist an
algebraic, but not locally finite, associative division algebra?

1.174. ∗ (Reported by E. N. Kuzmin) Is it true that every algebraic Lie algebra
of bounded degree over a field of characteristic 0 must be locally finite? Remark:
The answer is Yes (E. I. Zelmanov [194]).

1.175. ◦ (Reported by E. N. Kuzmin and A. I. Shirshov) Must a Lie ring
of characteristic 0 or p > n satisfying the n-th Engel condition be nilpotent?
Remark: The answer is Yes in the case of characteristic 0 (E. I. Zelmanov [195]).
If p = n + 2 then the answer is No (Yu. P. Razmyslov [139]).

1.176. (Reported by G. P. Kukin) Is the membership problem decidable in a
Lie algebra with a single defining relation?

1.177. ◦ (Reported by I. V. Lvov and Yu. N. Malcev) Is the variety of associative
algebras generated by a full matrix algebra finitely based or Specht

(a) ∗ over a field of characteristic 0;
(b) over a field of characteristic p?

Remark: (a) The answer is Yes. Moreover, every variety of associative algebras
over a field of characteristic 0 is Specht (A. R. Kemer [83]).

1.178. ∗ (Reported by Yu. N. Malcev) An algebra A over a field F is said to
have type Mk if A satisfies all identities of the matrix algebra Mk(F ) and only
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those. Let the matrix algebra Mn(R) over an algebra R have type Mk. Does it
follow that R has type Mt for some t? Remark: The answer is No. It is easy to
see that this is not true for a free algebra in the variety defined by the identities
[x1, x2]x3 = x1[x2, x3] = 0 over an infinite field (I. I. Benediktovich).

1.179. (Reported by V. A. Parfyonov) Describe all Schreier varieties of nonas-
sociative algebras. Do there exist Schreier varieties other than the known ones:
the variety of all algebras, ε-algebras, Lie algebras, and algebras with zero mul-
tiplication?

1.180. ∗ (Reported by A. A. Nikitin and S. V. Pchelintsev) Do there exist
nonassociative prime (−1, 1)-rings without elements of order 6 in the additive
group? Remark: The answer is Yes (S. V. Pchelintsev [129]).

1.181. (Reported by A. I. Shirshov) Is the isomorphism problem decidable in
the class of nonassociative algebras over a “good” field, for instance, over the
field of rational numbers?

2 Part Two

2.1. (S. Amitsur) Find the conditions for embeddability of an algebra over a
field into an algebra that is a finitely generated module over a commutative ring.

2.2. (A. Z. Ananyin, L. A. Bokut, I. V. Lvov) A variety is called locally residu-
ally finite if every finitely generated ring (resp. algebra) can be approximated by
finite rings (resp. finite dimensional algebras). Describe (in terms of identities)
locally residually finite varieties of

(a) associative rings;
(b) associative algebras over a finite field.

2.3. (V. I. Arnautov) Does there exist an infinite associative ring that admits
only the discrete topology?

2.4. (V. A. Artamonov) Let k be a principal ideal domain and V a variety of
linear k-algebras defined by multilinear identities. Is it true that every retract
of a V -free algebra is again a V -free algebra?

2.5. (V. A. Artamonov) Let k be a commutative associative unital ring and G
an almost polycyclic group without torsion.

(a) Compute the kernel of the natural epimorphism of K0(kG) onto K0(k).
(b) If all projective modules over the group algebra kG are free, must G be
commutative?

2.6. (Yu. A. Bahturin) Prove that for multilinear monomials [x1, · · · , xn]σ = wσ

and [x1, · · · , xn]τ = wτ (with bracket structures σ and τ), the Lie algebra
identities wσ = 0 and wτ = 0 are equivalent if and only if wσ and wτ are equal
as elements of the free commutative nonassociative groupoid on x1, · · · , xn.
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2.7. (Yu. A. Bahturin) Find examples of varieties U , V of Lie algebras over a
finite field that have a finite basis of identities such that one of the varieties UV ,
U ∪ V , [U, V ] does not have a finite basis of identities.

2.8. (Yu. A. Bahturin) Find an example of a variety V of Lie algebras that
has a finite basis of identities but for some natural number n the variety V (n)

(defined by all the identities of V in n variables) does not have a finite basis of
identities.

2.9. (Yu. A. Bahturin) Find a basis of identities for the Lie algebra Wn of
derivations of the ring of polynomials in n variables over a field of characteristic
0.

2.10. ∗ (Yu. A. Bahturin) Find a basis of identities for the full matrix Lie
algebra gl(2, k) over a finite field k of characteristic 6= 2. Remark: A basis has
been found (K. N. Semenov [145]). For an infinite field of positive characteristic
see S. Yu. Vasilovsky [182].

2.11. ∗ (Yu. A. Bahturin) Prove that a Lie algebra L whose derived algebra
L′ = [L, L] is nilpotent of index c (c < p) over a field of characteristic p > 0 has
a finite basis of identities. Remark: This has been proved by A. N. Krasilnikov
[94].

2.12. (Yu. A. Bahturin) Describe solvable special varieties of Lie algebras (that
is, varieties generated by a special Lie algebra) over a field of characteristic 0.

2.13. ∗ (Yu. A. Bahturin) Is it true that a central extension of a special Lie
algebra is again special (that is, embeddable into an associative PI algebra)?
In the case of characteristic 0 this question is equivalent to Latyshev’s problem
(2.64) (S. A. Pikhtilkov [133]). Remark: The answer is No (Yu. V. Billig [20],
see also Yu. A. Bahturin, A. I. Kostrikin [11]).

2.14. (Yu. A. Bahturin) Is it true that free algebras of finite rank in an arbitrary
variety over a finite field are residually finite or at least Hopf?

2.15. (Yu. A. Bahturin, G. P. Kukin) Describe Hopf (resp. locally Hopf) vari-
eties of Lie algebras.

2.16. ◦ (Yu. A. Bahturin, L. A. Bokut) Describe in terms of identities locally
residually finite varieties of Lie algebras

(a) ∗ over a field of characteristic 0;
(b) over a finite field.

Remark: (a) They have been described by M. V. Zaicev [186].

2.17. (K. I. Beidar) Must a finitely generated domain be semisimple in the
sense of Jacobson?

2.18. (L. A. Bokut) A variety is called Higman if every recursively presented
algebra of this variety is embeddable into a finitely presented algebra. Are the
following varieties of rings (algebras over a prime field) Higman:
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(a) alternative;
(b) Jordan;
(c) Malcev;
(d) binary-Lie;
(e) solvable Lie algebras (resp. groups) of index n ≥ 3?

2.19. (L. A. Bokut) Is the problem of existence of a solution for an equation in
a free associative (resp. Lie) algebra over an algebraically closed field decidable?

2.20. (L. A. Bokut) Find the axiomatic rank of the class of associative rings
that are embeddable into division rings.

2.21. (L. A. Bokut) Is the class of associative rings that are embeddable into
division rings definable by an independent system of quasi-identities?

2.22. (L. A. Bokut) For a given p ≥ 0 construct a non-invertible ring of char-
acteristic p whose multiplicative semigroup of nonzero elements is embeddable
into a group. An associative ring is called invertible if all nonzero elements are
invertible in some ring extension. So far the only known example is in the case
p = 2 (L. A. Bokut [22, 23]).

2.23. (L. A. Bokut) Is an arbitrary finitely generated associative (resp. Lie)
algebra with a recursive basis over a prime field embeddable into a simple finitely
presented associative (resp. Lie) algebra?

2.24. (L. A. Bokut) Is the problem of equality decidable in the following classes
of rings? In a class of rings, the problem of equality is the question of the
existence of an algorithm to decide the truth of a quasi-identity in that class:

(a) finite Lie;
(b) finite alternative;
(c) finite Jordan;
(d) finite binary-Lie;
(e) free associative algebras;
(f) free Lie algebras.

