NV·GL

DNV GL Perspective- Regulations, Codes and Standards

H2@Ports Workshop

Anthony Teo 11 September 2019

ABOUT DNV GL -Leading the surge towards the future

OIL & GAS ENERGY MARITIME Maritime is our core industry 11,678 ships & mobile offshore units in DNV GL class, 280.6 mGT Strong presence in all ship segments DIGITAL **BUSINESS** Dedicated ship type expert teams ASSURANCE SOLUTIONS support our clients worldwide Among top performing class societies in Port State Control statistics 200 Maritime offices across the world 3,600 12,500 24% 5% Market share (measured in GT) Maritime staff employees revenue invested in worldwide groupwide **R&D** activities

Total number of ships (in operation and on order)

• Scrubber • LNG • Battery • LNG ready • Methanol • LPG • Hydrogen (2)

Alternative Fuels Insight

Number of ships with batteries by ship type

In operation • Under construction • Unknown

Towards zero emissions in shipping

HYDROGEN – FUEL CELLS

- Next generation
- Increased range
- Reduced weight possible
- More flexible charging/bunkeri

Maritime FC- Noteable Projects

P. A what							
	FellowSHIP	320 kW MCFC system for auxiliary power of Offshore Supply Vessel	Eidesvik Offshore, Wärtsilä, DNV	2003-2011	MCFC	320 kW	LNG
	ZemShip - Alsterwasser	100 kW PEMFC system developed and tested onboard of a small passenger ship in the area of Alster in Hamburg, Germany	Proton Motors, GL, Alster Touristik GmbH, Linde Group etc.	2006-2013	PEM	96 kW	Hydrogen
	E4Ships - SchIBZ MS Forester	100 kW containerized SOFC system de- veloped and tested for the auxiliary power supply of comercial ships. Scalable up to 500 kW units.	Thyssen Krupp Marine Sys- tems, DNVGL, Leibniz Univer- sity Hannover, OWI, Reederei Rörd Braren, Sunfire	Phase 1: 2009-2017 Phase 2: 2017-2022	SOFC	100 kW	Diesel
	E4Ships - Pa-X-ell MS MARI- ELLA	60 kW modularized HT-PEM fuel cell sys- tem developed and tested for the decen- tralized auxiliary power supply onboard passenger vessel MS MARIELLA.	Meyer Werft, DNVGL, Lürssen Werft, etc	Phase 1: 2009-2017 Phase 2: 2017-2022	HTPEM	60 kW (each stack is 30 kW)	Methanol
	Nemo H2	Small passenger ship in the canals of Amsterdam	Rederij Lovers etc	2012- present	PEM	60 kW	Hydrogen
	RiverCell	250 kW modularized HT-PEM fuel cell system developed and to be tested as a part of a hybrid power supply for river cruice vessles	Meyer Werft, DNVGL, Neptun Werft, Viking Cruises	Phase 1: 2015-2017 Phase 2: 2017-2022	HTPEM	250 kW	Methanol
	SF-BREEZE	Feasibility study of a high-speed hydro- gen fuel cell passenger ferry and hydro- gen refueling station in San Francisco bay area	Sandia National Lab., Red and White Fleet	2015 - present	PEM	120 kW per module. Total power 2.5MW	Hydrogen

Zero/V - Hydrogen Fuel-Cell Coastal Research Vessel

Sandia partnered with the Scripps Institution of Oceanography, the naval architect firm Glosten and the class society DNV GL to assess the technical, regulatory and economic feasibility of a hydrogen fuel-cell coastal research vessel.

Report published on 7th May- http://energy.sandia.gov/transportationenergy/hydrogen/market-transformation/maritime-fuel-cells/

Regulatory situation – a main barrier

- The IGF Code entered into force Jan 1st 2017
- Governs the use of low flashpoint liquids and gaseous fuels
- DNV GL Class Rules for fuel cells and the class notations FC(Safety) and FC(Power)
 - Section 3 Fuel cell installations FC
 - Sets requirements FC power systems, design principles for FC spaces, fire safety, control and monitoring systems
- No fuel specific requirements (hydrogen)
- No prescriptive hydrogen requirements available
- The applicable part of the IGF Code (Part A) requires that an "Alternative design" approach is followed

a far	RULES FOR CLASSIFICATION
IS TOP	Ships
	Edition July 2016
	Part 6 Additional class notations
	Chapter 2 Propulsion, power generation and auxiliary systems
that	This context of this events document is the subject of inflambiand argumpting sectors by DWG AG (TWG G2). The same the subject of the sectors document is the subject of inflambiand argumpting sectors by DWG AG (TWG G2), the subject website sectors, including the subsector of californian solation and calorimum, while y particle, with the sector of a door provides its the subject of the sector of the sectors of the sectors of the sectors of the sector of a door provides its the subject of the sector of the sectors of the sectors of the sectors of the sectors of the sectors is the subject of the subject of the sectors of the secto
	The electronic pdf version of this document, available free of charge