2.25. (L. A. Bokut) A variety is called Magnus if the word problem is decidable
for algebras with one relation. Determine whether the following varieties of
algebras are Magnus:

(a) the variety M(n) generated by the full matrix algebra Mn of order n over
a field of characteristic 0;

(b) the variety S(n) defined by the standard identity

∑

σ∈Sn

(−1)σxσ(1)xσ(2) · · ·xσ(n) = 0.

2.26. (L. A. Bokut) Is the problem of equality decidable in the varieties M(n)
and S(n)?

2.27. (L. A. Bokut, I. P. Shestakov) Is the variety of alternative algebras Mag-
nus?
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2.28. (L. A. Bokut. I. V. Lvov) Must every relatively free algebra in a variety
of associative algebras over a finite field be residually finite? [Compare 2.14.]

2.29. ∗ (Björk, reported by V. N. Gerasimov) Suppose that a division ring is
finitely generated as a right module over a subring. Must this subring also be a
division ring? Remark: The answer is No (G. Bergman [19]).

2.30. (P. Gabriel, reported by Yu. A. Drozd) Prove (or disprove) that for any
natural number n there exist only finitely many (up to isomorphism) associative
algebras of dimension n over an algebraically closed field K that have only
finitely many non-isomorphic indecomposable representations.

2.31. ∗ (V. N. Gerasimov) Suppose that R is a radical ring that satisfies a
non-trivial identity with the signature 〈+, ·,′ 〉 where ′ is the quasi-inverse. Must
R satisfy a polynomial identity? Remark: The answer is Yes (A. I. Valitskas
[180]).

2.32. (A. G. Gein, A. Yu. Olshanski) Do there exist infinite dimensional simple
Lie algebras over a field such that every proper subalgebra is one-dimensional?

2.33. (A. N. Grishkov) Describe semisimple finite dimensional binary-Lie alge-
bras over a field of characteristic p > 3.

2.34. (A. N. Grishkov) Assume that the annihilator of every non-central element
of a Lie algebra, which is nilpotent of index 2 over an algebraically closed field,
is finite dimensional modulo the center. Prove that the algebra is residually
finite dimensional.

2.35. ∗ (A. N. Grishkov) Must a finite dimensional solvable binary-Lie algebra
over a field of characteristic p > 3 have an Abelian ideal? Remark: The answer
is Yes (A. N. Grishkov [65]).

2.36. (K. R. Goodearl) A ring R is called invertibly regular if for every a ∈ R
the equation axa = a has an invertible solution. Must a regular ring whose
homomorphic images are directly finite (see 2.141) be invertibly regular?

2.37. (K. R. Goodearl) Let A and B be finitely generated projective right
modules over an invertibly regular ring. If An is isomorphic to Bn must A and
B be isomorphic? If An is isomorphic to a direct summand of Bn then must A
be isomorphic to a direct summand of B?

2.38. (A. Jategaonkar, reported by A. A. Tuganbaev) Must every ideal of a
prime ring, all of whose right ideals are principal, be a product of prime ideals?

2.39. (V. P. Elizarov) For a prime p describe nilpotent rings of order p4.

2.40. (K. A. Zhevlakov, reported by I. P. Shestakov) Must the locally nilpotent
(or even anti-simple) radical of a weakly Noetherian associative (resp. alterna-
tive, Jordan) algebra be nilpotent?
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2.41. (V. N. Zhelyabin) Must any two inertial subalgebras of a finite dimen-
sional Jordan algebra over a local Hensel ring be conjugate?

2.42. (A. E. Zalesski) Is it true that the left annihilator of every element of a
group algebra over a field is finitely generated as a left ideal?

2.43. ∗ (A. E. Zalesski) Is it true that every idempotent of a group algebra
over a field is conjugate by an automorphism to an idempotent whose support
subgroup is finite? Remark: The answer is No (D. P. Farkas, Z. S. Marciniak
[39]).

2.44. (A. E. Zalesski, D. Passman) Find necessary and sufficient conditions for
the group algebra of a locally finite group (over a field of nonzero characteristic)
to be semisimple.

2.45. (I. Kaplansky, reported by A. A. Tuganbaev) Describe the rings in which
every one-sided ideal is two-sided and over which every finitely generated module
can be decomposed as a direct sum of cyclic modules.

2.46. (O. V. Kaptsov) Let R be the field of real numbers. Consider the commu-
tative differential ring R[ui] in infinitely many variables ui, i ≥ 0. The derivation
d acts on the ui as follows: d(ui) = ui+1. Define a Lie algebra structure on R[ui]
by

[f, g] =
∞
∑

i=0

(fid
ig − gid

if), where fi =
∂f

∂ui

, gi =
∂g

∂ui

, for any f, g ∈ R[ui].

Is it true that if [f, g] = 0 (f 6= λg, λ ∈ R) and fk 6= 0, gm 6= 0 for some
k, m > 1, then the centralizer of g is infinite dimensional? For instance, if
g = u3+u0u1 (the right side of the Korteweg-deVries equation ut = uxxx−uux),
this conjecture holds. A positive answer would allow us to approach a solution
of the following well-known problem: Describe the set of elements g that have
an infinite dimensional centralizer.

2.47. (A. V. Kaptsov) Let R[ui] be the ring defined in the previous problem.
Define a new multiplication by

f ∗ g =

∞
∑

i=0

(

fid
ig + (−d)i(fgi)

)

.

Is it true that if f ∗ g = 0 where f = f(u0, . . . , un), g = g(u0, · · · , um) and
fn 6= 0, gm 6= 0 for some n > m > 1, then the subspace H of all h such
that h ∗ g = 0 is infinite dimensional? Is it possible to prove that if H is infinite
dimensional then so is the centralizer of g (in the sense of the previous problem)?

2.48. (H. Köthe, reported by A. A. Tuganbaev) Describe the rings over which
every right and left module is a direct sum of cyclic modules.
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2.49. (L. A. Koifman) Let R be a left hereditary ring and P (R) its prime
radical. Is it true that P (R) is nilpotent and the quotient ring R/P (R) is also
left hereditary? If R does not have an infinite set of orthogonal idempotents
then this is true (Yu. A. Drozd).

2.50. (A. T. Kolotov) Let F be a free associative algebra of finite rank, A a
finitely generated subalgebra of F , and I an ideal of F such that I ⊂ A and
F/I is a nilalgebra. Is it true that codim A < ∞?

2.51. ∗ (A. T. Kolotov) Does there exist an algorithm that decides, for any
finite family of elements of a free associative algebra, whether this family is
algebraically dependent? Remark: The answer is No (U. U. Umirbaev [175]).

2.52. (A. T. Kolotov, I. V. Lvov) Let k be a field, and let D consist of the
pairs (F, A) where F is a free associative k-algebra and A is a subalgebra of
F . Let D0 ⊂ D consist of those pairs in which A is free. Can D0 be defined
axiomatically in D if we add to the signature the predicate that defines the
subalgebra?

2.53. (P. M. Cohn) Must a retract of a free associative algebra also be free?
(This is a special case of 2.4.)

2.54. (A. I. Kostrikin) Can every finite dimensional complex simple Lie algebra
be decomposed into a direct sum of Cartan subalgebras which are pairwise
orthogonal with respect to the Killing form? One of the conjectured negative
examples is the Lie algebra of type A5. (See A. I. Kostrikin, I. A. Kostrikin, V.
A. Ufnarovskii [92].)

2.55. ∗ (A. I. Kostrikin) Do there exist finite dimensional simple Lie algebras
over a field of characteristic p > 5 such that (adx)p−1 6= 0 for all x 6= 0? The
conjectured answer is negative. Remark: The answer is No (A. A. Premet [136]).

2.56. ∗ (A. I. Kostrikin, I. R. Shafarevich) Prove that every finite dimensional
simple Lie p-algebra over an algebraically closed field of characteristic p > 5
is isomorphic to one of the algebras of classical or Cartan type. (See A. I.
Kostrikin, I. R. Shafarevich [93].) Remark: The conjecture is true for charac-
teristic > 7 (R. E. Block, R. L. Wilson [21]).

2.57. (A. I. Kostrikin) What are the maximal subalgebras of simple Lie algebras
of classical type over an algebraically closed field of characteristic p > 0?

2.58. (E. N. Kuzmin) Must a binary-Lie algebra that has a regular automor-
phism of finite order be solvable?

2.59. ∗ (E. N. Kuzmin) Is there a connection between Moufang loops of prime
exponent p and Malcev algebras of characteristic p analogous to the connection
between Lie groups and Lie algebras? Remark: The answer is Yes (A. N.
Grishkov [64]).
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2.60. (G. P. Kukin) Describe the varieties of Lie algebras in which every finitely
presented algebra (resp. finitely presented algebra with decidable word problem)
is residually finite dimensional. Here finite presentability can be understood in
the absolute or relative sense.

2.61. ∗ (G. P. Kukin) It can be shown that a free Lie algebra of characteristic
p > 0 is residually finite with respect to inclusion into a finitely generated
subalgebra. Is this true for Lie algebras of characteristic 0? Remark: The
answer is Yes (U. U. Umirbaev [173]).

2.62. (G. P. Kukin) Is the problem of conjugacy by an automorphism for finitely
generated subalgebras of a free algebra (resp. free Lie algebra) decidable?

2.63. ∗ (G. P. Kukin) Must every finitely generated subalgebra of a free solvable
Lie algebra be finitely separated? Remark: The answer is No (S. A. Agalakov
[1]).

2.64. ∗ (V. N. Latyshev) Is it true that a homomorphic image of a special Lie
algebra is again a special Lie algebra (that is, embeddable into an associative
PI algebra)? Remark: The answer is No (Yu. V. Billig [20]).

2.65. (I. V. Lvov) Is it true that every PI ring is a homomorphic image of a PI
ring with torsion-free additive group?

2.66. (I. V. Lvov) Does there exist a nonzero PI ring that coincides with its
derived Lie algebra?

2.67. (I. V. Lvov) Suppose that a ring satisfies an identity of degree d with
coprime coefficients. Is it true that this ring satisfies a multilinear identity of
degree d with some coefficient equal to 1?

2.68. (I. V. Lvov) (a) Does there exist a simple infinite dimensional finitely
presented algebra R over an arbitrary field k of positive characteristic?
(b) The same question with additional assumptions: R is Noetherian without
zero divisors and has finite Gelfand-Kirillov dimension (see W. Borho, H. Kraft
[26]). In the case of a field k of characteristic 0, Weyl algebras are examples.

2.69. (I. V. Lvov) Does every finitely generated algebra (over a field) with finite
Gelfand-Kirillov dimension have a greatest nilpotent ideal?

2.70. (I. V. Lvov) Is it true that every (right) primitive ring is a subdirect
product of subdirectly indecomposable (right) primitive rings?

2.71. (I. V. Lvov) Is the class of residually finite rings (resp. groups) axioma-
tizable in the language L∞,∞?

2.72. (I. V. Lvov) Is it true that the class of free associative algebras over a
fixed field k is not axiomatizable in the language L∞,∞?

2.73. (I. V. Lvov) Is the class of subdirect products of division rings axiomati-
zable?
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2.74. (I. V. Lvov) Does every algebra (over a field) without zero divisors and
with the maximal condition on subalgebras satisfy a polynomial identity?

2.75. (I. V. Lvov) Must every finitely generated nilalgebra (over a field) with
finite Gelfand-Kirillov dimension be nilpotent?

2.76. (I. V. Lvov) Let A be a Noetherian alternative algebra. Is the algebra of
formal power series A[[x]] also Noetherian?

2.77. (I. V. Lvov) (a) Must the Gelfand-Kirillov dimension of a finitely gen-
erated Noetherian PI algebra be an integer? (It is finite by Shirshov’s height
theorem.) The same question for reduced-free (not necessarily Noetherian) al-
gebras.
(b) Describe varieties of algebras over an infinite field in which all finitely gen-
erated algebras have integral Gelfand-Kirillov dimension.

2.78. (I. V. Lvov) Is it true that two free associative algebras (over a field) of
finite ranks m, n (m > n ≥ 2) are elementarily equivalent?

2.79. (A. I. Malcev, reported by A. N. Grishkov) Prove that every analytic
alternative local loop is locally isomorphic to an analytic alternative loop.

2.80. ∗ (Yu. N. Malcev) Let R be a critical unital ring. Is it true that the
matrix ring Mn(R) is also critical? Remark: The answer is Yes (Yu. N. Malcev
[108]).

2.81. ◦ (Yu. N. Malcev) Describe varieties of rings whose lattice (of subvarieties)
is not distributive but the lattice of every proper subvariety is distributive.
Remark: A complete description has not yet been obtained. Significant progress
on this problem has been announced by M. V. Volkov [184].

2.82. (Yu. N. Malcev) Let M be the variety of associative rings satisfying the
identity x3 = xn for some n ≥ 4. Does M satisfy the minimum condition on
subvarieties?

2.83. (Yu. N. Malcev) Describe the critical rings in the variety of rings satisfying
the identity x3 = xn for some n ≥ 4.

2.84. (E. Matlis, reported by A. A. Tuganbaev) Must a direct summand of a
direct sum of indecomposable injective modules also be a direct sum of inde-
composable injective modules?

2.85. (Yu. A. Medvedev) Must a variety M of alternative algebras be solvable
if every associative algebra in M is nilpotent?

2.86. ◦ (Yu. A. Medvedev) Let A be an alternative (resp. Jordan) ring, G a
finite group of automorphisms, AG the subalgebra of fixed elements. Must A be
solvable if AG is solvable and A has no |G|-torsion? Remark: If A is an algebra
over a field of characteristic 0 then the answer is Yes (A. P. Semenov [144]).
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2.87. (Yu. A. Medvedev) Does every finite alternative (resp. Jordan) ring have
a finite basis of quasi-identities?

2.88. ∗ (S. Montgomery, V. K. Kharchenko) Consider the free associative alge-
bra F of rank n over a field k as the tensor algebra of the n-dimensional space
V . For which linear groups G ⊆ GL(V ) is the subalgebra of invariants of F
with respect to G finitely generated? Remark: A description of such groups has
been obtained (A. I. Koryukin [89]).

2.89. (Yu. A. Ryabukhin, R. A. Florya) Does there exist in some variety a
simple free ring with characteristic p ≥ 3?

2.90. (L. A. Skornyakov) Describe the rings over which all finitely presented
modules are injective.

2.91. (A. M. Slinko) What is the minimal possible dimension of a nilpotent
exceptional Jordan algebra?

2.92. ◦ (A. M. Slinko) Does every variety of solvable alternative algebras over a
field of characteristic 6= 2 have a finite basis of identities? (This is a more precise
version of 1.129.) Remark: The answer is Yes over a field of characteristic 6= 2, 3
(U. U. Umirbaev [172]).

2.93. ◦ (A. M. Slinko) Must every nilideal of a Jordan algebra with the min-
imum condition on annihilators be nilpotent? Remark: The solvability of nil
subalgebras of Jordan algebras with minimum condition on annihilators has
been proved by A. V. Chekhonadskikh [33].

2.94. (A. M. Slinko) Describe maximal special varieties of Jordan algebras.

2.95. ◦ (A. M. Slinko) Must the variety generated by the Jordan algebra of a
bilinear form be special? Remark: The answer is Yes in the case of a field of
characteristic 0 (S. R. Sverchkov [165]) and in the case of a finite field (I. M.
Isaev [75]).