Regulation overview - status

Regulation overview - Alternative Design

Currently, for Fuel Cells and Hydrogen

- IGF codes provides the possibility for alternative design process
- The equivalence of the alternative design shall be demonstrated by a risk-based approach as specified in SOLAS regulation II-1/55 and approved by the Administration
- The "Guidelines on Alternative Design and Arrangements for SOLAS Chapters II-1 and III (MSC.1 / Circ. 1212)" providing guidance to perform the *Alternative Design Process*

Preliminary Analysis

- Identification of rule deviations
- Hazard Identification
- Scenarios, methods and assumptions for guantification

Quantitative Analysis

- Quantification of selected scenarios
- Comparison to conventional design

Report of Assessment

- Documentation
- Presentation to flag

Regulation overview -DNVGL Fuel Cell Rules

- DNVGL Rules for Classification Ships
 - Part 6 Chapter 2 Section 3 Fuel Cell
 Installations FC
 - The Rules offer two class notations:
 - FC(Power)
 - Given to ships that fulfils design requirements in the Rules, where the FCs are used for essential-, important- or emergency services.

- FC(Safety)

 Given to ships that fulfils the environmental- and safety requirements in the Rules, where the FCs are not used for essential-, important- or emergency services.

Hydrogen Safety- Experiments and simulations

- Major Hazards Research and Testing Facility (Spadeadam)
- Enables us to understand hazards and to develop and validate models

Explosion Risk Analysis (ERA) approach

Ventilation example

Horizontal cut

Vertical cut

Gas leak dispersion example hydrogen

Maritime Fuel Cell Product Certification/Type Approval – under development

- DNVGL has initiated the development of a class program CP for Fuel Cell Power Installations, describing the procedures and technical requirements for the approval and certification of such systems (similar to the DNV GL CP-0418 for Lithium Batteries <u>https://rules.dnvgl.com/docs/pdf/DNVGL/CP/2015-12/DNVGL-CP-0418.pdf</u>).
- Technical basis will be e.g. the draft of the IGF-Code for fuel cells, the DNVGL CG-0339 'Environmental test specification for electrical, electronic and programmable equipment and systems' <u>https://rules.dnvgl.com/docs/pdf/DNVGL/CG/2015-11/DNVGL-CG-0339.pdf</u> and the IEC 62282 'Fuel Cell Technologies'.
- Since the technical requirements for fuel cell power installations are equivalent for case-bycase or type approval (only the procedure is different) and due to the very different kinds of fuel cells (PEM, HTPEM, HTFC etc.) the procedures and the technical requirements for approval and certification of such systems will be developed together with manufacturer and class until the above mentioned Class Program is available.

DNV GL initiative – MARHYSAFE: Maritime Hydrogen Safety Joint Development Project

Goal:

- Remove regulatory and approval barriers
- Develop the knowledge required for safe and reliable onboard hydrogen storage, bunkering and use of hydrogen in shipping

Indication of partners:

- Public: Norwegian Maritime Authority, Norwegian Public Roads Administration, Norwegian Defence Material Agency (Navy, NDMA)
- Private: Equinor, Scandlines, RCCL, Air Liquide, HySeas Energy, Redrock (Canada), UMOE, Hexagon, Standards Council of Canada

R&D partners:

University of South-Eastern Norway (USN)

Status:

- Currently discussing with potential partners
- Open for more partners
- Planning to start the project soon (2019)

MARHYSAFE

DNV GL's services on Fuel Cell / Hydrogen

R&D	 Applied research and development including <i>experimental</i> setups Explosion and fire experiments and research 		
Innovation & demonstration	 Realization of <i>demonstration</i> projects Techno-economic <i>road mapping</i> for technology or solutions System integration with renewables/electricity/ 		
Implementation support	 Technology qualification Explosion and fire save design analysis <i>Recommended practice</i> and standards development Guideline for HRS user interface improvement process 		
Realisation support	 Consortium initiation/execution Safety assessments (HAZOP, HAZID, QRA, RRR, CFD modeling) 		
Operational excellence	 Custody transfer Performance validation Process optimization H2 Incident and accident database (HIAD) 		

Safer, Smarter, Greener...

EMSA Report available at <u>http://www.emsa.europa.eu</u> or search www: EMSA + DNVGL + fuel cell

Anthony Teo Tse.yen.teo@dnvgl.com +1-281-396-1507

www.dnvgl.com

SAFER, SMARTER, GREENER

Alternative Fuels Insight

afi.dnvgl.com