2.96. (A. M. Slinko) Find a basis of weak identities of the pair (F2, H(F2)). Do
they all follow from the standard identity S4(x1, x2, x3, x4)?

2.97. (A. M. Slinko) If a homogeneous variety of algebras has a locally nilpotent
radical, must it also have a locally finite dimensional radical?

2.98. ∗ (G. F. Smit) Must a right alternative nilalgebra with the minimum
condition on right ideals be right nilpotent? Remark: The answer is Yes (V. G.
Skosyrskii [157]).

2.99. (G. F. Smit) Must a one-sided nilideal of a Noetherian (−1, 1) ring be
nilpotent?

2.100. (D. A. Suprunenko) Must a torsion group of matrices over a division
ring be locally finite? The modular case is especially interesting.
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2.101. (A. Thedy, reported by I. P. Shestakov) Is it true that every finite
dimensional right alternative algebra has an isotope which splits over its radical?

2.102. (A. A. Tuganbaev) A module is called weakly injective if every endomor-
phism of every submodule can be extended to an endomorphism of the whole
module. Describe the rings over which all cyclic modules are weakly injective.

2.103. (A. A. Tuganbaev) Must a weakly injective module with an essential
socle be quasi-injective?

2.104. (A. A. Tuganbaev) Can every right Noetherian ring with a distributive
lattice of right ideals be decomposed as a direct sum of a right Artinian ring
and a semiprime ring?

2.105. (V. T. Filippov) Let A be the free Malcev algebra of countable rank,
and let M[n] = Var(An). Does the chain of varieties

M[1] ⊂ M[2] ⊆ M[3] ⊆ · · · ⊆ M[n] ⊆ · · ·

stabilize after a finite number of steps?

2.106. (V. T. Filippov) Does the free binary-Lie algebra contain nonzero nilpo-
tent ideals?

2.107. (V. T. Filippov) Is the associative center of a free Moufang loop non-
trivial?

2.108. (V. T. Filippov) Let A be a free Malcev algebra over a field F of char-
acteristic 0, and C7 the simple 7-dimensional non-Lie Malcev algebra over F .
Is the ideal of identities of C7 a Lie ideal in A?

2.109. (V. T. Filippov) An algebra is called assocyclic if it satisfies the identity
(x, y, z) = (z, x, y) where (x, y, z) = (xy)z − x(yz). It is easy to show that the
minus algebra of such an algebra is binary-Lie. Is every binary-Lie algebra over
a field of characteristic 6= 2, 3 embeddable into the minus algebra of a suitable
assocyclic algebra?

2.110. (V. T. Filippov) Are the varieties generated by the free Malcev algebras
(over a field of characteristic 6= 2, 3) of ranks 3 and 4 distinct?

2.111. (V. T. Filippov) Is the ideal of the free alternative algebra over a field
F of characteristic 0, generated by the identities of the split Cayley-Dickson
algebra over F , associative?

2.112. (V. T. Filippov) Describe the class of finite dimensional Malcev alge-
bras over a field of characteristic 0 that have a faithful (not necessarily finite
dimensional) representation.

2.113. (V. T. Filippov) Describe the center of the algebra of right multiplica-
tions of the free Malcev algebra.
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2.114. ∗ (Fischer, reported by L. A. Skornyakov) Is the ring of matrices over an
invertibly regular ring also invertibly regular (that is, a ring in which for every
a the equation axa = a has an invertible solution)? Remark: The answer is Yes
(M. Henriksen [67]).

2.115. (V. K. Kharchenko) Is the subalgebra of constants (that is, invariants)
for a finite dimensional Lie p-algebra of derivations of the free associative algebra
(over a field of characteristic p) also free?

2.116. (V. K. Kharchenko) Is the subalgebra of invariants for a finite group of
automorphisms of the free associative algebra also free? The answer is unknown
also for infinite groups.

2.117. (V. K. Kharchenko) Let L be a Lie algebra that admits an automorphism
of order 2 all of whose fixed elements are in the center of L. Must L be solvable?

2.118. ∗ (V. K. Kharchenko) Must the restricted enveloping algebra of a Lie p-
algebra with a polynomial identity also satisfy a polynomial identity? Remark:
The answer is No (V. M. Petrogradsky [131]).

2.119. ∗ (V. K. Kharchenko) Can every associative algebra over a field of char-
acteristic 0 that satisfies the identity xn = 0 be represented by n × n matrices
over a commutative ring? Remark: The answer is Yes (C. Procesi [137]).

2.120. ◦ (I. P. Shestakov) Describe the ideal of identities of the free alternative
algebra on 3 generators. Remark: This ideal coincides with the radical over a
field of characteristic 6= 2, 3 (A. V. Iltyakov [70]). Over a field of characteristic
0 it is finitely generated as a T-ideal (A. V. Iltyakov [72]) and nilpotent (E. I.
Zelmanov and I. P. Shestakov [199]).

2.121. (I. P. Shestakov) Describe the center and the associative center of a free
alternative algebra as completely characteristic subalgebras. Are they finitely
generated?

2.122. (I. P. Shestakov) Does the anti-simple radical of an associative (resp. Jor-
dan) algebra coincide with the intersection of the kernels of all irreducible birep-
resentations of this algebra?

2.123. (I. P. Shestakov) Is every finitely generated associative (resp. special
Jordan) PI algebra embeddable into a 2-generated PI algebra?

2.124. ◦ (I. P. Shestakov) Describe the following varieties of alternative and
Jordan algebras (resp. rings):

(a) almost nilpotent;
(b) almost Cross;
(c) ◦ locally residually finite;
(d) ◦ locally Noetherian (resp. weakly Noetherian);
(e) Hopf;
(f) alternative almost associative;
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(g) Jordan almost special;
(h) Jordan distributive.

Remark: (c,d) Locally residually finite and locally (weakly) Noetherian varieties
of alternative algebras have been described (S. V. Pchelintsev [130]).

2.125. ∗ (I. P. Shestakov) Does the free Jordan algebra on three or more gen-
erators contain Albert subrings? Remark: The answer is Yes (Yu. A. Medvedev
[120]).

2.126. ∗ (I. P. Shestakov) Find a basis of identities of the Jordan algebra of a
bilinear form over an infinite field. Does this algebra generate a Specht variety?
Remark: A finite basis of identities has been found by S. Yu. Vasilovsky [181].
Over a field of characteristic 0 the unitary Specht property has been proved (S.
Yu. Vasilovsky [181], A. V. Iltaykov [71], P. E. Koshlukov [91]).

2.127. ◦ (I. P. Shestakov) Are the varieties of Jordan algebras generated by
(a) ∗ the algebra F +

n ;
(b) ∗ the algebra H(Fn);
(c) ∗ the algebra H3(C);

finitely based or Specht? Describe the trace identities that hold in these al-
gebras. Do they have a finite basis? Remark: It has been shown that every
finitely generated Jordan PI algebra over a field of characteristic 0 is Specht (A.
Ya. Vais, E. I. Zelmanov [178]).

2.128. ∗ (I. P. Shestakov) Suppose that a special Jordan algebra J satisfies an
identity that does not hold in a Jordan algebra of a bilinear form on an infinite
dimensional space. Must J have an enveloping associative PI algebra? Remark:
The answer is No (S. V. Pchelintsev [129]).

2.129. ∗ (I. P. Shestakov) Let J be a finitely generated Jordan PI algebra. Is
its universal multiplicative enveloping algebra R(J) also a PI algebra? Remark:
The answer is Yes (Yu. A. Medvedev [119]).

2.130. ∗ (I. P. Shestakov) Let J be a Jordan algebra, I / J , H / I . Suppose
that the ideal I is generated in J by the set H . Must the quotient algebra I/H
be solvable or nilpotent? Remark: The answer is No (Yu. A. Medvedev [118],
S. V. Pchelintsev [129]).

2.131. ∗ (I. P. Shestakov) Let A be a simple right alternative ring such that
A(+) is a simple Jordan ring. Must A be alternative? Remark: The answer is
Yes (V. G. Skosyrskii [156]).

2.132. (I. P. Shestakov) Describe finite dimensional irreducible right alterna-
tive bimodules over the matrix algebra M2(F ). Is their number finite (up to
isomorphism)?

2.133. ∗ (I. P. Shestakov) Describe noncommutative Jordan division algebras,
at least in the finite dimensional case. Remark: Strictly prime algebras of
characteristic 6= 2, 3 have been described by V. G. Skosyrskii [159].
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2.134. (I. P. Shestakov) Does there exist a simple infinite dimensional non-
commutative Jordan algebra, with the identity ([x, y], y, y) = 0, that is neither
alternative nor Jordan?

2.135. ∗ (A. I. Shirshov) Must the variety of algebras generated by a finite
dimensional associative (resp. Lie) algebra over a field of characteristic 0 have
a finite basis of identities? Remark: The answer is Yes (A. R. Kemer [83], A.
V. Iltyakov [73]).

2.136. (A. L. Shmelkin) Do there exist infinite dimensional Noetherian Lie
algebras (that is, satisfying the maximal condition on subalgebras) that can
be approximated by nilpotent Lie algebras? The analogous question for groups:
Does there exist a non-nilpotent group that is approximable by nilpotent torsion-
free groups?

2.137. (Reported by V. A. Artamonov) Let k be a principal ideal domain and
G an almost polycyclic group without torsion. Is it true that every projective
module over the group algebra kG is a direct sum of a free module and a one-
sided ideal?

2.138. ◦ (Reported by Yu. A. Bahturin) Is it true that a variety of Lie algebras
over a field k of characteristic 0 that does not contain the algebra sl(2, k) is
(locally) solvable? Remark: The answer is Yes for special Lie algebras (A.
Ya. Vais [177]) and also for some other varieties (S. P. Mishchenko [123]).

2.139. (Reported by Yu. A. Bahturin) Describe finite dimensional simple Lie
algebras (over an arbitrary field) such that all proper subalgebras are nilpotent
(or even Abelian).

2.140. (Reported by A. L. Voronov) Let G be a polycyclic group. Is it true
that the algebra kG is primitive if and only if the field k is not absolute and
∆(G) = 1?

2.141. (Reported by K. R. Goodearl and L. A. Skornyakov) A ring is called
directly finite if xy = 1 implies yx = 1. Is the ring of matrices over a regular
directly finite ring also directly finite?

2.142. (Reported by Yu. A. Drozd) Let A be a finite dimensional Lie algebra, U
its universal enveloping algebra, and P a finitely generated projective U -module.
Must P be a free module?

2.143. (Reported by I. V. Lvov) Does every finitely generated PI ring satisfy
all the identities of a ring of n × n matrices over the integers?

2.144. (Reported by Yu. M. Ryabukhin) Describe in terms of identities the
varieties of commutative associative algebras over a finite field.

2.145. (Reported by A. I. Kostrikin) Find a formula for the dimensions of the
irreducible p-modules of the classical Lie algebras over a field of characteristic
p > 0.
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3 Part Three

3.1. (T. Anderson) Let M be a variety of power-associative algebras whose
finite dimensional solvable algebras are nilpotent. Must the nilalgebras of M
be solvable?

3.2. (V. I. Arnautov) Is every ring topology of a ring (resp. division ring) R
a greatest lower bound of some family of maximal ring topologies of R in the
lattice of all topologies?

3.3. (V. I. Arnautov) Is there a ring in which one can build maximal ring topolo-
gies, without assuming the Continuum Hypothesis, such that the corresponding
topological ring is not complete?

3.4. (V. I. Arnautov) Is there a ring which is complete with respect to any
maximal ring topology?

3.5. (V. I. Arnautov, A. V. Mikhalev) Is it possible to embed an arbitrary
topological group into the multiplicative semigroup of a topological ring?

3.6. (V. I. Arnautov, A. V. Mikhalev) Is it true that for any topological ring
(R, τ0) and any discrete monoid G the topology τ0 can be extended to a ring
topology on the semigroup ring RG?

3.7. (V. I. Arnautov, I. V. Protasov) Is it true that for an arbitrary ring there
exists a ring topology for which all endomorphisms of the ring are continuous?

3.8. (A well-known problem reported by V. I. Arnautov) Can any ring topology
of a division ring be weakened to a ring topology in which the inverse operation
is a continuous function?

3.9. (V. A. Artamonov) Let B be an associative left Noetherian algebra of
Krull dimension d, let H be a commutative and cocommutative Hopf algebra,
and let A = B#tH be a crossed product. Suppose that P is a finitely generated
projective module of rank > d. If P is stably extended from B, then is P
extended from B?

3.10. (L. A. Bokut) Is an arbitrary finitely generated associative (resp. Lie)
algebra with a recursive basis embeddable in a finitely definable associative
(resp. Lie) algebra?

3.11. (L. A. Bokut) How many non-isomorphic algebraically closed Lie algebras
of a given cardinality are there?

3.12. (L. A. Bokut, V. N. Gerasimov) Is an arbitrary free associative algebra
embeddable in an algebraically closed associative algebra (that is, an algebra in
which any non-trivial generalized polynomial in one variable has a root)?

3.13. (L. A. Bokut, V. N. Gerasimov) Is it true that the class of associative rings
embeddable into division rings cannot be defined by an independent system of
quasi-identities?
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3.14. (L. A. Bokut, V. N. Gerasimov) Is it true that the class of semigroups
embeddable into groups cannot be defined by an independent system of axioms?

3.15. (L. A. Bokut, M. V. Sapir) Describe all varieties of algebras over a field
of characteristic 0 in which for every finitely definable algebra the word problem
is solvable.

3.16. (L. A. Bokut, M. V. Sapir) Describe all varieties of algebras over a field
of characteristic 0 in which every finitely definable algebra is residually finite
dimensional.

3.17. (L. A. Bokut, M. V. Sapir) Describe all varieties of algebras over a field
of characteristic 0 in which every finitely definable algebra is representable.

3.18. (N. A. Vavilov, A. V. Mikhalev) This and the following problem are
related to the attempt to extend some results in algebraic K-theory from com-
mutative rings to PI rings. Positive answers are known in the case when the ring
is a finitely generated module over its center (A. A. Suslin, M. S. Tulenbaev).
Let R be a unital PI ring. Consider, in the group GLn(R) of all invertible n×n
matrices over R, the subgroup of elementary matrices En(R) generated by the
transvections

tij(r) = I + rEij , i 6= j, 1 ≤ i, j ≤ n, r ∈ R.

Is En(R) a normal subgroup of GLn(R)?

3.19. (N. A. Vavilov, A. V. Mikhalev) Let R be a unital PI ring, and let Stn(R)
be its n-th Steinberg group, that is, the group generated by formal transvections
over R: the elements uij(a) with defining relations

[uij(a), ujk(b)] = uik(ab), i 6= j, j 6= k, k 6= i,

[uij(a), ukl(b)] = 1, j 6= k, i 6= l,

uij(a)uij(b) = uij(a + b).

There exists a group homomorphism of Stn(R) onto En(R) (see 3.18) sending
uij(r) to tij(r). Let K2,n(R) be its kernel:

1 −→ K2,n(R) −→ Stn(R) −→ En(R) −→ 1.

Is it true that K2,n(R) is contained in the center of the group Stn(R) for suffi-
ciently large n (for instance, for n ≥ 5)?

3.20. (Yu. M. Vazhenin) What are the SA-critical theories of a free associative
ring? The lists of all SA-critical theories of the ring of integers and of the
absolutely free (nonassociative) ring are known.

3.21. (Yu. M. Vazhenin) Of the rings defined by one relation in the following
varieties:

(a) alternative rings;
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(b) Jordan rings;
(c) associative rings;

which have a decidable elementary theory?

3.22. (Yu. M. Vazhenin, I. P. Shestakov) What are the SA-critical theories of
a free Jordan ring?

3.23. (Yu. M. Vazhenin, I. P. Shestakov) What are the SA-critical theories of
the variety of all Jordan rings?

3.24. (A. T. Gainov) Let Mn(Φ) be the matrix algebra over a field Φ of char-
acteristic not 2. We call a subspace V of the algebra Mn(Φ) a space of anti-
commuting matrices (SAM for short) if x2 = 0 for all x ∈ V . Two SAMs V
and W in Mn(Φ) are called equivalent if φ(V ) = W for some automorphism or
anti-automorphism φ of Mn(Φ). Find all inequivalent maximal (with respect to
inclusion) SAMs of the algebra Mn(Φ).

3.25. (A. T. Gainov) Let Φ be a field of characteristic not 2, and assume Φ2 6= Φ.
We will call a subspace V of the algebra Mn(Φ) a space of anticommuting
antisymmetric (resp. symmetric) matrices (SAAM for short, resp. SASM) if
x2 = 0 and xt = −x (resp. xt = x) for all x ∈ V . Two SAAMs (resp. SASMs) V
and W in Mn(Φ) are called equivalent if W = qV qt for some orthogonal matrix
q ∈ Mn(Φ). Find all inequivalent maximal (with respect to inclusion) SAAMs
(resp. SASMs) of the algebra Mn(Φ).

3.26. (A. T. Gainov) Describe all finite dimensional simple anticommutative
algebras A over an infinite field of characteristic not 2 that satisfy the condition
that any element a ∈ A lies in some two-dimensional subalgebra.

3.27. (A. G. Gein) An element a of a Lie algebra L is called ad-pure if any
finite dimensional ada-invariant subspace of the algebra L lies in the kernel
of the operator ada. Is there a simple Lie algebra all of whose elements are
ad-pure?

3.28. (A. G. Gein) Does there exist
(a) an infinite dimensional Lie algebra all of whose proper subalgebras are
finite dimensional;

(b) an infinitely generated Lie algebra all of whose proper subalgebras are
finite dimensional;

(c) an infinitely generated Lie algebra all of whose proper subalgebras are
finitely generated?

3.29. (A. V. Grishin) Let F be a countably generated free algebra over a field of
characteristic 0 from a variety of finite base rank, F(d) a d-generated subalgebra
of F . We say that a subspace V of F(d) is a T -space if V = V ∩F(d) where V
is the subspace of F spanned by all possible substitutions into the polynomials
in V of elements in F . Does any T -space have a finite base? A positive answer
is known in the case of the variety of associative algebras. In particular, this
result would imply that the variety is Specht. It is interesting to consider also
the cases of alternative, Jordan and (−1, 1) algebras.
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3.30. (A. V. Grishin) Find an upper bound for the nilpotency index of the
radical of the free (associative) algebra satisfying the standard identity of degree
n.

3.31. (A. V. Grishin) Find an upper bound for the dimension of the (finite
dimensional) algebra of least dimension that generates the variety of associative
algebras defined by the standard identity of degree n. (Such an algebra exists
by the results of the author and A. R. Kemer.)

3.32. (A. V. Grishin) Let M(n) be the variety generated by all n-dimensional
algebras, and A the variety of all associative algebras. Is it true that M(n)∩A
can be defined by the Capelli identity of order n + 1:

∑

σ∈Sn+1

y0xσ(1)y1xσ(2) · · · ynxσ(n+1)yn+1 = 0 ?

3.33. (A. V. Grishin) If a variety is Specht then it is a sum of indecomposable
subvarieties. Investigate the question of the uniqueness of such a decomposition
in the associative or nearly associative case.

3.34. (A. N. Grishkov) Describe finite dimensional Malcev algebras (resp. bi-
nary Lie algebras) to which there correspond algebraic Moufang loops (resp.
alternative loops).

3.35. (A. N. Grishkov) Describe all simple algebraic Bol loops.

3.36. (V. N. Zhelyabin) Is a countably categorical alternative (resp. Jordan)
nilring solvable?

3.37. (A. E. Zalessky) Describe the two-sided ideals of the group ring of the
finitary symmetric group over a field of prime characteristic. (The finitary
symmetric group consists of all permutations of an infinite set which only move a
finite number of elements.) The description is known over a field of characteristic
0.

3.38. (A. E. Zalessky) Let P be a field of characteristic p > 0, and A an
associative algebra over P graded by a finite Abelian group of order k. Assume
that the zero component A0 is commutative. Is it true that A satisfies the
standard identity of degree kp? This is the case for the matrix algebra Mk(P ).

3.39. (E. I. Zelmanov) Let F2,m be the free 2-generated associative ring with
identity xm = 0. Is it true that the nilpotency index of F2,m grows exponentially
as a function of m?

3.40. (E. I. Zelmanov) Is it true that the nilpotency index of the m-generated
(p − 1)-Engel Lie algebra over a field of characteristic p > 0 grows linearly as a
function of m and exponentially as a function of p?

3.41. (E. I. Zelmanov) Let L be a (p − 1)-Engel Lie algebra over a field of
characteristic p > 0. Is it true that an arbitrary element of L generates a
nilpotent ideal?
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3.42. (A. V. Iltyakov) Let A be a finitely generated alternative (resp. Jordan) PI
algebra. Does there exist a finite dimensional alternative (resp. Jordan) algebra
B whose ideal of identities T (B) is contained the ideal of identities T (A) of the
algebra A?

3.43. (I. Kaplansky, reported by A. E. Zalessky) Let H be a group, P a field,
and A(PH) the augmentation ideal of the group ring PH . Describe all the
groups H for which A(PH) is a simple ring (at least for P = C, the field of
complex numbers).

3.44. (I. Kaplansky, M. Henriksen, reported by A. A. Tuganbaev) Let M be
a 2 × 2 matrix with entries from a commutative Bezout domain A. Is it true
that there always exist invertible 2 × 2 matrices C and D such that CMD is a
diagonal matrix?

3.45. (I. Kaplansky, reported by K. A. Pavlov) Is it true that there are only
finitely many (up to isomorphism) Hopf algebras of a given dimension?

3.46. (A. R. Kemer) Does the algebra of 2× 2 matrices over an infinite field of
positive characteristic have a finite basis of identities?

3.47. (G. P. Kukin) Prove that a Lie algebra has cohomological dimension ≤ 2
if and only if its module of relations is free.

3.48. (G. P. Kukin) Prove that the elementary (resp. universal) theory of a free
Lie algebra over a field F is decidable if and only if the elementary (resp. uni-
veral) theory of F is decidable.

3.49. (I. V. Lvov) At the present time there is no reasonable conjecture about
the structure of the automorphism group of a free PI algebra. A question in
the negative direction: Let M be a variety of PI algebras strictly containing
the variety of commutative algebras, and A a free algebra (in countably many
generators). Is it true that the automorphism group of the algebra A is not
generated by tame automorphisms? If A has a non-trivial center, then the
answer is Yes (G. Bergman).

3.50. (I. V. Lvov) Let A be a free PI ring. Does there always exist an epi-
morphism B → A where B is a free PI ring without additive torsion? If yes
(or in those cases when the answer is yes) then what is the “minimal” B with
this property? The analogous question under the assumption that A has prime
characteristic p > 0.

3.51. (I. V. Lvov, Yu. N. Malcev) Is a free PI ring residually finite? Equiva-
lently, is every variety of PI rings generated by its finite rings?

3.52. (Yu. N. Malcev) Is a finite local (associative) unital ring necessarily rep-
resentable?

3.53. (Yu. N. Malcev) Describe the minimal non-Engel varieties of associative
rings. In particular, are they Cross varieties?
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3.54. (S. P. Mishchenko) Describe the non-solvable varieties of Lie algebras that
have almost polynomial growth. (An example of such a variety is Var(sl2).)

3.55. (S. P. Mishchenko) Describe the solvable varieties of Lie algebras that
have exponential growth. (An example is AN2.)

3.56. (S. P. Mishchenko) Does the identity x0(x̄1ŷ1) · · · (x̄mŷm) = 0 (for some
m) follow from the standard Lie identity? Here bars and hats denote skew-
symmetrization in the corresponding group of variables.

3.57. (S. P. Mishchenko) Is there a variety of Lie algebras over a field of charac-
teristic 0 with a distributive lattice of subvarieties and whose basis of identities
is not limited to degree 6?

3.58. (S. Montgomery) Let R be an associative ring with a derivation d, and let
S = R[x; d] be the Ore extension. Is it true that if R has no nonzero nilideals
then S is semisimple? If d = 0 then it is true by a well-known theorem of
Amitsur. See some partial results in J. Bergen, S. Montgomery, D. S. Passman
[17].

3.59. (V. M. Petrogradsky) Suppose that a Lie p-algebra has no elements al-
gebraic with respect to the p-mapping. Is it true that its restricted enveloping
algebra has no zero-divisors?

3.60. (V. M. Petrogradsky) Let R be a PI subalgebra of the restricted envelop-
ing algebra of a Lie p-algebra, and n the minimal number such that R satisfies
a power of the standard identity S2n. Is it true that n = pk?

3.61. (S. V. Pchelintsev) Is the ideal of a finitely generated binary-(−1, 1) al-
gebra generated by the alternators nilpotent or solvable?

3.62. (S. V. Pchelintsev) Do there exist simple non-alternative right alternative
Malcev-admissible algebras?

3.63. (S. V. Pchelintsev) Is it true that the additive group of the free alternative
ring on three generators is torsion-free?

3.64. (S. V. Pchelintsev) Is it true that every prime non-associative (−1, 1)
algebra over a field of characteristic 0 generates the variety of all strictly (−1, 1)
algebras?

3.65. (S. V. Pchelintsev) Is the variety of alternative algebras over a field of
characteristic 0 decomposable into a union of proper subvarieties?

3.66. (G. E. Puninsky) Let R be a uniserial ring without zero divisors. Is
it true that every purely injective module over R contains an indecomposable
direct summand?

3.67. (Yu. P. Razmyslov, reported by S. P. Mishchenko) Prove that the variety
of algebras with the standard identity has exponential growth.
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3.68. (D. A. Rumynin) Let k be an absolute algebraic field, and H a Hopf
algebra over k. Is it true that every irreducible H-module is finite dimensional?

3.69. (D. A. Rumynin) Describe all finite dimensional semisimple Hopf alge-
bras.

3.70. (Yu. M. Ryabukhin) Is it true that every reduced-free quasi-regular alge-
bra (that is, an algebra with an additional unary operation x 7→ x∗ that provides
the adjoint group) is generalized nilpotent?

3.71. (L. V. Sabinin) Develop the structure theory of finite dimensional Bol
algebras of characteristic 0.

3.72. (M. V. Sapir) Let k be a field of characteristic 0, and let R be a k-
algebra. Do there exist an extension field F (R) ⊃ k, and an algebra A(R) ⊃ R
finite dimensional over F (R), such that every family of elements of R, which
becomes linearly dependent upon some embedding of the k-algebra R into an
algebra finite dimensional over some field extension of k, is linearly dependent
in A(R)? It is not even clear whether, for any two finite subsets U1, U2 ⊂ R,
which are linearly dependent in algebras A1, A2 ⊃ R finite dimensional over
extension fields F1, F2 ⊃ k, it is possible to make U1, U2 simultaneously linearly
dependent in some algebra A ⊃ R finite dimensional over some extension field
F ⊃ k.

3.73. (M. V. Sapir) Is it true that in a variety of associative algebras (over a
constructive field of characteristic 0) the word problem is decidable if and only
if the variety does not contain the variety defined by the identities

x[y, z][t, u]v = 0, x[y, z, t]u = 0?

3.74. (A. I. Sozutov) Describe all finite dimensional simple Lie algebras with a
monomial basis.

3.75. (A. A. Tuganbaev) Describe all rings over which every right module is
a distributive left module over its endomorphism ring. (A module is called
distributive if its submodule lattice is distributive.)

3.76. (A. A. Tuganbaev) Describe all right distributive monoid rings.

3.77. (A. A. Tuganbaev) Does every left and right distributive ring have a
classical ring of quotients?

3.78. (A. A. Tuganbaev) Is every right distributive ring, which is integral over
its center, also left distributive?

3.79. (A. A. Tuganbaev) Describe all the rings over which every left module is
isomorphic to a submodule of a direct sum of uniserial modules.

3.80. (A. A. Tuganbaev) Let M be a maximal right ideal of a right distributive
ring A, and let T = A \ M . Does there always exist a ring Q and a ring
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homomorphism f : A → Q such that the elements f(T ) are invertible in Q, and
such that

ker f = { a ∈ A | ∃t ∈ T, at = 0 }, Q = { f(a)f(t)−1 | a ∈ A, t ∈ T }?

3.81. (A. A. Tuganbaev) Let A be a right distributive ring without nonzero
nilpotent elements. Are all right ideals of A flat?

3.82. (A. A. Tuganbaev) Is every left and right distributive domain a semi-
hereditary ring?

3.83. (A. A. Tuganbaev) Describe all the rings over which the ring of formal
power series in one variable has weak global dimension one.

3.84. (V. T. Filippov) Let A be the free Malcev algebra over a field of charac-
teristic 0, let Var(A2) be the variety generated by the square of A, and let M3

be the variety generated by the free Malcev algebra on three generators. Is it
true that Var(A2) = M3?

3.85. (V. T. Filippov) Does there exist a trivial characteristic ideal, not lying in
the Lie center, in the free countably generated Malcev algebra of characteristic
6= 2, 3?

3.86. (V. T. Filippov) Does there exist a trivial characteristic ideal, not lying
in the associative center, in the free countably generated alternative algebra of
characteristic 6= 2, 3?

3.87. (V. T. Filippov) Does there exist a simple non-Malcev binary-Lie algebra
of characteristic 0?

3.88. (V. T. Filippov) Classify simple finite dimensional n-Lie algebras over an
algebraically closed field of characteristic 0.

3.89. (V. T. Filippov) Is it true that in any non-solvable finite dimensional
n-Lie algebra over an algebraically closed field of characteristic 0 there exists an
(n + 1)-dimensional simple subalgebra?

3.90. (V. T. Filippov) Do there exist non-Lie simple finite dimensional Sagle
algebras over a field of characteristic 0? A Sagle algebra is an anticommutative
algebra satisfying the identity

J(x, y, z)t = J(xt, y, z) + J(x, yt, z) + J(x, y, zt),

where J(x, y, z) = (xy)z + (zx)y + (yz)x.

3.91. (J. Faulkner) An Abelian group A together with mappings ja (defined
for each 0 6= a ∈ A) from the set A∪ {∞} to itself is called a Hua system if the
following conditions are satisfied:

(HS1) j2
a = id, ja(a) = a, ja(−a) = −a, ja(0) = ∞

(HS2) (saja)3 = id where sa(b) = a − b, sa(∞) = ∞

(HS3) jajb ∈ End A
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Every quadratic Jordan division ring is a Hua system if we set ja(b) = Ua(b−1).
Can every Hua system be obtained from a quadratic Jordan division ring in this
way? (See J. R. Faulkner [41] for references and a survey of known results.)

3.92. (P. A. Freidman) Is it true that every associative nil ring all of whose
proper subrings have an annihilator series also has an annihilator series?

3.93. (V. K. Kharchenko) Let an associative unital ring satisfy an essential
polynomial identity with automorphisms and skew derivations. Will it be a
PI ring? (An identity is called essential if the two-sided ideal generated by all
values of its generalized monomials contains the unit element.)

3.94. (V. K. Kharchenko) Let R be a prime ring with generalized centroid C,
and B a quasi-Frobenius finite dimensional C-subalgebra of RC. Is R necessarily
a PI ring if the centralizer of B in R is a PI ring?

3.95. (V. K. Kharchenko) Describe the identities with skew derivations and
automorphisms of an arbitrary prime ring.

3.96. (V. K. Kharchenko) Develop Galois theory in the class of prime rings
for reduced finite groups which have a quasi-Frobenius group algebra. At the
present time such a theory has been developed for groups which have a semisim-
ple group algebra, and it is also known that a reduced finite group with a quasi-
Frobenius group algebra is a Galois group.

3.97. (V. K. Kharchenko) Let a Hopf algebra H act on an associative unital
algebra R, and suppose that R satisfies an essential multilinear generalized
identity with operators from H . Is R necessarily a PI algebra? A multilinear
generalized identity is called essential if the two-sided ideal generated by the
values of all generalized monomials contains the unit element. A generalized
monomial is the sum of all the monomials having a fixed order of variables.

3.98. (I. P. Shestakov) Do there exist exceptional prime noncommutative al-
ternative algebras (that is, algebras other than associative or Cayley-Dickson
rings)?

3.99. (I. P. Shestakov) Compute (or at least find an upper bound for) the
nilpotency index of the radical of the free alternative algebra over a field of
characteristic 0.

3.100. (I. P. Shestakov) Describe all simple finite dimensional superalgebras
for the following classes of algebras:

(a) noncommutative Jordan (that are not super-anticommutative);
(b) right alternative;
(c) structurable;
(d) binary-Lie.

3.101. (I. P. Shestakov) Describe all finite dimensional irreducible superbimod-
ules for the following classes of algebras:
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(a) alternative;
(b) Jordan;
(c) Malcev;
(d) structurable.

3.102. (I. P. Shestakov) Describe all simple finite dimensional Jordan superpairs
and triple supersystems.

3.103. (I. P. Shestakov) Do there exist finite dimensional central simple algebras
over a field of characteristic 0 that do not have a finite basis of identities?

3.104. (I. P. Shestakov) Let A be a finite dimensional central simple algebra
over a field F , let Fk(A) be the free algebra of rank k in the variety generated
by A, and let Γk be the field of quotients of the centroid of Fk(A). Is Γk always
a purely transcendental extension of F ? If A = Mn(F ) then this is the well-
known problem on the center of the ring of generic matrices, which has been
solved positively only for n ≤ 4.

3.105. (I. P. Shestakov) Is it true that every nilpotent (not necessarily asso-
ciative) algebra is representable (that is, embeddable in a finite dimensional
algebra over some extension of the ground field)?

References

[1] S. A. Agalakov, Finite separability of groups and Lie algebras, Algebra
and Logic 22 (1983) 363–371 (MR 86d:20042). [2.63]

[2] S. A. Agalakov, A. S. Shtern, Free products of linearly orderable Lie alge-

bras, Siberian Math. J. 23 (1982) 5–9 (MR 83j:17014). [1.76]

[3] S. A. Amitsur, Rational identities and applications to algebra and geome-

try, J. Algebra 3 (1966) 304–359 (MR 33 #139). [1.122]

[4] A. Z. Ananyin, A. R. Kemer, Varieties of associative algebras whose lat-

tices of subvarieties are distributive, Siberian Math. J. 17 (1976) 723–730
(MR 54 #10104). [1.19]

[5] V. I. Andriyanov, P. A. Freidman, Hamiltonian rings, Sverdlovsk. Gos.
Ped. Inst. Uchen. Zap. 31 (1965) 3–23 (MR 35 #5469). [1.141]

[6] V. I. Arnautov, Nondiscrete topologizability of infinite commutative rings,
Doklady Akad. Nauk USSR 194 (1970) 991–994 (MR 43 #195). [1.165]

[7] V. I. Arnautov, An example of an infinite ring that permits only discrete

topologization, Mat. Issled. 5 (1970) 182–185 (MR 46 #1857). [1.165]

[8] V. I. Arnautov, M. I. Ursul, Imbedding of topological rings into connected

ones, Mat. Issled. 49 (1979) 11–15 (MR 80k:16050). [1.9]

43



[9] O. D. Artemovich, Right Hamiltonian rings, VI Symposium on the Theory
of Rings, Algebras and Modules (Abstracts), Lvov (1990). [1.141]

[10] S. Bachmuth, H. Y. Mochizuki, D. Walkup, A nonsolvable group of expo-

nent 5, Bull. Amer. Math. Soc. 76 (1970) 638–640 (MR 41 #1862).

[11] Yu. A. Bahturin, A. I. Kostrikin, Second International Conference of For-

eign Alumni, Uspekhi Mat. Nauk 40 (1985) 231–235. [2.13]

[12] K. I. Beidar, Classical rings of quotients of PI-algebras, Uspekhi Mat.
Nauk 33 (1978) 197–198 (MR 80c:16013). [1.90]

[13] K. I. Beidar, Radicals of finitely generated algebras, Uspekhi Mat. Nauk
36 (1981) 203–204 (MR 83e:16009). [1.2]

[14] K. I. Beidar, A chain of Kurosh may have an arbitrary finite length,
Czechoslovak Math. J. 32 (1982) 418–422 (MR 83m:16007). [1.115]

[15] A. I. Belov, A. G. Gein, Lie algebras that admit an almost regular au-

tomorphism, Izvestiya Vyssh. Uchebn. Zaved. Mat. 8 (1981) 3–4 (MR
83h:17015). [1.145]

[16] V. Ya. Belyaev, Subrings of finitely presented associative rings, Algebra
and Logic 17 (1978) 627–638 (MR 81i:16026). [1.22]

[17] J. Bergen, S. Montgomery, D. S. Passman, Radicals of crossed products of

enveloping algebras, Israel J. Math. 59 (1987) 167–184 (MR 89c:17019).
[3.58]

[18] G. M. Bergman, The logarithmic limit-set of an algebraic variety, Trans.
Amer. Math. Soc. 157 (1971) 459–469 (MR 43 #6209). [1.63]

[19] G. M. Bergman, Sfields finitely right-generated over subrings, Comm. Al-
gebra 11 (1983) 1893–1902 (MR 85e:16032). [2.29]

[20] Yu. V. Billig, A homomorphic image of a special Lie algebra, Mat. Sbornik
136 (1988) 320–323 (MR 89k:17015). [2.13, 2.64]

[21] R. E. Block, R. L. Wilson, Classification of the restricted simple Lie alge-

bras, J. Algebra 114 (1988) 115–259 (MR 89e:17014). [2.56]

[22] L. A. Bokut, Factorization theorems for certain classes of rings without

divisors of zero: I, II, Algebra and Logic 4 (1965) 25–52 (MR 33 #5666);
Algebra and Logic 5 (1965) 17–46 (MR 33 #5667). [2.22]

[23] L. A. Bokut, Groups of fractions of multiplicative semigroups of certain

rings: I, II, Siberian Math. J. 10 (1969) 246–286, 744–799 (MR 41 #267a).
[2.22]

[24] L. A. Bokut, Unsolvability of the word problem, and subalgebras of finitely

presented Lie algebras, Izvestiya Akad. Nauk USSR 36 (1972) 1173–1219
(MR 48 #8588). [1.154]

44



[25] L. A. Bokut, Imbeddings into simple associative algebras, Algebra and
Logic 15 (1976) 117–142 (MR 58 #22167). [1.20]
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